SemaDeclCXX.cpp revision ed69156f9911f1107f284a0b62bdc62295979867
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/TypeOrdering.h"
19#include "clang/AST/StmtVisitor.h"
20#include "clang/Lex/Preprocessor.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/ADT/STLExtras.h"
23#include "llvm/Support/Compiler.h"
24#include <algorithm> // for std::equal
25#include <map>
26
27using namespace clang;
28
29//===----------------------------------------------------------------------===//
30// CheckDefaultArgumentVisitor
31//===----------------------------------------------------------------------===//
32
33namespace {
34  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
35  /// the default argument of a parameter to determine whether it
36  /// contains any ill-formed subexpressions. For example, this will
37  /// diagnose the use of local variables or parameters within the
38  /// default argument expression.
39  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
40    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
41    Expr *DefaultArg;
42    Sema *S;
43
44  public:
45    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
46      : DefaultArg(defarg), S(s) {}
47
48    bool VisitExpr(Expr *Node);
49    bool VisitDeclRefExpr(DeclRefExpr *DRE);
50    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
51  };
52
53  /// VisitExpr - Visit all of the children of this expression.
54  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
55    bool IsInvalid = false;
56    for (Stmt::child_iterator I = Node->child_begin(),
57         E = Node->child_end(); I != E; ++I)
58      IsInvalid |= Visit(*I);
59    return IsInvalid;
60  }
61
62  /// VisitDeclRefExpr - Visit a reference to a declaration, to
63  /// determine whether this declaration can be used in the default
64  /// argument expression.
65  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
66    NamedDecl *Decl = DRE->getDecl();
67    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
68      // C++ [dcl.fct.default]p9
69      //   Default arguments are evaluated each time the function is
70      //   called. The order of evaluation of function arguments is
71      //   unspecified. Consequently, parameters of a function shall not
72      //   be used in default argument expressions, even if they are not
73      //   evaluated. Parameters of a function declared before a default
74      //   argument expression are in scope and can hide namespace and
75      //   class member names.
76      return S->Diag(DRE->getSourceRange().getBegin(),
77                     diag::err_param_default_argument_references_param)
78         << Param->getDeclName() << DefaultArg->getSourceRange();
79    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
80      // C++ [dcl.fct.default]p7
81      //   Local variables shall not be used in default argument
82      //   expressions.
83      if (VDecl->isBlockVarDecl())
84        return S->Diag(DRE->getSourceRange().getBegin(),
85                       diag::err_param_default_argument_references_local)
86          << VDecl->getDeclName() << DefaultArg->getSourceRange();
87    }
88
89    return false;
90  }
91
92  /// VisitCXXThisExpr - Visit a C++ "this" expression.
93  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
94    // C++ [dcl.fct.default]p8:
95    //   The keyword this shall not be used in a default argument of a
96    //   member function.
97    return S->Diag(ThisE->getSourceRange().getBegin(),
98                   diag::err_param_default_argument_references_this)
99               << ThisE->getSourceRange();
100  }
101}
102
103/// ActOnParamDefaultArgument - Check whether the default argument
104/// provided for a function parameter is well-formed. If so, attach it
105/// to the parameter declaration.
106void
107Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
108                                ExprTy *defarg) {
109  ParmVarDecl *Param = (ParmVarDecl *)param;
110  ExprOwningPtr<Expr> DefaultArg(this, (Expr *)defarg);
111  QualType ParamType = Param->getType();
112
113  // Default arguments are only permitted in C++
114  if (!getLangOptions().CPlusPlus) {
115    Diag(EqualLoc, diag::err_param_default_argument)
116      << DefaultArg->getSourceRange();
117    Param->setInvalidDecl();
118    return;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  Expr *DefaultArgPtr = DefaultArg.get();
128  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
129                                                 EqualLoc,
130                                                 Param->getDeclName(),
131                                                 /*DirectInit=*/false);
132  if (DefaultArgPtr != DefaultArg.get()) {
133    DefaultArg.take();
134    DefaultArg.reset(DefaultArgPtr);
135  }
136  if (DefaultInitFailed) {
137    return;
138  }
139
140  // Check that the default argument is well-formed
141  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
142  if (DefaultArgChecker.Visit(DefaultArg.get())) {
143    Param->setInvalidDecl();
144    return;
145  }
146
147  // Okay: add the default argument to the parameter
148  Param->setDefaultArg(DefaultArg.take());
149}
150
151/// ActOnParamUnparsedDefaultArgument - We've seen a default
152/// argument for a function parameter, but we can't parse it yet
153/// because we're inside a class definition. Note that this default
154/// argument will be parsed later.
155void Sema::ActOnParamUnparsedDefaultArgument(DeclTy *param,
156                                             SourceLocation EqualLoc) {
157  ParmVarDecl *Param = (ParmVarDecl*)param;
158  if (Param)
159    Param->setUnparsedDefaultArg();
160}
161
162/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
163/// the default argument for the parameter param failed.
164void Sema::ActOnParamDefaultArgumentError(DeclTy *param) {
165  ((ParmVarDecl*)param)->setInvalidDecl();
166}
167
168/// CheckExtraCXXDefaultArguments - Check for any extra default
169/// arguments in the declarator, which is not a function declaration
170/// or definition and therefore is not permitted to have default
171/// arguments. This routine should be invoked for every declarator
172/// that is not a function declaration or definition.
173void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
174  // C++ [dcl.fct.default]p3
175  //   A default argument expression shall be specified only in the
176  //   parameter-declaration-clause of a function declaration or in a
177  //   template-parameter (14.1). It shall not be specified for a
178  //   parameter pack. If it is specified in a
179  //   parameter-declaration-clause, it shall not occur within a
180  //   declarator or abstract-declarator of a parameter-declaration.
181  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
182    DeclaratorChunk &chunk = D.getTypeObject(i);
183    if (chunk.Kind == DeclaratorChunk::Function) {
184      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
185        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
186        if (Param->hasUnparsedDefaultArg()) {
187          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
188          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
189            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
190          delete Toks;
191          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
192        } else if (Param->getDefaultArg()) {
193          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
194            << Param->getDefaultArg()->getSourceRange();
195          Param->setDefaultArg(0);
196        }
197      }
198    }
199  }
200}
201
202// MergeCXXFunctionDecl - Merge two declarations of the same C++
203// function, once we already know that they have the same
204// type. Subroutine of MergeFunctionDecl. Returns true if there was an
205// error, false otherwise.
206bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
207  bool Invalid = false;
208
209  // C++ [dcl.fct.default]p4:
210  //
211  //   For non-template functions, default arguments can be added in
212  //   later declarations of a function in the same
213  //   scope. Declarations in different scopes have completely
214  //   distinct sets of default arguments. That is, declarations in
215  //   inner scopes do not acquire default arguments from
216  //   declarations in outer scopes, and vice versa. In a given
217  //   function declaration, all parameters subsequent to a
218  //   parameter with a default argument shall have default
219  //   arguments supplied in this or previous declarations. A
220  //   default argument shall not be redefined by a later
221  //   declaration (not even to the same value).
222  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
223    ParmVarDecl *OldParam = Old->getParamDecl(p);
224    ParmVarDecl *NewParam = New->getParamDecl(p);
225
226    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
227      Diag(NewParam->getLocation(),
228           diag::err_param_default_argument_redefinition)
229        << NewParam->getDefaultArg()->getSourceRange();
230      Diag(OldParam->getLocation(), diag::note_previous_definition);
231      Invalid = true;
232    } else if (OldParam->getDefaultArg()) {
233      // Merge the old default argument into the new parameter
234      NewParam->setDefaultArg(OldParam->getDefaultArg());
235    }
236  }
237
238  return Invalid;
239}
240
241/// CheckCXXDefaultArguments - Verify that the default arguments for a
242/// function declaration are well-formed according to C++
243/// [dcl.fct.default].
244void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
245  unsigned NumParams = FD->getNumParams();
246  unsigned p;
247
248  // Find first parameter with a default argument
249  for (p = 0; p < NumParams; ++p) {
250    ParmVarDecl *Param = FD->getParamDecl(p);
251    if (Param->getDefaultArg())
252      break;
253  }
254
255  // C++ [dcl.fct.default]p4:
256  //   In a given function declaration, all parameters
257  //   subsequent to a parameter with a default argument shall
258  //   have default arguments supplied in this or previous
259  //   declarations. A default argument shall not be redefined
260  //   by a later declaration (not even to the same value).
261  unsigned LastMissingDefaultArg = 0;
262  for(; p < NumParams; ++p) {
263    ParmVarDecl *Param = FD->getParamDecl(p);
264    if (!Param->getDefaultArg()) {
265      if (Param->isInvalidDecl())
266        /* We already complained about this parameter. */;
267      else if (Param->getIdentifier())
268        Diag(Param->getLocation(),
269             diag::err_param_default_argument_missing_name)
270          << Param->getIdentifier();
271      else
272        Diag(Param->getLocation(),
273             diag::err_param_default_argument_missing);
274
275      LastMissingDefaultArg = p;
276    }
277  }
278
279  if (LastMissingDefaultArg > 0) {
280    // Some default arguments were missing. Clear out all of the
281    // default arguments up to (and including) the last missing
282    // default argument, so that we leave the function parameters
283    // in a semantically valid state.
284    for (p = 0; p <= LastMissingDefaultArg; ++p) {
285      ParmVarDecl *Param = FD->getParamDecl(p);
286      if (Param->getDefaultArg()) {
287        if (!Param->hasUnparsedDefaultArg())
288          Param->getDefaultArg()->Destroy(Context);
289        Param->setDefaultArg(0);
290      }
291    }
292  }
293}
294
295/// isCurrentClassName - Determine whether the identifier II is the
296/// name of the class type currently being defined. In the case of
297/// nested classes, this will only return true if II is the name of
298/// the innermost class.
299bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
300                              const CXXScopeSpec *SS) {
301  CXXRecordDecl *CurDecl;
302  if (SS) {
303    DeclContext *DC = static_cast<DeclContext*>(SS->getScopeRep());
304    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
305  } else
306    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
307
308  if (CurDecl)
309    return &II == CurDecl->getIdentifier();
310  else
311    return false;
312}
313
314/// \brief Check the validity of a C++ base class specifier.
315///
316/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
317/// and returns NULL otherwise.
318CXXBaseSpecifier *
319Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
320                         SourceRange SpecifierRange,
321                         bool Virtual, AccessSpecifier Access,
322                         QualType BaseType,
323                         SourceLocation BaseLoc) {
324  // C++ [class.union]p1:
325  //   A union shall not have base classes.
326  if (Class->isUnion()) {
327    Diag(Class->getLocation(), diag::err_base_clause_on_union)
328      << SpecifierRange;
329    return 0;
330  }
331
332  if (BaseType->isDependentType())
333    return new CXXBaseSpecifier(SpecifierRange, Virtual,
334                                Class->getTagKind() == RecordDecl::TK_class,
335                                Access, BaseType);
336
337  // Base specifiers must be record types.
338  if (!BaseType->isRecordType()) {
339    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
340    return 0;
341  }
342
343  // C++ [class.union]p1:
344  //   A union shall not be used as a base class.
345  if (BaseType->isUnionType()) {
346    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
347    return 0;
348  }
349
350  // C++ [class.derived]p2:
351  //   The class-name in a base-specifier shall not be an incompletely
352  //   defined class.
353  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
354                          SpecifierRange))
355    return 0;
356
357  // If the base class is polymorphic, the new one is, too.
358  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
359  assert(BaseDecl && "Record type has no declaration");
360  BaseDecl = BaseDecl->getDefinition(Context);
361  assert(BaseDecl && "Base type is not incomplete, but has no definition");
362  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
363    Class->setPolymorphic(true);
364
365  // C++ [dcl.init.aggr]p1:
366  //   An aggregate is [...] a class with [...] no base classes [...].
367  Class->setAggregate(false);
368  Class->setPOD(false);
369
370  // Create the base specifier.
371  // FIXME: Allocate via ASTContext?
372  return new CXXBaseSpecifier(SpecifierRange, Virtual,
373                              Class->getTagKind() == RecordDecl::TK_class,
374                              Access, BaseType);
375}
376
377/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
378/// one entry in the base class list of a class specifier, for
379/// example:
380///    class foo : public bar, virtual private baz {
381/// 'public bar' and 'virtual private baz' are each base-specifiers.
382Sema::BaseResult
383Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
384                         bool Virtual, AccessSpecifier Access,
385                         TypeTy *basetype, SourceLocation BaseLoc) {
386  AdjustDeclIfTemplate(classdecl);
387  CXXRecordDecl *Class = cast<CXXRecordDecl>((Decl*)classdecl);
388  QualType BaseType = QualType::getFromOpaquePtr(basetype);
389  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
390                                                      Virtual, Access,
391                                                      BaseType, BaseLoc))
392    return BaseSpec;
393
394  return true;
395}
396
397/// \brief Performs the actual work of attaching the given base class
398/// specifiers to a C++ class.
399bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
400                                unsigned NumBases) {
401 if (NumBases == 0)
402    return false;
403
404  // Used to keep track of which base types we have already seen, so
405  // that we can properly diagnose redundant direct base types. Note
406  // that the key is always the unqualified canonical type of the base
407  // class.
408  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
409
410  // Copy non-redundant base specifiers into permanent storage.
411  unsigned NumGoodBases = 0;
412  bool Invalid = false;
413  for (unsigned idx = 0; idx < NumBases; ++idx) {
414    QualType NewBaseType
415      = Context.getCanonicalType(Bases[idx]->getType());
416    NewBaseType = NewBaseType.getUnqualifiedType();
417
418    if (KnownBaseTypes[NewBaseType]) {
419      // C++ [class.mi]p3:
420      //   A class shall not be specified as a direct base class of a
421      //   derived class more than once.
422      Diag(Bases[idx]->getSourceRange().getBegin(),
423           diag::err_duplicate_base_class)
424        << KnownBaseTypes[NewBaseType]->getType()
425        << Bases[idx]->getSourceRange();
426
427      // Delete the duplicate base class specifier; we're going to
428      // overwrite its pointer later.
429      delete Bases[idx];
430
431      Invalid = true;
432    } else {
433      // Okay, add this new base class.
434      KnownBaseTypes[NewBaseType] = Bases[idx];
435      Bases[NumGoodBases++] = Bases[idx];
436    }
437  }
438
439  // Attach the remaining base class specifiers to the derived class.
440  Class->setBases(Bases, NumGoodBases);
441
442  // Delete the remaining (good) base class specifiers, since their
443  // data has been copied into the CXXRecordDecl.
444  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
445    delete Bases[idx];
446
447  return Invalid;
448}
449
450/// ActOnBaseSpecifiers - Attach the given base specifiers to the
451/// class, after checking whether there are any duplicate base
452/// classes.
453void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
454                               unsigned NumBases) {
455  if (!ClassDecl || !Bases || !NumBases)
456    return;
457
458  AdjustDeclIfTemplate(ClassDecl);
459  AttachBaseSpecifiers(cast<CXXRecordDecl>((Decl*)ClassDecl),
460                       (CXXBaseSpecifier**)(Bases), NumBases);
461}
462
463//===----------------------------------------------------------------------===//
464// C++ class member Handling
465//===----------------------------------------------------------------------===//
466
467/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
468/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
469/// bitfield width if there is one and 'InitExpr' specifies the initializer if
470/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
471/// declarators on it.
472Sema::DeclTy *
473Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
474                               ExprTy *BW, ExprTy *InitExpr,
475                               DeclTy *LastInGroup) {
476  const DeclSpec &DS = D.getDeclSpec();
477  DeclarationName Name = GetNameForDeclarator(D);
478  Expr *BitWidth = static_cast<Expr*>(BW);
479  Expr *Init = static_cast<Expr*>(InitExpr);
480  SourceLocation Loc = D.getIdentifierLoc();
481
482  bool isFunc = D.isFunctionDeclarator();
483
484  // C++ 9.2p6: A member shall not be declared to have automatic storage
485  // duration (auto, register) or with the extern storage-class-specifier.
486  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
487  // data members and cannot be applied to names declared const or static,
488  // and cannot be applied to reference members.
489  switch (DS.getStorageClassSpec()) {
490    case DeclSpec::SCS_unspecified:
491    case DeclSpec::SCS_typedef:
492    case DeclSpec::SCS_static:
493      // FALL THROUGH.
494      break;
495    case DeclSpec::SCS_mutable:
496      if (isFunc) {
497        if (DS.getStorageClassSpecLoc().isValid())
498          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
499        else
500          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
501
502        // FIXME: It would be nicer if the keyword was ignored only for this
503        // declarator. Otherwise we could get follow-up errors.
504        D.getMutableDeclSpec().ClearStorageClassSpecs();
505      } else {
506        QualType T = GetTypeForDeclarator(D, S);
507        diag::kind err = static_cast<diag::kind>(0);
508        if (T->isReferenceType())
509          err = diag::err_mutable_reference;
510        else if (T.isConstQualified())
511          err = diag::err_mutable_const;
512        if (err != 0) {
513          if (DS.getStorageClassSpecLoc().isValid())
514            Diag(DS.getStorageClassSpecLoc(), err);
515          else
516            Diag(DS.getThreadSpecLoc(), err);
517          // FIXME: It would be nicer if the keyword was ignored only for this
518          // declarator. Otherwise we could get follow-up errors.
519          D.getMutableDeclSpec().ClearStorageClassSpecs();
520        }
521      }
522      break;
523    default:
524      if (DS.getStorageClassSpecLoc().isValid())
525        Diag(DS.getStorageClassSpecLoc(),
526             diag::err_storageclass_invalid_for_member);
527      else
528        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
529      D.getMutableDeclSpec().ClearStorageClassSpecs();
530  }
531
532  if (!isFunc &&
533      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
534      D.getNumTypeObjects() == 0) {
535    // Check also for this case:
536    //
537    // typedef int f();
538    // f a;
539    //
540    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
541    isFunc = TDType->isFunctionType();
542  }
543
544  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
545                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
546                      !isFunc);
547
548  Decl *Member;
549  if (isInstField) {
550    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
551                         AS);
552    assert(Member && "HandleField never returns null");
553  } else {
554    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
555    if (!Member) {
556      if (BitWidth) DeleteExpr(BitWidth);
557      return LastInGroup;
558    }
559
560    // Non-instance-fields can't have a bitfield.
561    if (BitWidth) {
562      if (Member->isInvalidDecl()) {
563        // don't emit another diagnostic.
564      } else if (isa<VarDecl>(Member)) {
565        // C++ 9.6p3: A bit-field shall not be a static member.
566        // "static member 'A' cannot be a bit-field"
567        Diag(Loc, diag::err_static_not_bitfield)
568          << Name << BitWidth->getSourceRange();
569      } else if (isa<TypedefDecl>(Member)) {
570        // "typedef member 'x' cannot be a bit-field"
571        Diag(Loc, diag::err_typedef_not_bitfield)
572          << Name << BitWidth->getSourceRange();
573      } else {
574        // A function typedef ("typedef int f(); f a;").
575        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
576        Diag(Loc, diag::err_not_integral_type_bitfield)
577          << Name << cast<ValueDecl>(Member)->getType()
578          << BitWidth->getSourceRange();
579      }
580
581      DeleteExpr(BitWidth);
582      BitWidth = 0;
583      Member->setInvalidDecl();
584    }
585
586    Member->setAccess(AS);
587  }
588
589  assert((Name || isInstField) && "No identifier for non-field ?");
590
591  if (Init)
592    AddInitializerToDecl(Member, ExprArg(*this, Init), false);
593
594  if (isInstField) {
595    FieldCollector->Add(cast<FieldDecl>(Member));
596    return LastInGroup;
597  }
598  return Member;
599}
600
601/// ActOnMemInitializer - Handle a C++ member initializer.
602Sema::MemInitResult
603Sema::ActOnMemInitializer(DeclTy *ConstructorD,
604                          Scope *S,
605                          IdentifierInfo *MemberOrBase,
606                          SourceLocation IdLoc,
607                          SourceLocation LParenLoc,
608                          ExprTy **Args, unsigned NumArgs,
609                          SourceLocation *CommaLocs,
610                          SourceLocation RParenLoc) {
611  CXXConstructorDecl *Constructor
612    = dyn_cast<CXXConstructorDecl>((Decl*)ConstructorD);
613  if (!Constructor) {
614    // The user wrote a constructor initializer on a function that is
615    // not a C++ constructor. Ignore the error for now, because we may
616    // have more member initializers coming; we'll diagnose it just
617    // once in ActOnMemInitializers.
618    return true;
619  }
620
621  CXXRecordDecl *ClassDecl = Constructor->getParent();
622
623  // C++ [class.base.init]p2:
624  //   Names in a mem-initializer-id are looked up in the scope of the
625  //   constructor’s class and, if not found in that scope, are looked
626  //   up in the scope containing the constructor’s
627  //   definition. [Note: if the constructor’s class contains a member
628  //   with the same name as a direct or virtual base class of the
629  //   class, a mem-initializer-id naming the member or base class and
630  //   composed of a single identifier refers to the class member. A
631  //   mem-initializer-id for the hidden base class may be specified
632  //   using a qualified name. ]
633  // Look for a member, first.
634  FieldDecl *Member = 0;
635  DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
636  if (Result.first != Result.second)
637    Member = dyn_cast<FieldDecl>(*Result.first);
638
639  // FIXME: Handle members of an anonymous union.
640
641  if (Member) {
642    // FIXME: Perform direct initialization of the member.
643    return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs);
644  }
645
646  // It didn't name a member, so see if it names a class.
647  TypeTy *BaseTy = getTypeName(*MemberOrBase, IdLoc, S, 0/*SS*/);
648  if (!BaseTy)
649    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
650      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
651
652  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
653  if (!BaseType->isRecordType())
654    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
655      << BaseType << SourceRange(IdLoc, RParenLoc);
656
657  // C++ [class.base.init]p2:
658  //   [...] Unless the mem-initializer-id names a nonstatic data
659  //   member of the constructor’s class or a direct or virtual base
660  //   of that class, the mem-initializer is ill-formed. A
661  //   mem-initializer-list can initialize a base class using any
662  //   name that denotes that base class type.
663
664  // First, check for a direct base class.
665  const CXXBaseSpecifier *DirectBaseSpec = 0;
666  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
667       Base != ClassDecl->bases_end(); ++Base) {
668    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
669        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
670      // We found a direct base of this type. That's what we're
671      // initializing.
672      DirectBaseSpec = &*Base;
673      break;
674    }
675  }
676
677  // Check for a virtual base class.
678  // FIXME: We might be able to short-circuit this if we know in
679  // advance that there are no virtual bases.
680  const CXXBaseSpecifier *VirtualBaseSpec = 0;
681  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
682    // We haven't found a base yet; search the class hierarchy for a
683    // virtual base class.
684    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
685                    /*DetectVirtual=*/false);
686    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
687      for (BasePaths::paths_iterator Path = Paths.begin();
688           Path != Paths.end(); ++Path) {
689        if (Path->back().Base->isVirtual()) {
690          VirtualBaseSpec = Path->back().Base;
691          break;
692        }
693      }
694    }
695  }
696
697  // C++ [base.class.init]p2:
698  //   If a mem-initializer-id is ambiguous because it designates both
699  //   a direct non-virtual base class and an inherited virtual base
700  //   class, the mem-initializer is ill-formed.
701  if (DirectBaseSpec && VirtualBaseSpec)
702    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
703      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
704
705  return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs);
706}
707
708
709void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
710                                             DeclTy *TagDecl,
711                                             SourceLocation LBrac,
712                                             SourceLocation RBrac) {
713  TemplateDecl *Template = AdjustDeclIfTemplate(TagDecl);
714  ActOnFields(S, RLoc, TagDecl,
715              (DeclTy**)FieldCollector->getCurFields(),
716              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
717
718  if (!Template)
719    AddImplicitlyDeclaredMembersToClass(cast<CXXRecordDecl>((Decl*)TagDecl));
720}
721
722/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
723/// special functions, such as the default constructor, copy
724/// constructor, or destructor, to the given C++ class (C++
725/// [special]p1).  This routine can only be executed just before the
726/// definition of the class is complete.
727void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
728  QualType ClassType = Context.getTypeDeclType(ClassDecl);
729  ClassType = Context.getCanonicalType(ClassType);
730
731  if (!ClassDecl->hasUserDeclaredConstructor()) {
732    // C++ [class.ctor]p5:
733    //   A default constructor for a class X is a constructor of class X
734    //   that can be called without an argument. If there is no
735    //   user-declared constructor for class X, a default constructor is
736    //   implicitly declared. An implicitly-declared default constructor
737    //   is an inline public member of its class.
738    DeclarationName Name
739      = Context.DeclarationNames.getCXXConstructorName(ClassType);
740    CXXConstructorDecl *DefaultCon =
741      CXXConstructorDecl::Create(Context, ClassDecl,
742                                 ClassDecl->getLocation(), Name,
743                                 Context.getFunctionType(Context.VoidTy,
744                                                         0, 0, false, 0),
745                                 /*isExplicit=*/false,
746                                 /*isInline=*/true,
747                                 /*isImplicitlyDeclared=*/true);
748    DefaultCon->setAccess(AS_public);
749    DefaultCon->setImplicit();
750    ClassDecl->addDecl(DefaultCon);
751
752    // Notify the class that we've added a constructor.
753    ClassDecl->addedConstructor(Context, DefaultCon);
754  }
755
756  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
757    // C++ [class.copy]p4:
758    //   If the class definition does not explicitly declare a copy
759    //   constructor, one is declared implicitly.
760
761    // C++ [class.copy]p5:
762    //   The implicitly-declared copy constructor for a class X will
763    //   have the form
764    //
765    //       X::X(const X&)
766    //
767    //   if
768    bool HasConstCopyConstructor = true;
769
770    //     -- each direct or virtual base class B of X has a copy
771    //        constructor whose first parameter is of type const B& or
772    //        const volatile B&, and
773    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
774         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
775      const CXXRecordDecl *BaseClassDecl
776        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
777      HasConstCopyConstructor
778        = BaseClassDecl->hasConstCopyConstructor(Context);
779    }
780
781    //     -- for all the nonstatic data members of X that are of a
782    //        class type M (or array thereof), each such class type
783    //        has a copy constructor whose first parameter is of type
784    //        const M& or const volatile M&.
785    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
786         HasConstCopyConstructor && Field != ClassDecl->field_end(); ++Field) {
787      QualType FieldType = (*Field)->getType();
788      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
789        FieldType = Array->getElementType();
790      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
791        const CXXRecordDecl *FieldClassDecl
792          = cast<CXXRecordDecl>(FieldClassType->getDecl());
793        HasConstCopyConstructor
794          = FieldClassDecl->hasConstCopyConstructor(Context);
795      }
796    }
797
798    //   Otherwise, the implicitly declared copy constructor will have
799    //   the form
800    //
801    //       X::X(X&)
802    QualType ArgType = ClassType;
803    if (HasConstCopyConstructor)
804      ArgType = ArgType.withConst();
805    ArgType = Context.getReferenceType(ArgType);
806
807    //   An implicitly-declared copy constructor is an inline public
808    //   member of its class.
809    DeclarationName Name
810      = Context.DeclarationNames.getCXXConstructorName(ClassType);
811    CXXConstructorDecl *CopyConstructor
812      = CXXConstructorDecl::Create(Context, ClassDecl,
813                                   ClassDecl->getLocation(), Name,
814                                   Context.getFunctionType(Context.VoidTy,
815                                                           &ArgType, 1,
816                                                           false, 0),
817                                   /*isExplicit=*/false,
818                                   /*isInline=*/true,
819                                   /*isImplicitlyDeclared=*/true);
820    CopyConstructor->setAccess(AS_public);
821    CopyConstructor->setImplicit();
822
823    // Add the parameter to the constructor.
824    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
825                                                 ClassDecl->getLocation(),
826                                                 /*IdentifierInfo=*/0,
827                                                 ArgType, VarDecl::None, 0);
828    CopyConstructor->setParams(Context, &FromParam, 1);
829
830    ClassDecl->addedConstructor(Context, CopyConstructor);
831    ClassDecl->addDecl(CopyConstructor);
832  }
833
834  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
835    // Note: The following rules are largely analoguous to the copy
836    // constructor rules. Note that virtual bases are not taken into account
837    // for determining the argument type of the operator. Note also that
838    // operators taking an object instead of a reference are allowed.
839    //
840    // C++ [class.copy]p10:
841    //   If the class definition does not explicitly declare a copy
842    //   assignment operator, one is declared implicitly.
843    //   The implicitly-defined copy assignment operator for a class X
844    //   will have the form
845    //
846    //       X& X::operator=(const X&)
847    //
848    //   if
849    bool HasConstCopyAssignment = true;
850
851    //       -- each direct base class B of X has a copy assignment operator
852    //          whose parameter is of type const B&, const volatile B& or B,
853    //          and
854    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
855         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
856      const CXXRecordDecl *BaseClassDecl
857        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
858      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
859    }
860
861    //       -- for all the nonstatic data members of X that are of a class
862    //          type M (or array thereof), each such class type has a copy
863    //          assignment operator whose parameter is of type const M&,
864    //          const volatile M& or M.
865    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
866         HasConstCopyAssignment && Field != ClassDecl->field_end(); ++Field) {
867      QualType FieldType = (*Field)->getType();
868      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
869        FieldType = Array->getElementType();
870      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
871        const CXXRecordDecl *FieldClassDecl
872          = cast<CXXRecordDecl>(FieldClassType->getDecl());
873        HasConstCopyAssignment
874          = FieldClassDecl->hasConstCopyAssignment(Context);
875      }
876    }
877
878    //   Otherwise, the implicitly declared copy assignment operator will
879    //   have the form
880    //
881    //       X& X::operator=(X&)
882    QualType ArgType = ClassType;
883    QualType RetType = Context.getReferenceType(ArgType);
884    if (HasConstCopyAssignment)
885      ArgType = ArgType.withConst();
886    ArgType = Context.getReferenceType(ArgType);
887
888    //   An implicitly-declared copy assignment operator is an inline public
889    //   member of its class.
890    DeclarationName Name =
891      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
892    CXXMethodDecl *CopyAssignment =
893      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
894                            Context.getFunctionType(RetType, &ArgType, 1,
895                                                    false, 0),
896                            /*isStatic=*/false, /*isInline=*/true);
897    CopyAssignment->setAccess(AS_public);
898    CopyAssignment->setImplicit();
899
900    // Add the parameter to the operator.
901    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
902                                                 ClassDecl->getLocation(),
903                                                 /*IdentifierInfo=*/0,
904                                                 ArgType, VarDecl::None, 0);
905    CopyAssignment->setParams(Context, &FromParam, 1);
906
907    // Don't call addedAssignmentOperator. There is no way to distinguish an
908    // implicit from an explicit assignment operator.
909    ClassDecl->addDecl(CopyAssignment);
910  }
911
912  if (!ClassDecl->hasUserDeclaredDestructor()) {
913    // C++ [class.dtor]p2:
914    //   If a class has no user-declared destructor, a destructor is
915    //   declared implicitly. An implicitly-declared destructor is an
916    //   inline public member of its class.
917    DeclarationName Name
918      = Context.DeclarationNames.getCXXDestructorName(ClassType);
919    CXXDestructorDecl *Destructor
920      = CXXDestructorDecl::Create(Context, ClassDecl,
921                                  ClassDecl->getLocation(), Name,
922                                  Context.getFunctionType(Context.VoidTy,
923                                                          0, 0, false, 0),
924                                  /*isInline=*/true,
925                                  /*isImplicitlyDeclared=*/true);
926    Destructor->setAccess(AS_public);
927    Destructor->setImplicit();
928    ClassDecl->addDecl(Destructor);
929  }
930}
931
932/// ActOnStartDelayedCXXMethodDeclaration - We have completed
933/// parsing a top-level (non-nested) C++ class, and we are now
934/// parsing those parts of the given Method declaration that could
935/// not be parsed earlier (C++ [class.mem]p2), such as default
936/// arguments. This action should enter the scope of the given
937/// Method declaration as if we had just parsed the qualified method
938/// name. However, it should not bring the parameters into scope;
939/// that will be performed by ActOnDelayedCXXMethodParameter.
940void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclTy *Method) {
941  CXXScopeSpec SS;
942  SS.setScopeRep(((FunctionDecl*)Method)->getDeclContext());
943  ActOnCXXEnterDeclaratorScope(S, SS);
944}
945
946/// ActOnDelayedCXXMethodParameter - We've already started a delayed
947/// C++ method declaration. We're (re-)introducing the given
948/// function parameter into scope for use in parsing later parts of
949/// the method declaration. For example, we could see an
950/// ActOnParamDefaultArgument event for this parameter.
951void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclTy *ParamD) {
952  ParmVarDecl *Param = (ParmVarDecl*)ParamD;
953
954  // If this parameter has an unparsed default argument, clear it out
955  // to make way for the parsed default argument.
956  if (Param->hasUnparsedDefaultArg())
957    Param->setDefaultArg(0);
958
959  S->AddDecl(Param);
960  if (Param->getDeclName())
961    IdResolver.AddDecl(Param);
962}
963
964/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
965/// processing the delayed method declaration for Method. The method
966/// declaration is now considered finished. There may be a separate
967/// ActOnStartOfFunctionDef action later (not necessarily
968/// immediately!) for this method, if it was also defined inside the
969/// class body.
970void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclTy *MethodD) {
971  FunctionDecl *Method = (FunctionDecl*)MethodD;
972  CXXScopeSpec SS;
973  SS.setScopeRep(Method->getDeclContext());
974  ActOnCXXExitDeclaratorScope(S, SS);
975
976  // Now that we have our default arguments, check the constructor
977  // again. It could produce additional diagnostics or affect whether
978  // the class has implicitly-declared destructors, among other
979  // things.
980  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) {
981    if (CheckConstructor(Constructor))
982      Constructor->setInvalidDecl();
983  }
984
985  // Check the default arguments, which we may have added.
986  if (!Method->isInvalidDecl())
987    CheckCXXDefaultArguments(Method);
988}
989
990/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
991/// the well-formedness of the constructor declarator @p D with type @p
992/// R. If there are any errors in the declarator, this routine will
993/// emit diagnostics and return true. Otherwise, it will return
994/// false. Either way, the type @p R will be updated to reflect a
995/// well-formed type for the constructor.
996bool Sema::CheckConstructorDeclarator(Declarator &D, QualType &R,
997                                      FunctionDecl::StorageClass& SC) {
998  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
999  bool isInvalid = false;
1000
1001  // C++ [class.ctor]p3:
1002  //   A constructor shall not be virtual (10.3) or static (9.4). A
1003  //   constructor can be invoked for a const, volatile or const
1004  //   volatile object. A constructor shall not be declared const,
1005  //   volatile, or const volatile (9.3.2).
1006  if (isVirtual) {
1007    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1008      << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1009      << SourceRange(D.getIdentifierLoc());
1010    isInvalid = true;
1011  }
1012  if (SC == FunctionDecl::Static) {
1013    Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1014      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1015      << SourceRange(D.getIdentifierLoc());
1016    isInvalid = true;
1017    SC = FunctionDecl::None;
1018  }
1019  if (D.getDeclSpec().hasTypeSpecifier()) {
1020    // Constructors don't have return types, but the parser will
1021    // happily parse something like:
1022    //
1023    //   class X {
1024    //     float X(float);
1025    //   };
1026    //
1027    // The return type will be eliminated later.
1028    Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
1029      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1030      << SourceRange(D.getIdentifierLoc());
1031  }
1032  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1033    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1034    if (FTI.TypeQuals & QualType::Const)
1035      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1036        << "const" << SourceRange(D.getIdentifierLoc());
1037    if (FTI.TypeQuals & QualType::Volatile)
1038      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1039        << "volatile" << SourceRange(D.getIdentifierLoc());
1040    if (FTI.TypeQuals & QualType::Restrict)
1041      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1042        << "restrict" << SourceRange(D.getIdentifierLoc());
1043  }
1044
1045  // Rebuild the function type "R" without any type qualifiers (in
1046  // case any of the errors above fired) and with "void" as the
1047  // return type, since constructors don't have return types. We
1048  // *always* have to do this, because GetTypeForDeclarator will
1049  // put in a result type of "int" when none was specified.
1050  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1051  R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1052                              Proto->getNumArgs(),
1053                              Proto->isVariadic(),
1054                              0);
1055
1056  return isInvalid;
1057}
1058
1059/// CheckConstructor - Checks a fully-formed constructor for
1060/// well-formedness, issuing any diagnostics required. Returns true if
1061/// the constructor declarator is invalid.
1062bool Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1063  if (Constructor->isInvalidDecl())
1064    return true;
1065
1066  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Constructor->getDeclContext());
1067  bool Invalid = false;
1068
1069  // C++ [class.copy]p3:
1070  //   A declaration of a constructor for a class X is ill-formed if
1071  //   its first parameter is of type (optionally cv-qualified) X and
1072  //   either there are no other parameters or else all other
1073  //   parameters have default arguments.
1074  if ((Constructor->getNumParams() == 1) ||
1075      (Constructor->getNumParams() > 1 &&
1076       Constructor->getParamDecl(1)->getDefaultArg() != 0)) {
1077    QualType ParamType = Constructor->getParamDecl(0)->getType();
1078    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1079    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1080      Diag(Constructor->getLocation(), diag::err_constructor_byvalue_arg)
1081        << SourceRange(Constructor->getParamDecl(0)->getLocation());
1082      Invalid = true;
1083    }
1084  }
1085
1086  // Notify the class that we've added a constructor.
1087  ClassDecl->addedConstructor(Context, Constructor);
1088
1089  return Invalid;
1090}
1091
1092/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1093/// the well-formednes of the destructor declarator @p D with type @p
1094/// R. If there are any errors in the declarator, this routine will
1095/// emit diagnostics and return true. Otherwise, it will return
1096/// false. Either way, the type @p R will be updated to reflect a
1097/// well-formed type for the destructor.
1098bool Sema::CheckDestructorDeclarator(Declarator &D, QualType &R,
1099                                     FunctionDecl::StorageClass& SC) {
1100  bool isInvalid = false;
1101
1102  // C++ [class.dtor]p1:
1103  //   [...] A typedef-name that names a class is a class-name
1104  //   (7.1.3); however, a typedef-name that names a class shall not
1105  //   be used as the identifier in the declarator for a destructor
1106  //   declaration.
1107  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1108  if (DeclaratorType->getAsTypedefType()) {
1109    Diag(D.getIdentifierLoc(),  diag::err_destructor_typedef_name)
1110      << DeclaratorType;
1111    isInvalid = true;
1112  }
1113
1114  // C++ [class.dtor]p2:
1115  //   A destructor is used to destroy objects of its class type. A
1116  //   destructor takes no parameters, and no return type can be
1117  //   specified for it (not even void). The address of a destructor
1118  //   shall not be taken. A destructor shall not be static. A
1119  //   destructor can be invoked for a const, volatile or const
1120  //   volatile object. A destructor shall not be declared const,
1121  //   volatile or const volatile (9.3.2).
1122  if (SC == FunctionDecl::Static) {
1123    Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1124      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1125      << SourceRange(D.getIdentifierLoc());
1126    isInvalid = true;
1127    SC = FunctionDecl::None;
1128  }
1129  if (D.getDeclSpec().hasTypeSpecifier()) {
1130    // Destructors don't have return types, but the parser will
1131    // happily parse something like:
1132    //
1133    //   class X {
1134    //     float ~X();
1135    //   };
1136    //
1137    // The return type will be eliminated later.
1138    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1139      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1140      << SourceRange(D.getIdentifierLoc());
1141  }
1142  if (R->getAsFunctionProtoType()->getTypeQuals() != 0) {
1143    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1144    if (FTI.TypeQuals & QualType::Const)
1145      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1146        << "const" << SourceRange(D.getIdentifierLoc());
1147    if (FTI.TypeQuals & QualType::Volatile)
1148      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1149        << "volatile" << SourceRange(D.getIdentifierLoc());
1150    if (FTI.TypeQuals & QualType::Restrict)
1151      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1152        << "restrict" << SourceRange(D.getIdentifierLoc());
1153  }
1154
1155  // Make sure we don't have any parameters.
1156  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1157    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1158
1159    // Delete the parameters.
1160    D.getTypeObject(0).Fun.freeArgs();
1161  }
1162
1163  // Make sure the destructor isn't variadic.
1164  if (R->getAsFunctionProtoType()->isVariadic())
1165    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1166
1167  // Rebuild the function type "R" without any type qualifiers or
1168  // parameters (in case any of the errors above fired) and with
1169  // "void" as the return type, since destructors don't have return
1170  // types. We *always* have to do this, because GetTypeForDeclarator
1171  // will put in a result type of "int" when none was specified.
1172  R = Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1173
1174  return isInvalid;
1175}
1176
1177/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1178/// well-formednes of the conversion function declarator @p D with
1179/// type @p R. If there are any errors in the declarator, this routine
1180/// will emit diagnostics and return true. Otherwise, it will return
1181/// false. Either way, the type @p R will be updated to reflect a
1182/// well-formed type for the conversion operator.
1183bool Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1184                                     FunctionDecl::StorageClass& SC) {
1185  bool isInvalid = false;
1186
1187  // C++ [class.conv.fct]p1:
1188  //   Neither parameter types nor return type can be specified. The
1189  //   type of a conversion function (8.3.5) is “function taking no
1190  //   parameter returning conversion-type-id.”
1191  if (SC == FunctionDecl::Static) {
1192    Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1193      << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1194      << SourceRange(D.getIdentifierLoc());
1195    isInvalid = true;
1196    SC = FunctionDecl::None;
1197  }
1198  if (D.getDeclSpec().hasTypeSpecifier()) {
1199    // Conversion functions don't have return types, but the parser will
1200    // happily parse something like:
1201    //
1202    //   class X {
1203    //     float operator bool();
1204    //   };
1205    //
1206    // The return type will be changed later anyway.
1207    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1208      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1209      << SourceRange(D.getIdentifierLoc());
1210  }
1211
1212  // Make sure we don't have any parameters.
1213  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1214    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1215
1216    // Delete the parameters.
1217    D.getTypeObject(0).Fun.freeArgs();
1218  }
1219
1220  // Make sure the conversion function isn't variadic.
1221  if (R->getAsFunctionProtoType()->isVariadic())
1222    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1223
1224  // C++ [class.conv.fct]p4:
1225  //   The conversion-type-id shall not represent a function type nor
1226  //   an array type.
1227  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1228  if (ConvType->isArrayType()) {
1229    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1230    ConvType = Context.getPointerType(ConvType);
1231  } else if (ConvType->isFunctionType()) {
1232    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1233    ConvType = Context.getPointerType(ConvType);
1234  }
1235
1236  // Rebuild the function type "R" without any parameters (in case any
1237  // of the errors above fired) and with the conversion type as the
1238  // return type.
1239  R = Context.getFunctionType(ConvType, 0, 0, false,
1240                              R->getAsFunctionProtoType()->getTypeQuals());
1241
1242  // C++0x explicit conversion operators.
1243  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1244    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1245         diag::warn_explicit_conversion_functions)
1246      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1247
1248  return isInvalid;
1249}
1250
1251/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1252/// the declaration of the given C++ conversion function. This routine
1253/// is responsible for recording the conversion function in the C++
1254/// class, if possible.
1255Sema::DeclTy *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1256  assert(Conversion && "Expected to receive a conversion function declaration");
1257
1258  // Set the lexical context of this conversion function
1259  Conversion->setLexicalDeclContext(CurContext);
1260
1261  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1262
1263  // Make sure we aren't redeclaring the conversion function.
1264  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1265
1266  // C++ [class.conv.fct]p1:
1267  //   [...] A conversion function is never used to convert a
1268  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1269  //   same object type (or a reference to it), to a (possibly
1270  //   cv-qualified) base class of that type (or a reference to it),
1271  //   or to (possibly cv-qualified) void.
1272  // FIXME: Suppress this warning if the conversion function ends up
1273  // being a virtual function that overrides a virtual function in a
1274  // base class.
1275  QualType ClassType
1276    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1277  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1278    ConvType = ConvTypeRef->getPointeeType();
1279  if (ConvType->isRecordType()) {
1280    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1281    if (ConvType == ClassType)
1282      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1283        << ClassType;
1284    else if (IsDerivedFrom(ClassType, ConvType))
1285      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1286        <<  ClassType << ConvType;
1287  } else if (ConvType->isVoidType()) {
1288    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1289      << ClassType << ConvType;
1290  }
1291
1292  if (Conversion->getPreviousDeclaration()) {
1293    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1294    for (OverloadedFunctionDecl::function_iterator
1295           Conv = Conversions->function_begin(),
1296           ConvEnd = Conversions->function_end();
1297         Conv != ConvEnd; ++Conv) {
1298      if (*Conv == Conversion->getPreviousDeclaration()) {
1299        *Conv = Conversion;
1300        return (DeclTy *)Conversion;
1301      }
1302    }
1303    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1304  } else
1305    ClassDecl->addConversionFunction(Context, Conversion);
1306
1307  return (DeclTy *)Conversion;
1308}
1309
1310//===----------------------------------------------------------------------===//
1311// Namespace Handling
1312//===----------------------------------------------------------------------===//
1313
1314/// ActOnStartNamespaceDef - This is called at the start of a namespace
1315/// definition.
1316Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1317                                           SourceLocation IdentLoc,
1318                                           IdentifierInfo *II,
1319                                           SourceLocation LBrace) {
1320  NamespaceDecl *Namespc =
1321      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1322  Namespc->setLBracLoc(LBrace);
1323
1324  Scope *DeclRegionScope = NamespcScope->getParent();
1325
1326  if (II) {
1327    // C++ [namespace.def]p2:
1328    // The identifier in an original-namespace-definition shall not have been
1329    // previously defined in the declarative region in which the
1330    // original-namespace-definition appears. The identifier in an
1331    // original-namespace-definition is the name of the namespace. Subsequently
1332    // in that declarative region, it is treated as an original-namespace-name.
1333
1334    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1335                                     true);
1336
1337    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1338      // This is an extended namespace definition.
1339      // Attach this namespace decl to the chain of extended namespace
1340      // definitions.
1341      OrigNS->setNextNamespace(Namespc);
1342      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1343
1344      // Remove the previous declaration from the scope.
1345      if (DeclRegionScope->isDeclScope(OrigNS)) {
1346        IdResolver.RemoveDecl(OrigNS);
1347        DeclRegionScope->RemoveDecl(OrigNS);
1348      }
1349    } else if (PrevDecl) {
1350      // This is an invalid name redefinition.
1351      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1352       << Namespc->getDeclName();
1353      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1354      Namespc->setInvalidDecl();
1355      // Continue on to push Namespc as current DeclContext and return it.
1356    }
1357
1358    PushOnScopeChains(Namespc, DeclRegionScope);
1359  } else {
1360    // FIXME: Handle anonymous namespaces
1361  }
1362
1363  // Although we could have an invalid decl (i.e. the namespace name is a
1364  // redefinition), push it as current DeclContext and try to continue parsing.
1365  // FIXME: We should be able to push Namespc here, so that the
1366  // each DeclContext for the namespace has the declarations
1367  // that showed up in that particular namespace definition.
1368  PushDeclContext(NamespcScope, Namespc);
1369  return Namespc;
1370}
1371
1372/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1373/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1374void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
1375  Decl *Dcl = static_cast<Decl *>(D);
1376  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1377  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1378  Namespc->setRBracLoc(RBrace);
1379  PopDeclContext();
1380}
1381
1382Sema::DeclTy *Sema::ActOnUsingDirective(Scope *S,
1383                                        SourceLocation UsingLoc,
1384                                        SourceLocation NamespcLoc,
1385                                        const CXXScopeSpec &SS,
1386                                        SourceLocation IdentLoc,
1387                                        IdentifierInfo *NamespcName,
1388                                        AttributeList *AttrList) {
1389  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1390  assert(NamespcName && "Invalid NamespcName.");
1391  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1392  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1393
1394  UsingDirectiveDecl *UDir = 0;
1395
1396  // Lookup namespace name.
1397  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1398                                    LookupNamespaceName, false);
1399  if (R.isAmbiguous()) {
1400    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1401    return 0;
1402  }
1403  if (NamedDecl *NS = R) {
1404    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1405    // C++ [namespace.udir]p1:
1406    //   A using-directive specifies that the names in the nominated
1407    //   namespace can be used in the scope in which the
1408    //   using-directive appears after the using-directive. During
1409    //   unqualified name lookup (3.4.1), the names appear as if they
1410    //   were declared in the nearest enclosing namespace which
1411    //   contains both the using-directive and the nominated
1412    //   namespace. [Note: in this context, “contains” means “contains
1413    //   directly or indirectly”. ]
1414
1415    // Find enclosing context containing both using-directive and
1416    // nominated namespace.
1417    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1418    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1419      CommonAncestor = CommonAncestor->getParent();
1420
1421    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc,
1422                                      NamespcLoc, IdentLoc,
1423                                      cast<NamespaceDecl>(NS),
1424                                      CommonAncestor);
1425    PushUsingDirective(S, UDir);
1426  } else {
1427    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1428  }
1429
1430  // FIXME: We ignore attributes for now.
1431  delete AttrList;
1432  return UDir;
1433}
1434
1435void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1436  // If scope has associated entity, then using directive is at namespace
1437  // or translation unit scope. We add UsingDirectiveDecls, into
1438  // it's lookup structure.
1439  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1440    Ctx->addDecl(UDir);
1441  else
1442    // Otherwise it is block-sope. using-directives will affect lookup
1443    // only to the end of scope.
1444    S->PushUsingDirective(UDir);
1445}
1446
1447/// AddCXXDirectInitializerToDecl - This action is called immediately after
1448/// ActOnDeclarator, when a C++ direct initializer is present.
1449/// e.g: "int x(1);"
1450void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
1451                                         ExprTy **ExprTys, unsigned NumExprs,
1452                                         SourceLocation *CommaLocs,
1453                                         SourceLocation RParenLoc) {
1454  assert(NumExprs != 0 && ExprTys && "missing expressions");
1455  Decl *RealDecl = static_cast<Decl *>(Dcl);
1456
1457  // If there is no declaration, there was an error parsing it.  Just ignore
1458  // the initializer.
1459  if (RealDecl == 0) {
1460    for (unsigned i = 0; i != NumExprs; ++i)
1461      static_cast<Expr *>(ExprTys[i])->Destroy(Context);
1462    return;
1463  }
1464
1465  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1466  if (!VDecl) {
1467    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
1468    RealDecl->setInvalidDecl();
1469    return;
1470  }
1471
1472  // We will treat direct-initialization as a copy-initialization:
1473  //    int x(1);  -as-> int x = 1;
1474  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
1475  //
1476  // Clients that want to distinguish between the two forms, can check for
1477  // direct initializer using VarDecl::hasCXXDirectInitializer().
1478  // A major benefit is that clients that don't particularly care about which
1479  // exactly form was it (like the CodeGen) can handle both cases without
1480  // special case code.
1481
1482  // C++ 8.5p11:
1483  // The form of initialization (using parentheses or '=') is generally
1484  // insignificant, but does matter when the entity being initialized has a
1485  // class type.
1486  QualType DeclInitType = VDecl->getType();
1487  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
1488    DeclInitType = Array->getElementType();
1489
1490  if (VDecl->getType()->isRecordType()) {
1491    CXXConstructorDecl *Constructor
1492      = PerformInitializationByConstructor(DeclInitType,
1493                                           (Expr **)ExprTys, NumExprs,
1494                                           VDecl->getLocation(),
1495                                           SourceRange(VDecl->getLocation(),
1496                                                       RParenLoc),
1497                                           VDecl->getDeclName(),
1498                                           IK_Direct);
1499    if (!Constructor) {
1500      RealDecl->setInvalidDecl();
1501    }
1502
1503    // Let clients know that initialization was done with a direct
1504    // initializer.
1505    VDecl->setCXXDirectInitializer(true);
1506
1507    // FIXME: Add ExprTys and Constructor to the RealDecl as part of
1508    // the initializer.
1509    return;
1510  }
1511
1512  if (NumExprs > 1) {
1513    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
1514      << SourceRange(VDecl->getLocation(), RParenLoc);
1515    RealDecl->setInvalidDecl();
1516    return;
1517  }
1518
1519  // Let clients know that initialization was done with a direct initializer.
1520  VDecl->setCXXDirectInitializer(true);
1521
1522  assert(NumExprs == 1 && "Expected 1 expression");
1523  // Set the init expression, handles conversions.
1524  AddInitializerToDecl(Dcl, ExprArg(*this, ExprTys[0]), /*DirectInit=*/true);
1525}
1526
1527/// PerformInitializationByConstructor - Perform initialization by
1528/// constructor (C++ [dcl.init]p14), which may occur as part of
1529/// direct-initialization or copy-initialization. We are initializing
1530/// an object of type @p ClassType with the given arguments @p
1531/// Args. @p Loc is the location in the source code where the
1532/// initializer occurs (e.g., a declaration, member initializer,
1533/// functional cast, etc.) while @p Range covers the whole
1534/// initialization. @p InitEntity is the entity being initialized,
1535/// which may by the name of a declaration or a type. @p Kind is the
1536/// kind of initialization we're performing, which affects whether
1537/// explicit constructors will be considered. When successful, returns
1538/// the constructor that will be used to perform the initialization;
1539/// when the initialization fails, emits a diagnostic and returns
1540/// null.
1541CXXConstructorDecl *
1542Sema::PerformInitializationByConstructor(QualType ClassType,
1543                                         Expr **Args, unsigned NumArgs,
1544                                         SourceLocation Loc, SourceRange Range,
1545                                         DeclarationName InitEntity,
1546                                         InitializationKind Kind) {
1547  const RecordType *ClassRec = ClassType->getAsRecordType();
1548  assert(ClassRec && "Can only initialize a class type here");
1549
1550  // C++ [dcl.init]p14:
1551  //
1552  //   If the initialization is direct-initialization, or if it is
1553  //   copy-initialization where the cv-unqualified version of the
1554  //   source type is the same class as, or a derived class of, the
1555  //   class of the destination, constructors are considered. The
1556  //   applicable constructors are enumerated (13.3.1.3), and the
1557  //   best one is chosen through overload resolution (13.3). The
1558  //   constructor so selected is called to initialize the object,
1559  //   with the initializer expression(s) as its argument(s). If no
1560  //   constructor applies, or the overload resolution is ambiguous,
1561  //   the initialization is ill-formed.
1562  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1563  OverloadCandidateSet CandidateSet;
1564
1565  // Add constructors to the overload set.
1566  DeclarationName ConstructorName
1567    = Context.DeclarationNames.getCXXConstructorName(
1568                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
1569  DeclContext::lookup_const_iterator Con, ConEnd;
1570  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
1571       Con != ConEnd; ++Con) {
1572    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
1573    if ((Kind == IK_Direct) ||
1574        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
1575        (Kind == IK_Default && Constructor->isDefaultConstructor()))
1576      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
1577  }
1578
1579  // FIXME: When we decide not to synthesize the implicitly-declared
1580  // constructors, we'll need to make them appear here.
1581
1582  OverloadCandidateSet::iterator Best;
1583  switch (BestViableFunction(CandidateSet, Best)) {
1584  case OR_Success:
1585    // We found a constructor. Return it.
1586    return cast<CXXConstructorDecl>(Best->Function);
1587
1588  case OR_No_Viable_Function:
1589    if (InitEntity)
1590      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1591        << InitEntity << Range;
1592    else
1593      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
1594        << ClassType << Range;
1595    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
1596    return 0;
1597
1598  case OR_Ambiguous:
1599    if (InitEntity)
1600      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
1601    else
1602      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
1603    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1604    return 0;
1605
1606  case OR_Deleted:
1607    if (InitEntity)
1608      Diag(Loc, diag::err_ovl_deleted_init)
1609        << Best->Function->isDeleted()
1610        << InitEntity << Range;
1611    else
1612      Diag(Loc, diag::err_ovl_deleted_init)
1613        << Best->Function->isDeleted()
1614        << InitEntity << Range;
1615    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
1616    return 0;
1617  }
1618
1619  return 0;
1620}
1621
1622/// CompareReferenceRelationship - Compare the two types T1 and T2 to
1623/// determine whether they are reference-related,
1624/// reference-compatible, reference-compatible with added
1625/// qualification, or incompatible, for use in C++ initialization by
1626/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
1627/// type, and the first type (T1) is the pointee type of the reference
1628/// type being initialized.
1629Sema::ReferenceCompareResult
1630Sema::CompareReferenceRelationship(QualType T1, QualType T2,
1631                                   bool& DerivedToBase) {
1632  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
1633  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
1634
1635  T1 = Context.getCanonicalType(T1);
1636  T2 = Context.getCanonicalType(T2);
1637  QualType UnqualT1 = T1.getUnqualifiedType();
1638  QualType UnqualT2 = T2.getUnqualifiedType();
1639
1640  // C++ [dcl.init.ref]p4:
1641  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
1642  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
1643  //   T1 is a base class of T2.
1644  if (UnqualT1 == UnqualT2)
1645    DerivedToBase = false;
1646  else if (IsDerivedFrom(UnqualT2, UnqualT1))
1647    DerivedToBase = true;
1648  else
1649    return Ref_Incompatible;
1650
1651  // At this point, we know that T1 and T2 are reference-related (at
1652  // least).
1653
1654  // C++ [dcl.init.ref]p4:
1655  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
1656  //   reference-related to T2 and cv1 is the same cv-qualification
1657  //   as, or greater cv-qualification than, cv2. For purposes of
1658  //   overload resolution, cases for which cv1 is greater
1659  //   cv-qualification than cv2 are identified as
1660  //   reference-compatible with added qualification (see 13.3.3.2).
1661  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
1662    return Ref_Compatible;
1663  else if (T1.isMoreQualifiedThan(T2))
1664    return Ref_Compatible_With_Added_Qualification;
1665  else
1666    return Ref_Related;
1667}
1668
1669/// CheckReferenceInit - Check the initialization of a reference
1670/// variable with the given initializer (C++ [dcl.init.ref]). Init is
1671/// the initializer (either a simple initializer or an initializer
1672/// list), and DeclType is the type of the declaration. When ICS is
1673/// non-null, this routine will compute the implicit conversion
1674/// sequence according to C++ [over.ics.ref] and will not produce any
1675/// diagnostics; when ICS is null, it will emit diagnostics when any
1676/// errors are found. Either way, a return value of true indicates
1677/// that there was a failure, a return value of false indicates that
1678/// the reference initialization succeeded.
1679///
1680/// When @p SuppressUserConversions, user-defined conversions are
1681/// suppressed.
1682/// When @p AllowExplicit, we also permit explicit user-defined
1683/// conversion functions.
1684bool
1685Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
1686                         ImplicitConversionSequence *ICS,
1687                         bool SuppressUserConversions,
1688                         bool AllowExplicit) {
1689  assert(DeclType->isReferenceType() && "Reference init needs a reference");
1690
1691  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
1692  QualType T2 = Init->getType();
1693
1694  // If the initializer is the address of an overloaded function, try
1695  // to resolve the overloaded function. If all goes well, T2 is the
1696  // type of the resulting function.
1697  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
1698    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
1699                                                          ICS != 0);
1700    if (Fn) {
1701      // Since we're performing this reference-initialization for
1702      // real, update the initializer with the resulting function.
1703      if (!ICS) {
1704        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
1705          return true;
1706
1707        FixOverloadedFunctionReference(Init, Fn);
1708      }
1709
1710      T2 = Fn->getType();
1711    }
1712  }
1713
1714  // Compute some basic properties of the types and the initializer.
1715  bool DerivedToBase = false;
1716  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
1717  ReferenceCompareResult RefRelationship
1718    = CompareReferenceRelationship(T1, T2, DerivedToBase);
1719
1720  // Most paths end in a failed conversion.
1721  if (ICS)
1722    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
1723
1724  // C++ [dcl.init.ref]p5:
1725  //   A reference to type “cv1 T1” is initialized by an expression
1726  //   of type “cv2 T2” as follows:
1727
1728  //     -- If the initializer expression
1729
1730  bool BindsDirectly = false;
1731  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
1732  //          reference-compatible with “cv2 T2,” or
1733  //
1734  // Note that the bit-field check is skipped if we are just computing
1735  // the implicit conversion sequence (C++ [over.best.ics]p2).
1736  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
1737      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1738    BindsDirectly = true;
1739
1740    if (ICS) {
1741      // C++ [over.ics.ref]p1:
1742      //   When a parameter of reference type binds directly (8.5.3)
1743      //   to an argument expression, the implicit conversion sequence
1744      //   is the identity conversion, unless the argument expression
1745      //   has a type that is a derived class of the parameter type,
1746      //   in which case the implicit conversion sequence is a
1747      //   derived-to-base Conversion (13.3.3.1).
1748      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1749      ICS->Standard.First = ICK_Identity;
1750      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1751      ICS->Standard.Third = ICK_Identity;
1752      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1753      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1754      ICS->Standard.ReferenceBinding = true;
1755      ICS->Standard.DirectBinding = true;
1756
1757      // Nothing more to do: the inaccessibility/ambiguity check for
1758      // derived-to-base conversions is suppressed when we're
1759      // computing the implicit conversion sequence (C++
1760      // [over.best.ics]p2).
1761      return false;
1762    } else {
1763      // Perform the conversion.
1764      // FIXME: Binding to a subobject of the lvalue is going to require
1765      // more AST annotation than this.
1766      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1767    }
1768  }
1769
1770  //       -- has a class type (i.e., T2 is a class type) and can be
1771  //          implicitly converted to an lvalue of type “cv3 T3,”
1772  //          where “cv1 T1” is reference-compatible with “cv3 T3”
1773  //          92) (this conversion is selected by enumerating the
1774  //          applicable conversion functions (13.3.1.6) and choosing
1775  //          the best one through overload resolution (13.3)),
1776  if (!SuppressUserConversions && T2->isRecordType()) {
1777    // FIXME: Look for conversions in base classes!
1778    CXXRecordDecl *T2RecordDecl
1779      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
1780
1781    OverloadCandidateSet CandidateSet;
1782    OverloadedFunctionDecl *Conversions
1783      = T2RecordDecl->getConversionFunctions();
1784    for (OverloadedFunctionDecl::function_iterator Func
1785           = Conversions->function_begin();
1786         Func != Conversions->function_end(); ++Func) {
1787      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
1788
1789      // If the conversion function doesn't return a reference type,
1790      // it can't be considered for this conversion.
1791      // FIXME: This will change when we support rvalue references.
1792      if (Conv->getConversionType()->isReferenceType() &&
1793          (AllowExplicit || !Conv->isExplicit()))
1794        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
1795    }
1796
1797    OverloadCandidateSet::iterator Best;
1798    switch (BestViableFunction(CandidateSet, Best)) {
1799    case OR_Success:
1800      // This is a direct binding.
1801      BindsDirectly = true;
1802
1803      if (ICS) {
1804        // C++ [over.ics.ref]p1:
1805        //
1806        //   [...] If the parameter binds directly to the result of
1807        //   applying a conversion function to the argument
1808        //   expression, the implicit conversion sequence is a
1809        //   user-defined conversion sequence (13.3.3.1.2), with the
1810        //   second standard conversion sequence either an identity
1811        //   conversion or, if the conversion function returns an
1812        //   entity of a type that is a derived class of the parameter
1813        //   type, a derived-to-base Conversion.
1814        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
1815        ICS->UserDefined.Before = Best->Conversions[0].Standard;
1816        ICS->UserDefined.After = Best->FinalConversion;
1817        ICS->UserDefined.ConversionFunction = Best->Function;
1818        assert(ICS->UserDefined.After.ReferenceBinding &&
1819               ICS->UserDefined.After.DirectBinding &&
1820               "Expected a direct reference binding!");
1821        return false;
1822      } else {
1823        // Perform the conversion.
1824        // FIXME: Binding to a subobject of the lvalue is going to require
1825        // more AST annotation than this.
1826        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1827      }
1828      break;
1829
1830    case OR_Ambiguous:
1831      assert(false && "Ambiguous reference binding conversions not implemented.");
1832      return true;
1833
1834    case OR_No_Viable_Function:
1835    case OR_Deleted:
1836      // There was no suitable conversion, or we found a deleted
1837      // conversion; continue with other checks.
1838      break;
1839    }
1840  }
1841
1842  if (BindsDirectly) {
1843    // C++ [dcl.init.ref]p4:
1844    //   [...] In all cases where the reference-related or
1845    //   reference-compatible relationship of two types is used to
1846    //   establish the validity of a reference binding, and T1 is a
1847    //   base class of T2, a program that necessitates such a binding
1848    //   is ill-formed if T1 is an inaccessible (clause 11) or
1849    //   ambiguous (10.2) base class of T2.
1850    //
1851    // Note that we only check this condition when we're allowed to
1852    // complain about errors, because we should not be checking for
1853    // ambiguity (or inaccessibility) unless the reference binding
1854    // actually happens.
1855    if (DerivedToBase)
1856      return CheckDerivedToBaseConversion(T2, T1,
1857                                          Init->getSourceRange().getBegin(),
1858                                          Init->getSourceRange());
1859    else
1860      return false;
1861  }
1862
1863  //     -- Otherwise, the reference shall be to a non-volatile const
1864  //        type (i.e., cv1 shall be const).
1865  if (T1.getCVRQualifiers() != QualType::Const) {
1866    if (!ICS)
1867      Diag(Init->getSourceRange().getBegin(),
1868           diag::err_not_reference_to_const_init)
1869        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1870        << T2 << Init->getSourceRange();
1871    return true;
1872  }
1873
1874  //       -- If the initializer expression is an rvalue, with T2 a
1875  //          class type, and “cv1 T1” is reference-compatible with
1876  //          “cv2 T2,” the reference is bound in one of the
1877  //          following ways (the choice is implementation-defined):
1878  //
1879  //          -- The reference is bound to the object represented by
1880  //             the rvalue (see 3.10) or to a sub-object within that
1881  //             object.
1882  //
1883  //          -- A temporary of type “cv1 T2” [sic] is created, and
1884  //             a constructor is called to copy the entire rvalue
1885  //             object into the temporary. The reference is bound to
1886  //             the temporary or to a sub-object within the
1887  //             temporary.
1888  //
1889  //          The constructor that would be used to make the copy
1890  //          shall be callable whether or not the copy is actually
1891  //          done.
1892  //
1893  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
1894  // freedom, so we will always take the first option and never build
1895  // a temporary in this case. FIXME: We will, however, have to check
1896  // for the presence of a copy constructor in C++98/03 mode.
1897  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
1898      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
1899    if (ICS) {
1900      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
1901      ICS->Standard.First = ICK_Identity;
1902      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
1903      ICS->Standard.Third = ICK_Identity;
1904      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
1905      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
1906      ICS->Standard.ReferenceBinding = true;
1907      ICS->Standard.DirectBinding = false;
1908    } else {
1909      // FIXME: Binding to a subobject of the rvalue is going to require
1910      // more AST annotation than this.
1911      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
1912    }
1913    return false;
1914  }
1915
1916  //       -- Otherwise, a temporary of type “cv1 T1” is created and
1917  //          initialized from the initializer expression using the
1918  //          rules for a non-reference copy initialization (8.5). The
1919  //          reference is then bound to the temporary. If T1 is
1920  //          reference-related to T2, cv1 must be the same
1921  //          cv-qualification as, or greater cv-qualification than,
1922  //          cv2; otherwise, the program is ill-formed.
1923  if (RefRelationship == Ref_Related) {
1924    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
1925    // we would be reference-compatible or reference-compatible with
1926    // added qualification. But that wasn't the case, so the reference
1927    // initialization fails.
1928    if (!ICS)
1929      Diag(Init->getSourceRange().getBegin(),
1930           diag::err_reference_init_drops_quals)
1931        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
1932        << T2 << Init->getSourceRange();
1933    return true;
1934  }
1935
1936  // If at least one of the types is a class type, the types are not
1937  // related, and we aren't allowed any user conversions, the
1938  // reference binding fails. This case is important for breaking
1939  // recursion, since TryImplicitConversion below will attempt to
1940  // create a temporary through the use of a copy constructor.
1941  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
1942      (T1->isRecordType() || T2->isRecordType())) {
1943    if (!ICS)
1944      Diag(Init->getSourceRange().getBegin(),
1945           diag::err_typecheck_convert_incompatible)
1946        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
1947    return true;
1948  }
1949
1950  // Actually try to convert the initializer to T1.
1951  if (ICS) {
1952    /// C++ [over.ics.ref]p2:
1953    ///
1954    ///   When a parameter of reference type is not bound directly to
1955    ///   an argument expression, the conversion sequence is the one
1956    ///   required to convert the argument expression to the
1957    ///   underlying type of the reference according to
1958    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
1959    ///   to copy-initializing a temporary of the underlying type with
1960    ///   the argument expression. Any difference in top-level
1961    ///   cv-qualification is subsumed by the initialization itself
1962    ///   and does not constitute a conversion.
1963    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
1964    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
1965  } else {
1966    return PerformImplicitConversion(Init, T1, "initializing");
1967  }
1968}
1969
1970/// CheckOverloadedOperatorDeclaration - Check whether the declaration
1971/// of this overloaded operator is well-formed. If so, returns false;
1972/// otherwise, emits appropriate diagnostics and returns true.
1973bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
1974  assert(FnDecl && FnDecl->isOverloadedOperator() &&
1975         "Expected an overloaded operator declaration");
1976
1977  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
1978
1979  // C++ [over.oper]p5:
1980  //   The allocation and deallocation functions, operator new,
1981  //   operator new[], operator delete and operator delete[], are
1982  //   described completely in 3.7.3. The attributes and restrictions
1983  //   found in the rest of this subclause do not apply to them unless
1984  //   explicitly stated in 3.7.3.
1985  // FIXME: Write a separate routine for checking this. For now, just
1986  // allow it.
1987  if (Op == OO_New || Op == OO_Array_New ||
1988      Op == OO_Delete || Op == OO_Array_Delete)
1989    return false;
1990
1991  // C++ [over.oper]p6:
1992  //   An operator function shall either be a non-static member
1993  //   function or be a non-member function and have at least one
1994  //   parameter whose type is a class, a reference to a class, an
1995  //   enumeration, or a reference to an enumeration.
1996  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
1997    if (MethodDecl->isStatic())
1998      return Diag(FnDecl->getLocation(),
1999                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2000  } else {
2001    bool ClassOrEnumParam = false;
2002    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2003                                   ParamEnd = FnDecl->param_end();
2004         Param != ParamEnd; ++Param) {
2005      QualType ParamType = (*Param)->getType().getNonReferenceType();
2006      if (ParamType->isRecordType() || ParamType->isEnumeralType()) {
2007        ClassOrEnumParam = true;
2008        break;
2009      }
2010    }
2011
2012    if (!ClassOrEnumParam)
2013      return Diag(FnDecl->getLocation(),
2014                  diag::err_operator_overload_needs_class_or_enum)
2015        << FnDecl->getDeclName();
2016  }
2017
2018  // C++ [over.oper]p8:
2019  //   An operator function cannot have default arguments (8.3.6),
2020  //   except where explicitly stated below.
2021  //
2022  // Only the function-call operator allows default arguments
2023  // (C++ [over.call]p1).
2024  if (Op != OO_Call) {
2025    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2026         Param != FnDecl->param_end(); ++Param) {
2027      if ((*Param)->hasUnparsedDefaultArg())
2028        return Diag((*Param)->getLocation(),
2029                    diag::err_operator_overload_default_arg)
2030          << FnDecl->getDeclName();
2031      else if (Expr *DefArg = (*Param)->getDefaultArg())
2032        return Diag((*Param)->getLocation(),
2033                    diag::err_operator_overload_default_arg)
2034          << FnDecl->getDeclName() << DefArg->getSourceRange();
2035    }
2036  }
2037
2038  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2039    { false, false, false }
2040#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2041    , { Unary, Binary, MemberOnly }
2042#include "clang/Basic/OperatorKinds.def"
2043  };
2044
2045  bool CanBeUnaryOperator = OperatorUses[Op][0];
2046  bool CanBeBinaryOperator = OperatorUses[Op][1];
2047  bool MustBeMemberOperator = OperatorUses[Op][2];
2048
2049  // C++ [over.oper]p8:
2050  //   [...] Operator functions cannot have more or fewer parameters
2051  //   than the number required for the corresponding operator, as
2052  //   described in the rest of this subclause.
2053  unsigned NumParams = FnDecl->getNumParams()
2054                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2055  if (Op != OO_Call &&
2056      ((NumParams == 1 && !CanBeUnaryOperator) ||
2057       (NumParams == 2 && !CanBeBinaryOperator) ||
2058       (NumParams < 1) || (NumParams > 2))) {
2059    // We have the wrong number of parameters.
2060    unsigned ErrorKind;
2061    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2062      ErrorKind = 2;  // 2 -> unary or binary.
2063    } else if (CanBeUnaryOperator) {
2064      ErrorKind = 0;  // 0 -> unary
2065    } else {
2066      assert(CanBeBinaryOperator &&
2067             "All non-call overloaded operators are unary or binary!");
2068      ErrorKind = 1;  // 1 -> binary
2069    }
2070
2071    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2072      << FnDecl->getDeclName() << NumParams << ErrorKind;
2073  }
2074
2075  // Overloaded operators other than operator() cannot be variadic.
2076  if (Op != OO_Call &&
2077      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2078    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2079      << FnDecl->getDeclName();
2080  }
2081
2082  // Some operators must be non-static member functions.
2083  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2084    return Diag(FnDecl->getLocation(),
2085                diag::err_operator_overload_must_be_member)
2086      << FnDecl->getDeclName();
2087  }
2088
2089  // C++ [over.inc]p1:
2090  //   The user-defined function called operator++ implements the
2091  //   prefix and postfix ++ operator. If this function is a member
2092  //   function with no parameters, or a non-member function with one
2093  //   parameter of class or enumeration type, it defines the prefix
2094  //   increment operator ++ for objects of that type. If the function
2095  //   is a member function with one parameter (which shall be of type
2096  //   int) or a non-member function with two parameters (the second
2097  //   of which shall be of type int), it defines the postfix
2098  //   increment operator ++ for objects of that type.
2099  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
2100    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
2101    bool ParamIsInt = false;
2102    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
2103      ParamIsInt = BT->getKind() == BuiltinType::Int;
2104
2105    if (!ParamIsInt)
2106      return Diag(LastParam->getLocation(),
2107                  diag::err_operator_overload_post_incdec_must_be_int)
2108        << LastParam->getType() << (Op == OO_MinusMinus);
2109  }
2110
2111  // Notify the class if it got an assignment operator.
2112  if (Op == OO_Equal) {
2113    // Would have returned earlier otherwise.
2114    assert(isa<CXXMethodDecl>(FnDecl) &&
2115      "Overloaded = not member, but not filtered.");
2116    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
2117    Method->getParent()->addedAssignmentOperator(Context, Method);
2118  }
2119
2120  return false;
2121}
2122
2123/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
2124/// linkage specification, including the language and (if present)
2125/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
2126/// the location of the language string literal, which is provided
2127/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
2128/// the '{' brace. Otherwise, this linkage specification does not
2129/// have any braces.
2130Sema::DeclTy *Sema::ActOnStartLinkageSpecification(Scope *S,
2131                                                   SourceLocation ExternLoc,
2132                                                   SourceLocation LangLoc,
2133                                                   const char *Lang,
2134                                                   unsigned StrSize,
2135                                                   SourceLocation LBraceLoc) {
2136  LinkageSpecDecl::LanguageIDs Language;
2137  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2138    Language = LinkageSpecDecl::lang_c;
2139  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2140    Language = LinkageSpecDecl::lang_cxx;
2141  else {
2142    Diag(LangLoc, diag::err_bad_language);
2143    return 0;
2144  }
2145
2146  // FIXME: Add all the various semantics of linkage specifications
2147
2148  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
2149                                               LangLoc, Language,
2150                                               LBraceLoc.isValid());
2151  CurContext->addDecl(D);
2152  PushDeclContext(S, D);
2153  return D;
2154}
2155
2156/// ActOnFinishLinkageSpecification - Completely the definition of
2157/// the C++ linkage specification LinkageSpec. If RBraceLoc is
2158/// valid, it's the position of the closing '}' brace in a linkage
2159/// specification that uses braces.
2160Sema::DeclTy *Sema::ActOnFinishLinkageSpecification(Scope *S,
2161                                                    DeclTy *LinkageSpec,
2162                                                    SourceLocation RBraceLoc) {
2163  if (LinkageSpec)
2164    PopDeclContext();
2165  return LinkageSpec;
2166}
2167
2168/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
2169/// handler.
2170Sema::DeclTy *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D)
2171{
2172  QualType ExDeclType = GetTypeForDeclarator(D, S);
2173  SourceLocation Begin = D.getDeclSpec().getSourceRange().getBegin();
2174
2175  bool Invalid = false;
2176
2177  // Arrays and functions decay.
2178  if (ExDeclType->isArrayType())
2179    ExDeclType = Context.getArrayDecayedType(ExDeclType);
2180  else if (ExDeclType->isFunctionType())
2181    ExDeclType = Context.getPointerType(ExDeclType);
2182
2183  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
2184  // The exception-declaration shall not denote a pointer or reference to an
2185  // incomplete type, other than [cv] void*.
2186  QualType BaseType = ExDeclType;
2187  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
2188  unsigned DK = diag::err_catch_incomplete;
2189  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
2190    BaseType = Ptr->getPointeeType();
2191    Mode = 1;
2192    DK = diag::err_catch_incomplete_ptr;
2193  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
2194    BaseType = Ref->getPointeeType();
2195    Mode = 2;
2196    DK = diag::err_catch_incomplete_ref;
2197  }
2198  if ((Mode == 0 || !BaseType->isVoidType()) &&
2199      RequireCompleteType(Begin, BaseType, DK))
2200    Invalid = true;
2201
2202  // FIXME: Need to test for ability to copy-construct and destroy the
2203  // exception variable.
2204  // FIXME: Need to check for abstract classes.
2205
2206  IdentifierInfo *II = D.getIdentifier();
2207  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2208    // The scope should be freshly made just for us. There is just no way
2209    // it contains any previous declaration.
2210    assert(!S->isDeclScope(PrevDecl));
2211    if (PrevDecl->isTemplateParameter()) {
2212      // Maybe we will complain about the shadowed template parameter.
2213      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2214
2215    }
2216  }
2217
2218  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
2219                                    II, ExDeclType, VarDecl::None, Begin);
2220  if (D.getInvalidType() || Invalid)
2221    ExDecl->setInvalidDecl();
2222
2223  if (D.getCXXScopeSpec().isSet()) {
2224    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
2225      << D.getCXXScopeSpec().getRange();
2226    ExDecl->setInvalidDecl();
2227  }
2228
2229  // Add the exception declaration into this scope.
2230  S->AddDecl(ExDecl);
2231  if (II)
2232    IdResolver.AddDecl(ExDecl);
2233
2234  ProcessDeclAttributes(ExDecl, D);
2235  return ExDecl;
2236}
2237
2238Sema::DeclTy *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
2239                                                 ExprArg assertexpr,
2240                                                 ExprArg assertmessageexpr,
2241                                                 SourceLocation RParenLoc) {
2242  Expr *AssertExpr = (Expr *)assertexpr.get();
2243  StringLiteral *AssertMessage =
2244    cast<StringLiteral>((Expr *)assertmessageexpr.get());
2245
2246  llvm::APSInt Value(32);
2247  if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
2248    Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
2249      AssertExpr->getSourceRange();
2250    return 0;
2251  }
2252
2253  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
2254                                        AssertExpr, AssertMessage);
2255  if (Value == 0) {
2256    std::string str(AssertMessage->getStrData(),
2257                    AssertMessage->getByteLength());
2258    Diag(AssertLoc, diag::err_static_assert_failed) << str;
2259  }
2260
2261  CurContext->addDecl(Decl);
2262  return Decl;
2263}
2264