SemaDeclCXX.cpp revision e9c9d15ef9429257136564c5bab76dbe286e37c7
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
875Sema::DeclPtrTy
876Sema::ActOnAccessSpecifier(AccessSpecifier Access,
877                           SourceLocation ASLoc, SourceLocation ColonLoc) {
878  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
879  AccessSpecDecl* ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
880                                                  ASLoc, ColonLoc);
881  CurContext->addHiddenDecl(ASDecl);
882  return DeclPtrTy::make(ASDecl);
883}
884
885/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
886/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
887/// bitfield width if there is one and 'InitExpr' specifies the initializer if
888/// any.
889Sema::DeclPtrTy
890Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
891                               MultiTemplateParamsArg TemplateParameterLists,
892                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
893                               bool Deleted) {
894  const DeclSpec &DS = D.getDeclSpec();
895  DeclarationName Name = GetNameForDeclarator(D);
896  Expr *BitWidth = static_cast<Expr*>(BW);
897  Expr *Init = static_cast<Expr*>(InitExpr);
898  SourceLocation Loc = D.getIdentifierLoc();
899
900  assert(isa<CXXRecordDecl>(CurContext));
901  assert(!DS.isFriendSpecified());
902
903  bool isFunc = false;
904  if (D.isFunctionDeclarator())
905    isFunc = true;
906  else if (D.getNumTypeObjects() == 0 &&
907           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
908    QualType TDType = GetTypeFromParser(DS.getTypeRep());
909    isFunc = TDType->isFunctionType();
910  }
911
912  // C++ 9.2p6: A member shall not be declared to have automatic storage
913  // duration (auto, register) or with the extern storage-class-specifier.
914  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
915  // data members and cannot be applied to names declared const or static,
916  // and cannot be applied to reference members.
917  switch (DS.getStorageClassSpec()) {
918    case DeclSpec::SCS_unspecified:
919    case DeclSpec::SCS_typedef:
920    case DeclSpec::SCS_static:
921      // FALL THROUGH.
922      break;
923    case DeclSpec::SCS_mutable:
924      if (isFunc) {
925        if (DS.getStorageClassSpecLoc().isValid())
926          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
927        else
928          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
929
930        // FIXME: It would be nicer if the keyword was ignored only for this
931        // declarator. Otherwise we could get follow-up errors.
932        D.getMutableDeclSpec().ClearStorageClassSpecs();
933      }
934      break;
935    default:
936      if (DS.getStorageClassSpecLoc().isValid())
937        Diag(DS.getStorageClassSpecLoc(),
938             diag::err_storageclass_invalid_for_member);
939      else
940        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
941      D.getMutableDeclSpec().ClearStorageClassSpecs();
942  }
943
944  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
945                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
946                      !isFunc);
947
948  Decl *Member;
949  if (isInstField) {
950    // FIXME: Check for template parameters!
951    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
952                         AS);
953    assert(Member && "HandleField never returns null");
954  } else {
955    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
956               .getAs<Decl>();
957    if (!Member) {
958      if (BitWidth) DeleteExpr(BitWidth);
959      return DeclPtrTy();
960    }
961
962    // Non-instance-fields can't have a bitfield.
963    if (BitWidth) {
964      if (Member->isInvalidDecl()) {
965        // don't emit another diagnostic.
966      } else if (isa<VarDecl>(Member)) {
967        // C++ 9.6p3: A bit-field shall not be a static member.
968        // "static member 'A' cannot be a bit-field"
969        Diag(Loc, diag::err_static_not_bitfield)
970          << Name << BitWidth->getSourceRange();
971      } else if (isa<TypedefDecl>(Member)) {
972        // "typedef member 'x' cannot be a bit-field"
973        Diag(Loc, diag::err_typedef_not_bitfield)
974          << Name << BitWidth->getSourceRange();
975      } else {
976        // A function typedef ("typedef int f(); f a;").
977        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
978        Diag(Loc, diag::err_not_integral_type_bitfield)
979          << Name << cast<ValueDecl>(Member)->getType()
980          << BitWidth->getSourceRange();
981      }
982
983      DeleteExpr(BitWidth);
984      BitWidth = 0;
985      Member->setInvalidDecl();
986    }
987
988    Member->setAccess(AS);
989
990    // If we have declared a member function template, set the access of the
991    // templated declaration as well.
992    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
993      FunTmpl->getTemplatedDecl()->setAccess(AS);
994  }
995
996  assert((Name || isInstField) && "No identifier for non-field ?");
997
998  if (Init)
999    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1000  if (Deleted) // FIXME: Source location is not very good.
1001    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1002
1003  if (isInstField) {
1004    FieldCollector->Add(cast<FieldDecl>(Member));
1005    return DeclPtrTy();
1006  }
1007  return DeclPtrTy::make(Member);
1008}
1009
1010/// \brief Find the direct and/or virtual base specifiers that
1011/// correspond to the given base type, for use in base initialization
1012/// within a constructor.
1013static bool FindBaseInitializer(Sema &SemaRef,
1014                                CXXRecordDecl *ClassDecl,
1015                                QualType BaseType,
1016                                const CXXBaseSpecifier *&DirectBaseSpec,
1017                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1018  // First, check for a direct base class.
1019  DirectBaseSpec = 0;
1020  for (CXXRecordDecl::base_class_const_iterator Base
1021         = ClassDecl->bases_begin();
1022       Base != ClassDecl->bases_end(); ++Base) {
1023    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1024      // We found a direct base of this type. That's what we're
1025      // initializing.
1026      DirectBaseSpec = &*Base;
1027      break;
1028    }
1029  }
1030
1031  // Check for a virtual base class.
1032  // FIXME: We might be able to short-circuit this if we know in advance that
1033  // there are no virtual bases.
1034  VirtualBaseSpec = 0;
1035  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1036    // We haven't found a base yet; search the class hierarchy for a
1037    // virtual base class.
1038    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1039                       /*DetectVirtual=*/false);
1040    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1041                              BaseType, Paths)) {
1042      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1043           Path != Paths.end(); ++Path) {
1044        if (Path->back().Base->isVirtual()) {
1045          VirtualBaseSpec = Path->back().Base;
1046          break;
1047        }
1048      }
1049    }
1050  }
1051
1052  return DirectBaseSpec || VirtualBaseSpec;
1053}
1054
1055/// ActOnMemInitializer - Handle a C++ member initializer.
1056Sema::MemInitResult
1057Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1058                          Scope *S,
1059                          CXXScopeSpec &SS,
1060                          IdentifierInfo *MemberOrBase,
1061                          TypeTy *TemplateTypeTy,
1062                          SourceLocation IdLoc,
1063                          SourceLocation LParenLoc,
1064                          ExprTy **Args, unsigned NumArgs,
1065                          SourceLocation *CommaLocs,
1066                          SourceLocation RParenLoc) {
1067  if (!ConstructorD)
1068    return true;
1069
1070  AdjustDeclIfTemplate(ConstructorD);
1071
1072  CXXConstructorDecl *Constructor
1073    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1074  if (!Constructor) {
1075    // The user wrote a constructor initializer on a function that is
1076    // not a C++ constructor. Ignore the error for now, because we may
1077    // have more member initializers coming; we'll diagnose it just
1078    // once in ActOnMemInitializers.
1079    return true;
1080  }
1081
1082  CXXRecordDecl *ClassDecl = Constructor->getParent();
1083
1084  // C++ [class.base.init]p2:
1085  //   Names in a mem-initializer-id are looked up in the scope of the
1086  //   constructor’s class and, if not found in that scope, are looked
1087  //   up in the scope containing the constructor’s
1088  //   definition. [Note: if the constructor’s class contains a member
1089  //   with the same name as a direct or virtual base class of the
1090  //   class, a mem-initializer-id naming the member or base class and
1091  //   composed of a single identifier refers to the class member. A
1092  //   mem-initializer-id for the hidden base class may be specified
1093  //   using a qualified name. ]
1094  if (!SS.getScopeRep() && !TemplateTypeTy) {
1095    // Look for a member, first.
1096    FieldDecl *Member = 0;
1097    DeclContext::lookup_result Result
1098      = ClassDecl->lookup(MemberOrBase);
1099    if (Result.first != Result.second)
1100      Member = dyn_cast<FieldDecl>(*Result.first);
1101
1102    // FIXME: Handle members of an anonymous union.
1103
1104    if (Member)
1105      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1106                                    LParenLoc, RParenLoc);
1107  }
1108  // It didn't name a member, so see if it names a class.
1109  QualType BaseType;
1110  TypeSourceInfo *TInfo = 0;
1111
1112  if (TemplateTypeTy) {
1113    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1114  } else {
1115    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1116    LookupParsedName(R, S, &SS);
1117
1118    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1119    if (!TyD) {
1120      if (R.isAmbiguous()) return true;
1121
1122      // We don't want access-control diagnostics here.
1123      R.suppressDiagnostics();
1124
1125      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1126        bool NotUnknownSpecialization = false;
1127        DeclContext *DC = computeDeclContext(SS, false);
1128        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1129          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1130
1131        if (!NotUnknownSpecialization) {
1132          // When the scope specifier can refer to a member of an unknown
1133          // specialization, we take it as a type name.
1134          BaseType = CheckTypenameType(ETK_None,
1135                                       (NestedNameSpecifier *)SS.getScopeRep(),
1136                                       *MemberOrBase, SourceLocation(),
1137                                       SS.getRange(), IdLoc);
1138          if (BaseType.isNull())
1139            return true;
1140
1141          R.clear();
1142          R.setLookupName(MemberOrBase);
1143        }
1144      }
1145
1146      // If no results were found, try to correct typos.
1147      if (R.empty() && BaseType.isNull() &&
1148          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1149          R.isSingleResult()) {
1150        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1151          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1152            // We have found a non-static data member with a similar
1153            // name to what was typed; complain and initialize that
1154            // member.
1155            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1156              << MemberOrBase << true << R.getLookupName()
1157              << FixItHint::CreateReplacement(R.getNameLoc(),
1158                                              R.getLookupName().getAsString());
1159            Diag(Member->getLocation(), diag::note_previous_decl)
1160              << Member->getDeclName();
1161
1162            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1163                                          LParenLoc, RParenLoc);
1164          }
1165        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1166          const CXXBaseSpecifier *DirectBaseSpec;
1167          const CXXBaseSpecifier *VirtualBaseSpec;
1168          if (FindBaseInitializer(*this, ClassDecl,
1169                                  Context.getTypeDeclType(Type),
1170                                  DirectBaseSpec, VirtualBaseSpec)) {
1171            // We have found a direct or virtual base class with a
1172            // similar name to what was typed; complain and initialize
1173            // that base class.
1174            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1175              << MemberOrBase << false << R.getLookupName()
1176              << FixItHint::CreateReplacement(R.getNameLoc(),
1177                                              R.getLookupName().getAsString());
1178
1179            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1180                                                             : VirtualBaseSpec;
1181            Diag(BaseSpec->getSourceRange().getBegin(),
1182                 diag::note_base_class_specified_here)
1183              << BaseSpec->getType()
1184              << BaseSpec->getSourceRange();
1185
1186            TyD = Type;
1187          }
1188        }
1189      }
1190
1191      if (!TyD && BaseType.isNull()) {
1192        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1193          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1194        return true;
1195      }
1196    }
1197
1198    if (BaseType.isNull()) {
1199      BaseType = Context.getTypeDeclType(TyD);
1200      if (SS.isSet()) {
1201        NestedNameSpecifier *Qualifier =
1202          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1203
1204        // FIXME: preserve source range information
1205        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1206      }
1207    }
1208  }
1209
1210  if (!TInfo)
1211    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1212
1213  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1214                              LParenLoc, RParenLoc, ClassDecl);
1215}
1216
1217/// Checks an initializer expression for use of uninitialized fields, such as
1218/// containing the field that is being initialized. Returns true if there is an
1219/// uninitialized field was used an updates the SourceLocation parameter; false
1220/// otherwise.
1221static bool InitExprContainsUninitializedFields(const Stmt *S,
1222                                                const FieldDecl *LhsField,
1223                                                SourceLocation *L) {
1224  if (isa<CallExpr>(S)) {
1225    // Do not descend into function calls or constructors, as the use
1226    // of an uninitialized field may be valid. One would have to inspect
1227    // the contents of the function/ctor to determine if it is safe or not.
1228    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1229    // may be safe, depending on what the function/ctor does.
1230    return false;
1231  }
1232  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1233    const NamedDecl *RhsField = ME->getMemberDecl();
1234    if (RhsField == LhsField) {
1235      // Initializing a field with itself. Throw a warning.
1236      // But wait; there are exceptions!
1237      // Exception #1:  The field may not belong to this record.
1238      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1239      const Expr *base = ME->getBase();
1240      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1241        // Even though the field matches, it does not belong to this record.
1242        return false;
1243      }
1244      // None of the exceptions triggered; return true to indicate an
1245      // uninitialized field was used.
1246      *L = ME->getMemberLoc();
1247      return true;
1248    }
1249  }
1250  for (Stmt::const_child_iterator it = S->child_begin(), e = S->child_end();
1251       it != e; ++it) {
1252    if (!*it) {
1253      // An expression such as 'member(arg ?: "")' may trigger this.
1254      continue;
1255    }
1256    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1257      return true;
1258  }
1259  return false;
1260}
1261
1262Sema::MemInitResult
1263Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1264                             unsigned NumArgs, SourceLocation IdLoc,
1265                             SourceLocation LParenLoc,
1266                             SourceLocation RParenLoc) {
1267  // Diagnose value-uses of fields to initialize themselves, e.g.
1268  //   foo(foo)
1269  // where foo is not also a parameter to the constructor.
1270  // TODO: implement -Wuninitialized and fold this into that framework.
1271  for (unsigned i = 0; i < NumArgs; ++i) {
1272    SourceLocation L;
1273    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1274      // FIXME: Return true in the case when other fields are used before being
1275      // uninitialized. For example, let this field be the i'th field. When
1276      // initializing the i'th field, throw a warning if any of the >= i'th
1277      // fields are used, as they are not yet initialized.
1278      // Right now we are only handling the case where the i'th field uses
1279      // itself in its initializer.
1280      Diag(L, diag::warn_field_is_uninit);
1281    }
1282  }
1283
1284  bool HasDependentArg = false;
1285  for (unsigned i = 0; i < NumArgs; i++)
1286    HasDependentArg |= Args[i]->isTypeDependent();
1287
1288  QualType FieldType = Member->getType();
1289  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1290    FieldType = Array->getElementType();
1291  if (FieldType->isDependentType() || HasDependentArg) {
1292    // Can't check initialization for a member of dependent type or when
1293    // any of the arguments are type-dependent expressions.
1294    OwningExprResult Init
1295      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1296                                          RParenLoc));
1297
1298    // Erase any temporaries within this evaluation context; we're not
1299    // going to track them in the AST, since we'll be rebuilding the
1300    // ASTs during template instantiation.
1301    ExprTemporaries.erase(
1302              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1303                          ExprTemporaries.end());
1304
1305    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1306                                                    LParenLoc,
1307                                                    Init.takeAs<Expr>(),
1308                                                    RParenLoc);
1309
1310  }
1311
1312  if (Member->isInvalidDecl())
1313    return true;
1314
1315  // Initialize the member.
1316  InitializedEntity MemberEntity =
1317    InitializedEntity::InitializeMember(Member, 0);
1318  InitializationKind Kind =
1319    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1320
1321  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1322
1323  OwningExprResult MemberInit =
1324    InitSeq.Perform(*this, MemberEntity, Kind,
1325                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1326  if (MemberInit.isInvalid())
1327    return true;
1328
1329  // C++0x [class.base.init]p7:
1330  //   The initialization of each base and member constitutes a
1331  //   full-expression.
1332  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1333  if (MemberInit.isInvalid())
1334    return true;
1335
1336  // If we are in a dependent context, template instantiation will
1337  // perform this type-checking again. Just save the arguments that we
1338  // received in a ParenListExpr.
1339  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1340  // of the information that we have about the member
1341  // initializer. However, deconstructing the ASTs is a dicey process,
1342  // and this approach is far more likely to get the corner cases right.
1343  if (CurContext->isDependentContext()) {
1344    // Bump the reference count of all of the arguments.
1345    for (unsigned I = 0; I != NumArgs; ++I)
1346      Args[I]->Retain();
1347
1348    OwningExprResult Init
1349      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1350                                          RParenLoc));
1351    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1352                                                    LParenLoc,
1353                                                    Init.takeAs<Expr>(),
1354                                                    RParenLoc);
1355  }
1356
1357  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1358                                                  LParenLoc,
1359                                                  MemberInit.takeAs<Expr>(),
1360                                                  RParenLoc);
1361}
1362
1363Sema::MemInitResult
1364Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1365                           Expr **Args, unsigned NumArgs,
1366                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1367                           CXXRecordDecl *ClassDecl) {
1368  bool HasDependentArg = false;
1369  for (unsigned i = 0; i < NumArgs; i++)
1370    HasDependentArg |= Args[i]->isTypeDependent();
1371
1372  SourceLocation BaseLoc
1373    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1374
1375  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1376    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1377             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1378
1379  // C++ [class.base.init]p2:
1380  //   [...] Unless the mem-initializer-id names a nonstatic data
1381  //   member of the constructor’s class or a direct or virtual base
1382  //   of that class, the mem-initializer is ill-formed. A
1383  //   mem-initializer-list can initialize a base class using any
1384  //   name that denotes that base class type.
1385  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1386
1387  // Check for direct and virtual base classes.
1388  const CXXBaseSpecifier *DirectBaseSpec = 0;
1389  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1390  if (!Dependent) {
1391    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1392                        VirtualBaseSpec);
1393
1394    // C++ [base.class.init]p2:
1395    // Unless the mem-initializer-id names a nonstatic data member of the
1396    // constructor's class or a direct or virtual base of that class, the
1397    // mem-initializer is ill-formed.
1398    if (!DirectBaseSpec && !VirtualBaseSpec) {
1399      // If the class has any dependent bases, then it's possible that
1400      // one of those types will resolve to the same type as
1401      // BaseType. Therefore, just treat this as a dependent base
1402      // class initialization.  FIXME: Should we try to check the
1403      // initialization anyway? It seems odd.
1404      if (ClassDecl->hasAnyDependentBases())
1405        Dependent = true;
1406      else
1407        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1408          << BaseType << Context.getTypeDeclType(ClassDecl)
1409          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1410    }
1411  }
1412
1413  if (Dependent) {
1414    // Can't check initialization for a base of dependent type or when
1415    // any of the arguments are type-dependent expressions.
1416    OwningExprResult BaseInit
1417      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1418                                          RParenLoc));
1419
1420    // Erase any temporaries within this evaluation context; we're not
1421    // going to track them in the AST, since we'll be rebuilding the
1422    // ASTs during template instantiation.
1423    ExprTemporaries.erase(
1424              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1425                          ExprTemporaries.end());
1426
1427    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1428                                                    /*IsVirtual=*/false,
1429                                                    LParenLoc,
1430                                                    BaseInit.takeAs<Expr>(),
1431                                                    RParenLoc);
1432  }
1433
1434  // C++ [base.class.init]p2:
1435  //   If a mem-initializer-id is ambiguous because it designates both
1436  //   a direct non-virtual base class and an inherited virtual base
1437  //   class, the mem-initializer is ill-formed.
1438  if (DirectBaseSpec && VirtualBaseSpec)
1439    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1440      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1441
1442  CXXBaseSpecifier *BaseSpec
1443    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1444  if (!BaseSpec)
1445    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1446
1447  // Initialize the base.
1448  InitializedEntity BaseEntity =
1449    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1450  InitializationKind Kind =
1451    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1452
1453  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1454
1455  OwningExprResult BaseInit =
1456    InitSeq.Perform(*this, BaseEntity, Kind,
1457                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1458  if (BaseInit.isInvalid())
1459    return true;
1460
1461  // C++0x [class.base.init]p7:
1462  //   The initialization of each base and member constitutes a
1463  //   full-expression.
1464  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1465  if (BaseInit.isInvalid())
1466    return true;
1467
1468  // If we are in a dependent context, template instantiation will
1469  // perform this type-checking again. Just save the arguments that we
1470  // received in a ParenListExpr.
1471  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1472  // of the information that we have about the base
1473  // initializer. However, deconstructing the ASTs is a dicey process,
1474  // and this approach is far more likely to get the corner cases right.
1475  if (CurContext->isDependentContext()) {
1476    // Bump the reference count of all of the arguments.
1477    for (unsigned I = 0; I != NumArgs; ++I)
1478      Args[I]->Retain();
1479
1480    OwningExprResult Init
1481      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1482                                          RParenLoc));
1483    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1484                                                    BaseSpec->isVirtual(),
1485                                                    LParenLoc,
1486                                                    Init.takeAs<Expr>(),
1487                                                    RParenLoc);
1488  }
1489
1490  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1491                                                  BaseSpec->isVirtual(),
1492                                                  LParenLoc,
1493                                                  BaseInit.takeAs<Expr>(),
1494                                                  RParenLoc);
1495}
1496
1497/// ImplicitInitializerKind - How an implicit base or member initializer should
1498/// initialize its base or member.
1499enum ImplicitInitializerKind {
1500  IIK_Default,
1501  IIK_Copy,
1502  IIK_Move
1503};
1504
1505static bool
1506BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1507                             ImplicitInitializerKind ImplicitInitKind,
1508                             CXXBaseSpecifier *BaseSpec,
1509                             bool IsInheritedVirtualBase,
1510                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1511  InitializedEntity InitEntity
1512    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1513                                        IsInheritedVirtualBase);
1514
1515  Sema::OwningExprResult BaseInit(SemaRef);
1516
1517  switch (ImplicitInitKind) {
1518  case IIK_Default: {
1519    InitializationKind InitKind
1520      = InitializationKind::CreateDefault(Constructor->getLocation());
1521    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1522    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1523                               Sema::MultiExprArg(SemaRef, 0, 0));
1524    break;
1525  }
1526
1527  case IIK_Copy: {
1528    ParmVarDecl *Param = Constructor->getParamDecl(0);
1529    QualType ParamType = Param->getType().getNonReferenceType();
1530
1531    Expr *CopyCtorArg =
1532      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1533                          Constructor->getLocation(), ParamType, 0);
1534
1535    // Cast to the base class to avoid ambiguities.
1536    QualType ArgTy =
1537      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1538                                       ParamType.getQualifiers());
1539    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1540                              CastExpr::CK_UncheckedDerivedToBase,
1541                              /*isLvalue=*/true,
1542                              CXXBaseSpecifierArray(BaseSpec));
1543
1544    InitializationKind InitKind
1545      = InitializationKind::CreateDirect(Constructor->getLocation(),
1546                                         SourceLocation(), SourceLocation());
1547    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1548                                   &CopyCtorArg, 1);
1549    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1550                               Sema::MultiExprArg(SemaRef,
1551                                                  (void**)&CopyCtorArg, 1));
1552    break;
1553  }
1554
1555  case IIK_Move:
1556    assert(false && "Unhandled initializer kind!");
1557  }
1558
1559  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1560  if (BaseInit.isInvalid())
1561    return true;
1562
1563  CXXBaseInit =
1564    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1565               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1566                                                        SourceLocation()),
1567                                             BaseSpec->isVirtual(),
1568                                             SourceLocation(),
1569                                             BaseInit.takeAs<Expr>(),
1570                                             SourceLocation());
1571
1572  return false;
1573}
1574
1575static bool
1576BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1577                               ImplicitInitializerKind ImplicitInitKind,
1578                               FieldDecl *Field,
1579                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1580  if (Field->isInvalidDecl())
1581    return true;
1582
1583  SourceLocation Loc = Constructor->getLocation();
1584
1585  if (ImplicitInitKind == IIK_Copy) {
1586    ParmVarDecl *Param = Constructor->getParamDecl(0);
1587    QualType ParamType = Param->getType().getNonReferenceType();
1588
1589    Expr *MemberExprBase =
1590      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1591                          Loc, ParamType, 0);
1592
1593    // Build a reference to this field within the parameter.
1594    CXXScopeSpec SS;
1595    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1596                              Sema::LookupMemberName);
1597    MemberLookup.addDecl(Field, AS_public);
1598    MemberLookup.resolveKind();
1599    Sema::OwningExprResult CopyCtorArg
1600      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1601                                         ParamType, Loc,
1602                                         /*IsArrow=*/false,
1603                                         SS,
1604                                         /*FirstQualifierInScope=*/0,
1605                                         MemberLookup,
1606                                         /*TemplateArgs=*/0);
1607    if (CopyCtorArg.isInvalid())
1608      return true;
1609
1610    // When the field we are copying is an array, create index variables for
1611    // each dimension of the array. We use these index variables to subscript
1612    // the source array, and other clients (e.g., CodeGen) will perform the
1613    // necessary iteration with these index variables.
1614    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1615    QualType BaseType = Field->getType();
1616    QualType SizeType = SemaRef.Context.getSizeType();
1617    while (const ConstantArrayType *Array
1618                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1619      // Create the iteration variable for this array index.
1620      IdentifierInfo *IterationVarName = 0;
1621      {
1622        llvm::SmallString<8> Str;
1623        llvm::raw_svector_ostream OS(Str);
1624        OS << "__i" << IndexVariables.size();
1625        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1626      }
1627      VarDecl *IterationVar
1628        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1629                          IterationVarName, SizeType,
1630                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1631                          VarDecl::None, VarDecl::None);
1632      IndexVariables.push_back(IterationVar);
1633
1634      // Create a reference to the iteration variable.
1635      Sema::OwningExprResult IterationVarRef
1636        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1637      assert(!IterationVarRef.isInvalid() &&
1638             "Reference to invented variable cannot fail!");
1639
1640      // Subscript the array with this iteration variable.
1641      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1642                                                            Loc,
1643                                                          move(IterationVarRef),
1644                                                            Loc);
1645      if (CopyCtorArg.isInvalid())
1646        return true;
1647
1648      BaseType = Array->getElementType();
1649    }
1650
1651    // Construct the entity that we will be initializing. For an array, this
1652    // will be first element in the array, which may require several levels
1653    // of array-subscript entities.
1654    llvm::SmallVector<InitializedEntity, 4> Entities;
1655    Entities.reserve(1 + IndexVariables.size());
1656    Entities.push_back(InitializedEntity::InitializeMember(Field));
1657    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1658      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1659                                                              0,
1660                                                              Entities.back()));
1661
1662    // Direct-initialize to use the copy constructor.
1663    InitializationKind InitKind =
1664      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1665
1666    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1667    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1668                                   &CopyCtorArgE, 1);
1669
1670    Sema::OwningExprResult MemberInit
1671      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1672                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1673    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1674    if (MemberInit.isInvalid())
1675      return true;
1676
1677    CXXMemberInit
1678      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1679                                           MemberInit.takeAs<Expr>(), Loc,
1680                                           IndexVariables.data(),
1681                                           IndexVariables.size());
1682    return false;
1683  }
1684
1685  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1686
1687  QualType FieldBaseElementType =
1688    SemaRef.Context.getBaseElementType(Field->getType());
1689
1690  if (FieldBaseElementType->isRecordType()) {
1691    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1692    InitializationKind InitKind =
1693      InitializationKind::CreateDefault(Loc);
1694
1695    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1696    Sema::OwningExprResult MemberInit =
1697      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1698                      Sema::MultiExprArg(SemaRef, 0, 0));
1699    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1700    if (MemberInit.isInvalid())
1701      return true;
1702
1703    CXXMemberInit =
1704      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1705                                                       Field, Loc, Loc,
1706                                                      MemberInit.takeAs<Expr>(),
1707                                                       Loc);
1708    return false;
1709  }
1710
1711  if (FieldBaseElementType->isReferenceType()) {
1712    SemaRef.Diag(Constructor->getLocation(),
1713                 diag::err_uninitialized_member_in_ctor)
1714    << (int)Constructor->isImplicit()
1715    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1716    << 0 << Field->getDeclName();
1717    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1718    return true;
1719  }
1720
1721  if (FieldBaseElementType.isConstQualified()) {
1722    SemaRef.Diag(Constructor->getLocation(),
1723                 diag::err_uninitialized_member_in_ctor)
1724    << (int)Constructor->isImplicit()
1725    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1726    << 1 << Field->getDeclName();
1727    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1728    return true;
1729  }
1730
1731  // Nothing to initialize.
1732  CXXMemberInit = 0;
1733  return false;
1734}
1735
1736namespace {
1737struct BaseAndFieldInfo {
1738  Sema &S;
1739  CXXConstructorDecl *Ctor;
1740  bool AnyErrorsInInits;
1741  ImplicitInitializerKind IIK;
1742  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1743  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1744
1745  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1746    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1747    // FIXME: Handle implicit move constructors.
1748    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1749      IIK = IIK_Copy;
1750    else
1751      IIK = IIK_Default;
1752  }
1753};
1754}
1755
1756static void RecordFieldInitializer(BaseAndFieldInfo &Info,
1757                                   FieldDecl *Top, FieldDecl *Field,
1758                                   CXXBaseOrMemberInitializer *Init) {
1759  // If the member doesn't need to be initialized, Init will still be null.
1760  if (!Init)
1761    return;
1762
1763  Info.AllToInit.push_back(Init);
1764  if (Field != Top) {
1765    Init->setMember(Top);
1766    Init->setAnonUnionMember(Field);
1767  }
1768}
1769
1770static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1771                                    FieldDecl *Top, FieldDecl *Field) {
1772
1773  // Overwhelmingly common case: we have a direct initializer for this field.
1774  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1775    RecordFieldInitializer(Info, Top, Field, Init);
1776    return false;
1777  }
1778
1779  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1780    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1781    assert(FieldClassType && "anonymous struct/union without record type");
1782    CXXRecordDecl *FieldClassDecl
1783      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1784
1785    // Even though union members never have non-trivial default
1786    // constructions in C++03, we still build member initializers for aggregate
1787    // record types which can be union members, and C++0x allows non-trivial
1788    // default constructors for union members, so we ensure that only one
1789    // member is initialized for these.
1790    if (FieldClassDecl->isUnion()) {
1791      // First check for an explicit initializer for one field.
1792      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1793           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1794        if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1795          RecordFieldInitializer(Info, Top, *FA, Init);
1796          break;
1797        }
1798      }
1799
1800      // Fallthrough and construct a default initializer for the union as
1801      // a whole, which can call its default constructor if such a thing exists
1802      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1803      // behavior going forward with C++0x, when anonymous unions there are
1804      // finalized, we should revisit this.
1805    } else {
1806      // For structs, we simply descend through to initialize all members where
1807      // necessary.
1808      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1809           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1810        if (CollectFieldInitializer(Info, Top, *FA))
1811          return true;
1812      }
1813    }
1814  }
1815
1816  // Don't try to build an implicit initializer if there were semantic
1817  // errors in any of the initializers (and therefore we might be
1818  // missing some that the user actually wrote).
1819  if (Info.AnyErrorsInInits)
1820    return false;
1821
1822  CXXBaseOrMemberInitializer *Init = 0;
1823  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1824    return true;
1825
1826  RecordFieldInitializer(Info, Top, Field, Init);
1827  return false;
1828}
1829
1830bool
1831Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1832                                  CXXBaseOrMemberInitializer **Initializers,
1833                                  unsigned NumInitializers,
1834                                  bool AnyErrors) {
1835  if (Constructor->getDeclContext()->isDependentContext()) {
1836    // Just store the initializers as written, they will be checked during
1837    // instantiation.
1838    if (NumInitializers > 0) {
1839      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1840      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1841        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1842      memcpy(baseOrMemberInitializers, Initializers,
1843             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1844      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1845    }
1846
1847    return false;
1848  }
1849
1850  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1851
1852  // We need to build the initializer AST according to order of construction
1853  // and not what user specified in the Initializers list.
1854  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1855  if (!ClassDecl)
1856    return true;
1857
1858  bool HadError = false;
1859
1860  for (unsigned i = 0; i < NumInitializers; i++) {
1861    CXXBaseOrMemberInitializer *Member = Initializers[i];
1862
1863    if (Member->isBaseInitializer())
1864      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1865    else
1866      Info.AllBaseFields[Member->getMember()] = Member;
1867  }
1868
1869  // Keep track of the direct virtual bases.
1870  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1871  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1872       E = ClassDecl->bases_end(); I != E; ++I) {
1873    if (I->isVirtual())
1874      DirectVBases.insert(I);
1875  }
1876
1877  // Push virtual bases before others.
1878  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1879       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1880
1881    if (CXXBaseOrMemberInitializer *Value
1882        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1883      Info.AllToInit.push_back(Value);
1884    } else if (!AnyErrors) {
1885      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1886      CXXBaseOrMemberInitializer *CXXBaseInit;
1887      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1888                                       VBase, IsInheritedVirtualBase,
1889                                       CXXBaseInit)) {
1890        HadError = true;
1891        continue;
1892      }
1893
1894      Info.AllToInit.push_back(CXXBaseInit);
1895    }
1896  }
1897
1898  // Non-virtual bases.
1899  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1900       E = ClassDecl->bases_end(); Base != E; ++Base) {
1901    // Virtuals are in the virtual base list and already constructed.
1902    if (Base->isVirtual())
1903      continue;
1904
1905    if (CXXBaseOrMemberInitializer *Value
1906          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1907      Info.AllToInit.push_back(Value);
1908    } else if (!AnyErrors) {
1909      CXXBaseOrMemberInitializer *CXXBaseInit;
1910      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1911                                       Base, /*IsInheritedVirtualBase=*/false,
1912                                       CXXBaseInit)) {
1913        HadError = true;
1914        continue;
1915      }
1916
1917      Info.AllToInit.push_back(CXXBaseInit);
1918    }
1919  }
1920
1921  // Fields.
1922  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1923       E = ClassDecl->field_end(); Field != E; ++Field) {
1924    if ((*Field)->getType()->isIncompleteArrayType()) {
1925      assert(ClassDecl->hasFlexibleArrayMember() &&
1926             "Incomplete array type is not valid");
1927      continue;
1928    }
1929    if (CollectFieldInitializer(Info, *Field, *Field))
1930      HadError = true;
1931  }
1932
1933  NumInitializers = Info.AllToInit.size();
1934  if (NumInitializers > 0) {
1935    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1936    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1937      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1938    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1939           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1940    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1941
1942    // Constructors implicitly reference the base and member
1943    // destructors.
1944    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1945                                           Constructor->getParent());
1946  }
1947
1948  return HadError;
1949}
1950
1951static void *GetKeyForTopLevelField(FieldDecl *Field) {
1952  // For anonymous unions, use the class declaration as the key.
1953  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1954    if (RT->getDecl()->isAnonymousStructOrUnion())
1955      return static_cast<void *>(RT->getDecl());
1956  }
1957  return static_cast<void *>(Field);
1958}
1959
1960static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1961  return Context.getCanonicalType(BaseType).getTypePtr();
1962}
1963
1964static void *GetKeyForMember(ASTContext &Context,
1965                             CXXBaseOrMemberInitializer *Member,
1966                             bool MemberMaybeAnon = false) {
1967  if (!Member->isMemberInitializer())
1968    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1969
1970  // For fields injected into the class via declaration of an anonymous union,
1971  // use its anonymous union class declaration as the unique key.
1972  FieldDecl *Field = Member->getMember();
1973
1974  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1975  // data member of the class. Data member used in the initializer list is
1976  // in AnonUnionMember field.
1977  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1978    Field = Member->getAnonUnionMember();
1979
1980  // If the field is a member of an anonymous struct or union, our key
1981  // is the anonymous record decl that's a direct child of the class.
1982  RecordDecl *RD = Field->getParent();
1983  if (RD->isAnonymousStructOrUnion()) {
1984    while (true) {
1985      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1986      if (Parent->isAnonymousStructOrUnion())
1987        RD = Parent;
1988      else
1989        break;
1990    }
1991
1992    return static_cast<void *>(RD);
1993  }
1994
1995  return static_cast<void *>(Field);
1996}
1997
1998static void
1999DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2000                                  const CXXConstructorDecl *Constructor,
2001                                  CXXBaseOrMemberInitializer **Inits,
2002                                  unsigned NumInits) {
2003  if (Constructor->getDeclContext()->isDependentContext())
2004    return;
2005
2006  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
2007        == Diagnostic::Ignored)
2008    return;
2009
2010  // Build the list of bases and members in the order that they'll
2011  // actually be initialized.  The explicit initializers should be in
2012  // this same order but may be missing things.
2013  llvm::SmallVector<const void*, 32> IdealInitKeys;
2014
2015  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2016
2017  // 1. Virtual bases.
2018  for (CXXRecordDecl::base_class_const_iterator VBase =
2019       ClassDecl->vbases_begin(),
2020       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2021    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2022
2023  // 2. Non-virtual bases.
2024  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2025       E = ClassDecl->bases_end(); Base != E; ++Base) {
2026    if (Base->isVirtual())
2027      continue;
2028    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2029  }
2030
2031  // 3. Direct fields.
2032  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2033       E = ClassDecl->field_end(); Field != E; ++Field)
2034    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2035
2036  unsigned NumIdealInits = IdealInitKeys.size();
2037  unsigned IdealIndex = 0;
2038
2039  CXXBaseOrMemberInitializer *PrevInit = 0;
2040  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2041    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2042    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2043
2044    // Scan forward to try to find this initializer in the idealized
2045    // initializers list.
2046    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2047      if (InitKey == IdealInitKeys[IdealIndex])
2048        break;
2049
2050    // If we didn't find this initializer, it must be because we
2051    // scanned past it on a previous iteration.  That can only
2052    // happen if we're out of order;  emit a warning.
2053    if (IdealIndex == NumIdealInits && PrevInit) {
2054      Sema::SemaDiagnosticBuilder D =
2055        SemaRef.Diag(PrevInit->getSourceLocation(),
2056                     diag::warn_initializer_out_of_order);
2057
2058      if (PrevInit->isMemberInitializer())
2059        D << 0 << PrevInit->getMember()->getDeclName();
2060      else
2061        D << 1 << PrevInit->getBaseClassInfo()->getType();
2062
2063      if (Init->isMemberInitializer())
2064        D << 0 << Init->getMember()->getDeclName();
2065      else
2066        D << 1 << Init->getBaseClassInfo()->getType();
2067
2068      // Move back to the initializer's location in the ideal list.
2069      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2070        if (InitKey == IdealInitKeys[IdealIndex])
2071          break;
2072
2073      assert(IdealIndex != NumIdealInits &&
2074             "initializer not found in initializer list");
2075    }
2076
2077    PrevInit = Init;
2078  }
2079}
2080
2081namespace {
2082bool CheckRedundantInit(Sema &S,
2083                        CXXBaseOrMemberInitializer *Init,
2084                        CXXBaseOrMemberInitializer *&PrevInit) {
2085  if (!PrevInit) {
2086    PrevInit = Init;
2087    return false;
2088  }
2089
2090  if (FieldDecl *Field = Init->getMember())
2091    S.Diag(Init->getSourceLocation(),
2092           diag::err_multiple_mem_initialization)
2093      << Field->getDeclName()
2094      << Init->getSourceRange();
2095  else {
2096    Type *BaseClass = Init->getBaseClass();
2097    assert(BaseClass && "neither field nor base");
2098    S.Diag(Init->getSourceLocation(),
2099           diag::err_multiple_base_initialization)
2100      << QualType(BaseClass, 0)
2101      << Init->getSourceRange();
2102  }
2103  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2104    << 0 << PrevInit->getSourceRange();
2105
2106  return true;
2107}
2108
2109typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2110typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2111
2112bool CheckRedundantUnionInit(Sema &S,
2113                             CXXBaseOrMemberInitializer *Init,
2114                             RedundantUnionMap &Unions) {
2115  FieldDecl *Field = Init->getMember();
2116  RecordDecl *Parent = Field->getParent();
2117  if (!Parent->isAnonymousStructOrUnion())
2118    return false;
2119
2120  NamedDecl *Child = Field;
2121  do {
2122    if (Parent->isUnion()) {
2123      UnionEntry &En = Unions[Parent];
2124      if (En.first && En.first != Child) {
2125        S.Diag(Init->getSourceLocation(),
2126               diag::err_multiple_mem_union_initialization)
2127          << Field->getDeclName()
2128          << Init->getSourceRange();
2129        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2130          << 0 << En.second->getSourceRange();
2131        return true;
2132      } else if (!En.first) {
2133        En.first = Child;
2134        En.second = Init;
2135      }
2136    }
2137
2138    Child = Parent;
2139    Parent = cast<RecordDecl>(Parent->getDeclContext());
2140  } while (Parent->isAnonymousStructOrUnion());
2141
2142  return false;
2143}
2144}
2145
2146/// ActOnMemInitializers - Handle the member initializers for a constructor.
2147void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2148                                SourceLocation ColonLoc,
2149                                MemInitTy **meminits, unsigned NumMemInits,
2150                                bool AnyErrors) {
2151  if (!ConstructorDecl)
2152    return;
2153
2154  AdjustDeclIfTemplate(ConstructorDecl);
2155
2156  CXXConstructorDecl *Constructor
2157    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2158
2159  if (!Constructor) {
2160    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2161    return;
2162  }
2163
2164  CXXBaseOrMemberInitializer **MemInits =
2165    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2166
2167  // Mapping for the duplicate initializers check.
2168  // For member initializers, this is keyed with a FieldDecl*.
2169  // For base initializers, this is keyed with a Type*.
2170  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2171
2172  // Mapping for the inconsistent anonymous-union initializers check.
2173  RedundantUnionMap MemberUnions;
2174
2175  bool HadError = false;
2176  for (unsigned i = 0; i < NumMemInits; i++) {
2177    CXXBaseOrMemberInitializer *Init = MemInits[i];
2178
2179    // Set the source order index.
2180    Init->setSourceOrder(i);
2181
2182    if (Init->isMemberInitializer()) {
2183      FieldDecl *Field = Init->getMember();
2184      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2185          CheckRedundantUnionInit(*this, Init, MemberUnions))
2186        HadError = true;
2187    } else {
2188      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2189      if (CheckRedundantInit(*this, Init, Members[Key]))
2190        HadError = true;
2191    }
2192  }
2193
2194  if (HadError)
2195    return;
2196
2197  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2198
2199  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2200}
2201
2202void
2203Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2204                                             CXXRecordDecl *ClassDecl) {
2205  // Ignore dependent contexts.
2206  if (ClassDecl->isDependentContext())
2207    return;
2208
2209  // FIXME: all the access-control diagnostics are positioned on the
2210  // field/base declaration.  That's probably good; that said, the
2211  // user might reasonably want to know why the destructor is being
2212  // emitted, and we currently don't say.
2213
2214  // Non-static data members.
2215  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2216       E = ClassDecl->field_end(); I != E; ++I) {
2217    FieldDecl *Field = *I;
2218    if (Field->isInvalidDecl())
2219      continue;
2220    QualType FieldType = Context.getBaseElementType(Field->getType());
2221
2222    const RecordType* RT = FieldType->getAs<RecordType>();
2223    if (!RT)
2224      continue;
2225
2226    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2227    if (FieldClassDecl->hasTrivialDestructor())
2228      continue;
2229
2230    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2231    CheckDestructorAccess(Field->getLocation(), Dtor,
2232                          PDiag(diag::err_access_dtor_field)
2233                            << Field->getDeclName()
2234                            << FieldType);
2235
2236    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2237  }
2238
2239  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2240
2241  // Bases.
2242  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2243       E = ClassDecl->bases_end(); Base != E; ++Base) {
2244    // Bases are always records in a well-formed non-dependent class.
2245    const RecordType *RT = Base->getType()->getAs<RecordType>();
2246
2247    // Remember direct virtual bases.
2248    if (Base->isVirtual())
2249      DirectVirtualBases.insert(RT);
2250
2251    // Ignore trivial destructors.
2252    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2253    if (BaseClassDecl->hasTrivialDestructor())
2254      continue;
2255
2256    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2257
2258    // FIXME: caret should be on the start of the class name
2259    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2260                          PDiag(diag::err_access_dtor_base)
2261                            << Base->getType()
2262                            << Base->getSourceRange());
2263
2264    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2265  }
2266
2267  // Virtual bases.
2268  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2269       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2270
2271    // Bases are always records in a well-formed non-dependent class.
2272    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2273
2274    // Ignore direct virtual bases.
2275    if (DirectVirtualBases.count(RT))
2276      continue;
2277
2278    // Ignore trivial destructors.
2279    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2280    if (BaseClassDecl->hasTrivialDestructor())
2281      continue;
2282
2283    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2284    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2285                          PDiag(diag::err_access_dtor_vbase)
2286                            << VBase->getType());
2287
2288    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2289  }
2290}
2291
2292void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2293  if (!CDtorDecl)
2294    return;
2295
2296  if (CXXConstructorDecl *Constructor
2297      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2298    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2299}
2300
2301bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2302                                  unsigned DiagID, AbstractDiagSelID SelID,
2303                                  const CXXRecordDecl *CurrentRD) {
2304  if (SelID == -1)
2305    return RequireNonAbstractType(Loc, T,
2306                                  PDiag(DiagID), CurrentRD);
2307  else
2308    return RequireNonAbstractType(Loc, T,
2309                                  PDiag(DiagID) << SelID, CurrentRD);
2310}
2311
2312bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2313                                  const PartialDiagnostic &PD,
2314                                  const CXXRecordDecl *CurrentRD) {
2315  if (!getLangOptions().CPlusPlus)
2316    return false;
2317
2318  if (const ArrayType *AT = Context.getAsArrayType(T))
2319    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2320                                  CurrentRD);
2321
2322  if (const PointerType *PT = T->getAs<PointerType>()) {
2323    // Find the innermost pointer type.
2324    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2325      PT = T;
2326
2327    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2328      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2329  }
2330
2331  const RecordType *RT = T->getAs<RecordType>();
2332  if (!RT)
2333    return false;
2334
2335  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2336
2337  if (CurrentRD && CurrentRD != RD)
2338    return false;
2339
2340  // FIXME: is this reasonable?  It matches current behavior, but....
2341  if (!RD->getDefinition())
2342    return false;
2343
2344  if (!RD->isAbstract())
2345    return false;
2346
2347  Diag(Loc, PD) << RD->getDeclName();
2348
2349  // Check if we've already emitted the list of pure virtual functions for this
2350  // class.
2351  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2352    return true;
2353
2354  CXXFinalOverriderMap FinalOverriders;
2355  RD->getFinalOverriders(FinalOverriders);
2356
2357  // Keep a set of seen pure methods so we won't diagnose the same method
2358  // more than once.
2359  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2360
2361  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2362                                   MEnd = FinalOverriders.end();
2363       M != MEnd;
2364       ++M) {
2365    for (OverridingMethods::iterator SO = M->second.begin(),
2366                                  SOEnd = M->second.end();
2367         SO != SOEnd; ++SO) {
2368      // C++ [class.abstract]p4:
2369      //   A class is abstract if it contains or inherits at least one
2370      //   pure virtual function for which the final overrider is pure
2371      //   virtual.
2372
2373      //
2374      if (SO->second.size() != 1)
2375        continue;
2376
2377      if (!SO->second.front().Method->isPure())
2378        continue;
2379
2380      if (!SeenPureMethods.insert(SO->second.front().Method))
2381        continue;
2382
2383      Diag(SO->second.front().Method->getLocation(),
2384           diag::note_pure_virtual_function)
2385        << SO->second.front().Method->getDeclName();
2386    }
2387  }
2388
2389  if (!PureVirtualClassDiagSet)
2390    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2391  PureVirtualClassDiagSet->insert(RD);
2392
2393  return true;
2394}
2395
2396namespace {
2397  class AbstractClassUsageDiagnoser
2398    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2399    Sema &SemaRef;
2400    CXXRecordDecl *AbstractClass;
2401
2402    bool VisitDeclContext(const DeclContext *DC) {
2403      bool Invalid = false;
2404
2405      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2406           E = DC->decls_end(); I != E; ++I)
2407        Invalid |= Visit(*I);
2408
2409      return Invalid;
2410    }
2411
2412  public:
2413    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2414      : SemaRef(SemaRef), AbstractClass(ac) {
2415        Visit(SemaRef.Context.getTranslationUnitDecl());
2416    }
2417
2418    bool VisitFunctionDecl(const FunctionDecl *FD) {
2419      if (FD->isThisDeclarationADefinition()) {
2420        // No need to do the check if we're in a definition, because it requires
2421        // that the return/param types are complete.
2422        // because that requires
2423        return VisitDeclContext(FD);
2424      }
2425
2426      // Check the return type.
2427      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2428      bool Invalid =
2429        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2430                                       diag::err_abstract_type_in_decl,
2431                                       Sema::AbstractReturnType,
2432                                       AbstractClass);
2433
2434      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2435           E = FD->param_end(); I != E; ++I) {
2436        const ParmVarDecl *VD = *I;
2437        Invalid |=
2438          SemaRef.RequireNonAbstractType(VD->getLocation(),
2439                                         VD->getOriginalType(),
2440                                         diag::err_abstract_type_in_decl,
2441                                         Sema::AbstractParamType,
2442                                         AbstractClass);
2443      }
2444
2445      return Invalid;
2446    }
2447
2448    bool VisitDecl(const Decl* D) {
2449      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2450        return VisitDeclContext(DC);
2451
2452      return false;
2453    }
2454  };
2455}
2456
2457/// \brief Perform semantic checks on a class definition that has been
2458/// completing, introducing implicitly-declared members, checking for
2459/// abstract types, etc.
2460void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2461  if (!Record || Record->isInvalidDecl())
2462    return;
2463
2464  if (!Record->isDependentType())
2465    AddImplicitlyDeclaredMembersToClass(S, Record);
2466
2467  if (Record->isInvalidDecl())
2468    return;
2469
2470  // Set access bits correctly on the directly-declared conversions.
2471  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2472  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2473    Convs->setAccess(I, (*I)->getAccess());
2474
2475  // Determine whether we need to check for final overriders. We do
2476  // this either when there are virtual base classes (in which case we
2477  // may end up finding multiple final overriders for a given virtual
2478  // function) or any of the base classes is abstract (in which case
2479  // we might detect that this class is abstract).
2480  bool CheckFinalOverriders = false;
2481  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2482      !Record->isDependentType()) {
2483    if (Record->getNumVBases())
2484      CheckFinalOverriders = true;
2485    else if (!Record->isAbstract()) {
2486      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2487                                                 BEnd = Record->bases_end();
2488           B != BEnd; ++B) {
2489        CXXRecordDecl *BaseDecl
2490          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2491        if (BaseDecl->isAbstract()) {
2492          CheckFinalOverriders = true;
2493          break;
2494        }
2495      }
2496    }
2497  }
2498
2499  if (CheckFinalOverriders) {
2500    CXXFinalOverriderMap FinalOverriders;
2501    Record->getFinalOverriders(FinalOverriders);
2502
2503    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2504                                     MEnd = FinalOverriders.end();
2505         M != MEnd; ++M) {
2506      for (OverridingMethods::iterator SO = M->second.begin(),
2507                                    SOEnd = M->second.end();
2508           SO != SOEnd; ++SO) {
2509        assert(SO->second.size() > 0 &&
2510               "All virtual functions have overridding virtual functions");
2511        if (SO->second.size() == 1) {
2512          // C++ [class.abstract]p4:
2513          //   A class is abstract if it contains or inherits at least one
2514          //   pure virtual function for which the final overrider is pure
2515          //   virtual.
2516          if (SO->second.front().Method->isPure())
2517            Record->setAbstract(true);
2518          continue;
2519        }
2520
2521        // C++ [class.virtual]p2:
2522        //   In a derived class, if a virtual member function of a base
2523        //   class subobject has more than one final overrider the
2524        //   program is ill-formed.
2525        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2526          << (NamedDecl *)M->first << Record;
2527        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2528        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2529                                                 OMEnd = SO->second.end();
2530             OM != OMEnd; ++OM)
2531          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2532            << (NamedDecl *)M->first << OM->Method->getParent();
2533
2534        Record->setInvalidDecl();
2535      }
2536    }
2537  }
2538
2539  if (Record->isAbstract() && !Record->isInvalidDecl())
2540    (void)AbstractClassUsageDiagnoser(*this, Record);
2541
2542  // If this is not an aggregate type and has no user-declared constructor,
2543  // complain about any non-static data members of reference or const scalar
2544  // type, since they will never get initializers.
2545  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2546      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2547    bool Complained = false;
2548    for (RecordDecl::field_iterator F = Record->field_begin(),
2549                                 FEnd = Record->field_end();
2550         F != FEnd; ++F) {
2551      if (F->getType()->isReferenceType() ||
2552          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2553        if (!Complained) {
2554          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2555            << Record->getTagKind() << Record;
2556          Complained = true;
2557        }
2558
2559        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2560          << F->getType()->isReferenceType()
2561          << F->getDeclName();
2562      }
2563    }
2564  }
2565
2566  if (Record->isDynamicClass())
2567    DynamicClasses.push_back(Record);
2568}
2569
2570void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2571                                             DeclPtrTy TagDecl,
2572                                             SourceLocation LBrac,
2573                                             SourceLocation RBrac,
2574                                             AttributeList *AttrList) {
2575  if (!TagDecl)
2576    return;
2577
2578  AdjustDeclIfTemplate(TagDecl);
2579
2580  ActOnFields(S, RLoc, TagDecl,
2581              (DeclPtrTy*)FieldCollector->getCurFields(),
2582              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2583
2584  CheckCompletedCXXClass(S,
2585                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2586}
2587
2588/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2589/// special functions, such as the default constructor, copy
2590/// constructor, or destructor, to the given C++ class (C++
2591/// [special]p1).  This routine can only be executed just before the
2592/// definition of the class is complete.
2593///
2594/// The scope, if provided, is the class scope.
2595void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2596                                               CXXRecordDecl *ClassDecl) {
2597  CanQualType ClassType
2598    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2599
2600  // FIXME: Implicit declarations have exception specifications, which are
2601  // the union of the specifications of the implicitly called functions.
2602
2603  if (!ClassDecl->hasUserDeclaredConstructor()) {
2604    // C++ [class.ctor]p5:
2605    //   A default constructor for a class X is a constructor of class X
2606    //   that can be called without an argument. If there is no
2607    //   user-declared constructor for class X, a default constructor is
2608    //   implicitly declared. An implicitly-declared default constructor
2609    //   is an inline public member of its class.
2610    DeclarationName Name
2611      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2612    CXXConstructorDecl *DefaultCon =
2613      CXXConstructorDecl::Create(Context, ClassDecl,
2614                                 ClassDecl->getLocation(), Name,
2615                                 Context.getFunctionType(Context.VoidTy,
2616                                                         0, 0, false, 0,
2617                                                         /*FIXME*/false, false,
2618                                                         0, 0,
2619                                                       FunctionType::ExtInfo()),
2620                                 /*TInfo=*/0,
2621                                 /*isExplicit=*/false,
2622                                 /*isInline=*/true,
2623                                 /*isImplicitlyDeclared=*/true);
2624    DefaultCon->setAccess(AS_public);
2625    DefaultCon->setImplicit();
2626    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2627    if (S)
2628      PushOnScopeChains(DefaultCon, S, true);
2629    else
2630      ClassDecl->addDecl(DefaultCon);
2631  }
2632
2633  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2634    // C++ [class.copy]p4:
2635    //   If the class definition does not explicitly declare a copy
2636    //   constructor, one is declared implicitly.
2637
2638    // C++ [class.copy]p5:
2639    //   The implicitly-declared copy constructor for a class X will
2640    //   have the form
2641    //
2642    //       X::X(const X&)
2643    //
2644    //   if
2645    bool HasConstCopyConstructor = true;
2646
2647    //     -- each direct or virtual base class B of X has a copy
2648    //        constructor whose first parameter is of type const B& or
2649    //        const volatile B&, and
2650    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2651         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2652      const CXXRecordDecl *BaseClassDecl
2653        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2654      HasConstCopyConstructor
2655        = BaseClassDecl->hasConstCopyConstructor(Context);
2656    }
2657
2658    //     -- for all the nonstatic data members of X that are of a
2659    //        class type M (or array thereof), each such class type
2660    //        has a copy constructor whose first parameter is of type
2661    //        const M& or const volatile M&.
2662    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2663         HasConstCopyConstructor && Field != ClassDecl->field_end();
2664         ++Field) {
2665      QualType FieldType = (*Field)->getType();
2666      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2667        FieldType = Array->getElementType();
2668      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2669        const CXXRecordDecl *FieldClassDecl
2670          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2671        HasConstCopyConstructor
2672          = FieldClassDecl->hasConstCopyConstructor(Context);
2673      }
2674    }
2675
2676    //   Otherwise, the implicitly declared copy constructor will have
2677    //   the form
2678    //
2679    //       X::X(X&)
2680    QualType ArgType = ClassType;
2681    if (HasConstCopyConstructor)
2682      ArgType = ArgType.withConst();
2683    ArgType = Context.getLValueReferenceType(ArgType);
2684
2685    //   An implicitly-declared copy constructor is an inline public
2686    //   member of its class.
2687    DeclarationName Name
2688      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2689    CXXConstructorDecl *CopyConstructor
2690      = CXXConstructorDecl::Create(Context, ClassDecl,
2691                                   ClassDecl->getLocation(), Name,
2692                                   Context.getFunctionType(Context.VoidTy,
2693                                                           &ArgType, 1,
2694                                                           false, 0,
2695                                               /*FIXME: hasExceptionSpec*/false,
2696                                                           false, 0, 0,
2697                                                       FunctionType::ExtInfo()),
2698                                   /*TInfo=*/0,
2699                                   /*isExplicit=*/false,
2700                                   /*isInline=*/true,
2701                                   /*isImplicitlyDeclared=*/true);
2702    CopyConstructor->setAccess(AS_public);
2703    CopyConstructor->setImplicit();
2704    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2705
2706    // Add the parameter to the constructor.
2707    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2708                                                 ClassDecl->getLocation(),
2709                                                 /*IdentifierInfo=*/0,
2710                                                 ArgType, /*TInfo=*/0,
2711                                                 VarDecl::None,
2712                                                 VarDecl::None, 0);
2713    CopyConstructor->setParams(&FromParam, 1);
2714    if (S)
2715      PushOnScopeChains(CopyConstructor, S, true);
2716    else
2717      ClassDecl->addDecl(CopyConstructor);
2718  }
2719
2720  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2721    // Note: The following rules are largely analoguous to the copy
2722    // constructor rules. Note that virtual bases are not taken into account
2723    // for determining the argument type of the operator. Note also that
2724    // operators taking an object instead of a reference are allowed.
2725    //
2726    // C++ [class.copy]p10:
2727    //   If the class definition does not explicitly declare a copy
2728    //   assignment operator, one is declared implicitly.
2729    //   The implicitly-defined copy assignment operator for a class X
2730    //   will have the form
2731    //
2732    //       X& X::operator=(const X&)
2733    //
2734    //   if
2735    bool HasConstCopyAssignment = true;
2736
2737    //       -- each direct base class B of X has a copy assignment operator
2738    //          whose parameter is of type const B&, const volatile B& or B,
2739    //          and
2740    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2741         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2742      assert(!Base->getType()->isDependentType() &&
2743            "Cannot generate implicit members for class with dependent bases.");
2744      const CXXRecordDecl *BaseClassDecl
2745        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2746      const CXXMethodDecl *MD = 0;
2747      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2748                                                                     MD);
2749    }
2750
2751    //       -- for all the nonstatic data members of X that are of a class
2752    //          type M (or array thereof), each such class type has a copy
2753    //          assignment operator whose parameter is of type const M&,
2754    //          const volatile M& or M.
2755    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2756         HasConstCopyAssignment && Field != ClassDecl->field_end();
2757         ++Field) {
2758      QualType FieldType = (*Field)->getType();
2759      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2760        FieldType = Array->getElementType();
2761      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2762        const CXXRecordDecl *FieldClassDecl
2763          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2764        const CXXMethodDecl *MD = 0;
2765        HasConstCopyAssignment
2766          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2767      }
2768    }
2769
2770    //   Otherwise, the implicitly declared copy assignment operator will
2771    //   have the form
2772    //
2773    //       X& X::operator=(X&)
2774    QualType ArgType = ClassType;
2775    QualType RetType = Context.getLValueReferenceType(ArgType);
2776    if (HasConstCopyAssignment)
2777      ArgType = ArgType.withConst();
2778    ArgType = Context.getLValueReferenceType(ArgType);
2779
2780    //   An implicitly-declared copy assignment operator is an inline public
2781    //   member of its class.
2782    DeclarationName Name =
2783      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2784    CXXMethodDecl *CopyAssignment =
2785      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2786                            Context.getFunctionType(RetType, &ArgType, 1,
2787                                                    false, 0,
2788                                              /*FIXME: hasExceptionSpec*/false,
2789                                                    false, 0, 0,
2790                                                    FunctionType::ExtInfo()),
2791                            /*TInfo=*/0, /*isStatic=*/false,
2792                            /*StorageClassAsWritten=*/FunctionDecl::None,
2793                            /*isInline=*/true);
2794    CopyAssignment->setAccess(AS_public);
2795    CopyAssignment->setImplicit();
2796    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2797    CopyAssignment->setCopyAssignment(true);
2798
2799    // Add the parameter to the operator.
2800    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2801                                                 ClassDecl->getLocation(),
2802                                                 /*Id=*/0,
2803                                                 ArgType, /*TInfo=*/0,
2804                                                 VarDecl::None,
2805                                                 VarDecl::None, 0);
2806    CopyAssignment->setParams(&FromParam, 1);
2807
2808    // Don't call addedAssignmentOperator. There is no way to distinguish an
2809    // implicit from an explicit assignment operator.
2810    if (S)
2811      PushOnScopeChains(CopyAssignment, S, true);
2812    else
2813      ClassDecl->addDecl(CopyAssignment);
2814    AddOverriddenMethods(ClassDecl, CopyAssignment);
2815  }
2816
2817  if (!ClassDecl->hasUserDeclaredDestructor()) {
2818    // C++ [class.dtor]p2:
2819    //   If a class has no user-declared destructor, a destructor is
2820    //   declared implicitly. An implicitly-declared destructor is an
2821    //   inline public member of its class.
2822    QualType Ty = Context.getFunctionType(Context.VoidTy,
2823                                          0, 0, false, 0,
2824                                          /*FIXME: hasExceptionSpec*/false,
2825                                          false, 0, 0, FunctionType::ExtInfo());
2826
2827    DeclarationName Name
2828      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2829    CXXDestructorDecl *Destructor
2830      = CXXDestructorDecl::Create(Context, ClassDecl,
2831                                  ClassDecl->getLocation(), Name, Ty,
2832                                  /*isInline=*/true,
2833                                  /*isImplicitlyDeclared=*/true);
2834    Destructor->setAccess(AS_public);
2835    Destructor->setImplicit();
2836    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2837    if (S)
2838      PushOnScopeChains(Destructor, S, true);
2839    else
2840      ClassDecl->addDecl(Destructor);
2841
2842    // This could be uniqued if it ever proves significant.
2843    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2844
2845    AddOverriddenMethods(ClassDecl, Destructor);
2846  }
2847}
2848
2849void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2850  Decl *D = TemplateD.getAs<Decl>();
2851  if (!D)
2852    return;
2853
2854  TemplateParameterList *Params = 0;
2855  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2856    Params = Template->getTemplateParameters();
2857  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2858           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2859    Params = PartialSpec->getTemplateParameters();
2860  else
2861    return;
2862
2863  for (TemplateParameterList::iterator Param = Params->begin(),
2864                                    ParamEnd = Params->end();
2865       Param != ParamEnd; ++Param) {
2866    NamedDecl *Named = cast<NamedDecl>(*Param);
2867    if (Named->getDeclName()) {
2868      S->AddDecl(DeclPtrTy::make(Named));
2869      IdResolver.AddDecl(Named);
2870    }
2871  }
2872}
2873
2874void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2875  if (!RecordD) return;
2876  AdjustDeclIfTemplate(RecordD);
2877  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2878  PushDeclContext(S, Record);
2879}
2880
2881void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2882  if (!RecordD) return;
2883  PopDeclContext();
2884}
2885
2886/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2887/// parsing a top-level (non-nested) C++ class, and we are now
2888/// parsing those parts of the given Method declaration that could
2889/// not be parsed earlier (C++ [class.mem]p2), such as default
2890/// arguments. This action should enter the scope of the given
2891/// Method declaration as if we had just parsed the qualified method
2892/// name. However, it should not bring the parameters into scope;
2893/// that will be performed by ActOnDelayedCXXMethodParameter.
2894void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2895}
2896
2897/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2898/// C++ method declaration. We're (re-)introducing the given
2899/// function parameter into scope for use in parsing later parts of
2900/// the method declaration. For example, we could see an
2901/// ActOnParamDefaultArgument event for this parameter.
2902void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2903  if (!ParamD)
2904    return;
2905
2906  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2907
2908  // If this parameter has an unparsed default argument, clear it out
2909  // to make way for the parsed default argument.
2910  if (Param->hasUnparsedDefaultArg())
2911    Param->setDefaultArg(0);
2912
2913  S->AddDecl(DeclPtrTy::make(Param));
2914  if (Param->getDeclName())
2915    IdResolver.AddDecl(Param);
2916}
2917
2918/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2919/// processing the delayed method declaration for Method. The method
2920/// declaration is now considered finished. There may be a separate
2921/// ActOnStartOfFunctionDef action later (not necessarily
2922/// immediately!) for this method, if it was also defined inside the
2923/// class body.
2924void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2925  if (!MethodD)
2926    return;
2927
2928  AdjustDeclIfTemplate(MethodD);
2929
2930  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2931
2932  // Now that we have our default arguments, check the constructor
2933  // again. It could produce additional diagnostics or affect whether
2934  // the class has implicitly-declared destructors, among other
2935  // things.
2936  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2937    CheckConstructor(Constructor);
2938
2939  // Check the default arguments, which we may have added.
2940  if (!Method->isInvalidDecl())
2941    CheckCXXDefaultArguments(Method);
2942}
2943
2944/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2945/// the well-formedness of the constructor declarator @p D with type @p
2946/// R. If there are any errors in the declarator, this routine will
2947/// emit diagnostics and set the invalid bit to true.  In any case, the type
2948/// will be updated to reflect a well-formed type for the constructor and
2949/// returned.
2950QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2951                                          FunctionDecl::StorageClass &SC) {
2952  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2953
2954  // C++ [class.ctor]p3:
2955  //   A constructor shall not be virtual (10.3) or static (9.4). A
2956  //   constructor can be invoked for a const, volatile or const
2957  //   volatile object. A constructor shall not be declared const,
2958  //   volatile, or const volatile (9.3.2).
2959  if (isVirtual) {
2960    if (!D.isInvalidType())
2961      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2962        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2963        << SourceRange(D.getIdentifierLoc());
2964    D.setInvalidType();
2965  }
2966  if (SC == FunctionDecl::Static) {
2967    if (!D.isInvalidType())
2968      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2969        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2970        << SourceRange(D.getIdentifierLoc());
2971    D.setInvalidType();
2972    SC = FunctionDecl::None;
2973  }
2974
2975  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2976  if (FTI.TypeQuals != 0) {
2977    if (FTI.TypeQuals & Qualifiers::Const)
2978      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2979        << "const" << SourceRange(D.getIdentifierLoc());
2980    if (FTI.TypeQuals & Qualifiers::Volatile)
2981      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2982        << "volatile" << SourceRange(D.getIdentifierLoc());
2983    if (FTI.TypeQuals & Qualifiers::Restrict)
2984      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2985        << "restrict" << SourceRange(D.getIdentifierLoc());
2986  }
2987
2988  // Rebuild the function type "R" without any type qualifiers (in
2989  // case any of the errors above fired) and with "void" as the
2990  // return type, since constructors don't have return types. We
2991  // *always* have to do this, because GetTypeForDeclarator will
2992  // put in a result type of "int" when none was specified.
2993  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2994  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2995                                 Proto->getNumArgs(),
2996                                 Proto->isVariadic(), 0,
2997                                 Proto->hasExceptionSpec(),
2998                                 Proto->hasAnyExceptionSpec(),
2999                                 Proto->getNumExceptions(),
3000                                 Proto->exception_begin(),
3001                                 Proto->getExtInfo());
3002}
3003
3004/// CheckConstructor - Checks a fully-formed constructor for
3005/// well-formedness, issuing any diagnostics required. Returns true if
3006/// the constructor declarator is invalid.
3007void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3008  CXXRecordDecl *ClassDecl
3009    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3010  if (!ClassDecl)
3011    return Constructor->setInvalidDecl();
3012
3013  // C++ [class.copy]p3:
3014  //   A declaration of a constructor for a class X is ill-formed if
3015  //   its first parameter is of type (optionally cv-qualified) X and
3016  //   either there are no other parameters or else all other
3017  //   parameters have default arguments.
3018  if (!Constructor->isInvalidDecl() &&
3019      ((Constructor->getNumParams() == 1) ||
3020       (Constructor->getNumParams() > 1 &&
3021        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3022      Constructor->getTemplateSpecializationKind()
3023                                              != TSK_ImplicitInstantiation) {
3024    QualType ParamType = Constructor->getParamDecl(0)->getType();
3025    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3026    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3027      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3028      const char *ConstRef
3029        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3030                                                        : " const &";
3031      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3032        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3033
3034      // FIXME: Rather that making the constructor invalid, we should endeavor
3035      // to fix the type.
3036      Constructor->setInvalidDecl();
3037    }
3038  }
3039
3040  // Notify the class that we've added a constructor.  In principle we
3041  // don't need to do this for out-of-line declarations; in practice
3042  // we only instantiate the most recent declaration of a method, so
3043  // we have to call this for everything but friends.
3044  if (!Constructor->getFriendObjectKind())
3045    ClassDecl->addedConstructor(Context, Constructor);
3046}
3047
3048/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
3049/// issuing any diagnostics required. Returns true on error.
3050bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3051  CXXRecordDecl *RD = Destructor->getParent();
3052
3053  if (Destructor->isVirtual()) {
3054    SourceLocation Loc;
3055
3056    if (!Destructor->isImplicit())
3057      Loc = Destructor->getLocation();
3058    else
3059      Loc = RD->getLocation();
3060
3061    // If we have a virtual destructor, look up the deallocation function
3062    FunctionDecl *OperatorDelete = 0;
3063    DeclarationName Name =
3064    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3065    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3066      return true;
3067
3068    Destructor->setOperatorDelete(OperatorDelete);
3069  }
3070
3071  return false;
3072}
3073
3074static inline bool
3075FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3076  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3077          FTI.ArgInfo[0].Param &&
3078          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3079}
3080
3081/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3082/// the well-formednes of the destructor declarator @p D with type @p
3083/// R. If there are any errors in the declarator, this routine will
3084/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3085/// will be updated to reflect a well-formed type for the destructor and
3086/// returned.
3087QualType Sema::CheckDestructorDeclarator(Declarator &D,
3088                                         FunctionDecl::StorageClass& SC) {
3089  // C++ [class.dtor]p1:
3090  //   [...] A typedef-name that names a class is a class-name
3091  //   (7.1.3); however, a typedef-name that names a class shall not
3092  //   be used as the identifier in the declarator for a destructor
3093  //   declaration.
3094  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3095  if (isa<TypedefType>(DeclaratorType)) {
3096    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3097      << DeclaratorType;
3098    D.setInvalidType();
3099  }
3100
3101  // C++ [class.dtor]p2:
3102  //   A destructor is used to destroy objects of its class type. A
3103  //   destructor takes no parameters, and no return type can be
3104  //   specified for it (not even void). The address of a destructor
3105  //   shall not be taken. A destructor shall not be static. A
3106  //   destructor can be invoked for a const, volatile or const
3107  //   volatile object. A destructor shall not be declared const,
3108  //   volatile or const volatile (9.3.2).
3109  if (SC == FunctionDecl::Static) {
3110    if (!D.isInvalidType())
3111      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3112        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3113        << SourceRange(D.getIdentifierLoc());
3114    SC = FunctionDecl::None;
3115    D.setInvalidType();
3116  }
3117  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3118    // Destructors don't have return types, but the parser will
3119    // happily parse something like:
3120    //
3121    //   class X {
3122    //     float ~X();
3123    //   };
3124    //
3125    // The return type will be eliminated later.
3126    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3127      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3128      << SourceRange(D.getIdentifierLoc());
3129  }
3130
3131  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3132  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3133    if (FTI.TypeQuals & Qualifiers::Const)
3134      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3135        << "const" << SourceRange(D.getIdentifierLoc());
3136    if (FTI.TypeQuals & Qualifiers::Volatile)
3137      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3138        << "volatile" << SourceRange(D.getIdentifierLoc());
3139    if (FTI.TypeQuals & Qualifiers::Restrict)
3140      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3141        << "restrict" << SourceRange(D.getIdentifierLoc());
3142    D.setInvalidType();
3143  }
3144
3145  // Make sure we don't have any parameters.
3146  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3147    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3148
3149    // Delete the parameters.
3150    FTI.freeArgs();
3151    D.setInvalidType();
3152  }
3153
3154  // Make sure the destructor isn't variadic.
3155  if (FTI.isVariadic) {
3156    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3157    D.setInvalidType();
3158  }
3159
3160  // Rebuild the function type "R" without any type qualifiers or
3161  // parameters (in case any of the errors above fired) and with
3162  // "void" as the return type, since destructors don't have return
3163  // types. We *always* have to do this, because GetTypeForDeclarator
3164  // will put in a result type of "int" when none was specified.
3165  // FIXME: Exceptions!
3166  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3167                                 false, false, 0, 0, FunctionType::ExtInfo());
3168}
3169
3170/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3171/// well-formednes of the conversion function declarator @p D with
3172/// type @p R. If there are any errors in the declarator, this routine
3173/// will emit diagnostics and return true. Otherwise, it will return
3174/// false. Either way, the type @p R will be updated to reflect a
3175/// well-formed type for the conversion operator.
3176void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3177                                     FunctionDecl::StorageClass& SC) {
3178  // C++ [class.conv.fct]p1:
3179  //   Neither parameter types nor return type can be specified. The
3180  //   type of a conversion function (8.3.5) is "function taking no
3181  //   parameter returning conversion-type-id."
3182  if (SC == FunctionDecl::Static) {
3183    if (!D.isInvalidType())
3184      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3185        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3186        << SourceRange(D.getIdentifierLoc());
3187    D.setInvalidType();
3188    SC = FunctionDecl::None;
3189  }
3190
3191  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3192
3193  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3194    // Conversion functions don't have return types, but the parser will
3195    // happily parse something like:
3196    //
3197    //   class X {
3198    //     float operator bool();
3199    //   };
3200    //
3201    // The return type will be changed later anyway.
3202    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3203      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3204      << SourceRange(D.getIdentifierLoc());
3205    D.setInvalidType();
3206  }
3207
3208  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3209
3210  // Make sure we don't have any parameters.
3211  if (Proto->getNumArgs() > 0) {
3212    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3213
3214    // Delete the parameters.
3215    D.getTypeObject(0).Fun.freeArgs();
3216    D.setInvalidType();
3217  } else if (Proto->isVariadic()) {
3218    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3219    D.setInvalidType();
3220  }
3221
3222  // Diagnose "&operator bool()" and other such nonsense.  This
3223  // is actually a gcc extension which we don't support.
3224  if (Proto->getResultType() != ConvType) {
3225    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3226      << Proto->getResultType();
3227    D.setInvalidType();
3228    ConvType = Proto->getResultType();
3229  }
3230
3231  // C++ [class.conv.fct]p4:
3232  //   The conversion-type-id shall not represent a function type nor
3233  //   an array type.
3234  if (ConvType->isArrayType()) {
3235    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3236    ConvType = Context.getPointerType(ConvType);
3237    D.setInvalidType();
3238  } else if (ConvType->isFunctionType()) {
3239    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3240    ConvType = Context.getPointerType(ConvType);
3241    D.setInvalidType();
3242  }
3243
3244  // Rebuild the function type "R" without any parameters (in case any
3245  // of the errors above fired) and with the conversion type as the
3246  // return type.
3247  if (D.isInvalidType()) {
3248    R = Context.getFunctionType(ConvType, 0, 0, false,
3249                                Proto->getTypeQuals(),
3250                                Proto->hasExceptionSpec(),
3251                                Proto->hasAnyExceptionSpec(),
3252                                Proto->getNumExceptions(),
3253                                Proto->exception_begin(),
3254                                Proto->getExtInfo());
3255  }
3256
3257  // C++0x explicit conversion operators.
3258  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3259    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3260         diag::warn_explicit_conversion_functions)
3261      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3262}
3263
3264/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3265/// the declaration of the given C++ conversion function. This routine
3266/// is responsible for recording the conversion function in the C++
3267/// class, if possible.
3268Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3269  assert(Conversion && "Expected to receive a conversion function declaration");
3270
3271  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3272
3273  // Make sure we aren't redeclaring the conversion function.
3274  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3275
3276  // C++ [class.conv.fct]p1:
3277  //   [...] A conversion function is never used to convert a
3278  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3279  //   same object type (or a reference to it), to a (possibly
3280  //   cv-qualified) base class of that type (or a reference to it),
3281  //   or to (possibly cv-qualified) void.
3282  // FIXME: Suppress this warning if the conversion function ends up being a
3283  // virtual function that overrides a virtual function in a base class.
3284  QualType ClassType
3285    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3286  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3287    ConvType = ConvTypeRef->getPointeeType();
3288  if (ConvType->isRecordType()) {
3289    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3290    if (ConvType == ClassType)
3291      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3292        << ClassType;
3293    else if (IsDerivedFrom(ClassType, ConvType))
3294      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3295        <<  ClassType << ConvType;
3296  } else if (ConvType->isVoidType()) {
3297    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3298      << ClassType << ConvType;
3299  }
3300
3301  if (Conversion->getPrimaryTemplate()) {
3302    // ignore specializations
3303  } else if (Conversion->getPreviousDeclaration()) {
3304    if (FunctionTemplateDecl *ConversionTemplate
3305                                  = Conversion->getDescribedFunctionTemplate()) {
3306      if (ClassDecl->replaceConversion(
3307                                   ConversionTemplate->getPreviousDeclaration(),
3308                                       ConversionTemplate))
3309        return DeclPtrTy::make(ConversionTemplate);
3310    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3311                                            Conversion))
3312      return DeclPtrTy::make(Conversion);
3313    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3314  } else if (FunctionTemplateDecl *ConversionTemplate
3315               = Conversion->getDescribedFunctionTemplate())
3316    ClassDecl->addConversionFunction(ConversionTemplate);
3317  else
3318    ClassDecl->addConversionFunction(Conversion);
3319
3320  return DeclPtrTy::make(Conversion);
3321}
3322
3323//===----------------------------------------------------------------------===//
3324// Namespace Handling
3325//===----------------------------------------------------------------------===//
3326
3327/// ActOnStartNamespaceDef - This is called at the start of a namespace
3328/// definition.
3329Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3330                                             SourceLocation IdentLoc,
3331                                             IdentifierInfo *II,
3332                                             SourceLocation LBrace,
3333                                             AttributeList *AttrList) {
3334  NamespaceDecl *Namespc =
3335      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3336  Namespc->setLBracLoc(LBrace);
3337
3338  Scope *DeclRegionScope = NamespcScope->getParent();
3339
3340  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3341
3342  if (II) {
3343    // C++ [namespace.def]p2:
3344    // The identifier in an original-namespace-definition shall not have been
3345    // previously defined in the declarative region in which the
3346    // original-namespace-definition appears. The identifier in an
3347    // original-namespace-definition is the name of the namespace. Subsequently
3348    // in that declarative region, it is treated as an original-namespace-name.
3349
3350    NamedDecl *PrevDecl
3351      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3352                         ForRedeclaration);
3353
3354    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3355      // This is an extended namespace definition.
3356      // Attach this namespace decl to the chain of extended namespace
3357      // definitions.
3358      OrigNS->setNextNamespace(Namespc);
3359      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3360
3361      // Remove the previous declaration from the scope.
3362      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3363        IdResolver.RemoveDecl(OrigNS);
3364        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3365      }
3366    } else if (PrevDecl) {
3367      // This is an invalid name redefinition.
3368      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3369       << Namespc->getDeclName();
3370      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3371      Namespc->setInvalidDecl();
3372      // Continue on to push Namespc as current DeclContext and return it.
3373    } else if (II->isStr("std") &&
3374               CurContext->getLookupContext()->isTranslationUnit()) {
3375      // This is the first "real" definition of the namespace "std", so update
3376      // our cache of the "std" namespace to point at this definition.
3377      if (StdNamespace) {
3378        // We had already defined a dummy namespace "std". Link this new
3379        // namespace definition to the dummy namespace "std".
3380        StdNamespace->setNextNamespace(Namespc);
3381        StdNamespace->setLocation(IdentLoc);
3382        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3383      }
3384
3385      // Make our StdNamespace cache point at the first real definition of the
3386      // "std" namespace.
3387      StdNamespace = Namespc;
3388    }
3389
3390    PushOnScopeChains(Namespc, DeclRegionScope);
3391  } else {
3392    // Anonymous namespaces.
3393    assert(Namespc->isAnonymousNamespace());
3394
3395    // Link the anonymous namespace into its parent.
3396    NamespaceDecl *PrevDecl;
3397    DeclContext *Parent = CurContext->getLookupContext();
3398    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3399      PrevDecl = TU->getAnonymousNamespace();
3400      TU->setAnonymousNamespace(Namespc);
3401    } else {
3402      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3403      PrevDecl = ND->getAnonymousNamespace();
3404      ND->setAnonymousNamespace(Namespc);
3405    }
3406
3407    // Link the anonymous namespace with its previous declaration.
3408    if (PrevDecl) {
3409      assert(PrevDecl->isAnonymousNamespace());
3410      assert(!PrevDecl->getNextNamespace());
3411      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3412      PrevDecl->setNextNamespace(Namespc);
3413    }
3414
3415    CurContext->addDecl(Namespc);
3416
3417    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3418    //   behaves as if it were replaced by
3419    //     namespace unique { /* empty body */ }
3420    //     using namespace unique;
3421    //     namespace unique { namespace-body }
3422    //   where all occurrences of 'unique' in a translation unit are
3423    //   replaced by the same identifier and this identifier differs
3424    //   from all other identifiers in the entire program.
3425
3426    // We just create the namespace with an empty name and then add an
3427    // implicit using declaration, just like the standard suggests.
3428    //
3429    // CodeGen enforces the "universally unique" aspect by giving all
3430    // declarations semantically contained within an anonymous
3431    // namespace internal linkage.
3432
3433    if (!PrevDecl) {
3434      UsingDirectiveDecl* UD
3435        = UsingDirectiveDecl::Create(Context, CurContext,
3436                                     /* 'using' */ LBrace,
3437                                     /* 'namespace' */ SourceLocation(),
3438                                     /* qualifier */ SourceRange(),
3439                                     /* NNS */ NULL,
3440                                     /* identifier */ SourceLocation(),
3441                                     Namespc,
3442                                     /* Ancestor */ CurContext);
3443      UD->setImplicit();
3444      CurContext->addDecl(UD);
3445    }
3446  }
3447
3448  // Although we could have an invalid decl (i.e. the namespace name is a
3449  // redefinition), push it as current DeclContext and try to continue parsing.
3450  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3451  // for the namespace has the declarations that showed up in that particular
3452  // namespace definition.
3453  PushDeclContext(NamespcScope, Namespc);
3454  return DeclPtrTy::make(Namespc);
3455}
3456
3457/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3458/// is a namespace alias, returns the namespace it points to.
3459static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3460  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3461    return AD->getNamespace();
3462  return dyn_cast_or_null<NamespaceDecl>(D);
3463}
3464
3465/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3466/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3467void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3468  Decl *Dcl = D.getAs<Decl>();
3469  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3470  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3471  Namespc->setRBracLoc(RBrace);
3472  PopDeclContext();
3473}
3474
3475/// \brief Retrieve the special "std" namespace, which may require us to
3476/// implicitly define the namespace.
3477NamespaceDecl *Sema::getStdNamespace() {
3478  if (!StdNamespace) {
3479    // The "std" namespace has not yet been defined, so build one implicitly.
3480    StdNamespace = NamespaceDecl::Create(Context,
3481                                         Context.getTranslationUnitDecl(),
3482                                         SourceLocation(),
3483                                         &PP.getIdentifierTable().get("std"));
3484    StdNamespace->setImplicit(true);
3485  }
3486
3487  return StdNamespace;
3488}
3489
3490Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3491                                          SourceLocation UsingLoc,
3492                                          SourceLocation NamespcLoc,
3493                                          CXXScopeSpec &SS,
3494                                          SourceLocation IdentLoc,
3495                                          IdentifierInfo *NamespcName,
3496                                          AttributeList *AttrList) {
3497  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3498  assert(NamespcName && "Invalid NamespcName.");
3499  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3500  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3501
3502  UsingDirectiveDecl *UDir = 0;
3503  NestedNameSpecifier *Qualifier = 0;
3504  if (SS.isSet())
3505    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3506
3507  // Lookup namespace name.
3508  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3509  LookupParsedName(R, S, &SS);
3510  if (R.isAmbiguous())
3511    return DeclPtrTy();
3512
3513  if (R.empty()) {
3514    // Allow "using namespace std;" or "using namespace ::std;" even if
3515    // "std" hasn't been defined yet, for GCC compatibility.
3516    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3517        NamespcName->isStr("std")) {
3518      Diag(IdentLoc, diag::ext_using_undefined_std);
3519      R.addDecl(getStdNamespace());
3520      R.resolveKind();
3521    }
3522    // Otherwise, attempt typo correction.
3523    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3524                                                       CTC_NoKeywords, 0)) {
3525      if (R.getAsSingle<NamespaceDecl>() ||
3526          R.getAsSingle<NamespaceAliasDecl>()) {
3527        if (DeclContext *DC = computeDeclContext(SS, false))
3528          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3529            << NamespcName << DC << Corrected << SS.getRange()
3530            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3531        else
3532          Diag(IdentLoc, diag::err_using_directive_suggest)
3533            << NamespcName << Corrected
3534            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3535        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3536          << Corrected;
3537
3538        NamespcName = Corrected.getAsIdentifierInfo();
3539      } else {
3540        R.clear();
3541        R.setLookupName(NamespcName);
3542      }
3543    }
3544  }
3545
3546  if (!R.empty()) {
3547    NamedDecl *Named = R.getFoundDecl();
3548    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3549        && "expected namespace decl");
3550    // C++ [namespace.udir]p1:
3551    //   A using-directive specifies that the names in the nominated
3552    //   namespace can be used in the scope in which the
3553    //   using-directive appears after the using-directive. During
3554    //   unqualified name lookup (3.4.1), the names appear as if they
3555    //   were declared in the nearest enclosing namespace which
3556    //   contains both the using-directive and the nominated
3557    //   namespace. [Note: in this context, "contains" means "contains
3558    //   directly or indirectly". ]
3559
3560    // Find enclosing context containing both using-directive and
3561    // nominated namespace.
3562    NamespaceDecl *NS = getNamespaceDecl(Named);
3563    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3564    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3565      CommonAncestor = CommonAncestor->getParent();
3566
3567    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3568                                      SS.getRange(),
3569                                      (NestedNameSpecifier *)SS.getScopeRep(),
3570                                      IdentLoc, Named, CommonAncestor);
3571    PushUsingDirective(S, UDir);
3572  } else {
3573    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3574  }
3575
3576  // FIXME: We ignore attributes for now.
3577  delete AttrList;
3578  return DeclPtrTy::make(UDir);
3579}
3580
3581void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3582  // If scope has associated entity, then using directive is at namespace
3583  // or translation unit scope. We add UsingDirectiveDecls, into
3584  // it's lookup structure.
3585  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3586    Ctx->addDecl(UDir);
3587  else
3588    // Otherwise it is block-sope. using-directives will affect lookup
3589    // only to the end of scope.
3590    S->PushUsingDirective(DeclPtrTy::make(UDir));
3591}
3592
3593
3594Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3595                                            AccessSpecifier AS,
3596                                            bool HasUsingKeyword,
3597                                            SourceLocation UsingLoc,
3598                                            CXXScopeSpec &SS,
3599                                            UnqualifiedId &Name,
3600                                            AttributeList *AttrList,
3601                                            bool IsTypeName,
3602                                            SourceLocation TypenameLoc) {
3603  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3604
3605  switch (Name.getKind()) {
3606  case UnqualifiedId::IK_Identifier:
3607  case UnqualifiedId::IK_OperatorFunctionId:
3608  case UnqualifiedId::IK_LiteralOperatorId:
3609  case UnqualifiedId::IK_ConversionFunctionId:
3610    break;
3611
3612  case UnqualifiedId::IK_ConstructorName:
3613  case UnqualifiedId::IK_ConstructorTemplateId:
3614    // C++0x inherited constructors.
3615    if (getLangOptions().CPlusPlus0x) break;
3616
3617    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3618      << SS.getRange();
3619    return DeclPtrTy();
3620
3621  case UnqualifiedId::IK_DestructorName:
3622    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3623      << SS.getRange();
3624    return DeclPtrTy();
3625
3626  case UnqualifiedId::IK_TemplateId:
3627    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3628      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3629    return DeclPtrTy();
3630  }
3631
3632  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3633  if (!TargetName)
3634    return DeclPtrTy();
3635
3636  // Warn about using declarations.
3637  // TODO: store that the declaration was written without 'using' and
3638  // talk about access decls instead of using decls in the
3639  // diagnostics.
3640  if (!HasUsingKeyword) {
3641    UsingLoc = Name.getSourceRange().getBegin();
3642
3643    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3644      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3645  }
3646
3647  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3648                                        Name.getSourceRange().getBegin(),
3649                                        TargetName, AttrList,
3650                                        /* IsInstantiation */ false,
3651                                        IsTypeName, TypenameLoc);
3652  if (UD)
3653    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3654
3655  return DeclPtrTy::make(UD);
3656}
3657
3658/// Determines whether to create a using shadow decl for a particular
3659/// decl, given the set of decls existing prior to this using lookup.
3660bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3661                                const LookupResult &Previous) {
3662  // Diagnose finding a decl which is not from a base class of the
3663  // current class.  We do this now because there are cases where this
3664  // function will silently decide not to build a shadow decl, which
3665  // will pre-empt further diagnostics.
3666  //
3667  // We don't need to do this in C++0x because we do the check once on
3668  // the qualifier.
3669  //
3670  // FIXME: diagnose the following if we care enough:
3671  //   struct A { int foo; };
3672  //   struct B : A { using A::foo; };
3673  //   template <class T> struct C : A {};
3674  //   template <class T> struct D : C<T> { using B::foo; } // <---
3675  // This is invalid (during instantiation) in C++03 because B::foo
3676  // resolves to the using decl in B, which is not a base class of D<T>.
3677  // We can't diagnose it immediately because C<T> is an unknown
3678  // specialization.  The UsingShadowDecl in D<T> then points directly
3679  // to A::foo, which will look well-formed when we instantiate.
3680  // The right solution is to not collapse the shadow-decl chain.
3681  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3682    DeclContext *OrigDC = Orig->getDeclContext();
3683
3684    // Handle enums and anonymous structs.
3685    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3686    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3687    while (OrigRec->isAnonymousStructOrUnion())
3688      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3689
3690    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3691      if (OrigDC == CurContext) {
3692        Diag(Using->getLocation(),
3693             diag::err_using_decl_nested_name_specifier_is_current_class)
3694          << Using->getNestedNameRange();
3695        Diag(Orig->getLocation(), diag::note_using_decl_target);
3696        return true;
3697      }
3698
3699      Diag(Using->getNestedNameRange().getBegin(),
3700           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3701        << Using->getTargetNestedNameDecl()
3702        << cast<CXXRecordDecl>(CurContext)
3703        << Using->getNestedNameRange();
3704      Diag(Orig->getLocation(), diag::note_using_decl_target);
3705      return true;
3706    }
3707  }
3708
3709  if (Previous.empty()) return false;
3710
3711  NamedDecl *Target = Orig;
3712  if (isa<UsingShadowDecl>(Target))
3713    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3714
3715  // If the target happens to be one of the previous declarations, we
3716  // don't have a conflict.
3717  //
3718  // FIXME: but we might be increasing its access, in which case we
3719  // should redeclare it.
3720  NamedDecl *NonTag = 0, *Tag = 0;
3721  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3722         I != E; ++I) {
3723    NamedDecl *D = (*I)->getUnderlyingDecl();
3724    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3725      return false;
3726
3727    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3728  }
3729
3730  if (Target->isFunctionOrFunctionTemplate()) {
3731    FunctionDecl *FD;
3732    if (isa<FunctionTemplateDecl>(Target))
3733      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3734    else
3735      FD = cast<FunctionDecl>(Target);
3736
3737    NamedDecl *OldDecl = 0;
3738    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3739    case Ovl_Overload:
3740      return false;
3741
3742    case Ovl_NonFunction:
3743      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3744      break;
3745
3746    // We found a decl with the exact signature.
3747    case Ovl_Match:
3748      // If we're in a record, we want to hide the target, so we
3749      // return true (without a diagnostic) to tell the caller not to
3750      // build a shadow decl.
3751      if (CurContext->isRecord())
3752        return true;
3753
3754      // If we're not in a record, this is an error.
3755      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3756      break;
3757    }
3758
3759    Diag(Target->getLocation(), diag::note_using_decl_target);
3760    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3761    return true;
3762  }
3763
3764  // Target is not a function.
3765
3766  if (isa<TagDecl>(Target)) {
3767    // No conflict between a tag and a non-tag.
3768    if (!Tag) return false;
3769
3770    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3771    Diag(Target->getLocation(), diag::note_using_decl_target);
3772    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3773    return true;
3774  }
3775
3776  // No conflict between a tag and a non-tag.
3777  if (!NonTag) return false;
3778
3779  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3780  Diag(Target->getLocation(), diag::note_using_decl_target);
3781  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3782  return true;
3783}
3784
3785/// Builds a shadow declaration corresponding to a 'using' declaration.
3786UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3787                                            UsingDecl *UD,
3788                                            NamedDecl *Orig) {
3789
3790  // If we resolved to another shadow declaration, just coalesce them.
3791  NamedDecl *Target = Orig;
3792  if (isa<UsingShadowDecl>(Target)) {
3793    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3794    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3795  }
3796
3797  UsingShadowDecl *Shadow
3798    = UsingShadowDecl::Create(Context, CurContext,
3799                              UD->getLocation(), UD, Target);
3800  UD->addShadowDecl(Shadow);
3801
3802  if (S)
3803    PushOnScopeChains(Shadow, S);
3804  else
3805    CurContext->addDecl(Shadow);
3806  Shadow->setAccess(UD->getAccess());
3807
3808  // Register it as a conversion if appropriate.
3809  if (Shadow->getDeclName().getNameKind()
3810        == DeclarationName::CXXConversionFunctionName)
3811    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3812
3813  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3814    Shadow->setInvalidDecl();
3815
3816  return Shadow;
3817}
3818
3819/// Hides a using shadow declaration.  This is required by the current
3820/// using-decl implementation when a resolvable using declaration in a
3821/// class is followed by a declaration which would hide or override
3822/// one or more of the using decl's targets; for example:
3823///
3824///   struct Base { void foo(int); };
3825///   struct Derived : Base {
3826///     using Base::foo;
3827///     void foo(int);
3828///   };
3829///
3830/// The governing language is C++03 [namespace.udecl]p12:
3831///
3832///   When a using-declaration brings names from a base class into a
3833///   derived class scope, member functions in the derived class
3834///   override and/or hide member functions with the same name and
3835///   parameter types in a base class (rather than conflicting).
3836///
3837/// There are two ways to implement this:
3838///   (1) optimistically create shadow decls when they're not hidden
3839///       by existing declarations, or
3840///   (2) don't create any shadow decls (or at least don't make them
3841///       visible) until we've fully parsed/instantiated the class.
3842/// The problem with (1) is that we might have to retroactively remove
3843/// a shadow decl, which requires several O(n) operations because the
3844/// decl structures are (very reasonably) not designed for removal.
3845/// (2) avoids this but is very fiddly and phase-dependent.
3846void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3847  if (Shadow->getDeclName().getNameKind() ==
3848        DeclarationName::CXXConversionFunctionName)
3849    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3850
3851  // Remove it from the DeclContext...
3852  Shadow->getDeclContext()->removeDecl(Shadow);
3853
3854  // ...and the scope, if applicable...
3855  if (S) {
3856    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3857    IdResolver.RemoveDecl(Shadow);
3858  }
3859
3860  // ...and the using decl.
3861  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3862
3863  // TODO: complain somehow if Shadow was used.  It shouldn't
3864  // be possible for this to happen, because...?
3865}
3866
3867/// Builds a using declaration.
3868///
3869/// \param IsInstantiation - Whether this call arises from an
3870///   instantiation of an unresolved using declaration.  We treat
3871///   the lookup differently for these declarations.
3872NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3873                                       SourceLocation UsingLoc,
3874                                       CXXScopeSpec &SS,
3875                                       SourceLocation IdentLoc,
3876                                       DeclarationName Name,
3877                                       AttributeList *AttrList,
3878                                       bool IsInstantiation,
3879                                       bool IsTypeName,
3880                                       SourceLocation TypenameLoc) {
3881  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3882  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3883
3884  // FIXME: We ignore attributes for now.
3885  delete AttrList;
3886
3887  if (SS.isEmpty()) {
3888    Diag(IdentLoc, diag::err_using_requires_qualname);
3889    return 0;
3890  }
3891
3892  // Do the redeclaration lookup in the current scope.
3893  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3894                        ForRedeclaration);
3895  Previous.setHideTags(false);
3896  if (S) {
3897    LookupName(Previous, S);
3898
3899    // It is really dumb that we have to do this.
3900    LookupResult::Filter F = Previous.makeFilter();
3901    while (F.hasNext()) {
3902      NamedDecl *D = F.next();
3903      if (!isDeclInScope(D, CurContext, S))
3904        F.erase();
3905    }
3906    F.done();
3907  } else {
3908    assert(IsInstantiation && "no scope in non-instantiation");
3909    assert(CurContext->isRecord() && "scope not record in instantiation");
3910    LookupQualifiedName(Previous, CurContext);
3911  }
3912
3913  NestedNameSpecifier *NNS =
3914    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3915
3916  // Check for invalid redeclarations.
3917  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3918    return 0;
3919
3920  // Check for bad qualifiers.
3921  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3922    return 0;
3923
3924  DeclContext *LookupContext = computeDeclContext(SS);
3925  NamedDecl *D;
3926  if (!LookupContext) {
3927    if (IsTypeName) {
3928      // FIXME: not all declaration name kinds are legal here
3929      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3930                                              UsingLoc, TypenameLoc,
3931                                              SS.getRange(), NNS,
3932                                              IdentLoc, Name);
3933    } else {
3934      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3935                                           UsingLoc, SS.getRange(), NNS,
3936                                           IdentLoc, Name);
3937    }
3938  } else {
3939    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3940                          SS.getRange(), UsingLoc, NNS, Name,
3941                          IsTypeName);
3942  }
3943  D->setAccess(AS);
3944  CurContext->addDecl(D);
3945
3946  if (!LookupContext) return D;
3947  UsingDecl *UD = cast<UsingDecl>(D);
3948
3949  if (RequireCompleteDeclContext(SS, LookupContext)) {
3950    UD->setInvalidDecl();
3951    return UD;
3952  }
3953
3954  // Look up the target name.
3955
3956  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3957
3958  // Unlike most lookups, we don't always want to hide tag
3959  // declarations: tag names are visible through the using declaration
3960  // even if hidden by ordinary names, *except* in a dependent context
3961  // where it's important for the sanity of two-phase lookup.
3962  if (!IsInstantiation)
3963    R.setHideTags(false);
3964
3965  LookupQualifiedName(R, LookupContext);
3966
3967  if (R.empty()) {
3968    Diag(IdentLoc, diag::err_no_member)
3969      << Name << LookupContext << SS.getRange();
3970    UD->setInvalidDecl();
3971    return UD;
3972  }
3973
3974  if (R.isAmbiguous()) {
3975    UD->setInvalidDecl();
3976    return UD;
3977  }
3978
3979  if (IsTypeName) {
3980    // If we asked for a typename and got a non-type decl, error out.
3981    if (!R.getAsSingle<TypeDecl>()) {
3982      Diag(IdentLoc, diag::err_using_typename_non_type);
3983      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3984        Diag((*I)->getUnderlyingDecl()->getLocation(),
3985             diag::note_using_decl_target);
3986      UD->setInvalidDecl();
3987      return UD;
3988    }
3989  } else {
3990    // If we asked for a non-typename and we got a type, error out,
3991    // but only if this is an instantiation of an unresolved using
3992    // decl.  Otherwise just silently find the type name.
3993    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3994      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3995      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3996      UD->setInvalidDecl();
3997      return UD;
3998    }
3999  }
4000
4001  // C++0x N2914 [namespace.udecl]p6:
4002  // A using-declaration shall not name a namespace.
4003  if (R.getAsSingle<NamespaceDecl>()) {
4004    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4005      << SS.getRange();
4006    UD->setInvalidDecl();
4007    return UD;
4008  }
4009
4010  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4011    if (!CheckUsingShadowDecl(UD, *I, Previous))
4012      BuildUsingShadowDecl(S, UD, *I);
4013  }
4014
4015  return UD;
4016}
4017
4018/// Checks that the given using declaration is not an invalid
4019/// redeclaration.  Note that this is checking only for the using decl
4020/// itself, not for any ill-formedness among the UsingShadowDecls.
4021bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4022                                       bool isTypeName,
4023                                       const CXXScopeSpec &SS,
4024                                       SourceLocation NameLoc,
4025                                       const LookupResult &Prev) {
4026  // C++03 [namespace.udecl]p8:
4027  // C++0x [namespace.udecl]p10:
4028  //   A using-declaration is a declaration and can therefore be used
4029  //   repeatedly where (and only where) multiple declarations are
4030  //   allowed.
4031  //
4032  // That's in non-member contexts.
4033  if (!CurContext->getLookupContext()->isRecord())
4034    return false;
4035
4036  NestedNameSpecifier *Qual
4037    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4038
4039  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4040    NamedDecl *D = *I;
4041
4042    bool DTypename;
4043    NestedNameSpecifier *DQual;
4044    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4045      DTypename = UD->isTypeName();
4046      DQual = UD->getTargetNestedNameDecl();
4047    } else if (UnresolvedUsingValueDecl *UD
4048                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4049      DTypename = false;
4050      DQual = UD->getTargetNestedNameSpecifier();
4051    } else if (UnresolvedUsingTypenameDecl *UD
4052                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4053      DTypename = true;
4054      DQual = UD->getTargetNestedNameSpecifier();
4055    } else continue;
4056
4057    // using decls differ if one says 'typename' and the other doesn't.
4058    // FIXME: non-dependent using decls?
4059    if (isTypeName != DTypename) continue;
4060
4061    // using decls differ if they name different scopes (but note that
4062    // template instantiation can cause this check to trigger when it
4063    // didn't before instantiation).
4064    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4065        Context.getCanonicalNestedNameSpecifier(DQual))
4066      continue;
4067
4068    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4069    Diag(D->getLocation(), diag::note_using_decl) << 1;
4070    return true;
4071  }
4072
4073  return false;
4074}
4075
4076
4077/// Checks that the given nested-name qualifier used in a using decl
4078/// in the current context is appropriately related to the current
4079/// scope.  If an error is found, diagnoses it and returns true.
4080bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4081                                   const CXXScopeSpec &SS,
4082                                   SourceLocation NameLoc) {
4083  DeclContext *NamedContext = computeDeclContext(SS);
4084
4085  if (!CurContext->isRecord()) {
4086    // C++03 [namespace.udecl]p3:
4087    // C++0x [namespace.udecl]p8:
4088    //   A using-declaration for a class member shall be a member-declaration.
4089
4090    // If we weren't able to compute a valid scope, it must be a
4091    // dependent class scope.
4092    if (!NamedContext || NamedContext->isRecord()) {
4093      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4094        << SS.getRange();
4095      return true;
4096    }
4097
4098    // Otherwise, everything is known to be fine.
4099    return false;
4100  }
4101
4102  // The current scope is a record.
4103
4104  // If the named context is dependent, we can't decide much.
4105  if (!NamedContext) {
4106    // FIXME: in C++0x, we can diagnose if we can prove that the
4107    // nested-name-specifier does not refer to a base class, which is
4108    // still possible in some cases.
4109
4110    // Otherwise we have to conservatively report that things might be
4111    // okay.
4112    return false;
4113  }
4114
4115  if (!NamedContext->isRecord()) {
4116    // Ideally this would point at the last name in the specifier,
4117    // but we don't have that level of source info.
4118    Diag(SS.getRange().getBegin(),
4119         diag::err_using_decl_nested_name_specifier_is_not_class)
4120      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4121    return true;
4122  }
4123
4124  if (getLangOptions().CPlusPlus0x) {
4125    // C++0x [namespace.udecl]p3:
4126    //   In a using-declaration used as a member-declaration, the
4127    //   nested-name-specifier shall name a base class of the class
4128    //   being defined.
4129
4130    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4131                                 cast<CXXRecordDecl>(NamedContext))) {
4132      if (CurContext == NamedContext) {
4133        Diag(NameLoc,
4134             diag::err_using_decl_nested_name_specifier_is_current_class)
4135          << SS.getRange();
4136        return true;
4137      }
4138
4139      Diag(SS.getRange().getBegin(),
4140           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4141        << (NestedNameSpecifier*) SS.getScopeRep()
4142        << cast<CXXRecordDecl>(CurContext)
4143        << SS.getRange();
4144      return true;
4145    }
4146
4147    return false;
4148  }
4149
4150  // C++03 [namespace.udecl]p4:
4151  //   A using-declaration used as a member-declaration shall refer
4152  //   to a member of a base class of the class being defined [etc.].
4153
4154  // Salient point: SS doesn't have to name a base class as long as
4155  // lookup only finds members from base classes.  Therefore we can
4156  // diagnose here only if we can prove that that can't happen,
4157  // i.e. if the class hierarchies provably don't intersect.
4158
4159  // TODO: it would be nice if "definitely valid" results were cached
4160  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4161  // need to be repeated.
4162
4163  struct UserData {
4164    llvm::DenseSet<const CXXRecordDecl*> Bases;
4165
4166    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4167      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4168      Data->Bases.insert(Base);
4169      return true;
4170    }
4171
4172    bool hasDependentBases(const CXXRecordDecl *Class) {
4173      return !Class->forallBases(collect, this);
4174    }
4175
4176    /// Returns true if the base is dependent or is one of the
4177    /// accumulated base classes.
4178    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4179      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4180      return !Data->Bases.count(Base);
4181    }
4182
4183    bool mightShareBases(const CXXRecordDecl *Class) {
4184      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4185    }
4186  };
4187
4188  UserData Data;
4189
4190  // Returns false if we find a dependent base.
4191  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4192    return false;
4193
4194  // Returns false if the class has a dependent base or if it or one
4195  // of its bases is present in the base set of the current context.
4196  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4197    return false;
4198
4199  Diag(SS.getRange().getBegin(),
4200       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4201    << (NestedNameSpecifier*) SS.getScopeRep()
4202    << cast<CXXRecordDecl>(CurContext)
4203    << SS.getRange();
4204
4205  return true;
4206}
4207
4208Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4209                                             SourceLocation NamespaceLoc,
4210                                             SourceLocation AliasLoc,
4211                                             IdentifierInfo *Alias,
4212                                             CXXScopeSpec &SS,
4213                                             SourceLocation IdentLoc,
4214                                             IdentifierInfo *Ident) {
4215
4216  // Lookup the namespace name.
4217  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4218  LookupParsedName(R, S, &SS);
4219
4220  // Check if we have a previous declaration with the same name.
4221  NamedDecl *PrevDecl
4222    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4223                       ForRedeclaration);
4224  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4225    PrevDecl = 0;
4226
4227  if (PrevDecl) {
4228    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4229      // We already have an alias with the same name that points to the same
4230      // namespace, so don't create a new one.
4231      // FIXME: At some point, we'll want to create the (redundant)
4232      // declaration to maintain better source information.
4233      if (!R.isAmbiguous() && !R.empty() &&
4234          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4235        return DeclPtrTy();
4236    }
4237
4238    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4239      diag::err_redefinition_different_kind;
4240    Diag(AliasLoc, DiagID) << Alias;
4241    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4242    return DeclPtrTy();
4243  }
4244
4245  if (R.isAmbiguous())
4246    return DeclPtrTy();
4247
4248  if (R.empty()) {
4249    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4250                                                CTC_NoKeywords, 0)) {
4251      if (R.getAsSingle<NamespaceDecl>() ||
4252          R.getAsSingle<NamespaceAliasDecl>()) {
4253        if (DeclContext *DC = computeDeclContext(SS, false))
4254          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4255            << Ident << DC << Corrected << SS.getRange()
4256            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4257        else
4258          Diag(IdentLoc, diag::err_using_directive_suggest)
4259            << Ident << Corrected
4260            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4261
4262        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4263          << Corrected;
4264
4265        Ident = Corrected.getAsIdentifierInfo();
4266      } else {
4267        R.clear();
4268        R.setLookupName(Ident);
4269      }
4270    }
4271
4272    if (R.empty()) {
4273      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4274      return DeclPtrTy();
4275    }
4276  }
4277
4278  NamespaceAliasDecl *AliasDecl =
4279    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4280                               Alias, SS.getRange(),
4281                               (NestedNameSpecifier *)SS.getScopeRep(),
4282                               IdentLoc, R.getFoundDecl());
4283
4284  PushOnScopeChains(AliasDecl, S);
4285  return DeclPtrTy::make(AliasDecl);
4286}
4287
4288namespace {
4289  /// \brief Scoped object used to handle the state changes required in Sema
4290  /// to implicitly define the body of a C++ member function;
4291  class ImplicitlyDefinedFunctionScope {
4292    Sema &S;
4293    DeclContext *PreviousContext;
4294
4295  public:
4296    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4297      : S(S), PreviousContext(S.CurContext)
4298    {
4299      S.CurContext = Method;
4300      S.PushFunctionScope();
4301      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4302    }
4303
4304    ~ImplicitlyDefinedFunctionScope() {
4305      S.PopExpressionEvaluationContext();
4306      S.PopFunctionOrBlockScope();
4307      S.CurContext = PreviousContext;
4308    }
4309  };
4310}
4311
4312void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4313                                            CXXConstructorDecl *Constructor) {
4314  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4315          !Constructor->isUsed(false)) &&
4316    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4317
4318  CXXRecordDecl *ClassDecl = Constructor->getParent();
4319  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4320
4321  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4322  ErrorTrap Trap(*this);
4323  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4324      Trap.hasErrorOccurred()) {
4325    Diag(CurrentLocation, diag::note_member_synthesized_at)
4326      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4327    Constructor->setInvalidDecl();
4328  } else {
4329    Constructor->setUsed();
4330    MarkVTableUsed(CurrentLocation, ClassDecl);
4331  }
4332}
4333
4334void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4335                                    CXXDestructorDecl *Destructor) {
4336  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4337         "DefineImplicitDestructor - call it for implicit default dtor");
4338  CXXRecordDecl *ClassDecl = Destructor->getParent();
4339  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4340
4341  if (Destructor->isInvalidDecl())
4342    return;
4343
4344  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4345
4346  ErrorTrap Trap(*this);
4347  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4348                                         Destructor->getParent());
4349
4350  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4351    Diag(CurrentLocation, diag::note_member_synthesized_at)
4352      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4353
4354    Destructor->setInvalidDecl();
4355    return;
4356  }
4357
4358  Destructor->setUsed();
4359  MarkVTableUsed(CurrentLocation, ClassDecl);
4360}
4361
4362/// \brief Builds a statement that copies the given entity from \p From to
4363/// \c To.
4364///
4365/// This routine is used to copy the members of a class with an
4366/// implicitly-declared copy assignment operator. When the entities being
4367/// copied are arrays, this routine builds for loops to copy them.
4368///
4369/// \param S The Sema object used for type-checking.
4370///
4371/// \param Loc The location where the implicit copy is being generated.
4372///
4373/// \param T The type of the expressions being copied. Both expressions must
4374/// have this type.
4375///
4376/// \param To The expression we are copying to.
4377///
4378/// \param From The expression we are copying from.
4379///
4380/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4381/// Otherwise, it's a non-static member subobject.
4382///
4383/// \param Depth Internal parameter recording the depth of the recursion.
4384///
4385/// \returns A statement or a loop that copies the expressions.
4386static Sema::OwningStmtResult
4387BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4388                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4389                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4390  typedef Sema::OwningStmtResult OwningStmtResult;
4391  typedef Sema::OwningExprResult OwningExprResult;
4392
4393  // C++0x [class.copy]p30:
4394  //   Each subobject is assigned in the manner appropriate to its type:
4395  //
4396  //     - if the subobject is of class type, the copy assignment operator
4397  //       for the class is used (as if by explicit qualification; that is,
4398  //       ignoring any possible virtual overriding functions in more derived
4399  //       classes);
4400  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4401    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4402
4403    // Look for operator=.
4404    DeclarationName Name
4405      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4406    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4407    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4408
4409    // Filter out any result that isn't a copy-assignment operator.
4410    LookupResult::Filter F = OpLookup.makeFilter();
4411    while (F.hasNext()) {
4412      NamedDecl *D = F.next();
4413      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4414        if (Method->isCopyAssignmentOperator())
4415          continue;
4416
4417      F.erase();
4418    }
4419    F.done();
4420
4421    // Suppress the protected check (C++ [class.protected]) for each of the
4422    // assignment operators we found. This strange dance is required when
4423    // we're assigning via a base classes's copy-assignment operator. To
4424    // ensure that we're getting the right base class subobject (without
4425    // ambiguities), we need to cast "this" to that subobject type; to
4426    // ensure that we don't go through the virtual call mechanism, we need
4427    // to qualify the operator= name with the base class (see below). However,
4428    // this means that if the base class has a protected copy assignment
4429    // operator, the protected member access check will fail. So, we
4430    // rewrite "protected" access to "public" access in this case, since we
4431    // know by construction that we're calling from a derived class.
4432    if (CopyingBaseSubobject) {
4433      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4434           L != LEnd; ++L) {
4435        if (L.getAccess() == AS_protected)
4436          L.setAccess(AS_public);
4437      }
4438    }
4439
4440    // Create the nested-name-specifier that will be used to qualify the
4441    // reference to operator=; this is required to suppress the virtual
4442    // call mechanism.
4443    CXXScopeSpec SS;
4444    SS.setRange(Loc);
4445    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4446                                               T.getTypePtr()));
4447
4448    // Create the reference to operator=.
4449    OwningExprResult OpEqualRef
4450      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4451                                   /*FirstQualifierInScope=*/0, OpLookup,
4452                                   /*TemplateArgs=*/0,
4453                                   /*SuppressQualifierCheck=*/true);
4454    if (OpEqualRef.isInvalid())
4455      return S.StmtError();
4456
4457    // Build the call to the assignment operator.
4458    Expr *FromE = From.takeAs<Expr>();
4459    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4460                                                      OpEqualRef.takeAs<Expr>(),
4461                                                        Loc, &FromE, 1, 0, Loc);
4462    if (Call.isInvalid())
4463      return S.StmtError();
4464
4465    return S.Owned(Call.takeAs<Stmt>());
4466  }
4467
4468  //     - if the subobject is of scalar type, the built-in assignment
4469  //       operator is used.
4470  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4471  if (!ArrayTy) {
4472    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4473                                                       BinaryOperator::Assign,
4474                                                       To.takeAs<Expr>(),
4475                                                       From.takeAs<Expr>());
4476    if (Assignment.isInvalid())
4477      return S.StmtError();
4478
4479    return S.Owned(Assignment.takeAs<Stmt>());
4480  }
4481
4482  //     - if the subobject is an array, each element is assigned, in the
4483  //       manner appropriate to the element type;
4484
4485  // Construct a loop over the array bounds, e.g.,
4486  //
4487  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4488  //
4489  // that will copy each of the array elements.
4490  QualType SizeType = S.Context.getSizeType();
4491
4492  // Create the iteration variable.
4493  IdentifierInfo *IterationVarName = 0;
4494  {
4495    llvm::SmallString<8> Str;
4496    llvm::raw_svector_ostream OS(Str);
4497    OS << "__i" << Depth;
4498    IterationVarName = &S.Context.Idents.get(OS.str());
4499  }
4500  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4501                                          IterationVarName, SizeType,
4502                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4503                                          VarDecl::None, VarDecl::None);
4504
4505  // Initialize the iteration variable to zero.
4506  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4507  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4508
4509  // Create a reference to the iteration variable; we'll use this several
4510  // times throughout.
4511  Expr *IterationVarRef
4512    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4513  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4514
4515  // Create the DeclStmt that holds the iteration variable.
4516  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4517
4518  // Create the comparison against the array bound.
4519  llvm::APInt Upper = ArrayTy->getSize();
4520  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4521  OwningExprResult Comparison
4522    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4523                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4524                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4525
4526  // Create the pre-increment of the iteration variable.
4527  OwningExprResult Increment
4528    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4529                                            UnaryOperator::PreInc,
4530                                            SizeType, Loc));
4531
4532  // Subscript the "from" and "to" expressions with the iteration variable.
4533  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4534                                           S.Owned(IterationVarRef->Retain()),
4535                                           Loc);
4536  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4537                                         S.Owned(IterationVarRef->Retain()),
4538                                         Loc);
4539  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4540  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4541
4542  // Build the copy for an individual element of the array.
4543  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4544                                                ArrayTy->getElementType(),
4545                                                move(To), move(From),
4546                                                CopyingBaseSubobject, Depth+1);
4547  if (Copy.isInvalid()) {
4548    InitStmt->Destroy(S.Context);
4549    return S.StmtError();
4550  }
4551
4552  // Construct the loop that copies all elements of this array.
4553  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4554                        S.MakeFullExpr(Comparison),
4555                        Sema::DeclPtrTy(),
4556                        S.MakeFullExpr(Increment),
4557                        Loc, move(Copy));
4558}
4559
4560void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4561                                        CXXMethodDecl *CopyAssignOperator) {
4562  assert((CopyAssignOperator->isImplicit() &&
4563          CopyAssignOperator->isOverloadedOperator() &&
4564          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4565          !CopyAssignOperator->isUsed(false)) &&
4566         "DefineImplicitCopyAssignment called for wrong function");
4567
4568  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4569
4570  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4571    CopyAssignOperator->setInvalidDecl();
4572    return;
4573  }
4574
4575  CopyAssignOperator->setUsed();
4576
4577  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4578  ErrorTrap Trap(*this);
4579
4580  // C++0x [class.copy]p30:
4581  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4582  //   for a non-union class X performs memberwise copy assignment of its
4583  //   subobjects. The direct base classes of X are assigned first, in the
4584  //   order of their declaration in the base-specifier-list, and then the
4585  //   immediate non-static data members of X are assigned, in the order in
4586  //   which they were declared in the class definition.
4587
4588  // The statements that form the synthesized function body.
4589  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4590
4591  // The parameter for the "other" object, which we are copying from.
4592  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4593  Qualifiers OtherQuals = Other->getType().getQualifiers();
4594  QualType OtherRefType = Other->getType();
4595  if (const LValueReferenceType *OtherRef
4596                                = OtherRefType->getAs<LValueReferenceType>()) {
4597    OtherRefType = OtherRef->getPointeeType();
4598    OtherQuals = OtherRefType.getQualifiers();
4599  }
4600
4601  // Our location for everything implicitly-generated.
4602  SourceLocation Loc = CopyAssignOperator->getLocation();
4603
4604  // Construct a reference to the "other" object. We'll be using this
4605  // throughout the generated ASTs.
4606  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4607  assert(OtherRef && "Reference to parameter cannot fail!");
4608
4609  // Construct the "this" pointer. We'll be using this throughout the generated
4610  // ASTs.
4611  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4612  assert(This && "Reference to this cannot fail!");
4613
4614  // Assign base classes.
4615  bool Invalid = false;
4616  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4617       E = ClassDecl->bases_end(); Base != E; ++Base) {
4618    // Form the assignment:
4619    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4620    QualType BaseType = Base->getType().getUnqualifiedType();
4621    CXXRecordDecl *BaseClassDecl = 0;
4622    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4623      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4624    else {
4625      Invalid = true;
4626      continue;
4627    }
4628
4629    // Construct the "from" expression, which is an implicit cast to the
4630    // appropriately-qualified base type.
4631    Expr *From = OtherRef->Retain();
4632    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4633                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4634                      CXXBaseSpecifierArray(Base));
4635
4636    // Dereference "this".
4637    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4638                                               Owned(This->Retain()));
4639
4640    // Implicitly cast "this" to the appropriately-qualified base type.
4641    Expr *ToE = To.takeAs<Expr>();
4642    ImpCastExprToType(ToE,
4643                      Context.getCVRQualifiedType(BaseType,
4644                                      CopyAssignOperator->getTypeQualifiers()),
4645                      CastExpr::CK_UncheckedDerivedToBase,
4646                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4647    To = Owned(ToE);
4648
4649    // Build the copy.
4650    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4651                                                  move(To), Owned(From),
4652                                                /*CopyingBaseSubobject=*/true);
4653    if (Copy.isInvalid()) {
4654      Diag(CurrentLocation, diag::note_member_synthesized_at)
4655        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4656      CopyAssignOperator->setInvalidDecl();
4657      return;
4658    }
4659
4660    // Success! Record the copy.
4661    Statements.push_back(Copy.takeAs<Expr>());
4662  }
4663
4664  // \brief Reference to the __builtin_memcpy function.
4665  Expr *BuiltinMemCpyRef = 0;
4666  // \brief Reference to the __builtin_objc_memmove_collectable function.
4667  Expr *CollectableMemCpyRef = 0;
4668
4669  // Assign non-static members.
4670  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4671                                  FieldEnd = ClassDecl->field_end();
4672       Field != FieldEnd; ++Field) {
4673    // Check for members of reference type; we can't copy those.
4674    if (Field->getType()->isReferenceType()) {
4675      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4676        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4677      Diag(Field->getLocation(), diag::note_declared_at);
4678      Diag(CurrentLocation, diag::note_member_synthesized_at)
4679        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4680      Invalid = true;
4681      continue;
4682    }
4683
4684    // Check for members of const-qualified, non-class type.
4685    QualType BaseType = Context.getBaseElementType(Field->getType());
4686    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4687      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4688        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4689      Diag(Field->getLocation(), diag::note_declared_at);
4690      Diag(CurrentLocation, diag::note_member_synthesized_at)
4691        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4692      Invalid = true;
4693      continue;
4694    }
4695
4696    QualType FieldType = Field->getType().getNonReferenceType();
4697    if (FieldType->isIncompleteArrayType()) {
4698      assert(ClassDecl->hasFlexibleArrayMember() &&
4699             "Incomplete array type is not valid");
4700      continue;
4701    }
4702
4703    // Build references to the field in the object we're copying from and to.
4704    CXXScopeSpec SS; // Intentionally empty
4705    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4706                              LookupMemberName);
4707    MemberLookup.addDecl(*Field);
4708    MemberLookup.resolveKind();
4709    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4710                                                     OtherRefType,
4711                                                     Loc, /*IsArrow=*/false,
4712                                                     SS, 0, MemberLookup, 0);
4713    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4714                                                   This->getType(),
4715                                                   Loc, /*IsArrow=*/true,
4716                                                   SS, 0, MemberLookup, 0);
4717    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4718    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4719
4720    // If the field should be copied with __builtin_memcpy rather than via
4721    // explicit assignments, do so. This optimization only applies for arrays
4722    // of scalars and arrays of class type with trivial copy-assignment
4723    // operators.
4724    if (FieldType->isArrayType() &&
4725        (!BaseType->isRecordType() ||
4726         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4727           ->hasTrivialCopyAssignment())) {
4728      // Compute the size of the memory buffer to be copied.
4729      QualType SizeType = Context.getSizeType();
4730      llvm::APInt Size(Context.getTypeSize(SizeType),
4731                       Context.getTypeSizeInChars(BaseType).getQuantity());
4732      for (const ConstantArrayType *Array
4733              = Context.getAsConstantArrayType(FieldType);
4734           Array;
4735           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4736        llvm::APInt ArraySize = Array->getSize();
4737        ArraySize.zextOrTrunc(Size.getBitWidth());
4738        Size *= ArraySize;
4739      }
4740
4741      // Take the address of the field references for "from" and "to".
4742      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4743      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4744
4745      bool NeedsCollectableMemCpy =
4746          (BaseType->isRecordType() &&
4747           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
4748
4749      if (NeedsCollectableMemCpy) {
4750        if (!CollectableMemCpyRef) {
4751          // Create a reference to the __builtin_objc_memmove_collectable function.
4752          LookupResult R(*this,
4753                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
4754                         Loc, LookupOrdinaryName);
4755          LookupName(R, TUScope, true);
4756
4757          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
4758          if (!CollectableMemCpy) {
4759            // Something went horribly wrong earlier, and we will have
4760            // complained about it.
4761            Invalid = true;
4762            continue;
4763          }
4764
4765          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
4766                                                  CollectableMemCpy->getType(),
4767                                                  Loc, 0).takeAs<Expr>();
4768          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
4769        }
4770      }
4771      // Create a reference to the __builtin_memcpy builtin function.
4772      else if (!BuiltinMemCpyRef) {
4773        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4774                       LookupOrdinaryName);
4775        LookupName(R, TUScope, true);
4776
4777        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4778        if (!BuiltinMemCpy) {
4779          // Something went horribly wrong earlier, and we will have complained
4780          // about it.
4781          Invalid = true;
4782          continue;
4783        }
4784
4785        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4786                                            BuiltinMemCpy->getType(),
4787                                            Loc, 0).takeAs<Expr>();
4788        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4789      }
4790
4791      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4792      CallArgs.push_back(To.takeAs<Expr>());
4793      CallArgs.push_back(From.takeAs<Expr>());
4794      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4795      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4796      Commas.push_back(Loc);
4797      Commas.push_back(Loc);
4798      OwningExprResult Call = ExprError();
4799      if (NeedsCollectableMemCpy)
4800        Call = ActOnCallExpr(/*Scope=*/0,
4801                             Owned(CollectableMemCpyRef->Retain()),
4802                             Loc, move_arg(CallArgs),
4803                             Commas.data(), Loc);
4804      else
4805        Call = ActOnCallExpr(/*Scope=*/0,
4806                             Owned(BuiltinMemCpyRef->Retain()),
4807                             Loc, move_arg(CallArgs),
4808                             Commas.data(), Loc);
4809
4810      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4811      Statements.push_back(Call.takeAs<Expr>());
4812      continue;
4813    }
4814
4815    // Build the copy of this field.
4816    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4817                                                  move(To), move(From),
4818                                              /*CopyingBaseSubobject=*/false);
4819    if (Copy.isInvalid()) {
4820      Diag(CurrentLocation, diag::note_member_synthesized_at)
4821        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4822      CopyAssignOperator->setInvalidDecl();
4823      return;
4824    }
4825
4826    // Success! Record the copy.
4827    Statements.push_back(Copy.takeAs<Stmt>());
4828  }
4829
4830  if (!Invalid) {
4831    // Add a "return *this;"
4832    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4833                                                    Owned(This->Retain()));
4834
4835    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4836    if (Return.isInvalid())
4837      Invalid = true;
4838    else {
4839      Statements.push_back(Return.takeAs<Stmt>());
4840
4841      if (Trap.hasErrorOccurred()) {
4842        Diag(CurrentLocation, diag::note_member_synthesized_at)
4843          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4844        Invalid = true;
4845      }
4846    }
4847  }
4848
4849  if (Invalid) {
4850    CopyAssignOperator->setInvalidDecl();
4851    return;
4852  }
4853
4854  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4855                                            /*isStmtExpr=*/false);
4856  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4857  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4858}
4859
4860void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4861                                   CXXConstructorDecl *CopyConstructor,
4862                                   unsigned TypeQuals) {
4863  assert((CopyConstructor->isImplicit() &&
4864          CopyConstructor->isCopyConstructor(TypeQuals) &&
4865          !CopyConstructor->isUsed(false)) &&
4866         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4867
4868  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4869  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4870
4871  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4872  ErrorTrap Trap(*this);
4873
4874  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4875      Trap.hasErrorOccurred()) {
4876    Diag(CurrentLocation, diag::note_member_synthesized_at)
4877      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4878    CopyConstructor->setInvalidDecl();
4879  }  else {
4880    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4881                                               CopyConstructor->getLocation(),
4882                                               MultiStmtArg(*this, 0, 0),
4883                                               /*isStmtExpr=*/false)
4884                                                              .takeAs<Stmt>());
4885  }
4886
4887  CopyConstructor->setUsed();
4888}
4889
4890Sema::OwningExprResult
4891Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4892                            CXXConstructorDecl *Constructor,
4893                            MultiExprArg ExprArgs,
4894                            bool RequiresZeroInit,
4895                            CXXConstructExpr::ConstructionKind ConstructKind) {
4896  bool Elidable = false;
4897
4898  // C++0x [class.copy]p34:
4899  //   When certain criteria are met, an implementation is allowed to
4900  //   omit the copy/move construction of a class object, even if the
4901  //   copy/move constructor and/or destructor for the object have
4902  //   side effects. [...]
4903  //     - when a temporary class object that has not been bound to a
4904  //       reference (12.2) would be copied/moved to a class object
4905  //       with the same cv-unqualified type, the copy/move operation
4906  //       can be omitted by constructing the temporary object
4907  //       directly into the target of the omitted copy/move
4908  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4909    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4910    Elidable = SubExpr->isTemporaryObject() &&
4911      Context.hasSameUnqualifiedType(SubExpr->getType(),
4912                           Context.getTypeDeclType(Constructor->getParent()));
4913  }
4914
4915  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4916                               Elidable, move(ExprArgs), RequiresZeroInit,
4917                               ConstructKind);
4918}
4919
4920/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4921/// including handling of its default argument expressions.
4922Sema::OwningExprResult
4923Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4924                            CXXConstructorDecl *Constructor, bool Elidable,
4925                            MultiExprArg ExprArgs,
4926                            bool RequiresZeroInit,
4927                            CXXConstructExpr::ConstructionKind ConstructKind) {
4928  unsigned NumExprs = ExprArgs.size();
4929  Expr **Exprs = (Expr **)ExprArgs.release();
4930
4931  MarkDeclarationReferenced(ConstructLoc, Constructor);
4932  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4933                                        Constructor, Elidable, Exprs, NumExprs,
4934                                        RequiresZeroInit, ConstructKind));
4935}
4936
4937bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4938                                        CXXConstructorDecl *Constructor,
4939                                        MultiExprArg Exprs) {
4940  OwningExprResult TempResult =
4941    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4942                          move(Exprs));
4943  if (TempResult.isInvalid())
4944    return true;
4945
4946  Expr *Temp = TempResult.takeAs<Expr>();
4947  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4948  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4949  VD->setInit(Temp);
4950
4951  return false;
4952}
4953
4954void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4955  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4956  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4957      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
4958    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4959    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4960    CheckDestructorAccess(VD->getLocation(), Destructor,
4961                          PDiag(diag::err_access_dtor_var)
4962                            << VD->getDeclName()
4963                            << VD->getType());
4964  }
4965}
4966
4967/// AddCXXDirectInitializerToDecl - This action is called immediately after
4968/// ActOnDeclarator, when a C++ direct initializer is present.
4969/// e.g: "int x(1);"
4970void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4971                                         SourceLocation LParenLoc,
4972                                         MultiExprArg Exprs,
4973                                         SourceLocation *CommaLocs,
4974                                         SourceLocation RParenLoc) {
4975  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4976  Decl *RealDecl = Dcl.getAs<Decl>();
4977
4978  // If there is no declaration, there was an error parsing it.  Just ignore
4979  // the initializer.
4980  if (RealDecl == 0)
4981    return;
4982
4983  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4984  if (!VDecl) {
4985    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4986    RealDecl->setInvalidDecl();
4987    return;
4988  }
4989
4990  // We will represent direct-initialization similarly to copy-initialization:
4991  //    int x(1);  -as-> int x = 1;
4992  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4993  //
4994  // Clients that want to distinguish between the two forms, can check for
4995  // direct initializer using VarDecl::hasCXXDirectInitializer().
4996  // A major benefit is that clients that don't particularly care about which
4997  // exactly form was it (like the CodeGen) can handle both cases without
4998  // special case code.
4999
5000  // C++ 8.5p11:
5001  // The form of initialization (using parentheses or '=') is generally
5002  // insignificant, but does matter when the entity being initialized has a
5003  // class type.
5004  QualType DeclInitType = VDecl->getType();
5005  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
5006    DeclInitType = Context.getBaseElementType(Array);
5007
5008  if (!VDecl->getType()->isDependentType() &&
5009      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5010                          diag::err_typecheck_decl_incomplete_type)) {
5011    VDecl->setInvalidDecl();
5012    return;
5013  }
5014
5015  // The variable can not have an abstract class type.
5016  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5017                             diag::err_abstract_type_in_decl,
5018                             AbstractVariableType))
5019    VDecl->setInvalidDecl();
5020
5021  const VarDecl *Def;
5022  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5023    Diag(VDecl->getLocation(), diag::err_redefinition)
5024    << VDecl->getDeclName();
5025    Diag(Def->getLocation(), diag::note_previous_definition);
5026    VDecl->setInvalidDecl();
5027    return;
5028  }
5029
5030  // If either the declaration has a dependent type or if any of the
5031  // expressions is type-dependent, we represent the initialization
5032  // via a ParenListExpr for later use during template instantiation.
5033  if (VDecl->getType()->isDependentType() ||
5034      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
5035    // Let clients know that initialization was done with a direct initializer.
5036    VDecl->setCXXDirectInitializer(true);
5037
5038    // Store the initialization expressions as a ParenListExpr.
5039    unsigned NumExprs = Exprs.size();
5040    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
5041                                               (Expr **)Exprs.release(),
5042                                               NumExprs, RParenLoc));
5043    return;
5044  }
5045
5046  // Capture the variable that is being initialized and the style of
5047  // initialization.
5048  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5049
5050  // FIXME: Poor source location information.
5051  InitializationKind Kind
5052    = InitializationKind::CreateDirect(VDecl->getLocation(),
5053                                       LParenLoc, RParenLoc);
5054
5055  InitializationSequence InitSeq(*this, Entity, Kind,
5056                                 (Expr**)Exprs.get(), Exprs.size());
5057  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
5058  if (Result.isInvalid()) {
5059    VDecl->setInvalidDecl();
5060    return;
5061  }
5062
5063  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
5064  VDecl->setInit(Result.takeAs<Expr>());
5065  VDecl->setCXXDirectInitializer(true);
5066
5067  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
5068    FinalizeVarWithDestructor(VDecl, Record);
5069}
5070
5071/// \brief Given a constructor and the set of arguments provided for the
5072/// constructor, convert the arguments and add any required default arguments
5073/// to form a proper call to this constructor.
5074///
5075/// \returns true if an error occurred, false otherwise.
5076bool
5077Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
5078                              MultiExprArg ArgsPtr,
5079                              SourceLocation Loc,
5080                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
5081  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
5082  unsigned NumArgs = ArgsPtr.size();
5083  Expr **Args = (Expr **)ArgsPtr.get();
5084
5085  const FunctionProtoType *Proto
5086    = Constructor->getType()->getAs<FunctionProtoType>();
5087  assert(Proto && "Constructor without a prototype?");
5088  unsigned NumArgsInProto = Proto->getNumArgs();
5089
5090  // If too few arguments are available, we'll fill in the rest with defaults.
5091  if (NumArgs < NumArgsInProto)
5092    ConvertedArgs.reserve(NumArgsInProto);
5093  else
5094    ConvertedArgs.reserve(NumArgs);
5095
5096  VariadicCallType CallType =
5097    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
5098  llvm::SmallVector<Expr *, 8> AllArgs;
5099  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
5100                                        Proto, 0, Args, NumArgs, AllArgs,
5101                                        CallType);
5102  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
5103    ConvertedArgs.push_back(AllArgs[i]);
5104  return Invalid;
5105}
5106
5107static inline bool
5108CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
5109                                       const FunctionDecl *FnDecl) {
5110  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
5111  if (isa<NamespaceDecl>(DC)) {
5112    return SemaRef.Diag(FnDecl->getLocation(),
5113                        diag::err_operator_new_delete_declared_in_namespace)
5114      << FnDecl->getDeclName();
5115  }
5116
5117  if (isa<TranslationUnitDecl>(DC) &&
5118      FnDecl->getStorageClass() == FunctionDecl::Static) {
5119    return SemaRef.Diag(FnDecl->getLocation(),
5120                        diag::err_operator_new_delete_declared_static)
5121      << FnDecl->getDeclName();
5122  }
5123
5124  return false;
5125}
5126
5127static inline bool
5128CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
5129                            CanQualType ExpectedResultType,
5130                            CanQualType ExpectedFirstParamType,
5131                            unsigned DependentParamTypeDiag,
5132                            unsigned InvalidParamTypeDiag) {
5133  QualType ResultType =
5134    FnDecl->getType()->getAs<FunctionType>()->getResultType();
5135
5136  // Check that the result type is not dependent.
5137  if (ResultType->isDependentType())
5138    return SemaRef.Diag(FnDecl->getLocation(),
5139                        diag::err_operator_new_delete_dependent_result_type)
5140    << FnDecl->getDeclName() << ExpectedResultType;
5141
5142  // Check that the result type is what we expect.
5143  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
5144    return SemaRef.Diag(FnDecl->getLocation(),
5145                        diag::err_operator_new_delete_invalid_result_type)
5146    << FnDecl->getDeclName() << ExpectedResultType;
5147
5148  // A function template must have at least 2 parameters.
5149  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
5150    return SemaRef.Diag(FnDecl->getLocation(),
5151                      diag::err_operator_new_delete_template_too_few_parameters)
5152        << FnDecl->getDeclName();
5153
5154  // The function decl must have at least 1 parameter.
5155  if (FnDecl->getNumParams() == 0)
5156    return SemaRef.Diag(FnDecl->getLocation(),
5157                        diag::err_operator_new_delete_too_few_parameters)
5158      << FnDecl->getDeclName();
5159
5160  // Check the the first parameter type is not dependent.
5161  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5162  if (FirstParamType->isDependentType())
5163    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5164      << FnDecl->getDeclName() << ExpectedFirstParamType;
5165
5166  // Check that the first parameter type is what we expect.
5167  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5168      ExpectedFirstParamType)
5169    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5170    << FnDecl->getDeclName() << ExpectedFirstParamType;
5171
5172  return false;
5173}
5174
5175static bool
5176CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5177  // C++ [basic.stc.dynamic.allocation]p1:
5178  //   A program is ill-formed if an allocation function is declared in a
5179  //   namespace scope other than global scope or declared static in global
5180  //   scope.
5181  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5182    return true;
5183
5184  CanQualType SizeTy =
5185    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5186
5187  // C++ [basic.stc.dynamic.allocation]p1:
5188  //  The return type shall be void*. The first parameter shall have type
5189  //  std::size_t.
5190  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5191                                  SizeTy,
5192                                  diag::err_operator_new_dependent_param_type,
5193                                  diag::err_operator_new_param_type))
5194    return true;
5195
5196  // C++ [basic.stc.dynamic.allocation]p1:
5197  //  The first parameter shall not have an associated default argument.
5198  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5199    return SemaRef.Diag(FnDecl->getLocation(),
5200                        diag::err_operator_new_default_arg)
5201      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5202
5203  return false;
5204}
5205
5206static bool
5207CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5208  // C++ [basic.stc.dynamic.deallocation]p1:
5209  //   A program is ill-formed if deallocation functions are declared in a
5210  //   namespace scope other than global scope or declared static in global
5211  //   scope.
5212  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5213    return true;
5214
5215  // C++ [basic.stc.dynamic.deallocation]p2:
5216  //   Each deallocation function shall return void and its first parameter
5217  //   shall be void*.
5218  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5219                                  SemaRef.Context.VoidPtrTy,
5220                                 diag::err_operator_delete_dependent_param_type,
5221                                 diag::err_operator_delete_param_type))
5222    return true;
5223
5224  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5225  if (FirstParamType->isDependentType())
5226    return SemaRef.Diag(FnDecl->getLocation(),
5227                        diag::err_operator_delete_dependent_param_type)
5228    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5229
5230  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5231      SemaRef.Context.VoidPtrTy)
5232    return SemaRef.Diag(FnDecl->getLocation(),
5233                        diag::err_operator_delete_param_type)
5234      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5235
5236  return false;
5237}
5238
5239/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5240/// of this overloaded operator is well-formed. If so, returns false;
5241/// otherwise, emits appropriate diagnostics and returns true.
5242bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5243  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5244         "Expected an overloaded operator declaration");
5245
5246  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5247
5248  // C++ [over.oper]p5:
5249  //   The allocation and deallocation functions, operator new,
5250  //   operator new[], operator delete and operator delete[], are
5251  //   described completely in 3.7.3. The attributes and restrictions
5252  //   found in the rest of this subclause do not apply to them unless
5253  //   explicitly stated in 3.7.3.
5254  if (Op == OO_Delete || Op == OO_Array_Delete)
5255    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5256
5257  if (Op == OO_New || Op == OO_Array_New)
5258    return CheckOperatorNewDeclaration(*this, FnDecl);
5259
5260  // C++ [over.oper]p6:
5261  //   An operator function shall either be a non-static member
5262  //   function or be a non-member function and have at least one
5263  //   parameter whose type is a class, a reference to a class, an
5264  //   enumeration, or a reference to an enumeration.
5265  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5266    if (MethodDecl->isStatic())
5267      return Diag(FnDecl->getLocation(),
5268                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5269  } else {
5270    bool ClassOrEnumParam = false;
5271    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5272                                   ParamEnd = FnDecl->param_end();
5273         Param != ParamEnd; ++Param) {
5274      QualType ParamType = (*Param)->getType().getNonReferenceType();
5275      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5276          ParamType->isEnumeralType()) {
5277        ClassOrEnumParam = true;
5278        break;
5279      }
5280    }
5281
5282    if (!ClassOrEnumParam)
5283      return Diag(FnDecl->getLocation(),
5284                  diag::err_operator_overload_needs_class_or_enum)
5285        << FnDecl->getDeclName();
5286  }
5287
5288  // C++ [over.oper]p8:
5289  //   An operator function cannot have default arguments (8.3.6),
5290  //   except where explicitly stated below.
5291  //
5292  // Only the function-call operator allows default arguments
5293  // (C++ [over.call]p1).
5294  if (Op != OO_Call) {
5295    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5296         Param != FnDecl->param_end(); ++Param) {
5297      if ((*Param)->hasDefaultArg())
5298        return Diag((*Param)->getLocation(),
5299                    diag::err_operator_overload_default_arg)
5300          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5301    }
5302  }
5303
5304  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5305    { false, false, false }
5306#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5307    , { Unary, Binary, MemberOnly }
5308#include "clang/Basic/OperatorKinds.def"
5309  };
5310
5311  bool CanBeUnaryOperator = OperatorUses[Op][0];
5312  bool CanBeBinaryOperator = OperatorUses[Op][1];
5313  bool MustBeMemberOperator = OperatorUses[Op][2];
5314
5315  // C++ [over.oper]p8:
5316  //   [...] Operator functions cannot have more or fewer parameters
5317  //   than the number required for the corresponding operator, as
5318  //   described in the rest of this subclause.
5319  unsigned NumParams = FnDecl->getNumParams()
5320                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5321  if (Op != OO_Call &&
5322      ((NumParams == 1 && !CanBeUnaryOperator) ||
5323       (NumParams == 2 && !CanBeBinaryOperator) ||
5324       (NumParams < 1) || (NumParams > 2))) {
5325    // We have the wrong number of parameters.
5326    unsigned ErrorKind;
5327    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5328      ErrorKind = 2;  // 2 -> unary or binary.
5329    } else if (CanBeUnaryOperator) {
5330      ErrorKind = 0;  // 0 -> unary
5331    } else {
5332      assert(CanBeBinaryOperator &&
5333             "All non-call overloaded operators are unary or binary!");
5334      ErrorKind = 1;  // 1 -> binary
5335    }
5336
5337    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5338      << FnDecl->getDeclName() << NumParams << ErrorKind;
5339  }
5340
5341  // Overloaded operators other than operator() cannot be variadic.
5342  if (Op != OO_Call &&
5343      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5344    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5345      << FnDecl->getDeclName();
5346  }
5347
5348  // Some operators must be non-static member functions.
5349  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5350    return Diag(FnDecl->getLocation(),
5351                diag::err_operator_overload_must_be_member)
5352      << FnDecl->getDeclName();
5353  }
5354
5355  // C++ [over.inc]p1:
5356  //   The user-defined function called operator++ implements the
5357  //   prefix and postfix ++ operator. If this function is a member
5358  //   function with no parameters, or a non-member function with one
5359  //   parameter of class or enumeration type, it defines the prefix
5360  //   increment operator ++ for objects of that type. If the function
5361  //   is a member function with one parameter (which shall be of type
5362  //   int) or a non-member function with two parameters (the second
5363  //   of which shall be of type int), it defines the postfix
5364  //   increment operator ++ for objects of that type.
5365  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5366    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5367    bool ParamIsInt = false;
5368    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5369      ParamIsInt = BT->getKind() == BuiltinType::Int;
5370
5371    if (!ParamIsInt)
5372      return Diag(LastParam->getLocation(),
5373                  diag::err_operator_overload_post_incdec_must_be_int)
5374        << LastParam->getType() << (Op == OO_MinusMinus);
5375  }
5376
5377  // Notify the class if it got an assignment operator.
5378  if (Op == OO_Equal) {
5379    // Would have returned earlier otherwise.
5380    assert(isa<CXXMethodDecl>(FnDecl) &&
5381      "Overloaded = not member, but not filtered.");
5382    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5383    Method->getParent()->addedAssignmentOperator(Context, Method);
5384  }
5385
5386  return false;
5387}
5388
5389/// CheckLiteralOperatorDeclaration - Check whether the declaration
5390/// of this literal operator function is well-formed. If so, returns
5391/// false; otherwise, emits appropriate diagnostics and returns true.
5392bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5393  DeclContext *DC = FnDecl->getDeclContext();
5394  Decl::Kind Kind = DC->getDeclKind();
5395  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5396      Kind != Decl::LinkageSpec) {
5397    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5398      << FnDecl->getDeclName();
5399    return true;
5400  }
5401
5402  bool Valid = false;
5403
5404  // template <char...> type operator "" name() is the only valid template
5405  // signature, and the only valid signature with no parameters.
5406  if (FnDecl->param_size() == 0) {
5407    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5408      // Must have only one template parameter
5409      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5410      if (Params->size() == 1) {
5411        NonTypeTemplateParmDecl *PmDecl =
5412          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5413
5414        // The template parameter must be a char parameter pack.
5415        // FIXME: This test will always fail because non-type parameter packs
5416        //   have not been implemented.
5417        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5418            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5419          Valid = true;
5420      }
5421    }
5422  } else {
5423    // Check the first parameter
5424    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5425
5426    QualType T = (*Param)->getType();
5427
5428    // unsigned long long int, long double, and any character type are allowed
5429    // as the only parameters.
5430    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5431        Context.hasSameType(T, Context.LongDoubleTy) ||
5432        Context.hasSameType(T, Context.CharTy) ||
5433        Context.hasSameType(T, Context.WCharTy) ||
5434        Context.hasSameType(T, Context.Char16Ty) ||
5435        Context.hasSameType(T, Context.Char32Ty)) {
5436      if (++Param == FnDecl->param_end())
5437        Valid = true;
5438      goto FinishedParams;
5439    }
5440
5441    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5442    const PointerType *PT = T->getAs<PointerType>();
5443    if (!PT)
5444      goto FinishedParams;
5445    T = PT->getPointeeType();
5446    if (!T.isConstQualified())
5447      goto FinishedParams;
5448    T = T.getUnqualifiedType();
5449
5450    // Move on to the second parameter;
5451    ++Param;
5452
5453    // If there is no second parameter, the first must be a const char *
5454    if (Param == FnDecl->param_end()) {
5455      if (Context.hasSameType(T, Context.CharTy))
5456        Valid = true;
5457      goto FinishedParams;
5458    }
5459
5460    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5461    // are allowed as the first parameter to a two-parameter function
5462    if (!(Context.hasSameType(T, Context.CharTy) ||
5463          Context.hasSameType(T, Context.WCharTy) ||
5464          Context.hasSameType(T, Context.Char16Ty) ||
5465          Context.hasSameType(T, Context.Char32Ty)))
5466      goto FinishedParams;
5467
5468    // The second and final parameter must be an std::size_t
5469    T = (*Param)->getType().getUnqualifiedType();
5470    if (Context.hasSameType(T, Context.getSizeType()) &&
5471        ++Param == FnDecl->param_end())
5472      Valid = true;
5473  }
5474
5475  // FIXME: This diagnostic is absolutely terrible.
5476FinishedParams:
5477  if (!Valid) {
5478    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5479      << FnDecl->getDeclName();
5480    return true;
5481  }
5482
5483  return false;
5484}
5485
5486/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5487/// linkage specification, including the language and (if present)
5488/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5489/// the location of the language string literal, which is provided
5490/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5491/// the '{' brace. Otherwise, this linkage specification does not
5492/// have any braces.
5493Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5494                                                     SourceLocation ExternLoc,
5495                                                     SourceLocation LangLoc,
5496                                                     llvm::StringRef Lang,
5497                                                     SourceLocation LBraceLoc) {
5498  LinkageSpecDecl::LanguageIDs Language;
5499  if (Lang == "\"C\"")
5500    Language = LinkageSpecDecl::lang_c;
5501  else if (Lang == "\"C++\"")
5502    Language = LinkageSpecDecl::lang_cxx;
5503  else {
5504    Diag(LangLoc, diag::err_bad_language);
5505    return DeclPtrTy();
5506  }
5507
5508  // FIXME: Add all the various semantics of linkage specifications
5509
5510  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5511                                               LangLoc, Language,
5512                                               LBraceLoc.isValid());
5513  CurContext->addDecl(D);
5514  PushDeclContext(S, D);
5515  return DeclPtrTy::make(D);
5516}
5517
5518/// ActOnFinishLinkageSpecification - Completely the definition of
5519/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5520/// valid, it's the position of the closing '}' brace in a linkage
5521/// specification that uses braces.
5522Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5523                                                      DeclPtrTy LinkageSpec,
5524                                                      SourceLocation RBraceLoc) {
5525  if (LinkageSpec)
5526    PopDeclContext();
5527  return LinkageSpec;
5528}
5529
5530/// \brief Perform semantic analysis for the variable declaration that
5531/// occurs within a C++ catch clause, returning the newly-created
5532/// variable.
5533VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5534                                         TypeSourceInfo *TInfo,
5535                                         IdentifierInfo *Name,
5536                                         SourceLocation Loc,
5537                                         SourceRange Range) {
5538  bool Invalid = false;
5539
5540  // Arrays and functions decay.
5541  if (ExDeclType->isArrayType())
5542    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5543  else if (ExDeclType->isFunctionType())
5544    ExDeclType = Context.getPointerType(ExDeclType);
5545
5546  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5547  // The exception-declaration shall not denote a pointer or reference to an
5548  // incomplete type, other than [cv] void*.
5549  // N2844 forbids rvalue references.
5550  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5551    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5552    Invalid = true;
5553  }
5554
5555  // GCC allows catching pointers and references to incomplete types
5556  // as an extension; so do we, but we warn by default.
5557
5558  QualType BaseType = ExDeclType;
5559  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5560  unsigned DK = diag::err_catch_incomplete;
5561  bool IncompleteCatchIsInvalid = true;
5562  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5563    BaseType = Ptr->getPointeeType();
5564    Mode = 1;
5565    DK = diag::ext_catch_incomplete_ptr;
5566    IncompleteCatchIsInvalid = false;
5567  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5568    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5569    BaseType = Ref->getPointeeType();
5570    Mode = 2;
5571    DK = diag::ext_catch_incomplete_ref;
5572    IncompleteCatchIsInvalid = false;
5573  }
5574  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5575      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5576      IncompleteCatchIsInvalid)
5577    Invalid = true;
5578
5579  if (!Invalid && !ExDeclType->isDependentType() &&
5580      RequireNonAbstractType(Loc, ExDeclType,
5581                             diag::err_abstract_type_in_decl,
5582                             AbstractVariableType))
5583    Invalid = true;
5584
5585  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5586                                    Name, ExDeclType, TInfo, VarDecl::None,
5587                                    VarDecl::None);
5588  ExDecl->setExceptionVariable(true);
5589
5590  if (!Invalid) {
5591    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5592      // C++ [except.handle]p16:
5593      //   The object declared in an exception-declaration or, if the
5594      //   exception-declaration does not specify a name, a temporary (12.2) is
5595      //   copy-initialized (8.5) from the exception object. [...]
5596      //   The object is destroyed when the handler exits, after the destruction
5597      //   of any automatic objects initialized within the handler.
5598      //
5599      // We just pretend to initialize the object with itself, then make sure
5600      // it can be destroyed later.
5601      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5602      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5603                                            Loc, ExDeclType, 0);
5604      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5605                                                               SourceLocation());
5606      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5607      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5608                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5609      if (Result.isInvalid())
5610        Invalid = true;
5611      else
5612        FinalizeVarWithDestructor(ExDecl, RecordTy);
5613    }
5614  }
5615
5616  if (Invalid)
5617    ExDecl->setInvalidDecl();
5618
5619  return ExDecl;
5620}
5621
5622/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5623/// handler.
5624Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5625  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5626  QualType ExDeclType = TInfo->getType();
5627
5628  bool Invalid = D.isInvalidType();
5629  IdentifierInfo *II = D.getIdentifier();
5630  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5631                                             LookupOrdinaryName,
5632                                             ForRedeclaration)) {
5633    // The scope should be freshly made just for us. There is just no way
5634    // it contains any previous declaration.
5635    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5636    if (PrevDecl->isTemplateParameter()) {
5637      // Maybe we will complain about the shadowed template parameter.
5638      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5639    }
5640  }
5641
5642  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5643    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5644      << D.getCXXScopeSpec().getRange();
5645    Invalid = true;
5646  }
5647
5648  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5649                                              D.getIdentifier(),
5650                                              D.getIdentifierLoc(),
5651                                            D.getDeclSpec().getSourceRange());
5652
5653  if (Invalid)
5654    ExDecl->setInvalidDecl();
5655
5656  // Add the exception declaration into this scope.
5657  if (II)
5658    PushOnScopeChains(ExDecl, S);
5659  else
5660    CurContext->addDecl(ExDecl);
5661
5662  ProcessDeclAttributes(S, ExDecl, D);
5663  return DeclPtrTy::make(ExDecl);
5664}
5665
5666Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5667                                                   ExprArg assertexpr,
5668                                                   ExprArg assertmessageexpr) {
5669  Expr *AssertExpr = (Expr *)assertexpr.get();
5670  StringLiteral *AssertMessage =
5671    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5672
5673  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5674    llvm::APSInt Value(32);
5675    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5676      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5677        AssertExpr->getSourceRange();
5678      return DeclPtrTy();
5679    }
5680
5681    if (Value == 0) {
5682      Diag(AssertLoc, diag::err_static_assert_failed)
5683        << AssertMessage->getString() << AssertExpr->getSourceRange();
5684    }
5685  }
5686
5687  assertexpr.release();
5688  assertmessageexpr.release();
5689  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5690                                        AssertExpr, AssertMessage);
5691
5692  CurContext->addDecl(Decl);
5693  return DeclPtrTy::make(Decl);
5694}
5695
5696/// \brief Perform semantic analysis of the given friend type declaration.
5697///
5698/// \returns A friend declaration that.
5699FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5700                                      TypeSourceInfo *TSInfo) {
5701  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5702
5703  QualType T = TSInfo->getType();
5704  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5705
5706  if (!getLangOptions().CPlusPlus0x) {
5707    // C++03 [class.friend]p2:
5708    //   An elaborated-type-specifier shall be used in a friend declaration
5709    //   for a class.*
5710    //
5711    //   * The class-key of the elaborated-type-specifier is required.
5712    if (!ActiveTemplateInstantiations.empty()) {
5713      // Do not complain about the form of friend template types during
5714      // template instantiation; we will already have complained when the
5715      // template was declared.
5716    } else if (!T->isElaboratedTypeSpecifier()) {
5717      // If we evaluated the type to a record type, suggest putting
5718      // a tag in front.
5719      if (const RecordType *RT = T->getAs<RecordType>()) {
5720        RecordDecl *RD = RT->getDecl();
5721
5722        std::string InsertionText = std::string(" ") + RD->getKindName();
5723
5724        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5725          << (unsigned) RD->getTagKind()
5726          << T
5727          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5728                                        InsertionText);
5729      } else {
5730        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5731          << T
5732          << SourceRange(FriendLoc, TypeRange.getEnd());
5733      }
5734    } else if (T->getAs<EnumType>()) {
5735      Diag(FriendLoc, diag::ext_enum_friend)
5736        << T
5737        << SourceRange(FriendLoc, TypeRange.getEnd());
5738    }
5739  }
5740
5741  // C++0x [class.friend]p3:
5742  //   If the type specifier in a friend declaration designates a (possibly
5743  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5744  //   the friend declaration is ignored.
5745
5746  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5747  // in [class.friend]p3 that we do not implement.
5748
5749  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5750}
5751
5752/// Handle a friend type declaration.  This works in tandem with
5753/// ActOnTag.
5754///
5755/// Notes on friend class templates:
5756///
5757/// We generally treat friend class declarations as if they were
5758/// declaring a class.  So, for example, the elaborated type specifier
5759/// in a friend declaration is required to obey the restrictions of a
5760/// class-head (i.e. no typedefs in the scope chain), template
5761/// parameters are required to match up with simple template-ids, &c.
5762/// However, unlike when declaring a template specialization, it's
5763/// okay to refer to a template specialization without an empty
5764/// template parameter declaration, e.g.
5765///   friend class A<T>::B<unsigned>;
5766/// We permit this as a special case; if there are any template
5767/// parameters present at all, require proper matching, i.e.
5768///   template <> template <class T> friend class A<int>::B;
5769Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5770                                          MultiTemplateParamsArg TempParams) {
5771  SourceLocation Loc = DS.getSourceRange().getBegin();
5772
5773  assert(DS.isFriendSpecified());
5774  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5775
5776  // Try to convert the decl specifier to a type.  This works for
5777  // friend templates because ActOnTag never produces a ClassTemplateDecl
5778  // for a TUK_Friend.
5779  Declarator TheDeclarator(DS, Declarator::MemberContext);
5780  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
5781  QualType T = TSI->getType();
5782  if (TheDeclarator.isInvalidType())
5783    return DeclPtrTy();
5784
5785  // This is definitely an error in C++98.  It's probably meant to
5786  // be forbidden in C++0x, too, but the specification is just
5787  // poorly written.
5788  //
5789  // The problem is with declarations like the following:
5790  //   template <T> friend A<T>::foo;
5791  // where deciding whether a class C is a friend or not now hinges
5792  // on whether there exists an instantiation of A that causes
5793  // 'foo' to equal C.  There are restrictions on class-heads
5794  // (which we declare (by fiat) elaborated friend declarations to
5795  // be) that makes this tractable.
5796  //
5797  // FIXME: handle "template <> friend class A<T>;", which
5798  // is possibly well-formed?  Who even knows?
5799  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5800    Diag(Loc, diag::err_tagless_friend_type_template)
5801      << DS.getSourceRange();
5802    return DeclPtrTy();
5803  }
5804
5805  // C++98 [class.friend]p1: A friend of a class is a function
5806  //   or class that is not a member of the class . . .
5807  // This is fixed in DR77, which just barely didn't make the C++03
5808  // deadline.  It's also a very silly restriction that seriously
5809  // affects inner classes and which nobody else seems to implement;
5810  // thus we never diagnose it, not even in -pedantic.
5811  //
5812  // But note that we could warn about it: it's always useless to
5813  // friend one of your own members (it's not, however, worthless to
5814  // friend a member of an arbitrary specialization of your template).
5815
5816  Decl *D;
5817  if (unsigned NumTempParamLists = TempParams.size())
5818    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5819                                   NumTempParamLists,
5820                                 (TemplateParameterList**) TempParams.release(),
5821                                   TSI,
5822                                   DS.getFriendSpecLoc());
5823  else
5824    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5825
5826  if (!D)
5827    return DeclPtrTy();
5828
5829  D->setAccess(AS_public);
5830  CurContext->addDecl(D);
5831
5832  return DeclPtrTy::make(D);
5833}
5834
5835Sema::DeclPtrTy
5836Sema::ActOnFriendFunctionDecl(Scope *S,
5837                              Declarator &D,
5838                              bool IsDefinition,
5839                              MultiTemplateParamsArg TemplateParams) {
5840  const DeclSpec &DS = D.getDeclSpec();
5841
5842  assert(DS.isFriendSpecified());
5843  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5844
5845  SourceLocation Loc = D.getIdentifierLoc();
5846  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5847  QualType T = TInfo->getType();
5848
5849  // C++ [class.friend]p1
5850  //   A friend of a class is a function or class....
5851  // Note that this sees through typedefs, which is intended.
5852  // It *doesn't* see through dependent types, which is correct
5853  // according to [temp.arg.type]p3:
5854  //   If a declaration acquires a function type through a
5855  //   type dependent on a template-parameter and this causes
5856  //   a declaration that does not use the syntactic form of a
5857  //   function declarator to have a function type, the program
5858  //   is ill-formed.
5859  if (!T->isFunctionType()) {
5860    Diag(Loc, diag::err_unexpected_friend);
5861
5862    // It might be worthwhile to try to recover by creating an
5863    // appropriate declaration.
5864    return DeclPtrTy();
5865  }
5866
5867  // C++ [namespace.memdef]p3
5868  //  - If a friend declaration in a non-local class first declares a
5869  //    class or function, the friend class or function is a member
5870  //    of the innermost enclosing namespace.
5871  //  - The name of the friend is not found by simple name lookup
5872  //    until a matching declaration is provided in that namespace
5873  //    scope (either before or after the class declaration granting
5874  //    friendship).
5875  //  - If a friend function is called, its name may be found by the
5876  //    name lookup that considers functions from namespaces and
5877  //    classes associated with the types of the function arguments.
5878  //  - When looking for a prior declaration of a class or a function
5879  //    declared as a friend, scopes outside the innermost enclosing
5880  //    namespace scope are not considered.
5881
5882  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5883  DeclarationName Name = GetNameForDeclarator(D);
5884  assert(Name);
5885
5886  // The context we found the declaration in, or in which we should
5887  // create the declaration.
5888  DeclContext *DC;
5889
5890  // FIXME: handle local classes
5891
5892  // Recover from invalid scope qualifiers as if they just weren't there.
5893  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5894                        ForRedeclaration);
5895  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5896    DC = computeDeclContext(ScopeQual);
5897
5898    // FIXME: handle dependent contexts
5899    if (!DC) return DeclPtrTy();
5900    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5901
5902    LookupQualifiedName(Previous, DC);
5903
5904    // Ignore things found implicitly in the wrong scope.
5905    // TODO: better diagnostics for this case.  Suggesting the right
5906    // qualified scope would be nice...
5907    LookupResult::Filter F = Previous.makeFilter();
5908    while (F.hasNext()) {
5909      NamedDecl *D = F.next();
5910      if (!D->getDeclContext()->getLookupContext()->Equals(DC))
5911        F.erase();
5912    }
5913    F.done();
5914
5915    if (Previous.empty()) {
5916      D.setInvalidType();
5917      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5918      return DeclPtrTy();
5919    }
5920
5921    // C++ [class.friend]p1: A friend of a class is a function or
5922    //   class that is not a member of the class . . .
5923    if (DC->Equals(CurContext))
5924      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5925
5926  // Otherwise walk out to the nearest namespace scope looking for matches.
5927  } else {
5928    // TODO: handle local class contexts.
5929
5930    DC = CurContext;
5931    while (true) {
5932      // Skip class contexts.  If someone can cite chapter and verse
5933      // for this behavior, that would be nice --- it's what GCC and
5934      // EDG do, and it seems like a reasonable intent, but the spec
5935      // really only says that checks for unqualified existing
5936      // declarations should stop at the nearest enclosing namespace,
5937      // not that they should only consider the nearest enclosing
5938      // namespace.
5939      while (DC->isRecord())
5940        DC = DC->getParent();
5941
5942      LookupQualifiedName(Previous, DC);
5943
5944      // TODO: decide what we think about using declarations.
5945      if (!Previous.empty())
5946        break;
5947
5948      if (DC->isFileContext()) break;
5949      DC = DC->getParent();
5950    }
5951
5952    // C++ [class.friend]p1: A friend of a class is a function or
5953    //   class that is not a member of the class . . .
5954    // C++0x changes this for both friend types and functions.
5955    // Most C++ 98 compilers do seem to give an error here, so
5956    // we do, too.
5957    if (!Previous.empty() && DC->Equals(CurContext)
5958        && !getLangOptions().CPlusPlus0x)
5959      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5960  }
5961
5962  if (DC->isFileContext()) {
5963    // This implies that it has to be an operator or function.
5964    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5965        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5966        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5967      Diag(Loc, diag::err_introducing_special_friend) <<
5968        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5969         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5970      return DeclPtrTy();
5971    }
5972  }
5973
5974  bool Redeclaration = false;
5975  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5976                                          move(TemplateParams),
5977                                          IsDefinition,
5978                                          Redeclaration);
5979  if (!ND) return DeclPtrTy();
5980
5981  assert(ND->getDeclContext() == DC);
5982  assert(ND->getLexicalDeclContext() == CurContext);
5983
5984  // Add the function declaration to the appropriate lookup tables,
5985  // adjusting the redeclarations list as necessary.  We don't
5986  // want to do this yet if the friending class is dependent.
5987  //
5988  // Also update the scope-based lookup if the target context's
5989  // lookup context is in lexical scope.
5990  if (!CurContext->isDependentContext()) {
5991    DC = DC->getLookupContext();
5992    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5993    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5994      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5995  }
5996
5997  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5998                                       D.getIdentifierLoc(), ND,
5999                                       DS.getFriendSpecLoc());
6000  FrD->setAccess(AS_public);
6001  CurContext->addDecl(FrD);
6002
6003  return DeclPtrTy::make(ND);
6004}
6005
6006void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
6007  AdjustDeclIfTemplate(dcl);
6008
6009  Decl *Dcl = dcl.getAs<Decl>();
6010  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
6011  if (!Fn) {
6012    Diag(DelLoc, diag::err_deleted_non_function);
6013    return;
6014  }
6015  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
6016    Diag(DelLoc, diag::err_deleted_decl_not_first);
6017    Diag(Prev->getLocation(), diag::note_previous_declaration);
6018    // If the declaration wasn't the first, we delete the function anyway for
6019    // recovery.
6020  }
6021  Fn->setDeleted();
6022}
6023
6024static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
6025  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
6026       ++CI) {
6027    Stmt *SubStmt = *CI;
6028    if (!SubStmt)
6029      continue;
6030    if (isa<ReturnStmt>(SubStmt))
6031      Self.Diag(SubStmt->getSourceRange().getBegin(),
6032           diag::err_return_in_constructor_handler);
6033    if (!isa<Expr>(SubStmt))
6034      SearchForReturnInStmt(Self, SubStmt);
6035  }
6036}
6037
6038void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
6039  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
6040    CXXCatchStmt *Handler = TryBlock->getHandler(I);
6041    SearchForReturnInStmt(*this, Handler);
6042  }
6043}
6044
6045bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
6046                                             const CXXMethodDecl *Old) {
6047  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
6048  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
6049
6050  if (Context.hasSameType(NewTy, OldTy) ||
6051      NewTy->isDependentType() || OldTy->isDependentType())
6052    return false;
6053
6054  // Check if the return types are covariant
6055  QualType NewClassTy, OldClassTy;
6056
6057  /// Both types must be pointers or references to classes.
6058  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
6059    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
6060      NewClassTy = NewPT->getPointeeType();
6061      OldClassTy = OldPT->getPointeeType();
6062    }
6063  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
6064    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
6065      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
6066        NewClassTy = NewRT->getPointeeType();
6067        OldClassTy = OldRT->getPointeeType();
6068      }
6069    }
6070  }
6071
6072  // The return types aren't either both pointers or references to a class type.
6073  if (NewClassTy.isNull()) {
6074    Diag(New->getLocation(),
6075         diag::err_different_return_type_for_overriding_virtual_function)
6076      << New->getDeclName() << NewTy << OldTy;
6077    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6078
6079    return true;
6080  }
6081
6082  // C++ [class.virtual]p6:
6083  //   If the return type of D::f differs from the return type of B::f, the
6084  //   class type in the return type of D::f shall be complete at the point of
6085  //   declaration of D::f or shall be the class type D.
6086  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
6087    if (!RT->isBeingDefined() &&
6088        RequireCompleteType(New->getLocation(), NewClassTy,
6089                            PDiag(diag::err_covariant_return_incomplete)
6090                              << New->getDeclName()))
6091    return true;
6092  }
6093
6094  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
6095    // Check if the new class derives from the old class.
6096    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
6097      Diag(New->getLocation(),
6098           diag::err_covariant_return_not_derived)
6099      << New->getDeclName() << NewTy << OldTy;
6100      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6101      return true;
6102    }
6103
6104    // Check if we the conversion from derived to base is valid.
6105    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
6106                    diag::err_covariant_return_inaccessible_base,
6107                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
6108                    // FIXME: Should this point to the return type?
6109                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
6110      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6111      return true;
6112    }
6113  }
6114
6115  // The qualifiers of the return types must be the same.
6116  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
6117    Diag(New->getLocation(),
6118         diag::err_covariant_return_type_different_qualifications)
6119    << New->getDeclName() << NewTy << OldTy;
6120    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6121    return true;
6122  };
6123
6124
6125  // The new class type must have the same or less qualifiers as the old type.
6126  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
6127    Diag(New->getLocation(),
6128         diag::err_covariant_return_type_class_type_more_qualified)
6129    << New->getDeclName() << NewTy << OldTy;
6130    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6131    return true;
6132  };
6133
6134  return false;
6135}
6136
6137bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
6138                                             const CXXMethodDecl *Old)
6139{
6140  if (Old->hasAttr<FinalAttr>()) {
6141    Diag(New->getLocation(), diag::err_final_function_overridden)
6142      << New->getDeclName();
6143    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
6144    return true;
6145  }
6146
6147  return false;
6148}
6149
6150/// \brief Mark the given method pure.
6151///
6152/// \param Method the method to be marked pure.
6153///
6154/// \param InitRange the source range that covers the "0" initializer.
6155bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
6156  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
6157    Method->setPure();
6158
6159    // A class is abstract if at least one function is pure virtual.
6160    Method->getParent()->setAbstract(true);
6161    return false;
6162  }
6163
6164  if (!Method->isInvalidDecl())
6165    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6166      << Method->getDeclName() << InitRange;
6167  return true;
6168}
6169
6170/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6171/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6172/// is a fresh scope pushed for just this purpose.
6173///
6174/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6175/// static data member of class X, names should be looked up in the scope of
6176/// class X.
6177void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6178  // If there is no declaration, there was an error parsing it.
6179  Decl *D = Dcl.getAs<Decl>();
6180  if (D == 0) return;
6181
6182  // We should only get called for declarations with scope specifiers, like:
6183  //   int foo::bar;
6184  assert(D->isOutOfLine());
6185  EnterDeclaratorContext(S, D->getDeclContext());
6186}
6187
6188/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6189/// initializer for the out-of-line declaration 'Dcl'.
6190void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6191  // If there is no declaration, there was an error parsing it.
6192  Decl *D = Dcl.getAs<Decl>();
6193  if (D == 0) return;
6194
6195  assert(D->isOutOfLine());
6196  ExitDeclaratorContext(S);
6197}
6198
6199/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6200/// C++ if/switch/while/for statement.
6201/// e.g: "if (int x = f()) {...}"
6202Action::DeclResult
6203Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6204  // C++ 6.4p2:
6205  // The declarator shall not specify a function or an array.
6206  // The type-specifier-seq shall not contain typedef and shall not declare a
6207  // new class or enumeration.
6208  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6209         "Parser allowed 'typedef' as storage class of condition decl.");
6210
6211  TagDecl *OwnedTag = 0;
6212  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
6213  QualType Ty = TInfo->getType();
6214
6215  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6216                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6217                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6218    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6219      << D.getSourceRange();
6220    return DeclResult();
6221  } else if (OwnedTag && OwnedTag->isDefinition()) {
6222    // The type-specifier-seq shall not declare a new class or enumeration.
6223    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6224  }
6225
6226  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6227  if (!Dcl)
6228    return DeclResult();
6229
6230  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6231  VD->setDeclaredInCondition(true);
6232  return Dcl;
6233}
6234
6235void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6236                          bool DefinitionRequired) {
6237  // Ignore any vtable uses in unevaluated operands or for classes that do
6238  // not have a vtable.
6239  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6240      CurContext->isDependentContext() ||
6241      ExprEvalContexts.back().Context == Unevaluated)
6242    return;
6243
6244  // Try to insert this class into the map.
6245  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6246  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6247    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6248  if (!Pos.second) {
6249    // If we already had an entry, check to see if we are promoting this vtable
6250    // to required a definition. If so, we need to reappend to the VTableUses
6251    // list, since we may have already processed the first entry.
6252    if (DefinitionRequired && !Pos.first->second) {
6253      Pos.first->second = true;
6254    } else {
6255      // Otherwise, we can early exit.
6256      return;
6257    }
6258  }
6259
6260  // Local classes need to have their virtual members marked
6261  // immediately. For all other classes, we mark their virtual members
6262  // at the end of the translation unit.
6263  if (Class->isLocalClass())
6264    MarkVirtualMembersReferenced(Loc, Class);
6265  else
6266    VTableUses.push_back(std::make_pair(Class, Loc));
6267}
6268
6269bool Sema::DefineUsedVTables() {
6270  // If any dynamic classes have their key function defined within
6271  // this translation unit, then those vtables are considered "used" and must
6272  // be emitted.
6273  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6274    if (const CXXMethodDecl *KeyFunction
6275                             = Context.getKeyFunction(DynamicClasses[I])) {
6276      const FunctionDecl *Definition = 0;
6277      if (KeyFunction->getBody(Definition))
6278        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6279    }
6280  }
6281
6282  if (VTableUses.empty())
6283    return false;
6284
6285  // Note: The VTableUses vector could grow as a result of marking
6286  // the members of a class as "used", so we check the size each
6287  // time through the loop and prefer indices (with are stable) to
6288  // iterators (which are not).
6289  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6290    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
6291    if (!Class)
6292      continue;
6293
6294    SourceLocation Loc = VTableUses[I].second;
6295
6296    // If this class has a key function, but that key function is
6297    // defined in another translation unit, we don't need to emit the
6298    // vtable even though we're using it.
6299    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6300    if (KeyFunction && !KeyFunction->getBody()) {
6301      switch (KeyFunction->getTemplateSpecializationKind()) {
6302      case TSK_Undeclared:
6303      case TSK_ExplicitSpecialization:
6304      case TSK_ExplicitInstantiationDeclaration:
6305        // The key function is in another translation unit.
6306        continue;
6307
6308      case TSK_ExplicitInstantiationDefinition:
6309      case TSK_ImplicitInstantiation:
6310        // We will be instantiating the key function.
6311        break;
6312      }
6313    } else if (!KeyFunction) {
6314      // If we have a class with no key function that is the subject
6315      // of an explicit instantiation declaration, suppress the
6316      // vtable; it will live with the explicit instantiation
6317      // definition.
6318      bool IsExplicitInstantiationDeclaration
6319        = Class->getTemplateSpecializationKind()
6320                                      == TSK_ExplicitInstantiationDeclaration;
6321      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6322                                 REnd = Class->redecls_end();
6323           R != REnd; ++R) {
6324        TemplateSpecializationKind TSK
6325          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6326        if (TSK == TSK_ExplicitInstantiationDeclaration)
6327          IsExplicitInstantiationDeclaration = true;
6328        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6329          IsExplicitInstantiationDeclaration = false;
6330          break;
6331        }
6332      }
6333
6334      if (IsExplicitInstantiationDeclaration)
6335        continue;
6336    }
6337
6338    // Mark all of the virtual members of this class as referenced, so
6339    // that we can build a vtable. Then, tell the AST consumer that a
6340    // vtable for this class is required.
6341    MarkVirtualMembersReferenced(Loc, Class);
6342    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6343    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6344
6345    // Optionally warn if we're emitting a weak vtable.
6346    if (Class->getLinkage() == ExternalLinkage &&
6347        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6348      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6349        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6350    }
6351  }
6352  VTableUses.clear();
6353
6354  return true;
6355}
6356
6357void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6358                                        const CXXRecordDecl *RD) {
6359  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6360       e = RD->method_end(); i != e; ++i) {
6361    CXXMethodDecl *MD = *i;
6362
6363    // C++ [basic.def.odr]p2:
6364    //   [...] A virtual member function is used if it is not pure. [...]
6365    if (MD->isVirtual() && !MD->isPure())
6366      MarkDeclarationReferenced(Loc, MD);
6367  }
6368
6369  // Only classes that have virtual bases need a VTT.
6370  if (RD->getNumVBases() == 0)
6371    return;
6372
6373  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6374           e = RD->bases_end(); i != e; ++i) {
6375    const CXXRecordDecl *Base =
6376        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6377    if (i->isVirtual())
6378      continue;
6379    if (Base->getNumVBases() == 0)
6380      continue;
6381    MarkVirtualMembersReferenced(Loc, Base);
6382  }
6383}
6384
6385/// SetIvarInitializers - This routine builds initialization ASTs for the
6386/// Objective-C implementation whose ivars need be initialized.
6387void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6388  if (!getLangOptions().CPlusPlus)
6389    return;
6390  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6391    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6392    CollectIvarsToConstructOrDestruct(OID, ivars);
6393    if (ivars.empty())
6394      return;
6395    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6396    for (unsigned i = 0; i < ivars.size(); i++) {
6397      FieldDecl *Field = ivars[i];
6398      if (Field->isInvalidDecl())
6399        continue;
6400
6401      CXXBaseOrMemberInitializer *Member;
6402      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6403      InitializationKind InitKind =
6404        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6405
6406      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6407      Sema::OwningExprResult MemberInit =
6408        InitSeq.Perform(*this, InitEntity, InitKind,
6409                        Sema::MultiExprArg(*this, 0, 0));
6410      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6411      // Note, MemberInit could actually come back empty if no initialization
6412      // is required (e.g., because it would call a trivial default constructor)
6413      if (!MemberInit.get() || MemberInit.isInvalid())
6414        continue;
6415
6416      Member =
6417        new (Context) CXXBaseOrMemberInitializer(Context,
6418                                                 Field, SourceLocation(),
6419                                                 SourceLocation(),
6420                                                 MemberInit.takeAs<Expr>(),
6421                                                 SourceLocation());
6422      AllToInit.push_back(Member);
6423
6424      // Be sure that the destructor is accessible and is marked as referenced.
6425      if (const RecordType *RecordTy
6426                  = Context.getBaseElementType(Field->getType())
6427                                                        ->getAs<RecordType>()) {
6428                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6429        if (CXXDestructorDecl *Destructor
6430              = const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) {
6431          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6432          CheckDestructorAccess(Field->getLocation(), Destructor,
6433                            PDiag(diag::err_access_dtor_ivar)
6434                              << Context.getBaseElementType(Field->getType()));
6435        }
6436      }
6437    }
6438    ObjCImplementation->setIvarInitializers(Context,
6439                                            AllToInit.data(), AllToInit.size());
6440  }
6441}
6442