SemaDeclCXX.cpp revision e653ba2f3b6d993b5d410554c12416c03ec7775b
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/SmallString.h"
36#include "llvm/ADT/STLExtras.h"
37#include <map>
38#include <set>
39
40using namespace clang;
41
42//===----------------------------------------------------------------------===//
43// CheckDefaultArgumentVisitor
44//===----------------------------------------------------------------------===//
45
46namespace {
47  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
48  /// the default argument of a parameter to determine whether it
49  /// contains any ill-formed subexpressions. For example, this will
50  /// diagnose the use of local variables or parameters within the
51  /// default argument expression.
52  class CheckDefaultArgumentVisitor
53    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
54    Expr *DefaultArg;
55    Sema *S;
56
57  public:
58    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
59      : DefaultArg(defarg), S(s) {}
60
61    bool VisitExpr(Expr *Node);
62    bool VisitDeclRefExpr(DeclRefExpr *DRE);
63    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
64    bool VisitLambdaExpr(LambdaExpr *Lambda);
65  };
66
67  /// VisitExpr - Visit all of the children of this expression.
68  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
69    bool IsInvalid = false;
70    for (Stmt::child_range I = Node->children(); I; ++I)
71      IsInvalid |= Visit(*I);
72    return IsInvalid;
73  }
74
75  /// VisitDeclRefExpr - Visit a reference to a declaration, to
76  /// determine whether this declaration can be used in the default
77  /// argument expression.
78  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
79    NamedDecl *Decl = DRE->getDecl();
80    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p9
82      //   Default arguments are evaluated each time the function is
83      //   called. The order of evaluation of function arguments is
84      //   unspecified. Consequently, parameters of a function shall not
85      //   be used in default argument expressions, even if they are not
86      //   evaluated. Parameters of a function declared before a default
87      //   argument expression are in scope and can hide namespace and
88      //   class member names.
89      return S->Diag(DRE->getSourceRange().getBegin(),
90                     diag::err_param_default_argument_references_param)
91         << Param->getDeclName() << DefaultArg->getSourceRange();
92    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
93      // C++ [dcl.fct.default]p7
94      //   Local variables shall not be used in default argument
95      //   expressions.
96      if (VDecl->isLocalVarDecl())
97        return S->Diag(DRE->getSourceRange().getBegin(),
98                       diag::err_param_default_argument_references_local)
99          << VDecl->getDeclName() << DefaultArg->getSourceRange();
100    }
101
102    return false;
103  }
104
105  /// VisitCXXThisExpr - Visit a C++ "this" expression.
106  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
107    // C++ [dcl.fct.default]p8:
108    //   The keyword this shall not be used in a default argument of a
109    //   member function.
110    return S->Diag(ThisE->getSourceRange().getBegin(),
111                   diag::err_param_default_argument_references_this)
112               << ThisE->getSourceRange();
113  }
114
115  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
116    // C++11 [expr.lambda.prim]p13:
117    //   A lambda-expression appearing in a default argument shall not
118    //   implicitly or explicitly capture any entity.
119    if (Lambda->capture_begin() == Lambda->capture_end())
120      return false;
121
122    return S->Diag(Lambda->getLocStart(),
123                   diag::err_lambda_capture_default_arg);
124  }
125}
126
127void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
128  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
129  // If we have an MSAny or unknown spec already, don't bother.
130  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
131    return;
132
133  const FunctionProtoType *Proto
134    = Method->getType()->getAs<FunctionProtoType>();
135
136  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
137
138  // If this function can throw any exceptions, make a note of that.
139  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
140    ClearExceptions();
141    ComputedEST = EST;
142    return;
143  }
144
145  // FIXME: If the call to this decl is using any of its default arguments, we
146  // need to search them for potentially-throwing calls.
147
148  // If this function has a basic noexcept, it doesn't affect the outcome.
149  if (EST == EST_BasicNoexcept)
150    return;
151
152  // If we have a throw-all spec at this point, ignore the function.
153  if (ComputedEST == EST_None)
154    return;
155
156  // If we're still at noexcept(true) and there's a nothrow() callee,
157  // change to that specification.
158  if (EST == EST_DynamicNone) {
159    if (ComputedEST == EST_BasicNoexcept)
160      ComputedEST = EST_DynamicNone;
161    return;
162  }
163
164  // Check out noexcept specs.
165  if (EST == EST_ComputedNoexcept) {
166    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
167    assert(NR != FunctionProtoType::NR_NoNoexcept &&
168           "Must have noexcept result for EST_ComputedNoexcept.");
169    assert(NR != FunctionProtoType::NR_Dependent &&
170           "Should not generate implicit declarations for dependent cases, "
171           "and don't know how to handle them anyway.");
172
173    // noexcept(false) -> no spec on the new function
174    if (NR == FunctionProtoType::NR_Throw) {
175      ClearExceptions();
176      ComputedEST = EST_None;
177    }
178    // noexcept(true) won't change anything either.
179    return;
180  }
181
182  assert(EST == EST_Dynamic && "EST case not considered earlier.");
183  assert(ComputedEST != EST_None &&
184         "Shouldn't collect exceptions when throw-all is guaranteed.");
185  ComputedEST = EST_Dynamic;
186  // Record the exceptions in this function's exception specification.
187  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
188                                          EEnd = Proto->exception_end();
189       E != EEnd; ++E)
190    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
191      Exceptions.push_back(*E);
192}
193
194void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
195  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
196    return;
197
198  // FIXME:
199  //
200  // C++0x [except.spec]p14:
201  //   [An] implicit exception-specification specifies the type-id T if and
202  // only if T is allowed by the exception-specification of a function directly
203  // invoked by f's implicit definition; f shall allow all exceptions if any
204  // function it directly invokes allows all exceptions, and f shall allow no
205  // exceptions if every function it directly invokes allows no exceptions.
206  //
207  // Note in particular that if an implicit exception-specification is generated
208  // for a function containing a throw-expression, that specification can still
209  // be noexcept(true).
210  //
211  // Note also that 'directly invoked' is not defined in the standard, and there
212  // is no indication that we should only consider potentially-evaluated calls.
213  //
214  // Ultimately we should implement the intent of the standard: the exception
215  // specification should be the set of exceptions which can be thrown by the
216  // implicit definition. For now, we assume that any non-nothrow expression can
217  // throw any exception.
218
219  if (E->CanThrow(*Context))
220    ComputedEST = EST_None;
221}
222
223bool
224Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
225                              SourceLocation EqualLoc) {
226  if (RequireCompleteType(Param->getLocation(), Param->getType(),
227                          diag::err_typecheck_decl_incomplete_type)) {
228    Param->setInvalidDecl();
229    return true;
230  }
231
232  // C++ [dcl.fct.default]p5
233  //   A default argument expression is implicitly converted (clause
234  //   4) to the parameter type. The default argument expression has
235  //   the same semantic constraints as the initializer expression in
236  //   a declaration of a variable of the parameter type, using the
237  //   copy-initialization semantics (8.5).
238  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
239                                                                    Param);
240  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
241                                                           EqualLoc);
242  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
243  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
244                                      MultiExprArg(*this, &Arg, 1));
245  if (Result.isInvalid())
246    return true;
247  Arg = Result.takeAs<Expr>();
248
249  CheckImplicitConversions(Arg, EqualLoc);
250  Arg = MaybeCreateExprWithCleanups(Arg);
251
252  // Okay: add the default argument to the parameter
253  Param->setDefaultArg(Arg);
254
255  // We have already instantiated this parameter; provide each of the
256  // instantiations with the uninstantiated default argument.
257  UnparsedDefaultArgInstantiationsMap::iterator InstPos
258    = UnparsedDefaultArgInstantiations.find(Param);
259  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
260    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
261      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
262
263    // We're done tracking this parameter's instantiations.
264    UnparsedDefaultArgInstantiations.erase(InstPos);
265  }
266
267  return false;
268}
269
270/// ActOnParamDefaultArgument - Check whether the default argument
271/// provided for a function parameter is well-formed. If so, attach it
272/// to the parameter declaration.
273void
274Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
275                                Expr *DefaultArg) {
276  if (!param || !DefaultArg)
277    return;
278
279  ParmVarDecl *Param = cast<ParmVarDecl>(param);
280  UnparsedDefaultArgLocs.erase(Param);
281
282  // Default arguments are only permitted in C++
283  if (!getLangOptions().CPlusPlus) {
284    Diag(EqualLoc, diag::err_param_default_argument)
285      << DefaultArg->getSourceRange();
286    Param->setInvalidDecl();
287    return;
288  }
289
290  // Check for unexpanded parameter packs.
291  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
292    Param->setInvalidDecl();
293    return;
294  }
295
296  // Check that the default argument is well-formed
297  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
298  if (DefaultArgChecker.Visit(DefaultArg)) {
299    Param->setInvalidDecl();
300    return;
301  }
302
303  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
304}
305
306/// ActOnParamUnparsedDefaultArgument - We've seen a default
307/// argument for a function parameter, but we can't parse it yet
308/// because we're inside a class definition. Note that this default
309/// argument will be parsed later.
310void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
311                                             SourceLocation EqualLoc,
312                                             SourceLocation ArgLoc) {
313  if (!param)
314    return;
315
316  ParmVarDecl *Param = cast<ParmVarDecl>(param);
317  if (Param)
318    Param->setUnparsedDefaultArg();
319
320  UnparsedDefaultArgLocs[Param] = ArgLoc;
321}
322
323/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
324/// the default argument for the parameter param failed.
325void Sema::ActOnParamDefaultArgumentError(Decl *param) {
326  if (!param)
327    return;
328
329  ParmVarDecl *Param = cast<ParmVarDecl>(param);
330
331  Param->setInvalidDecl();
332
333  UnparsedDefaultArgLocs.erase(Param);
334}
335
336/// CheckExtraCXXDefaultArguments - Check for any extra default
337/// arguments in the declarator, which is not a function declaration
338/// or definition and therefore is not permitted to have default
339/// arguments. This routine should be invoked for every declarator
340/// that is not a function declaration or definition.
341void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
342  // C++ [dcl.fct.default]p3
343  //   A default argument expression shall be specified only in the
344  //   parameter-declaration-clause of a function declaration or in a
345  //   template-parameter (14.1). It shall not be specified for a
346  //   parameter pack. If it is specified in a
347  //   parameter-declaration-clause, it shall not occur within a
348  //   declarator or abstract-declarator of a parameter-declaration.
349  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
350    DeclaratorChunk &chunk = D.getTypeObject(i);
351    if (chunk.Kind == DeclaratorChunk::Function) {
352      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
353        ParmVarDecl *Param =
354          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
355        if (Param->hasUnparsedDefaultArg()) {
356          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
357          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
358            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
359          delete Toks;
360          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
361        } else if (Param->getDefaultArg()) {
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << Param->getDefaultArg()->getSourceRange();
364          Param->setDefaultArg(0);
365        }
366      }
367    }
368  }
369}
370
371// MergeCXXFunctionDecl - Merge two declarations of the same C++
372// function, once we already know that they have the same
373// type. Subroutine of MergeFunctionDecl. Returns true if there was an
374// error, false otherwise.
375bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
376  bool Invalid = false;
377
378  // C++ [dcl.fct.default]p4:
379  //   For non-template functions, default arguments can be added in
380  //   later declarations of a function in the same
381  //   scope. Declarations in different scopes have completely
382  //   distinct sets of default arguments. That is, declarations in
383  //   inner scopes do not acquire default arguments from
384  //   declarations in outer scopes, and vice versa. In a given
385  //   function declaration, all parameters subsequent to a
386  //   parameter with a default argument shall have default
387  //   arguments supplied in this or previous declarations. A
388  //   default argument shall not be redefined by a later
389  //   declaration (not even to the same value).
390  //
391  // C++ [dcl.fct.default]p6:
392  //   Except for member functions of class templates, the default arguments
393  //   in a member function definition that appears outside of the class
394  //   definition are added to the set of default arguments provided by the
395  //   member function declaration in the class definition.
396  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
397    ParmVarDecl *OldParam = Old->getParamDecl(p);
398    ParmVarDecl *NewParam = New->getParamDecl(p);
399
400    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
401
402      unsigned DiagDefaultParamID =
403        diag::err_param_default_argument_redefinition;
404
405      // MSVC accepts that default parameters be redefined for member functions
406      // of template class. The new default parameter's value is ignored.
407      Invalid = true;
408      if (getLangOptions().MicrosoftExt) {
409        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
410        if (MD && MD->getParent()->getDescribedClassTemplate()) {
411          // Merge the old default argument into the new parameter.
412          NewParam->setHasInheritedDefaultArg();
413          if (OldParam->hasUninstantiatedDefaultArg())
414            NewParam->setUninstantiatedDefaultArg(
415                                      OldParam->getUninstantiatedDefaultArg());
416          else
417            NewParam->setDefaultArg(OldParam->getInit());
418          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
419          Invalid = false;
420        }
421      }
422
423      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
424      // hint here. Alternatively, we could walk the type-source information
425      // for NewParam to find the last source location in the type... but it
426      // isn't worth the effort right now. This is the kind of test case that
427      // is hard to get right:
428      //   int f(int);
429      //   void g(int (*fp)(int) = f);
430      //   void g(int (*fp)(int) = &f);
431      Diag(NewParam->getLocation(), DiagDefaultParamID)
432        << NewParam->getDefaultArgRange();
433
434      // Look for the function declaration where the default argument was
435      // actually written, which may be a declaration prior to Old.
436      for (FunctionDecl *Older = Old->getPreviousDecl();
437           Older; Older = Older->getPreviousDecl()) {
438        if (!Older->getParamDecl(p)->hasDefaultArg())
439          break;
440
441        OldParam = Older->getParamDecl(p);
442      }
443
444      Diag(OldParam->getLocation(), diag::note_previous_definition)
445        << OldParam->getDefaultArgRange();
446    } else if (OldParam->hasDefaultArg()) {
447      // Merge the old default argument into the new parameter.
448      // It's important to use getInit() here;  getDefaultArg()
449      // strips off any top-level ExprWithCleanups.
450      NewParam->setHasInheritedDefaultArg();
451      if (OldParam->hasUninstantiatedDefaultArg())
452        NewParam->setUninstantiatedDefaultArg(
453                                      OldParam->getUninstantiatedDefaultArg());
454      else
455        NewParam->setDefaultArg(OldParam->getInit());
456    } else if (NewParam->hasDefaultArg()) {
457      if (New->getDescribedFunctionTemplate()) {
458        // Paragraph 4, quoted above, only applies to non-template functions.
459        Diag(NewParam->getLocation(),
460             diag::err_param_default_argument_template_redecl)
461          << NewParam->getDefaultArgRange();
462        Diag(Old->getLocation(), diag::note_template_prev_declaration)
463          << false;
464      } else if (New->getTemplateSpecializationKind()
465                   != TSK_ImplicitInstantiation &&
466                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
467        // C++ [temp.expr.spec]p21:
468        //   Default function arguments shall not be specified in a declaration
469        //   or a definition for one of the following explicit specializations:
470        //     - the explicit specialization of a function template;
471        //     - the explicit specialization of a member function template;
472        //     - the explicit specialization of a member function of a class
473        //       template where the class template specialization to which the
474        //       member function specialization belongs is implicitly
475        //       instantiated.
476        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
477          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
478          << New->getDeclName()
479          << NewParam->getDefaultArgRange();
480      } else if (New->getDeclContext()->isDependentContext()) {
481        // C++ [dcl.fct.default]p6 (DR217):
482        //   Default arguments for a member function of a class template shall
483        //   be specified on the initial declaration of the member function
484        //   within the class template.
485        //
486        // Reading the tea leaves a bit in DR217 and its reference to DR205
487        // leads me to the conclusion that one cannot add default function
488        // arguments for an out-of-line definition of a member function of a
489        // dependent type.
490        int WhichKind = 2;
491        if (CXXRecordDecl *Record
492              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
493          if (Record->getDescribedClassTemplate())
494            WhichKind = 0;
495          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
496            WhichKind = 1;
497          else
498            WhichKind = 2;
499        }
500
501        Diag(NewParam->getLocation(),
502             diag::err_param_default_argument_member_template_redecl)
503          << WhichKind
504          << NewParam->getDefaultArgRange();
505      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
506        CXXSpecialMember NewSM = getSpecialMember(Ctor),
507                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
508        if (NewSM != OldSM) {
509          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
510            << NewParam->getDefaultArgRange() << NewSM;
511          Diag(Old->getLocation(), diag::note_previous_declaration_special)
512            << OldSM;
513        }
514      }
515    }
516  }
517
518  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
519  // template has a constexpr specifier then all its declarations shall
520  // contain the constexpr specifier.
521  if (New->isConstexpr() != Old->isConstexpr()) {
522    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
523      << New << New->isConstexpr();
524    Diag(Old->getLocation(), diag::note_previous_declaration);
525    Invalid = true;
526  }
527
528  if (CheckEquivalentExceptionSpec(Old, New))
529    Invalid = true;
530
531  return Invalid;
532}
533
534/// \brief Merge the exception specifications of two variable declarations.
535///
536/// This is called when there's a redeclaration of a VarDecl. The function
537/// checks if the redeclaration might have an exception specification and
538/// validates compatibility and merges the specs if necessary.
539void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
540  // Shortcut if exceptions are disabled.
541  if (!getLangOptions().CXXExceptions)
542    return;
543
544  assert(Context.hasSameType(New->getType(), Old->getType()) &&
545         "Should only be called if types are otherwise the same.");
546
547  QualType NewType = New->getType();
548  QualType OldType = Old->getType();
549
550  // We're only interested in pointers and references to functions, as well
551  // as pointers to member functions.
552  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
553    NewType = R->getPointeeType();
554    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
555  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
556    NewType = P->getPointeeType();
557    OldType = OldType->getAs<PointerType>()->getPointeeType();
558  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
559    NewType = M->getPointeeType();
560    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
561  }
562
563  if (!NewType->isFunctionProtoType())
564    return;
565
566  // There's lots of special cases for functions. For function pointers, system
567  // libraries are hopefully not as broken so that we don't need these
568  // workarounds.
569  if (CheckEquivalentExceptionSpec(
570        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
571        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
572    New->setInvalidDecl();
573  }
574}
575
576/// CheckCXXDefaultArguments - Verify that the default arguments for a
577/// function declaration are well-formed according to C++
578/// [dcl.fct.default].
579void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
580  unsigned NumParams = FD->getNumParams();
581  unsigned p;
582
583  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
584                  isa<CXXMethodDecl>(FD) &&
585                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
586
587  // Find first parameter with a default argument
588  for (p = 0; p < NumParams; ++p) {
589    ParmVarDecl *Param = FD->getParamDecl(p);
590    if (Param->hasDefaultArg()) {
591      // C++11 [expr.prim.lambda]p5:
592      //   [...] Default arguments (8.3.6) shall not be specified in the
593      //   parameter-declaration-clause of a lambda-declarator.
594      //
595      // FIXME: Core issue 974 strikes this sentence, we only provide an
596      // extension warning.
597      if (IsLambda)
598        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
599          << Param->getDefaultArgRange();
600      break;
601    }
602  }
603
604  // C++ [dcl.fct.default]p4:
605  //   In a given function declaration, all parameters
606  //   subsequent to a parameter with a default argument shall
607  //   have default arguments supplied in this or previous
608  //   declarations. A default argument shall not be redefined
609  //   by a later declaration (not even to the same value).
610  unsigned LastMissingDefaultArg = 0;
611  for (; p < NumParams; ++p) {
612    ParmVarDecl *Param = FD->getParamDecl(p);
613    if (!Param->hasDefaultArg()) {
614      if (Param->isInvalidDecl())
615        /* We already complained about this parameter. */;
616      else if (Param->getIdentifier())
617        Diag(Param->getLocation(),
618             diag::err_param_default_argument_missing_name)
619          << Param->getIdentifier();
620      else
621        Diag(Param->getLocation(),
622             diag::err_param_default_argument_missing);
623
624      LastMissingDefaultArg = p;
625    }
626  }
627
628  if (LastMissingDefaultArg > 0) {
629    // Some default arguments were missing. Clear out all of the
630    // default arguments up to (and including) the last missing
631    // default argument, so that we leave the function parameters
632    // in a semantically valid state.
633    for (p = 0; p <= LastMissingDefaultArg; ++p) {
634      ParmVarDecl *Param = FD->getParamDecl(p);
635      if (Param->hasDefaultArg()) {
636        Param->setDefaultArg(0);
637      }
638    }
639  }
640}
641
642// CheckConstexprParameterTypes - Check whether a function's parameter types
643// are all literal types. If so, return true. If not, produce a suitable
644// diagnostic and return false.
645static bool CheckConstexprParameterTypes(Sema &SemaRef,
646                                         const FunctionDecl *FD) {
647  unsigned ArgIndex = 0;
648  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
649  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
650       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
651    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
652    SourceLocation ParamLoc = PD->getLocation();
653    if (!(*i)->isDependentType() &&
654        SemaRef.RequireLiteralType(ParamLoc, *i,
655                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
656                                     << ArgIndex+1 << PD->getSourceRange()
657                                     << isa<CXXConstructorDecl>(FD)))
658      return false;
659  }
660  return true;
661}
662
663// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
664// the requirements of a constexpr function definition or a constexpr
665// constructor definition. If so, return true. If not, produce appropriate
666// diagnostics and return false.
667//
668// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
669bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
670  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
671  if (MD && MD->isInstance()) {
672    // C++11 [dcl.constexpr]p4:
673    //  The definition of a constexpr constructor shall satisfy the following
674    //  constraints:
675    //  - the class shall not have any virtual base classes;
676    const CXXRecordDecl *RD = MD->getParent();
677    if (RD->getNumVBases()) {
678      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
679        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
680        << RD->getNumVBases();
681      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
682             E = RD->vbases_end(); I != E; ++I)
683        Diag(I->getSourceRange().getBegin(),
684             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
685      return false;
686    }
687  }
688
689  if (!isa<CXXConstructorDecl>(NewFD)) {
690    // C++11 [dcl.constexpr]p3:
691    //  The definition of a constexpr function shall satisfy the following
692    //  constraints:
693    // - it shall not be virtual;
694    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
695    if (Method && Method->isVirtual()) {
696      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
697
698      // If it's not obvious why this function is virtual, find an overridden
699      // function which uses the 'virtual' keyword.
700      const CXXMethodDecl *WrittenVirtual = Method;
701      while (!WrittenVirtual->isVirtualAsWritten())
702        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
703      if (WrittenVirtual != Method)
704        Diag(WrittenVirtual->getLocation(),
705             diag::note_overridden_virtual_function);
706      return false;
707    }
708
709    // - its return type shall be a literal type;
710    QualType RT = NewFD->getResultType();
711    if (!RT->isDependentType() &&
712        RequireLiteralType(NewFD->getLocation(), RT,
713                           PDiag(diag::err_constexpr_non_literal_return)))
714      return false;
715  }
716
717  // - each of its parameter types shall be a literal type;
718  if (!CheckConstexprParameterTypes(*this, NewFD))
719    return false;
720
721  return true;
722}
723
724/// Check the given declaration statement is legal within a constexpr function
725/// body. C++0x [dcl.constexpr]p3,p4.
726///
727/// \return true if the body is OK, false if we have diagnosed a problem.
728static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
729                                   DeclStmt *DS) {
730  // C++0x [dcl.constexpr]p3 and p4:
731  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
732  //  contain only
733  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
734         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
735    switch ((*DclIt)->getKind()) {
736    case Decl::StaticAssert:
737    case Decl::Using:
738    case Decl::UsingShadow:
739    case Decl::UsingDirective:
740    case Decl::UnresolvedUsingTypename:
741      //   - static_assert-declarations
742      //   - using-declarations,
743      //   - using-directives,
744      continue;
745
746    case Decl::Typedef:
747    case Decl::TypeAlias: {
748      //   - typedef declarations and alias-declarations that do not define
749      //     classes or enumerations,
750      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
751      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
752        // Don't allow variably-modified types in constexpr functions.
753        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
754        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
755          << TL.getSourceRange() << TL.getType()
756          << isa<CXXConstructorDecl>(Dcl);
757        return false;
758      }
759      continue;
760    }
761
762    case Decl::Enum:
763    case Decl::CXXRecord:
764      // As an extension, we allow the declaration (but not the definition) of
765      // classes and enumerations in all declarations, not just in typedef and
766      // alias declarations.
767      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
768        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
769          << isa<CXXConstructorDecl>(Dcl);
770        return false;
771      }
772      continue;
773
774    case Decl::Var:
775      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
776        << isa<CXXConstructorDecl>(Dcl);
777      return false;
778
779    default:
780      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
781        << isa<CXXConstructorDecl>(Dcl);
782      return false;
783    }
784  }
785
786  return true;
787}
788
789/// Check that the given field is initialized within a constexpr constructor.
790///
791/// \param Dcl The constexpr constructor being checked.
792/// \param Field The field being checked. This may be a member of an anonymous
793///        struct or union nested within the class being checked.
794/// \param Inits All declarations, including anonymous struct/union members and
795///        indirect members, for which any initialization was provided.
796/// \param Diagnosed Set to true if an error is produced.
797static void CheckConstexprCtorInitializer(Sema &SemaRef,
798                                          const FunctionDecl *Dcl,
799                                          FieldDecl *Field,
800                                          llvm::SmallSet<Decl*, 16> &Inits,
801                                          bool &Diagnosed) {
802  if (Field->isUnnamedBitfield())
803    return;
804
805  if (Field->isAnonymousStructOrUnion() &&
806      Field->getType()->getAsCXXRecordDecl()->isEmpty())
807    return;
808
809  if (!Inits.count(Field)) {
810    if (!Diagnosed) {
811      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
812      Diagnosed = true;
813    }
814    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
815  } else if (Field->isAnonymousStructOrUnion()) {
816    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
817    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
818         I != E; ++I)
819      // If an anonymous union contains an anonymous struct of which any member
820      // is initialized, all members must be initialized.
821      if (!RD->isUnion() || Inits.count(*I))
822        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
823  }
824}
825
826/// Check the body for the given constexpr function declaration only contains
827/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
828///
829/// \return true if the body is OK, false if we have diagnosed a problem.
830bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
831  if (isa<CXXTryStmt>(Body)) {
832    // C++11 [dcl.constexpr]p3:
833    //  The definition of a constexpr function shall satisfy the following
834    //  constraints: [...]
835    // - its function-body shall be = delete, = default, or a
836    //   compound-statement
837    //
838    // C++11 [dcl.constexpr]p4:
839    //  In the definition of a constexpr constructor, [...]
840    // - its function-body shall not be a function-try-block;
841    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
842      << isa<CXXConstructorDecl>(Dcl);
843    return false;
844  }
845
846  // - its function-body shall be [...] a compound-statement that contains only
847  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
848
849  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
850  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
851         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
852    switch ((*BodyIt)->getStmtClass()) {
853    case Stmt::NullStmtClass:
854      //   - null statements,
855      continue;
856
857    case Stmt::DeclStmtClass:
858      //   - static_assert-declarations
859      //   - using-declarations,
860      //   - using-directives,
861      //   - typedef declarations and alias-declarations that do not define
862      //     classes or enumerations,
863      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
864        return false;
865      continue;
866
867    case Stmt::ReturnStmtClass:
868      //   - and exactly one return statement;
869      if (isa<CXXConstructorDecl>(Dcl))
870        break;
871
872      ReturnStmts.push_back((*BodyIt)->getLocStart());
873      continue;
874
875    default:
876      break;
877    }
878
879    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
880      << isa<CXXConstructorDecl>(Dcl);
881    return false;
882  }
883
884  if (const CXXConstructorDecl *Constructor
885        = dyn_cast<CXXConstructorDecl>(Dcl)) {
886    const CXXRecordDecl *RD = Constructor->getParent();
887    // DR1359:
888    // - every non-variant non-static data member and base class sub-object
889    //   shall be initialized;
890    // - if the class is a non-empty union, or for each non-empty anonymous
891    //   union member of a non-union class, exactly one non-static data member
892    //   shall be initialized;
893    if (RD->isUnion()) {
894      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
895        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
896        return false;
897      }
898    } else if (!Constructor->isDependentContext() &&
899               !Constructor->isDelegatingConstructor()) {
900      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
901
902      // Skip detailed checking if we have enough initializers, and we would
903      // allow at most one initializer per member.
904      bool AnyAnonStructUnionMembers = false;
905      unsigned Fields = 0;
906      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
907           E = RD->field_end(); I != E; ++I, ++Fields) {
908        if ((*I)->isAnonymousStructOrUnion()) {
909          AnyAnonStructUnionMembers = true;
910          break;
911        }
912      }
913      if (AnyAnonStructUnionMembers ||
914          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
915        // Check initialization of non-static data members. Base classes are
916        // always initialized so do not need to be checked. Dependent bases
917        // might not have initializers in the member initializer list.
918        llvm::SmallSet<Decl*, 16> Inits;
919        for (CXXConstructorDecl::init_const_iterator
920               I = Constructor->init_begin(), E = Constructor->init_end();
921             I != E; ++I) {
922          if (FieldDecl *FD = (*I)->getMember())
923            Inits.insert(FD);
924          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
925            Inits.insert(ID->chain_begin(), ID->chain_end());
926        }
927
928        bool Diagnosed = false;
929        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
930             E = RD->field_end(); I != E; ++I)
931          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
932        if (Diagnosed)
933          return false;
934      }
935    }
936  } else {
937    if (ReturnStmts.empty()) {
938      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
939      return false;
940    }
941    if (ReturnStmts.size() > 1) {
942      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
943      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
944        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
945      return false;
946    }
947  }
948
949  // C++11 [dcl.constexpr]p5:
950  //   if no function argument values exist such that the function invocation
951  //   substitution would produce a constant expression, the program is
952  //   ill-formed; no diagnostic required.
953  // C++11 [dcl.constexpr]p3:
954  //   - every constructor call and implicit conversion used in initializing the
955  //     return value shall be one of those allowed in a constant expression.
956  // C++11 [dcl.constexpr]p4:
957  //   - every constructor involved in initializing non-static data members and
958  //     base class sub-objects shall be a constexpr constructor.
959  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
960  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
961    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
962      << isa<CXXConstructorDecl>(Dcl);
963    for (size_t I = 0, N = Diags.size(); I != N; ++I)
964      Diag(Diags[I].first, Diags[I].second);
965    return false;
966  }
967
968  return true;
969}
970
971/// isCurrentClassName - Determine whether the identifier II is the
972/// name of the class type currently being defined. In the case of
973/// nested classes, this will only return true if II is the name of
974/// the innermost class.
975bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
976                              const CXXScopeSpec *SS) {
977  assert(getLangOptions().CPlusPlus && "No class names in C!");
978
979  CXXRecordDecl *CurDecl;
980  if (SS && SS->isSet() && !SS->isInvalid()) {
981    DeclContext *DC = computeDeclContext(*SS, true);
982    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
983  } else
984    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
985
986  if (CurDecl && CurDecl->getIdentifier())
987    return &II == CurDecl->getIdentifier();
988  else
989    return false;
990}
991
992/// \brief Check the validity of a C++ base class specifier.
993///
994/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
995/// and returns NULL otherwise.
996CXXBaseSpecifier *
997Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
998                         SourceRange SpecifierRange,
999                         bool Virtual, AccessSpecifier Access,
1000                         TypeSourceInfo *TInfo,
1001                         SourceLocation EllipsisLoc) {
1002  QualType BaseType = TInfo->getType();
1003
1004  // C++ [class.union]p1:
1005  //   A union shall not have base classes.
1006  if (Class->isUnion()) {
1007    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1008      << SpecifierRange;
1009    return 0;
1010  }
1011
1012  if (EllipsisLoc.isValid() &&
1013      !TInfo->getType()->containsUnexpandedParameterPack()) {
1014    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1015      << TInfo->getTypeLoc().getSourceRange();
1016    EllipsisLoc = SourceLocation();
1017  }
1018
1019  if (BaseType->isDependentType())
1020    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1021                                          Class->getTagKind() == TTK_Class,
1022                                          Access, TInfo, EllipsisLoc);
1023
1024  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1025
1026  // Base specifiers must be record types.
1027  if (!BaseType->isRecordType()) {
1028    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1029    return 0;
1030  }
1031
1032  // C++ [class.union]p1:
1033  //   A union shall not be used as a base class.
1034  if (BaseType->isUnionType()) {
1035    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1036    return 0;
1037  }
1038
1039  // C++ [class.derived]p2:
1040  //   The class-name in a base-specifier shall not be an incompletely
1041  //   defined class.
1042  if (RequireCompleteType(BaseLoc, BaseType,
1043                          PDiag(diag::err_incomplete_base_class)
1044                            << SpecifierRange)) {
1045    Class->setInvalidDecl();
1046    return 0;
1047  }
1048
1049  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1050  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1051  assert(BaseDecl && "Record type has no declaration");
1052  BaseDecl = BaseDecl->getDefinition();
1053  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1054  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1055  assert(CXXBaseDecl && "Base type is not a C++ type");
1056
1057  // C++ [class]p3:
1058  //   If a class is marked final and it appears as a base-type-specifier in
1059  //   base-clause, the program is ill-formed.
1060  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1061    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1062      << CXXBaseDecl->getDeclName();
1063    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1064      << CXXBaseDecl->getDeclName();
1065    return 0;
1066  }
1067
1068  if (BaseDecl->isInvalidDecl())
1069    Class->setInvalidDecl();
1070
1071  // Create the base specifier.
1072  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1073                                        Class->getTagKind() == TTK_Class,
1074                                        Access, TInfo, EllipsisLoc);
1075}
1076
1077/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1078/// one entry in the base class list of a class specifier, for
1079/// example:
1080///    class foo : public bar, virtual private baz {
1081/// 'public bar' and 'virtual private baz' are each base-specifiers.
1082BaseResult
1083Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1084                         bool Virtual, AccessSpecifier Access,
1085                         ParsedType basetype, SourceLocation BaseLoc,
1086                         SourceLocation EllipsisLoc) {
1087  if (!classdecl)
1088    return true;
1089
1090  AdjustDeclIfTemplate(classdecl);
1091  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1092  if (!Class)
1093    return true;
1094
1095  TypeSourceInfo *TInfo = 0;
1096  GetTypeFromParser(basetype, &TInfo);
1097
1098  if (EllipsisLoc.isInvalid() &&
1099      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1100                                      UPPC_BaseType))
1101    return true;
1102
1103  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1104                                                      Virtual, Access, TInfo,
1105                                                      EllipsisLoc))
1106    return BaseSpec;
1107
1108  return true;
1109}
1110
1111/// \brief Performs the actual work of attaching the given base class
1112/// specifiers to a C++ class.
1113bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1114                                unsigned NumBases) {
1115 if (NumBases == 0)
1116    return false;
1117
1118  // Used to keep track of which base types we have already seen, so
1119  // that we can properly diagnose redundant direct base types. Note
1120  // that the key is always the unqualified canonical type of the base
1121  // class.
1122  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1123
1124  // Copy non-redundant base specifiers into permanent storage.
1125  unsigned NumGoodBases = 0;
1126  bool Invalid = false;
1127  for (unsigned idx = 0; idx < NumBases; ++idx) {
1128    QualType NewBaseType
1129      = Context.getCanonicalType(Bases[idx]->getType());
1130    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1131    if (KnownBaseTypes[NewBaseType]) {
1132      // C++ [class.mi]p3:
1133      //   A class shall not be specified as a direct base class of a
1134      //   derived class more than once.
1135      Diag(Bases[idx]->getSourceRange().getBegin(),
1136           diag::err_duplicate_base_class)
1137        << KnownBaseTypes[NewBaseType]->getType()
1138        << Bases[idx]->getSourceRange();
1139
1140      // Delete the duplicate base class specifier; we're going to
1141      // overwrite its pointer later.
1142      Context.Deallocate(Bases[idx]);
1143
1144      Invalid = true;
1145    } else {
1146      // Okay, add this new base class.
1147      KnownBaseTypes[NewBaseType] = Bases[idx];
1148      Bases[NumGoodBases++] = Bases[idx];
1149      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1150        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1151          if (RD->hasAttr<WeakAttr>())
1152            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1153    }
1154  }
1155
1156  // Attach the remaining base class specifiers to the derived class.
1157  Class->setBases(Bases, NumGoodBases);
1158
1159  // Delete the remaining (good) base class specifiers, since their
1160  // data has been copied into the CXXRecordDecl.
1161  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1162    Context.Deallocate(Bases[idx]);
1163
1164  return Invalid;
1165}
1166
1167/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1168/// class, after checking whether there are any duplicate base
1169/// classes.
1170void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1171                               unsigned NumBases) {
1172  if (!ClassDecl || !Bases || !NumBases)
1173    return;
1174
1175  AdjustDeclIfTemplate(ClassDecl);
1176  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1177                       (CXXBaseSpecifier**)(Bases), NumBases);
1178}
1179
1180static CXXRecordDecl *GetClassForType(QualType T) {
1181  if (const RecordType *RT = T->getAs<RecordType>())
1182    return cast<CXXRecordDecl>(RT->getDecl());
1183  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1184    return ICT->getDecl();
1185  else
1186    return 0;
1187}
1188
1189/// \brief Determine whether the type \p Derived is a C++ class that is
1190/// derived from the type \p Base.
1191bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1192  if (!getLangOptions().CPlusPlus)
1193    return false;
1194
1195  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1196  if (!DerivedRD)
1197    return false;
1198
1199  CXXRecordDecl *BaseRD = GetClassForType(Base);
1200  if (!BaseRD)
1201    return false;
1202
1203  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1204  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1205}
1206
1207/// \brief Determine whether the type \p Derived is a C++ class that is
1208/// derived from the type \p Base.
1209bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1210  if (!getLangOptions().CPlusPlus)
1211    return false;
1212
1213  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1214  if (!DerivedRD)
1215    return false;
1216
1217  CXXRecordDecl *BaseRD = GetClassForType(Base);
1218  if (!BaseRD)
1219    return false;
1220
1221  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1222}
1223
1224void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1225                              CXXCastPath &BasePathArray) {
1226  assert(BasePathArray.empty() && "Base path array must be empty!");
1227  assert(Paths.isRecordingPaths() && "Must record paths!");
1228
1229  const CXXBasePath &Path = Paths.front();
1230
1231  // We first go backward and check if we have a virtual base.
1232  // FIXME: It would be better if CXXBasePath had the base specifier for
1233  // the nearest virtual base.
1234  unsigned Start = 0;
1235  for (unsigned I = Path.size(); I != 0; --I) {
1236    if (Path[I - 1].Base->isVirtual()) {
1237      Start = I - 1;
1238      break;
1239    }
1240  }
1241
1242  // Now add all bases.
1243  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1244    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1245}
1246
1247/// \brief Determine whether the given base path includes a virtual
1248/// base class.
1249bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1250  for (CXXCastPath::const_iterator B = BasePath.begin(),
1251                                BEnd = BasePath.end();
1252       B != BEnd; ++B)
1253    if ((*B)->isVirtual())
1254      return true;
1255
1256  return false;
1257}
1258
1259/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1260/// conversion (where Derived and Base are class types) is
1261/// well-formed, meaning that the conversion is unambiguous (and
1262/// that all of the base classes are accessible). Returns true
1263/// and emits a diagnostic if the code is ill-formed, returns false
1264/// otherwise. Loc is the location where this routine should point to
1265/// if there is an error, and Range is the source range to highlight
1266/// if there is an error.
1267bool
1268Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1269                                   unsigned InaccessibleBaseID,
1270                                   unsigned AmbigiousBaseConvID,
1271                                   SourceLocation Loc, SourceRange Range,
1272                                   DeclarationName Name,
1273                                   CXXCastPath *BasePath) {
1274  // First, determine whether the path from Derived to Base is
1275  // ambiguous. This is slightly more expensive than checking whether
1276  // the Derived to Base conversion exists, because here we need to
1277  // explore multiple paths to determine if there is an ambiguity.
1278  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1279                     /*DetectVirtual=*/false);
1280  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1281  assert(DerivationOkay &&
1282         "Can only be used with a derived-to-base conversion");
1283  (void)DerivationOkay;
1284
1285  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1286    if (InaccessibleBaseID) {
1287      // Check that the base class can be accessed.
1288      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1289                                   InaccessibleBaseID)) {
1290        case AR_inaccessible:
1291          return true;
1292        case AR_accessible:
1293        case AR_dependent:
1294        case AR_delayed:
1295          break;
1296      }
1297    }
1298
1299    // Build a base path if necessary.
1300    if (BasePath)
1301      BuildBasePathArray(Paths, *BasePath);
1302    return false;
1303  }
1304
1305  // We know that the derived-to-base conversion is ambiguous, and
1306  // we're going to produce a diagnostic. Perform the derived-to-base
1307  // search just one more time to compute all of the possible paths so
1308  // that we can print them out. This is more expensive than any of
1309  // the previous derived-to-base checks we've done, but at this point
1310  // performance isn't as much of an issue.
1311  Paths.clear();
1312  Paths.setRecordingPaths(true);
1313  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1314  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1315  (void)StillOkay;
1316
1317  // Build up a textual representation of the ambiguous paths, e.g.,
1318  // D -> B -> A, that will be used to illustrate the ambiguous
1319  // conversions in the diagnostic. We only print one of the paths
1320  // to each base class subobject.
1321  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1322
1323  Diag(Loc, AmbigiousBaseConvID)
1324  << Derived << Base << PathDisplayStr << Range << Name;
1325  return true;
1326}
1327
1328bool
1329Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1330                                   SourceLocation Loc, SourceRange Range,
1331                                   CXXCastPath *BasePath,
1332                                   bool IgnoreAccess) {
1333  return CheckDerivedToBaseConversion(Derived, Base,
1334                                      IgnoreAccess ? 0
1335                                       : diag::err_upcast_to_inaccessible_base,
1336                                      diag::err_ambiguous_derived_to_base_conv,
1337                                      Loc, Range, DeclarationName(),
1338                                      BasePath);
1339}
1340
1341
1342/// @brief Builds a string representing ambiguous paths from a
1343/// specific derived class to different subobjects of the same base
1344/// class.
1345///
1346/// This function builds a string that can be used in error messages
1347/// to show the different paths that one can take through the
1348/// inheritance hierarchy to go from the derived class to different
1349/// subobjects of a base class. The result looks something like this:
1350/// @code
1351/// struct D -> struct B -> struct A
1352/// struct D -> struct C -> struct A
1353/// @endcode
1354std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1355  std::string PathDisplayStr;
1356  std::set<unsigned> DisplayedPaths;
1357  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1358       Path != Paths.end(); ++Path) {
1359    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1360      // We haven't displayed a path to this particular base
1361      // class subobject yet.
1362      PathDisplayStr += "\n    ";
1363      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1364      for (CXXBasePath::const_iterator Element = Path->begin();
1365           Element != Path->end(); ++Element)
1366        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1367    }
1368  }
1369
1370  return PathDisplayStr;
1371}
1372
1373//===----------------------------------------------------------------------===//
1374// C++ class member Handling
1375//===----------------------------------------------------------------------===//
1376
1377/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1378bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1379                                SourceLocation ASLoc,
1380                                SourceLocation ColonLoc,
1381                                AttributeList *Attrs) {
1382  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1383  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1384                                                  ASLoc, ColonLoc);
1385  CurContext->addHiddenDecl(ASDecl);
1386  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1387}
1388
1389/// CheckOverrideControl - Check C++0x override control semantics.
1390void Sema::CheckOverrideControl(const Decl *D) {
1391  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1392  if (!MD || !MD->isVirtual())
1393    return;
1394
1395  if (MD->isDependentContext())
1396    return;
1397
1398  // C++0x [class.virtual]p3:
1399  //   If a virtual function is marked with the virt-specifier override and does
1400  //   not override a member function of a base class,
1401  //   the program is ill-formed.
1402  bool HasOverriddenMethods =
1403    MD->begin_overridden_methods() != MD->end_overridden_methods();
1404  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1405    Diag(MD->getLocation(),
1406                 diag::err_function_marked_override_not_overriding)
1407      << MD->getDeclName();
1408    return;
1409  }
1410}
1411
1412/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1413/// function overrides a virtual member function marked 'final', according to
1414/// C++0x [class.virtual]p3.
1415bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1416                                                  const CXXMethodDecl *Old) {
1417  if (!Old->hasAttr<FinalAttr>())
1418    return false;
1419
1420  Diag(New->getLocation(), diag::err_final_function_overridden)
1421    << New->getDeclName();
1422  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1423  return true;
1424}
1425
1426/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1427/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1428/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1429/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1430/// present but parsing it has been deferred.
1431Decl *
1432Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1433                               MultiTemplateParamsArg TemplateParameterLists,
1434                               Expr *BW, const VirtSpecifiers &VS,
1435                               bool HasDeferredInit) {
1436  const DeclSpec &DS = D.getDeclSpec();
1437  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1438  DeclarationName Name = NameInfo.getName();
1439  SourceLocation Loc = NameInfo.getLoc();
1440
1441  // For anonymous bitfields, the location should point to the type.
1442  if (Loc.isInvalid())
1443    Loc = D.getSourceRange().getBegin();
1444
1445  Expr *BitWidth = static_cast<Expr*>(BW);
1446
1447  assert(isa<CXXRecordDecl>(CurContext));
1448  assert(!DS.isFriendSpecified());
1449
1450  bool isFunc = D.isDeclarationOfFunction();
1451
1452  // C++ 9.2p6: A member shall not be declared to have automatic storage
1453  // duration (auto, register) or with the extern storage-class-specifier.
1454  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1455  // data members and cannot be applied to names declared const or static,
1456  // and cannot be applied to reference members.
1457  switch (DS.getStorageClassSpec()) {
1458    case DeclSpec::SCS_unspecified:
1459    case DeclSpec::SCS_typedef:
1460    case DeclSpec::SCS_static:
1461      // FALL THROUGH.
1462      break;
1463    case DeclSpec::SCS_mutable:
1464      if (isFunc) {
1465        if (DS.getStorageClassSpecLoc().isValid())
1466          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1467        else
1468          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1469
1470        // FIXME: It would be nicer if the keyword was ignored only for this
1471        // declarator. Otherwise we could get follow-up errors.
1472        D.getMutableDeclSpec().ClearStorageClassSpecs();
1473      }
1474      break;
1475    default:
1476      if (DS.getStorageClassSpecLoc().isValid())
1477        Diag(DS.getStorageClassSpecLoc(),
1478             diag::err_storageclass_invalid_for_member);
1479      else
1480        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1481      D.getMutableDeclSpec().ClearStorageClassSpecs();
1482  }
1483
1484  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1485                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1486                      !isFunc);
1487
1488  Decl *Member;
1489  if (isInstField) {
1490    CXXScopeSpec &SS = D.getCXXScopeSpec();
1491
1492    // Data members must have identifiers for names.
1493    if (Name.getNameKind() != DeclarationName::Identifier) {
1494      Diag(Loc, diag::err_bad_variable_name)
1495        << Name;
1496      return 0;
1497    }
1498
1499    IdentifierInfo *II = Name.getAsIdentifierInfo();
1500
1501    // Member field could not be with "template" keyword.
1502    // So TemplateParameterLists should be empty in this case.
1503    if (TemplateParameterLists.size()) {
1504      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1505      if (TemplateParams->size()) {
1506        // There is no such thing as a member field template.
1507        Diag(D.getIdentifierLoc(), diag::err_template_member)
1508            << II
1509            << SourceRange(TemplateParams->getTemplateLoc(),
1510                TemplateParams->getRAngleLoc());
1511      } else {
1512        // There is an extraneous 'template<>' for this member.
1513        Diag(TemplateParams->getTemplateLoc(),
1514            diag::err_template_member_noparams)
1515            << II
1516            << SourceRange(TemplateParams->getTemplateLoc(),
1517                TemplateParams->getRAngleLoc());
1518      }
1519      return 0;
1520    }
1521
1522    if (SS.isSet() && !SS.isInvalid()) {
1523      // The user provided a superfluous scope specifier inside a class
1524      // definition:
1525      //
1526      // class X {
1527      //   int X::member;
1528      // };
1529      DeclContext *DC = 0;
1530      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1531        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1532          << Name << FixItHint::CreateRemoval(SS.getRange());
1533      else
1534        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1535          << Name << SS.getRange();
1536
1537      SS.clear();
1538    }
1539
1540    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1541                         HasDeferredInit, AS);
1542    assert(Member && "HandleField never returns null");
1543  } else {
1544    assert(!HasDeferredInit);
1545
1546    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1547    if (!Member) {
1548      return 0;
1549    }
1550
1551    // Non-instance-fields can't have a bitfield.
1552    if (BitWidth) {
1553      if (Member->isInvalidDecl()) {
1554        // don't emit another diagnostic.
1555      } else if (isa<VarDecl>(Member)) {
1556        // C++ 9.6p3: A bit-field shall not be a static member.
1557        // "static member 'A' cannot be a bit-field"
1558        Diag(Loc, diag::err_static_not_bitfield)
1559          << Name << BitWidth->getSourceRange();
1560      } else if (isa<TypedefDecl>(Member)) {
1561        // "typedef member 'x' cannot be a bit-field"
1562        Diag(Loc, diag::err_typedef_not_bitfield)
1563          << Name << BitWidth->getSourceRange();
1564      } else {
1565        // A function typedef ("typedef int f(); f a;").
1566        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1567        Diag(Loc, diag::err_not_integral_type_bitfield)
1568          << Name << cast<ValueDecl>(Member)->getType()
1569          << BitWidth->getSourceRange();
1570      }
1571
1572      BitWidth = 0;
1573      Member->setInvalidDecl();
1574    }
1575
1576    Member->setAccess(AS);
1577
1578    // If we have declared a member function template, set the access of the
1579    // templated declaration as well.
1580    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1581      FunTmpl->getTemplatedDecl()->setAccess(AS);
1582  }
1583
1584  if (VS.isOverrideSpecified()) {
1585    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1586    if (!MD || !MD->isVirtual()) {
1587      Diag(Member->getLocStart(),
1588           diag::override_keyword_only_allowed_on_virtual_member_functions)
1589        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1590    } else
1591      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1592  }
1593  if (VS.isFinalSpecified()) {
1594    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1595    if (!MD || !MD->isVirtual()) {
1596      Diag(Member->getLocStart(),
1597           diag::override_keyword_only_allowed_on_virtual_member_functions)
1598      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1599    } else
1600      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1601  }
1602
1603  if (VS.getLastLocation().isValid()) {
1604    // Update the end location of a method that has a virt-specifiers.
1605    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1606      MD->setRangeEnd(VS.getLastLocation());
1607  }
1608
1609  CheckOverrideControl(Member);
1610
1611  assert((Name || isInstField) && "No identifier for non-field ?");
1612
1613  if (isInstField)
1614    FieldCollector->Add(cast<FieldDecl>(Member));
1615  return Member;
1616}
1617
1618/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1619/// in-class initializer for a non-static C++ class member, and after
1620/// instantiating an in-class initializer in a class template. Such actions
1621/// are deferred until the class is complete.
1622void
1623Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1624                                       Expr *InitExpr) {
1625  FieldDecl *FD = cast<FieldDecl>(D);
1626
1627  if (!InitExpr) {
1628    FD->setInvalidDecl();
1629    FD->removeInClassInitializer();
1630    return;
1631  }
1632
1633  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1634    FD->setInvalidDecl();
1635    FD->removeInClassInitializer();
1636    return;
1637  }
1638
1639  ExprResult Init = InitExpr;
1640  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1641    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1642      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1643        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1644    }
1645    Expr **Inits = &InitExpr;
1646    unsigned NumInits = 1;
1647    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1648    InitializationKind Kind = EqualLoc.isInvalid()
1649        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1650        : InitializationKind::CreateCopy(InitExpr->getLocStart(), EqualLoc);
1651    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1652    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1653    if (Init.isInvalid()) {
1654      FD->setInvalidDecl();
1655      return;
1656    }
1657
1658    CheckImplicitConversions(Init.get(), EqualLoc);
1659  }
1660
1661  // C++0x [class.base.init]p7:
1662  //   The initialization of each base and member constitutes a
1663  //   full-expression.
1664  Init = MaybeCreateExprWithCleanups(Init);
1665  if (Init.isInvalid()) {
1666    FD->setInvalidDecl();
1667    return;
1668  }
1669
1670  InitExpr = Init.release();
1671
1672  FD->setInClassInitializer(InitExpr);
1673}
1674
1675/// \brief Find the direct and/or virtual base specifiers that
1676/// correspond to the given base type, for use in base initialization
1677/// within a constructor.
1678static bool FindBaseInitializer(Sema &SemaRef,
1679                                CXXRecordDecl *ClassDecl,
1680                                QualType BaseType,
1681                                const CXXBaseSpecifier *&DirectBaseSpec,
1682                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1683  // First, check for a direct base class.
1684  DirectBaseSpec = 0;
1685  for (CXXRecordDecl::base_class_const_iterator Base
1686         = ClassDecl->bases_begin();
1687       Base != ClassDecl->bases_end(); ++Base) {
1688    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1689      // We found a direct base of this type. That's what we're
1690      // initializing.
1691      DirectBaseSpec = &*Base;
1692      break;
1693    }
1694  }
1695
1696  // Check for a virtual base class.
1697  // FIXME: We might be able to short-circuit this if we know in advance that
1698  // there are no virtual bases.
1699  VirtualBaseSpec = 0;
1700  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1701    // We haven't found a base yet; search the class hierarchy for a
1702    // virtual base class.
1703    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1704                       /*DetectVirtual=*/false);
1705    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1706                              BaseType, Paths)) {
1707      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1708           Path != Paths.end(); ++Path) {
1709        if (Path->back().Base->isVirtual()) {
1710          VirtualBaseSpec = Path->back().Base;
1711          break;
1712        }
1713      }
1714    }
1715  }
1716
1717  return DirectBaseSpec || VirtualBaseSpec;
1718}
1719
1720/// \brief Handle a C++ member initializer using braced-init-list syntax.
1721MemInitResult
1722Sema::ActOnMemInitializer(Decl *ConstructorD,
1723                          Scope *S,
1724                          CXXScopeSpec &SS,
1725                          IdentifierInfo *MemberOrBase,
1726                          ParsedType TemplateTypeTy,
1727                          const DeclSpec &DS,
1728                          SourceLocation IdLoc,
1729                          Expr *InitList,
1730                          SourceLocation EllipsisLoc) {
1731  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1732                             DS, IdLoc, InitList,
1733                             EllipsisLoc);
1734}
1735
1736/// \brief Handle a C++ member initializer using parentheses syntax.
1737MemInitResult
1738Sema::ActOnMemInitializer(Decl *ConstructorD,
1739                          Scope *S,
1740                          CXXScopeSpec &SS,
1741                          IdentifierInfo *MemberOrBase,
1742                          ParsedType TemplateTypeTy,
1743                          const DeclSpec &DS,
1744                          SourceLocation IdLoc,
1745                          SourceLocation LParenLoc,
1746                          Expr **Args, unsigned NumArgs,
1747                          SourceLocation RParenLoc,
1748                          SourceLocation EllipsisLoc) {
1749  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1750                                           RParenLoc);
1751  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1752                             DS, IdLoc, List, EllipsisLoc);
1753}
1754
1755namespace {
1756
1757// Callback to only accept typo corrections that can be a valid C++ member
1758// intializer: either a non-static field member or a base class.
1759class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1760 public:
1761  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1762      : ClassDecl(ClassDecl) {}
1763
1764  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1765    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1766      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1767        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1768      else
1769        return isa<TypeDecl>(ND);
1770    }
1771    return false;
1772  }
1773
1774 private:
1775  CXXRecordDecl *ClassDecl;
1776};
1777
1778}
1779
1780/// \brief Handle a C++ member initializer.
1781MemInitResult
1782Sema::BuildMemInitializer(Decl *ConstructorD,
1783                          Scope *S,
1784                          CXXScopeSpec &SS,
1785                          IdentifierInfo *MemberOrBase,
1786                          ParsedType TemplateTypeTy,
1787                          const DeclSpec &DS,
1788                          SourceLocation IdLoc,
1789                          Expr *Init,
1790                          SourceLocation EllipsisLoc) {
1791  if (!ConstructorD)
1792    return true;
1793
1794  AdjustDeclIfTemplate(ConstructorD);
1795
1796  CXXConstructorDecl *Constructor
1797    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1798  if (!Constructor) {
1799    // The user wrote a constructor initializer on a function that is
1800    // not a C++ constructor. Ignore the error for now, because we may
1801    // have more member initializers coming; we'll diagnose it just
1802    // once in ActOnMemInitializers.
1803    return true;
1804  }
1805
1806  CXXRecordDecl *ClassDecl = Constructor->getParent();
1807
1808  // C++ [class.base.init]p2:
1809  //   Names in a mem-initializer-id are looked up in the scope of the
1810  //   constructor's class and, if not found in that scope, are looked
1811  //   up in the scope containing the constructor's definition.
1812  //   [Note: if the constructor's class contains a member with the
1813  //   same name as a direct or virtual base class of the class, a
1814  //   mem-initializer-id naming the member or base class and composed
1815  //   of a single identifier refers to the class member. A
1816  //   mem-initializer-id for the hidden base class may be specified
1817  //   using a qualified name. ]
1818  if (!SS.getScopeRep() && !TemplateTypeTy) {
1819    // Look for a member, first.
1820    DeclContext::lookup_result Result
1821      = ClassDecl->lookup(MemberOrBase);
1822    if (Result.first != Result.second) {
1823      ValueDecl *Member;
1824      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1825          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1826        if (EllipsisLoc.isValid())
1827          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1828            << MemberOrBase
1829            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1830
1831        return BuildMemberInitializer(Member, Init, IdLoc);
1832      }
1833    }
1834  }
1835  // It didn't name a member, so see if it names a class.
1836  QualType BaseType;
1837  TypeSourceInfo *TInfo = 0;
1838
1839  if (TemplateTypeTy) {
1840    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1841  } else if (DS.getTypeSpecType() == TST_decltype) {
1842    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1843  } else {
1844    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1845    LookupParsedName(R, S, &SS);
1846
1847    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1848    if (!TyD) {
1849      if (R.isAmbiguous()) return true;
1850
1851      // We don't want access-control diagnostics here.
1852      R.suppressDiagnostics();
1853
1854      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1855        bool NotUnknownSpecialization = false;
1856        DeclContext *DC = computeDeclContext(SS, false);
1857        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1858          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1859
1860        if (!NotUnknownSpecialization) {
1861          // When the scope specifier can refer to a member of an unknown
1862          // specialization, we take it as a type name.
1863          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1864                                       SS.getWithLocInContext(Context),
1865                                       *MemberOrBase, IdLoc);
1866          if (BaseType.isNull())
1867            return true;
1868
1869          R.clear();
1870          R.setLookupName(MemberOrBase);
1871        }
1872      }
1873
1874      // If no results were found, try to correct typos.
1875      TypoCorrection Corr;
1876      MemInitializerValidatorCCC Validator(ClassDecl);
1877      if (R.empty() && BaseType.isNull() &&
1878          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1879                              Validator, ClassDecl))) {
1880        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1881        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1882        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1883          // We have found a non-static data member with a similar
1884          // name to what was typed; complain and initialize that
1885          // member.
1886          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1887            << MemberOrBase << true << CorrectedQuotedStr
1888            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1889          Diag(Member->getLocation(), diag::note_previous_decl)
1890            << CorrectedQuotedStr;
1891
1892          return BuildMemberInitializer(Member, Init, IdLoc);
1893        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1894          const CXXBaseSpecifier *DirectBaseSpec;
1895          const CXXBaseSpecifier *VirtualBaseSpec;
1896          if (FindBaseInitializer(*this, ClassDecl,
1897                                  Context.getTypeDeclType(Type),
1898                                  DirectBaseSpec, VirtualBaseSpec)) {
1899            // We have found a direct or virtual base class with a
1900            // similar name to what was typed; complain and initialize
1901            // that base class.
1902            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1903              << MemberOrBase << false << CorrectedQuotedStr
1904              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1905
1906            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1907                                                             : VirtualBaseSpec;
1908            Diag(BaseSpec->getSourceRange().getBegin(),
1909                 diag::note_base_class_specified_here)
1910              << BaseSpec->getType()
1911              << BaseSpec->getSourceRange();
1912
1913            TyD = Type;
1914          }
1915        }
1916      }
1917
1918      if (!TyD && BaseType.isNull()) {
1919        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1920          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1921        return true;
1922      }
1923    }
1924
1925    if (BaseType.isNull()) {
1926      BaseType = Context.getTypeDeclType(TyD);
1927      if (SS.isSet()) {
1928        NestedNameSpecifier *Qualifier =
1929          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1930
1931        // FIXME: preserve source range information
1932        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1933      }
1934    }
1935  }
1936
1937  if (!TInfo)
1938    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1939
1940  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1941}
1942
1943/// Checks a member initializer expression for cases where reference (or
1944/// pointer) members are bound to by-value parameters (or their addresses).
1945static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1946                                               Expr *Init,
1947                                               SourceLocation IdLoc) {
1948  QualType MemberTy = Member->getType();
1949
1950  // We only handle pointers and references currently.
1951  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1952  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1953    return;
1954
1955  const bool IsPointer = MemberTy->isPointerType();
1956  if (IsPointer) {
1957    if (const UnaryOperator *Op
1958          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1959      // The only case we're worried about with pointers requires taking the
1960      // address.
1961      if (Op->getOpcode() != UO_AddrOf)
1962        return;
1963
1964      Init = Op->getSubExpr();
1965    } else {
1966      // We only handle address-of expression initializers for pointers.
1967      return;
1968    }
1969  }
1970
1971  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
1972    // Taking the address of a temporary will be diagnosed as a hard error.
1973    if (IsPointer)
1974      return;
1975
1976    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
1977      << Member << Init->getSourceRange();
1978  } else if (const DeclRefExpr *DRE
1979               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
1980    // We only warn when referring to a non-reference parameter declaration.
1981    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
1982    if (!Parameter || Parameter->getType()->isReferenceType())
1983      return;
1984
1985    S.Diag(Init->getExprLoc(),
1986           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
1987                     : diag::warn_bind_ref_member_to_parameter)
1988      << Member << Parameter << Init->getSourceRange();
1989  } else {
1990    // Other initializers are fine.
1991    return;
1992  }
1993
1994  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
1995    << (unsigned)IsPointer;
1996}
1997
1998/// Checks an initializer expression for use of uninitialized fields, such as
1999/// containing the field that is being initialized. Returns true if there is an
2000/// uninitialized field was used an updates the SourceLocation parameter; false
2001/// otherwise.
2002static bool InitExprContainsUninitializedFields(const Stmt *S,
2003                                                const ValueDecl *LhsField,
2004                                                SourceLocation *L) {
2005  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2006
2007  if (isa<CallExpr>(S)) {
2008    // Do not descend into function calls or constructors, as the use
2009    // of an uninitialized field may be valid. One would have to inspect
2010    // the contents of the function/ctor to determine if it is safe or not.
2011    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2012    // may be safe, depending on what the function/ctor does.
2013    return false;
2014  }
2015  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2016    const NamedDecl *RhsField = ME->getMemberDecl();
2017
2018    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2019      // The member expression points to a static data member.
2020      assert(VD->isStaticDataMember() &&
2021             "Member points to non-static data member!");
2022      (void)VD;
2023      return false;
2024    }
2025
2026    if (isa<EnumConstantDecl>(RhsField)) {
2027      // The member expression points to an enum.
2028      return false;
2029    }
2030
2031    if (RhsField == LhsField) {
2032      // Initializing a field with itself. Throw a warning.
2033      // But wait; there are exceptions!
2034      // Exception #1:  The field may not belong to this record.
2035      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2036      const Expr *base = ME->getBase();
2037      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2038        // Even though the field matches, it does not belong to this record.
2039        return false;
2040      }
2041      // None of the exceptions triggered; return true to indicate an
2042      // uninitialized field was used.
2043      *L = ME->getMemberLoc();
2044      return true;
2045    }
2046  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2047    // sizeof/alignof doesn't reference contents, do not warn.
2048    return false;
2049  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2050    // address-of doesn't reference contents (the pointer may be dereferenced
2051    // in the same expression but it would be rare; and weird).
2052    if (UOE->getOpcode() == UO_AddrOf)
2053      return false;
2054  }
2055  for (Stmt::const_child_range it = S->children(); it; ++it) {
2056    if (!*it) {
2057      // An expression such as 'member(arg ?: "")' may trigger this.
2058      continue;
2059    }
2060    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2061      return true;
2062  }
2063  return false;
2064}
2065
2066MemInitResult
2067Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2068                             SourceLocation IdLoc) {
2069  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2070  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2071  assert((DirectMember || IndirectMember) &&
2072         "Member must be a FieldDecl or IndirectFieldDecl");
2073
2074  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2075    return true;
2076
2077  if (Member->isInvalidDecl())
2078    return true;
2079
2080  // Diagnose value-uses of fields to initialize themselves, e.g.
2081  //   foo(foo)
2082  // where foo is not also a parameter to the constructor.
2083  // TODO: implement -Wuninitialized and fold this into that framework.
2084  Expr **Args;
2085  unsigned NumArgs;
2086  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2087    Args = ParenList->getExprs();
2088    NumArgs = ParenList->getNumExprs();
2089  } else {
2090    InitListExpr *InitList = cast<InitListExpr>(Init);
2091    Args = InitList->getInits();
2092    NumArgs = InitList->getNumInits();
2093  }
2094  for (unsigned i = 0; i < NumArgs; ++i) {
2095    SourceLocation L;
2096    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2097      // FIXME: Return true in the case when other fields are used before being
2098      // uninitialized. For example, let this field be the i'th field. When
2099      // initializing the i'th field, throw a warning if any of the >= i'th
2100      // fields are used, as they are not yet initialized.
2101      // Right now we are only handling the case where the i'th field uses
2102      // itself in its initializer.
2103      Diag(L, diag::warn_field_is_uninit);
2104    }
2105  }
2106
2107  SourceRange InitRange = Init->getSourceRange();
2108
2109  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2110    // Can't check initialization for a member of dependent type or when
2111    // any of the arguments are type-dependent expressions.
2112    DiscardCleanupsInEvaluationContext();
2113  } else {
2114    bool InitList = false;
2115    if (isa<InitListExpr>(Init)) {
2116      InitList = true;
2117      Args = &Init;
2118      NumArgs = 1;
2119
2120      if (isStdInitializerList(Member->getType(), 0)) {
2121        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2122            << /*at end of ctor*/1 << InitRange;
2123      }
2124    }
2125
2126    // Initialize the member.
2127    InitializedEntity MemberEntity =
2128      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2129                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2130    InitializationKind Kind =
2131      InitList ? InitializationKind::CreateDirectList(IdLoc)
2132               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2133                                                  InitRange.getEnd());
2134
2135    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2136    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2137                                            MultiExprArg(*this, Args, NumArgs),
2138                                            0);
2139    if (MemberInit.isInvalid())
2140      return true;
2141
2142    CheckImplicitConversions(MemberInit.get(),
2143                             InitRange.getBegin());
2144
2145    // C++0x [class.base.init]p7:
2146    //   The initialization of each base and member constitutes a
2147    //   full-expression.
2148    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2149    if (MemberInit.isInvalid())
2150      return true;
2151
2152    // If we are in a dependent context, template instantiation will
2153    // perform this type-checking again. Just save the arguments that we
2154    // received.
2155    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2156    // of the information that we have about the member
2157    // initializer. However, deconstructing the ASTs is a dicey process,
2158    // and this approach is far more likely to get the corner cases right.
2159    if (CurContext->isDependentContext()) {
2160      // The existing Init will do fine.
2161    } else {
2162      Init = MemberInit.get();
2163      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2164    }
2165  }
2166
2167  if (DirectMember) {
2168    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2169                                            InitRange.getBegin(), Init,
2170                                            InitRange.getEnd());
2171  } else {
2172    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2173                                            InitRange.getBegin(), Init,
2174                                            InitRange.getEnd());
2175  }
2176}
2177
2178MemInitResult
2179Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2180                                 CXXRecordDecl *ClassDecl) {
2181  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2182  if (!LangOpts.CPlusPlus0x)
2183    return Diag(NameLoc, diag::err_delegating_ctor)
2184      << TInfo->getTypeLoc().getLocalSourceRange();
2185  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2186
2187  bool InitList = true;
2188  Expr **Args = &Init;
2189  unsigned NumArgs = 1;
2190  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2191    InitList = false;
2192    Args = ParenList->getExprs();
2193    NumArgs = ParenList->getNumExprs();
2194  }
2195
2196  SourceRange InitRange = Init->getSourceRange();
2197  // Initialize the object.
2198  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2199                                     QualType(ClassDecl->getTypeForDecl(), 0));
2200  InitializationKind Kind =
2201    InitList ? InitializationKind::CreateDirectList(NameLoc)
2202             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2203                                                InitRange.getEnd());
2204  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2205  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2206                                              MultiExprArg(*this, Args,NumArgs),
2207                                              0);
2208  if (DelegationInit.isInvalid())
2209    return true;
2210
2211  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2212         "Delegating constructor with no target?");
2213
2214  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2215
2216  // C++0x [class.base.init]p7:
2217  //   The initialization of each base and member constitutes a
2218  //   full-expression.
2219  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2220  if (DelegationInit.isInvalid())
2221    return true;
2222
2223  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2224                                          DelegationInit.takeAs<Expr>(),
2225                                          InitRange.getEnd());
2226}
2227
2228MemInitResult
2229Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2230                           Expr *Init, CXXRecordDecl *ClassDecl,
2231                           SourceLocation EllipsisLoc) {
2232  SourceLocation BaseLoc
2233    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2234
2235  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2236    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2237             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2238
2239  // C++ [class.base.init]p2:
2240  //   [...] Unless the mem-initializer-id names a nonstatic data
2241  //   member of the constructor's class or a direct or virtual base
2242  //   of that class, the mem-initializer is ill-formed. A
2243  //   mem-initializer-list can initialize a base class using any
2244  //   name that denotes that base class type.
2245  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2246
2247  SourceRange InitRange = Init->getSourceRange();
2248  if (EllipsisLoc.isValid()) {
2249    // This is a pack expansion.
2250    if (!BaseType->containsUnexpandedParameterPack())  {
2251      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2252        << SourceRange(BaseLoc, InitRange.getEnd());
2253
2254      EllipsisLoc = SourceLocation();
2255    }
2256  } else {
2257    // Check for any unexpanded parameter packs.
2258    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2259      return true;
2260
2261    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2262      return true;
2263  }
2264
2265  // Check for direct and virtual base classes.
2266  const CXXBaseSpecifier *DirectBaseSpec = 0;
2267  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2268  if (!Dependent) {
2269    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2270                                       BaseType))
2271      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2272
2273    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2274                        VirtualBaseSpec);
2275
2276    // C++ [base.class.init]p2:
2277    // Unless the mem-initializer-id names a nonstatic data member of the
2278    // constructor's class or a direct or virtual base of that class, the
2279    // mem-initializer is ill-formed.
2280    if (!DirectBaseSpec && !VirtualBaseSpec) {
2281      // If the class has any dependent bases, then it's possible that
2282      // one of those types will resolve to the same type as
2283      // BaseType. Therefore, just treat this as a dependent base
2284      // class initialization.  FIXME: Should we try to check the
2285      // initialization anyway? It seems odd.
2286      if (ClassDecl->hasAnyDependentBases())
2287        Dependent = true;
2288      else
2289        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2290          << BaseType << Context.getTypeDeclType(ClassDecl)
2291          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2292    }
2293  }
2294
2295  if (Dependent) {
2296    DiscardCleanupsInEvaluationContext();
2297
2298    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2299                                            /*IsVirtual=*/false,
2300                                            InitRange.getBegin(), Init,
2301                                            InitRange.getEnd(), EllipsisLoc);
2302  }
2303
2304  // C++ [base.class.init]p2:
2305  //   If a mem-initializer-id is ambiguous because it designates both
2306  //   a direct non-virtual base class and an inherited virtual base
2307  //   class, the mem-initializer is ill-formed.
2308  if (DirectBaseSpec && VirtualBaseSpec)
2309    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2310      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2311
2312  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2313  if (!BaseSpec)
2314    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2315
2316  // Initialize the base.
2317  bool InitList = true;
2318  Expr **Args = &Init;
2319  unsigned NumArgs = 1;
2320  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2321    InitList = false;
2322    Args = ParenList->getExprs();
2323    NumArgs = ParenList->getNumExprs();
2324  }
2325
2326  InitializedEntity BaseEntity =
2327    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2328  InitializationKind Kind =
2329    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2330             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2331                                                InitRange.getEnd());
2332  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2333  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2334                                          MultiExprArg(*this, Args, NumArgs),
2335                                          0);
2336  if (BaseInit.isInvalid())
2337    return true;
2338
2339  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2340
2341  // C++0x [class.base.init]p7:
2342  //   The initialization of each base and member constitutes a
2343  //   full-expression.
2344  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2345  if (BaseInit.isInvalid())
2346    return true;
2347
2348  // If we are in a dependent context, template instantiation will
2349  // perform this type-checking again. Just save the arguments that we
2350  // received in a ParenListExpr.
2351  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2352  // of the information that we have about the base
2353  // initializer. However, deconstructing the ASTs is a dicey process,
2354  // and this approach is far more likely to get the corner cases right.
2355  if (CurContext->isDependentContext())
2356    BaseInit = Owned(Init);
2357
2358  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2359                                          BaseSpec->isVirtual(),
2360                                          InitRange.getBegin(),
2361                                          BaseInit.takeAs<Expr>(),
2362                                          InitRange.getEnd(), EllipsisLoc);
2363}
2364
2365// Create a static_cast\<T&&>(expr).
2366static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2367  QualType ExprType = E->getType();
2368  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2369  SourceLocation ExprLoc = E->getLocStart();
2370  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2371      TargetType, ExprLoc);
2372
2373  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2374                                   SourceRange(ExprLoc, ExprLoc),
2375                                   E->getSourceRange()).take();
2376}
2377
2378/// ImplicitInitializerKind - How an implicit base or member initializer should
2379/// initialize its base or member.
2380enum ImplicitInitializerKind {
2381  IIK_Default,
2382  IIK_Copy,
2383  IIK_Move
2384};
2385
2386static bool
2387BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2388                             ImplicitInitializerKind ImplicitInitKind,
2389                             CXXBaseSpecifier *BaseSpec,
2390                             bool IsInheritedVirtualBase,
2391                             CXXCtorInitializer *&CXXBaseInit) {
2392  InitializedEntity InitEntity
2393    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2394                                        IsInheritedVirtualBase);
2395
2396  ExprResult BaseInit;
2397
2398  switch (ImplicitInitKind) {
2399  case IIK_Default: {
2400    InitializationKind InitKind
2401      = InitializationKind::CreateDefault(Constructor->getLocation());
2402    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2403    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2404                               MultiExprArg(SemaRef, 0, 0));
2405    break;
2406  }
2407
2408  case IIK_Move:
2409  case IIK_Copy: {
2410    bool Moving = ImplicitInitKind == IIK_Move;
2411    ParmVarDecl *Param = Constructor->getParamDecl(0);
2412    QualType ParamType = Param->getType().getNonReferenceType();
2413
2414    Expr *CopyCtorArg =
2415      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2416                          SourceLocation(), Param,
2417                          Constructor->getLocation(), ParamType,
2418                          VK_LValue, 0);
2419
2420    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2421
2422    // Cast to the base class to avoid ambiguities.
2423    QualType ArgTy =
2424      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2425                                       ParamType.getQualifiers());
2426
2427    if (Moving) {
2428      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2429    }
2430
2431    CXXCastPath BasePath;
2432    BasePath.push_back(BaseSpec);
2433    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2434                                            CK_UncheckedDerivedToBase,
2435                                            Moving ? VK_XValue : VK_LValue,
2436                                            &BasePath).take();
2437
2438    InitializationKind InitKind
2439      = InitializationKind::CreateDirect(Constructor->getLocation(),
2440                                         SourceLocation(), SourceLocation());
2441    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2442                                   &CopyCtorArg, 1);
2443    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2444                               MultiExprArg(&CopyCtorArg, 1));
2445    break;
2446  }
2447  }
2448
2449  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2450  if (BaseInit.isInvalid())
2451    return true;
2452
2453  CXXBaseInit =
2454    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2455               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2456                                                        SourceLocation()),
2457                                             BaseSpec->isVirtual(),
2458                                             SourceLocation(),
2459                                             BaseInit.takeAs<Expr>(),
2460                                             SourceLocation(),
2461                                             SourceLocation());
2462
2463  return false;
2464}
2465
2466static bool RefersToRValueRef(Expr *MemRef) {
2467  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2468  return Referenced->getType()->isRValueReferenceType();
2469}
2470
2471static bool
2472BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2473                               ImplicitInitializerKind ImplicitInitKind,
2474                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2475                               CXXCtorInitializer *&CXXMemberInit) {
2476  if (Field->isInvalidDecl())
2477    return true;
2478
2479  SourceLocation Loc = Constructor->getLocation();
2480
2481  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2482    bool Moving = ImplicitInitKind == IIK_Move;
2483    ParmVarDecl *Param = Constructor->getParamDecl(0);
2484    QualType ParamType = Param->getType().getNonReferenceType();
2485
2486    // Suppress copying zero-width bitfields.
2487    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2488      return false;
2489
2490    Expr *MemberExprBase =
2491      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2492                          SourceLocation(), Param,
2493                          Loc, ParamType, VK_LValue, 0);
2494
2495    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2496
2497    if (Moving) {
2498      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2499    }
2500
2501    // Build a reference to this field within the parameter.
2502    CXXScopeSpec SS;
2503    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2504                              Sema::LookupMemberName);
2505    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2506                                  : cast<ValueDecl>(Field), AS_public);
2507    MemberLookup.resolveKind();
2508    ExprResult CtorArg
2509      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2510                                         ParamType, Loc,
2511                                         /*IsArrow=*/false,
2512                                         SS,
2513                                         /*TemplateKWLoc=*/SourceLocation(),
2514                                         /*FirstQualifierInScope=*/0,
2515                                         MemberLookup,
2516                                         /*TemplateArgs=*/0);
2517    if (CtorArg.isInvalid())
2518      return true;
2519
2520    // C++11 [class.copy]p15:
2521    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2522    //     with static_cast<T&&>(x.m);
2523    if (RefersToRValueRef(CtorArg.get())) {
2524      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2525    }
2526
2527    // When the field we are copying is an array, create index variables for
2528    // each dimension of the array. We use these index variables to subscript
2529    // the source array, and other clients (e.g., CodeGen) will perform the
2530    // necessary iteration with these index variables.
2531    SmallVector<VarDecl *, 4> IndexVariables;
2532    QualType BaseType = Field->getType();
2533    QualType SizeType = SemaRef.Context.getSizeType();
2534    bool InitializingArray = false;
2535    while (const ConstantArrayType *Array
2536                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2537      InitializingArray = true;
2538      // Create the iteration variable for this array index.
2539      IdentifierInfo *IterationVarName = 0;
2540      {
2541        SmallString<8> Str;
2542        llvm::raw_svector_ostream OS(Str);
2543        OS << "__i" << IndexVariables.size();
2544        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2545      }
2546      VarDecl *IterationVar
2547        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2548                          IterationVarName, SizeType,
2549                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2550                          SC_None, SC_None);
2551      IndexVariables.push_back(IterationVar);
2552
2553      // Create a reference to the iteration variable.
2554      ExprResult IterationVarRef
2555        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2556      assert(!IterationVarRef.isInvalid() &&
2557             "Reference to invented variable cannot fail!");
2558      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2559      assert(!IterationVarRef.isInvalid() &&
2560             "Conversion of invented variable cannot fail!");
2561
2562      // Subscript the array with this iteration variable.
2563      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2564                                                        IterationVarRef.take(),
2565                                                        Loc);
2566      if (CtorArg.isInvalid())
2567        return true;
2568
2569      BaseType = Array->getElementType();
2570    }
2571
2572    // The array subscript expression is an lvalue, which is wrong for moving.
2573    if (Moving && InitializingArray)
2574      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2575
2576    // Construct the entity that we will be initializing. For an array, this
2577    // will be first element in the array, which may require several levels
2578    // of array-subscript entities.
2579    SmallVector<InitializedEntity, 4> Entities;
2580    Entities.reserve(1 + IndexVariables.size());
2581    if (Indirect)
2582      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2583    else
2584      Entities.push_back(InitializedEntity::InitializeMember(Field));
2585    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2586      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2587                                                              0,
2588                                                              Entities.back()));
2589
2590    // Direct-initialize to use the copy constructor.
2591    InitializationKind InitKind =
2592      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2593
2594    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2595    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2596                                   &CtorArgE, 1);
2597
2598    ExprResult MemberInit
2599      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2600                        MultiExprArg(&CtorArgE, 1));
2601    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2602    if (MemberInit.isInvalid())
2603      return true;
2604
2605    if (Indirect) {
2606      assert(IndexVariables.size() == 0 &&
2607             "Indirect field improperly initialized");
2608      CXXMemberInit
2609        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2610                                                   Loc, Loc,
2611                                                   MemberInit.takeAs<Expr>(),
2612                                                   Loc);
2613    } else
2614      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2615                                                 Loc, MemberInit.takeAs<Expr>(),
2616                                                 Loc,
2617                                                 IndexVariables.data(),
2618                                                 IndexVariables.size());
2619    return false;
2620  }
2621
2622  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2623
2624  QualType FieldBaseElementType =
2625    SemaRef.Context.getBaseElementType(Field->getType());
2626
2627  if (FieldBaseElementType->isRecordType()) {
2628    InitializedEntity InitEntity
2629      = Indirect? InitializedEntity::InitializeMember(Indirect)
2630                : InitializedEntity::InitializeMember(Field);
2631    InitializationKind InitKind =
2632      InitializationKind::CreateDefault(Loc);
2633
2634    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2635    ExprResult MemberInit =
2636      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2637
2638    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2639    if (MemberInit.isInvalid())
2640      return true;
2641
2642    if (Indirect)
2643      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2644                                                               Indirect, Loc,
2645                                                               Loc,
2646                                                               MemberInit.get(),
2647                                                               Loc);
2648    else
2649      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2650                                                               Field, Loc, Loc,
2651                                                               MemberInit.get(),
2652                                                               Loc);
2653    return false;
2654  }
2655
2656  if (!Field->getParent()->isUnion()) {
2657    if (FieldBaseElementType->isReferenceType()) {
2658      SemaRef.Diag(Constructor->getLocation(),
2659                   diag::err_uninitialized_member_in_ctor)
2660      << (int)Constructor->isImplicit()
2661      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2662      << 0 << Field->getDeclName();
2663      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2664      return true;
2665    }
2666
2667    if (FieldBaseElementType.isConstQualified()) {
2668      SemaRef.Diag(Constructor->getLocation(),
2669                   diag::err_uninitialized_member_in_ctor)
2670      << (int)Constructor->isImplicit()
2671      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2672      << 1 << Field->getDeclName();
2673      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2674      return true;
2675    }
2676  }
2677
2678  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2679      FieldBaseElementType->isObjCRetainableType() &&
2680      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2681      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2682    // Instant objects:
2683    //   Default-initialize Objective-C pointers to NULL.
2684    CXXMemberInit
2685      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2686                                                 Loc, Loc,
2687                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2688                                                 Loc);
2689    return false;
2690  }
2691
2692  // Nothing to initialize.
2693  CXXMemberInit = 0;
2694  return false;
2695}
2696
2697namespace {
2698struct BaseAndFieldInfo {
2699  Sema &S;
2700  CXXConstructorDecl *Ctor;
2701  bool AnyErrorsInInits;
2702  ImplicitInitializerKind IIK;
2703  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2704  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2705
2706  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2707    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2708    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2709    if (Generated && Ctor->isCopyConstructor())
2710      IIK = IIK_Copy;
2711    else if (Generated && Ctor->isMoveConstructor())
2712      IIK = IIK_Move;
2713    else
2714      IIK = IIK_Default;
2715  }
2716
2717  bool isImplicitCopyOrMove() const {
2718    switch (IIK) {
2719    case IIK_Copy:
2720    case IIK_Move:
2721      return true;
2722
2723    case IIK_Default:
2724      return false;
2725    }
2726
2727    llvm_unreachable("Invalid ImplicitInitializerKind!");
2728  }
2729};
2730}
2731
2732/// \brief Determine whether the given indirect field declaration is somewhere
2733/// within an anonymous union.
2734static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2735  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2736                                      CEnd = F->chain_end();
2737       C != CEnd; ++C)
2738    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2739      if (Record->isUnion())
2740        return true;
2741
2742  return false;
2743}
2744
2745/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2746/// array type.
2747static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2748  if (T->isIncompleteArrayType())
2749    return true;
2750
2751  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2752    if (!ArrayT->getSize())
2753      return true;
2754
2755    T = ArrayT->getElementType();
2756  }
2757
2758  return false;
2759}
2760
2761static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2762                                    FieldDecl *Field,
2763                                    IndirectFieldDecl *Indirect = 0) {
2764
2765  // Overwhelmingly common case: we have a direct initializer for this field.
2766  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2767    Info.AllToInit.push_back(Init);
2768    return false;
2769  }
2770
2771  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2772  // has a brace-or-equal-initializer, the entity is initialized as specified
2773  // in [dcl.init].
2774  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2775    CXXCtorInitializer *Init;
2776    if (Indirect)
2777      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2778                                                      SourceLocation(),
2779                                                      SourceLocation(), 0,
2780                                                      SourceLocation());
2781    else
2782      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2783                                                      SourceLocation(),
2784                                                      SourceLocation(), 0,
2785                                                      SourceLocation());
2786    Info.AllToInit.push_back(Init);
2787    return false;
2788  }
2789
2790  // Don't build an implicit initializer for union members if none was
2791  // explicitly specified.
2792  if (Field->getParent()->isUnion() ||
2793      (Indirect && isWithinAnonymousUnion(Indirect)))
2794    return false;
2795
2796  // Don't initialize incomplete or zero-length arrays.
2797  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2798    return false;
2799
2800  // Don't try to build an implicit initializer if there were semantic
2801  // errors in any of the initializers (and therefore we might be
2802  // missing some that the user actually wrote).
2803  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2804    return false;
2805
2806  CXXCtorInitializer *Init = 0;
2807  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2808                                     Indirect, Init))
2809    return true;
2810
2811  if (Init)
2812    Info.AllToInit.push_back(Init);
2813
2814  return false;
2815}
2816
2817bool
2818Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2819                               CXXCtorInitializer *Initializer) {
2820  assert(Initializer->isDelegatingInitializer());
2821  Constructor->setNumCtorInitializers(1);
2822  CXXCtorInitializer **initializer =
2823    new (Context) CXXCtorInitializer*[1];
2824  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2825  Constructor->setCtorInitializers(initializer);
2826
2827  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2828    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2829    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2830  }
2831
2832  DelegatingCtorDecls.push_back(Constructor);
2833
2834  return false;
2835}
2836
2837bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2838                               CXXCtorInitializer **Initializers,
2839                               unsigned NumInitializers,
2840                               bool AnyErrors) {
2841  if (Constructor->isDependentContext()) {
2842    // Just store the initializers as written, they will be checked during
2843    // instantiation.
2844    if (NumInitializers > 0) {
2845      Constructor->setNumCtorInitializers(NumInitializers);
2846      CXXCtorInitializer **baseOrMemberInitializers =
2847        new (Context) CXXCtorInitializer*[NumInitializers];
2848      memcpy(baseOrMemberInitializers, Initializers,
2849             NumInitializers * sizeof(CXXCtorInitializer*));
2850      Constructor->setCtorInitializers(baseOrMemberInitializers);
2851    }
2852
2853    return false;
2854  }
2855
2856  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2857
2858  // We need to build the initializer AST according to order of construction
2859  // and not what user specified in the Initializers list.
2860  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2861  if (!ClassDecl)
2862    return true;
2863
2864  bool HadError = false;
2865
2866  for (unsigned i = 0; i < NumInitializers; i++) {
2867    CXXCtorInitializer *Member = Initializers[i];
2868
2869    if (Member->isBaseInitializer())
2870      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2871    else
2872      Info.AllBaseFields[Member->getAnyMember()] = Member;
2873  }
2874
2875  // Keep track of the direct virtual bases.
2876  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2877  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2878       E = ClassDecl->bases_end(); I != E; ++I) {
2879    if (I->isVirtual())
2880      DirectVBases.insert(I);
2881  }
2882
2883  // Push virtual bases before others.
2884  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2885       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2886
2887    if (CXXCtorInitializer *Value
2888        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2889      Info.AllToInit.push_back(Value);
2890    } else if (!AnyErrors) {
2891      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2892      CXXCtorInitializer *CXXBaseInit;
2893      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2894                                       VBase, IsInheritedVirtualBase,
2895                                       CXXBaseInit)) {
2896        HadError = true;
2897        continue;
2898      }
2899
2900      Info.AllToInit.push_back(CXXBaseInit);
2901    }
2902  }
2903
2904  // Non-virtual bases.
2905  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2906       E = ClassDecl->bases_end(); Base != E; ++Base) {
2907    // Virtuals are in the virtual base list and already constructed.
2908    if (Base->isVirtual())
2909      continue;
2910
2911    if (CXXCtorInitializer *Value
2912          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2913      Info.AllToInit.push_back(Value);
2914    } else if (!AnyErrors) {
2915      CXXCtorInitializer *CXXBaseInit;
2916      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2917                                       Base, /*IsInheritedVirtualBase=*/false,
2918                                       CXXBaseInit)) {
2919        HadError = true;
2920        continue;
2921      }
2922
2923      Info.AllToInit.push_back(CXXBaseInit);
2924    }
2925  }
2926
2927  // Fields.
2928  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2929                               MemEnd = ClassDecl->decls_end();
2930       Mem != MemEnd; ++Mem) {
2931    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2932      // C++ [class.bit]p2:
2933      //   A declaration for a bit-field that omits the identifier declares an
2934      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2935      //   initialized.
2936      if (F->isUnnamedBitfield())
2937        continue;
2938
2939      // If we're not generating the implicit copy/move constructor, then we'll
2940      // handle anonymous struct/union fields based on their individual
2941      // indirect fields.
2942      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2943        continue;
2944
2945      if (CollectFieldInitializer(*this, Info, F))
2946        HadError = true;
2947      continue;
2948    }
2949
2950    // Beyond this point, we only consider default initialization.
2951    if (Info.IIK != IIK_Default)
2952      continue;
2953
2954    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2955      if (F->getType()->isIncompleteArrayType()) {
2956        assert(ClassDecl->hasFlexibleArrayMember() &&
2957               "Incomplete array type is not valid");
2958        continue;
2959      }
2960
2961      // Initialize each field of an anonymous struct individually.
2962      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2963        HadError = true;
2964
2965      continue;
2966    }
2967  }
2968
2969  NumInitializers = Info.AllToInit.size();
2970  if (NumInitializers > 0) {
2971    Constructor->setNumCtorInitializers(NumInitializers);
2972    CXXCtorInitializer **baseOrMemberInitializers =
2973      new (Context) CXXCtorInitializer*[NumInitializers];
2974    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2975           NumInitializers * sizeof(CXXCtorInitializer*));
2976    Constructor->setCtorInitializers(baseOrMemberInitializers);
2977
2978    // Constructors implicitly reference the base and member
2979    // destructors.
2980    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2981                                           Constructor->getParent());
2982  }
2983
2984  return HadError;
2985}
2986
2987static void *GetKeyForTopLevelField(FieldDecl *Field) {
2988  // For anonymous unions, use the class declaration as the key.
2989  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2990    if (RT->getDecl()->isAnonymousStructOrUnion())
2991      return static_cast<void *>(RT->getDecl());
2992  }
2993  return static_cast<void *>(Field);
2994}
2995
2996static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2997  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2998}
2999
3000static void *GetKeyForMember(ASTContext &Context,
3001                             CXXCtorInitializer *Member) {
3002  if (!Member->isAnyMemberInitializer())
3003    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3004
3005  // For fields injected into the class via declaration of an anonymous union,
3006  // use its anonymous union class declaration as the unique key.
3007  FieldDecl *Field = Member->getAnyMember();
3008
3009  // If the field is a member of an anonymous struct or union, our key
3010  // is the anonymous record decl that's a direct child of the class.
3011  RecordDecl *RD = Field->getParent();
3012  if (RD->isAnonymousStructOrUnion()) {
3013    while (true) {
3014      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3015      if (Parent->isAnonymousStructOrUnion())
3016        RD = Parent;
3017      else
3018        break;
3019    }
3020
3021    return static_cast<void *>(RD);
3022  }
3023
3024  return static_cast<void *>(Field);
3025}
3026
3027static void
3028DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3029                                  const CXXConstructorDecl *Constructor,
3030                                  CXXCtorInitializer **Inits,
3031                                  unsigned NumInits) {
3032  if (Constructor->getDeclContext()->isDependentContext())
3033    return;
3034
3035  // Don't check initializers order unless the warning is enabled at the
3036  // location of at least one initializer.
3037  bool ShouldCheckOrder = false;
3038  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3039    CXXCtorInitializer *Init = Inits[InitIndex];
3040    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3041                                         Init->getSourceLocation())
3042          != DiagnosticsEngine::Ignored) {
3043      ShouldCheckOrder = true;
3044      break;
3045    }
3046  }
3047  if (!ShouldCheckOrder)
3048    return;
3049
3050  // Build the list of bases and members in the order that they'll
3051  // actually be initialized.  The explicit initializers should be in
3052  // this same order but may be missing things.
3053  SmallVector<const void*, 32> IdealInitKeys;
3054
3055  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3056
3057  // 1. Virtual bases.
3058  for (CXXRecordDecl::base_class_const_iterator VBase =
3059       ClassDecl->vbases_begin(),
3060       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3061    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3062
3063  // 2. Non-virtual bases.
3064  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3065       E = ClassDecl->bases_end(); Base != E; ++Base) {
3066    if (Base->isVirtual())
3067      continue;
3068    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3069  }
3070
3071  // 3. Direct fields.
3072  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3073       E = ClassDecl->field_end(); Field != E; ++Field) {
3074    if (Field->isUnnamedBitfield())
3075      continue;
3076
3077    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3078  }
3079
3080  unsigned NumIdealInits = IdealInitKeys.size();
3081  unsigned IdealIndex = 0;
3082
3083  CXXCtorInitializer *PrevInit = 0;
3084  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3085    CXXCtorInitializer *Init = Inits[InitIndex];
3086    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3087
3088    // Scan forward to try to find this initializer in the idealized
3089    // initializers list.
3090    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3091      if (InitKey == IdealInitKeys[IdealIndex])
3092        break;
3093
3094    // If we didn't find this initializer, it must be because we
3095    // scanned past it on a previous iteration.  That can only
3096    // happen if we're out of order;  emit a warning.
3097    if (IdealIndex == NumIdealInits && PrevInit) {
3098      Sema::SemaDiagnosticBuilder D =
3099        SemaRef.Diag(PrevInit->getSourceLocation(),
3100                     diag::warn_initializer_out_of_order);
3101
3102      if (PrevInit->isAnyMemberInitializer())
3103        D << 0 << PrevInit->getAnyMember()->getDeclName();
3104      else
3105        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3106
3107      if (Init->isAnyMemberInitializer())
3108        D << 0 << Init->getAnyMember()->getDeclName();
3109      else
3110        D << 1 << Init->getTypeSourceInfo()->getType();
3111
3112      // Move back to the initializer's location in the ideal list.
3113      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3114        if (InitKey == IdealInitKeys[IdealIndex])
3115          break;
3116
3117      assert(IdealIndex != NumIdealInits &&
3118             "initializer not found in initializer list");
3119    }
3120
3121    PrevInit = Init;
3122  }
3123}
3124
3125namespace {
3126bool CheckRedundantInit(Sema &S,
3127                        CXXCtorInitializer *Init,
3128                        CXXCtorInitializer *&PrevInit) {
3129  if (!PrevInit) {
3130    PrevInit = Init;
3131    return false;
3132  }
3133
3134  if (FieldDecl *Field = Init->getMember())
3135    S.Diag(Init->getSourceLocation(),
3136           diag::err_multiple_mem_initialization)
3137      << Field->getDeclName()
3138      << Init->getSourceRange();
3139  else {
3140    const Type *BaseClass = Init->getBaseClass();
3141    assert(BaseClass && "neither field nor base");
3142    S.Diag(Init->getSourceLocation(),
3143           diag::err_multiple_base_initialization)
3144      << QualType(BaseClass, 0)
3145      << Init->getSourceRange();
3146  }
3147  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3148    << 0 << PrevInit->getSourceRange();
3149
3150  return true;
3151}
3152
3153typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3154typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3155
3156bool CheckRedundantUnionInit(Sema &S,
3157                             CXXCtorInitializer *Init,
3158                             RedundantUnionMap &Unions) {
3159  FieldDecl *Field = Init->getAnyMember();
3160  RecordDecl *Parent = Field->getParent();
3161  NamedDecl *Child = Field;
3162
3163  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3164    if (Parent->isUnion()) {
3165      UnionEntry &En = Unions[Parent];
3166      if (En.first && En.first != Child) {
3167        S.Diag(Init->getSourceLocation(),
3168               diag::err_multiple_mem_union_initialization)
3169          << Field->getDeclName()
3170          << Init->getSourceRange();
3171        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3172          << 0 << En.second->getSourceRange();
3173        return true;
3174      }
3175      if (!En.first) {
3176        En.first = Child;
3177        En.second = Init;
3178      }
3179      if (!Parent->isAnonymousStructOrUnion())
3180        return false;
3181    }
3182
3183    Child = Parent;
3184    Parent = cast<RecordDecl>(Parent->getDeclContext());
3185  }
3186
3187  return false;
3188}
3189}
3190
3191/// ActOnMemInitializers - Handle the member initializers for a constructor.
3192void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3193                                SourceLocation ColonLoc,
3194                                CXXCtorInitializer **meminits,
3195                                unsigned NumMemInits,
3196                                bool AnyErrors) {
3197  if (!ConstructorDecl)
3198    return;
3199
3200  AdjustDeclIfTemplate(ConstructorDecl);
3201
3202  CXXConstructorDecl *Constructor
3203    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3204
3205  if (!Constructor) {
3206    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3207    return;
3208  }
3209
3210  CXXCtorInitializer **MemInits =
3211    reinterpret_cast<CXXCtorInitializer **>(meminits);
3212
3213  // Mapping for the duplicate initializers check.
3214  // For member initializers, this is keyed with a FieldDecl*.
3215  // For base initializers, this is keyed with a Type*.
3216  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3217
3218  // Mapping for the inconsistent anonymous-union initializers check.
3219  RedundantUnionMap MemberUnions;
3220
3221  bool HadError = false;
3222  for (unsigned i = 0; i < NumMemInits; i++) {
3223    CXXCtorInitializer *Init = MemInits[i];
3224
3225    // Set the source order index.
3226    Init->setSourceOrder(i);
3227
3228    if (Init->isAnyMemberInitializer()) {
3229      FieldDecl *Field = Init->getAnyMember();
3230      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3231          CheckRedundantUnionInit(*this, Init, MemberUnions))
3232        HadError = true;
3233    } else if (Init->isBaseInitializer()) {
3234      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3235      if (CheckRedundantInit(*this, Init, Members[Key]))
3236        HadError = true;
3237    } else {
3238      assert(Init->isDelegatingInitializer());
3239      // This must be the only initializer
3240      if (i != 0 || NumMemInits > 1) {
3241        Diag(MemInits[0]->getSourceLocation(),
3242             diag::err_delegating_initializer_alone)
3243          << MemInits[0]->getSourceRange();
3244        HadError = true;
3245        // We will treat this as being the only initializer.
3246      }
3247      SetDelegatingInitializer(Constructor, MemInits[i]);
3248      // Return immediately as the initializer is set.
3249      return;
3250    }
3251  }
3252
3253  if (HadError)
3254    return;
3255
3256  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3257
3258  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3259}
3260
3261void
3262Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3263                                             CXXRecordDecl *ClassDecl) {
3264  // Ignore dependent contexts. Also ignore unions, since their members never
3265  // have destructors implicitly called.
3266  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3267    return;
3268
3269  // FIXME: all the access-control diagnostics are positioned on the
3270  // field/base declaration.  That's probably good; that said, the
3271  // user might reasonably want to know why the destructor is being
3272  // emitted, and we currently don't say.
3273
3274  // Non-static data members.
3275  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3276       E = ClassDecl->field_end(); I != E; ++I) {
3277    FieldDecl *Field = *I;
3278    if (Field->isInvalidDecl())
3279      continue;
3280
3281    // Don't destroy incomplete or zero-length arrays.
3282    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3283      continue;
3284
3285    QualType FieldType = Context.getBaseElementType(Field->getType());
3286
3287    const RecordType* RT = FieldType->getAs<RecordType>();
3288    if (!RT)
3289      continue;
3290
3291    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3292    if (FieldClassDecl->isInvalidDecl())
3293      continue;
3294    if (FieldClassDecl->hasIrrelevantDestructor())
3295      continue;
3296
3297    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3298    assert(Dtor && "No dtor found for FieldClassDecl!");
3299    CheckDestructorAccess(Field->getLocation(), Dtor,
3300                          PDiag(diag::err_access_dtor_field)
3301                            << Field->getDeclName()
3302                            << FieldType);
3303
3304    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3305    DiagnoseUseOfDecl(Dtor, Location);
3306  }
3307
3308  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3309
3310  // Bases.
3311  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3312       E = ClassDecl->bases_end(); Base != E; ++Base) {
3313    // Bases are always records in a well-formed non-dependent class.
3314    const RecordType *RT = Base->getType()->getAs<RecordType>();
3315
3316    // Remember direct virtual bases.
3317    if (Base->isVirtual())
3318      DirectVirtualBases.insert(RT);
3319
3320    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3321    // If our base class is invalid, we probably can't get its dtor anyway.
3322    if (BaseClassDecl->isInvalidDecl())
3323      continue;
3324    if (BaseClassDecl->hasIrrelevantDestructor())
3325      continue;
3326
3327    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3328    assert(Dtor && "No dtor found for BaseClassDecl!");
3329
3330    // FIXME: caret should be on the start of the class name
3331    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3332                          PDiag(diag::err_access_dtor_base)
3333                            << Base->getType()
3334                            << Base->getSourceRange());
3335
3336    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3337    DiagnoseUseOfDecl(Dtor, Location);
3338  }
3339
3340  // Virtual bases.
3341  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3342       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3343
3344    // Bases are always records in a well-formed non-dependent class.
3345    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3346
3347    // Ignore direct virtual bases.
3348    if (DirectVirtualBases.count(RT))
3349      continue;
3350
3351    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3352    // If our base class is invalid, we probably can't get its dtor anyway.
3353    if (BaseClassDecl->isInvalidDecl())
3354      continue;
3355    if (BaseClassDecl->hasIrrelevantDestructor())
3356      continue;
3357
3358    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3359    assert(Dtor && "No dtor found for BaseClassDecl!");
3360    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3361                          PDiag(diag::err_access_dtor_vbase)
3362                            << VBase->getType());
3363
3364    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3365    DiagnoseUseOfDecl(Dtor, Location);
3366  }
3367}
3368
3369void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3370  if (!CDtorDecl)
3371    return;
3372
3373  if (CXXConstructorDecl *Constructor
3374      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3375    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3376}
3377
3378bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3379                                  unsigned DiagID, AbstractDiagSelID SelID) {
3380  if (SelID == -1)
3381    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3382  else
3383    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3384}
3385
3386bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3387                                  const PartialDiagnostic &PD) {
3388  if (!getLangOptions().CPlusPlus)
3389    return false;
3390
3391  if (const ArrayType *AT = Context.getAsArrayType(T))
3392    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3393
3394  if (const PointerType *PT = T->getAs<PointerType>()) {
3395    // Find the innermost pointer type.
3396    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3397      PT = T;
3398
3399    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3400      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3401  }
3402
3403  const RecordType *RT = T->getAs<RecordType>();
3404  if (!RT)
3405    return false;
3406
3407  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3408
3409  // We can't answer whether something is abstract until it has a
3410  // definition.  If it's currently being defined, we'll walk back
3411  // over all the declarations when we have a full definition.
3412  const CXXRecordDecl *Def = RD->getDefinition();
3413  if (!Def || Def->isBeingDefined())
3414    return false;
3415
3416  if (!RD->isAbstract())
3417    return false;
3418
3419  Diag(Loc, PD) << RD->getDeclName();
3420  DiagnoseAbstractType(RD);
3421
3422  return true;
3423}
3424
3425void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3426  // Check if we've already emitted the list of pure virtual functions
3427  // for this class.
3428  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3429    return;
3430
3431  CXXFinalOverriderMap FinalOverriders;
3432  RD->getFinalOverriders(FinalOverriders);
3433
3434  // Keep a set of seen pure methods so we won't diagnose the same method
3435  // more than once.
3436  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3437
3438  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3439                                   MEnd = FinalOverriders.end();
3440       M != MEnd;
3441       ++M) {
3442    for (OverridingMethods::iterator SO = M->second.begin(),
3443                                  SOEnd = M->second.end();
3444         SO != SOEnd; ++SO) {
3445      // C++ [class.abstract]p4:
3446      //   A class is abstract if it contains or inherits at least one
3447      //   pure virtual function for which the final overrider is pure
3448      //   virtual.
3449
3450      //
3451      if (SO->second.size() != 1)
3452        continue;
3453
3454      if (!SO->second.front().Method->isPure())
3455        continue;
3456
3457      if (!SeenPureMethods.insert(SO->second.front().Method))
3458        continue;
3459
3460      Diag(SO->second.front().Method->getLocation(),
3461           diag::note_pure_virtual_function)
3462        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3463    }
3464  }
3465
3466  if (!PureVirtualClassDiagSet)
3467    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3468  PureVirtualClassDiagSet->insert(RD);
3469}
3470
3471namespace {
3472struct AbstractUsageInfo {
3473  Sema &S;
3474  CXXRecordDecl *Record;
3475  CanQualType AbstractType;
3476  bool Invalid;
3477
3478  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3479    : S(S), Record(Record),
3480      AbstractType(S.Context.getCanonicalType(
3481                   S.Context.getTypeDeclType(Record))),
3482      Invalid(false) {}
3483
3484  void DiagnoseAbstractType() {
3485    if (Invalid) return;
3486    S.DiagnoseAbstractType(Record);
3487    Invalid = true;
3488  }
3489
3490  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3491};
3492
3493struct CheckAbstractUsage {
3494  AbstractUsageInfo &Info;
3495  const NamedDecl *Ctx;
3496
3497  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3498    : Info(Info), Ctx(Ctx) {}
3499
3500  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3501    switch (TL.getTypeLocClass()) {
3502#define ABSTRACT_TYPELOC(CLASS, PARENT)
3503#define TYPELOC(CLASS, PARENT) \
3504    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3505#include "clang/AST/TypeLocNodes.def"
3506    }
3507  }
3508
3509  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3510    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3511    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3512      if (!TL.getArg(I))
3513        continue;
3514
3515      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3516      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3517    }
3518  }
3519
3520  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3521    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3522  }
3523
3524  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3525    // Visit the type parameters from a permissive context.
3526    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3527      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3528      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3529        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3530          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3531      // TODO: other template argument types?
3532    }
3533  }
3534
3535  // Visit pointee types from a permissive context.
3536#define CheckPolymorphic(Type) \
3537  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3538    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3539  }
3540  CheckPolymorphic(PointerTypeLoc)
3541  CheckPolymorphic(ReferenceTypeLoc)
3542  CheckPolymorphic(MemberPointerTypeLoc)
3543  CheckPolymorphic(BlockPointerTypeLoc)
3544  CheckPolymorphic(AtomicTypeLoc)
3545
3546  /// Handle all the types we haven't given a more specific
3547  /// implementation for above.
3548  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3549    // Every other kind of type that we haven't called out already
3550    // that has an inner type is either (1) sugar or (2) contains that
3551    // inner type in some way as a subobject.
3552    if (TypeLoc Next = TL.getNextTypeLoc())
3553      return Visit(Next, Sel);
3554
3555    // If there's no inner type and we're in a permissive context,
3556    // don't diagnose.
3557    if (Sel == Sema::AbstractNone) return;
3558
3559    // Check whether the type matches the abstract type.
3560    QualType T = TL.getType();
3561    if (T->isArrayType()) {
3562      Sel = Sema::AbstractArrayType;
3563      T = Info.S.Context.getBaseElementType(T);
3564    }
3565    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3566    if (CT != Info.AbstractType) return;
3567
3568    // It matched; do some magic.
3569    if (Sel == Sema::AbstractArrayType) {
3570      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3571        << T << TL.getSourceRange();
3572    } else {
3573      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3574        << Sel << T << TL.getSourceRange();
3575    }
3576    Info.DiagnoseAbstractType();
3577  }
3578};
3579
3580void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3581                                  Sema::AbstractDiagSelID Sel) {
3582  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3583}
3584
3585}
3586
3587/// Check for invalid uses of an abstract type in a method declaration.
3588static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3589                                    CXXMethodDecl *MD) {
3590  // No need to do the check on definitions, which require that
3591  // the return/param types be complete.
3592  if (MD->doesThisDeclarationHaveABody())
3593    return;
3594
3595  // For safety's sake, just ignore it if we don't have type source
3596  // information.  This should never happen for non-implicit methods,
3597  // but...
3598  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3599    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3600}
3601
3602/// Check for invalid uses of an abstract type within a class definition.
3603static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3604                                    CXXRecordDecl *RD) {
3605  for (CXXRecordDecl::decl_iterator
3606         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3607    Decl *D = *I;
3608    if (D->isImplicit()) continue;
3609
3610    // Methods and method templates.
3611    if (isa<CXXMethodDecl>(D)) {
3612      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3613    } else if (isa<FunctionTemplateDecl>(D)) {
3614      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3615      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3616
3617    // Fields and static variables.
3618    } else if (isa<FieldDecl>(D)) {
3619      FieldDecl *FD = cast<FieldDecl>(D);
3620      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3621        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3622    } else if (isa<VarDecl>(D)) {
3623      VarDecl *VD = cast<VarDecl>(D);
3624      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3625        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3626
3627    // Nested classes and class templates.
3628    } else if (isa<CXXRecordDecl>(D)) {
3629      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3630    } else if (isa<ClassTemplateDecl>(D)) {
3631      CheckAbstractClassUsage(Info,
3632                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3633    }
3634  }
3635}
3636
3637/// \brief Perform semantic checks on a class definition that has been
3638/// completing, introducing implicitly-declared members, checking for
3639/// abstract types, etc.
3640void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3641  if (!Record)
3642    return;
3643
3644  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3645    AbstractUsageInfo Info(*this, Record);
3646    CheckAbstractClassUsage(Info, Record);
3647  }
3648
3649  // If this is not an aggregate type and has no user-declared constructor,
3650  // complain about any non-static data members of reference or const scalar
3651  // type, since they will never get initializers.
3652  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3653      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3654      !Record->isLambda()) {
3655    bool Complained = false;
3656    for (RecordDecl::field_iterator F = Record->field_begin(),
3657                                 FEnd = Record->field_end();
3658         F != FEnd; ++F) {
3659      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3660        continue;
3661
3662      if (F->getType()->isReferenceType() ||
3663          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3664        if (!Complained) {
3665          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3666            << Record->getTagKind() << Record;
3667          Complained = true;
3668        }
3669
3670        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3671          << F->getType()->isReferenceType()
3672          << F->getDeclName();
3673      }
3674    }
3675  }
3676
3677  if (Record->isDynamicClass() && !Record->isDependentType())
3678    DynamicClasses.push_back(Record);
3679
3680  if (Record->getIdentifier()) {
3681    // C++ [class.mem]p13:
3682    //   If T is the name of a class, then each of the following shall have a
3683    //   name different from T:
3684    //     - every member of every anonymous union that is a member of class T.
3685    //
3686    // C++ [class.mem]p14:
3687    //   In addition, if class T has a user-declared constructor (12.1), every
3688    //   non-static data member of class T shall have a name different from T.
3689    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3690         R.first != R.second; ++R.first) {
3691      NamedDecl *D = *R.first;
3692      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3693          isa<IndirectFieldDecl>(D)) {
3694        Diag(D->getLocation(), diag::err_member_name_of_class)
3695          << D->getDeclName();
3696        break;
3697      }
3698    }
3699  }
3700
3701  // Warn if the class has virtual methods but non-virtual public destructor.
3702  if (Record->isPolymorphic() && !Record->isDependentType()) {
3703    CXXDestructorDecl *dtor = Record->getDestructor();
3704    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3705      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3706           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3707  }
3708
3709  // See if a method overloads virtual methods in a base
3710  /// class without overriding any.
3711  if (!Record->isDependentType()) {
3712    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3713                                     MEnd = Record->method_end();
3714         M != MEnd; ++M) {
3715      if (!(*M)->isStatic())
3716        DiagnoseHiddenVirtualMethods(Record, *M);
3717    }
3718  }
3719
3720  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3721  // function that is not a constructor declares that member function to be
3722  // const. [...] The class of which that function is a member shall be
3723  // a literal type.
3724  //
3725  // If the class has virtual bases, any constexpr members will already have
3726  // been diagnosed by the checks performed on the member declaration, so
3727  // suppress this (less useful) diagnostic.
3728  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3729      !Record->isLiteral() && !Record->getNumVBases()) {
3730    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3731                                     MEnd = Record->method_end();
3732         M != MEnd; ++M) {
3733      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3734        switch (Record->getTemplateSpecializationKind()) {
3735        case TSK_ImplicitInstantiation:
3736        case TSK_ExplicitInstantiationDeclaration:
3737        case TSK_ExplicitInstantiationDefinition:
3738          // If a template instantiates to a non-literal type, but its members
3739          // instantiate to constexpr functions, the template is technically
3740          // ill-formed, but we allow it for sanity.
3741          continue;
3742
3743        case TSK_Undeclared:
3744        case TSK_ExplicitSpecialization:
3745          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3746                             PDiag(diag::err_constexpr_method_non_literal));
3747          break;
3748        }
3749
3750        // Only produce one error per class.
3751        break;
3752      }
3753    }
3754  }
3755
3756  // Declare inherited constructors. We do this eagerly here because:
3757  // - The standard requires an eager diagnostic for conflicting inherited
3758  //   constructors from different classes.
3759  // - The lazy declaration of the other implicit constructors is so as to not
3760  //   waste space and performance on classes that are not meant to be
3761  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3762  //   have inherited constructors.
3763  DeclareInheritedConstructors(Record);
3764
3765  if (!Record->isDependentType())
3766    CheckExplicitlyDefaultedMethods(Record);
3767}
3768
3769void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3770  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3771                                      ME = Record->method_end();
3772       MI != ME; ++MI) {
3773    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3774      switch (getSpecialMember(*MI)) {
3775      case CXXDefaultConstructor:
3776        CheckExplicitlyDefaultedDefaultConstructor(
3777                                                  cast<CXXConstructorDecl>(*MI));
3778        break;
3779
3780      case CXXDestructor:
3781        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3782        break;
3783
3784      case CXXCopyConstructor:
3785        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3786        break;
3787
3788      case CXXCopyAssignment:
3789        CheckExplicitlyDefaultedCopyAssignment(*MI);
3790        break;
3791
3792      case CXXMoveConstructor:
3793        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3794        break;
3795
3796      case CXXMoveAssignment:
3797        CheckExplicitlyDefaultedMoveAssignment(*MI);
3798        break;
3799
3800      case CXXInvalid:
3801        llvm_unreachable("non-special member explicitly defaulted!");
3802      }
3803    }
3804  }
3805
3806}
3807
3808void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3809  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3810
3811  // Whether this was the first-declared instance of the constructor.
3812  // This affects whether we implicitly add an exception spec (and, eventually,
3813  // constexpr). It is also ill-formed to explicitly default a constructor such
3814  // that it would be deleted. (C++0x [decl.fct.def.default])
3815  bool First = CD == CD->getCanonicalDecl();
3816
3817  bool HadError = false;
3818  if (CD->getNumParams() != 0) {
3819    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3820      << CD->getSourceRange();
3821    HadError = true;
3822  }
3823
3824  ImplicitExceptionSpecification Spec
3825    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3826  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3827  if (EPI.ExceptionSpecType == EST_Delayed) {
3828    // Exception specification depends on some deferred part of the class. We'll
3829    // try again when the class's definition has been fully processed.
3830    return;
3831  }
3832  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3833                          *ExceptionType = Context.getFunctionType(
3834                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3835
3836  // C++11 [dcl.fct.def.default]p2:
3837  //   An explicitly-defaulted function may be declared constexpr only if it
3838  //   would have been implicitly declared as constexpr,
3839  // Do not apply this rule to templates, since core issue 1358 makes such
3840  // functions always instantiate to constexpr functions.
3841  if (CD->isConstexpr() &&
3842      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3843    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3844      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3845        << CXXDefaultConstructor;
3846      HadError = true;
3847    }
3848  }
3849  //   and may have an explicit exception-specification only if it is compatible
3850  //   with the exception-specification on the implicit declaration.
3851  if (CtorType->hasExceptionSpec()) {
3852    if (CheckEquivalentExceptionSpec(
3853          PDiag(diag::err_incorrect_defaulted_exception_spec)
3854            << CXXDefaultConstructor,
3855          PDiag(),
3856          ExceptionType, SourceLocation(),
3857          CtorType, CD->getLocation())) {
3858      HadError = true;
3859    }
3860  }
3861
3862  //   If a function is explicitly defaulted on its first declaration,
3863  if (First) {
3864    //  -- it is implicitly considered to be constexpr if the implicit
3865    //     definition would be,
3866    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3867
3868    //  -- it is implicitly considered to have the same
3869    //     exception-specification as if it had been implicitly declared
3870    //
3871    // FIXME: a compatible, but different, explicit exception specification
3872    // will be silently overridden. We should issue a warning if this happens.
3873    EPI.ExtInfo = CtorType->getExtInfo();
3874
3875    // Such a function is also trivial if the implicitly-declared function
3876    // would have been.
3877    CD->setTrivial(CD->getParent()->hasTrivialDefaultConstructor());
3878  }
3879
3880  if (HadError) {
3881    CD->setInvalidDecl();
3882    return;
3883  }
3884
3885  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3886    if (First) {
3887      CD->setDeletedAsWritten();
3888    } else {
3889      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3890        << CXXDefaultConstructor;
3891      CD->setInvalidDecl();
3892    }
3893  }
3894}
3895
3896void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3897  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3898
3899  // Whether this was the first-declared instance of the constructor.
3900  bool First = CD == CD->getCanonicalDecl();
3901
3902  bool HadError = false;
3903  if (CD->getNumParams() != 1) {
3904    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3905      << CD->getSourceRange();
3906    HadError = true;
3907  }
3908
3909  ImplicitExceptionSpecification Spec(Context);
3910  bool Const;
3911  llvm::tie(Spec, Const) =
3912    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3913
3914  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3915  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3916                          *ExceptionType = Context.getFunctionType(
3917                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3918
3919  // Check for parameter type matching.
3920  // This is a copy ctor so we know it's a cv-qualified reference to T.
3921  QualType ArgType = CtorType->getArgType(0);
3922  if (ArgType->getPointeeType().isVolatileQualified()) {
3923    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3924    HadError = true;
3925  }
3926  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3927    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3928    HadError = true;
3929  }
3930
3931  // C++11 [dcl.fct.def.default]p2:
3932  //   An explicitly-defaulted function may be declared constexpr only if it
3933  //   would have been implicitly declared as constexpr,
3934  // Do not apply this rule to templates, since core issue 1358 makes such
3935  // functions always instantiate to constexpr functions.
3936  if (CD->isConstexpr() &&
3937      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
3938    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3939      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3940        << CXXCopyConstructor;
3941      HadError = true;
3942    }
3943  }
3944  //   and may have an explicit exception-specification only if it is compatible
3945  //   with the exception-specification on the implicit declaration.
3946  if (CtorType->hasExceptionSpec()) {
3947    if (CheckEquivalentExceptionSpec(
3948          PDiag(diag::err_incorrect_defaulted_exception_spec)
3949            << CXXCopyConstructor,
3950          PDiag(),
3951          ExceptionType, SourceLocation(),
3952          CtorType, CD->getLocation())) {
3953      HadError = true;
3954    }
3955  }
3956
3957  //   If a function is explicitly defaulted on its first declaration,
3958  if (First) {
3959    //  -- it is implicitly considered to be constexpr if the implicit
3960    //     definition would be,
3961    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3962
3963    //  -- it is implicitly considered to have the same
3964    //     exception-specification as if it had been implicitly declared, and
3965    //
3966    // FIXME: a compatible, but different, explicit exception specification
3967    // will be silently overridden. We should issue a warning if this happens.
3968    EPI.ExtInfo = CtorType->getExtInfo();
3969
3970    //  -- [...] it shall have the same parameter type as if it had been
3971    //     implicitly declared.
3972    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3973
3974    // Such a function is also trivial if the implicitly-declared function
3975    // would have been.
3976    CD->setTrivial(CD->getParent()->hasTrivialCopyConstructor());
3977  }
3978
3979  if (HadError) {
3980    CD->setInvalidDecl();
3981    return;
3982  }
3983
3984  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3985    if (First) {
3986      CD->setDeletedAsWritten();
3987    } else {
3988      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3989        << CXXCopyConstructor;
3990      CD->setInvalidDecl();
3991    }
3992  }
3993}
3994
3995void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3996  assert(MD->isExplicitlyDefaulted());
3997
3998  // Whether this was the first-declared instance of the operator
3999  bool First = MD == MD->getCanonicalDecl();
4000
4001  bool HadError = false;
4002  if (MD->getNumParams() != 1) {
4003    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
4004      << MD->getSourceRange();
4005    HadError = true;
4006  }
4007
4008  QualType ReturnType =
4009    MD->getType()->getAs<FunctionType>()->getResultType();
4010  if (!ReturnType->isLValueReferenceType() ||
4011      !Context.hasSameType(
4012        Context.getCanonicalType(ReturnType->getPointeeType()),
4013        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4014    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4015    HadError = true;
4016  }
4017
4018  ImplicitExceptionSpecification Spec(Context);
4019  bool Const;
4020  llvm::tie(Spec, Const) =
4021    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4022
4023  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4024  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4025                          *ExceptionType = Context.getFunctionType(
4026                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4027
4028  QualType ArgType = OperType->getArgType(0);
4029  if (!ArgType->isLValueReferenceType()) {
4030    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4031    HadError = true;
4032  } else {
4033    if (ArgType->getPointeeType().isVolatileQualified()) {
4034      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4035      HadError = true;
4036    }
4037    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4038      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4039      HadError = true;
4040    }
4041  }
4042
4043  if (OperType->getTypeQuals()) {
4044    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4045    HadError = true;
4046  }
4047
4048  if (OperType->hasExceptionSpec()) {
4049    if (CheckEquivalentExceptionSpec(
4050          PDiag(diag::err_incorrect_defaulted_exception_spec)
4051            << CXXCopyAssignment,
4052          PDiag(),
4053          ExceptionType, SourceLocation(),
4054          OperType, MD->getLocation())) {
4055      HadError = true;
4056    }
4057  }
4058  if (First) {
4059    // We set the declaration to have the computed exception spec here.
4060    // We duplicate the one parameter type.
4061    EPI.RefQualifier = OperType->getRefQualifier();
4062    EPI.ExtInfo = OperType->getExtInfo();
4063    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4064
4065    // Such a function is also trivial if the implicitly-declared function
4066    // would have been.
4067    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
4068  }
4069
4070  if (HadError) {
4071    MD->setInvalidDecl();
4072    return;
4073  }
4074
4075  if (ShouldDeleteSpecialMember(MD, CXXCopyAssignment)) {
4076    if (First) {
4077      MD->setDeletedAsWritten();
4078    } else {
4079      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4080        << CXXCopyAssignment;
4081      MD->setInvalidDecl();
4082    }
4083  }
4084}
4085
4086void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4087  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4088
4089  // Whether this was the first-declared instance of the constructor.
4090  bool First = CD == CD->getCanonicalDecl();
4091
4092  bool HadError = false;
4093  if (CD->getNumParams() != 1) {
4094    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4095      << CD->getSourceRange();
4096    HadError = true;
4097  }
4098
4099  ImplicitExceptionSpecification Spec(
4100      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4101
4102  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4103  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4104                          *ExceptionType = Context.getFunctionType(
4105                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4106
4107  // Check for parameter type matching.
4108  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4109  QualType ArgType = CtorType->getArgType(0);
4110  if (ArgType->getPointeeType().isVolatileQualified()) {
4111    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4112    HadError = true;
4113  }
4114  if (ArgType->getPointeeType().isConstQualified()) {
4115    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4116    HadError = true;
4117  }
4118
4119  // C++11 [dcl.fct.def.default]p2:
4120  //   An explicitly-defaulted function may be declared constexpr only if it
4121  //   would have been implicitly declared as constexpr,
4122  // Do not apply this rule to templates, since core issue 1358 makes such
4123  // functions always instantiate to constexpr functions.
4124  if (CD->isConstexpr() &&
4125      CD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4126    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4127      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4128        << CXXMoveConstructor;
4129      HadError = true;
4130    }
4131  }
4132  //   and may have an explicit exception-specification only if it is compatible
4133  //   with the exception-specification on the implicit declaration.
4134  if (CtorType->hasExceptionSpec()) {
4135    if (CheckEquivalentExceptionSpec(
4136          PDiag(diag::err_incorrect_defaulted_exception_spec)
4137            << CXXMoveConstructor,
4138          PDiag(),
4139          ExceptionType, SourceLocation(),
4140          CtorType, CD->getLocation())) {
4141      HadError = true;
4142    }
4143  }
4144
4145  //   If a function is explicitly defaulted on its first declaration,
4146  if (First) {
4147    //  -- it is implicitly considered to be constexpr if the implicit
4148    //     definition would be,
4149    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4150
4151    //  -- it is implicitly considered to have the same
4152    //     exception-specification as if it had been implicitly declared, and
4153    //
4154    // FIXME: a compatible, but different, explicit exception specification
4155    // will be silently overridden. We should issue a warning if this happens.
4156    EPI.ExtInfo = CtorType->getExtInfo();
4157
4158    //  -- [...] it shall have the same parameter type as if it had been
4159    //     implicitly declared.
4160    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4161
4162    // Such a function is also trivial if the implicitly-declared function
4163    // would have been.
4164    CD->setTrivial(CD->getParent()->hasTrivialMoveConstructor());
4165  }
4166
4167  if (HadError) {
4168    CD->setInvalidDecl();
4169    return;
4170  }
4171
4172  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4173    if (First) {
4174      CD->setDeletedAsWritten();
4175    } else {
4176      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4177        << CXXMoveConstructor;
4178      CD->setInvalidDecl();
4179    }
4180  }
4181}
4182
4183void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4184  assert(MD->isExplicitlyDefaulted());
4185
4186  // Whether this was the first-declared instance of the operator
4187  bool First = MD == MD->getCanonicalDecl();
4188
4189  bool HadError = false;
4190  if (MD->getNumParams() != 1) {
4191    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4192      << MD->getSourceRange();
4193    HadError = true;
4194  }
4195
4196  QualType ReturnType =
4197    MD->getType()->getAs<FunctionType>()->getResultType();
4198  if (!ReturnType->isLValueReferenceType() ||
4199      !Context.hasSameType(
4200        Context.getCanonicalType(ReturnType->getPointeeType()),
4201        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4202    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4203    HadError = true;
4204  }
4205
4206  ImplicitExceptionSpecification Spec(
4207      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4208
4209  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4210  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4211                          *ExceptionType = Context.getFunctionType(
4212                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4213
4214  QualType ArgType = OperType->getArgType(0);
4215  if (!ArgType->isRValueReferenceType()) {
4216    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4217    HadError = true;
4218  } else {
4219    if (ArgType->getPointeeType().isVolatileQualified()) {
4220      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4221      HadError = true;
4222    }
4223    if (ArgType->getPointeeType().isConstQualified()) {
4224      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4225      HadError = true;
4226    }
4227  }
4228
4229  if (OperType->getTypeQuals()) {
4230    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4231    HadError = true;
4232  }
4233
4234  if (OperType->hasExceptionSpec()) {
4235    if (CheckEquivalentExceptionSpec(
4236          PDiag(diag::err_incorrect_defaulted_exception_spec)
4237            << CXXMoveAssignment,
4238          PDiag(),
4239          ExceptionType, SourceLocation(),
4240          OperType, MD->getLocation())) {
4241      HadError = true;
4242    }
4243  }
4244  if (First) {
4245    // We set the declaration to have the computed exception spec here.
4246    // We duplicate the one parameter type.
4247    EPI.RefQualifier = OperType->getRefQualifier();
4248    EPI.ExtInfo = OperType->getExtInfo();
4249    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4250
4251    // Such a function is also trivial if the implicitly-declared function
4252    // would have been.
4253    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
4254  }
4255
4256  if (HadError) {
4257    MD->setInvalidDecl();
4258    return;
4259  }
4260
4261  if (ShouldDeleteSpecialMember(MD, CXXMoveAssignment)) {
4262    if (First) {
4263      MD->setDeletedAsWritten();
4264    } else {
4265      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4266        << CXXMoveAssignment;
4267      MD->setInvalidDecl();
4268    }
4269  }
4270}
4271
4272void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4273  assert(DD->isExplicitlyDefaulted());
4274
4275  // Whether this was the first-declared instance of the destructor.
4276  bool First = DD == DD->getCanonicalDecl();
4277
4278  ImplicitExceptionSpecification Spec
4279    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4280  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4281  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4282                          *ExceptionType = Context.getFunctionType(
4283                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4284
4285  if (DtorType->hasExceptionSpec()) {
4286    if (CheckEquivalentExceptionSpec(
4287          PDiag(diag::err_incorrect_defaulted_exception_spec)
4288            << CXXDestructor,
4289          PDiag(),
4290          ExceptionType, SourceLocation(),
4291          DtorType, DD->getLocation())) {
4292      DD->setInvalidDecl();
4293      return;
4294    }
4295  }
4296  if (First) {
4297    // We set the declaration to have the computed exception spec here.
4298    // There are no parameters.
4299    EPI.ExtInfo = DtorType->getExtInfo();
4300    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4301
4302    // Such a function is also trivial if the implicitly-declared function
4303    // would have been.
4304    DD->setTrivial(DD->getParent()->hasTrivialDestructor());
4305  }
4306
4307  if (ShouldDeleteSpecialMember(DD, CXXDestructor)) {
4308    if (First) {
4309      DD->setDeletedAsWritten();
4310    } else {
4311      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4312        << CXXDestructor;
4313      DD->setInvalidDecl();
4314    }
4315  }
4316}
4317
4318namespace {
4319struct SpecialMemberDeletionInfo {
4320  Sema &S;
4321  CXXMethodDecl *MD;
4322  Sema::CXXSpecialMember CSM;
4323
4324  // Properties of the special member, computed for convenience.
4325  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4326  SourceLocation Loc;
4327
4328  bool AllFieldsAreConst;
4329
4330  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4331                            Sema::CXXSpecialMember CSM)
4332    : S(S), MD(MD), CSM(CSM),
4333      IsConstructor(false), IsAssignment(false), IsMove(false),
4334      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4335      AllFieldsAreConst(true) {
4336    switch (CSM) {
4337      case Sema::CXXDefaultConstructor:
4338      case Sema::CXXCopyConstructor:
4339        IsConstructor = true;
4340        break;
4341      case Sema::CXXMoveConstructor:
4342        IsConstructor = true;
4343        IsMove = true;
4344        break;
4345      case Sema::CXXCopyAssignment:
4346        IsAssignment = true;
4347        break;
4348      case Sema::CXXMoveAssignment:
4349        IsAssignment = true;
4350        IsMove = true;
4351        break;
4352      case Sema::CXXDestructor:
4353        break;
4354      case Sema::CXXInvalid:
4355        llvm_unreachable("invalid special member kind");
4356    }
4357
4358    if (MD->getNumParams()) {
4359      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4360      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4361    }
4362  }
4363
4364  bool inUnion() const { return MD->getParent()->isUnion(); }
4365
4366  /// Look up the corresponding special member in the given class.
4367  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4368    unsigned TQ = MD->getTypeQualifiers();
4369    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4370                                 MD->getRefQualifier() == RQ_RValue,
4371                                 TQ & Qualifiers::Const,
4372                                 TQ & Qualifiers::Volatile);
4373  }
4374
4375  bool shouldDeleteForBase(CXXRecordDecl *BaseDecl, bool IsVirtualBase);
4376  bool shouldDeleteForField(FieldDecl *FD);
4377  bool shouldDeleteForAllConstMembers();
4378};
4379}
4380
4381/// Check whether we should delete a special member function due to the class
4382/// having a particular direct or virtual base class.
4383bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXRecordDecl *BaseDecl,
4384                                                    bool IsVirtualBase) {
4385  // C++11 [class.copy]p23:
4386  // -- for the move assignment operator, any direct or indirect virtual
4387  //    base class.
4388  if (CSM == Sema::CXXMoveAssignment && IsVirtualBase)
4389    return true;
4390
4391  // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5:
4392  // -- any direct or virtual base class [...] has a type with a destructor
4393  //    that is deleted or inaccessible
4394  if (!IsAssignment) {
4395    CXXDestructorDecl *BaseDtor = S.LookupDestructor(BaseDecl);
4396    if (BaseDtor->isDeleted())
4397      return true;
4398    if (S.CheckDestructorAccess(Loc, BaseDtor, S.PDiag())
4399          != Sema::AR_accessible)
4400      return true;
4401  }
4402
4403  // C++11 [class.ctor]p5:
4404  // -- any direct or virtual base class [...] has class type M [...] and
4405  //    either M has no default constructor or overload resolution as applied
4406  //    to M's default constructor results in an ambiguity or in a function
4407  //    that is deleted or inaccessible
4408  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4409  // -- a direct or virtual base class B that cannot be copied/moved because
4410  //    overload resolution, as applied to B's corresponding special member,
4411  //    results in an ambiguity or a function that is deleted or inaccessible
4412  //    from the defaulted special member
4413  if (CSM != Sema::CXXDestructor) {
4414    Sema::SpecialMemberOverloadResult *SMOR = lookupIn(BaseDecl);
4415    if (!SMOR->hasSuccess())
4416      return true;
4417
4418    CXXMethodDecl *BaseMember = SMOR->getMethod();
4419    if (IsConstructor) {
4420      CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4421      if (S.CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4422                                   S.PDiag()) != Sema::AR_accessible)
4423        return true;
4424
4425      // -- for the move constructor, a [...] direct or virtual base class with
4426      //    a type that does not have a move constructor and is not trivially
4427      //    copyable.
4428      if (IsMove && !BaseCtor->isMoveConstructor() &&
4429          !BaseDecl->isTriviallyCopyable())
4430        return true;
4431    } else {
4432      assert(IsAssignment && "unexpected kind of special member");
4433      if (S.CheckDirectMemberAccess(Loc, BaseMember, S.PDiag())
4434            != Sema::AR_accessible)
4435        return true;
4436
4437      // -- for the move assignment operator, a direct base class with a type
4438      //    that does not have a move assignment operator and is not trivially
4439      //    copyable.
4440      if (IsMove && !BaseMember->isMoveAssignmentOperator() &&
4441          !BaseDecl->isTriviallyCopyable())
4442        return true;
4443    }
4444  }
4445
4446  // C++11 [class.dtor]p5:
4447  // -- for a virtual destructor, lookup of the non-array deallocation function
4448  //    results in an ambiguity or in a function that is deleted or inaccessible
4449  if (CSM == Sema::CXXDestructor && MD->isVirtual()) {
4450    FunctionDecl *OperatorDelete = 0;
4451    DeclarationName Name =
4452      S.Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4453    if (S.FindDeallocationFunction(Loc, MD->getParent(), Name,
4454                                   OperatorDelete, false))
4455      return true;
4456  }
4457
4458  return false;
4459}
4460
4461/// Check whether we should delete a special member function due to the class
4462/// having a particular non-static data member.
4463bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4464  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4465  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4466
4467  if (CSM == Sema::CXXDefaultConstructor) {
4468    // For a default constructor, all references must be initialized in-class
4469    // and, if a union, it must have a non-const member.
4470    if (FieldType->isReferenceType() && !FD->hasInClassInitializer())
4471      return true;
4472
4473    if (inUnion() && !FieldType.isConstQualified())
4474      AllFieldsAreConst = false;
4475  } else if (CSM == Sema::CXXCopyConstructor) {
4476    // For a copy constructor, data members must not be of rvalue reference
4477    // type.
4478    if (FieldType->isRValueReferenceType())
4479      return true;
4480  } else if (IsAssignment) {
4481    // For an assignment operator, data members must not be of reference type.
4482    if (FieldType->isReferenceType())
4483      return true;
4484  }
4485
4486  if (FieldRecord) {
4487    // For a default constructor, a const member must have a user-provided
4488    // default constructor or else be explicitly initialized.
4489    if (CSM == Sema::CXXDefaultConstructor && FieldType.isConstQualified() &&
4490        !FD->hasInClassInitializer() &&
4491        !FieldRecord->hasUserProvidedDefaultConstructor())
4492      return true;
4493
4494    // Some additional restrictions exist on the variant members.
4495    if (!inUnion() && FieldRecord->isUnion() &&
4496        FieldRecord->isAnonymousStructOrUnion()) {
4497      bool AllVariantFieldsAreConst = true;
4498
4499      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4500                                         UE = FieldRecord->field_end();
4501           UI != UE; ++UI) {
4502        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4503        CXXRecordDecl *UnionFieldRecord =
4504          UnionFieldType->getAsCXXRecordDecl();
4505
4506        if (!UnionFieldType.isConstQualified())
4507          AllVariantFieldsAreConst = false;
4508
4509        if (UnionFieldRecord) {
4510          // FIXME: Checking for accessibility and validity of this
4511          //        destructor is technically going beyond the
4512          //        standard, but this is believed to be a defect.
4513          if (!IsAssignment) {
4514            CXXDestructorDecl *FieldDtor = S.LookupDestructor(UnionFieldRecord);
4515            if (FieldDtor->isDeleted())
4516              return true;
4517            if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4518                Sema::AR_accessible)
4519              return true;
4520            if (!FieldDtor->isTrivial())
4521              return true;
4522          }
4523
4524          // FIXME: in-class initializers should be handled here
4525          if (CSM != Sema::CXXDestructor) {
4526            Sema::SpecialMemberOverloadResult *SMOR =
4527                lookupIn(UnionFieldRecord);
4528            // FIXME: Checking for accessibility and validity of this
4529            //        corresponding member is technically going beyond the
4530            //        standard, but this is believed to be a defect.
4531            if (!SMOR->hasSuccess())
4532              return true;
4533
4534            CXXMethodDecl *FieldMember = SMOR->getMethod();
4535            // A member of a union must have a trivial corresponding
4536            // special member.
4537            if (!FieldMember->isTrivial())
4538              return true;
4539
4540            if (IsConstructor) {
4541              CXXConstructorDecl *FieldCtor =
4542                  cast<CXXConstructorDecl>(FieldMember);
4543              if (S.CheckConstructorAccess(Loc, FieldCtor,
4544                                           FieldCtor->getAccess(),
4545                                           S.PDiag()) != Sema::AR_accessible)
4546              return true;
4547            } else {
4548              assert(IsAssignment && "unexpected kind of special member");
4549              if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4550                  != Sema::AR_accessible)
4551                return true;
4552            }
4553          }
4554        }
4555      }
4556
4557      // At least one member in each anonymous union must be non-const
4558      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4559          FieldRecord->field_begin() != FieldRecord->field_end())
4560        return true;
4561
4562      // Don't try to initialize the anonymous union
4563      // This is technically non-conformant, but sanity demands it.
4564      return false;
4565    }
4566
4567    // Unless we're doing assignment, the field's destructor must be
4568    // accessible and not deleted.
4569    if (!IsAssignment) {
4570      CXXDestructorDecl *FieldDtor = S.LookupDestructor(FieldRecord);
4571      if (FieldDtor->isDeleted())
4572        return true;
4573      if (S.CheckDestructorAccess(Loc, FieldDtor, S.PDiag()) !=
4574          Sema::AR_accessible)
4575        return true;
4576    }
4577
4578    // Check that the corresponding member of the field is accessible,
4579    // unique, and non-deleted. We don't do this if it has an explicit
4580    // initialization when default-constructing.
4581    if (CSM != Sema::CXXDestructor &&
4582        !(CSM == Sema::CXXDefaultConstructor && FD->hasInClassInitializer())) {
4583      Sema::SpecialMemberOverloadResult *SMOR = lookupIn(FieldRecord);
4584      if (!SMOR->hasSuccess())
4585        return true;
4586
4587      CXXMethodDecl *FieldMember = SMOR->getMethod();
4588      if (IsConstructor) {
4589        CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4590        if (S.CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4591                                     S.PDiag()) != Sema::AR_accessible)
4592        return true;
4593
4594        // For a move operation, the corresponding operation must actually
4595        // be a move operation (and not a copy selected by overload
4596        // resolution) unless we are working on a trivially copyable class.
4597        if (IsMove && !FieldCtor->isMoveConstructor() &&
4598            !FieldRecord->isTriviallyCopyable())
4599          return true;
4600      } else {
4601        assert(IsAssignment && "unexpected kind of special member");
4602        if (S.CheckDirectMemberAccess(Loc, FieldMember, S.PDiag())
4603              != Sema::AR_accessible)
4604          return true;
4605
4606        // -- for the move assignment operator, a non-static data member with a
4607        //    type that does not have a move assignment operator and is not
4608        //    trivially copyable.
4609        if (IsMove && !FieldMember->isMoveAssignmentOperator() &&
4610            !FieldRecord->isTriviallyCopyable())
4611          return true;
4612      }
4613
4614      // We need the corresponding member of a union to be trivial so that
4615      // we can safely copy them all simultaneously.
4616      // FIXME: Note that performing the check here (where we rely on the lack
4617      // of an in-class initializer) is technically ill-formed. However, this
4618      // seems most obviously to be a bug in the standard.
4619      if (inUnion() && !FieldMember->isTrivial())
4620        return true;
4621    }
4622  } else if (CSM == Sema::CXXDefaultConstructor && !inUnion() &&
4623             FieldType.isConstQualified() && !FD->hasInClassInitializer()) {
4624    // We can't initialize a const member of non-class type to any value.
4625    return true;
4626  } else if (IsAssignment && FieldType.isConstQualified()) {
4627    // C++11 [class.copy]p23:
4628    // -- a non-static data member of const non-class type (or array thereof)
4629    return true;
4630  }
4631
4632  return false;
4633}
4634
4635/// C++11 [class.ctor] p5:
4636///   A defaulted default constructor for a class X is defined as deleted if
4637/// X is a union and all of its variant members are of const-qualified type.
4638bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4639  // This is a silly definition, because it gives an empty union a deleted
4640  // default constructor. Don't do that.
4641  return CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4642    (MD->getParent()->field_begin() != MD->getParent()->field_end());
4643}
4644
4645/// Determine whether a defaulted special member function should be defined as
4646/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4647/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4648bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4649  assert(!MD->isInvalidDecl());
4650  CXXRecordDecl *RD = MD->getParent();
4651  assert(!RD->isDependentType() && "do deletion after instantiation");
4652  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4653    return false;
4654
4655  // C++11 [expr.lambda.prim]p19:
4656  //   The closure type associated with a lambda-expression has a
4657  //   deleted (8.4.3) default constructor and a deleted copy
4658  //   assignment operator.
4659  if (RD->isLambda() &&
4660      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment))
4661    return true;
4662
4663  // For an anonymous struct or union, the copy and assignment special members
4664  // will never be used, so skip the check. For an anonymous union declared at
4665  // namespace scope, the constructor and destructor are used.
4666  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4667      RD->isAnonymousStructOrUnion())
4668    return false;
4669
4670  // Do access control from the special member function
4671  ContextRAII MethodContext(*this, MD);
4672
4673  SpecialMemberDeletionInfo SMI(*this, MD, CSM);
4674
4675  // FIXME: We should put some diagnostic logic right into this function.
4676
4677  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4678                                          BE = RD->bases_end(); BI != BE; ++BI)
4679    if (!BI->isVirtual() &&
4680        SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), false))
4681      return true;
4682
4683  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4684                                          BE = RD->vbases_end(); BI != BE; ++BI)
4685    if (SMI.shouldDeleteForBase(BI->getType()->getAsCXXRecordDecl(), true))
4686      return true;
4687
4688  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4689                                     FE = RD->field_end(); FI != FE; ++FI)
4690    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4691        SMI.shouldDeleteForField(*FI))
4692      return true;
4693
4694  if (SMI.shouldDeleteForAllConstMembers())
4695    return true;
4696
4697  return false;
4698}
4699
4700/// \brief Data used with FindHiddenVirtualMethod
4701namespace {
4702  struct FindHiddenVirtualMethodData {
4703    Sema *S;
4704    CXXMethodDecl *Method;
4705    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4706    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4707  };
4708}
4709
4710/// \brief Member lookup function that determines whether a given C++
4711/// method overloads virtual methods in a base class without overriding any,
4712/// to be used with CXXRecordDecl::lookupInBases().
4713static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4714                                    CXXBasePath &Path,
4715                                    void *UserData) {
4716  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4717
4718  FindHiddenVirtualMethodData &Data
4719    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4720
4721  DeclarationName Name = Data.Method->getDeclName();
4722  assert(Name.getNameKind() == DeclarationName::Identifier);
4723
4724  bool foundSameNameMethod = false;
4725  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4726  for (Path.Decls = BaseRecord->lookup(Name);
4727       Path.Decls.first != Path.Decls.second;
4728       ++Path.Decls.first) {
4729    NamedDecl *D = *Path.Decls.first;
4730    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4731      MD = MD->getCanonicalDecl();
4732      foundSameNameMethod = true;
4733      // Interested only in hidden virtual methods.
4734      if (!MD->isVirtual())
4735        continue;
4736      // If the method we are checking overrides a method from its base
4737      // don't warn about the other overloaded methods.
4738      if (!Data.S->IsOverload(Data.Method, MD, false))
4739        return true;
4740      // Collect the overload only if its hidden.
4741      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4742        overloadedMethods.push_back(MD);
4743    }
4744  }
4745
4746  if (foundSameNameMethod)
4747    Data.OverloadedMethods.append(overloadedMethods.begin(),
4748                                   overloadedMethods.end());
4749  return foundSameNameMethod;
4750}
4751
4752/// \brief See if a method overloads virtual methods in a base class without
4753/// overriding any.
4754void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4755  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4756                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4757    return;
4758  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
4759    return;
4760
4761  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4762                     /*bool RecordPaths=*/false,
4763                     /*bool DetectVirtual=*/false);
4764  FindHiddenVirtualMethodData Data;
4765  Data.Method = MD;
4766  Data.S = this;
4767
4768  // Keep the base methods that were overriden or introduced in the subclass
4769  // by 'using' in a set. A base method not in this set is hidden.
4770  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4771       res.first != res.second; ++res.first) {
4772    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4773      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4774                                          E = MD->end_overridden_methods();
4775           I != E; ++I)
4776        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4777    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4778      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4779        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4780  }
4781
4782  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4783      !Data.OverloadedMethods.empty()) {
4784    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4785      << MD << (Data.OverloadedMethods.size() > 1);
4786
4787    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4788      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4789      Diag(overloadedMD->getLocation(),
4790           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4791    }
4792  }
4793}
4794
4795void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4796                                             Decl *TagDecl,
4797                                             SourceLocation LBrac,
4798                                             SourceLocation RBrac,
4799                                             AttributeList *AttrList) {
4800  if (!TagDecl)
4801    return;
4802
4803  AdjustDeclIfTemplate(TagDecl);
4804
4805  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4806              // strict aliasing violation!
4807              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4808              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4809
4810  CheckCompletedCXXClass(
4811                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4812}
4813
4814/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4815/// special functions, such as the default constructor, copy
4816/// constructor, or destructor, to the given C++ class (C++
4817/// [special]p1).  This routine can only be executed just before the
4818/// definition of the class is complete.
4819void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4820  if (!ClassDecl->hasUserDeclaredConstructor())
4821    ++ASTContext::NumImplicitDefaultConstructors;
4822
4823  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4824    ++ASTContext::NumImplicitCopyConstructors;
4825
4826  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4827    ++ASTContext::NumImplicitMoveConstructors;
4828
4829  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4830    ++ASTContext::NumImplicitCopyAssignmentOperators;
4831
4832    // If we have a dynamic class, then the copy assignment operator may be
4833    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4834    // it shows up in the right place in the vtable and that we diagnose
4835    // problems with the implicit exception specification.
4836    if (ClassDecl->isDynamicClass())
4837      DeclareImplicitCopyAssignment(ClassDecl);
4838  }
4839
4840  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
4841    ++ASTContext::NumImplicitMoveAssignmentOperators;
4842
4843    // Likewise for the move assignment operator.
4844    if (ClassDecl->isDynamicClass())
4845      DeclareImplicitMoveAssignment(ClassDecl);
4846  }
4847
4848  if (!ClassDecl->hasUserDeclaredDestructor()) {
4849    ++ASTContext::NumImplicitDestructors;
4850
4851    // If we have a dynamic class, then the destructor may be virtual, so we
4852    // have to declare the destructor immediately. This ensures that, e.g., it
4853    // shows up in the right place in the vtable and that we diagnose problems
4854    // with the implicit exception specification.
4855    if (ClassDecl->isDynamicClass())
4856      DeclareImplicitDestructor(ClassDecl);
4857  }
4858}
4859
4860void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4861  if (!D)
4862    return;
4863
4864  int NumParamList = D->getNumTemplateParameterLists();
4865  for (int i = 0; i < NumParamList; i++) {
4866    TemplateParameterList* Params = D->getTemplateParameterList(i);
4867    for (TemplateParameterList::iterator Param = Params->begin(),
4868                                      ParamEnd = Params->end();
4869          Param != ParamEnd; ++Param) {
4870      NamedDecl *Named = cast<NamedDecl>(*Param);
4871      if (Named->getDeclName()) {
4872        S->AddDecl(Named);
4873        IdResolver.AddDecl(Named);
4874      }
4875    }
4876  }
4877}
4878
4879void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4880  if (!D)
4881    return;
4882
4883  TemplateParameterList *Params = 0;
4884  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4885    Params = Template->getTemplateParameters();
4886  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4887           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4888    Params = PartialSpec->getTemplateParameters();
4889  else
4890    return;
4891
4892  for (TemplateParameterList::iterator Param = Params->begin(),
4893                                    ParamEnd = Params->end();
4894       Param != ParamEnd; ++Param) {
4895    NamedDecl *Named = cast<NamedDecl>(*Param);
4896    if (Named->getDeclName()) {
4897      S->AddDecl(Named);
4898      IdResolver.AddDecl(Named);
4899    }
4900  }
4901}
4902
4903void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4904  if (!RecordD) return;
4905  AdjustDeclIfTemplate(RecordD);
4906  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4907  PushDeclContext(S, Record);
4908}
4909
4910void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4911  if (!RecordD) return;
4912  PopDeclContext();
4913}
4914
4915/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4916/// parsing a top-level (non-nested) C++ class, and we are now
4917/// parsing those parts of the given Method declaration that could
4918/// not be parsed earlier (C++ [class.mem]p2), such as default
4919/// arguments. This action should enter the scope of the given
4920/// Method declaration as if we had just parsed the qualified method
4921/// name. However, it should not bring the parameters into scope;
4922/// that will be performed by ActOnDelayedCXXMethodParameter.
4923void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4924}
4925
4926/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4927/// C++ method declaration. We're (re-)introducing the given
4928/// function parameter into scope for use in parsing later parts of
4929/// the method declaration. For example, we could see an
4930/// ActOnParamDefaultArgument event for this parameter.
4931void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4932  if (!ParamD)
4933    return;
4934
4935  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4936
4937  // If this parameter has an unparsed default argument, clear it out
4938  // to make way for the parsed default argument.
4939  if (Param->hasUnparsedDefaultArg())
4940    Param->setDefaultArg(0);
4941
4942  S->AddDecl(Param);
4943  if (Param->getDeclName())
4944    IdResolver.AddDecl(Param);
4945}
4946
4947/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4948/// processing the delayed method declaration for Method. The method
4949/// declaration is now considered finished. There may be a separate
4950/// ActOnStartOfFunctionDef action later (not necessarily
4951/// immediately!) for this method, if it was also defined inside the
4952/// class body.
4953void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4954  if (!MethodD)
4955    return;
4956
4957  AdjustDeclIfTemplate(MethodD);
4958
4959  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4960
4961  // Now that we have our default arguments, check the constructor
4962  // again. It could produce additional diagnostics or affect whether
4963  // the class has implicitly-declared destructors, among other
4964  // things.
4965  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4966    CheckConstructor(Constructor);
4967
4968  // Check the default arguments, which we may have added.
4969  if (!Method->isInvalidDecl())
4970    CheckCXXDefaultArguments(Method);
4971}
4972
4973/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4974/// the well-formedness of the constructor declarator @p D with type @p
4975/// R. If there are any errors in the declarator, this routine will
4976/// emit diagnostics and set the invalid bit to true.  In any case, the type
4977/// will be updated to reflect a well-formed type for the constructor and
4978/// returned.
4979QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4980                                          StorageClass &SC) {
4981  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4982
4983  // C++ [class.ctor]p3:
4984  //   A constructor shall not be virtual (10.3) or static (9.4). A
4985  //   constructor can be invoked for a const, volatile or const
4986  //   volatile object. A constructor shall not be declared const,
4987  //   volatile, or const volatile (9.3.2).
4988  if (isVirtual) {
4989    if (!D.isInvalidType())
4990      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4991        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4992        << SourceRange(D.getIdentifierLoc());
4993    D.setInvalidType();
4994  }
4995  if (SC == SC_Static) {
4996    if (!D.isInvalidType())
4997      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4998        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4999        << SourceRange(D.getIdentifierLoc());
5000    D.setInvalidType();
5001    SC = SC_None;
5002  }
5003
5004  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5005  if (FTI.TypeQuals != 0) {
5006    if (FTI.TypeQuals & Qualifiers::Const)
5007      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5008        << "const" << SourceRange(D.getIdentifierLoc());
5009    if (FTI.TypeQuals & Qualifiers::Volatile)
5010      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5011        << "volatile" << SourceRange(D.getIdentifierLoc());
5012    if (FTI.TypeQuals & Qualifiers::Restrict)
5013      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5014        << "restrict" << SourceRange(D.getIdentifierLoc());
5015    D.setInvalidType();
5016  }
5017
5018  // C++0x [class.ctor]p4:
5019  //   A constructor shall not be declared with a ref-qualifier.
5020  if (FTI.hasRefQualifier()) {
5021    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5022      << FTI.RefQualifierIsLValueRef
5023      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5024    D.setInvalidType();
5025  }
5026
5027  // Rebuild the function type "R" without any type qualifiers (in
5028  // case any of the errors above fired) and with "void" as the
5029  // return type, since constructors don't have return types.
5030  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5031  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5032    return R;
5033
5034  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5035  EPI.TypeQuals = 0;
5036  EPI.RefQualifier = RQ_None;
5037
5038  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5039                                 Proto->getNumArgs(), EPI);
5040}
5041
5042/// CheckConstructor - Checks a fully-formed constructor for
5043/// well-formedness, issuing any diagnostics required. Returns true if
5044/// the constructor declarator is invalid.
5045void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5046  CXXRecordDecl *ClassDecl
5047    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5048  if (!ClassDecl)
5049    return Constructor->setInvalidDecl();
5050
5051  // C++ [class.copy]p3:
5052  //   A declaration of a constructor for a class X is ill-formed if
5053  //   its first parameter is of type (optionally cv-qualified) X and
5054  //   either there are no other parameters or else all other
5055  //   parameters have default arguments.
5056  if (!Constructor->isInvalidDecl() &&
5057      ((Constructor->getNumParams() == 1) ||
5058       (Constructor->getNumParams() > 1 &&
5059        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5060      Constructor->getTemplateSpecializationKind()
5061                                              != TSK_ImplicitInstantiation) {
5062    QualType ParamType = Constructor->getParamDecl(0)->getType();
5063    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5064    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5065      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5066      const char *ConstRef
5067        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5068                                                        : " const &";
5069      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5070        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5071
5072      // FIXME: Rather that making the constructor invalid, we should endeavor
5073      // to fix the type.
5074      Constructor->setInvalidDecl();
5075    }
5076  }
5077}
5078
5079/// CheckDestructor - Checks a fully-formed destructor definition for
5080/// well-formedness, issuing any diagnostics required.  Returns true
5081/// on error.
5082bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5083  CXXRecordDecl *RD = Destructor->getParent();
5084
5085  if (Destructor->isVirtual()) {
5086    SourceLocation Loc;
5087
5088    if (!Destructor->isImplicit())
5089      Loc = Destructor->getLocation();
5090    else
5091      Loc = RD->getLocation();
5092
5093    // If we have a virtual destructor, look up the deallocation function
5094    FunctionDecl *OperatorDelete = 0;
5095    DeclarationName Name =
5096    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5097    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5098      return true;
5099
5100    MarkFunctionReferenced(Loc, OperatorDelete);
5101
5102    Destructor->setOperatorDelete(OperatorDelete);
5103  }
5104
5105  return false;
5106}
5107
5108static inline bool
5109FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5110  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5111          FTI.ArgInfo[0].Param &&
5112          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5113}
5114
5115/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5116/// the well-formednes of the destructor declarator @p D with type @p
5117/// R. If there are any errors in the declarator, this routine will
5118/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5119/// will be updated to reflect a well-formed type for the destructor and
5120/// returned.
5121QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5122                                         StorageClass& SC) {
5123  // C++ [class.dtor]p1:
5124  //   [...] A typedef-name that names a class is a class-name
5125  //   (7.1.3); however, a typedef-name that names a class shall not
5126  //   be used as the identifier in the declarator for a destructor
5127  //   declaration.
5128  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5129  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5130    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5131      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5132  else if (const TemplateSpecializationType *TST =
5133             DeclaratorType->getAs<TemplateSpecializationType>())
5134    if (TST->isTypeAlias())
5135      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5136        << DeclaratorType << 1;
5137
5138  // C++ [class.dtor]p2:
5139  //   A destructor is used to destroy objects of its class type. A
5140  //   destructor takes no parameters, and no return type can be
5141  //   specified for it (not even void). The address of a destructor
5142  //   shall not be taken. A destructor shall not be static. A
5143  //   destructor can be invoked for a const, volatile or const
5144  //   volatile object. A destructor shall not be declared const,
5145  //   volatile or const volatile (9.3.2).
5146  if (SC == SC_Static) {
5147    if (!D.isInvalidType())
5148      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5149        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5150        << SourceRange(D.getIdentifierLoc())
5151        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5152
5153    SC = SC_None;
5154  }
5155  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5156    // Destructors don't have return types, but the parser will
5157    // happily parse something like:
5158    //
5159    //   class X {
5160    //     float ~X();
5161    //   };
5162    //
5163    // The return type will be eliminated later.
5164    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5165      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5166      << SourceRange(D.getIdentifierLoc());
5167  }
5168
5169  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5170  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5171    if (FTI.TypeQuals & Qualifiers::Const)
5172      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5173        << "const" << SourceRange(D.getIdentifierLoc());
5174    if (FTI.TypeQuals & Qualifiers::Volatile)
5175      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5176        << "volatile" << SourceRange(D.getIdentifierLoc());
5177    if (FTI.TypeQuals & Qualifiers::Restrict)
5178      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5179        << "restrict" << SourceRange(D.getIdentifierLoc());
5180    D.setInvalidType();
5181  }
5182
5183  // C++0x [class.dtor]p2:
5184  //   A destructor shall not be declared with a ref-qualifier.
5185  if (FTI.hasRefQualifier()) {
5186    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5187      << FTI.RefQualifierIsLValueRef
5188      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5189    D.setInvalidType();
5190  }
5191
5192  // Make sure we don't have any parameters.
5193  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5194    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5195
5196    // Delete the parameters.
5197    FTI.freeArgs();
5198    D.setInvalidType();
5199  }
5200
5201  // Make sure the destructor isn't variadic.
5202  if (FTI.isVariadic) {
5203    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5204    D.setInvalidType();
5205  }
5206
5207  // Rebuild the function type "R" without any type qualifiers or
5208  // parameters (in case any of the errors above fired) and with
5209  // "void" as the return type, since destructors don't have return
5210  // types.
5211  if (!D.isInvalidType())
5212    return R;
5213
5214  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5215  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5216  EPI.Variadic = false;
5217  EPI.TypeQuals = 0;
5218  EPI.RefQualifier = RQ_None;
5219  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5220}
5221
5222/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5223/// well-formednes of the conversion function declarator @p D with
5224/// type @p R. If there are any errors in the declarator, this routine
5225/// will emit diagnostics and return true. Otherwise, it will return
5226/// false. Either way, the type @p R will be updated to reflect a
5227/// well-formed type for the conversion operator.
5228void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5229                                     StorageClass& SC) {
5230  // C++ [class.conv.fct]p1:
5231  //   Neither parameter types nor return type can be specified. The
5232  //   type of a conversion function (8.3.5) is "function taking no
5233  //   parameter returning conversion-type-id."
5234  if (SC == SC_Static) {
5235    if (!D.isInvalidType())
5236      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5237        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5238        << SourceRange(D.getIdentifierLoc());
5239    D.setInvalidType();
5240    SC = SC_None;
5241  }
5242
5243  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5244
5245  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5246    // Conversion functions don't have return types, but the parser will
5247    // happily parse something like:
5248    //
5249    //   class X {
5250    //     float operator bool();
5251    //   };
5252    //
5253    // The return type will be changed later anyway.
5254    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5255      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5256      << SourceRange(D.getIdentifierLoc());
5257    D.setInvalidType();
5258  }
5259
5260  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5261
5262  // Make sure we don't have any parameters.
5263  if (Proto->getNumArgs() > 0) {
5264    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5265
5266    // Delete the parameters.
5267    D.getFunctionTypeInfo().freeArgs();
5268    D.setInvalidType();
5269  } else if (Proto->isVariadic()) {
5270    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5271    D.setInvalidType();
5272  }
5273
5274  // Diagnose "&operator bool()" and other such nonsense.  This
5275  // is actually a gcc extension which we don't support.
5276  if (Proto->getResultType() != ConvType) {
5277    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5278      << Proto->getResultType();
5279    D.setInvalidType();
5280    ConvType = Proto->getResultType();
5281  }
5282
5283  // C++ [class.conv.fct]p4:
5284  //   The conversion-type-id shall not represent a function type nor
5285  //   an array type.
5286  if (ConvType->isArrayType()) {
5287    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5288    ConvType = Context.getPointerType(ConvType);
5289    D.setInvalidType();
5290  } else if (ConvType->isFunctionType()) {
5291    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5292    ConvType = Context.getPointerType(ConvType);
5293    D.setInvalidType();
5294  }
5295
5296  // Rebuild the function type "R" without any parameters (in case any
5297  // of the errors above fired) and with the conversion type as the
5298  // return type.
5299  if (D.isInvalidType())
5300    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5301
5302  // C++0x explicit conversion operators.
5303  if (D.getDeclSpec().isExplicitSpecified())
5304    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5305         getLangOptions().CPlusPlus0x ?
5306           diag::warn_cxx98_compat_explicit_conversion_functions :
5307           diag::ext_explicit_conversion_functions)
5308      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5309}
5310
5311/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5312/// the declaration of the given C++ conversion function. This routine
5313/// is responsible for recording the conversion function in the C++
5314/// class, if possible.
5315Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5316  assert(Conversion && "Expected to receive a conversion function declaration");
5317
5318  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5319
5320  // Make sure we aren't redeclaring the conversion function.
5321  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5322
5323  // C++ [class.conv.fct]p1:
5324  //   [...] A conversion function is never used to convert a
5325  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5326  //   same object type (or a reference to it), to a (possibly
5327  //   cv-qualified) base class of that type (or a reference to it),
5328  //   or to (possibly cv-qualified) void.
5329  // FIXME: Suppress this warning if the conversion function ends up being a
5330  // virtual function that overrides a virtual function in a base class.
5331  QualType ClassType
5332    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5333  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5334    ConvType = ConvTypeRef->getPointeeType();
5335  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5336      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5337    /* Suppress diagnostics for instantiations. */;
5338  else if (ConvType->isRecordType()) {
5339    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5340    if (ConvType == ClassType)
5341      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5342        << ClassType;
5343    else if (IsDerivedFrom(ClassType, ConvType))
5344      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5345        <<  ClassType << ConvType;
5346  } else if (ConvType->isVoidType()) {
5347    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5348      << ClassType << ConvType;
5349  }
5350
5351  if (FunctionTemplateDecl *ConversionTemplate
5352                                = Conversion->getDescribedFunctionTemplate())
5353    return ConversionTemplate;
5354
5355  return Conversion;
5356}
5357
5358//===----------------------------------------------------------------------===//
5359// Namespace Handling
5360//===----------------------------------------------------------------------===//
5361
5362
5363
5364/// ActOnStartNamespaceDef - This is called at the start of a namespace
5365/// definition.
5366Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5367                                   SourceLocation InlineLoc,
5368                                   SourceLocation NamespaceLoc,
5369                                   SourceLocation IdentLoc,
5370                                   IdentifierInfo *II,
5371                                   SourceLocation LBrace,
5372                                   AttributeList *AttrList) {
5373  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5374  // For anonymous namespace, take the location of the left brace.
5375  SourceLocation Loc = II ? IdentLoc : LBrace;
5376  bool IsInline = InlineLoc.isValid();
5377  bool IsInvalid = false;
5378  bool IsStd = false;
5379  bool AddToKnown = false;
5380  Scope *DeclRegionScope = NamespcScope->getParent();
5381
5382  NamespaceDecl *PrevNS = 0;
5383  if (II) {
5384    // C++ [namespace.def]p2:
5385    //   The identifier in an original-namespace-definition shall not
5386    //   have been previously defined in the declarative region in
5387    //   which the original-namespace-definition appears. The
5388    //   identifier in an original-namespace-definition is the name of
5389    //   the namespace. Subsequently in that declarative region, it is
5390    //   treated as an original-namespace-name.
5391    //
5392    // Since namespace names are unique in their scope, and we don't
5393    // look through using directives, just look for any ordinary names.
5394
5395    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5396    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5397    Decl::IDNS_Namespace;
5398    NamedDecl *PrevDecl = 0;
5399    for (DeclContext::lookup_result R
5400         = CurContext->getRedeclContext()->lookup(II);
5401         R.first != R.second; ++R.first) {
5402      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5403        PrevDecl = *R.first;
5404        break;
5405      }
5406    }
5407
5408    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5409
5410    if (PrevNS) {
5411      // This is an extended namespace definition.
5412      if (IsInline != PrevNS->isInline()) {
5413        // inline-ness must match
5414        if (PrevNS->isInline()) {
5415          // The user probably just forgot the 'inline', so suggest that it
5416          // be added back.
5417          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5418            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5419        } else {
5420          Diag(Loc, diag::err_inline_namespace_mismatch)
5421            << IsInline;
5422        }
5423        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5424
5425        IsInline = PrevNS->isInline();
5426      }
5427    } else if (PrevDecl) {
5428      // This is an invalid name redefinition.
5429      Diag(Loc, diag::err_redefinition_different_kind)
5430        << II;
5431      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5432      IsInvalid = true;
5433      // Continue on to push Namespc as current DeclContext and return it.
5434    } else if (II->isStr("std") &&
5435               CurContext->getRedeclContext()->isTranslationUnit()) {
5436      // This is the first "real" definition of the namespace "std", so update
5437      // our cache of the "std" namespace to point at this definition.
5438      PrevNS = getStdNamespace();
5439      IsStd = true;
5440      AddToKnown = !IsInline;
5441    } else {
5442      // We've seen this namespace for the first time.
5443      AddToKnown = !IsInline;
5444    }
5445  } else {
5446    // Anonymous namespaces.
5447
5448    // Determine whether the parent already has an anonymous namespace.
5449    DeclContext *Parent = CurContext->getRedeclContext();
5450    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5451      PrevNS = TU->getAnonymousNamespace();
5452    } else {
5453      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5454      PrevNS = ND->getAnonymousNamespace();
5455    }
5456
5457    if (PrevNS && IsInline != PrevNS->isInline()) {
5458      // inline-ness must match
5459      Diag(Loc, diag::err_inline_namespace_mismatch)
5460        << IsInline;
5461      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5462
5463      // Recover by ignoring the new namespace's inline status.
5464      IsInline = PrevNS->isInline();
5465    }
5466  }
5467
5468  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5469                                                 StartLoc, Loc, II, PrevNS);
5470  if (IsInvalid)
5471    Namespc->setInvalidDecl();
5472
5473  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5474
5475  // FIXME: Should we be merging attributes?
5476  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5477    PushNamespaceVisibilityAttr(Attr, Loc);
5478
5479  if (IsStd)
5480    StdNamespace = Namespc;
5481  if (AddToKnown)
5482    KnownNamespaces[Namespc] = false;
5483
5484  if (II) {
5485    PushOnScopeChains(Namespc, DeclRegionScope);
5486  } else {
5487    // Link the anonymous namespace into its parent.
5488    DeclContext *Parent = CurContext->getRedeclContext();
5489    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5490      TU->setAnonymousNamespace(Namespc);
5491    } else {
5492      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5493    }
5494
5495    CurContext->addDecl(Namespc);
5496
5497    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5498    //   behaves as if it were replaced by
5499    //     namespace unique { /* empty body */ }
5500    //     using namespace unique;
5501    //     namespace unique { namespace-body }
5502    //   where all occurrences of 'unique' in a translation unit are
5503    //   replaced by the same identifier and this identifier differs
5504    //   from all other identifiers in the entire program.
5505
5506    // We just create the namespace with an empty name and then add an
5507    // implicit using declaration, just like the standard suggests.
5508    //
5509    // CodeGen enforces the "universally unique" aspect by giving all
5510    // declarations semantically contained within an anonymous
5511    // namespace internal linkage.
5512
5513    if (!PrevNS) {
5514      UsingDirectiveDecl* UD
5515        = UsingDirectiveDecl::Create(Context, CurContext,
5516                                     /* 'using' */ LBrace,
5517                                     /* 'namespace' */ SourceLocation(),
5518                                     /* qualifier */ NestedNameSpecifierLoc(),
5519                                     /* identifier */ SourceLocation(),
5520                                     Namespc,
5521                                     /* Ancestor */ CurContext);
5522      UD->setImplicit();
5523      CurContext->addDecl(UD);
5524    }
5525  }
5526
5527  // Although we could have an invalid decl (i.e. the namespace name is a
5528  // redefinition), push it as current DeclContext and try to continue parsing.
5529  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5530  // for the namespace has the declarations that showed up in that particular
5531  // namespace definition.
5532  PushDeclContext(NamespcScope, Namespc);
5533  return Namespc;
5534}
5535
5536/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5537/// is a namespace alias, returns the namespace it points to.
5538static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5539  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5540    return AD->getNamespace();
5541  return dyn_cast_or_null<NamespaceDecl>(D);
5542}
5543
5544/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5545/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5546void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5547  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5548  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5549  Namespc->setRBraceLoc(RBrace);
5550  PopDeclContext();
5551  if (Namespc->hasAttr<VisibilityAttr>())
5552    PopPragmaVisibility(true, RBrace);
5553}
5554
5555CXXRecordDecl *Sema::getStdBadAlloc() const {
5556  return cast_or_null<CXXRecordDecl>(
5557                                  StdBadAlloc.get(Context.getExternalSource()));
5558}
5559
5560NamespaceDecl *Sema::getStdNamespace() const {
5561  return cast_or_null<NamespaceDecl>(
5562                                 StdNamespace.get(Context.getExternalSource()));
5563}
5564
5565/// \brief Retrieve the special "std" namespace, which may require us to
5566/// implicitly define the namespace.
5567NamespaceDecl *Sema::getOrCreateStdNamespace() {
5568  if (!StdNamespace) {
5569    // The "std" namespace has not yet been defined, so build one implicitly.
5570    StdNamespace = NamespaceDecl::Create(Context,
5571                                         Context.getTranslationUnitDecl(),
5572                                         /*Inline=*/false,
5573                                         SourceLocation(), SourceLocation(),
5574                                         &PP.getIdentifierTable().get("std"),
5575                                         /*PrevDecl=*/0);
5576    getStdNamespace()->setImplicit(true);
5577  }
5578
5579  return getStdNamespace();
5580}
5581
5582bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5583  assert(getLangOptions().CPlusPlus &&
5584         "Looking for std::initializer_list outside of C++.");
5585
5586  // We're looking for implicit instantiations of
5587  // template <typename E> class std::initializer_list.
5588
5589  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5590    return false;
5591
5592  ClassTemplateDecl *Template = 0;
5593  const TemplateArgument *Arguments = 0;
5594
5595  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5596
5597    ClassTemplateSpecializationDecl *Specialization =
5598        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5599    if (!Specialization)
5600      return false;
5601
5602    Template = Specialization->getSpecializedTemplate();
5603    Arguments = Specialization->getTemplateArgs().data();
5604  } else if (const TemplateSpecializationType *TST =
5605                 Ty->getAs<TemplateSpecializationType>()) {
5606    Template = dyn_cast_or_null<ClassTemplateDecl>(
5607        TST->getTemplateName().getAsTemplateDecl());
5608    Arguments = TST->getArgs();
5609  }
5610  if (!Template)
5611    return false;
5612
5613  if (!StdInitializerList) {
5614    // Haven't recognized std::initializer_list yet, maybe this is it.
5615    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5616    if (TemplateClass->getIdentifier() !=
5617            &PP.getIdentifierTable().get("initializer_list") ||
5618        !getStdNamespace()->InEnclosingNamespaceSetOf(
5619            TemplateClass->getDeclContext()))
5620      return false;
5621    // This is a template called std::initializer_list, but is it the right
5622    // template?
5623    TemplateParameterList *Params = Template->getTemplateParameters();
5624    if (Params->getMinRequiredArguments() != 1)
5625      return false;
5626    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5627      return false;
5628
5629    // It's the right template.
5630    StdInitializerList = Template;
5631  }
5632
5633  if (Template != StdInitializerList)
5634    return false;
5635
5636  // This is an instance of std::initializer_list. Find the argument type.
5637  if (Element)
5638    *Element = Arguments[0].getAsType();
5639  return true;
5640}
5641
5642static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5643  NamespaceDecl *Std = S.getStdNamespace();
5644  if (!Std) {
5645    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5646    return 0;
5647  }
5648
5649  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5650                      Loc, Sema::LookupOrdinaryName);
5651  if (!S.LookupQualifiedName(Result, Std)) {
5652    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5653    return 0;
5654  }
5655  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5656  if (!Template) {
5657    Result.suppressDiagnostics();
5658    // We found something weird. Complain about the first thing we found.
5659    NamedDecl *Found = *Result.begin();
5660    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5661    return 0;
5662  }
5663
5664  // We found some template called std::initializer_list. Now verify that it's
5665  // correct.
5666  TemplateParameterList *Params = Template->getTemplateParameters();
5667  if (Params->getMinRequiredArguments() != 1 ||
5668      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5669    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5670    return 0;
5671  }
5672
5673  return Template;
5674}
5675
5676QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5677  if (!StdInitializerList) {
5678    StdInitializerList = LookupStdInitializerList(*this, Loc);
5679    if (!StdInitializerList)
5680      return QualType();
5681  }
5682
5683  TemplateArgumentListInfo Args(Loc, Loc);
5684  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5685                                       Context.getTrivialTypeSourceInfo(Element,
5686                                                                        Loc)));
5687  return Context.getCanonicalType(
5688      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5689}
5690
5691bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5692  // C++ [dcl.init.list]p2:
5693  //   A constructor is an initializer-list constructor if its first parameter
5694  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5695  //   std::initializer_list<E> for some type E, and either there are no other
5696  //   parameters or else all other parameters have default arguments.
5697  if (Ctor->getNumParams() < 1 ||
5698      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5699    return false;
5700
5701  QualType ArgType = Ctor->getParamDecl(0)->getType();
5702  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5703    ArgType = RT->getPointeeType().getUnqualifiedType();
5704
5705  return isStdInitializerList(ArgType, 0);
5706}
5707
5708/// \brief Determine whether a using statement is in a context where it will be
5709/// apply in all contexts.
5710static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5711  switch (CurContext->getDeclKind()) {
5712    case Decl::TranslationUnit:
5713      return true;
5714    case Decl::LinkageSpec:
5715      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5716    default:
5717      return false;
5718  }
5719}
5720
5721namespace {
5722
5723// Callback to only accept typo corrections that are namespaces.
5724class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5725 public:
5726  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5727    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5728      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5729    }
5730    return false;
5731  }
5732};
5733
5734}
5735
5736static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5737                                       CXXScopeSpec &SS,
5738                                       SourceLocation IdentLoc,
5739                                       IdentifierInfo *Ident) {
5740  NamespaceValidatorCCC Validator;
5741  R.clear();
5742  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5743                                               R.getLookupKind(), Sc, &SS,
5744                                               Validator)) {
5745    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5746    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5747    if (DeclContext *DC = S.computeDeclContext(SS, false))
5748      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5749        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5750        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5751    else
5752      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5753        << Ident << CorrectedQuotedStr
5754        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5755
5756    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5757         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5758
5759    Ident = Corrected.getCorrectionAsIdentifierInfo();
5760    R.addDecl(Corrected.getCorrectionDecl());
5761    return true;
5762  }
5763  return false;
5764}
5765
5766Decl *Sema::ActOnUsingDirective(Scope *S,
5767                                          SourceLocation UsingLoc,
5768                                          SourceLocation NamespcLoc,
5769                                          CXXScopeSpec &SS,
5770                                          SourceLocation IdentLoc,
5771                                          IdentifierInfo *NamespcName,
5772                                          AttributeList *AttrList) {
5773  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5774  assert(NamespcName && "Invalid NamespcName.");
5775  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5776
5777  // This can only happen along a recovery path.
5778  while (S->getFlags() & Scope::TemplateParamScope)
5779    S = S->getParent();
5780  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5781
5782  UsingDirectiveDecl *UDir = 0;
5783  NestedNameSpecifier *Qualifier = 0;
5784  if (SS.isSet())
5785    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5786
5787  // Lookup namespace name.
5788  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5789  LookupParsedName(R, S, &SS);
5790  if (R.isAmbiguous())
5791    return 0;
5792
5793  if (R.empty()) {
5794    R.clear();
5795    // Allow "using namespace std;" or "using namespace ::std;" even if
5796    // "std" hasn't been defined yet, for GCC compatibility.
5797    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5798        NamespcName->isStr("std")) {
5799      Diag(IdentLoc, diag::ext_using_undefined_std);
5800      R.addDecl(getOrCreateStdNamespace());
5801      R.resolveKind();
5802    }
5803    // Otherwise, attempt typo correction.
5804    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5805  }
5806
5807  if (!R.empty()) {
5808    NamedDecl *Named = R.getFoundDecl();
5809    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5810        && "expected namespace decl");
5811    // C++ [namespace.udir]p1:
5812    //   A using-directive specifies that the names in the nominated
5813    //   namespace can be used in the scope in which the
5814    //   using-directive appears after the using-directive. During
5815    //   unqualified name lookup (3.4.1), the names appear as if they
5816    //   were declared in the nearest enclosing namespace which
5817    //   contains both the using-directive and the nominated
5818    //   namespace. [Note: in this context, "contains" means "contains
5819    //   directly or indirectly". ]
5820
5821    // Find enclosing context containing both using-directive and
5822    // nominated namespace.
5823    NamespaceDecl *NS = getNamespaceDecl(Named);
5824    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5825    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5826      CommonAncestor = CommonAncestor->getParent();
5827
5828    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5829                                      SS.getWithLocInContext(Context),
5830                                      IdentLoc, Named, CommonAncestor);
5831
5832    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5833        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5834      Diag(IdentLoc, diag::warn_using_directive_in_header);
5835    }
5836
5837    PushUsingDirective(S, UDir);
5838  } else {
5839    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5840  }
5841
5842  // FIXME: We ignore attributes for now.
5843  return UDir;
5844}
5845
5846void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5847  // If scope has associated entity, then using directive is at namespace
5848  // or translation unit scope. We add UsingDirectiveDecls, into
5849  // it's lookup structure.
5850  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
5851    Ctx->addDecl(UDir);
5852  else
5853    // Otherwise it is block-sope. using-directives will affect lookup
5854    // only to the end of scope.
5855    S->PushUsingDirective(UDir);
5856}
5857
5858
5859Decl *Sema::ActOnUsingDeclaration(Scope *S,
5860                                  AccessSpecifier AS,
5861                                  bool HasUsingKeyword,
5862                                  SourceLocation UsingLoc,
5863                                  CXXScopeSpec &SS,
5864                                  UnqualifiedId &Name,
5865                                  AttributeList *AttrList,
5866                                  bool IsTypeName,
5867                                  SourceLocation TypenameLoc) {
5868  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5869
5870  switch (Name.getKind()) {
5871  case UnqualifiedId::IK_ImplicitSelfParam:
5872  case UnqualifiedId::IK_Identifier:
5873  case UnqualifiedId::IK_OperatorFunctionId:
5874  case UnqualifiedId::IK_LiteralOperatorId:
5875  case UnqualifiedId::IK_ConversionFunctionId:
5876    break;
5877
5878  case UnqualifiedId::IK_ConstructorName:
5879  case UnqualifiedId::IK_ConstructorTemplateId:
5880    // C++0x inherited constructors.
5881    Diag(Name.getSourceRange().getBegin(),
5882         getLangOptions().CPlusPlus0x ?
5883           diag::warn_cxx98_compat_using_decl_constructor :
5884           diag::err_using_decl_constructor)
5885      << SS.getRange();
5886
5887    if (getLangOptions().CPlusPlus0x) break;
5888
5889    return 0;
5890
5891  case UnqualifiedId::IK_DestructorName:
5892    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
5893      << SS.getRange();
5894    return 0;
5895
5896  case UnqualifiedId::IK_TemplateId:
5897    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
5898      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5899    return 0;
5900  }
5901
5902  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5903  DeclarationName TargetName = TargetNameInfo.getName();
5904  if (!TargetName)
5905    return 0;
5906
5907  // Warn about using declarations.
5908  // TODO: store that the declaration was written without 'using' and
5909  // talk about access decls instead of using decls in the
5910  // diagnostics.
5911  if (!HasUsingKeyword) {
5912    UsingLoc = Name.getSourceRange().getBegin();
5913
5914    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5915      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5916  }
5917
5918  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5919      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5920    return 0;
5921
5922  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5923                                        TargetNameInfo, AttrList,
5924                                        /* IsInstantiation */ false,
5925                                        IsTypeName, TypenameLoc);
5926  if (UD)
5927    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5928
5929  return UD;
5930}
5931
5932/// \brief Determine whether a using declaration considers the given
5933/// declarations as "equivalent", e.g., if they are redeclarations of
5934/// the same entity or are both typedefs of the same type.
5935static bool
5936IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5937                         bool &SuppressRedeclaration) {
5938  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5939    SuppressRedeclaration = false;
5940    return true;
5941  }
5942
5943  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5944    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5945      SuppressRedeclaration = true;
5946      return Context.hasSameType(TD1->getUnderlyingType(),
5947                                 TD2->getUnderlyingType());
5948    }
5949
5950  return false;
5951}
5952
5953
5954/// Determines whether to create a using shadow decl for a particular
5955/// decl, given the set of decls existing prior to this using lookup.
5956bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5957                                const LookupResult &Previous) {
5958  // Diagnose finding a decl which is not from a base class of the
5959  // current class.  We do this now because there are cases where this
5960  // function will silently decide not to build a shadow decl, which
5961  // will pre-empt further diagnostics.
5962  //
5963  // We don't need to do this in C++0x because we do the check once on
5964  // the qualifier.
5965  //
5966  // FIXME: diagnose the following if we care enough:
5967  //   struct A { int foo; };
5968  //   struct B : A { using A::foo; };
5969  //   template <class T> struct C : A {};
5970  //   template <class T> struct D : C<T> { using B::foo; } // <---
5971  // This is invalid (during instantiation) in C++03 because B::foo
5972  // resolves to the using decl in B, which is not a base class of D<T>.
5973  // We can't diagnose it immediately because C<T> is an unknown
5974  // specialization.  The UsingShadowDecl in D<T> then points directly
5975  // to A::foo, which will look well-formed when we instantiate.
5976  // The right solution is to not collapse the shadow-decl chain.
5977  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
5978    DeclContext *OrigDC = Orig->getDeclContext();
5979
5980    // Handle enums and anonymous structs.
5981    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5982    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5983    while (OrigRec->isAnonymousStructOrUnion())
5984      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5985
5986    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5987      if (OrigDC == CurContext) {
5988        Diag(Using->getLocation(),
5989             diag::err_using_decl_nested_name_specifier_is_current_class)
5990          << Using->getQualifierLoc().getSourceRange();
5991        Diag(Orig->getLocation(), diag::note_using_decl_target);
5992        return true;
5993      }
5994
5995      Diag(Using->getQualifierLoc().getBeginLoc(),
5996           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5997        << Using->getQualifier()
5998        << cast<CXXRecordDecl>(CurContext)
5999        << Using->getQualifierLoc().getSourceRange();
6000      Diag(Orig->getLocation(), diag::note_using_decl_target);
6001      return true;
6002    }
6003  }
6004
6005  if (Previous.empty()) return false;
6006
6007  NamedDecl *Target = Orig;
6008  if (isa<UsingShadowDecl>(Target))
6009    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6010
6011  // If the target happens to be one of the previous declarations, we
6012  // don't have a conflict.
6013  //
6014  // FIXME: but we might be increasing its access, in which case we
6015  // should redeclare it.
6016  NamedDecl *NonTag = 0, *Tag = 0;
6017  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6018         I != E; ++I) {
6019    NamedDecl *D = (*I)->getUnderlyingDecl();
6020    bool Result;
6021    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6022      return Result;
6023
6024    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6025  }
6026
6027  if (Target->isFunctionOrFunctionTemplate()) {
6028    FunctionDecl *FD;
6029    if (isa<FunctionTemplateDecl>(Target))
6030      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6031    else
6032      FD = cast<FunctionDecl>(Target);
6033
6034    NamedDecl *OldDecl = 0;
6035    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6036    case Ovl_Overload:
6037      return false;
6038
6039    case Ovl_NonFunction:
6040      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6041      break;
6042
6043    // We found a decl with the exact signature.
6044    case Ovl_Match:
6045      // If we're in a record, we want to hide the target, so we
6046      // return true (without a diagnostic) to tell the caller not to
6047      // build a shadow decl.
6048      if (CurContext->isRecord())
6049        return true;
6050
6051      // If we're not in a record, this is an error.
6052      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6053      break;
6054    }
6055
6056    Diag(Target->getLocation(), diag::note_using_decl_target);
6057    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6058    return true;
6059  }
6060
6061  // Target is not a function.
6062
6063  if (isa<TagDecl>(Target)) {
6064    // No conflict between a tag and a non-tag.
6065    if (!Tag) return false;
6066
6067    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6068    Diag(Target->getLocation(), diag::note_using_decl_target);
6069    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6070    return true;
6071  }
6072
6073  // No conflict between a tag and a non-tag.
6074  if (!NonTag) return false;
6075
6076  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6077  Diag(Target->getLocation(), diag::note_using_decl_target);
6078  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6079  return true;
6080}
6081
6082/// Builds a shadow declaration corresponding to a 'using' declaration.
6083UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6084                                            UsingDecl *UD,
6085                                            NamedDecl *Orig) {
6086
6087  // If we resolved to another shadow declaration, just coalesce them.
6088  NamedDecl *Target = Orig;
6089  if (isa<UsingShadowDecl>(Target)) {
6090    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6091    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6092  }
6093
6094  UsingShadowDecl *Shadow
6095    = UsingShadowDecl::Create(Context, CurContext,
6096                              UD->getLocation(), UD, Target);
6097  UD->addShadowDecl(Shadow);
6098
6099  Shadow->setAccess(UD->getAccess());
6100  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6101    Shadow->setInvalidDecl();
6102
6103  if (S)
6104    PushOnScopeChains(Shadow, S);
6105  else
6106    CurContext->addDecl(Shadow);
6107
6108
6109  return Shadow;
6110}
6111
6112/// Hides a using shadow declaration.  This is required by the current
6113/// using-decl implementation when a resolvable using declaration in a
6114/// class is followed by a declaration which would hide or override
6115/// one or more of the using decl's targets; for example:
6116///
6117///   struct Base { void foo(int); };
6118///   struct Derived : Base {
6119///     using Base::foo;
6120///     void foo(int);
6121///   };
6122///
6123/// The governing language is C++03 [namespace.udecl]p12:
6124///
6125///   When a using-declaration brings names from a base class into a
6126///   derived class scope, member functions in the derived class
6127///   override and/or hide member functions with the same name and
6128///   parameter types in a base class (rather than conflicting).
6129///
6130/// There are two ways to implement this:
6131///   (1) optimistically create shadow decls when they're not hidden
6132///       by existing declarations, or
6133///   (2) don't create any shadow decls (or at least don't make them
6134///       visible) until we've fully parsed/instantiated the class.
6135/// The problem with (1) is that we might have to retroactively remove
6136/// a shadow decl, which requires several O(n) operations because the
6137/// decl structures are (very reasonably) not designed for removal.
6138/// (2) avoids this but is very fiddly and phase-dependent.
6139void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6140  if (Shadow->getDeclName().getNameKind() ==
6141        DeclarationName::CXXConversionFunctionName)
6142    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6143
6144  // Remove it from the DeclContext...
6145  Shadow->getDeclContext()->removeDecl(Shadow);
6146
6147  // ...and the scope, if applicable...
6148  if (S) {
6149    S->RemoveDecl(Shadow);
6150    IdResolver.RemoveDecl(Shadow);
6151  }
6152
6153  // ...and the using decl.
6154  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6155
6156  // TODO: complain somehow if Shadow was used.  It shouldn't
6157  // be possible for this to happen, because...?
6158}
6159
6160/// Builds a using declaration.
6161///
6162/// \param IsInstantiation - Whether this call arises from an
6163///   instantiation of an unresolved using declaration.  We treat
6164///   the lookup differently for these declarations.
6165NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6166                                       SourceLocation UsingLoc,
6167                                       CXXScopeSpec &SS,
6168                                       const DeclarationNameInfo &NameInfo,
6169                                       AttributeList *AttrList,
6170                                       bool IsInstantiation,
6171                                       bool IsTypeName,
6172                                       SourceLocation TypenameLoc) {
6173  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6174  SourceLocation IdentLoc = NameInfo.getLoc();
6175  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6176
6177  // FIXME: We ignore attributes for now.
6178
6179  if (SS.isEmpty()) {
6180    Diag(IdentLoc, diag::err_using_requires_qualname);
6181    return 0;
6182  }
6183
6184  // Do the redeclaration lookup in the current scope.
6185  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6186                        ForRedeclaration);
6187  Previous.setHideTags(false);
6188  if (S) {
6189    LookupName(Previous, S);
6190
6191    // It is really dumb that we have to do this.
6192    LookupResult::Filter F = Previous.makeFilter();
6193    while (F.hasNext()) {
6194      NamedDecl *D = F.next();
6195      if (!isDeclInScope(D, CurContext, S))
6196        F.erase();
6197    }
6198    F.done();
6199  } else {
6200    assert(IsInstantiation && "no scope in non-instantiation");
6201    assert(CurContext->isRecord() && "scope not record in instantiation");
6202    LookupQualifiedName(Previous, CurContext);
6203  }
6204
6205  // Check for invalid redeclarations.
6206  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6207    return 0;
6208
6209  // Check for bad qualifiers.
6210  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6211    return 0;
6212
6213  DeclContext *LookupContext = computeDeclContext(SS);
6214  NamedDecl *D;
6215  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6216  if (!LookupContext) {
6217    if (IsTypeName) {
6218      // FIXME: not all declaration name kinds are legal here
6219      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6220                                              UsingLoc, TypenameLoc,
6221                                              QualifierLoc,
6222                                              IdentLoc, NameInfo.getName());
6223    } else {
6224      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6225                                           QualifierLoc, NameInfo);
6226    }
6227  } else {
6228    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6229                          NameInfo, IsTypeName);
6230  }
6231  D->setAccess(AS);
6232  CurContext->addDecl(D);
6233
6234  if (!LookupContext) return D;
6235  UsingDecl *UD = cast<UsingDecl>(D);
6236
6237  if (RequireCompleteDeclContext(SS, LookupContext)) {
6238    UD->setInvalidDecl();
6239    return UD;
6240  }
6241
6242  // Constructor inheriting using decls get special treatment.
6243  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6244    if (CheckInheritedConstructorUsingDecl(UD))
6245      UD->setInvalidDecl();
6246    return UD;
6247  }
6248
6249  // Otherwise, look up the target name.
6250
6251  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6252
6253  // Unlike most lookups, we don't always want to hide tag
6254  // declarations: tag names are visible through the using declaration
6255  // even if hidden by ordinary names, *except* in a dependent context
6256  // where it's important for the sanity of two-phase lookup.
6257  if (!IsInstantiation)
6258    R.setHideTags(false);
6259
6260  LookupQualifiedName(R, LookupContext);
6261
6262  if (R.empty()) {
6263    Diag(IdentLoc, diag::err_no_member)
6264      << NameInfo.getName() << LookupContext << SS.getRange();
6265    UD->setInvalidDecl();
6266    return UD;
6267  }
6268
6269  if (R.isAmbiguous()) {
6270    UD->setInvalidDecl();
6271    return UD;
6272  }
6273
6274  if (IsTypeName) {
6275    // If we asked for a typename and got a non-type decl, error out.
6276    if (!R.getAsSingle<TypeDecl>()) {
6277      Diag(IdentLoc, diag::err_using_typename_non_type);
6278      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6279        Diag((*I)->getUnderlyingDecl()->getLocation(),
6280             diag::note_using_decl_target);
6281      UD->setInvalidDecl();
6282      return UD;
6283    }
6284  } else {
6285    // If we asked for a non-typename and we got a type, error out,
6286    // but only if this is an instantiation of an unresolved using
6287    // decl.  Otherwise just silently find the type name.
6288    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6289      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6290      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6291      UD->setInvalidDecl();
6292      return UD;
6293    }
6294  }
6295
6296  // C++0x N2914 [namespace.udecl]p6:
6297  // A using-declaration shall not name a namespace.
6298  if (R.getAsSingle<NamespaceDecl>()) {
6299    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6300      << SS.getRange();
6301    UD->setInvalidDecl();
6302    return UD;
6303  }
6304
6305  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6306    if (!CheckUsingShadowDecl(UD, *I, Previous))
6307      BuildUsingShadowDecl(S, UD, *I);
6308  }
6309
6310  return UD;
6311}
6312
6313/// Additional checks for a using declaration referring to a constructor name.
6314bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6315  if (UD->isTypeName()) {
6316    // FIXME: Cannot specify typename when specifying constructor
6317    return true;
6318  }
6319
6320  const Type *SourceType = UD->getQualifier()->getAsType();
6321  assert(SourceType &&
6322         "Using decl naming constructor doesn't have type in scope spec.");
6323  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6324
6325  // Check whether the named type is a direct base class.
6326  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6327  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6328  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6329       BaseIt != BaseE; ++BaseIt) {
6330    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6331    if (CanonicalSourceType == BaseType)
6332      break;
6333  }
6334
6335  if (BaseIt == BaseE) {
6336    // Did not find SourceType in the bases.
6337    Diag(UD->getUsingLocation(),
6338         diag::err_using_decl_constructor_not_in_direct_base)
6339      << UD->getNameInfo().getSourceRange()
6340      << QualType(SourceType, 0) << TargetClass;
6341    return true;
6342  }
6343
6344  BaseIt->setInheritConstructors();
6345
6346  return false;
6347}
6348
6349/// Checks that the given using declaration is not an invalid
6350/// redeclaration.  Note that this is checking only for the using decl
6351/// itself, not for any ill-formedness among the UsingShadowDecls.
6352bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6353                                       bool isTypeName,
6354                                       const CXXScopeSpec &SS,
6355                                       SourceLocation NameLoc,
6356                                       const LookupResult &Prev) {
6357  // C++03 [namespace.udecl]p8:
6358  // C++0x [namespace.udecl]p10:
6359  //   A using-declaration is a declaration and can therefore be used
6360  //   repeatedly where (and only where) multiple declarations are
6361  //   allowed.
6362  //
6363  // That's in non-member contexts.
6364  if (!CurContext->getRedeclContext()->isRecord())
6365    return false;
6366
6367  NestedNameSpecifier *Qual
6368    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6369
6370  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6371    NamedDecl *D = *I;
6372
6373    bool DTypename;
6374    NestedNameSpecifier *DQual;
6375    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6376      DTypename = UD->isTypeName();
6377      DQual = UD->getQualifier();
6378    } else if (UnresolvedUsingValueDecl *UD
6379                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6380      DTypename = false;
6381      DQual = UD->getQualifier();
6382    } else if (UnresolvedUsingTypenameDecl *UD
6383                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6384      DTypename = true;
6385      DQual = UD->getQualifier();
6386    } else continue;
6387
6388    // using decls differ if one says 'typename' and the other doesn't.
6389    // FIXME: non-dependent using decls?
6390    if (isTypeName != DTypename) continue;
6391
6392    // using decls differ if they name different scopes (but note that
6393    // template instantiation can cause this check to trigger when it
6394    // didn't before instantiation).
6395    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6396        Context.getCanonicalNestedNameSpecifier(DQual))
6397      continue;
6398
6399    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6400    Diag(D->getLocation(), diag::note_using_decl) << 1;
6401    return true;
6402  }
6403
6404  return false;
6405}
6406
6407
6408/// Checks that the given nested-name qualifier used in a using decl
6409/// in the current context is appropriately related to the current
6410/// scope.  If an error is found, diagnoses it and returns true.
6411bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6412                                   const CXXScopeSpec &SS,
6413                                   SourceLocation NameLoc) {
6414  DeclContext *NamedContext = computeDeclContext(SS);
6415
6416  if (!CurContext->isRecord()) {
6417    // C++03 [namespace.udecl]p3:
6418    // C++0x [namespace.udecl]p8:
6419    //   A using-declaration for a class member shall be a member-declaration.
6420
6421    // If we weren't able to compute a valid scope, it must be a
6422    // dependent class scope.
6423    if (!NamedContext || NamedContext->isRecord()) {
6424      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6425        << SS.getRange();
6426      return true;
6427    }
6428
6429    // Otherwise, everything is known to be fine.
6430    return false;
6431  }
6432
6433  // The current scope is a record.
6434
6435  // If the named context is dependent, we can't decide much.
6436  if (!NamedContext) {
6437    // FIXME: in C++0x, we can diagnose if we can prove that the
6438    // nested-name-specifier does not refer to a base class, which is
6439    // still possible in some cases.
6440
6441    // Otherwise we have to conservatively report that things might be
6442    // okay.
6443    return false;
6444  }
6445
6446  if (!NamedContext->isRecord()) {
6447    // Ideally this would point at the last name in the specifier,
6448    // but we don't have that level of source info.
6449    Diag(SS.getRange().getBegin(),
6450         diag::err_using_decl_nested_name_specifier_is_not_class)
6451      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6452    return true;
6453  }
6454
6455  if (!NamedContext->isDependentContext() &&
6456      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6457    return true;
6458
6459  if (getLangOptions().CPlusPlus0x) {
6460    // C++0x [namespace.udecl]p3:
6461    //   In a using-declaration used as a member-declaration, the
6462    //   nested-name-specifier shall name a base class of the class
6463    //   being defined.
6464
6465    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6466                                 cast<CXXRecordDecl>(NamedContext))) {
6467      if (CurContext == NamedContext) {
6468        Diag(NameLoc,
6469             diag::err_using_decl_nested_name_specifier_is_current_class)
6470          << SS.getRange();
6471        return true;
6472      }
6473
6474      Diag(SS.getRange().getBegin(),
6475           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6476        << (NestedNameSpecifier*) SS.getScopeRep()
6477        << cast<CXXRecordDecl>(CurContext)
6478        << SS.getRange();
6479      return true;
6480    }
6481
6482    return false;
6483  }
6484
6485  // C++03 [namespace.udecl]p4:
6486  //   A using-declaration used as a member-declaration shall refer
6487  //   to a member of a base class of the class being defined [etc.].
6488
6489  // Salient point: SS doesn't have to name a base class as long as
6490  // lookup only finds members from base classes.  Therefore we can
6491  // diagnose here only if we can prove that that can't happen,
6492  // i.e. if the class hierarchies provably don't intersect.
6493
6494  // TODO: it would be nice if "definitely valid" results were cached
6495  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6496  // need to be repeated.
6497
6498  struct UserData {
6499    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6500
6501    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6502      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6503      Data->Bases.insert(Base);
6504      return true;
6505    }
6506
6507    bool hasDependentBases(const CXXRecordDecl *Class) {
6508      return !Class->forallBases(collect, this);
6509    }
6510
6511    /// Returns true if the base is dependent or is one of the
6512    /// accumulated base classes.
6513    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6514      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6515      return !Data->Bases.count(Base);
6516    }
6517
6518    bool mightShareBases(const CXXRecordDecl *Class) {
6519      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6520    }
6521  };
6522
6523  UserData Data;
6524
6525  // Returns false if we find a dependent base.
6526  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6527    return false;
6528
6529  // Returns false if the class has a dependent base or if it or one
6530  // of its bases is present in the base set of the current context.
6531  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6532    return false;
6533
6534  Diag(SS.getRange().getBegin(),
6535       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6536    << (NestedNameSpecifier*) SS.getScopeRep()
6537    << cast<CXXRecordDecl>(CurContext)
6538    << SS.getRange();
6539
6540  return true;
6541}
6542
6543Decl *Sema::ActOnAliasDeclaration(Scope *S,
6544                                  AccessSpecifier AS,
6545                                  MultiTemplateParamsArg TemplateParamLists,
6546                                  SourceLocation UsingLoc,
6547                                  UnqualifiedId &Name,
6548                                  TypeResult Type) {
6549  // Skip up to the relevant declaration scope.
6550  while (S->getFlags() & Scope::TemplateParamScope)
6551    S = S->getParent();
6552  assert((S->getFlags() & Scope::DeclScope) &&
6553         "got alias-declaration outside of declaration scope");
6554
6555  if (Type.isInvalid())
6556    return 0;
6557
6558  bool Invalid = false;
6559  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6560  TypeSourceInfo *TInfo = 0;
6561  GetTypeFromParser(Type.get(), &TInfo);
6562
6563  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6564    return 0;
6565
6566  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6567                                      UPPC_DeclarationType)) {
6568    Invalid = true;
6569    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6570                                             TInfo->getTypeLoc().getBeginLoc());
6571  }
6572
6573  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6574  LookupName(Previous, S);
6575
6576  // Warn about shadowing the name of a template parameter.
6577  if (Previous.isSingleResult() &&
6578      Previous.getFoundDecl()->isTemplateParameter()) {
6579    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6580    Previous.clear();
6581  }
6582
6583  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6584         "name in alias declaration must be an identifier");
6585  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6586                                               Name.StartLocation,
6587                                               Name.Identifier, TInfo);
6588
6589  NewTD->setAccess(AS);
6590
6591  if (Invalid)
6592    NewTD->setInvalidDecl();
6593
6594  CheckTypedefForVariablyModifiedType(S, NewTD);
6595  Invalid |= NewTD->isInvalidDecl();
6596
6597  bool Redeclaration = false;
6598
6599  NamedDecl *NewND;
6600  if (TemplateParamLists.size()) {
6601    TypeAliasTemplateDecl *OldDecl = 0;
6602    TemplateParameterList *OldTemplateParams = 0;
6603
6604    if (TemplateParamLists.size() != 1) {
6605      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6606        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6607         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6608    }
6609    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6610
6611    // Only consider previous declarations in the same scope.
6612    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6613                         /*ExplicitInstantiationOrSpecialization*/false);
6614    if (!Previous.empty()) {
6615      Redeclaration = true;
6616
6617      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6618      if (!OldDecl && !Invalid) {
6619        Diag(UsingLoc, diag::err_redefinition_different_kind)
6620          << Name.Identifier;
6621
6622        NamedDecl *OldD = Previous.getRepresentativeDecl();
6623        if (OldD->getLocation().isValid())
6624          Diag(OldD->getLocation(), diag::note_previous_definition);
6625
6626        Invalid = true;
6627      }
6628
6629      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6630        if (TemplateParameterListsAreEqual(TemplateParams,
6631                                           OldDecl->getTemplateParameters(),
6632                                           /*Complain=*/true,
6633                                           TPL_TemplateMatch))
6634          OldTemplateParams = OldDecl->getTemplateParameters();
6635        else
6636          Invalid = true;
6637
6638        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6639        if (!Invalid &&
6640            !Context.hasSameType(OldTD->getUnderlyingType(),
6641                                 NewTD->getUnderlyingType())) {
6642          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6643          // but we can't reasonably accept it.
6644          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6645            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6646          if (OldTD->getLocation().isValid())
6647            Diag(OldTD->getLocation(), diag::note_previous_definition);
6648          Invalid = true;
6649        }
6650      }
6651    }
6652
6653    // Merge any previous default template arguments into our parameters,
6654    // and check the parameter list.
6655    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6656                                   TPC_TypeAliasTemplate))
6657      return 0;
6658
6659    TypeAliasTemplateDecl *NewDecl =
6660      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6661                                    Name.Identifier, TemplateParams,
6662                                    NewTD);
6663
6664    NewDecl->setAccess(AS);
6665
6666    if (Invalid)
6667      NewDecl->setInvalidDecl();
6668    else if (OldDecl)
6669      NewDecl->setPreviousDeclaration(OldDecl);
6670
6671    NewND = NewDecl;
6672  } else {
6673    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6674    NewND = NewTD;
6675  }
6676
6677  if (!Redeclaration)
6678    PushOnScopeChains(NewND, S);
6679
6680  return NewND;
6681}
6682
6683Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6684                                             SourceLocation NamespaceLoc,
6685                                             SourceLocation AliasLoc,
6686                                             IdentifierInfo *Alias,
6687                                             CXXScopeSpec &SS,
6688                                             SourceLocation IdentLoc,
6689                                             IdentifierInfo *Ident) {
6690
6691  // Lookup the namespace name.
6692  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6693  LookupParsedName(R, S, &SS);
6694
6695  // Check if we have a previous declaration with the same name.
6696  NamedDecl *PrevDecl
6697    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6698                       ForRedeclaration);
6699  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6700    PrevDecl = 0;
6701
6702  if (PrevDecl) {
6703    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6704      // We already have an alias with the same name that points to the same
6705      // namespace, so don't create a new one.
6706      // FIXME: At some point, we'll want to create the (redundant)
6707      // declaration to maintain better source information.
6708      if (!R.isAmbiguous() && !R.empty() &&
6709          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6710        return 0;
6711    }
6712
6713    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6714      diag::err_redefinition_different_kind;
6715    Diag(AliasLoc, DiagID) << Alias;
6716    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6717    return 0;
6718  }
6719
6720  if (R.isAmbiguous())
6721    return 0;
6722
6723  if (R.empty()) {
6724    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6725      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6726      return 0;
6727    }
6728  }
6729
6730  NamespaceAliasDecl *AliasDecl =
6731    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6732                               Alias, SS.getWithLocInContext(Context),
6733                               IdentLoc, R.getFoundDecl());
6734
6735  PushOnScopeChains(AliasDecl, S);
6736  return AliasDecl;
6737}
6738
6739namespace {
6740  /// \brief Scoped object used to handle the state changes required in Sema
6741  /// to implicitly define the body of a C++ member function;
6742  class ImplicitlyDefinedFunctionScope {
6743    Sema &S;
6744    Sema::ContextRAII SavedContext;
6745
6746  public:
6747    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6748      : S(S), SavedContext(S, Method)
6749    {
6750      S.PushFunctionScope();
6751      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6752    }
6753
6754    ~ImplicitlyDefinedFunctionScope() {
6755      S.PopExpressionEvaluationContext();
6756      S.PopFunctionScopeInfo();
6757    }
6758  };
6759}
6760
6761Sema::ImplicitExceptionSpecification
6762Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6763  // C++ [except.spec]p14:
6764  //   An implicitly declared special member function (Clause 12) shall have an
6765  //   exception-specification. [...]
6766  ImplicitExceptionSpecification ExceptSpec(Context);
6767  if (ClassDecl->isInvalidDecl())
6768    return ExceptSpec;
6769
6770  // Direct base-class constructors.
6771  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6772                                       BEnd = ClassDecl->bases_end();
6773       B != BEnd; ++B) {
6774    if (B->isVirtual()) // Handled below.
6775      continue;
6776
6777    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6778      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6779      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6780      // If this is a deleted function, add it anyway. This might be conformant
6781      // with the standard. This might not. I'm not sure. It might not matter.
6782      if (Constructor)
6783        ExceptSpec.CalledDecl(Constructor);
6784    }
6785  }
6786
6787  // Virtual base-class constructors.
6788  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6789                                       BEnd = ClassDecl->vbases_end();
6790       B != BEnd; ++B) {
6791    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6792      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6793      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6794      // If this is a deleted function, add it anyway. This might be conformant
6795      // with the standard. This might not. I'm not sure. It might not matter.
6796      if (Constructor)
6797        ExceptSpec.CalledDecl(Constructor);
6798    }
6799  }
6800
6801  // Field constructors.
6802  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6803                               FEnd = ClassDecl->field_end();
6804       F != FEnd; ++F) {
6805    if (F->hasInClassInitializer()) {
6806      if (Expr *E = F->getInClassInitializer())
6807        ExceptSpec.CalledExpr(E);
6808      else if (!F->isInvalidDecl())
6809        ExceptSpec.SetDelayed();
6810    } else if (const RecordType *RecordTy
6811              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6812      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6813      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6814      // If this is a deleted function, add it anyway. This might be conformant
6815      // with the standard. This might not. I'm not sure. It might not matter.
6816      // In particular, the problem is that this function never gets called. It
6817      // might just be ill-formed because this function attempts to refer to
6818      // a deleted function here.
6819      if (Constructor)
6820        ExceptSpec.CalledDecl(Constructor);
6821    }
6822  }
6823
6824  return ExceptSpec;
6825}
6826
6827CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6828                                                     CXXRecordDecl *ClassDecl) {
6829  // C++ [class.ctor]p5:
6830  //   A default constructor for a class X is a constructor of class X
6831  //   that can be called without an argument. If there is no
6832  //   user-declared constructor for class X, a default constructor is
6833  //   implicitly declared. An implicitly-declared default constructor
6834  //   is an inline public member of its class.
6835  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6836         "Should not build implicit default constructor!");
6837
6838  ImplicitExceptionSpecification Spec =
6839    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6840  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6841
6842  // Create the actual constructor declaration.
6843  CanQualType ClassType
6844    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6845  SourceLocation ClassLoc = ClassDecl->getLocation();
6846  DeclarationName Name
6847    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6848  DeclarationNameInfo NameInfo(Name, ClassLoc);
6849  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6850      Context, ClassDecl, ClassLoc, NameInfo,
6851      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6852      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6853      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6854        getLangOptions().CPlusPlus0x);
6855  DefaultCon->setAccess(AS_public);
6856  DefaultCon->setDefaulted();
6857  DefaultCon->setImplicit();
6858  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6859
6860  // Note that we have declared this constructor.
6861  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6862
6863  if (Scope *S = getScopeForContext(ClassDecl))
6864    PushOnScopeChains(DefaultCon, S, false);
6865  ClassDecl->addDecl(DefaultCon);
6866
6867  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6868    DefaultCon->setDeletedAsWritten();
6869
6870  return DefaultCon;
6871}
6872
6873void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6874                                            CXXConstructorDecl *Constructor) {
6875  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6876          !Constructor->doesThisDeclarationHaveABody() &&
6877          !Constructor->isDeleted()) &&
6878    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6879
6880  CXXRecordDecl *ClassDecl = Constructor->getParent();
6881  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6882
6883  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6884  DiagnosticErrorTrap Trap(Diags);
6885  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6886      Trap.hasErrorOccurred()) {
6887    Diag(CurrentLocation, diag::note_member_synthesized_at)
6888      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6889    Constructor->setInvalidDecl();
6890    return;
6891  }
6892
6893  SourceLocation Loc = Constructor->getLocation();
6894  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6895
6896  Constructor->setUsed();
6897  MarkVTableUsed(CurrentLocation, ClassDecl);
6898
6899  if (ASTMutationListener *L = getASTMutationListener()) {
6900    L->CompletedImplicitDefinition(Constructor);
6901  }
6902}
6903
6904/// Get any existing defaulted default constructor for the given class. Do not
6905/// implicitly define one if it does not exist.
6906static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6907                                                             CXXRecordDecl *D) {
6908  ASTContext &Context = Self.Context;
6909  QualType ClassType = Context.getTypeDeclType(D);
6910  DeclarationName ConstructorName
6911    = Context.DeclarationNames.getCXXConstructorName(
6912                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6913
6914  DeclContext::lookup_const_iterator Con, ConEnd;
6915  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6916       Con != ConEnd; ++Con) {
6917    // A function template cannot be defaulted.
6918    if (isa<FunctionTemplateDecl>(*Con))
6919      continue;
6920
6921    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6922    if (Constructor->isDefaultConstructor())
6923      return Constructor->isDefaulted() ? Constructor : 0;
6924  }
6925  return 0;
6926}
6927
6928void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6929  if (!D) return;
6930  AdjustDeclIfTemplate(D);
6931
6932  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6933  CXXConstructorDecl *CtorDecl
6934    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6935
6936  if (!CtorDecl) return;
6937
6938  // Compute the exception specification for the default constructor.
6939  const FunctionProtoType *CtorTy =
6940    CtorDecl->getType()->castAs<FunctionProtoType>();
6941  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6942    ImplicitExceptionSpecification Spec =
6943      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6944    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6945    assert(EPI.ExceptionSpecType != EST_Delayed);
6946
6947    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6948  }
6949
6950  // If the default constructor is explicitly defaulted, checking the exception
6951  // specification is deferred until now.
6952  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6953      !ClassDecl->isDependentType())
6954    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
6955}
6956
6957void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6958  // We start with an initial pass over the base classes to collect those that
6959  // inherit constructors from. If there are none, we can forgo all further
6960  // processing.
6961  typedef SmallVector<const RecordType *, 4> BasesVector;
6962  BasesVector BasesToInheritFrom;
6963  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6964                                          BaseE = ClassDecl->bases_end();
6965         BaseIt != BaseE; ++BaseIt) {
6966    if (BaseIt->getInheritConstructors()) {
6967      QualType Base = BaseIt->getType();
6968      if (Base->isDependentType()) {
6969        // If we inherit constructors from anything that is dependent, just
6970        // abort processing altogether. We'll get another chance for the
6971        // instantiations.
6972        return;
6973      }
6974      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6975    }
6976  }
6977  if (BasesToInheritFrom.empty())
6978    return;
6979
6980  // Now collect the constructors that we already have in the current class.
6981  // Those take precedence over inherited constructors.
6982  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6983  //   unless there is a user-declared constructor with the same signature in
6984  //   the class where the using-declaration appears.
6985  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6986  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6987                                    CtorE = ClassDecl->ctor_end();
6988       CtorIt != CtorE; ++CtorIt) {
6989    ExistingConstructors.insert(
6990        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6991  }
6992
6993  Scope *S = getScopeForContext(ClassDecl);
6994  DeclarationName CreatedCtorName =
6995      Context.DeclarationNames.getCXXConstructorName(
6996          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6997
6998  // Now comes the true work.
6999  // First, we keep a map from constructor types to the base that introduced
7000  // them. Needed for finding conflicting constructors. We also keep the
7001  // actually inserted declarations in there, for pretty diagnostics.
7002  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7003  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7004  ConstructorToSourceMap InheritedConstructors;
7005  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7006                             BaseE = BasesToInheritFrom.end();
7007       BaseIt != BaseE; ++BaseIt) {
7008    const RecordType *Base = *BaseIt;
7009    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7010    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7011    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7012                                      CtorE = BaseDecl->ctor_end();
7013         CtorIt != CtorE; ++CtorIt) {
7014      // Find the using declaration for inheriting this base's constructors.
7015      DeclarationName Name =
7016          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7017      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7018          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7019      SourceLocation UsingLoc = UD ? UD->getLocation() :
7020                                     ClassDecl->getLocation();
7021
7022      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7023      //   from the class X named in the using-declaration consists of actual
7024      //   constructors and notional constructors that result from the
7025      //   transformation of defaulted parameters as follows:
7026      //   - all non-template default constructors of X, and
7027      //   - for each non-template constructor of X that has at least one
7028      //     parameter with a default argument, the set of constructors that
7029      //     results from omitting any ellipsis parameter specification and
7030      //     successively omitting parameters with a default argument from the
7031      //     end of the parameter-type-list.
7032      CXXConstructorDecl *BaseCtor = *CtorIt;
7033      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7034      const FunctionProtoType *BaseCtorType =
7035          BaseCtor->getType()->getAs<FunctionProtoType>();
7036
7037      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7038                    maxParams = BaseCtor->getNumParams();
7039           params <= maxParams; ++params) {
7040        // Skip default constructors. They're never inherited.
7041        if (params == 0)
7042          continue;
7043        // Skip copy and move constructors for the same reason.
7044        if (CanBeCopyOrMove && params == 1)
7045          continue;
7046
7047        // Build up a function type for this particular constructor.
7048        // FIXME: The working paper does not consider that the exception spec
7049        // for the inheriting constructor might be larger than that of the
7050        // source. This code doesn't yet, either. When it does, this code will
7051        // need to be delayed until after exception specifications and in-class
7052        // member initializers are attached.
7053        const Type *NewCtorType;
7054        if (params == maxParams)
7055          NewCtorType = BaseCtorType;
7056        else {
7057          SmallVector<QualType, 16> Args;
7058          for (unsigned i = 0; i < params; ++i) {
7059            Args.push_back(BaseCtorType->getArgType(i));
7060          }
7061          FunctionProtoType::ExtProtoInfo ExtInfo =
7062              BaseCtorType->getExtProtoInfo();
7063          ExtInfo.Variadic = false;
7064          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7065                                                Args.data(), params, ExtInfo)
7066                       .getTypePtr();
7067        }
7068        const Type *CanonicalNewCtorType =
7069            Context.getCanonicalType(NewCtorType);
7070
7071        // Now that we have the type, first check if the class already has a
7072        // constructor with this signature.
7073        if (ExistingConstructors.count(CanonicalNewCtorType))
7074          continue;
7075
7076        // Then we check if we have already declared an inherited constructor
7077        // with this signature.
7078        std::pair<ConstructorToSourceMap::iterator, bool> result =
7079            InheritedConstructors.insert(std::make_pair(
7080                CanonicalNewCtorType,
7081                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7082        if (!result.second) {
7083          // Already in the map. If it came from a different class, that's an
7084          // error. Not if it's from the same.
7085          CanQualType PreviousBase = result.first->second.first;
7086          if (CanonicalBase != PreviousBase) {
7087            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7088            const CXXConstructorDecl *PrevBaseCtor =
7089                PrevCtor->getInheritedConstructor();
7090            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7091
7092            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7093            Diag(BaseCtor->getLocation(),
7094                 diag::note_using_decl_constructor_conflict_current_ctor);
7095            Diag(PrevBaseCtor->getLocation(),
7096                 diag::note_using_decl_constructor_conflict_previous_ctor);
7097            Diag(PrevCtor->getLocation(),
7098                 diag::note_using_decl_constructor_conflict_previous_using);
7099          }
7100          continue;
7101        }
7102
7103        // OK, we're there, now add the constructor.
7104        // C++0x [class.inhctor]p8: [...] that would be performed by a
7105        //   user-written inline constructor [...]
7106        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7107        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7108            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7109            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7110            /*ImplicitlyDeclared=*/true,
7111            // FIXME: Due to a defect in the standard, we treat inherited
7112            // constructors as constexpr even if that makes them ill-formed.
7113            /*Constexpr=*/BaseCtor->isConstexpr());
7114        NewCtor->setAccess(BaseCtor->getAccess());
7115
7116        // Build up the parameter decls and add them.
7117        SmallVector<ParmVarDecl *, 16> ParamDecls;
7118        for (unsigned i = 0; i < params; ++i) {
7119          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7120                                                   UsingLoc, UsingLoc,
7121                                                   /*IdentifierInfo=*/0,
7122                                                   BaseCtorType->getArgType(i),
7123                                                   /*TInfo=*/0, SC_None,
7124                                                   SC_None, /*DefaultArg=*/0));
7125        }
7126        NewCtor->setParams(ParamDecls);
7127        NewCtor->setInheritedConstructor(BaseCtor);
7128
7129        PushOnScopeChains(NewCtor, S, false);
7130        ClassDecl->addDecl(NewCtor);
7131        result.first->second.second = NewCtor;
7132      }
7133    }
7134  }
7135}
7136
7137Sema::ImplicitExceptionSpecification
7138Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7139  // C++ [except.spec]p14:
7140  //   An implicitly declared special member function (Clause 12) shall have
7141  //   an exception-specification.
7142  ImplicitExceptionSpecification ExceptSpec(Context);
7143  if (ClassDecl->isInvalidDecl())
7144    return ExceptSpec;
7145
7146  // Direct base-class destructors.
7147  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7148                                       BEnd = ClassDecl->bases_end();
7149       B != BEnd; ++B) {
7150    if (B->isVirtual()) // Handled below.
7151      continue;
7152
7153    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7154      ExceptSpec.CalledDecl(
7155                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7156  }
7157
7158  // Virtual base-class destructors.
7159  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7160                                       BEnd = ClassDecl->vbases_end();
7161       B != BEnd; ++B) {
7162    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7163      ExceptSpec.CalledDecl(
7164                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7165  }
7166
7167  // Field destructors.
7168  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7169                               FEnd = ClassDecl->field_end();
7170       F != FEnd; ++F) {
7171    if (const RecordType *RecordTy
7172        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7173      ExceptSpec.CalledDecl(
7174                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7175  }
7176
7177  return ExceptSpec;
7178}
7179
7180CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7181  // C++ [class.dtor]p2:
7182  //   If a class has no user-declared destructor, a destructor is
7183  //   declared implicitly. An implicitly-declared destructor is an
7184  //   inline public member of its class.
7185
7186  ImplicitExceptionSpecification Spec =
7187      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7188  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7189
7190  // Create the actual destructor declaration.
7191  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7192
7193  CanQualType ClassType
7194    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7195  SourceLocation ClassLoc = ClassDecl->getLocation();
7196  DeclarationName Name
7197    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7198  DeclarationNameInfo NameInfo(Name, ClassLoc);
7199  CXXDestructorDecl *Destructor
7200      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7201                                  /*isInline=*/true,
7202                                  /*isImplicitlyDeclared=*/true);
7203  Destructor->setAccess(AS_public);
7204  Destructor->setDefaulted();
7205  Destructor->setImplicit();
7206  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7207
7208  // Note that we have declared this destructor.
7209  ++ASTContext::NumImplicitDestructorsDeclared;
7210
7211  // Introduce this destructor into its scope.
7212  if (Scope *S = getScopeForContext(ClassDecl))
7213    PushOnScopeChains(Destructor, S, false);
7214  ClassDecl->addDecl(Destructor);
7215
7216  // This could be uniqued if it ever proves significant.
7217  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7218
7219  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7220    Destructor->setDeletedAsWritten();
7221
7222  AddOverriddenMethods(ClassDecl, Destructor);
7223
7224  return Destructor;
7225}
7226
7227void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7228                                    CXXDestructorDecl *Destructor) {
7229  assert((Destructor->isDefaulted() &&
7230          !Destructor->doesThisDeclarationHaveABody()) &&
7231         "DefineImplicitDestructor - call it for implicit default dtor");
7232  CXXRecordDecl *ClassDecl = Destructor->getParent();
7233  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7234
7235  if (Destructor->isInvalidDecl())
7236    return;
7237
7238  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7239
7240  DiagnosticErrorTrap Trap(Diags);
7241  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7242                                         Destructor->getParent());
7243
7244  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7245    Diag(CurrentLocation, diag::note_member_synthesized_at)
7246      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7247
7248    Destructor->setInvalidDecl();
7249    return;
7250  }
7251
7252  SourceLocation Loc = Destructor->getLocation();
7253  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7254  Destructor->setImplicitlyDefined(true);
7255  Destructor->setUsed();
7256  MarkVTableUsed(CurrentLocation, ClassDecl);
7257
7258  if (ASTMutationListener *L = getASTMutationListener()) {
7259    L->CompletedImplicitDefinition(Destructor);
7260  }
7261}
7262
7263void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7264                                         CXXDestructorDecl *destructor) {
7265  // C++11 [class.dtor]p3:
7266  //   A declaration of a destructor that does not have an exception-
7267  //   specification is implicitly considered to have the same exception-
7268  //   specification as an implicit declaration.
7269  const FunctionProtoType *dtorType = destructor->getType()->
7270                                        getAs<FunctionProtoType>();
7271  if (dtorType->hasExceptionSpec())
7272    return;
7273
7274  ImplicitExceptionSpecification exceptSpec =
7275      ComputeDefaultedDtorExceptionSpec(classDecl);
7276
7277  // Replace the destructor's type, building off the existing one. Fortunately,
7278  // the only thing of interest in the destructor type is its extended info.
7279  // The return and arguments are fixed.
7280  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7281  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7282  epi.NumExceptions = exceptSpec.size();
7283  epi.Exceptions = exceptSpec.data();
7284  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7285
7286  destructor->setType(ty);
7287
7288  // FIXME: If the destructor has a body that could throw, and the newly created
7289  // spec doesn't allow exceptions, we should emit a warning, because this
7290  // change in behavior can break conforming C++03 programs at runtime.
7291  // However, we don't have a body yet, so it needs to be done somewhere else.
7292}
7293
7294/// \brief Builds a statement that copies/moves the given entity from \p From to
7295/// \c To.
7296///
7297/// This routine is used to copy/move the members of a class with an
7298/// implicitly-declared copy/move assignment operator. When the entities being
7299/// copied are arrays, this routine builds for loops to copy them.
7300///
7301/// \param S The Sema object used for type-checking.
7302///
7303/// \param Loc The location where the implicit copy/move is being generated.
7304///
7305/// \param T The type of the expressions being copied/moved. Both expressions
7306/// must have this type.
7307///
7308/// \param To The expression we are copying/moving to.
7309///
7310/// \param From The expression we are copying/moving from.
7311///
7312/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7313/// Otherwise, it's a non-static member subobject.
7314///
7315/// \param Copying Whether we're copying or moving.
7316///
7317/// \param Depth Internal parameter recording the depth of the recursion.
7318///
7319/// \returns A statement or a loop that copies the expressions.
7320static StmtResult
7321BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7322                      Expr *To, Expr *From,
7323                      bool CopyingBaseSubobject, bool Copying,
7324                      unsigned Depth = 0) {
7325  // C++0x [class.copy]p28:
7326  //   Each subobject is assigned in the manner appropriate to its type:
7327  //
7328  //     - if the subobject is of class type, as if by a call to operator= with
7329  //       the subobject as the object expression and the corresponding
7330  //       subobject of x as a single function argument (as if by explicit
7331  //       qualification; that is, ignoring any possible virtual overriding
7332  //       functions in more derived classes);
7333  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7334    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7335
7336    // Look for operator=.
7337    DeclarationName Name
7338      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7339    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7340    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7341
7342    // Filter out any result that isn't a copy/move-assignment operator.
7343    LookupResult::Filter F = OpLookup.makeFilter();
7344    while (F.hasNext()) {
7345      NamedDecl *D = F.next();
7346      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7347        if (Copying ? Method->isCopyAssignmentOperator() :
7348                      Method->isMoveAssignmentOperator())
7349          continue;
7350
7351      F.erase();
7352    }
7353    F.done();
7354
7355    // Suppress the protected check (C++ [class.protected]) for each of the
7356    // assignment operators we found. This strange dance is required when
7357    // we're assigning via a base classes's copy-assignment operator. To
7358    // ensure that we're getting the right base class subobject (without
7359    // ambiguities), we need to cast "this" to that subobject type; to
7360    // ensure that we don't go through the virtual call mechanism, we need
7361    // to qualify the operator= name with the base class (see below). However,
7362    // this means that if the base class has a protected copy assignment
7363    // operator, the protected member access check will fail. So, we
7364    // rewrite "protected" access to "public" access in this case, since we
7365    // know by construction that we're calling from a derived class.
7366    if (CopyingBaseSubobject) {
7367      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7368           L != LEnd; ++L) {
7369        if (L.getAccess() == AS_protected)
7370          L.setAccess(AS_public);
7371      }
7372    }
7373
7374    // Create the nested-name-specifier that will be used to qualify the
7375    // reference to operator=; this is required to suppress the virtual
7376    // call mechanism.
7377    CXXScopeSpec SS;
7378    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7379    SS.MakeTrivial(S.Context,
7380                   NestedNameSpecifier::Create(S.Context, 0, false,
7381                                               CanonicalT),
7382                   Loc);
7383
7384    // Create the reference to operator=.
7385    ExprResult OpEqualRef
7386      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7387                                   /*TemplateKWLoc=*/SourceLocation(),
7388                                   /*FirstQualifierInScope=*/0,
7389                                   OpLookup,
7390                                   /*TemplateArgs=*/0,
7391                                   /*SuppressQualifierCheck=*/true);
7392    if (OpEqualRef.isInvalid())
7393      return StmtError();
7394
7395    // Build the call to the assignment operator.
7396
7397    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7398                                                  OpEqualRef.takeAs<Expr>(),
7399                                                  Loc, &From, 1, Loc);
7400    if (Call.isInvalid())
7401      return StmtError();
7402
7403    return S.Owned(Call.takeAs<Stmt>());
7404  }
7405
7406  //     - if the subobject is of scalar type, the built-in assignment
7407  //       operator is used.
7408  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7409  if (!ArrayTy) {
7410    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7411    if (Assignment.isInvalid())
7412      return StmtError();
7413
7414    return S.Owned(Assignment.takeAs<Stmt>());
7415  }
7416
7417  //     - if the subobject is an array, each element is assigned, in the
7418  //       manner appropriate to the element type;
7419
7420  // Construct a loop over the array bounds, e.g.,
7421  //
7422  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7423  //
7424  // that will copy each of the array elements.
7425  QualType SizeType = S.Context.getSizeType();
7426
7427  // Create the iteration variable.
7428  IdentifierInfo *IterationVarName = 0;
7429  {
7430    SmallString<8> Str;
7431    llvm::raw_svector_ostream OS(Str);
7432    OS << "__i" << Depth;
7433    IterationVarName = &S.Context.Idents.get(OS.str());
7434  }
7435  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7436                                          IterationVarName, SizeType,
7437                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7438                                          SC_None, SC_None);
7439
7440  // Initialize the iteration variable to zero.
7441  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7442  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7443
7444  // Create a reference to the iteration variable; we'll use this several
7445  // times throughout.
7446  Expr *IterationVarRef
7447    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7448  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7449  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7450  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7451
7452  // Create the DeclStmt that holds the iteration variable.
7453  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7454
7455  // Create the comparison against the array bound.
7456  llvm::APInt Upper
7457    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7458  Expr *Comparison
7459    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7460                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7461                                     BO_NE, S.Context.BoolTy,
7462                                     VK_RValue, OK_Ordinary, Loc);
7463
7464  // Create the pre-increment of the iteration variable.
7465  Expr *Increment
7466    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7467                                    VK_LValue, OK_Ordinary, Loc);
7468
7469  // Subscript the "from" and "to" expressions with the iteration variable.
7470  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7471                                                         IterationVarRefRVal,
7472                                                         Loc));
7473  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7474                                                       IterationVarRefRVal,
7475                                                       Loc));
7476  if (!Copying) // Cast to rvalue
7477    From = CastForMoving(S, From);
7478
7479  // Build the copy/move for an individual element of the array.
7480  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7481                                          To, From, CopyingBaseSubobject,
7482                                          Copying, Depth + 1);
7483  if (Copy.isInvalid())
7484    return StmtError();
7485
7486  // Construct the loop that copies all elements of this array.
7487  return S.ActOnForStmt(Loc, Loc, InitStmt,
7488                        S.MakeFullExpr(Comparison),
7489                        0, S.MakeFullExpr(Increment),
7490                        Loc, Copy.take());
7491}
7492
7493std::pair<Sema::ImplicitExceptionSpecification, bool>
7494Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7495                                                   CXXRecordDecl *ClassDecl) {
7496  if (ClassDecl->isInvalidDecl())
7497    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7498
7499  // C++ [class.copy]p10:
7500  //   If the class definition does not explicitly declare a copy
7501  //   assignment operator, one is declared implicitly.
7502  //   The implicitly-defined copy assignment operator for a class X
7503  //   will have the form
7504  //
7505  //       X& X::operator=(const X&)
7506  //
7507  //   if
7508  bool HasConstCopyAssignment = true;
7509
7510  //       -- each direct base class B of X has a copy assignment operator
7511  //          whose parameter is of type const B&, const volatile B& or B,
7512  //          and
7513  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7514                                       BaseEnd = ClassDecl->bases_end();
7515       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7516    // We'll handle this below
7517    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7518      continue;
7519
7520    assert(!Base->getType()->isDependentType() &&
7521           "Cannot generate implicit members for class with dependent bases.");
7522    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7523    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7524                            &HasConstCopyAssignment);
7525  }
7526
7527  // In C++11, the above citation has "or virtual" added
7528  if (LangOpts.CPlusPlus0x) {
7529    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7530                                         BaseEnd = ClassDecl->vbases_end();
7531         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7532      assert(!Base->getType()->isDependentType() &&
7533             "Cannot generate implicit members for class with dependent bases.");
7534      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7535      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7536                              &HasConstCopyAssignment);
7537    }
7538  }
7539
7540  //       -- for all the nonstatic data members of X that are of a class
7541  //          type M (or array thereof), each such class type has a copy
7542  //          assignment operator whose parameter is of type const M&,
7543  //          const volatile M& or M.
7544  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7545                                  FieldEnd = ClassDecl->field_end();
7546       HasConstCopyAssignment && Field != FieldEnd;
7547       ++Field) {
7548    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7549    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7550      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7551                              &HasConstCopyAssignment);
7552    }
7553  }
7554
7555  //   Otherwise, the implicitly declared copy assignment operator will
7556  //   have the form
7557  //
7558  //       X& X::operator=(X&)
7559
7560  // C++ [except.spec]p14:
7561  //   An implicitly declared special member function (Clause 12) shall have an
7562  //   exception-specification. [...]
7563
7564  // It is unspecified whether or not an implicit copy assignment operator
7565  // attempts to deduplicate calls to assignment operators of virtual bases are
7566  // made. As such, this exception specification is effectively unspecified.
7567  // Based on a similar decision made for constness in C++0x, we're erring on
7568  // the side of assuming such calls to be made regardless of whether they
7569  // actually happen.
7570  ImplicitExceptionSpecification ExceptSpec(Context);
7571  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7572  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7573                                       BaseEnd = ClassDecl->bases_end();
7574       Base != BaseEnd; ++Base) {
7575    if (Base->isVirtual())
7576      continue;
7577
7578    CXXRecordDecl *BaseClassDecl
7579      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7580    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7581                                                            ArgQuals, false, 0))
7582      ExceptSpec.CalledDecl(CopyAssign);
7583  }
7584
7585  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7586                                       BaseEnd = ClassDecl->vbases_end();
7587       Base != BaseEnd; ++Base) {
7588    CXXRecordDecl *BaseClassDecl
7589      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7590    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7591                                                            ArgQuals, false, 0))
7592      ExceptSpec.CalledDecl(CopyAssign);
7593  }
7594
7595  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7596                                  FieldEnd = ClassDecl->field_end();
7597       Field != FieldEnd;
7598       ++Field) {
7599    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7600    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7601      if (CXXMethodDecl *CopyAssign =
7602          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7603        ExceptSpec.CalledDecl(CopyAssign);
7604    }
7605  }
7606
7607  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7608}
7609
7610CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7611  // Note: The following rules are largely analoguous to the copy
7612  // constructor rules. Note that virtual bases are not taken into account
7613  // for determining the argument type of the operator. Note also that
7614  // operators taking an object instead of a reference are allowed.
7615
7616  ImplicitExceptionSpecification Spec(Context);
7617  bool Const;
7618  llvm::tie(Spec, Const) =
7619    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7620
7621  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7622  QualType RetType = Context.getLValueReferenceType(ArgType);
7623  if (Const)
7624    ArgType = ArgType.withConst();
7625  ArgType = Context.getLValueReferenceType(ArgType);
7626
7627  //   An implicitly-declared copy assignment operator is an inline public
7628  //   member of its class.
7629  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7630  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7631  SourceLocation ClassLoc = ClassDecl->getLocation();
7632  DeclarationNameInfo NameInfo(Name, ClassLoc);
7633  CXXMethodDecl *CopyAssignment
7634    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7635                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7636                            /*TInfo=*/0, /*isStatic=*/false,
7637                            /*StorageClassAsWritten=*/SC_None,
7638                            /*isInline=*/true, /*isConstexpr=*/false,
7639                            SourceLocation());
7640  CopyAssignment->setAccess(AS_public);
7641  CopyAssignment->setDefaulted();
7642  CopyAssignment->setImplicit();
7643  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7644
7645  // Add the parameter to the operator.
7646  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7647                                               ClassLoc, ClassLoc, /*Id=*/0,
7648                                               ArgType, /*TInfo=*/0,
7649                                               SC_None,
7650                                               SC_None, 0);
7651  CopyAssignment->setParams(FromParam);
7652
7653  // Note that we have added this copy-assignment operator.
7654  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7655
7656  if (Scope *S = getScopeForContext(ClassDecl))
7657    PushOnScopeChains(CopyAssignment, S, false);
7658  ClassDecl->addDecl(CopyAssignment);
7659
7660  // C++0x [class.copy]p19:
7661  //   ....  If the class definition does not explicitly declare a copy
7662  //   assignment operator, there is no user-declared move constructor, and
7663  //   there is no user-declared move assignment operator, a copy assignment
7664  //   operator is implicitly declared as defaulted.
7665  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7666          !getLangOptions().MicrosoftMode) ||
7667      ClassDecl->hasUserDeclaredMoveAssignment() ||
7668      ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7669    CopyAssignment->setDeletedAsWritten();
7670
7671  AddOverriddenMethods(ClassDecl, CopyAssignment);
7672  return CopyAssignment;
7673}
7674
7675void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7676                                        CXXMethodDecl *CopyAssignOperator) {
7677  assert((CopyAssignOperator->isDefaulted() &&
7678          CopyAssignOperator->isOverloadedOperator() &&
7679          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7680          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7681         "DefineImplicitCopyAssignment called for wrong function");
7682
7683  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7684
7685  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7686    CopyAssignOperator->setInvalidDecl();
7687    return;
7688  }
7689
7690  CopyAssignOperator->setUsed();
7691
7692  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7693  DiagnosticErrorTrap Trap(Diags);
7694
7695  // C++0x [class.copy]p30:
7696  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7697  //   for a non-union class X performs memberwise copy assignment of its
7698  //   subobjects. The direct base classes of X are assigned first, in the
7699  //   order of their declaration in the base-specifier-list, and then the
7700  //   immediate non-static data members of X are assigned, in the order in
7701  //   which they were declared in the class definition.
7702
7703  // The statements that form the synthesized function body.
7704  ASTOwningVector<Stmt*> Statements(*this);
7705
7706  // The parameter for the "other" object, which we are copying from.
7707  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7708  Qualifiers OtherQuals = Other->getType().getQualifiers();
7709  QualType OtherRefType = Other->getType();
7710  if (const LValueReferenceType *OtherRef
7711                                = OtherRefType->getAs<LValueReferenceType>()) {
7712    OtherRefType = OtherRef->getPointeeType();
7713    OtherQuals = OtherRefType.getQualifiers();
7714  }
7715
7716  // Our location for everything implicitly-generated.
7717  SourceLocation Loc = CopyAssignOperator->getLocation();
7718
7719  // Construct a reference to the "other" object. We'll be using this
7720  // throughout the generated ASTs.
7721  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7722  assert(OtherRef && "Reference to parameter cannot fail!");
7723
7724  // Construct the "this" pointer. We'll be using this throughout the generated
7725  // ASTs.
7726  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7727  assert(This && "Reference to this cannot fail!");
7728
7729  // Assign base classes.
7730  bool Invalid = false;
7731  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7732       E = ClassDecl->bases_end(); Base != E; ++Base) {
7733    // Form the assignment:
7734    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7735    QualType BaseType = Base->getType().getUnqualifiedType();
7736    if (!BaseType->isRecordType()) {
7737      Invalid = true;
7738      continue;
7739    }
7740
7741    CXXCastPath BasePath;
7742    BasePath.push_back(Base);
7743
7744    // Construct the "from" expression, which is an implicit cast to the
7745    // appropriately-qualified base type.
7746    Expr *From = OtherRef;
7747    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7748                             CK_UncheckedDerivedToBase,
7749                             VK_LValue, &BasePath).take();
7750
7751    // Dereference "this".
7752    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7753
7754    // Implicitly cast "this" to the appropriately-qualified base type.
7755    To = ImpCastExprToType(To.take(),
7756                           Context.getCVRQualifiedType(BaseType,
7757                                     CopyAssignOperator->getTypeQualifiers()),
7758                           CK_UncheckedDerivedToBase,
7759                           VK_LValue, &BasePath);
7760
7761    // Build the copy.
7762    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7763                                            To.get(), From,
7764                                            /*CopyingBaseSubobject=*/true,
7765                                            /*Copying=*/true);
7766    if (Copy.isInvalid()) {
7767      Diag(CurrentLocation, diag::note_member_synthesized_at)
7768        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7769      CopyAssignOperator->setInvalidDecl();
7770      return;
7771    }
7772
7773    // Success! Record the copy.
7774    Statements.push_back(Copy.takeAs<Expr>());
7775  }
7776
7777  // \brief Reference to the __builtin_memcpy function.
7778  Expr *BuiltinMemCpyRef = 0;
7779  // \brief Reference to the __builtin_objc_memmove_collectable function.
7780  Expr *CollectableMemCpyRef = 0;
7781
7782  // Assign non-static members.
7783  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7784                                  FieldEnd = ClassDecl->field_end();
7785       Field != FieldEnd; ++Field) {
7786    if (Field->isUnnamedBitfield())
7787      continue;
7788
7789    // Check for members of reference type; we can't copy those.
7790    if (Field->getType()->isReferenceType()) {
7791      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7792        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7793      Diag(Field->getLocation(), diag::note_declared_at);
7794      Diag(CurrentLocation, diag::note_member_synthesized_at)
7795        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7796      Invalid = true;
7797      continue;
7798    }
7799
7800    // Check for members of const-qualified, non-class type.
7801    QualType BaseType = Context.getBaseElementType(Field->getType());
7802    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7803      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7804        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7805      Diag(Field->getLocation(), diag::note_declared_at);
7806      Diag(CurrentLocation, diag::note_member_synthesized_at)
7807        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7808      Invalid = true;
7809      continue;
7810    }
7811
7812    // Suppress assigning zero-width bitfields.
7813    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7814      continue;
7815
7816    QualType FieldType = Field->getType().getNonReferenceType();
7817    if (FieldType->isIncompleteArrayType()) {
7818      assert(ClassDecl->hasFlexibleArrayMember() &&
7819             "Incomplete array type is not valid");
7820      continue;
7821    }
7822
7823    // Build references to the field in the object we're copying from and to.
7824    CXXScopeSpec SS; // Intentionally empty
7825    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7826                              LookupMemberName);
7827    MemberLookup.addDecl(*Field);
7828    MemberLookup.resolveKind();
7829    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7830                                               Loc, /*IsArrow=*/false,
7831                                               SS, SourceLocation(), 0,
7832                                               MemberLookup, 0);
7833    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7834                                             Loc, /*IsArrow=*/true,
7835                                             SS, SourceLocation(), 0,
7836                                             MemberLookup, 0);
7837    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7838    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7839
7840    // If the field should be copied with __builtin_memcpy rather than via
7841    // explicit assignments, do so. This optimization only applies for arrays
7842    // of scalars and arrays of class type with trivial copy-assignment
7843    // operators.
7844    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7845        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7846      // Compute the size of the memory buffer to be copied.
7847      QualType SizeType = Context.getSizeType();
7848      llvm::APInt Size(Context.getTypeSize(SizeType),
7849                       Context.getTypeSizeInChars(BaseType).getQuantity());
7850      for (const ConstantArrayType *Array
7851              = Context.getAsConstantArrayType(FieldType);
7852           Array;
7853           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7854        llvm::APInt ArraySize
7855          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7856        Size *= ArraySize;
7857      }
7858
7859      // Take the address of the field references for "from" and "to".
7860      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7861      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7862
7863      bool NeedsCollectableMemCpy =
7864          (BaseType->isRecordType() &&
7865           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7866
7867      if (NeedsCollectableMemCpy) {
7868        if (!CollectableMemCpyRef) {
7869          // Create a reference to the __builtin_objc_memmove_collectable function.
7870          LookupResult R(*this,
7871                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7872                         Loc, LookupOrdinaryName);
7873          LookupName(R, TUScope, true);
7874
7875          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7876          if (!CollectableMemCpy) {
7877            // Something went horribly wrong earlier, and we will have
7878            // complained about it.
7879            Invalid = true;
7880            continue;
7881          }
7882
7883          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7884                                                  CollectableMemCpy->getType(),
7885                                                  VK_LValue, Loc, 0).take();
7886          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7887        }
7888      }
7889      // Create a reference to the __builtin_memcpy builtin function.
7890      else if (!BuiltinMemCpyRef) {
7891        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7892                       LookupOrdinaryName);
7893        LookupName(R, TUScope, true);
7894
7895        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7896        if (!BuiltinMemCpy) {
7897          // Something went horribly wrong earlier, and we will have complained
7898          // about it.
7899          Invalid = true;
7900          continue;
7901        }
7902
7903        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7904                                            BuiltinMemCpy->getType(),
7905                                            VK_LValue, Loc, 0).take();
7906        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7907      }
7908
7909      ASTOwningVector<Expr*> CallArgs(*this);
7910      CallArgs.push_back(To.takeAs<Expr>());
7911      CallArgs.push_back(From.takeAs<Expr>());
7912      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7913      ExprResult Call = ExprError();
7914      if (NeedsCollectableMemCpy)
7915        Call = ActOnCallExpr(/*Scope=*/0,
7916                             CollectableMemCpyRef,
7917                             Loc, move_arg(CallArgs),
7918                             Loc);
7919      else
7920        Call = ActOnCallExpr(/*Scope=*/0,
7921                             BuiltinMemCpyRef,
7922                             Loc, move_arg(CallArgs),
7923                             Loc);
7924
7925      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7926      Statements.push_back(Call.takeAs<Expr>());
7927      continue;
7928    }
7929
7930    // Build the copy of this field.
7931    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7932                                            To.get(), From.get(),
7933                                            /*CopyingBaseSubobject=*/false,
7934                                            /*Copying=*/true);
7935    if (Copy.isInvalid()) {
7936      Diag(CurrentLocation, diag::note_member_synthesized_at)
7937        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7938      CopyAssignOperator->setInvalidDecl();
7939      return;
7940    }
7941
7942    // Success! Record the copy.
7943    Statements.push_back(Copy.takeAs<Stmt>());
7944  }
7945
7946  if (!Invalid) {
7947    // Add a "return *this;"
7948    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7949
7950    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7951    if (Return.isInvalid())
7952      Invalid = true;
7953    else {
7954      Statements.push_back(Return.takeAs<Stmt>());
7955
7956      if (Trap.hasErrorOccurred()) {
7957        Diag(CurrentLocation, diag::note_member_synthesized_at)
7958          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7959        Invalid = true;
7960      }
7961    }
7962  }
7963
7964  if (Invalid) {
7965    CopyAssignOperator->setInvalidDecl();
7966    return;
7967  }
7968
7969  StmtResult Body;
7970  {
7971    CompoundScopeRAII CompoundScope(*this);
7972    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7973                             /*isStmtExpr=*/false);
7974    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7975  }
7976  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7977
7978  if (ASTMutationListener *L = getASTMutationListener()) {
7979    L->CompletedImplicitDefinition(CopyAssignOperator);
7980  }
7981}
7982
7983Sema::ImplicitExceptionSpecification
7984Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7985  ImplicitExceptionSpecification ExceptSpec(Context);
7986
7987  if (ClassDecl->isInvalidDecl())
7988    return ExceptSpec;
7989
7990  // C++0x [except.spec]p14:
7991  //   An implicitly declared special member function (Clause 12) shall have an
7992  //   exception-specification. [...]
7993
7994  // It is unspecified whether or not an implicit move assignment operator
7995  // attempts to deduplicate calls to assignment operators of virtual bases are
7996  // made. As such, this exception specification is effectively unspecified.
7997  // Based on a similar decision made for constness in C++0x, we're erring on
7998  // the side of assuming such calls to be made regardless of whether they
7999  // actually happen.
8000  // Note that a move constructor is not implicitly declared when there are
8001  // virtual bases, but it can still be user-declared and explicitly defaulted.
8002  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8003                                       BaseEnd = ClassDecl->bases_end();
8004       Base != BaseEnd; ++Base) {
8005    if (Base->isVirtual())
8006      continue;
8007
8008    CXXRecordDecl *BaseClassDecl
8009      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8010    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8011                                                           false, 0))
8012      ExceptSpec.CalledDecl(MoveAssign);
8013  }
8014
8015  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8016                                       BaseEnd = ClassDecl->vbases_end();
8017       Base != BaseEnd; ++Base) {
8018    CXXRecordDecl *BaseClassDecl
8019      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8020    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8021                                                           false, 0))
8022      ExceptSpec.CalledDecl(MoveAssign);
8023  }
8024
8025  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8026                                  FieldEnd = ClassDecl->field_end();
8027       Field != FieldEnd;
8028       ++Field) {
8029    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8030    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8031      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8032                                                             false, 0))
8033        ExceptSpec.CalledDecl(MoveAssign);
8034    }
8035  }
8036
8037  return ExceptSpec;
8038}
8039
8040CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8041  // Note: The following rules are largely analoguous to the move
8042  // constructor rules.
8043
8044  ImplicitExceptionSpecification Spec(
8045      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8046
8047  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8048  QualType RetType = Context.getLValueReferenceType(ArgType);
8049  ArgType = Context.getRValueReferenceType(ArgType);
8050
8051  //   An implicitly-declared move assignment operator is an inline public
8052  //   member of its class.
8053  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8054  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8055  SourceLocation ClassLoc = ClassDecl->getLocation();
8056  DeclarationNameInfo NameInfo(Name, ClassLoc);
8057  CXXMethodDecl *MoveAssignment
8058    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8059                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8060                            /*TInfo=*/0, /*isStatic=*/false,
8061                            /*StorageClassAsWritten=*/SC_None,
8062                            /*isInline=*/true,
8063                            /*isConstexpr=*/false,
8064                            SourceLocation());
8065  MoveAssignment->setAccess(AS_public);
8066  MoveAssignment->setDefaulted();
8067  MoveAssignment->setImplicit();
8068  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8069
8070  // Add the parameter to the operator.
8071  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8072                                               ClassLoc, ClassLoc, /*Id=*/0,
8073                                               ArgType, /*TInfo=*/0,
8074                                               SC_None,
8075                                               SC_None, 0);
8076  MoveAssignment->setParams(FromParam);
8077
8078  // Note that we have added this copy-assignment operator.
8079  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8080
8081  // C++0x [class.copy]p9:
8082  //   If the definition of a class X does not explicitly declare a move
8083  //   assignment operator, one will be implicitly declared as defaulted if and
8084  //   only if:
8085  //   [...]
8086  //   - the move assignment operator would not be implicitly defined as
8087  //     deleted.
8088  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8089    // Cache this result so that we don't try to generate this over and over
8090    // on every lookup, leaking memory and wasting time.
8091    ClassDecl->setFailedImplicitMoveAssignment();
8092    return 0;
8093  }
8094
8095  if (Scope *S = getScopeForContext(ClassDecl))
8096    PushOnScopeChains(MoveAssignment, S, false);
8097  ClassDecl->addDecl(MoveAssignment);
8098
8099  AddOverriddenMethods(ClassDecl, MoveAssignment);
8100  return MoveAssignment;
8101}
8102
8103void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8104                                        CXXMethodDecl *MoveAssignOperator) {
8105  assert((MoveAssignOperator->isDefaulted() &&
8106          MoveAssignOperator->isOverloadedOperator() &&
8107          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8108          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8109         "DefineImplicitMoveAssignment called for wrong function");
8110
8111  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8112
8113  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8114    MoveAssignOperator->setInvalidDecl();
8115    return;
8116  }
8117
8118  MoveAssignOperator->setUsed();
8119
8120  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8121  DiagnosticErrorTrap Trap(Diags);
8122
8123  // C++0x [class.copy]p28:
8124  //   The implicitly-defined or move assignment operator for a non-union class
8125  //   X performs memberwise move assignment of its subobjects. The direct base
8126  //   classes of X are assigned first, in the order of their declaration in the
8127  //   base-specifier-list, and then the immediate non-static data members of X
8128  //   are assigned, in the order in which they were declared in the class
8129  //   definition.
8130
8131  // The statements that form the synthesized function body.
8132  ASTOwningVector<Stmt*> Statements(*this);
8133
8134  // The parameter for the "other" object, which we are move from.
8135  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8136  QualType OtherRefType = Other->getType()->
8137      getAs<RValueReferenceType>()->getPointeeType();
8138  assert(OtherRefType.getQualifiers() == 0 &&
8139         "Bad argument type of defaulted move assignment");
8140
8141  // Our location for everything implicitly-generated.
8142  SourceLocation Loc = MoveAssignOperator->getLocation();
8143
8144  // Construct a reference to the "other" object. We'll be using this
8145  // throughout the generated ASTs.
8146  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8147  assert(OtherRef && "Reference to parameter cannot fail!");
8148  // Cast to rvalue.
8149  OtherRef = CastForMoving(*this, OtherRef);
8150
8151  // Construct the "this" pointer. We'll be using this throughout the generated
8152  // ASTs.
8153  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8154  assert(This && "Reference to this cannot fail!");
8155
8156  // Assign base classes.
8157  bool Invalid = false;
8158  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8159       E = ClassDecl->bases_end(); Base != E; ++Base) {
8160    // Form the assignment:
8161    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8162    QualType BaseType = Base->getType().getUnqualifiedType();
8163    if (!BaseType->isRecordType()) {
8164      Invalid = true;
8165      continue;
8166    }
8167
8168    CXXCastPath BasePath;
8169    BasePath.push_back(Base);
8170
8171    // Construct the "from" expression, which is an implicit cast to the
8172    // appropriately-qualified base type.
8173    Expr *From = OtherRef;
8174    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8175                             VK_XValue, &BasePath).take();
8176
8177    // Dereference "this".
8178    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8179
8180    // Implicitly cast "this" to the appropriately-qualified base type.
8181    To = ImpCastExprToType(To.take(),
8182                           Context.getCVRQualifiedType(BaseType,
8183                                     MoveAssignOperator->getTypeQualifiers()),
8184                           CK_UncheckedDerivedToBase,
8185                           VK_LValue, &BasePath);
8186
8187    // Build the move.
8188    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8189                                            To.get(), From,
8190                                            /*CopyingBaseSubobject=*/true,
8191                                            /*Copying=*/false);
8192    if (Move.isInvalid()) {
8193      Diag(CurrentLocation, diag::note_member_synthesized_at)
8194        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8195      MoveAssignOperator->setInvalidDecl();
8196      return;
8197    }
8198
8199    // Success! Record the move.
8200    Statements.push_back(Move.takeAs<Expr>());
8201  }
8202
8203  // \brief Reference to the __builtin_memcpy function.
8204  Expr *BuiltinMemCpyRef = 0;
8205  // \brief Reference to the __builtin_objc_memmove_collectable function.
8206  Expr *CollectableMemCpyRef = 0;
8207
8208  // Assign non-static members.
8209  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8210                                  FieldEnd = ClassDecl->field_end();
8211       Field != FieldEnd; ++Field) {
8212    if (Field->isUnnamedBitfield())
8213      continue;
8214
8215    // Check for members of reference type; we can't move those.
8216    if (Field->getType()->isReferenceType()) {
8217      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8218        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8219      Diag(Field->getLocation(), diag::note_declared_at);
8220      Diag(CurrentLocation, diag::note_member_synthesized_at)
8221        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8222      Invalid = true;
8223      continue;
8224    }
8225
8226    // Check for members of const-qualified, non-class type.
8227    QualType BaseType = Context.getBaseElementType(Field->getType());
8228    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8229      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8230        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8231      Diag(Field->getLocation(), diag::note_declared_at);
8232      Diag(CurrentLocation, diag::note_member_synthesized_at)
8233        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8234      Invalid = true;
8235      continue;
8236    }
8237
8238    // Suppress assigning zero-width bitfields.
8239    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8240      continue;
8241
8242    QualType FieldType = Field->getType().getNonReferenceType();
8243    if (FieldType->isIncompleteArrayType()) {
8244      assert(ClassDecl->hasFlexibleArrayMember() &&
8245             "Incomplete array type is not valid");
8246      continue;
8247    }
8248
8249    // Build references to the field in the object we're copying from and to.
8250    CXXScopeSpec SS; // Intentionally empty
8251    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8252                              LookupMemberName);
8253    MemberLookup.addDecl(*Field);
8254    MemberLookup.resolveKind();
8255    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8256                                               Loc, /*IsArrow=*/false,
8257                                               SS, SourceLocation(), 0,
8258                                               MemberLookup, 0);
8259    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8260                                             Loc, /*IsArrow=*/true,
8261                                             SS, SourceLocation(), 0,
8262                                             MemberLookup, 0);
8263    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8264    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8265
8266    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8267        "Member reference with rvalue base must be rvalue except for reference "
8268        "members, which aren't allowed for move assignment.");
8269
8270    // If the field should be copied with __builtin_memcpy rather than via
8271    // explicit assignments, do so. This optimization only applies for arrays
8272    // of scalars and arrays of class type with trivial move-assignment
8273    // operators.
8274    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8275        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8276      // Compute the size of the memory buffer to be copied.
8277      QualType SizeType = Context.getSizeType();
8278      llvm::APInt Size(Context.getTypeSize(SizeType),
8279                       Context.getTypeSizeInChars(BaseType).getQuantity());
8280      for (const ConstantArrayType *Array
8281              = Context.getAsConstantArrayType(FieldType);
8282           Array;
8283           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8284        llvm::APInt ArraySize
8285          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8286        Size *= ArraySize;
8287      }
8288
8289      // Take the address of the field references for "from" and "to". We
8290      // directly construct UnaryOperators here because semantic analysis
8291      // does not permit us to take the address of an xvalue.
8292      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8293                             Context.getPointerType(From.get()->getType()),
8294                             VK_RValue, OK_Ordinary, Loc);
8295      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8296                           Context.getPointerType(To.get()->getType()),
8297                           VK_RValue, OK_Ordinary, Loc);
8298
8299      bool NeedsCollectableMemCpy =
8300          (BaseType->isRecordType() &&
8301           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8302
8303      if (NeedsCollectableMemCpy) {
8304        if (!CollectableMemCpyRef) {
8305          // Create a reference to the __builtin_objc_memmove_collectable function.
8306          LookupResult R(*this,
8307                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8308                         Loc, LookupOrdinaryName);
8309          LookupName(R, TUScope, true);
8310
8311          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8312          if (!CollectableMemCpy) {
8313            // Something went horribly wrong earlier, and we will have
8314            // complained about it.
8315            Invalid = true;
8316            continue;
8317          }
8318
8319          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8320                                                  CollectableMemCpy->getType(),
8321                                                  VK_LValue, Loc, 0).take();
8322          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8323        }
8324      }
8325      // Create a reference to the __builtin_memcpy builtin function.
8326      else if (!BuiltinMemCpyRef) {
8327        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8328                       LookupOrdinaryName);
8329        LookupName(R, TUScope, true);
8330
8331        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8332        if (!BuiltinMemCpy) {
8333          // Something went horribly wrong earlier, and we will have complained
8334          // about it.
8335          Invalid = true;
8336          continue;
8337        }
8338
8339        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8340                                            BuiltinMemCpy->getType(),
8341                                            VK_LValue, Loc, 0).take();
8342        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8343      }
8344
8345      ASTOwningVector<Expr*> CallArgs(*this);
8346      CallArgs.push_back(To.takeAs<Expr>());
8347      CallArgs.push_back(From.takeAs<Expr>());
8348      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8349      ExprResult Call = ExprError();
8350      if (NeedsCollectableMemCpy)
8351        Call = ActOnCallExpr(/*Scope=*/0,
8352                             CollectableMemCpyRef,
8353                             Loc, move_arg(CallArgs),
8354                             Loc);
8355      else
8356        Call = ActOnCallExpr(/*Scope=*/0,
8357                             BuiltinMemCpyRef,
8358                             Loc, move_arg(CallArgs),
8359                             Loc);
8360
8361      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8362      Statements.push_back(Call.takeAs<Expr>());
8363      continue;
8364    }
8365
8366    // Build the move of this field.
8367    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8368                                            To.get(), From.get(),
8369                                            /*CopyingBaseSubobject=*/false,
8370                                            /*Copying=*/false);
8371    if (Move.isInvalid()) {
8372      Diag(CurrentLocation, diag::note_member_synthesized_at)
8373        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8374      MoveAssignOperator->setInvalidDecl();
8375      return;
8376    }
8377
8378    // Success! Record the copy.
8379    Statements.push_back(Move.takeAs<Stmt>());
8380  }
8381
8382  if (!Invalid) {
8383    // Add a "return *this;"
8384    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8385
8386    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8387    if (Return.isInvalid())
8388      Invalid = true;
8389    else {
8390      Statements.push_back(Return.takeAs<Stmt>());
8391
8392      if (Trap.hasErrorOccurred()) {
8393        Diag(CurrentLocation, diag::note_member_synthesized_at)
8394          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8395        Invalid = true;
8396      }
8397    }
8398  }
8399
8400  if (Invalid) {
8401    MoveAssignOperator->setInvalidDecl();
8402    return;
8403  }
8404
8405  StmtResult Body;
8406  {
8407    CompoundScopeRAII CompoundScope(*this);
8408    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8409                             /*isStmtExpr=*/false);
8410    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8411  }
8412  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8413
8414  if (ASTMutationListener *L = getASTMutationListener()) {
8415    L->CompletedImplicitDefinition(MoveAssignOperator);
8416  }
8417}
8418
8419std::pair<Sema::ImplicitExceptionSpecification, bool>
8420Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8421  if (ClassDecl->isInvalidDecl())
8422    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8423
8424  // C++ [class.copy]p5:
8425  //   The implicitly-declared copy constructor for a class X will
8426  //   have the form
8427  //
8428  //       X::X(const X&)
8429  //
8430  //   if
8431  // FIXME: It ought to be possible to store this on the record.
8432  bool HasConstCopyConstructor = true;
8433
8434  //     -- each direct or virtual base class B of X has a copy
8435  //        constructor whose first parameter is of type const B& or
8436  //        const volatile B&, and
8437  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8438                                       BaseEnd = ClassDecl->bases_end();
8439       HasConstCopyConstructor && Base != BaseEnd;
8440       ++Base) {
8441    // Virtual bases are handled below.
8442    if (Base->isVirtual())
8443      continue;
8444
8445    CXXRecordDecl *BaseClassDecl
8446      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8447    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8448                             &HasConstCopyConstructor);
8449  }
8450
8451  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8452                                       BaseEnd = ClassDecl->vbases_end();
8453       HasConstCopyConstructor && Base != BaseEnd;
8454       ++Base) {
8455    CXXRecordDecl *BaseClassDecl
8456      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8457    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8458                             &HasConstCopyConstructor);
8459  }
8460
8461  //     -- for all the nonstatic data members of X that are of a
8462  //        class type M (or array thereof), each such class type
8463  //        has a copy constructor whose first parameter is of type
8464  //        const M& or const volatile M&.
8465  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8466                                  FieldEnd = ClassDecl->field_end();
8467       HasConstCopyConstructor && Field != FieldEnd;
8468       ++Field) {
8469    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8470    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8471      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8472                               &HasConstCopyConstructor);
8473    }
8474  }
8475  //   Otherwise, the implicitly declared copy constructor will have
8476  //   the form
8477  //
8478  //       X::X(X&)
8479
8480  // C++ [except.spec]p14:
8481  //   An implicitly declared special member function (Clause 12) shall have an
8482  //   exception-specification. [...]
8483  ImplicitExceptionSpecification ExceptSpec(Context);
8484  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8485  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8486                                       BaseEnd = ClassDecl->bases_end();
8487       Base != BaseEnd;
8488       ++Base) {
8489    // Virtual bases are handled below.
8490    if (Base->isVirtual())
8491      continue;
8492
8493    CXXRecordDecl *BaseClassDecl
8494      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8495    if (CXXConstructorDecl *CopyConstructor =
8496          LookupCopyingConstructor(BaseClassDecl, Quals))
8497      ExceptSpec.CalledDecl(CopyConstructor);
8498  }
8499  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8500                                       BaseEnd = ClassDecl->vbases_end();
8501       Base != BaseEnd;
8502       ++Base) {
8503    CXXRecordDecl *BaseClassDecl
8504      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8505    if (CXXConstructorDecl *CopyConstructor =
8506          LookupCopyingConstructor(BaseClassDecl, Quals))
8507      ExceptSpec.CalledDecl(CopyConstructor);
8508  }
8509  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8510                                  FieldEnd = ClassDecl->field_end();
8511       Field != FieldEnd;
8512       ++Field) {
8513    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8514    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8515      if (CXXConstructorDecl *CopyConstructor =
8516        LookupCopyingConstructor(FieldClassDecl, Quals))
8517      ExceptSpec.CalledDecl(CopyConstructor);
8518    }
8519  }
8520
8521  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8522}
8523
8524CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8525                                                    CXXRecordDecl *ClassDecl) {
8526  // C++ [class.copy]p4:
8527  //   If the class definition does not explicitly declare a copy
8528  //   constructor, one is declared implicitly.
8529
8530  ImplicitExceptionSpecification Spec(Context);
8531  bool Const;
8532  llvm::tie(Spec, Const) =
8533    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8534
8535  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8536  QualType ArgType = ClassType;
8537  if (Const)
8538    ArgType = ArgType.withConst();
8539  ArgType = Context.getLValueReferenceType(ArgType);
8540
8541  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8542
8543  DeclarationName Name
8544    = Context.DeclarationNames.getCXXConstructorName(
8545                                           Context.getCanonicalType(ClassType));
8546  SourceLocation ClassLoc = ClassDecl->getLocation();
8547  DeclarationNameInfo NameInfo(Name, ClassLoc);
8548
8549  //   An implicitly-declared copy constructor is an inline public
8550  //   member of its class.
8551  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8552      Context, ClassDecl, ClassLoc, NameInfo,
8553      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8554      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8555      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8556        getLangOptions().CPlusPlus0x);
8557  CopyConstructor->setAccess(AS_public);
8558  CopyConstructor->setDefaulted();
8559  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8560
8561  // Note that we have declared this constructor.
8562  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8563
8564  // Add the parameter to the constructor.
8565  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8566                                               ClassLoc, ClassLoc,
8567                                               /*IdentifierInfo=*/0,
8568                                               ArgType, /*TInfo=*/0,
8569                                               SC_None,
8570                                               SC_None, 0);
8571  CopyConstructor->setParams(FromParam);
8572
8573  if (Scope *S = getScopeForContext(ClassDecl))
8574    PushOnScopeChains(CopyConstructor, S, false);
8575  ClassDecl->addDecl(CopyConstructor);
8576
8577  // C++11 [class.copy]p8:
8578  //   ... If the class definition does not explicitly declare a copy
8579  //   constructor, there is no user-declared move constructor, and there is no
8580  //   user-declared move assignment operator, a copy constructor is implicitly
8581  //   declared as defaulted.
8582  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8583      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8584          !getLangOptions().MicrosoftMode) ||
8585      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8586    CopyConstructor->setDeletedAsWritten();
8587
8588  return CopyConstructor;
8589}
8590
8591void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8592                                   CXXConstructorDecl *CopyConstructor) {
8593  assert((CopyConstructor->isDefaulted() &&
8594          CopyConstructor->isCopyConstructor() &&
8595          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8596         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8597
8598  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8599  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8600
8601  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8602  DiagnosticErrorTrap Trap(Diags);
8603
8604  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8605      Trap.hasErrorOccurred()) {
8606    Diag(CurrentLocation, diag::note_member_synthesized_at)
8607      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8608    CopyConstructor->setInvalidDecl();
8609  }  else {
8610    Sema::CompoundScopeRAII CompoundScope(*this);
8611    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8612                                               CopyConstructor->getLocation(),
8613                                               MultiStmtArg(*this, 0, 0),
8614                                               /*isStmtExpr=*/false)
8615                                                              .takeAs<Stmt>());
8616    CopyConstructor->setImplicitlyDefined(true);
8617  }
8618
8619  CopyConstructor->setUsed();
8620  if (ASTMutationListener *L = getASTMutationListener()) {
8621    L->CompletedImplicitDefinition(CopyConstructor);
8622  }
8623}
8624
8625Sema::ImplicitExceptionSpecification
8626Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8627  // C++ [except.spec]p14:
8628  //   An implicitly declared special member function (Clause 12) shall have an
8629  //   exception-specification. [...]
8630  ImplicitExceptionSpecification ExceptSpec(Context);
8631  if (ClassDecl->isInvalidDecl())
8632    return ExceptSpec;
8633
8634  // Direct base-class constructors.
8635  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8636                                       BEnd = ClassDecl->bases_end();
8637       B != BEnd; ++B) {
8638    if (B->isVirtual()) // Handled below.
8639      continue;
8640
8641    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8642      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8643      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8644      // If this is a deleted function, add it anyway. This might be conformant
8645      // with the standard. This might not. I'm not sure. It might not matter.
8646      if (Constructor)
8647        ExceptSpec.CalledDecl(Constructor);
8648    }
8649  }
8650
8651  // Virtual base-class constructors.
8652  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8653                                       BEnd = ClassDecl->vbases_end();
8654       B != BEnd; ++B) {
8655    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8656      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8657      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8658      // If this is a deleted function, add it anyway. This might be conformant
8659      // with the standard. This might not. I'm not sure. It might not matter.
8660      if (Constructor)
8661        ExceptSpec.CalledDecl(Constructor);
8662    }
8663  }
8664
8665  // Field constructors.
8666  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8667                               FEnd = ClassDecl->field_end();
8668       F != FEnd; ++F) {
8669    if (const RecordType *RecordTy
8670              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8671      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8672      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8673      // If this is a deleted function, add it anyway. This might be conformant
8674      // with the standard. This might not. I'm not sure. It might not matter.
8675      // In particular, the problem is that this function never gets called. It
8676      // might just be ill-formed because this function attempts to refer to
8677      // a deleted function here.
8678      if (Constructor)
8679        ExceptSpec.CalledDecl(Constructor);
8680    }
8681  }
8682
8683  return ExceptSpec;
8684}
8685
8686CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8687                                                    CXXRecordDecl *ClassDecl) {
8688  ImplicitExceptionSpecification Spec(
8689      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8690
8691  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8692  QualType ArgType = Context.getRValueReferenceType(ClassType);
8693
8694  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8695
8696  DeclarationName Name
8697    = Context.DeclarationNames.getCXXConstructorName(
8698                                           Context.getCanonicalType(ClassType));
8699  SourceLocation ClassLoc = ClassDecl->getLocation();
8700  DeclarationNameInfo NameInfo(Name, ClassLoc);
8701
8702  // C++0x [class.copy]p11:
8703  //   An implicitly-declared copy/move constructor is an inline public
8704  //   member of its class.
8705  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8706      Context, ClassDecl, ClassLoc, NameInfo,
8707      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8708      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8709      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8710        getLangOptions().CPlusPlus0x);
8711  MoveConstructor->setAccess(AS_public);
8712  MoveConstructor->setDefaulted();
8713  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8714
8715  // Add the parameter to the constructor.
8716  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8717                                               ClassLoc, ClassLoc,
8718                                               /*IdentifierInfo=*/0,
8719                                               ArgType, /*TInfo=*/0,
8720                                               SC_None,
8721                                               SC_None, 0);
8722  MoveConstructor->setParams(FromParam);
8723
8724  // C++0x [class.copy]p9:
8725  //   If the definition of a class X does not explicitly declare a move
8726  //   constructor, one will be implicitly declared as defaulted if and only if:
8727  //   [...]
8728  //   - the move constructor would not be implicitly defined as deleted.
8729  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8730    // Cache this result so that we don't try to generate this over and over
8731    // on every lookup, leaking memory and wasting time.
8732    ClassDecl->setFailedImplicitMoveConstructor();
8733    return 0;
8734  }
8735
8736  // Note that we have declared this constructor.
8737  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8738
8739  if (Scope *S = getScopeForContext(ClassDecl))
8740    PushOnScopeChains(MoveConstructor, S, false);
8741  ClassDecl->addDecl(MoveConstructor);
8742
8743  return MoveConstructor;
8744}
8745
8746void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8747                                   CXXConstructorDecl *MoveConstructor) {
8748  assert((MoveConstructor->isDefaulted() &&
8749          MoveConstructor->isMoveConstructor() &&
8750          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8751         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8752
8753  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8754  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8755
8756  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8757  DiagnosticErrorTrap Trap(Diags);
8758
8759  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8760      Trap.hasErrorOccurred()) {
8761    Diag(CurrentLocation, diag::note_member_synthesized_at)
8762      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8763    MoveConstructor->setInvalidDecl();
8764  }  else {
8765    Sema::CompoundScopeRAII CompoundScope(*this);
8766    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8767                                               MoveConstructor->getLocation(),
8768                                               MultiStmtArg(*this, 0, 0),
8769                                               /*isStmtExpr=*/false)
8770                                                              .takeAs<Stmt>());
8771    MoveConstructor->setImplicitlyDefined(true);
8772  }
8773
8774  MoveConstructor->setUsed();
8775
8776  if (ASTMutationListener *L = getASTMutationListener()) {
8777    L->CompletedImplicitDefinition(MoveConstructor);
8778  }
8779}
8780
8781bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8782  return FD->isDeleted() &&
8783         (FD->isDefaulted() || FD->isImplicit()) &&
8784         isa<CXXMethodDecl>(FD);
8785}
8786
8787/// \brief Mark the call operator of the given lambda closure type as "used".
8788static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8789  CXXMethodDecl *CallOperator
8790    = cast<CXXMethodDecl>(
8791        *Lambda->lookup(
8792          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8793  CallOperator->setReferenced();
8794  CallOperator->setUsed();
8795}
8796
8797void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8798       SourceLocation CurrentLocation,
8799       CXXConversionDecl *Conv)
8800{
8801  CXXRecordDecl *Lambda = Conv->getParent();
8802
8803  // Make sure that the lambda call operator is marked used.
8804  markLambdaCallOperatorUsed(*this, Lambda);
8805
8806  Conv->setUsed();
8807
8808  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8809  DiagnosticErrorTrap Trap(Diags);
8810
8811  // Return the address of the __invoke function.
8812  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8813  CXXMethodDecl *Invoke
8814    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8815  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8816                                       VK_LValue, Conv->getLocation()).take();
8817  assert(FunctionRef && "Can't refer to __invoke function?");
8818  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8819  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8820                                           Conv->getLocation(),
8821                                           Conv->getLocation()));
8822
8823  // Fill in the __invoke function with a dummy implementation. IR generation
8824  // will fill in the actual details.
8825  Invoke->setUsed();
8826  Invoke->setReferenced();
8827  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8828                                             Conv->getLocation()));
8829
8830  if (ASTMutationListener *L = getASTMutationListener()) {
8831    L->CompletedImplicitDefinition(Conv);
8832    L->CompletedImplicitDefinition(Invoke);
8833  }
8834}
8835
8836void Sema::DefineImplicitLambdaToBlockPointerConversion(
8837       SourceLocation CurrentLocation,
8838       CXXConversionDecl *Conv)
8839{
8840  CXXRecordDecl *Lambda = Conv->getParent();
8841
8842  // Make sure that the lambda call operator is marked used.
8843  CXXMethodDecl *CallOperator
8844    = cast<CXXMethodDecl>(
8845        *Lambda->lookup(
8846          Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8847  CallOperator->setReferenced();
8848  CallOperator->setUsed();
8849  Conv->setUsed();
8850
8851  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8852  DiagnosticErrorTrap Trap(Diags);
8853
8854  // Copy-initialize the lambda object as needed to capture it.
8855  Expr *This = ActOnCXXThis(CurrentLocation).take();
8856  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8857  ExprResult Init = PerformCopyInitialization(
8858                      InitializedEntity::InitializeBlock(CurrentLocation,
8859                                                         DerefThis->getType(),
8860                                                         /*NRVO=*/false),
8861                      CurrentLocation, DerefThis);
8862  if (!Init.isInvalid())
8863    Init = ActOnFinishFullExpr(Init.take());
8864
8865  if (Init.isInvalid()) {
8866    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8867    Conv->setInvalidDecl();
8868    return;
8869  }
8870
8871  // Create the new block to be returned.
8872  BlockDecl *Block = BlockDecl::Create(Context, Conv, Conv->getLocation());
8873
8874  // Set the type information.
8875  Block->setSignatureAsWritten(CallOperator->getTypeSourceInfo());
8876  Block->setIsVariadic(CallOperator->isVariadic());
8877  Block->setBlockMissingReturnType(false);
8878
8879  // Add parameters.
8880  SmallVector<ParmVarDecl *, 4> BlockParams;
8881  for (unsigned I = 0, N = CallOperator->getNumParams(); I != N; ++I) {
8882    ParmVarDecl *From = CallOperator->getParamDecl(I);
8883    BlockParams.push_back(ParmVarDecl::Create(Context, Block,
8884                                              From->getLocStart(),
8885                                              From->getLocation(),
8886                                              From->getIdentifier(),
8887                                              From->getType(),
8888                                              From->getTypeSourceInfo(),
8889                                              From->getStorageClass(),
8890                                            From->getStorageClassAsWritten(),
8891                                              /*DefaultArg=*/0));
8892  }
8893  Block->setParams(BlockParams);
8894
8895  // Add capture. The capture uses a fake variable, which doesn't correspond
8896  // to any actual memory location. However, the initializer copy-initializes
8897  // the lambda object.
8898  TypeSourceInfo *CapVarTSI =
8899      Context.getTrivialTypeSourceInfo(DerefThis->getType());
8900  VarDecl *CapVar = VarDecl::Create(Context, Block, Conv->getLocation(),
8901                                    Conv->getLocation(), 0,
8902                                    DerefThis->getType(), CapVarTSI,
8903                                    SC_None, SC_None);
8904  BlockDecl::Capture Capture(/*Variable=*/CapVar, /*ByRef=*/false,
8905                             /*Nested=*/false, /*Copy=*/Init.take());
8906  Block->setCaptures(Context, &Capture, &Capture + 1,
8907                     /*CapturesCXXThis=*/false);
8908
8909  // Add a fake function body to the block. IR generation is responsible
8910  // for filling in the actual body, which cannot be expressed as an AST.
8911  Block->setBody(new (Context) CompoundStmt(Context, 0, 0,
8912                                            Conv->getLocation(),
8913                                            Conv->getLocation()));
8914
8915  // Create the block literal expression.
8916  Expr *BuildBlock = new (Context) BlockExpr(Block, Conv->getConversionType());
8917  ExprCleanupObjects.push_back(Block);
8918  ExprNeedsCleanups = true;
8919
8920  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8921  // behavior.
8922  if (!getLangOptions().ObjCAutoRefCount)
8923    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock->getType(),
8924                                          CK_CopyAndAutoreleaseBlockObject,
8925                                          BuildBlock, 0, VK_RValue);
8926
8927  // Create the return statement that returns the block from the conversion
8928  // function.
8929  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock);
8930  if (Return.isInvalid()) {
8931    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8932    Conv->setInvalidDecl();
8933    return;
8934  }
8935
8936  // Set the body of the conversion function.
8937  Stmt *ReturnS = Return.take();
8938  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8939                                           Conv->getLocation(),
8940                                           Conv->getLocation()));
8941
8942  // We're done; notify the mutation listener, if any.
8943  if (ASTMutationListener *L = getASTMutationListener()) {
8944    L->CompletedImplicitDefinition(Conv);
8945  }
8946}
8947
8948ExprResult
8949Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8950                            CXXConstructorDecl *Constructor,
8951                            MultiExprArg ExprArgs,
8952                            bool HadMultipleCandidates,
8953                            bool RequiresZeroInit,
8954                            unsigned ConstructKind,
8955                            SourceRange ParenRange) {
8956  bool Elidable = false;
8957
8958  // C++0x [class.copy]p34:
8959  //   When certain criteria are met, an implementation is allowed to
8960  //   omit the copy/move construction of a class object, even if the
8961  //   copy/move constructor and/or destructor for the object have
8962  //   side effects. [...]
8963  //     - when a temporary class object that has not been bound to a
8964  //       reference (12.2) would be copied/moved to a class object
8965  //       with the same cv-unqualified type, the copy/move operation
8966  //       can be omitted by constructing the temporary object
8967  //       directly into the target of the omitted copy/move
8968  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8969      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
8970    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8971    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8972  }
8973
8974  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8975                               Elidable, move(ExprArgs), HadMultipleCandidates,
8976                               RequiresZeroInit, ConstructKind, ParenRange);
8977}
8978
8979/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8980/// including handling of its default argument expressions.
8981ExprResult
8982Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8983                            CXXConstructorDecl *Constructor, bool Elidable,
8984                            MultiExprArg ExprArgs,
8985                            bool HadMultipleCandidates,
8986                            bool RequiresZeroInit,
8987                            unsigned ConstructKind,
8988                            SourceRange ParenRange) {
8989  unsigned NumExprs = ExprArgs.size();
8990  Expr **Exprs = (Expr **)ExprArgs.release();
8991
8992  for (specific_attr_iterator<NonNullAttr>
8993           i = Constructor->specific_attr_begin<NonNullAttr>(),
8994           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8995    const NonNullAttr *NonNull = *i;
8996    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8997  }
8998
8999  MarkFunctionReferenced(ConstructLoc, Constructor);
9000  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9001                                        Constructor, Elidable, Exprs, NumExprs,
9002                                        HadMultipleCandidates, /*FIXME*/false,
9003                                        RequiresZeroInit,
9004              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9005                                        ParenRange));
9006}
9007
9008bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9009                                        CXXConstructorDecl *Constructor,
9010                                        MultiExprArg Exprs,
9011                                        bool HadMultipleCandidates) {
9012  // FIXME: Provide the correct paren SourceRange when available.
9013  ExprResult TempResult =
9014    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9015                          move(Exprs), HadMultipleCandidates, false,
9016                          CXXConstructExpr::CK_Complete, SourceRange());
9017  if (TempResult.isInvalid())
9018    return true;
9019
9020  Expr *Temp = TempResult.takeAs<Expr>();
9021  CheckImplicitConversions(Temp, VD->getLocation());
9022  MarkFunctionReferenced(VD->getLocation(), Constructor);
9023  Temp = MaybeCreateExprWithCleanups(Temp);
9024  VD->setInit(Temp);
9025
9026  return false;
9027}
9028
9029void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9030  if (VD->isInvalidDecl()) return;
9031
9032  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9033  if (ClassDecl->isInvalidDecl()) return;
9034  if (ClassDecl->hasIrrelevantDestructor()) return;
9035  if (ClassDecl->isDependentContext()) return;
9036
9037  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9038  MarkFunctionReferenced(VD->getLocation(), Destructor);
9039  CheckDestructorAccess(VD->getLocation(), Destructor,
9040                        PDiag(diag::err_access_dtor_var)
9041                        << VD->getDeclName()
9042                        << VD->getType());
9043  DiagnoseUseOfDecl(Destructor, VD->getLocation());
9044
9045  if (!VD->hasGlobalStorage()) return;
9046
9047  // Emit warning for non-trivial dtor in global scope (a real global,
9048  // class-static, function-static).
9049  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9050
9051  // TODO: this should be re-enabled for static locals by !CXAAtExit
9052  if (!VD->isStaticLocal())
9053    Diag(VD->getLocation(), diag::warn_global_destructor);
9054}
9055
9056/// \brief Given a constructor and the set of arguments provided for the
9057/// constructor, convert the arguments and add any required default arguments
9058/// to form a proper call to this constructor.
9059///
9060/// \returns true if an error occurred, false otherwise.
9061bool
9062Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9063                              MultiExprArg ArgsPtr,
9064                              SourceLocation Loc,
9065                              ASTOwningVector<Expr*> &ConvertedArgs,
9066                              bool AllowExplicit) {
9067  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9068  unsigned NumArgs = ArgsPtr.size();
9069  Expr **Args = (Expr **)ArgsPtr.get();
9070
9071  const FunctionProtoType *Proto
9072    = Constructor->getType()->getAs<FunctionProtoType>();
9073  assert(Proto && "Constructor without a prototype?");
9074  unsigned NumArgsInProto = Proto->getNumArgs();
9075
9076  // If too few arguments are available, we'll fill in the rest with defaults.
9077  if (NumArgs < NumArgsInProto)
9078    ConvertedArgs.reserve(NumArgsInProto);
9079  else
9080    ConvertedArgs.reserve(NumArgs);
9081
9082  VariadicCallType CallType =
9083    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9084  SmallVector<Expr *, 8> AllArgs;
9085  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9086                                        Proto, 0, Args, NumArgs, AllArgs,
9087                                        CallType, AllowExplicit);
9088  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
9089
9090  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9091
9092  // FIXME: Missing call to CheckFunctionCall or equivalent
9093
9094  return Invalid;
9095}
9096
9097static inline bool
9098CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9099                                       const FunctionDecl *FnDecl) {
9100  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9101  if (isa<NamespaceDecl>(DC)) {
9102    return SemaRef.Diag(FnDecl->getLocation(),
9103                        diag::err_operator_new_delete_declared_in_namespace)
9104      << FnDecl->getDeclName();
9105  }
9106
9107  if (isa<TranslationUnitDecl>(DC) &&
9108      FnDecl->getStorageClass() == SC_Static) {
9109    return SemaRef.Diag(FnDecl->getLocation(),
9110                        diag::err_operator_new_delete_declared_static)
9111      << FnDecl->getDeclName();
9112  }
9113
9114  return false;
9115}
9116
9117static inline bool
9118CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9119                            CanQualType ExpectedResultType,
9120                            CanQualType ExpectedFirstParamType,
9121                            unsigned DependentParamTypeDiag,
9122                            unsigned InvalidParamTypeDiag) {
9123  QualType ResultType =
9124    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9125
9126  // Check that the result type is not dependent.
9127  if (ResultType->isDependentType())
9128    return SemaRef.Diag(FnDecl->getLocation(),
9129                        diag::err_operator_new_delete_dependent_result_type)
9130    << FnDecl->getDeclName() << ExpectedResultType;
9131
9132  // Check that the result type is what we expect.
9133  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9134    return SemaRef.Diag(FnDecl->getLocation(),
9135                        diag::err_operator_new_delete_invalid_result_type)
9136    << FnDecl->getDeclName() << ExpectedResultType;
9137
9138  // A function template must have at least 2 parameters.
9139  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9140    return SemaRef.Diag(FnDecl->getLocation(),
9141                      diag::err_operator_new_delete_template_too_few_parameters)
9142        << FnDecl->getDeclName();
9143
9144  // The function decl must have at least 1 parameter.
9145  if (FnDecl->getNumParams() == 0)
9146    return SemaRef.Diag(FnDecl->getLocation(),
9147                        diag::err_operator_new_delete_too_few_parameters)
9148      << FnDecl->getDeclName();
9149
9150  // Check the the first parameter type is not dependent.
9151  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9152  if (FirstParamType->isDependentType())
9153    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9154      << FnDecl->getDeclName() << ExpectedFirstParamType;
9155
9156  // Check that the first parameter type is what we expect.
9157  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9158      ExpectedFirstParamType)
9159    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9160    << FnDecl->getDeclName() << ExpectedFirstParamType;
9161
9162  return false;
9163}
9164
9165static bool
9166CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9167  // C++ [basic.stc.dynamic.allocation]p1:
9168  //   A program is ill-formed if an allocation function is declared in a
9169  //   namespace scope other than global scope or declared static in global
9170  //   scope.
9171  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9172    return true;
9173
9174  CanQualType SizeTy =
9175    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9176
9177  // C++ [basic.stc.dynamic.allocation]p1:
9178  //  The return type shall be void*. The first parameter shall have type
9179  //  std::size_t.
9180  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9181                                  SizeTy,
9182                                  diag::err_operator_new_dependent_param_type,
9183                                  diag::err_operator_new_param_type))
9184    return true;
9185
9186  // C++ [basic.stc.dynamic.allocation]p1:
9187  //  The first parameter shall not have an associated default argument.
9188  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9189    return SemaRef.Diag(FnDecl->getLocation(),
9190                        diag::err_operator_new_default_arg)
9191      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9192
9193  return false;
9194}
9195
9196static bool
9197CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9198  // C++ [basic.stc.dynamic.deallocation]p1:
9199  //   A program is ill-formed if deallocation functions are declared in a
9200  //   namespace scope other than global scope or declared static in global
9201  //   scope.
9202  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9203    return true;
9204
9205  // C++ [basic.stc.dynamic.deallocation]p2:
9206  //   Each deallocation function shall return void and its first parameter
9207  //   shall be void*.
9208  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9209                                  SemaRef.Context.VoidPtrTy,
9210                                 diag::err_operator_delete_dependent_param_type,
9211                                 diag::err_operator_delete_param_type))
9212    return true;
9213
9214  return false;
9215}
9216
9217/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9218/// of this overloaded operator is well-formed. If so, returns false;
9219/// otherwise, emits appropriate diagnostics and returns true.
9220bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9221  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9222         "Expected an overloaded operator declaration");
9223
9224  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9225
9226  // C++ [over.oper]p5:
9227  //   The allocation and deallocation functions, operator new,
9228  //   operator new[], operator delete and operator delete[], are
9229  //   described completely in 3.7.3. The attributes and restrictions
9230  //   found in the rest of this subclause do not apply to them unless
9231  //   explicitly stated in 3.7.3.
9232  if (Op == OO_Delete || Op == OO_Array_Delete)
9233    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9234
9235  if (Op == OO_New || Op == OO_Array_New)
9236    return CheckOperatorNewDeclaration(*this, FnDecl);
9237
9238  // C++ [over.oper]p6:
9239  //   An operator function shall either be a non-static member
9240  //   function or be a non-member function and have at least one
9241  //   parameter whose type is a class, a reference to a class, an
9242  //   enumeration, or a reference to an enumeration.
9243  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9244    if (MethodDecl->isStatic())
9245      return Diag(FnDecl->getLocation(),
9246                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9247  } else {
9248    bool ClassOrEnumParam = false;
9249    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9250                                   ParamEnd = FnDecl->param_end();
9251         Param != ParamEnd; ++Param) {
9252      QualType ParamType = (*Param)->getType().getNonReferenceType();
9253      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9254          ParamType->isEnumeralType()) {
9255        ClassOrEnumParam = true;
9256        break;
9257      }
9258    }
9259
9260    if (!ClassOrEnumParam)
9261      return Diag(FnDecl->getLocation(),
9262                  diag::err_operator_overload_needs_class_or_enum)
9263        << FnDecl->getDeclName();
9264  }
9265
9266  // C++ [over.oper]p8:
9267  //   An operator function cannot have default arguments (8.3.6),
9268  //   except where explicitly stated below.
9269  //
9270  // Only the function-call operator allows default arguments
9271  // (C++ [over.call]p1).
9272  if (Op != OO_Call) {
9273    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9274         Param != FnDecl->param_end(); ++Param) {
9275      if ((*Param)->hasDefaultArg())
9276        return Diag((*Param)->getLocation(),
9277                    diag::err_operator_overload_default_arg)
9278          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9279    }
9280  }
9281
9282  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9283    { false, false, false }
9284#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9285    , { Unary, Binary, MemberOnly }
9286#include "clang/Basic/OperatorKinds.def"
9287  };
9288
9289  bool CanBeUnaryOperator = OperatorUses[Op][0];
9290  bool CanBeBinaryOperator = OperatorUses[Op][1];
9291  bool MustBeMemberOperator = OperatorUses[Op][2];
9292
9293  // C++ [over.oper]p8:
9294  //   [...] Operator functions cannot have more or fewer parameters
9295  //   than the number required for the corresponding operator, as
9296  //   described in the rest of this subclause.
9297  unsigned NumParams = FnDecl->getNumParams()
9298                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9299  if (Op != OO_Call &&
9300      ((NumParams == 1 && !CanBeUnaryOperator) ||
9301       (NumParams == 2 && !CanBeBinaryOperator) ||
9302       (NumParams < 1) || (NumParams > 2))) {
9303    // We have the wrong number of parameters.
9304    unsigned ErrorKind;
9305    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9306      ErrorKind = 2;  // 2 -> unary or binary.
9307    } else if (CanBeUnaryOperator) {
9308      ErrorKind = 0;  // 0 -> unary
9309    } else {
9310      assert(CanBeBinaryOperator &&
9311             "All non-call overloaded operators are unary or binary!");
9312      ErrorKind = 1;  // 1 -> binary
9313    }
9314
9315    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9316      << FnDecl->getDeclName() << NumParams << ErrorKind;
9317  }
9318
9319  // Overloaded operators other than operator() cannot be variadic.
9320  if (Op != OO_Call &&
9321      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9322    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9323      << FnDecl->getDeclName();
9324  }
9325
9326  // Some operators must be non-static member functions.
9327  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9328    return Diag(FnDecl->getLocation(),
9329                diag::err_operator_overload_must_be_member)
9330      << FnDecl->getDeclName();
9331  }
9332
9333  // C++ [over.inc]p1:
9334  //   The user-defined function called operator++ implements the
9335  //   prefix and postfix ++ operator. If this function is a member
9336  //   function with no parameters, or a non-member function with one
9337  //   parameter of class or enumeration type, it defines the prefix
9338  //   increment operator ++ for objects of that type. If the function
9339  //   is a member function with one parameter (which shall be of type
9340  //   int) or a non-member function with two parameters (the second
9341  //   of which shall be of type int), it defines the postfix
9342  //   increment operator ++ for objects of that type.
9343  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9344    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9345    bool ParamIsInt = false;
9346    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9347      ParamIsInt = BT->getKind() == BuiltinType::Int;
9348
9349    if (!ParamIsInt)
9350      return Diag(LastParam->getLocation(),
9351                  diag::err_operator_overload_post_incdec_must_be_int)
9352        << LastParam->getType() << (Op == OO_MinusMinus);
9353  }
9354
9355  return false;
9356}
9357
9358/// CheckLiteralOperatorDeclaration - Check whether the declaration
9359/// of this literal operator function is well-formed. If so, returns
9360/// false; otherwise, emits appropriate diagnostics and returns true.
9361bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9362  DeclContext *DC = FnDecl->getDeclContext();
9363  Decl::Kind Kind = DC->getDeclKind();
9364  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9365      Kind != Decl::LinkageSpec) {
9366    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9367      << FnDecl->getDeclName();
9368    return true;
9369  }
9370
9371  bool Valid = false;
9372
9373  // template <char...> type operator "" name() is the only valid template
9374  // signature, and the only valid signature with no parameters.
9375  if (FnDecl->param_size() == 0) {
9376    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9377      // Must have only one template parameter
9378      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9379      if (Params->size() == 1) {
9380        NonTypeTemplateParmDecl *PmDecl =
9381          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9382
9383        // The template parameter must be a char parameter pack.
9384        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9385            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9386          Valid = true;
9387      }
9388    }
9389  } else {
9390    // Check the first parameter
9391    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9392
9393    QualType T = (*Param)->getType();
9394
9395    // unsigned long long int, long double, and any character type are allowed
9396    // as the only parameters.
9397    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9398        Context.hasSameType(T, Context.LongDoubleTy) ||
9399        Context.hasSameType(T, Context.CharTy) ||
9400        Context.hasSameType(T, Context.WCharTy) ||
9401        Context.hasSameType(T, Context.Char16Ty) ||
9402        Context.hasSameType(T, Context.Char32Ty)) {
9403      if (++Param == FnDecl->param_end())
9404        Valid = true;
9405      goto FinishedParams;
9406    }
9407
9408    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9409    const PointerType *PT = T->getAs<PointerType>();
9410    if (!PT)
9411      goto FinishedParams;
9412    T = PT->getPointeeType();
9413    if (!T.isConstQualified())
9414      goto FinishedParams;
9415    T = T.getUnqualifiedType();
9416
9417    // Move on to the second parameter;
9418    ++Param;
9419
9420    // If there is no second parameter, the first must be a const char *
9421    if (Param == FnDecl->param_end()) {
9422      if (Context.hasSameType(T, Context.CharTy))
9423        Valid = true;
9424      goto FinishedParams;
9425    }
9426
9427    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9428    // are allowed as the first parameter to a two-parameter function
9429    if (!(Context.hasSameType(T, Context.CharTy) ||
9430          Context.hasSameType(T, Context.WCharTy) ||
9431          Context.hasSameType(T, Context.Char16Ty) ||
9432          Context.hasSameType(T, Context.Char32Ty)))
9433      goto FinishedParams;
9434
9435    // The second and final parameter must be an std::size_t
9436    T = (*Param)->getType().getUnqualifiedType();
9437    if (Context.hasSameType(T, Context.getSizeType()) &&
9438        ++Param == FnDecl->param_end())
9439      Valid = true;
9440  }
9441
9442  // FIXME: This diagnostic is absolutely terrible.
9443FinishedParams:
9444  if (!Valid) {
9445    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9446      << FnDecl->getDeclName();
9447    return true;
9448  }
9449
9450  StringRef LiteralName
9451    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9452  if (LiteralName[0] != '_') {
9453    // C++0x [usrlit.suffix]p1:
9454    //   Literal suffix identifiers that do not start with an underscore are
9455    //   reserved for future standardization.
9456    bool IsHexFloat = true;
9457    if (LiteralName.size() > 1 &&
9458        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9459      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9460        if (!isdigit(LiteralName[I])) {
9461          IsHexFloat = false;
9462          break;
9463        }
9464      }
9465    }
9466
9467    if (IsHexFloat)
9468      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9469        << LiteralName;
9470    else
9471      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9472  }
9473
9474  return false;
9475}
9476
9477/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9478/// linkage specification, including the language and (if present)
9479/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9480/// the location of the language string literal, which is provided
9481/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9482/// the '{' brace. Otherwise, this linkage specification does not
9483/// have any braces.
9484Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9485                                           SourceLocation LangLoc,
9486                                           StringRef Lang,
9487                                           SourceLocation LBraceLoc) {
9488  LinkageSpecDecl::LanguageIDs Language;
9489  if (Lang == "\"C\"")
9490    Language = LinkageSpecDecl::lang_c;
9491  else if (Lang == "\"C++\"")
9492    Language = LinkageSpecDecl::lang_cxx;
9493  else {
9494    Diag(LangLoc, diag::err_bad_language);
9495    return 0;
9496  }
9497
9498  // FIXME: Add all the various semantics of linkage specifications
9499
9500  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9501                                               ExternLoc, LangLoc, Language);
9502  CurContext->addDecl(D);
9503  PushDeclContext(S, D);
9504  return D;
9505}
9506
9507/// ActOnFinishLinkageSpecification - Complete the definition of
9508/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9509/// valid, it's the position of the closing '}' brace in a linkage
9510/// specification that uses braces.
9511Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9512                                            Decl *LinkageSpec,
9513                                            SourceLocation RBraceLoc) {
9514  if (LinkageSpec) {
9515    if (RBraceLoc.isValid()) {
9516      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9517      LSDecl->setRBraceLoc(RBraceLoc);
9518    }
9519    PopDeclContext();
9520  }
9521  return LinkageSpec;
9522}
9523
9524/// \brief Perform semantic analysis for the variable declaration that
9525/// occurs within a C++ catch clause, returning the newly-created
9526/// variable.
9527VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9528                                         TypeSourceInfo *TInfo,
9529                                         SourceLocation StartLoc,
9530                                         SourceLocation Loc,
9531                                         IdentifierInfo *Name) {
9532  bool Invalid = false;
9533  QualType ExDeclType = TInfo->getType();
9534
9535  // Arrays and functions decay.
9536  if (ExDeclType->isArrayType())
9537    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9538  else if (ExDeclType->isFunctionType())
9539    ExDeclType = Context.getPointerType(ExDeclType);
9540
9541  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9542  // The exception-declaration shall not denote a pointer or reference to an
9543  // incomplete type, other than [cv] void*.
9544  // N2844 forbids rvalue references.
9545  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9546    Diag(Loc, diag::err_catch_rvalue_ref);
9547    Invalid = true;
9548  }
9549
9550  QualType BaseType = ExDeclType;
9551  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9552  unsigned DK = diag::err_catch_incomplete;
9553  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9554    BaseType = Ptr->getPointeeType();
9555    Mode = 1;
9556    DK = diag::err_catch_incomplete_ptr;
9557  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9558    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9559    BaseType = Ref->getPointeeType();
9560    Mode = 2;
9561    DK = diag::err_catch_incomplete_ref;
9562  }
9563  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9564      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9565    Invalid = true;
9566
9567  if (!Invalid && !ExDeclType->isDependentType() &&
9568      RequireNonAbstractType(Loc, ExDeclType,
9569                             diag::err_abstract_type_in_decl,
9570                             AbstractVariableType))
9571    Invalid = true;
9572
9573  // Only the non-fragile NeXT runtime currently supports C++ catches
9574  // of ObjC types, and no runtime supports catching ObjC types by value.
9575  if (!Invalid && getLangOptions().ObjC1) {
9576    QualType T = ExDeclType;
9577    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9578      T = RT->getPointeeType();
9579
9580    if (T->isObjCObjectType()) {
9581      Diag(Loc, diag::err_objc_object_catch);
9582      Invalid = true;
9583    } else if (T->isObjCObjectPointerType()) {
9584      if (!getLangOptions().ObjCNonFragileABI)
9585        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9586    }
9587  }
9588
9589  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9590                                    ExDeclType, TInfo, SC_None, SC_None);
9591  ExDecl->setExceptionVariable(true);
9592
9593  // In ARC, infer 'retaining' for variables of retainable type.
9594  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9595    Invalid = true;
9596
9597  if (!Invalid && !ExDeclType->isDependentType()) {
9598    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9599      // C++ [except.handle]p16:
9600      //   The object declared in an exception-declaration or, if the
9601      //   exception-declaration does not specify a name, a temporary (12.2) is
9602      //   copy-initialized (8.5) from the exception object. [...]
9603      //   The object is destroyed when the handler exits, after the destruction
9604      //   of any automatic objects initialized within the handler.
9605      //
9606      // We just pretend to initialize the object with itself, then make sure
9607      // it can be destroyed later.
9608      QualType initType = ExDeclType;
9609
9610      InitializedEntity entity =
9611        InitializedEntity::InitializeVariable(ExDecl);
9612      InitializationKind initKind =
9613        InitializationKind::CreateCopy(Loc, SourceLocation());
9614
9615      Expr *opaqueValue =
9616        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9617      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9618      ExprResult result = sequence.Perform(*this, entity, initKind,
9619                                           MultiExprArg(&opaqueValue, 1));
9620      if (result.isInvalid())
9621        Invalid = true;
9622      else {
9623        // If the constructor used was non-trivial, set this as the
9624        // "initializer".
9625        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9626        if (!construct->getConstructor()->isTrivial()) {
9627          Expr *init = MaybeCreateExprWithCleanups(construct);
9628          ExDecl->setInit(init);
9629        }
9630
9631        // And make sure it's destructable.
9632        FinalizeVarWithDestructor(ExDecl, recordType);
9633      }
9634    }
9635  }
9636
9637  if (Invalid)
9638    ExDecl->setInvalidDecl();
9639
9640  return ExDecl;
9641}
9642
9643/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9644/// handler.
9645Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9646  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9647  bool Invalid = D.isInvalidType();
9648
9649  // Check for unexpanded parameter packs.
9650  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9651                                               UPPC_ExceptionType)) {
9652    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9653                                             D.getIdentifierLoc());
9654    Invalid = true;
9655  }
9656
9657  IdentifierInfo *II = D.getIdentifier();
9658  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9659                                             LookupOrdinaryName,
9660                                             ForRedeclaration)) {
9661    // The scope should be freshly made just for us. There is just no way
9662    // it contains any previous declaration.
9663    assert(!S->isDeclScope(PrevDecl));
9664    if (PrevDecl->isTemplateParameter()) {
9665      // Maybe we will complain about the shadowed template parameter.
9666      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9667      PrevDecl = 0;
9668    }
9669  }
9670
9671  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9672    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9673      << D.getCXXScopeSpec().getRange();
9674    Invalid = true;
9675  }
9676
9677  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9678                                              D.getSourceRange().getBegin(),
9679                                              D.getIdentifierLoc(),
9680                                              D.getIdentifier());
9681  if (Invalid)
9682    ExDecl->setInvalidDecl();
9683
9684  // Add the exception declaration into this scope.
9685  if (II)
9686    PushOnScopeChains(ExDecl, S);
9687  else
9688    CurContext->addDecl(ExDecl);
9689
9690  ProcessDeclAttributes(S, ExDecl, D);
9691  return ExDecl;
9692}
9693
9694Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9695                                         Expr *AssertExpr,
9696                                         Expr *AssertMessageExpr_,
9697                                         SourceLocation RParenLoc) {
9698  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9699
9700  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9701    // In a static_assert-declaration, the constant-expression shall be a
9702    // constant expression that can be contextually converted to bool.
9703    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9704    if (Converted.isInvalid())
9705      return 0;
9706
9707    llvm::APSInt Cond;
9708    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9709          PDiag(diag::err_static_assert_expression_is_not_constant),
9710          /*AllowFold=*/false).isInvalid())
9711      return 0;
9712
9713    if (!Cond)
9714      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9715        << AssertMessage->getString() << AssertExpr->getSourceRange();
9716  }
9717
9718  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9719    return 0;
9720
9721  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9722                                        AssertExpr, AssertMessage, RParenLoc);
9723
9724  CurContext->addDecl(Decl);
9725  return Decl;
9726}
9727
9728/// \brief Perform semantic analysis of the given friend type declaration.
9729///
9730/// \returns A friend declaration that.
9731FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9732                                      SourceLocation FriendLoc,
9733                                      TypeSourceInfo *TSInfo) {
9734  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9735
9736  QualType T = TSInfo->getType();
9737  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9738
9739  // C++03 [class.friend]p2:
9740  //   An elaborated-type-specifier shall be used in a friend declaration
9741  //   for a class.*
9742  //
9743  //   * The class-key of the elaborated-type-specifier is required.
9744  if (!ActiveTemplateInstantiations.empty()) {
9745    // Do not complain about the form of friend template types during
9746    // template instantiation; we will already have complained when the
9747    // template was declared.
9748  } else if (!T->isElaboratedTypeSpecifier()) {
9749    // If we evaluated the type to a record type, suggest putting
9750    // a tag in front.
9751    if (const RecordType *RT = T->getAs<RecordType>()) {
9752      RecordDecl *RD = RT->getDecl();
9753
9754      std::string InsertionText = std::string(" ") + RD->getKindName();
9755
9756      Diag(TypeRange.getBegin(),
9757           getLangOptions().CPlusPlus0x ?
9758             diag::warn_cxx98_compat_unelaborated_friend_type :
9759             diag::ext_unelaborated_friend_type)
9760        << (unsigned) RD->getTagKind()
9761        << T
9762        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9763                                      InsertionText);
9764    } else {
9765      Diag(FriendLoc,
9766           getLangOptions().CPlusPlus0x ?
9767             diag::warn_cxx98_compat_nonclass_type_friend :
9768             diag::ext_nonclass_type_friend)
9769        << T
9770        << SourceRange(FriendLoc, TypeRange.getEnd());
9771    }
9772  } else if (T->getAs<EnumType>()) {
9773    Diag(FriendLoc,
9774         getLangOptions().CPlusPlus0x ?
9775           diag::warn_cxx98_compat_enum_friend :
9776           diag::ext_enum_friend)
9777      << T
9778      << SourceRange(FriendLoc, TypeRange.getEnd());
9779  }
9780
9781  // C++0x [class.friend]p3:
9782  //   If the type specifier in a friend declaration designates a (possibly
9783  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9784  //   the friend declaration is ignored.
9785
9786  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9787  // in [class.friend]p3 that we do not implement.
9788
9789  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9790}
9791
9792/// Handle a friend tag declaration where the scope specifier was
9793/// templated.
9794Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9795                                    unsigned TagSpec, SourceLocation TagLoc,
9796                                    CXXScopeSpec &SS,
9797                                    IdentifierInfo *Name, SourceLocation NameLoc,
9798                                    AttributeList *Attr,
9799                                    MultiTemplateParamsArg TempParamLists) {
9800  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9801
9802  bool isExplicitSpecialization = false;
9803  bool Invalid = false;
9804
9805  if (TemplateParameterList *TemplateParams
9806        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9807                                                  TempParamLists.get(),
9808                                                  TempParamLists.size(),
9809                                                  /*friend*/ true,
9810                                                  isExplicitSpecialization,
9811                                                  Invalid)) {
9812    if (TemplateParams->size() > 0) {
9813      // This is a declaration of a class template.
9814      if (Invalid)
9815        return 0;
9816
9817      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9818                                SS, Name, NameLoc, Attr,
9819                                TemplateParams, AS_public,
9820                                /*ModulePrivateLoc=*/SourceLocation(),
9821                                TempParamLists.size() - 1,
9822                   (TemplateParameterList**) TempParamLists.release()).take();
9823    } else {
9824      // The "template<>" header is extraneous.
9825      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9826        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9827      isExplicitSpecialization = true;
9828    }
9829  }
9830
9831  if (Invalid) return 0;
9832
9833  bool isAllExplicitSpecializations = true;
9834  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9835    if (TempParamLists.get()[I]->size()) {
9836      isAllExplicitSpecializations = false;
9837      break;
9838    }
9839  }
9840
9841  // FIXME: don't ignore attributes.
9842
9843  // If it's explicit specializations all the way down, just forget
9844  // about the template header and build an appropriate non-templated
9845  // friend.  TODO: for source fidelity, remember the headers.
9846  if (isAllExplicitSpecializations) {
9847    if (SS.isEmpty()) {
9848      bool Owned = false;
9849      bool IsDependent = false;
9850      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9851                      Attr, AS_public,
9852                      /*ModulePrivateLoc=*/SourceLocation(),
9853                      MultiTemplateParamsArg(), Owned, IsDependent,
9854                      /*ScopedEnumKWLoc=*/SourceLocation(),
9855                      /*ScopedEnumUsesClassTag=*/false,
9856                      /*UnderlyingType=*/TypeResult());
9857    }
9858
9859    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9860    ElaboratedTypeKeyword Keyword
9861      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9862    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9863                                   *Name, NameLoc);
9864    if (T.isNull())
9865      return 0;
9866
9867    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9868    if (isa<DependentNameType>(T)) {
9869      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9870      TL.setElaboratedKeywordLoc(TagLoc);
9871      TL.setQualifierLoc(QualifierLoc);
9872      TL.setNameLoc(NameLoc);
9873    } else {
9874      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9875      TL.setElaboratedKeywordLoc(TagLoc);
9876      TL.setQualifierLoc(QualifierLoc);
9877      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9878    }
9879
9880    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9881                                            TSI, FriendLoc);
9882    Friend->setAccess(AS_public);
9883    CurContext->addDecl(Friend);
9884    return Friend;
9885  }
9886
9887  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9888
9889
9890
9891  // Handle the case of a templated-scope friend class.  e.g.
9892  //   template <class T> class A<T>::B;
9893  // FIXME: we don't support these right now.
9894  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9895  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9896  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9897  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9898  TL.setElaboratedKeywordLoc(TagLoc);
9899  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9900  TL.setNameLoc(NameLoc);
9901
9902  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9903                                          TSI, FriendLoc);
9904  Friend->setAccess(AS_public);
9905  Friend->setUnsupportedFriend(true);
9906  CurContext->addDecl(Friend);
9907  return Friend;
9908}
9909
9910
9911/// Handle a friend type declaration.  This works in tandem with
9912/// ActOnTag.
9913///
9914/// Notes on friend class templates:
9915///
9916/// We generally treat friend class declarations as if they were
9917/// declaring a class.  So, for example, the elaborated type specifier
9918/// in a friend declaration is required to obey the restrictions of a
9919/// class-head (i.e. no typedefs in the scope chain), template
9920/// parameters are required to match up with simple template-ids, &c.
9921/// However, unlike when declaring a template specialization, it's
9922/// okay to refer to a template specialization without an empty
9923/// template parameter declaration, e.g.
9924///   friend class A<T>::B<unsigned>;
9925/// We permit this as a special case; if there are any template
9926/// parameters present at all, require proper matching, i.e.
9927///   template <> template <class T> friend class A<int>::B;
9928Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9929                                MultiTemplateParamsArg TempParams) {
9930  SourceLocation Loc = DS.getSourceRange().getBegin();
9931
9932  assert(DS.isFriendSpecified());
9933  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9934
9935  // Try to convert the decl specifier to a type.  This works for
9936  // friend templates because ActOnTag never produces a ClassTemplateDecl
9937  // for a TUK_Friend.
9938  Declarator TheDeclarator(DS, Declarator::MemberContext);
9939  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9940  QualType T = TSI->getType();
9941  if (TheDeclarator.isInvalidType())
9942    return 0;
9943
9944  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9945    return 0;
9946
9947  // This is definitely an error in C++98.  It's probably meant to
9948  // be forbidden in C++0x, too, but the specification is just
9949  // poorly written.
9950  //
9951  // The problem is with declarations like the following:
9952  //   template <T> friend A<T>::foo;
9953  // where deciding whether a class C is a friend or not now hinges
9954  // on whether there exists an instantiation of A that causes
9955  // 'foo' to equal C.  There are restrictions on class-heads
9956  // (which we declare (by fiat) elaborated friend declarations to
9957  // be) that makes this tractable.
9958  //
9959  // FIXME: handle "template <> friend class A<T>;", which
9960  // is possibly well-formed?  Who even knows?
9961  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9962    Diag(Loc, diag::err_tagless_friend_type_template)
9963      << DS.getSourceRange();
9964    return 0;
9965  }
9966
9967  // C++98 [class.friend]p1: A friend of a class is a function
9968  //   or class that is not a member of the class . . .
9969  // This is fixed in DR77, which just barely didn't make the C++03
9970  // deadline.  It's also a very silly restriction that seriously
9971  // affects inner classes and which nobody else seems to implement;
9972  // thus we never diagnose it, not even in -pedantic.
9973  //
9974  // But note that we could warn about it: it's always useless to
9975  // friend one of your own members (it's not, however, worthless to
9976  // friend a member of an arbitrary specialization of your template).
9977
9978  Decl *D;
9979  if (unsigned NumTempParamLists = TempParams.size())
9980    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9981                                   NumTempParamLists,
9982                                   TempParams.release(),
9983                                   TSI,
9984                                   DS.getFriendSpecLoc());
9985  else
9986    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9987
9988  if (!D)
9989    return 0;
9990
9991  D->setAccess(AS_public);
9992  CurContext->addDecl(D);
9993
9994  return D;
9995}
9996
9997Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9998                                    MultiTemplateParamsArg TemplateParams) {
9999  const DeclSpec &DS = D.getDeclSpec();
10000
10001  assert(DS.isFriendSpecified());
10002  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10003
10004  SourceLocation Loc = D.getIdentifierLoc();
10005  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10006
10007  // C++ [class.friend]p1
10008  //   A friend of a class is a function or class....
10009  // Note that this sees through typedefs, which is intended.
10010  // It *doesn't* see through dependent types, which is correct
10011  // according to [temp.arg.type]p3:
10012  //   If a declaration acquires a function type through a
10013  //   type dependent on a template-parameter and this causes
10014  //   a declaration that does not use the syntactic form of a
10015  //   function declarator to have a function type, the program
10016  //   is ill-formed.
10017  if (!TInfo->getType()->isFunctionType()) {
10018    Diag(Loc, diag::err_unexpected_friend);
10019
10020    // It might be worthwhile to try to recover by creating an
10021    // appropriate declaration.
10022    return 0;
10023  }
10024
10025  // C++ [namespace.memdef]p3
10026  //  - If a friend declaration in a non-local class first declares a
10027  //    class or function, the friend class or function is a member
10028  //    of the innermost enclosing namespace.
10029  //  - The name of the friend is not found by simple name lookup
10030  //    until a matching declaration is provided in that namespace
10031  //    scope (either before or after the class declaration granting
10032  //    friendship).
10033  //  - If a friend function is called, its name may be found by the
10034  //    name lookup that considers functions from namespaces and
10035  //    classes associated with the types of the function arguments.
10036  //  - When looking for a prior declaration of a class or a function
10037  //    declared as a friend, scopes outside the innermost enclosing
10038  //    namespace scope are not considered.
10039
10040  CXXScopeSpec &SS = D.getCXXScopeSpec();
10041  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10042  DeclarationName Name = NameInfo.getName();
10043  assert(Name);
10044
10045  // Check for unexpanded parameter packs.
10046  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10047      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10048      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10049    return 0;
10050
10051  // The context we found the declaration in, or in which we should
10052  // create the declaration.
10053  DeclContext *DC;
10054  Scope *DCScope = S;
10055  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10056                        ForRedeclaration);
10057
10058  // FIXME: there are different rules in local classes
10059
10060  // There are four cases here.
10061  //   - There's no scope specifier, in which case we just go to the
10062  //     appropriate scope and look for a function or function template
10063  //     there as appropriate.
10064  // Recover from invalid scope qualifiers as if they just weren't there.
10065  if (SS.isInvalid() || !SS.isSet()) {
10066    // C++0x [namespace.memdef]p3:
10067    //   If the name in a friend declaration is neither qualified nor
10068    //   a template-id and the declaration is a function or an
10069    //   elaborated-type-specifier, the lookup to determine whether
10070    //   the entity has been previously declared shall not consider
10071    //   any scopes outside the innermost enclosing namespace.
10072    // C++0x [class.friend]p11:
10073    //   If a friend declaration appears in a local class and the name
10074    //   specified is an unqualified name, a prior declaration is
10075    //   looked up without considering scopes that are outside the
10076    //   innermost enclosing non-class scope. For a friend function
10077    //   declaration, if there is no prior declaration, the program is
10078    //   ill-formed.
10079    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10080    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10081
10082    // Find the appropriate context according to the above.
10083    DC = CurContext;
10084    while (true) {
10085      // Skip class contexts.  If someone can cite chapter and verse
10086      // for this behavior, that would be nice --- it's what GCC and
10087      // EDG do, and it seems like a reasonable intent, but the spec
10088      // really only says that checks for unqualified existing
10089      // declarations should stop at the nearest enclosing namespace,
10090      // not that they should only consider the nearest enclosing
10091      // namespace.
10092      while (DC->isRecord())
10093        DC = DC->getParent();
10094
10095      LookupQualifiedName(Previous, DC);
10096
10097      // TODO: decide what we think about using declarations.
10098      if (isLocal || !Previous.empty())
10099        break;
10100
10101      if (isTemplateId) {
10102        if (isa<TranslationUnitDecl>(DC)) break;
10103      } else {
10104        if (DC->isFileContext()) break;
10105      }
10106      DC = DC->getParent();
10107    }
10108
10109    // C++ [class.friend]p1: A friend of a class is a function or
10110    //   class that is not a member of the class . . .
10111    // C++11 changes this for both friend types and functions.
10112    // Most C++ 98 compilers do seem to give an error here, so
10113    // we do, too.
10114    if (!Previous.empty() && DC->Equals(CurContext))
10115      Diag(DS.getFriendSpecLoc(),
10116           getLangOptions().CPlusPlus0x ?
10117             diag::warn_cxx98_compat_friend_is_member :
10118             diag::err_friend_is_member);
10119
10120    DCScope = getScopeForDeclContext(S, DC);
10121
10122    // C++ [class.friend]p6:
10123    //   A function can be defined in a friend declaration of a class if and
10124    //   only if the class is a non-local class (9.8), the function name is
10125    //   unqualified, and the function has namespace scope.
10126    if (isLocal && D.isFunctionDefinition()) {
10127      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10128    }
10129
10130  //   - There's a non-dependent scope specifier, in which case we
10131  //     compute it and do a previous lookup there for a function
10132  //     or function template.
10133  } else if (!SS.getScopeRep()->isDependent()) {
10134    DC = computeDeclContext(SS);
10135    if (!DC) return 0;
10136
10137    if (RequireCompleteDeclContext(SS, DC)) return 0;
10138
10139    LookupQualifiedName(Previous, DC);
10140
10141    // Ignore things found implicitly in the wrong scope.
10142    // TODO: better diagnostics for this case.  Suggesting the right
10143    // qualified scope would be nice...
10144    LookupResult::Filter F = Previous.makeFilter();
10145    while (F.hasNext()) {
10146      NamedDecl *D = F.next();
10147      if (!DC->InEnclosingNamespaceSetOf(
10148              D->getDeclContext()->getRedeclContext()))
10149        F.erase();
10150    }
10151    F.done();
10152
10153    if (Previous.empty()) {
10154      D.setInvalidType();
10155      Diag(Loc, diag::err_qualified_friend_not_found)
10156          << Name << TInfo->getType();
10157      return 0;
10158    }
10159
10160    // C++ [class.friend]p1: A friend of a class is a function or
10161    //   class that is not a member of the class . . .
10162    if (DC->Equals(CurContext))
10163      Diag(DS.getFriendSpecLoc(),
10164           getLangOptions().CPlusPlus0x ?
10165             diag::warn_cxx98_compat_friend_is_member :
10166             diag::err_friend_is_member);
10167
10168    if (D.isFunctionDefinition()) {
10169      // C++ [class.friend]p6:
10170      //   A function can be defined in a friend declaration of a class if and
10171      //   only if the class is a non-local class (9.8), the function name is
10172      //   unqualified, and the function has namespace scope.
10173      SemaDiagnosticBuilder DB
10174        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10175
10176      DB << SS.getScopeRep();
10177      if (DC->isFileContext())
10178        DB << FixItHint::CreateRemoval(SS.getRange());
10179      SS.clear();
10180    }
10181
10182  //   - There's a scope specifier that does not match any template
10183  //     parameter lists, in which case we use some arbitrary context,
10184  //     create a method or method template, and wait for instantiation.
10185  //   - There's a scope specifier that does match some template
10186  //     parameter lists, which we don't handle right now.
10187  } else {
10188    if (D.isFunctionDefinition()) {
10189      // C++ [class.friend]p6:
10190      //   A function can be defined in a friend declaration of a class if and
10191      //   only if the class is a non-local class (9.8), the function name is
10192      //   unqualified, and the function has namespace scope.
10193      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10194        << SS.getScopeRep();
10195    }
10196
10197    DC = CurContext;
10198    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10199  }
10200
10201  if (!DC->isRecord()) {
10202    // This implies that it has to be an operator or function.
10203    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10204        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10205        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10206      Diag(Loc, diag::err_introducing_special_friend) <<
10207        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10208         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10209      return 0;
10210    }
10211  }
10212
10213  // FIXME: This is an egregious hack to cope with cases where the scope stack
10214  // does not contain the declaration context, i.e., in an out-of-line
10215  // definition of a class.
10216  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10217  if (!DCScope) {
10218    FakeDCScope.setEntity(DC);
10219    DCScope = &FakeDCScope;
10220  }
10221
10222  bool AddToScope = true;
10223  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10224                                          move(TemplateParams), AddToScope);
10225  if (!ND) return 0;
10226
10227  assert(ND->getDeclContext() == DC);
10228  assert(ND->getLexicalDeclContext() == CurContext);
10229
10230  // Add the function declaration to the appropriate lookup tables,
10231  // adjusting the redeclarations list as necessary.  We don't
10232  // want to do this yet if the friending class is dependent.
10233  //
10234  // Also update the scope-based lookup if the target context's
10235  // lookup context is in lexical scope.
10236  if (!CurContext->isDependentContext()) {
10237    DC = DC->getRedeclContext();
10238    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10239    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10240      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10241  }
10242
10243  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10244                                       D.getIdentifierLoc(), ND,
10245                                       DS.getFriendSpecLoc());
10246  FrD->setAccess(AS_public);
10247  CurContext->addDecl(FrD);
10248
10249  if (ND->isInvalidDecl())
10250    FrD->setInvalidDecl();
10251  else {
10252    FunctionDecl *FD;
10253    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10254      FD = FTD->getTemplatedDecl();
10255    else
10256      FD = cast<FunctionDecl>(ND);
10257
10258    // Mark templated-scope function declarations as unsupported.
10259    if (FD->getNumTemplateParameterLists())
10260      FrD->setUnsupportedFriend(true);
10261  }
10262
10263  return ND;
10264}
10265
10266void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10267  AdjustDeclIfTemplate(Dcl);
10268
10269  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10270  if (!Fn) {
10271    Diag(DelLoc, diag::err_deleted_non_function);
10272    return;
10273  }
10274  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10275    Diag(DelLoc, diag::err_deleted_decl_not_first);
10276    Diag(Prev->getLocation(), diag::note_previous_declaration);
10277    // If the declaration wasn't the first, we delete the function anyway for
10278    // recovery.
10279  }
10280  Fn->setDeletedAsWritten();
10281
10282  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10283  if (!MD)
10284    return;
10285
10286  // A deleted special member function is trivial if the corresponding
10287  // implicitly-declared function would have been.
10288  switch (getSpecialMember(MD)) {
10289  case CXXInvalid:
10290    break;
10291  case CXXDefaultConstructor:
10292    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10293    break;
10294  case CXXCopyConstructor:
10295    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10296    break;
10297  case CXXMoveConstructor:
10298    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10299    break;
10300  case CXXCopyAssignment:
10301    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10302    break;
10303  case CXXMoveAssignment:
10304    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10305    break;
10306  case CXXDestructor:
10307    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10308    break;
10309  }
10310}
10311
10312void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10313  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10314
10315  if (MD) {
10316    if (MD->getParent()->isDependentType()) {
10317      MD->setDefaulted();
10318      MD->setExplicitlyDefaulted();
10319      return;
10320    }
10321
10322    CXXSpecialMember Member = getSpecialMember(MD);
10323    if (Member == CXXInvalid) {
10324      Diag(DefaultLoc, diag::err_default_special_members);
10325      return;
10326    }
10327
10328    MD->setDefaulted();
10329    MD->setExplicitlyDefaulted();
10330
10331    // If this definition appears within the record, do the checking when
10332    // the record is complete.
10333    const FunctionDecl *Primary = MD;
10334    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10335      // Find the uninstantiated declaration that actually had the '= default'
10336      // on it.
10337      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10338
10339    if (Primary == Primary->getCanonicalDecl())
10340      return;
10341
10342    switch (Member) {
10343    case CXXDefaultConstructor: {
10344      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10345      CheckExplicitlyDefaultedDefaultConstructor(CD);
10346      if (!CD->isInvalidDecl())
10347        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10348      break;
10349    }
10350
10351    case CXXCopyConstructor: {
10352      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10353      CheckExplicitlyDefaultedCopyConstructor(CD);
10354      if (!CD->isInvalidDecl())
10355        DefineImplicitCopyConstructor(DefaultLoc, CD);
10356      break;
10357    }
10358
10359    case CXXCopyAssignment: {
10360      CheckExplicitlyDefaultedCopyAssignment(MD);
10361      if (!MD->isInvalidDecl())
10362        DefineImplicitCopyAssignment(DefaultLoc, MD);
10363      break;
10364    }
10365
10366    case CXXDestructor: {
10367      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10368      CheckExplicitlyDefaultedDestructor(DD);
10369      if (!DD->isInvalidDecl())
10370        DefineImplicitDestructor(DefaultLoc, DD);
10371      break;
10372    }
10373
10374    case CXXMoveConstructor: {
10375      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10376      CheckExplicitlyDefaultedMoveConstructor(CD);
10377      if (!CD->isInvalidDecl())
10378        DefineImplicitMoveConstructor(DefaultLoc, CD);
10379      break;
10380    }
10381
10382    case CXXMoveAssignment: {
10383      CheckExplicitlyDefaultedMoveAssignment(MD);
10384      if (!MD->isInvalidDecl())
10385        DefineImplicitMoveAssignment(DefaultLoc, MD);
10386      break;
10387    }
10388
10389    case CXXInvalid:
10390      llvm_unreachable("Invalid special member.");
10391    }
10392  } else {
10393    Diag(DefaultLoc, diag::err_default_special_members);
10394  }
10395}
10396
10397static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10398  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10399    Stmt *SubStmt = *CI;
10400    if (!SubStmt)
10401      continue;
10402    if (isa<ReturnStmt>(SubStmt))
10403      Self.Diag(SubStmt->getSourceRange().getBegin(),
10404           diag::err_return_in_constructor_handler);
10405    if (!isa<Expr>(SubStmt))
10406      SearchForReturnInStmt(Self, SubStmt);
10407  }
10408}
10409
10410void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10411  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10412    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10413    SearchForReturnInStmt(*this, Handler);
10414  }
10415}
10416
10417bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10418                                             const CXXMethodDecl *Old) {
10419  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10420  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10421
10422  if (Context.hasSameType(NewTy, OldTy) ||
10423      NewTy->isDependentType() || OldTy->isDependentType())
10424    return false;
10425
10426  // Check if the return types are covariant
10427  QualType NewClassTy, OldClassTy;
10428
10429  /// Both types must be pointers or references to classes.
10430  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10431    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10432      NewClassTy = NewPT->getPointeeType();
10433      OldClassTy = OldPT->getPointeeType();
10434    }
10435  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10436    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10437      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10438        NewClassTy = NewRT->getPointeeType();
10439        OldClassTy = OldRT->getPointeeType();
10440      }
10441    }
10442  }
10443
10444  // The return types aren't either both pointers or references to a class type.
10445  if (NewClassTy.isNull()) {
10446    Diag(New->getLocation(),
10447         diag::err_different_return_type_for_overriding_virtual_function)
10448      << New->getDeclName() << NewTy << OldTy;
10449    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10450
10451    return true;
10452  }
10453
10454  // C++ [class.virtual]p6:
10455  //   If the return type of D::f differs from the return type of B::f, the
10456  //   class type in the return type of D::f shall be complete at the point of
10457  //   declaration of D::f or shall be the class type D.
10458  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10459    if (!RT->isBeingDefined() &&
10460        RequireCompleteType(New->getLocation(), NewClassTy,
10461                            PDiag(diag::err_covariant_return_incomplete)
10462                              << New->getDeclName()))
10463    return true;
10464  }
10465
10466  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10467    // Check if the new class derives from the old class.
10468    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10469      Diag(New->getLocation(),
10470           diag::err_covariant_return_not_derived)
10471      << New->getDeclName() << NewTy << OldTy;
10472      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10473      return true;
10474    }
10475
10476    // Check if we the conversion from derived to base is valid.
10477    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10478                    diag::err_covariant_return_inaccessible_base,
10479                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10480                    // FIXME: Should this point to the return type?
10481                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10482      // FIXME: this note won't trigger for delayed access control
10483      // diagnostics, and it's impossible to get an undelayed error
10484      // here from access control during the original parse because
10485      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10486      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10487      return true;
10488    }
10489  }
10490
10491  // The qualifiers of the return types must be the same.
10492  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10493    Diag(New->getLocation(),
10494         diag::err_covariant_return_type_different_qualifications)
10495    << New->getDeclName() << NewTy << OldTy;
10496    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10497    return true;
10498  };
10499
10500
10501  // The new class type must have the same or less qualifiers as the old type.
10502  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10503    Diag(New->getLocation(),
10504         diag::err_covariant_return_type_class_type_more_qualified)
10505    << New->getDeclName() << NewTy << OldTy;
10506    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10507    return true;
10508  };
10509
10510  return false;
10511}
10512
10513/// \brief Mark the given method pure.
10514///
10515/// \param Method the method to be marked pure.
10516///
10517/// \param InitRange the source range that covers the "0" initializer.
10518bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10519  SourceLocation EndLoc = InitRange.getEnd();
10520  if (EndLoc.isValid())
10521    Method->setRangeEnd(EndLoc);
10522
10523  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10524    Method->setPure();
10525    return false;
10526  }
10527
10528  if (!Method->isInvalidDecl())
10529    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10530      << Method->getDeclName() << InitRange;
10531  return true;
10532}
10533
10534/// \brief Determine whether the given declaration is a static data member.
10535static bool isStaticDataMember(Decl *D) {
10536  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10537  if (!Var)
10538    return false;
10539
10540  return Var->isStaticDataMember();
10541}
10542/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10543/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10544/// is a fresh scope pushed for just this purpose.
10545///
10546/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10547/// static data member of class X, names should be looked up in the scope of
10548/// class X.
10549void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10550  // If there is no declaration, there was an error parsing it.
10551  if (D == 0 || D->isInvalidDecl()) return;
10552
10553  // We should only get called for declarations with scope specifiers, like:
10554  //   int foo::bar;
10555  assert(D->isOutOfLine());
10556  EnterDeclaratorContext(S, D->getDeclContext());
10557
10558  // If we are parsing the initializer for a static data member, push a
10559  // new expression evaluation context that is associated with this static
10560  // data member.
10561  if (isStaticDataMember(D))
10562    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10563}
10564
10565/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10566/// initializer for the out-of-line declaration 'D'.
10567void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10568  // If there is no declaration, there was an error parsing it.
10569  if (D == 0 || D->isInvalidDecl()) return;
10570
10571  if (isStaticDataMember(D))
10572    PopExpressionEvaluationContext();
10573
10574  assert(D->isOutOfLine());
10575  ExitDeclaratorContext(S);
10576}
10577
10578/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10579/// C++ if/switch/while/for statement.
10580/// e.g: "if (int x = f()) {...}"
10581DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10582  // C++ 6.4p2:
10583  // The declarator shall not specify a function or an array.
10584  // The type-specifier-seq shall not contain typedef and shall not declare a
10585  // new class or enumeration.
10586  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10587         "Parser allowed 'typedef' as storage class of condition decl.");
10588
10589  Decl *Dcl = ActOnDeclarator(S, D);
10590  if (!Dcl)
10591    return true;
10592
10593  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10594    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10595      << D.getSourceRange();
10596    return true;
10597  }
10598
10599  return Dcl;
10600}
10601
10602void Sema::LoadExternalVTableUses() {
10603  if (!ExternalSource)
10604    return;
10605
10606  SmallVector<ExternalVTableUse, 4> VTables;
10607  ExternalSource->ReadUsedVTables(VTables);
10608  SmallVector<VTableUse, 4> NewUses;
10609  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10610    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10611      = VTablesUsed.find(VTables[I].Record);
10612    // Even if a definition wasn't required before, it may be required now.
10613    if (Pos != VTablesUsed.end()) {
10614      if (!Pos->second && VTables[I].DefinitionRequired)
10615        Pos->second = true;
10616      continue;
10617    }
10618
10619    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10620    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10621  }
10622
10623  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10624}
10625
10626void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10627                          bool DefinitionRequired) {
10628  // Ignore any vtable uses in unevaluated operands or for classes that do
10629  // not have a vtable.
10630  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10631      CurContext->isDependentContext() ||
10632      ExprEvalContexts.back().Context == Unevaluated)
10633    return;
10634
10635  // Try to insert this class into the map.
10636  LoadExternalVTableUses();
10637  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10638  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10639    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10640  if (!Pos.second) {
10641    // If we already had an entry, check to see if we are promoting this vtable
10642    // to required a definition. If so, we need to reappend to the VTableUses
10643    // list, since we may have already processed the first entry.
10644    if (DefinitionRequired && !Pos.first->second) {
10645      Pos.first->second = true;
10646    } else {
10647      // Otherwise, we can early exit.
10648      return;
10649    }
10650  }
10651
10652  // Local classes need to have their virtual members marked
10653  // immediately. For all other classes, we mark their virtual members
10654  // at the end of the translation unit.
10655  if (Class->isLocalClass())
10656    MarkVirtualMembersReferenced(Loc, Class);
10657  else
10658    VTableUses.push_back(std::make_pair(Class, Loc));
10659}
10660
10661bool Sema::DefineUsedVTables() {
10662  LoadExternalVTableUses();
10663  if (VTableUses.empty())
10664    return false;
10665
10666  // Note: The VTableUses vector could grow as a result of marking
10667  // the members of a class as "used", so we check the size each
10668  // time through the loop and prefer indices (with are stable) to
10669  // iterators (which are not).
10670  bool DefinedAnything = false;
10671  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10672    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10673    if (!Class)
10674      continue;
10675
10676    SourceLocation Loc = VTableUses[I].second;
10677
10678    // If this class has a key function, but that key function is
10679    // defined in another translation unit, we don't need to emit the
10680    // vtable even though we're using it.
10681    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10682    if (KeyFunction && !KeyFunction->hasBody()) {
10683      switch (KeyFunction->getTemplateSpecializationKind()) {
10684      case TSK_Undeclared:
10685      case TSK_ExplicitSpecialization:
10686      case TSK_ExplicitInstantiationDeclaration:
10687        // The key function is in another translation unit.
10688        continue;
10689
10690      case TSK_ExplicitInstantiationDefinition:
10691      case TSK_ImplicitInstantiation:
10692        // We will be instantiating the key function.
10693        break;
10694      }
10695    } else if (!KeyFunction) {
10696      // If we have a class with no key function that is the subject
10697      // of an explicit instantiation declaration, suppress the
10698      // vtable; it will live with the explicit instantiation
10699      // definition.
10700      bool IsExplicitInstantiationDeclaration
10701        = Class->getTemplateSpecializationKind()
10702                                      == TSK_ExplicitInstantiationDeclaration;
10703      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10704                                 REnd = Class->redecls_end();
10705           R != REnd; ++R) {
10706        TemplateSpecializationKind TSK
10707          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10708        if (TSK == TSK_ExplicitInstantiationDeclaration)
10709          IsExplicitInstantiationDeclaration = true;
10710        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10711          IsExplicitInstantiationDeclaration = false;
10712          break;
10713        }
10714      }
10715
10716      if (IsExplicitInstantiationDeclaration)
10717        continue;
10718    }
10719
10720    // Mark all of the virtual members of this class as referenced, so
10721    // that we can build a vtable. Then, tell the AST consumer that a
10722    // vtable for this class is required.
10723    DefinedAnything = true;
10724    MarkVirtualMembersReferenced(Loc, Class);
10725    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10726    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10727
10728    // Optionally warn if we're emitting a weak vtable.
10729    if (Class->getLinkage() == ExternalLinkage &&
10730        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10731      const FunctionDecl *KeyFunctionDef = 0;
10732      if (!KeyFunction ||
10733          (KeyFunction->hasBody(KeyFunctionDef) &&
10734           KeyFunctionDef->isInlined()))
10735        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10736             TSK_ExplicitInstantiationDefinition
10737             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10738          << Class;
10739    }
10740  }
10741  VTableUses.clear();
10742
10743  return DefinedAnything;
10744}
10745
10746void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10747                                        const CXXRecordDecl *RD) {
10748  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10749       e = RD->method_end(); i != e; ++i) {
10750    CXXMethodDecl *MD = *i;
10751
10752    // C++ [basic.def.odr]p2:
10753    //   [...] A virtual member function is used if it is not pure. [...]
10754    if (MD->isVirtual() && !MD->isPure())
10755      MarkFunctionReferenced(Loc, MD);
10756  }
10757
10758  // Only classes that have virtual bases need a VTT.
10759  if (RD->getNumVBases() == 0)
10760    return;
10761
10762  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10763           e = RD->bases_end(); i != e; ++i) {
10764    const CXXRecordDecl *Base =
10765        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10766    if (Base->getNumVBases() == 0)
10767      continue;
10768    MarkVirtualMembersReferenced(Loc, Base);
10769  }
10770}
10771
10772/// SetIvarInitializers - This routine builds initialization ASTs for the
10773/// Objective-C implementation whose ivars need be initialized.
10774void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10775  if (!getLangOptions().CPlusPlus)
10776    return;
10777  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10778    SmallVector<ObjCIvarDecl*, 8> ivars;
10779    CollectIvarsToConstructOrDestruct(OID, ivars);
10780    if (ivars.empty())
10781      return;
10782    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10783    for (unsigned i = 0; i < ivars.size(); i++) {
10784      FieldDecl *Field = ivars[i];
10785      if (Field->isInvalidDecl())
10786        continue;
10787
10788      CXXCtorInitializer *Member;
10789      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10790      InitializationKind InitKind =
10791        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10792
10793      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10794      ExprResult MemberInit =
10795        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10796      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10797      // Note, MemberInit could actually come back empty if no initialization
10798      // is required (e.g., because it would call a trivial default constructor)
10799      if (!MemberInit.get() || MemberInit.isInvalid())
10800        continue;
10801
10802      Member =
10803        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10804                                         SourceLocation(),
10805                                         MemberInit.takeAs<Expr>(),
10806                                         SourceLocation());
10807      AllToInit.push_back(Member);
10808
10809      // Be sure that the destructor is accessible and is marked as referenced.
10810      if (const RecordType *RecordTy
10811                  = Context.getBaseElementType(Field->getType())
10812                                                        ->getAs<RecordType>()) {
10813                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10814        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10815          MarkFunctionReferenced(Field->getLocation(), Destructor);
10816          CheckDestructorAccess(Field->getLocation(), Destructor,
10817                            PDiag(diag::err_access_dtor_ivar)
10818                              << Context.getBaseElementType(Field->getType()));
10819        }
10820      }
10821    }
10822    ObjCImplementation->setIvarInitializers(Context,
10823                                            AllToInit.data(), AllToInit.size());
10824  }
10825}
10826
10827static
10828void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10829                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10830                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10831                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10832                           Sema &S) {
10833  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10834                                                   CE = Current.end();
10835  if (Ctor->isInvalidDecl())
10836    return;
10837
10838  const FunctionDecl *FNTarget = 0;
10839  CXXConstructorDecl *Target;
10840
10841  // We ignore the result here since if we don't have a body, Target will be
10842  // null below.
10843  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10844  Target
10845= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10846
10847  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10848                     // Avoid dereferencing a null pointer here.
10849                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10850
10851  if (!Current.insert(Canonical))
10852    return;
10853
10854  // We know that beyond here, we aren't chaining into a cycle.
10855  if (!Target || !Target->isDelegatingConstructor() ||
10856      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10857    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10858      Valid.insert(*CI);
10859    Current.clear();
10860  // We've hit a cycle.
10861  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10862             Current.count(TCanonical)) {
10863    // If we haven't diagnosed this cycle yet, do so now.
10864    if (!Invalid.count(TCanonical)) {
10865      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10866             diag::warn_delegating_ctor_cycle)
10867        << Ctor;
10868
10869      // Don't add a note for a function delegating directo to itself.
10870      if (TCanonical != Canonical)
10871        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10872
10873      CXXConstructorDecl *C = Target;
10874      while (C->getCanonicalDecl() != Canonical) {
10875        (void)C->getTargetConstructor()->hasBody(FNTarget);
10876        assert(FNTarget && "Ctor cycle through bodiless function");
10877
10878        C
10879       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10880        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10881      }
10882    }
10883
10884    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10885      Invalid.insert(*CI);
10886    Current.clear();
10887  } else {
10888    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10889  }
10890}
10891
10892
10893void Sema::CheckDelegatingCtorCycles() {
10894  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10895
10896  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10897                                                   CE = Current.end();
10898
10899  for (DelegatingCtorDeclsType::iterator
10900         I = DelegatingCtorDecls.begin(ExternalSource),
10901         E = DelegatingCtorDecls.end();
10902       I != E; ++I) {
10903   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10904  }
10905
10906  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10907    (*CI)->setInvalidDecl();
10908}
10909
10910/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
10911Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
10912  // Implicitly declared functions (e.g. copy constructors) are
10913  // __host__ __device__
10914  if (D->isImplicit())
10915    return CFT_HostDevice;
10916
10917  if (D->hasAttr<CUDAGlobalAttr>())
10918    return CFT_Global;
10919
10920  if (D->hasAttr<CUDADeviceAttr>()) {
10921    if (D->hasAttr<CUDAHostAttr>())
10922      return CFT_HostDevice;
10923    else
10924      return CFT_Device;
10925  }
10926
10927  return CFT_Host;
10928}
10929
10930bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
10931                           CUDAFunctionTarget CalleeTarget) {
10932  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
10933  // Callable from the device only."
10934  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
10935    return true;
10936
10937  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
10938  // Callable from the host only."
10939  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
10940  // Callable from the host only."
10941  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
10942      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
10943    return true;
10944
10945  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
10946    return true;
10947
10948  return false;
10949}
10950