SemaDeclCXX.cpp revision eee1d5434ebfa955ffc3c493aecd68bb7b3f4838
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CharUnits.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclVisitor.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/ParsedTemplate.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Lex/Preprocessor.h"
32#include "llvm/ADT/DenseSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <map>
35#include <set>
36
37using namespace clang;
38
39//===----------------------------------------------------------------------===//
40// CheckDefaultArgumentVisitor
41//===----------------------------------------------------------------------===//
42
43namespace {
44  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
45  /// the default argument of a parameter to determine whether it
46  /// contains any ill-formed subexpressions. For example, this will
47  /// diagnose the use of local variables or parameters within the
48  /// default argument expression.
49  class CheckDefaultArgumentVisitor
50    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
51    Expr *DefaultArg;
52    Sema *S;
53
54  public:
55    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
56      : DefaultArg(defarg), S(s) {}
57
58    bool VisitExpr(Expr *Node);
59    bool VisitDeclRefExpr(DeclRefExpr *DRE);
60    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
61  };
62
63  /// VisitExpr - Visit all of the children of this expression.
64  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
65    bool IsInvalid = false;
66    for (Stmt::child_range I = Node->children(); I; ++I)
67      IsInvalid |= Visit(*I);
68    return IsInvalid;
69  }
70
71  /// VisitDeclRefExpr - Visit a reference to a declaration, to
72  /// determine whether this declaration can be used in the default
73  /// argument expression.
74  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
75    NamedDecl *Decl = DRE->getDecl();
76    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
77      // C++ [dcl.fct.default]p9
78      //   Default arguments are evaluated each time the function is
79      //   called. The order of evaluation of function arguments is
80      //   unspecified. Consequently, parameters of a function shall not
81      //   be used in default argument expressions, even if they are not
82      //   evaluated. Parameters of a function declared before a default
83      //   argument expression are in scope and can hide namespace and
84      //   class member names.
85      return S->Diag(DRE->getSourceRange().getBegin(),
86                     diag::err_param_default_argument_references_param)
87         << Param->getDeclName() << DefaultArg->getSourceRange();
88    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
89      // C++ [dcl.fct.default]p7
90      //   Local variables shall not be used in default argument
91      //   expressions.
92      if (VDecl->isLocalVarDecl())
93        return S->Diag(DRE->getSourceRange().getBegin(),
94                       diag::err_param_default_argument_references_local)
95          << VDecl->getDeclName() << DefaultArg->getSourceRange();
96    }
97
98    return false;
99  }
100
101  /// VisitCXXThisExpr - Visit a C++ "this" expression.
102  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
103    // C++ [dcl.fct.default]p8:
104    //   The keyword this shall not be used in a default argument of a
105    //   member function.
106    return S->Diag(ThisE->getSourceRange().getBegin(),
107                   diag::err_param_default_argument_references_this)
108               << ThisE->getSourceRange();
109  }
110}
111
112bool
113Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
114                              SourceLocation EqualLoc) {
115  if (RequireCompleteType(Param->getLocation(), Param->getType(),
116                          diag::err_typecheck_decl_incomplete_type)) {
117    Param->setInvalidDecl();
118    return true;
119  }
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
128                                                                    Param);
129  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
130                                                           EqualLoc);
131  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
132  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
133                                      MultiExprArg(*this, &Arg, 1));
134  if (Result.isInvalid())
135    return true;
136  Arg = Result.takeAs<Expr>();
137
138  CheckImplicitConversions(Arg, EqualLoc);
139  Arg = MaybeCreateExprWithCleanups(Arg);
140
141  // Okay: add the default argument to the parameter
142  Param->setDefaultArg(Arg);
143
144  // We have already instantiated this parameter; provide each of the
145  // instantiations with the uninstantiated default argument.
146  UnparsedDefaultArgInstantiationsMap::iterator InstPos
147    = UnparsedDefaultArgInstantiations.find(Param);
148  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
149    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
150      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
151
152    // We're done tracking this parameter's instantiations.
153    UnparsedDefaultArgInstantiations.erase(InstPos);
154  }
155
156  return false;
157}
158
159/// ActOnParamDefaultArgument - Check whether the default argument
160/// provided for a function parameter is well-formed. If so, attach it
161/// to the parameter declaration.
162void
163Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
164                                Expr *DefaultArg) {
165  if (!param || !DefaultArg)
166    return;
167
168  ParmVarDecl *Param = cast<ParmVarDecl>(param);
169  UnparsedDefaultArgLocs.erase(Param);
170
171  // Default arguments are only permitted in C++
172  if (!getLangOptions().CPlusPlus) {
173    Diag(EqualLoc, diag::err_param_default_argument)
174      << DefaultArg->getSourceRange();
175    Param->setInvalidDecl();
176    return;
177  }
178
179  // Check for unexpanded parameter packs.
180  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
181    Param->setInvalidDecl();
182    return;
183  }
184
185  // Check that the default argument is well-formed
186  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
187  if (DefaultArgChecker.Visit(DefaultArg)) {
188    Param->setInvalidDecl();
189    return;
190  }
191
192  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
193}
194
195/// ActOnParamUnparsedDefaultArgument - We've seen a default
196/// argument for a function parameter, but we can't parse it yet
197/// because we're inside a class definition. Note that this default
198/// argument will be parsed later.
199void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
200                                             SourceLocation EqualLoc,
201                                             SourceLocation ArgLoc) {
202  if (!param)
203    return;
204
205  ParmVarDecl *Param = cast<ParmVarDecl>(param);
206  if (Param)
207    Param->setUnparsedDefaultArg();
208
209  UnparsedDefaultArgLocs[Param] = ArgLoc;
210}
211
212/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
213/// the default argument for the parameter param failed.
214void Sema::ActOnParamDefaultArgumentError(Decl *param) {
215  if (!param)
216    return;
217
218  ParmVarDecl *Param = cast<ParmVarDecl>(param);
219
220  Param->setInvalidDecl();
221
222  UnparsedDefaultArgLocs.erase(Param);
223}
224
225/// CheckExtraCXXDefaultArguments - Check for any extra default
226/// arguments in the declarator, which is not a function declaration
227/// or definition and therefore is not permitted to have default
228/// arguments. This routine should be invoked for every declarator
229/// that is not a function declaration or definition.
230void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
231  // C++ [dcl.fct.default]p3
232  //   A default argument expression shall be specified only in the
233  //   parameter-declaration-clause of a function declaration or in a
234  //   template-parameter (14.1). It shall not be specified for a
235  //   parameter pack. If it is specified in a
236  //   parameter-declaration-clause, it shall not occur within a
237  //   declarator or abstract-declarator of a parameter-declaration.
238  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
239    DeclaratorChunk &chunk = D.getTypeObject(i);
240    if (chunk.Kind == DeclaratorChunk::Function) {
241      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
242        ParmVarDecl *Param =
243          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
244        if (Param->hasUnparsedDefaultArg()) {
245          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
246          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
247            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
248          delete Toks;
249          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
250        } else if (Param->getDefaultArg()) {
251          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
252            << Param->getDefaultArg()->getSourceRange();
253          Param->setDefaultArg(0);
254        }
255      }
256    }
257  }
258}
259
260// MergeCXXFunctionDecl - Merge two declarations of the same C++
261// function, once we already know that they have the same
262// type. Subroutine of MergeFunctionDecl. Returns true if there was an
263// error, false otherwise.
264bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
265  bool Invalid = false;
266
267  // C++ [dcl.fct.default]p4:
268  //   For non-template functions, default arguments can be added in
269  //   later declarations of a function in the same
270  //   scope. Declarations in different scopes have completely
271  //   distinct sets of default arguments. That is, declarations in
272  //   inner scopes do not acquire default arguments from
273  //   declarations in outer scopes, and vice versa. In a given
274  //   function declaration, all parameters subsequent to a
275  //   parameter with a default argument shall have default
276  //   arguments supplied in this or previous declarations. A
277  //   default argument shall not be redefined by a later
278  //   declaration (not even to the same value).
279  //
280  // C++ [dcl.fct.default]p6:
281  //   Except for member functions of class templates, the default arguments
282  //   in a member function definition that appears outside of the class
283  //   definition are added to the set of default arguments provided by the
284  //   member function declaration in the class definition.
285  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
286    ParmVarDecl *OldParam = Old->getParamDecl(p);
287    ParmVarDecl *NewParam = New->getParamDecl(p);
288
289    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
290      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
291      // hint here. Alternatively, we could walk the type-source information
292      // for NewParam to find the last source location in the type... but it
293      // isn't worth the effort right now. This is the kind of test case that
294      // is hard to get right:
295
296      //   int f(int);
297      //   void g(int (*fp)(int) = f);
298      //   void g(int (*fp)(int) = &f);
299      Diag(NewParam->getLocation(),
300           diag::err_param_default_argument_redefinition)
301        << NewParam->getDefaultArgRange();
302
303      // Look for the function declaration where the default argument was
304      // actually written, which may be a declaration prior to Old.
305      for (FunctionDecl *Older = Old->getPreviousDeclaration();
306           Older; Older = Older->getPreviousDeclaration()) {
307        if (!Older->getParamDecl(p)->hasDefaultArg())
308          break;
309
310        OldParam = Older->getParamDecl(p);
311      }
312
313      Diag(OldParam->getLocation(), diag::note_previous_definition)
314        << OldParam->getDefaultArgRange();
315      Invalid = true;
316    } else if (OldParam->hasDefaultArg()) {
317      // Merge the old default argument into the new parameter.
318      // It's important to use getInit() here;  getDefaultArg()
319      // strips off any top-level ExprWithCleanups.
320      NewParam->setHasInheritedDefaultArg();
321      if (OldParam->hasUninstantiatedDefaultArg())
322        NewParam->setUninstantiatedDefaultArg(
323                                      OldParam->getUninstantiatedDefaultArg());
324      else
325        NewParam->setDefaultArg(OldParam->getInit());
326    } else if (NewParam->hasDefaultArg()) {
327      if (New->getDescribedFunctionTemplate()) {
328        // Paragraph 4, quoted above, only applies to non-template functions.
329        Diag(NewParam->getLocation(),
330             diag::err_param_default_argument_template_redecl)
331          << NewParam->getDefaultArgRange();
332        Diag(Old->getLocation(), diag::note_template_prev_declaration)
333          << false;
334      } else if (New->getTemplateSpecializationKind()
335                   != TSK_ImplicitInstantiation &&
336                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
337        // C++ [temp.expr.spec]p21:
338        //   Default function arguments shall not be specified in a declaration
339        //   or a definition for one of the following explicit specializations:
340        //     - the explicit specialization of a function template;
341        //     - the explicit specialization of a member function template;
342        //     - the explicit specialization of a member function of a class
343        //       template where the class template specialization to which the
344        //       member function specialization belongs is implicitly
345        //       instantiated.
346        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
347          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
348          << New->getDeclName()
349          << NewParam->getDefaultArgRange();
350      } else if (New->getDeclContext()->isDependentContext()) {
351        // C++ [dcl.fct.default]p6 (DR217):
352        //   Default arguments for a member function of a class template shall
353        //   be specified on the initial declaration of the member function
354        //   within the class template.
355        //
356        // Reading the tea leaves a bit in DR217 and its reference to DR205
357        // leads me to the conclusion that one cannot add default function
358        // arguments for an out-of-line definition of a member function of a
359        // dependent type.
360        int WhichKind = 2;
361        if (CXXRecordDecl *Record
362              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
363          if (Record->getDescribedClassTemplate())
364            WhichKind = 0;
365          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
366            WhichKind = 1;
367          else
368            WhichKind = 2;
369        }
370
371        Diag(NewParam->getLocation(),
372             diag::err_param_default_argument_member_template_redecl)
373          << WhichKind
374          << NewParam->getDefaultArgRange();
375      }
376    }
377  }
378
379  if (CheckEquivalentExceptionSpec(Old, New))
380    Invalid = true;
381
382  return Invalid;
383}
384
385/// CheckCXXDefaultArguments - Verify that the default arguments for a
386/// function declaration are well-formed according to C++
387/// [dcl.fct.default].
388void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
389  unsigned NumParams = FD->getNumParams();
390  unsigned p;
391
392  // Find first parameter with a default argument
393  for (p = 0; p < NumParams; ++p) {
394    ParmVarDecl *Param = FD->getParamDecl(p);
395    if (Param->hasDefaultArg())
396      break;
397  }
398
399  // C++ [dcl.fct.default]p4:
400  //   In a given function declaration, all parameters
401  //   subsequent to a parameter with a default argument shall
402  //   have default arguments supplied in this or previous
403  //   declarations. A default argument shall not be redefined
404  //   by a later declaration (not even to the same value).
405  unsigned LastMissingDefaultArg = 0;
406  for (; p < NumParams; ++p) {
407    ParmVarDecl *Param = FD->getParamDecl(p);
408    if (!Param->hasDefaultArg()) {
409      if (Param->isInvalidDecl())
410        /* We already complained about this parameter. */;
411      else if (Param->getIdentifier())
412        Diag(Param->getLocation(),
413             diag::err_param_default_argument_missing_name)
414          << Param->getIdentifier();
415      else
416        Diag(Param->getLocation(),
417             diag::err_param_default_argument_missing);
418
419      LastMissingDefaultArg = p;
420    }
421  }
422
423  if (LastMissingDefaultArg > 0) {
424    // Some default arguments were missing. Clear out all of the
425    // default arguments up to (and including) the last missing
426    // default argument, so that we leave the function parameters
427    // in a semantically valid state.
428    for (p = 0; p <= LastMissingDefaultArg; ++p) {
429      ParmVarDecl *Param = FD->getParamDecl(p);
430      if (Param->hasDefaultArg()) {
431        Param->setDefaultArg(0);
432      }
433    }
434  }
435}
436
437/// isCurrentClassName - Determine whether the identifier II is the
438/// name of the class type currently being defined. In the case of
439/// nested classes, this will only return true if II is the name of
440/// the innermost class.
441bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
442                              const CXXScopeSpec *SS) {
443  assert(getLangOptions().CPlusPlus && "No class names in C!");
444
445  CXXRecordDecl *CurDecl;
446  if (SS && SS->isSet() && !SS->isInvalid()) {
447    DeclContext *DC = computeDeclContext(*SS, true);
448    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
449  } else
450    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
451
452  if (CurDecl && CurDecl->getIdentifier())
453    return &II == CurDecl->getIdentifier();
454  else
455    return false;
456}
457
458/// \brief Check the validity of a C++ base class specifier.
459///
460/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
461/// and returns NULL otherwise.
462CXXBaseSpecifier *
463Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
464                         SourceRange SpecifierRange,
465                         bool Virtual, AccessSpecifier Access,
466                         TypeSourceInfo *TInfo,
467                         SourceLocation EllipsisLoc) {
468  QualType BaseType = TInfo->getType();
469
470  // C++ [class.union]p1:
471  //   A union shall not have base classes.
472  if (Class->isUnion()) {
473    Diag(Class->getLocation(), diag::err_base_clause_on_union)
474      << SpecifierRange;
475    return 0;
476  }
477
478  if (EllipsisLoc.isValid() &&
479      !TInfo->getType()->containsUnexpandedParameterPack()) {
480    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
481      << TInfo->getTypeLoc().getSourceRange();
482    EllipsisLoc = SourceLocation();
483  }
484
485  if (BaseType->isDependentType())
486    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
487                                          Class->getTagKind() == TTK_Class,
488                                          Access, TInfo, EllipsisLoc);
489
490  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
491
492  // Base specifiers must be record types.
493  if (!BaseType->isRecordType()) {
494    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
495    return 0;
496  }
497
498  // C++ [class.union]p1:
499  //   A union shall not be used as a base class.
500  if (BaseType->isUnionType()) {
501    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
502    return 0;
503  }
504
505  // C++ [class.derived]p2:
506  //   The class-name in a base-specifier shall not be an incompletely
507  //   defined class.
508  if (RequireCompleteType(BaseLoc, BaseType,
509                          PDiag(diag::err_incomplete_base_class)
510                            << SpecifierRange)) {
511    Class->setInvalidDecl();
512    return 0;
513  }
514
515  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
516  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
517  assert(BaseDecl && "Record type has no declaration");
518  BaseDecl = BaseDecl->getDefinition();
519  assert(BaseDecl && "Base type is not incomplete, but has no definition");
520  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
521  assert(CXXBaseDecl && "Base type is not a C++ type");
522
523  // C++ [class.derived]p2:
524  //   If a class is marked with the class-virt-specifier final and it appears
525  //   as a base-type-specifier in a base-clause (10 class.derived), the program
526  //   is ill-formed.
527  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
528    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
529      << CXXBaseDecl->getDeclName();
530    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
531      << CXXBaseDecl->getDeclName();
532    return 0;
533  }
534
535  if (BaseDecl->isInvalidDecl())
536    Class->setInvalidDecl();
537
538  // Create the base specifier.
539  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
540                                        Class->getTagKind() == TTK_Class,
541                                        Access, TInfo, EllipsisLoc);
542}
543
544/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
545/// one entry in the base class list of a class specifier, for
546/// example:
547///    class foo : public bar, virtual private baz {
548/// 'public bar' and 'virtual private baz' are each base-specifiers.
549BaseResult
550Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
551                         bool Virtual, AccessSpecifier Access,
552                         ParsedType basetype, SourceLocation BaseLoc,
553                         SourceLocation EllipsisLoc) {
554  if (!classdecl)
555    return true;
556
557  AdjustDeclIfTemplate(classdecl);
558  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
559  if (!Class)
560    return true;
561
562  TypeSourceInfo *TInfo = 0;
563  GetTypeFromParser(basetype, &TInfo);
564
565  if (EllipsisLoc.isInvalid() &&
566      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
567                                      UPPC_BaseType))
568    return true;
569
570  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
571                                                      Virtual, Access, TInfo,
572                                                      EllipsisLoc))
573    return BaseSpec;
574
575  return true;
576}
577
578/// \brief Performs the actual work of attaching the given base class
579/// specifiers to a C++ class.
580bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
581                                unsigned NumBases) {
582 if (NumBases == 0)
583    return false;
584
585  // Used to keep track of which base types we have already seen, so
586  // that we can properly diagnose redundant direct base types. Note
587  // that the key is always the unqualified canonical type of the base
588  // class.
589  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
590
591  // Copy non-redundant base specifiers into permanent storage.
592  unsigned NumGoodBases = 0;
593  bool Invalid = false;
594  for (unsigned idx = 0; idx < NumBases; ++idx) {
595    QualType NewBaseType
596      = Context.getCanonicalType(Bases[idx]->getType());
597    NewBaseType = NewBaseType.getLocalUnqualifiedType();
598    if (!Class->hasObjectMember()) {
599      if (const RecordType *FDTTy =
600            NewBaseType.getTypePtr()->getAs<RecordType>())
601        if (FDTTy->getDecl()->hasObjectMember())
602          Class->setHasObjectMember(true);
603    }
604
605    if (KnownBaseTypes[NewBaseType]) {
606      // C++ [class.mi]p3:
607      //   A class shall not be specified as a direct base class of a
608      //   derived class more than once.
609      Diag(Bases[idx]->getSourceRange().getBegin(),
610           diag::err_duplicate_base_class)
611        << KnownBaseTypes[NewBaseType]->getType()
612        << Bases[idx]->getSourceRange();
613
614      // Delete the duplicate base class specifier; we're going to
615      // overwrite its pointer later.
616      Context.Deallocate(Bases[idx]);
617
618      Invalid = true;
619    } else {
620      // Okay, add this new base class.
621      KnownBaseTypes[NewBaseType] = Bases[idx];
622      Bases[NumGoodBases++] = Bases[idx];
623    }
624  }
625
626  // Attach the remaining base class specifiers to the derived class.
627  Class->setBases(Bases, NumGoodBases);
628
629  // Delete the remaining (good) base class specifiers, since their
630  // data has been copied into the CXXRecordDecl.
631  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
632    Context.Deallocate(Bases[idx]);
633
634  return Invalid;
635}
636
637/// ActOnBaseSpecifiers - Attach the given base specifiers to the
638/// class, after checking whether there are any duplicate base
639/// classes.
640void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, BaseTy **Bases,
641                               unsigned NumBases) {
642  if (!ClassDecl || !Bases || !NumBases)
643    return;
644
645  AdjustDeclIfTemplate(ClassDecl);
646  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
647                       (CXXBaseSpecifier**)(Bases), NumBases);
648}
649
650static CXXRecordDecl *GetClassForType(QualType T) {
651  if (const RecordType *RT = T->getAs<RecordType>())
652    return cast<CXXRecordDecl>(RT->getDecl());
653  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
654    return ICT->getDecl();
655  else
656    return 0;
657}
658
659/// \brief Determine whether the type \p Derived is a C++ class that is
660/// derived from the type \p Base.
661bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
662  if (!getLangOptions().CPlusPlus)
663    return false;
664
665  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
666  if (!DerivedRD)
667    return false;
668
669  CXXRecordDecl *BaseRD = GetClassForType(Base);
670  if (!BaseRD)
671    return false;
672
673  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
674  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
675}
676
677/// \brief Determine whether the type \p Derived is a C++ class that is
678/// derived from the type \p Base.
679bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
680  if (!getLangOptions().CPlusPlus)
681    return false;
682
683  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
684  if (!DerivedRD)
685    return false;
686
687  CXXRecordDecl *BaseRD = GetClassForType(Base);
688  if (!BaseRD)
689    return false;
690
691  return DerivedRD->isDerivedFrom(BaseRD, Paths);
692}
693
694void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
695                              CXXCastPath &BasePathArray) {
696  assert(BasePathArray.empty() && "Base path array must be empty!");
697  assert(Paths.isRecordingPaths() && "Must record paths!");
698
699  const CXXBasePath &Path = Paths.front();
700
701  // We first go backward and check if we have a virtual base.
702  // FIXME: It would be better if CXXBasePath had the base specifier for
703  // the nearest virtual base.
704  unsigned Start = 0;
705  for (unsigned I = Path.size(); I != 0; --I) {
706    if (Path[I - 1].Base->isVirtual()) {
707      Start = I - 1;
708      break;
709    }
710  }
711
712  // Now add all bases.
713  for (unsigned I = Start, E = Path.size(); I != E; ++I)
714    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
715}
716
717/// \brief Determine whether the given base path includes a virtual
718/// base class.
719bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
720  for (CXXCastPath::const_iterator B = BasePath.begin(),
721                                BEnd = BasePath.end();
722       B != BEnd; ++B)
723    if ((*B)->isVirtual())
724      return true;
725
726  return false;
727}
728
729/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
730/// conversion (where Derived and Base are class types) is
731/// well-formed, meaning that the conversion is unambiguous (and
732/// that all of the base classes are accessible). Returns true
733/// and emits a diagnostic if the code is ill-formed, returns false
734/// otherwise. Loc is the location where this routine should point to
735/// if there is an error, and Range is the source range to highlight
736/// if there is an error.
737bool
738Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
739                                   unsigned InaccessibleBaseID,
740                                   unsigned AmbigiousBaseConvID,
741                                   SourceLocation Loc, SourceRange Range,
742                                   DeclarationName Name,
743                                   CXXCastPath *BasePath) {
744  // First, determine whether the path from Derived to Base is
745  // ambiguous. This is slightly more expensive than checking whether
746  // the Derived to Base conversion exists, because here we need to
747  // explore multiple paths to determine if there is an ambiguity.
748  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
749                     /*DetectVirtual=*/false);
750  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
751  assert(DerivationOkay &&
752         "Can only be used with a derived-to-base conversion");
753  (void)DerivationOkay;
754
755  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
756    if (InaccessibleBaseID) {
757      // Check that the base class can be accessed.
758      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
759                                   InaccessibleBaseID)) {
760        case AR_inaccessible:
761          return true;
762        case AR_accessible:
763        case AR_dependent:
764        case AR_delayed:
765          break;
766      }
767    }
768
769    // Build a base path if necessary.
770    if (BasePath)
771      BuildBasePathArray(Paths, *BasePath);
772    return false;
773  }
774
775  // We know that the derived-to-base conversion is ambiguous, and
776  // we're going to produce a diagnostic. Perform the derived-to-base
777  // search just one more time to compute all of the possible paths so
778  // that we can print them out. This is more expensive than any of
779  // the previous derived-to-base checks we've done, but at this point
780  // performance isn't as much of an issue.
781  Paths.clear();
782  Paths.setRecordingPaths(true);
783  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
784  assert(StillOkay && "Can only be used with a derived-to-base conversion");
785  (void)StillOkay;
786
787  // Build up a textual representation of the ambiguous paths, e.g.,
788  // D -> B -> A, that will be used to illustrate the ambiguous
789  // conversions in the diagnostic. We only print one of the paths
790  // to each base class subobject.
791  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
792
793  Diag(Loc, AmbigiousBaseConvID)
794  << Derived << Base << PathDisplayStr << Range << Name;
795  return true;
796}
797
798bool
799Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
800                                   SourceLocation Loc, SourceRange Range,
801                                   CXXCastPath *BasePath,
802                                   bool IgnoreAccess) {
803  return CheckDerivedToBaseConversion(Derived, Base,
804                                      IgnoreAccess ? 0
805                                       : diag::err_upcast_to_inaccessible_base,
806                                      diag::err_ambiguous_derived_to_base_conv,
807                                      Loc, Range, DeclarationName(),
808                                      BasePath);
809}
810
811
812/// @brief Builds a string representing ambiguous paths from a
813/// specific derived class to different subobjects of the same base
814/// class.
815///
816/// This function builds a string that can be used in error messages
817/// to show the different paths that one can take through the
818/// inheritance hierarchy to go from the derived class to different
819/// subobjects of a base class. The result looks something like this:
820/// @code
821/// struct D -> struct B -> struct A
822/// struct D -> struct C -> struct A
823/// @endcode
824std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
825  std::string PathDisplayStr;
826  std::set<unsigned> DisplayedPaths;
827  for (CXXBasePaths::paths_iterator Path = Paths.begin();
828       Path != Paths.end(); ++Path) {
829    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
830      // We haven't displayed a path to this particular base
831      // class subobject yet.
832      PathDisplayStr += "\n    ";
833      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
834      for (CXXBasePath::const_iterator Element = Path->begin();
835           Element != Path->end(); ++Element)
836        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
837    }
838  }
839
840  return PathDisplayStr;
841}
842
843//===----------------------------------------------------------------------===//
844// C++ class member Handling
845//===----------------------------------------------------------------------===//
846
847/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
848Decl *Sema::ActOnAccessSpecifier(AccessSpecifier Access,
849                                 SourceLocation ASLoc,
850                                 SourceLocation ColonLoc) {
851  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
852  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
853                                                  ASLoc, ColonLoc);
854  CurContext->addHiddenDecl(ASDecl);
855  return ASDecl;
856}
857
858/// CheckOverrideControl - Check C++0x override control semantics.
859void Sema::CheckOverrideControl(const Decl *D) {
860  const CXXMethodDecl *MD = llvm::dyn_cast<CXXMethodDecl>(D);
861  if (!MD || !MD->isVirtual())
862    return;
863
864  if (MD->isDependentContext())
865    return;
866
867  // C++0x [class.virtual]p3:
868  //   If a virtual function is marked with the virt-specifier override and does
869  //   not override a member function of a base class,
870  //   the program is ill-formed.
871  bool HasOverriddenMethods =
872    MD->begin_overridden_methods() != MD->end_overridden_methods();
873  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
874    Diag(MD->getLocation(),
875                 diag::err_function_marked_override_not_overriding)
876      << MD->getDeclName();
877    return;
878  }
879
880  // C++0x [class.derived]p8:
881  //   In a class definition marked with the class-virt-specifier explicit,
882  //   if a virtual member function that is neither implicitly-declared nor a
883  //   destructor overrides a member function of a base class and it is not
884  //   marked with the virt-specifier override, the program is ill-formed.
885  if (MD->getParent()->hasAttr<ExplicitAttr>() && !isa<CXXDestructorDecl>(MD) &&
886      HasOverriddenMethods && !MD->hasAttr<OverrideAttr>()) {
887    llvm::SmallVector<const CXXMethodDecl*, 4>
888      OverriddenMethods(MD->begin_overridden_methods(),
889                        MD->end_overridden_methods());
890
891    Diag(MD->getLocation(), diag::err_function_overriding_without_override)
892      << MD->getDeclName()
893      << (unsigned)OverriddenMethods.size();
894
895    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
896      Diag(OverriddenMethods[I]->getLocation(),
897           diag::note_overridden_virtual_function);
898  }
899}
900
901/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
902/// function overrides a virtual member function marked 'final', according to
903/// C++0x [class.virtual]p3.
904bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
905                                                  const CXXMethodDecl *Old) {
906  if (!Old->hasAttr<FinalAttr>())
907    return false;
908
909  Diag(New->getLocation(), diag::err_final_function_overridden)
910    << New->getDeclName();
911  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
912  return true;
913}
914
915/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
916/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
917/// bitfield width if there is one and 'InitExpr' specifies the initializer if
918/// any.
919Decl *
920Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
921                               MultiTemplateParamsArg TemplateParameterLists,
922                               ExprTy *BW, const VirtSpecifiers &VS,
923                               ExprTy *InitExpr, bool IsDefinition,
924                               bool Deleted) {
925  const DeclSpec &DS = D.getDeclSpec();
926  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
927  DeclarationName Name = NameInfo.getName();
928  SourceLocation Loc = NameInfo.getLoc();
929
930  // For anonymous bitfields, the location should point to the type.
931  if (Loc.isInvalid())
932    Loc = D.getSourceRange().getBegin();
933
934  Expr *BitWidth = static_cast<Expr*>(BW);
935  Expr *Init = static_cast<Expr*>(InitExpr);
936
937  assert(isa<CXXRecordDecl>(CurContext));
938  assert(!DS.isFriendSpecified());
939
940  bool isFunc = false;
941  if (D.isFunctionDeclarator())
942    isFunc = true;
943  else if (D.getNumTypeObjects() == 0 &&
944           D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename) {
945    QualType TDType = GetTypeFromParser(DS.getRepAsType());
946    isFunc = TDType->isFunctionType();
947  }
948
949  // C++ 9.2p6: A member shall not be declared to have automatic storage
950  // duration (auto, register) or with the extern storage-class-specifier.
951  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
952  // data members and cannot be applied to names declared const or static,
953  // and cannot be applied to reference members.
954  switch (DS.getStorageClassSpec()) {
955    case DeclSpec::SCS_unspecified:
956    case DeclSpec::SCS_typedef:
957    case DeclSpec::SCS_static:
958      // FALL THROUGH.
959      break;
960    case DeclSpec::SCS_mutable:
961      if (isFunc) {
962        if (DS.getStorageClassSpecLoc().isValid())
963          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
964        else
965          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
966
967        // FIXME: It would be nicer if the keyword was ignored only for this
968        // declarator. Otherwise we could get follow-up errors.
969        D.getMutableDeclSpec().ClearStorageClassSpecs();
970      }
971      break;
972    default:
973      if (DS.getStorageClassSpecLoc().isValid())
974        Diag(DS.getStorageClassSpecLoc(),
975             diag::err_storageclass_invalid_for_member);
976      else
977        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
978      D.getMutableDeclSpec().ClearStorageClassSpecs();
979  }
980
981  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
982                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
983                      !isFunc);
984
985  Decl *Member;
986  if (isInstField) {
987    CXXScopeSpec &SS = D.getCXXScopeSpec();
988
989
990    if (SS.isSet() && !SS.isInvalid()) {
991      // The user provided a superfluous scope specifier inside a class
992      // definition:
993      //
994      // class X {
995      //   int X::member;
996      // };
997      DeclContext *DC = 0;
998      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
999        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1000        << Name << FixItHint::CreateRemoval(SS.getRange());
1001      else
1002        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1003          << Name << SS.getRange();
1004
1005      SS.clear();
1006    }
1007
1008    // FIXME: Check for template parameters!
1009    // FIXME: Check that the name is an identifier!
1010    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1011                         AS);
1012    assert(Member && "HandleField never returns null");
1013  } else {
1014    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition);
1015    if (!Member) {
1016      return 0;
1017    }
1018
1019    // Non-instance-fields can't have a bitfield.
1020    if (BitWidth) {
1021      if (Member->isInvalidDecl()) {
1022        // don't emit another diagnostic.
1023      } else if (isa<VarDecl>(Member)) {
1024        // C++ 9.6p3: A bit-field shall not be a static member.
1025        // "static member 'A' cannot be a bit-field"
1026        Diag(Loc, diag::err_static_not_bitfield)
1027          << Name << BitWidth->getSourceRange();
1028      } else if (isa<TypedefDecl>(Member)) {
1029        // "typedef member 'x' cannot be a bit-field"
1030        Diag(Loc, diag::err_typedef_not_bitfield)
1031          << Name << BitWidth->getSourceRange();
1032      } else {
1033        // A function typedef ("typedef int f(); f a;").
1034        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1035        Diag(Loc, diag::err_not_integral_type_bitfield)
1036          << Name << cast<ValueDecl>(Member)->getType()
1037          << BitWidth->getSourceRange();
1038      }
1039
1040      BitWidth = 0;
1041      Member->setInvalidDecl();
1042    }
1043
1044    Member->setAccess(AS);
1045
1046    // If we have declared a member function template, set the access of the
1047    // templated declaration as well.
1048    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1049      FunTmpl->getTemplatedDecl()->setAccess(AS);
1050  }
1051
1052  if (VS.isOverrideSpecified()) {
1053    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1054    if (!MD || !MD->isVirtual()) {
1055      Diag(Member->getLocStart(),
1056           diag::override_keyword_only_allowed_on_virtual_member_functions)
1057        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1058    } else
1059      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1060  }
1061  if (VS.isFinalSpecified()) {
1062    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1063    if (!MD || !MD->isVirtual()) {
1064      Diag(Member->getLocStart(),
1065           diag::override_keyword_only_allowed_on_virtual_member_functions)
1066      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1067    } else
1068      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1069  }
1070
1071  CheckOverrideControl(Member);
1072
1073  assert((Name || isInstField) && "No identifier for non-field ?");
1074
1075  if (Init)
1076    AddInitializerToDecl(Member, Init, false);
1077  if (Deleted) // FIXME: Source location is not very good.
1078    SetDeclDeleted(Member, D.getSourceRange().getBegin());
1079
1080  if (isInstField) {
1081    FieldCollector->Add(cast<FieldDecl>(Member));
1082    return 0;
1083  }
1084  return Member;
1085}
1086
1087/// \brief Find the direct and/or virtual base specifiers that
1088/// correspond to the given base type, for use in base initialization
1089/// within a constructor.
1090static bool FindBaseInitializer(Sema &SemaRef,
1091                                CXXRecordDecl *ClassDecl,
1092                                QualType BaseType,
1093                                const CXXBaseSpecifier *&DirectBaseSpec,
1094                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1095  // First, check for a direct base class.
1096  DirectBaseSpec = 0;
1097  for (CXXRecordDecl::base_class_const_iterator Base
1098         = ClassDecl->bases_begin();
1099       Base != ClassDecl->bases_end(); ++Base) {
1100    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1101      // We found a direct base of this type. That's what we're
1102      // initializing.
1103      DirectBaseSpec = &*Base;
1104      break;
1105    }
1106  }
1107
1108  // Check for a virtual base class.
1109  // FIXME: We might be able to short-circuit this if we know in advance that
1110  // there are no virtual bases.
1111  VirtualBaseSpec = 0;
1112  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1113    // We haven't found a base yet; search the class hierarchy for a
1114    // virtual base class.
1115    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1116                       /*DetectVirtual=*/false);
1117    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1118                              BaseType, Paths)) {
1119      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1120           Path != Paths.end(); ++Path) {
1121        if (Path->back().Base->isVirtual()) {
1122          VirtualBaseSpec = Path->back().Base;
1123          break;
1124        }
1125      }
1126    }
1127  }
1128
1129  return DirectBaseSpec || VirtualBaseSpec;
1130}
1131
1132/// ActOnMemInitializer - Handle a C++ member initializer.
1133MemInitResult
1134Sema::ActOnMemInitializer(Decl *ConstructorD,
1135                          Scope *S,
1136                          CXXScopeSpec &SS,
1137                          IdentifierInfo *MemberOrBase,
1138                          ParsedType TemplateTypeTy,
1139                          SourceLocation IdLoc,
1140                          SourceLocation LParenLoc,
1141                          ExprTy **Args, unsigned NumArgs,
1142                          SourceLocation RParenLoc,
1143                          SourceLocation EllipsisLoc) {
1144  if (!ConstructorD)
1145    return true;
1146
1147  AdjustDeclIfTemplate(ConstructorD);
1148
1149  CXXConstructorDecl *Constructor
1150    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1151  if (!Constructor) {
1152    // The user wrote a constructor initializer on a function that is
1153    // not a C++ constructor. Ignore the error for now, because we may
1154    // have more member initializers coming; we'll diagnose it just
1155    // once in ActOnMemInitializers.
1156    return true;
1157  }
1158
1159  CXXRecordDecl *ClassDecl = Constructor->getParent();
1160
1161  // C++ [class.base.init]p2:
1162  //   Names in a mem-initializer-id are looked up in the scope of the
1163  //   constructor's class and, if not found in that scope, are looked
1164  //   up in the scope containing the constructor's definition.
1165  //   [Note: if the constructor's class contains a member with the
1166  //   same name as a direct or virtual base class of the class, a
1167  //   mem-initializer-id naming the member or base class and composed
1168  //   of a single identifier refers to the class member. A
1169  //   mem-initializer-id for the hidden base class may be specified
1170  //   using a qualified name. ]
1171  if (!SS.getScopeRep() && !TemplateTypeTy) {
1172    // Look for a member, first.
1173    FieldDecl *Member = 0;
1174    DeclContext::lookup_result Result
1175      = ClassDecl->lookup(MemberOrBase);
1176    if (Result.first != Result.second) {
1177      Member = dyn_cast<FieldDecl>(*Result.first);
1178
1179      if (Member) {
1180        if (EllipsisLoc.isValid())
1181          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1182            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1183
1184        return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1185                                    LParenLoc, RParenLoc);
1186      }
1187
1188      // Handle anonymous union case.
1189      if (IndirectFieldDecl* IndirectField
1190            = dyn_cast<IndirectFieldDecl>(*Result.first)) {
1191        if (EllipsisLoc.isValid())
1192          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1193            << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1194
1195         return BuildMemberInitializer(IndirectField, (Expr**)Args,
1196                                       NumArgs, IdLoc,
1197                                       LParenLoc, RParenLoc);
1198      }
1199    }
1200  }
1201  // It didn't name a member, so see if it names a class.
1202  QualType BaseType;
1203  TypeSourceInfo *TInfo = 0;
1204
1205  if (TemplateTypeTy) {
1206    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1207  } else {
1208    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1209    LookupParsedName(R, S, &SS);
1210
1211    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1212    if (!TyD) {
1213      if (R.isAmbiguous()) return true;
1214
1215      // We don't want access-control diagnostics here.
1216      R.suppressDiagnostics();
1217
1218      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1219        bool NotUnknownSpecialization = false;
1220        DeclContext *DC = computeDeclContext(SS, false);
1221        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1222          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1223
1224        if (!NotUnknownSpecialization) {
1225          // When the scope specifier can refer to a member of an unknown
1226          // specialization, we take it as a type name.
1227          BaseType = CheckTypenameType(ETK_None,
1228                                       (NestedNameSpecifier *)SS.getScopeRep(),
1229                                       *MemberOrBase, SourceLocation(),
1230                                       SS.getRange(), IdLoc);
1231          if (BaseType.isNull())
1232            return true;
1233
1234          R.clear();
1235          R.setLookupName(MemberOrBase);
1236        }
1237      }
1238
1239      // If no results were found, try to correct typos.
1240      if (R.empty() && BaseType.isNull() &&
1241          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1242          R.isSingleResult()) {
1243        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1244          if (Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl)) {
1245            // We have found a non-static data member with a similar
1246            // name to what was typed; complain and initialize that
1247            // member.
1248            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1249              << MemberOrBase << true << R.getLookupName()
1250              << FixItHint::CreateReplacement(R.getNameLoc(),
1251                                              R.getLookupName().getAsString());
1252            Diag(Member->getLocation(), diag::note_previous_decl)
1253              << Member->getDeclName();
1254
1255            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1256                                          LParenLoc, RParenLoc);
1257          }
1258        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1259          const CXXBaseSpecifier *DirectBaseSpec;
1260          const CXXBaseSpecifier *VirtualBaseSpec;
1261          if (FindBaseInitializer(*this, ClassDecl,
1262                                  Context.getTypeDeclType(Type),
1263                                  DirectBaseSpec, VirtualBaseSpec)) {
1264            // We have found a direct or virtual base class with a
1265            // similar name to what was typed; complain and initialize
1266            // that base class.
1267            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1268              << MemberOrBase << false << R.getLookupName()
1269              << FixItHint::CreateReplacement(R.getNameLoc(),
1270                                              R.getLookupName().getAsString());
1271
1272            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1273                                                             : VirtualBaseSpec;
1274            Diag(BaseSpec->getSourceRange().getBegin(),
1275                 diag::note_base_class_specified_here)
1276              << BaseSpec->getType()
1277              << BaseSpec->getSourceRange();
1278
1279            TyD = Type;
1280          }
1281        }
1282      }
1283
1284      if (!TyD && BaseType.isNull()) {
1285        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1286          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1287        return true;
1288      }
1289    }
1290
1291    if (BaseType.isNull()) {
1292      BaseType = Context.getTypeDeclType(TyD);
1293      if (SS.isSet()) {
1294        NestedNameSpecifier *Qualifier =
1295          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1296
1297        // FIXME: preserve source range information
1298        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1299      }
1300    }
1301  }
1302
1303  if (!TInfo)
1304    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1305
1306  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1307                              LParenLoc, RParenLoc, ClassDecl, EllipsisLoc);
1308}
1309
1310/// Checks an initializer expression for use of uninitialized fields, such as
1311/// containing the field that is being initialized. Returns true if there is an
1312/// uninitialized field was used an updates the SourceLocation parameter; false
1313/// otherwise.
1314static bool InitExprContainsUninitializedFields(const Stmt *S,
1315                                                const ValueDecl *LhsField,
1316                                                SourceLocation *L) {
1317  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
1318
1319  if (isa<CallExpr>(S)) {
1320    // Do not descend into function calls or constructors, as the use
1321    // of an uninitialized field may be valid. One would have to inspect
1322    // the contents of the function/ctor to determine if it is safe or not.
1323    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1324    // may be safe, depending on what the function/ctor does.
1325    return false;
1326  }
1327  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
1328    const NamedDecl *RhsField = ME->getMemberDecl();
1329
1330    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
1331      // The member expression points to a static data member.
1332      assert(VD->isStaticDataMember() &&
1333             "Member points to non-static data member!");
1334      (void)VD;
1335      return false;
1336    }
1337
1338    if (isa<EnumConstantDecl>(RhsField)) {
1339      // The member expression points to an enum.
1340      return false;
1341    }
1342
1343    if (RhsField == LhsField) {
1344      // Initializing a field with itself. Throw a warning.
1345      // But wait; there are exceptions!
1346      // Exception #1:  The field may not belong to this record.
1347      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1348      const Expr *base = ME->getBase();
1349      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1350        // Even though the field matches, it does not belong to this record.
1351        return false;
1352      }
1353      // None of the exceptions triggered; return true to indicate an
1354      // uninitialized field was used.
1355      *L = ME->getMemberLoc();
1356      return true;
1357    }
1358  } else if (isa<SizeOfAlignOfExpr>(S)) {
1359    // sizeof/alignof doesn't reference contents, do not warn.
1360    return false;
1361  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
1362    // address-of doesn't reference contents (the pointer may be dereferenced
1363    // in the same expression but it would be rare; and weird).
1364    if (UOE->getOpcode() == UO_AddrOf)
1365      return false;
1366  }
1367  for (Stmt::const_child_range it = S->children(); it; ++it) {
1368    if (!*it) {
1369      // An expression such as 'member(arg ?: "")' may trigger this.
1370      continue;
1371    }
1372    if (InitExprContainsUninitializedFields(*it, LhsField, L))
1373      return true;
1374  }
1375  return false;
1376}
1377
1378MemInitResult
1379Sema::BuildMemberInitializer(ValueDecl *Member, Expr **Args,
1380                             unsigned NumArgs, SourceLocation IdLoc,
1381                             SourceLocation LParenLoc,
1382                             SourceLocation RParenLoc) {
1383  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
1384  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
1385  assert((DirectMember || IndirectMember) &&
1386         "Member must be a FieldDecl or IndirectFieldDecl");
1387
1388  if (Member->isInvalidDecl())
1389    return true;
1390
1391  // Diagnose value-uses of fields to initialize themselves, e.g.
1392  //   foo(foo)
1393  // where foo is not also a parameter to the constructor.
1394  // TODO: implement -Wuninitialized and fold this into that framework.
1395  for (unsigned i = 0; i < NumArgs; ++i) {
1396    SourceLocation L;
1397    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1398      // FIXME: Return true in the case when other fields are used before being
1399      // uninitialized. For example, let this field be the i'th field. When
1400      // initializing the i'th field, throw a warning if any of the >= i'th
1401      // fields are used, as they are not yet initialized.
1402      // Right now we are only handling the case where the i'th field uses
1403      // itself in its initializer.
1404      Diag(L, diag::warn_field_is_uninit);
1405    }
1406  }
1407
1408  bool HasDependentArg = false;
1409  for (unsigned i = 0; i < NumArgs; i++)
1410    HasDependentArg |= Args[i]->isTypeDependent();
1411
1412  Expr *Init;
1413  if (Member->getType()->isDependentType() || HasDependentArg) {
1414    // Can't check initialization for a member of dependent type or when
1415    // any of the arguments are type-dependent expressions.
1416    Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1417                                       RParenLoc);
1418
1419    // Erase any temporaries within this evaluation context; we're not
1420    // going to track them in the AST, since we'll be rebuilding the
1421    // ASTs during template instantiation.
1422    ExprTemporaries.erase(
1423              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1424                          ExprTemporaries.end());
1425  } else {
1426    // Initialize the member.
1427    InitializedEntity MemberEntity =
1428      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
1429                   : InitializedEntity::InitializeMember(IndirectMember, 0);
1430    InitializationKind Kind =
1431      InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1432
1433    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1434
1435    ExprResult MemberInit =
1436      InitSeq.Perform(*this, MemberEntity, Kind,
1437                      MultiExprArg(*this, Args, NumArgs), 0);
1438    if (MemberInit.isInvalid())
1439      return true;
1440
1441    CheckImplicitConversions(MemberInit.get(), LParenLoc);
1442
1443    // C++0x [class.base.init]p7:
1444    //   The initialization of each base and member constitutes a
1445    //   full-expression.
1446    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
1447    if (MemberInit.isInvalid())
1448      return true;
1449
1450    // If we are in a dependent context, template instantiation will
1451    // perform this type-checking again. Just save the arguments that we
1452    // received in a ParenListExpr.
1453    // FIXME: This isn't quite ideal, since our ASTs don't capture all
1454    // of the information that we have about the member
1455    // initializer. However, deconstructing the ASTs is a dicey process,
1456    // and this approach is far more likely to get the corner cases right.
1457    if (CurContext->isDependentContext())
1458      Init = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1459                                               RParenLoc);
1460    else
1461      Init = MemberInit.get();
1462  }
1463
1464  if (DirectMember) {
1465    return new (Context) CXXCtorInitializer(Context, DirectMember,
1466                                                    IdLoc, LParenLoc, Init,
1467                                                    RParenLoc);
1468  } else {
1469    return new (Context) CXXCtorInitializer(Context, IndirectMember,
1470                                                    IdLoc, LParenLoc, Init,
1471                                                    RParenLoc);
1472  }
1473}
1474
1475MemInitResult
1476Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
1477                                 Expr **Args, unsigned NumArgs,
1478                                 SourceLocation LParenLoc,
1479                                 SourceLocation RParenLoc,
1480                                 CXXRecordDecl *ClassDecl,
1481                                 SourceLocation EllipsisLoc) {
1482  SourceLocation Loc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
1483  if (!LangOpts.CPlusPlus0x)
1484    return Diag(Loc, diag::err_delegation_0x_only)
1485      << TInfo->getTypeLoc().getLocalSourceRange();
1486
1487  return Diag(Loc, diag::err_delegation_unimplemented)
1488    << TInfo->getTypeLoc().getLocalSourceRange();
1489}
1490
1491MemInitResult
1492Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1493                           Expr **Args, unsigned NumArgs,
1494                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1495                           CXXRecordDecl *ClassDecl,
1496                           SourceLocation EllipsisLoc) {
1497  bool HasDependentArg = false;
1498  for (unsigned i = 0; i < NumArgs; i++)
1499    HasDependentArg |= Args[i]->isTypeDependent();
1500
1501  SourceLocation BaseLoc
1502    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1503
1504  if (!BaseType->isDependentType() && !BaseType->isRecordType())
1505    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1506             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1507
1508  // C++ [class.base.init]p2:
1509  //   [...] Unless the mem-initializer-id names a nonstatic data
1510  //   member of the constructor's class or a direct or virtual base
1511  //   of that class, the mem-initializer is ill-formed. A
1512  //   mem-initializer-list can initialize a base class using any
1513  //   name that denotes that base class type.
1514  bool Dependent = BaseType->isDependentType() || HasDependentArg;
1515
1516  if (EllipsisLoc.isValid()) {
1517    // This is a pack expansion.
1518    if (!BaseType->containsUnexpandedParameterPack())  {
1519      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1520        << SourceRange(BaseLoc, RParenLoc);
1521
1522      EllipsisLoc = SourceLocation();
1523    }
1524  } else {
1525    // Check for any unexpanded parameter packs.
1526    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
1527      return true;
1528
1529    for (unsigned I = 0; I != NumArgs; ++I)
1530      if (DiagnoseUnexpandedParameterPack(Args[I]))
1531        return true;
1532  }
1533
1534  // Check for direct and virtual base classes.
1535  const CXXBaseSpecifier *DirectBaseSpec = 0;
1536  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1537  if (!Dependent) {
1538    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
1539                                       BaseType))
1540      return BuildDelegatingInitializer(BaseTInfo, Args, NumArgs,
1541                                        LParenLoc, RParenLoc, ClassDecl,
1542                                        EllipsisLoc);
1543
1544    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1545                        VirtualBaseSpec);
1546
1547    // C++ [base.class.init]p2:
1548    // Unless the mem-initializer-id names a nonstatic data member of the
1549    // constructor's class or a direct or virtual base of that class, the
1550    // mem-initializer is ill-formed.
1551    if (!DirectBaseSpec && !VirtualBaseSpec) {
1552      // If the class has any dependent bases, then it's possible that
1553      // one of those types will resolve to the same type as
1554      // BaseType. Therefore, just treat this as a dependent base
1555      // class initialization.  FIXME: Should we try to check the
1556      // initialization anyway? It seems odd.
1557      if (ClassDecl->hasAnyDependentBases())
1558        Dependent = true;
1559      else
1560        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1561          << BaseType << Context.getTypeDeclType(ClassDecl)
1562          << BaseTInfo->getTypeLoc().getLocalSourceRange();
1563    }
1564  }
1565
1566  if (Dependent) {
1567    // Can't check initialization for a base of dependent type or when
1568    // any of the arguments are type-dependent expressions.
1569    ExprResult BaseInit
1570      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1571                                          RParenLoc));
1572
1573    // Erase any temporaries within this evaluation context; we're not
1574    // going to track them in the AST, since we'll be rebuilding the
1575    // ASTs during template instantiation.
1576    ExprTemporaries.erase(
1577              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1578                          ExprTemporaries.end());
1579
1580    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1581                                                    /*IsVirtual=*/false,
1582                                                    LParenLoc,
1583                                                    BaseInit.takeAs<Expr>(),
1584                                                    RParenLoc,
1585                                                    EllipsisLoc);
1586  }
1587
1588  // C++ [base.class.init]p2:
1589  //   If a mem-initializer-id is ambiguous because it designates both
1590  //   a direct non-virtual base class and an inherited virtual base
1591  //   class, the mem-initializer is ill-formed.
1592  if (DirectBaseSpec && VirtualBaseSpec)
1593    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1594      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1595
1596  CXXBaseSpecifier *BaseSpec
1597    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1598  if (!BaseSpec)
1599    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1600
1601  // Initialize the base.
1602  InitializedEntity BaseEntity =
1603    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1604  InitializationKind Kind =
1605    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1606
1607  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1608
1609  ExprResult BaseInit =
1610    InitSeq.Perform(*this, BaseEntity, Kind,
1611                    MultiExprArg(*this, Args, NumArgs), 0);
1612  if (BaseInit.isInvalid())
1613    return true;
1614
1615  CheckImplicitConversions(BaseInit.get(), LParenLoc);
1616
1617  // C++0x [class.base.init]p7:
1618  //   The initialization of each base and member constitutes a
1619  //   full-expression.
1620  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
1621  if (BaseInit.isInvalid())
1622    return true;
1623
1624  // If we are in a dependent context, template instantiation will
1625  // perform this type-checking again. Just save the arguments that we
1626  // received in a ParenListExpr.
1627  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1628  // of the information that we have about the base
1629  // initializer. However, deconstructing the ASTs is a dicey process,
1630  // and this approach is far more likely to get the corner cases right.
1631  if (CurContext->isDependentContext()) {
1632    ExprResult Init
1633      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1634                                          RParenLoc));
1635    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1636                                                    BaseSpec->isVirtual(),
1637                                                    LParenLoc,
1638                                                    Init.takeAs<Expr>(),
1639                                                    RParenLoc,
1640                                                    EllipsisLoc);
1641  }
1642
1643  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
1644                                                  BaseSpec->isVirtual(),
1645                                                  LParenLoc,
1646                                                  BaseInit.takeAs<Expr>(),
1647                                                  RParenLoc,
1648                                                  EllipsisLoc);
1649}
1650
1651/// ImplicitInitializerKind - How an implicit base or member initializer should
1652/// initialize its base or member.
1653enum ImplicitInitializerKind {
1654  IIK_Default,
1655  IIK_Copy,
1656  IIK_Move
1657};
1658
1659static bool
1660BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1661                             ImplicitInitializerKind ImplicitInitKind,
1662                             CXXBaseSpecifier *BaseSpec,
1663                             bool IsInheritedVirtualBase,
1664                             CXXCtorInitializer *&CXXBaseInit) {
1665  InitializedEntity InitEntity
1666    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1667                                        IsInheritedVirtualBase);
1668
1669  ExprResult BaseInit;
1670
1671  switch (ImplicitInitKind) {
1672  case IIK_Default: {
1673    InitializationKind InitKind
1674      = InitializationKind::CreateDefault(Constructor->getLocation());
1675    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1676    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1677                               MultiExprArg(SemaRef, 0, 0));
1678    break;
1679  }
1680
1681  case IIK_Copy: {
1682    ParmVarDecl *Param = Constructor->getParamDecl(0);
1683    QualType ParamType = Param->getType().getNonReferenceType();
1684
1685    Expr *CopyCtorArg =
1686      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1687                          Constructor->getLocation(), ParamType,
1688                          VK_LValue, 0);
1689
1690    // Cast to the base class to avoid ambiguities.
1691    QualType ArgTy =
1692      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1693                                       ParamType.getQualifiers());
1694
1695    CXXCastPath BasePath;
1696    BasePath.push_back(BaseSpec);
1697    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1698                              CK_UncheckedDerivedToBase,
1699                              VK_LValue, &BasePath);
1700
1701    InitializationKind InitKind
1702      = InitializationKind::CreateDirect(Constructor->getLocation(),
1703                                         SourceLocation(), SourceLocation());
1704    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1705                                   &CopyCtorArg, 1);
1706    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1707                               MultiExprArg(&CopyCtorArg, 1));
1708    break;
1709  }
1710
1711  case IIK_Move:
1712    assert(false && "Unhandled initializer kind!");
1713  }
1714
1715  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
1716  if (BaseInit.isInvalid())
1717    return true;
1718
1719  CXXBaseInit =
1720    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1721               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1722                                                        SourceLocation()),
1723                                             BaseSpec->isVirtual(),
1724                                             SourceLocation(),
1725                                             BaseInit.takeAs<Expr>(),
1726                                             SourceLocation(),
1727                                             SourceLocation());
1728
1729  return false;
1730}
1731
1732static bool
1733BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1734                               ImplicitInitializerKind ImplicitInitKind,
1735                               FieldDecl *Field,
1736                               CXXCtorInitializer *&CXXMemberInit) {
1737  if (Field->isInvalidDecl())
1738    return true;
1739
1740  SourceLocation Loc = Constructor->getLocation();
1741
1742  if (ImplicitInitKind == IIK_Copy) {
1743    ParmVarDecl *Param = Constructor->getParamDecl(0);
1744    QualType ParamType = Param->getType().getNonReferenceType();
1745
1746    Expr *MemberExprBase =
1747      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1748                          Loc, ParamType, VK_LValue, 0);
1749
1750    // Build a reference to this field within the parameter.
1751    CXXScopeSpec SS;
1752    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1753                              Sema::LookupMemberName);
1754    MemberLookup.addDecl(Field, AS_public);
1755    MemberLookup.resolveKind();
1756    ExprResult CopyCtorArg
1757      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
1758                                         ParamType, Loc,
1759                                         /*IsArrow=*/false,
1760                                         SS,
1761                                         /*FirstQualifierInScope=*/0,
1762                                         MemberLookup,
1763                                         /*TemplateArgs=*/0);
1764    if (CopyCtorArg.isInvalid())
1765      return true;
1766
1767    // When the field we are copying is an array, create index variables for
1768    // each dimension of the array. We use these index variables to subscript
1769    // the source array, and other clients (e.g., CodeGen) will perform the
1770    // necessary iteration with these index variables.
1771    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1772    QualType BaseType = Field->getType();
1773    QualType SizeType = SemaRef.Context.getSizeType();
1774    while (const ConstantArrayType *Array
1775                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1776      // Create the iteration variable for this array index.
1777      IdentifierInfo *IterationVarName = 0;
1778      {
1779        llvm::SmallString<8> Str;
1780        llvm::raw_svector_ostream OS(Str);
1781        OS << "__i" << IndexVariables.size();
1782        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1783      }
1784      VarDecl *IterationVar
1785        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1786                          IterationVarName, SizeType,
1787                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1788                          SC_None, SC_None);
1789      IndexVariables.push_back(IterationVar);
1790
1791      // Create a reference to the iteration variable.
1792      ExprResult IterationVarRef
1793        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc);
1794      assert(!IterationVarRef.isInvalid() &&
1795             "Reference to invented variable cannot fail!");
1796
1797      // Subscript the array with this iteration variable.
1798      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CopyCtorArg.take(),
1799                                                            Loc,
1800                                                        IterationVarRef.take(),
1801                                                            Loc);
1802      if (CopyCtorArg.isInvalid())
1803        return true;
1804
1805      BaseType = Array->getElementType();
1806    }
1807
1808    // Construct the entity that we will be initializing. For an array, this
1809    // will be first element in the array, which may require several levels
1810    // of array-subscript entities.
1811    llvm::SmallVector<InitializedEntity, 4> Entities;
1812    Entities.reserve(1 + IndexVariables.size());
1813    Entities.push_back(InitializedEntity::InitializeMember(Field));
1814    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1815      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1816                                                              0,
1817                                                              Entities.back()));
1818
1819    // Direct-initialize to use the copy constructor.
1820    InitializationKind InitKind =
1821      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1822
1823    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1824    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1825                                   &CopyCtorArgE, 1);
1826
1827    ExprResult MemberInit
1828      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1829                        MultiExprArg(&CopyCtorArgE, 1));
1830    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1831    if (MemberInit.isInvalid())
1832      return true;
1833
1834    CXXMemberInit
1835      = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1836                                           MemberInit.takeAs<Expr>(), Loc,
1837                                           IndexVariables.data(),
1838                                           IndexVariables.size());
1839    return false;
1840  }
1841
1842  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1843
1844  QualType FieldBaseElementType =
1845    SemaRef.Context.getBaseElementType(Field->getType());
1846
1847  if (FieldBaseElementType->isRecordType()) {
1848    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1849    InitializationKind InitKind =
1850      InitializationKind::CreateDefault(Loc);
1851
1852    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1853    ExprResult MemberInit =
1854      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
1855
1856    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
1857    if (MemberInit.isInvalid())
1858      return true;
1859
1860    CXXMemberInit =
1861      new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
1862                                                       Field, Loc, Loc,
1863                                                       MemberInit.get(),
1864                                                       Loc);
1865    return false;
1866  }
1867
1868  if (FieldBaseElementType->isReferenceType()) {
1869    SemaRef.Diag(Constructor->getLocation(),
1870                 diag::err_uninitialized_member_in_ctor)
1871    << (int)Constructor->isImplicit()
1872    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1873    << 0 << Field->getDeclName();
1874    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1875    return true;
1876  }
1877
1878  if (FieldBaseElementType.isConstQualified()) {
1879    SemaRef.Diag(Constructor->getLocation(),
1880                 diag::err_uninitialized_member_in_ctor)
1881    << (int)Constructor->isImplicit()
1882    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1883    << 1 << Field->getDeclName();
1884    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1885    return true;
1886  }
1887
1888  // Nothing to initialize.
1889  CXXMemberInit = 0;
1890  return false;
1891}
1892
1893namespace {
1894struct BaseAndFieldInfo {
1895  Sema &S;
1896  CXXConstructorDecl *Ctor;
1897  bool AnyErrorsInInits;
1898  ImplicitInitializerKind IIK;
1899  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
1900  llvm::SmallVector<CXXCtorInitializer*, 8> AllToInit;
1901
1902  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1903    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1904    // FIXME: Handle implicit move constructors.
1905    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1906      IIK = IIK_Copy;
1907    else
1908      IIK = IIK_Default;
1909  }
1910};
1911}
1912
1913static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1914                                    FieldDecl *Top, FieldDecl *Field) {
1915
1916  // Overwhelmingly common case: we have a direct initializer for this field.
1917  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1918    Info.AllToInit.push_back(Init);
1919    return false;
1920  }
1921
1922  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1923    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1924    assert(FieldClassType && "anonymous struct/union without record type");
1925    CXXRecordDecl *FieldClassDecl
1926      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1927
1928    // Even though union members never have non-trivial default
1929    // constructions in C++03, we still build member initializers for aggregate
1930    // record types which can be union members, and C++0x allows non-trivial
1931    // default constructors for union members, so we ensure that only one
1932    // member is initialized for these.
1933    if (FieldClassDecl->isUnion()) {
1934      // First check for an explicit initializer for one field.
1935      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1936           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1937        if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(*FA)) {
1938          Info.AllToInit.push_back(Init);
1939
1940          // Once we've initialized a field of an anonymous union, the union
1941          // field in the class is also initialized, so exit immediately.
1942          return false;
1943        } else if ((*FA)->isAnonymousStructOrUnion()) {
1944          if (CollectFieldInitializer(Info, Top, *FA))
1945            return true;
1946        }
1947      }
1948
1949      // Fallthrough and construct a default initializer for the union as
1950      // a whole, which can call its default constructor if such a thing exists
1951      // (C++0x perhaps). FIXME: It's not clear that this is the correct
1952      // behavior going forward with C++0x, when anonymous unions there are
1953      // finalized, we should revisit this.
1954    } else {
1955      // For structs, we simply descend through to initialize all members where
1956      // necessary.
1957      for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1958           EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1959        if (CollectFieldInitializer(Info, Top, *FA))
1960          return true;
1961      }
1962    }
1963  }
1964
1965  // Don't try to build an implicit initializer if there were semantic
1966  // errors in any of the initializers (and therefore we might be
1967  // missing some that the user actually wrote).
1968  if (Info.AnyErrorsInInits)
1969    return false;
1970
1971  CXXCtorInitializer *Init = 0;
1972  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1973    return true;
1974
1975  if (Init)
1976    Info.AllToInit.push_back(Init);
1977
1978  return false;
1979}
1980
1981bool
1982Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
1983                                  CXXCtorInitializer **Initializers,
1984                                  unsigned NumInitializers,
1985                                  bool AnyErrors) {
1986  if (Constructor->getDeclContext()->isDependentContext()) {
1987    // Just store the initializers as written, they will be checked during
1988    // instantiation.
1989    if (NumInitializers > 0) {
1990      Constructor->setNumCtorInitializers(NumInitializers);
1991      CXXCtorInitializer **baseOrMemberInitializers =
1992        new (Context) CXXCtorInitializer*[NumInitializers];
1993      memcpy(baseOrMemberInitializers, Initializers,
1994             NumInitializers * sizeof(CXXCtorInitializer*));
1995      Constructor->setCtorInitializers(baseOrMemberInitializers);
1996    }
1997
1998    return false;
1999  }
2000
2001  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2002
2003  // We need to build the initializer AST according to order of construction
2004  // and not what user specified in the Initializers list.
2005  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2006  if (!ClassDecl)
2007    return true;
2008
2009  bool HadError = false;
2010
2011  for (unsigned i = 0; i < NumInitializers; i++) {
2012    CXXCtorInitializer *Member = Initializers[i];
2013
2014    if (Member->isBaseInitializer())
2015      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2016    else
2017      Info.AllBaseFields[Member->getAnyMember()] = Member;
2018  }
2019
2020  // Keep track of the direct virtual bases.
2021  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2022  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2023       E = ClassDecl->bases_end(); I != E; ++I) {
2024    if (I->isVirtual())
2025      DirectVBases.insert(I);
2026  }
2027
2028  // Push virtual bases before others.
2029  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2030       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2031
2032    if (CXXCtorInitializer *Value
2033        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2034      Info.AllToInit.push_back(Value);
2035    } else if (!AnyErrors) {
2036      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2037      CXXCtorInitializer *CXXBaseInit;
2038      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2039                                       VBase, IsInheritedVirtualBase,
2040                                       CXXBaseInit)) {
2041        HadError = true;
2042        continue;
2043      }
2044
2045      Info.AllToInit.push_back(CXXBaseInit);
2046    }
2047  }
2048
2049  // Non-virtual bases.
2050  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2051       E = ClassDecl->bases_end(); Base != E; ++Base) {
2052    // Virtuals are in the virtual base list and already constructed.
2053    if (Base->isVirtual())
2054      continue;
2055
2056    if (CXXCtorInitializer *Value
2057          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2058      Info.AllToInit.push_back(Value);
2059    } else if (!AnyErrors) {
2060      CXXCtorInitializer *CXXBaseInit;
2061      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2062                                       Base, /*IsInheritedVirtualBase=*/false,
2063                                       CXXBaseInit)) {
2064        HadError = true;
2065        continue;
2066      }
2067
2068      Info.AllToInit.push_back(CXXBaseInit);
2069    }
2070  }
2071
2072  // Fields.
2073  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2074       E = ClassDecl->field_end(); Field != E; ++Field) {
2075    if ((*Field)->getType()->isIncompleteArrayType()) {
2076      assert(ClassDecl->hasFlexibleArrayMember() &&
2077             "Incomplete array type is not valid");
2078      continue;
2079    }
2080    if (CollectFieldInitializer(Info, *Field, *Field))
2081      HadError = true;
2082  }
2083
2084  NumInitializers = Info.AllToInit.size();
2085  if (NumInitializers > 0) {
2086    Constructor->setNumCtorInitializers(NumInitializers);
2087    CXXCtorInitializer **baseOrMemberInitializers =
2088      new (Context) CXXCtorInitializer*[NumInitializers];
2089    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2090           NumInitializers * sizeof(CXXCtorInitializer*));
2091    Constructor->setCtorInitializers(baseOrMemberInitializers);
2092
2093    // Constructors implicitly reference the base and member
2094    // destructors.
2095    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2096                                           Constructor->getParent());
2097  }
2098
2099  return HadError;
2100}
2101
2102static void *GetKeyForTopLevelField(FieldDecl *Field) {
2103  // For anonymous unions, use the class declaration as the key.
2104  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2105    if (RT->getDecl()->isAnonymousStructOrUnion())
2106      return static_cast<void *>(RT->getDecl());
2107  }
2108  return static_cast<void *>(Field);
2109}
2110
2111static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
2112  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
2113}
2114
2115static void *GetKeyForMember(ASTContext &Context,
2116                             CXXCtorInitializer *Member) {
2117  if (!Member->isAnyMemberInitializer())
2118    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
2119
2120  // For fields injected into the class via declaration of an anonymous union,
2121  // use its anonymous union class declaration as the unique key.
2122  FieldDecl *Field = Member->getAnyMember();
2123
2124  // If the field is a member of an anonymous struct or union, our key
2125  // is the anonymous record decl that's a direct child of the class.
2126  RecordDecl *RD = Field->getParent();
2127  if (RD->isAnonymousStructOrUnion()) {
2128    while (true) {
2129      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
2130      if (Parent->isAnonymousStructOrUnion())
2131        RD = Parent;
2132      else
2133        break;
2134    }
2135
2136    return static_cast<void *>(RD);
2137  }
2138
2139  return static_cast<void *>(Field);
2140}
2141
2142static void
2143DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
2144                                  const CXXConstructorDecl *Constructor,
2145                                  CXXCtorInitializer **Inits,
2146                                  unsigned NumInits) {
2147  if (Constructor->getDeclContext()->isDependentContext())
2148    return;
2149
2150  // Don't check initializers order unless the warning is enabled at the
2151  // location of at least one initializer.
2152  bool ShouldCheckOrder = false;
2153  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2154    CXXCtorInitializer *Init = Inits[InitIndex];
2155    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
2156                                         Init->getSourceLocation())
2157          != Diagnostic::Ignored) {
2158      ShouldCheckOrder = true;
2159      break;
2160    }
2161  }
2162  if (!ShouldCheckOrder)
2163    return;
2164
2165  // Build the list of bases and members in the order that they'll
2166  // actually be initialized.  The explicit initializers should be in
2167  // this same order but may be missing things.
2168  llvm::SmallVector<const void*, 32> IdealInitKeys;
2169
2170  const CXXRecordDecl *ClassDecl = Constructor->getParent();
2171
2172  // 1. Virtual bases.
2173  for (CXXRecordDecl::base_class_const_iterator VBase =
2174       ClassDecl->vbases_begin(),
2175       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
2176    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
2177
2178  // 2. Non-virtual bases.
2179  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
2180       E = ClassDecl->bases_end(); Base != E; ++Base) {
2181    if (Base->isVirtual())
2182      continue;
2183    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
2184  }
2185
2186  // 3. Direct fields.
2187  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2188       E = ClassDecl->field_end(); Field != E; ++Field)
2189    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2190
2191  unsigned NumIdealInits = IdealInitKeys.size();
2192  unsigned IdealIndex = 0;
2193
2194  CXXCtorInitializer *PrevInit = 0;
2195  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2196    CXXCtorInitializer *Init = Inits[InitIndex];
2197    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
2198
2199    // Scan forward to try to find this initializer in the idealized
2200    // initializers list.
2201    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2202      if (InitKey == IdealInitKeys[IdealIndex])
2203        break;
2204
2205    // If we didn't find this initializer, it must be because we
2206    // scanned past it on a previous iteration.  That can only
2207    // happen if we're out of order;  emit a warning.
2208    if (IdealIndex == NumIdealInits && PrevInit) {
2209      Sema::SemaDiagnosticBuilder D =
2210        SemaRef.Diag(PrevInit->getSourceLocation(),
2211                     diag::warn_initializer_out_of_order);
2212
2213      if (PrevInit->isAnyMemberInitializer())
2214        D << 0 << PrevInit->getAnyMember()->getDeclName();
2215      else
2216        D << 1 << PrevInit->getBaseClassInfo()->getType();
2217
2218      if (Init->isAnyMemberInitializer())
2219        D << 0 << Init->getAnyMember()->getDeclName();
2220      else
2221        D << 1 << Init->getBaseClassInfo()->getType();
2222
2223      // Move back to the initializer's location in the ideal list.
2224      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2225        if (InitKey == IdealInitKeys[IdealIndex])
2226          break;
2227
2228      assert(IdealIndex != NumIdealInits &&
2229             "initializer not found in initializer list");
2230    }
2231
2232    PrevInit = Init;
2233  }
2234}
2235
2236namespace {
2237bool CheckRedundantInit(Sema &S,
2238                        CXXCtorInitializer *Init,
2239                        CXXCtorInitializer *&PrevInit) {
2240  if (!PrevInit) {
2241    PrevInit = Init;
2242    return false;
2243  }
2244
2245  if (FieldDecl *Field = Init->getMember())
2246    S.Diag(Init->getSourceLocation(),
2247           diag::err_multiple_mem_initialization)
2248      << Field->getDeclName()
2249      << Init->getSourceRange();
2250  else {
2251    const Type *BaseClass = Init->getBaseClass();
2252    assert(BaseClass && "neither field nor base");
2253    S.Diag(Init->getSourceLocation(),
2254           diag::err_multiple_base_initialization)
2255      << QualType(BaseClass, 0)
2256      << Init->getSourceRange();
2257  }
2258  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2259    << 0 << PrevInit->getSourceRange();
2260
2261  return true;
2262}
2263
2264typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
2265typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2266
2267bool CheckRedundantUnionInit(Sema &S,
2268                             CXXCtorInitializer *Init,
2269                             RedundantUnionMap &Unions) {
2270  FieldDecl *Field = Init->getAnyMember();
2271  RecordDecl *Parent = Field->getParent();
2272  if (!Parent->isAnonymousStructOrUnion())
2273    return false;
2274
2275  NamedDecl *Child = Field;
2276  do {
2277    if (Parent->isUnion()) {
2278      UnionEntry &En = Unions[Parent];
2279      if (En.first && En.first != Child) {
2280        S.Diag(Init->getSourceLocation(),
2281               diag::err_multiple_mem_union_initialization)
2282          << Field->getDeclName()
2283          << Init->getSourceRange();
2284        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2285          << 0 << En.second->getSourceRange();
2286        return true;
2287      } else if (!En.first) {
2288        En.first = Child;
2289        En.second = Init;
2290      }
2291    }
2292
2293    Child = Parent;
2294    Parent = cast<RecordDecl>(Parent->getDeclContext());
2295  } while (Parent->isAnonymousStructOrUnion());
2296
2297  return false;
2298}
2299}
2300
2301/// ActOnMemInitializers - Handle the member initializers for a constructor.
2302void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
2303                                SourceLocation ColonLoc,
2304                                MemInitTy **meminits, unsigned NumMemInits,
2305                                bool AnyErrors) {
2306  if (!ConstructorDecl)
2307    return;
2308
2309  AdjustDeclIfTemplate(ConstructorDecl);
2310
2311  CXXConstructorDecl *Constructor
2312    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
2313
2314  if (!Constructor) {
2315    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2316    return;
2317  }
2318
2319  CXXCtorInitializer **MemInits =
2320    reinterpret_cast<CXXCtorInitializer **>(meminits);
2321
2322  // Mapping for the duplicate initializers check.
2323  // For member initializers, this is keyed with a FieldDecl*.
2324  // For base initializers, this is keyed with a Type*.
2325  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
2326
2327  // Mapping for the inconsistent anonymous-union initializers check.
2328  RedundantUnionMap MemberUnions;
2329
2330  bool HadError = false;
2331  for (unsigned i = 0; i < NumMemInits; i++) {
2332    CXXCtorInitializer *Init = MemInits[i];
2333
2334    // Set the source order index.
2335    Init->setSourceOrder(i);
2336
2337    if (Init->isAnyMemberInitializer()) {
2338      FieldDecl *Field = Init->getAnyMember();
2339      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2340          CheckRedundantUnionInit(*this, Init, MemberUnions))
2341        HadError = true;
2342    } else {
2343      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2344      if (CheckRedundantInit(*this, Init, Members[Key]))
2345        HadError = true;
2346    }
2347  }
2348
2349  if (HadError)
2350    return;
2351
2352  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2353
2354  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2355}
2356
2357void
2358Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2359                                             CXXRecordDecl *ClassDecl) {
2360  // Ignore dependent contexts.
2361  if (ClassDecl->isDependentContext())
2362    return;
2363
2364  // FIXME: all the access-control diagnostics are positioned on the
2365  // field/base declaration.  That's probably good; that said, the
2366  // user might reasonably want to know why the destructor is being
2367  // emitted, and we currently don't say.
2368
2369  // Non-static data members.
2370  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2371       E = ClassDecl->field_end(); I != E; ++I) {
2372    FieldDecl *Field = *I;
2373    if (Field->isInvalidDecl())
2374      continue;
2375    QualType FieldType = Context.getBaseElementType(Field->getType());
2376
2377    const RecordType* RT = FieldType->getAs<RecordType>();
2378    if (!RT)
2379      continue;
2380
2381    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2382    if (FieldClassDecl->hasTrivialDestructor())
2383      continue;
2384
2385    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
2386    CheckDestructorAccess(Field->getLocation(), Dtor,
2387                          PDiag(diag::err_access_dtor_field)
2388                            << Field->getDeclName()
2389                            << FieldType);
2390
2391    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2392  }
2393
2394  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2395
2396  // Bases.
2397  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2398       E = ClassDecl->bases_end(); Base != E; ++Base) {
2399    // Bases are always records in a well-formed non-dependent class.
2400    const RecordType *RT = Base->getType()->getAs<RecordType>();
2401
2402    // Remember direct virtual bases.
2403    if (Base->isVirtual())
2404      DirectVirtualBases.insert(RT);
2405
2406    // Ignore trivial destructors.
2407    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2408    if (BaseClassDecl->hasTrivialDestructor())
2409      continue;
2410
2411    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2412
2413    // FIXME: caret should be on the start of the class name
2414    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2415                          PDiag(diag::err_access_dtor_base)
2416                            << Base->getType()
2417                            << Base->getSourceRange());
2418
2419    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2420  }
2421
2422  // Virtual bases.
2423  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2424       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2425
2426    // Bases are always records in a well-formed non-dependent class.
2427    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2428
2429    // Ignore direct virtual bases.
2430    if (DirectVirtualBases.count(RT))
2431      continue;
2432
2433    // Ignore trivial destructors.
2434    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2435    if (BaseClassDecl->hasTrivialDestructor())
2436      continue;
2437
2438    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
2439    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2440                          PDiag(diag::err_access_dtor_vbase)
2441                            << VBase->getType());
2442
2443    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2444  }
2445}
2446
2447void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
2448  if (!CDtorDecl)
2449    return;
2450
2451  if (CXXConstructorDecl *Constructor
2452      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
2453    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2454}
2455
2456bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2457                                  unsigned DiagID, AbstractDiagSelID SelID) {
2458  if (SelID == -1)
2459    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
2460  else
2461    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
2462}
2463
2464bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2465                                  const PartialDiagnostic &PD) {
2466  if (!getLangOptions().CPlusPlus)
2467    return false;
2468
2469  if (const ArrayType *AT = Context.getAsArrayType(T))
2470    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2471
2472  if (const PointerType *PT = T->getAs<PointerType>()) {
2473    // Find the innermost pointer type.
2474    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2475      PT = T;
2476
2477    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2478      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
2479  }
2480
2481  const RecordType *RT = T->getAs<RecordType>();
2482  if (!RT)
2483    return false;
2484
2485  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2486
2487  // We can't answer whether something is abstract until it has a
2488  // definition.  If it's currently being defined, we'll walk back
2489  // over all the declarations when we have a full definition.
2490  const CXXRecordDecl *Def = RD->getDefinition();
2491  if (!Def || Def->isBeingDefined())
2492    return false;
2493
2494  if (!RD->isAbstract())
2495    return false;
2496
2497  Diag(Loc, PD) << RD->getDeclName();
2498  DiagnoseAbstractType(RD);
2499
2500  return true;
2501}
2502
2503void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
2504  // Check if we've already emitted the list of pure virtual functions
2505  // for this class.
2506  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2507    return;
2508
2509  CXXFinalOverriderMap FinalOverriders;
2510  RD->getFinalOverriders(FinalOverriders);
2511
2512  // Keep a set of seen pure methods so we won't diagnose the same method
2513  // more than once.
2514  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
2515
2516  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2517                                   MEnd = FinalOverriders.end();
2518       M != MEnd;
2519       ++M) {
2520    for (OverridingMethods::iterator SO = M->second.begin(),
2521                                  SOEnd = M->second.end();
2522         SO != SOEnd; ++SO) {
2523      // C++ [class.abstract]p4:
2524      //   A class is abstract if it contains or inherits at least one
2525      //   pure virtual function for which the final overrider is pure
2526      //   virtual.
2527
2528      //
2529      if (SO->second.size() != 1)
2530        continue;
2531
2532      if (!SO->second.front().Method->isPure())
2533        continue;
2534
2535      if (!SeenPureMethods.insert(SO->second.front().Method))
2536        continue;
2537
2538      Diag(SO->second.front().Method->getLocation(),
2539           diag::note_pure_virtual_function)
2540        << SO->second.front().Method->getDeclName();
2541    }
2542  }
2543
2544  if (!PureVirtualClassDiagSet)
2545    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2546  PureVirtualClassDiagSet->insert(RD);
2547}
2548
2549namespace {
2550struct AbstractUsageInfo {
2551  Sema &S;
2552  CXXRecordDecl *Record;
2553  CanQualType AbstractType;
2554  bool Invalid;
2555
2556  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
2557    : S(S), Record(Record),
2558      AbstractType(S.Context.getCanonicalType(
2559                   S.Context.getTypeDeclType(Record))),
2560      Invalid(false) {}
2561
2562  void DiagnoseAbstractType() {
2563    if (Invalid) return;
2564    S.DiagnoseAbstractType(Record);
2565    Invalid = true;
2566  }
2567
2568  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
2569};
2570
2571struct CheckAbstractUsage {
2572  AbstractUsageInfo &Info;
2573  const NamedDecl *Ctx;
2574
2575  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
2576    : Info(Info), Ctx(Ctx) {}
2577
2578  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2579    switch (TL.getTypeLocClass()) {
2580#define ABSTRACT_TYPELOC(CLASS, PARENT)
2581#define TYPELOC(CLASS, PARENT) \
2582    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
2583#include "clang/AST/TypeLocNodes.def"
2584    }
2585  }
2586
2587  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2588    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
2589    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2590      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
2591      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
2592    }
2593  }
2594
2595  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2596    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
2597  }
2598
2599  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
2600    // Visit the type parameters from a permissive context.
2601    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
2602      TemplateArgumentLoc TAL = TL.getArgLoc(I);
2603      if (TAL.getArgument().getKind() == TemplateArgument::Type)
2604        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
2605          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
2606      // TODO: other template argument types?
2607    }
2608  }
2609
2610  // Visit pointee types from a permissive context.
2611#define CheckPolymorphic(Type) \
2612  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
2613    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
2614  }
2615  CheckPolymorphic(PointerTypeLoc)
2616  CheckPolymorphic(ReferenceTypeLoc)
2617  CheckPolymorphic(MemberPointerTypeLoc)
2618  CheckPolymorphic(BlockPointerTypeLoc)
2619
2620  /// Handle all the types we haven't given a more specific
2621  /// implementation for above.
2622  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
2623    // Every other kind of type that we haven't called out already
2624    // that has an inner type is either (1) sugar or (2) contains that
2625    // inner type in some way as a subobject.
2626    if (TypeLoc Next = TL.getNextTypeLoc())
2627      return Visit(Next, Sel);
2628
2629    // If there's no inner type and we're in a permissive context,
2630    // don't diagnose.
2631    if (Sel == Sema::AbstractNone) return;
2632
2633    // Check whether the type matches the abstract type.
2634    QualType T = TL.getType();
2635    if (T->isArrayType()) {
2636      Sel = Sema::AbstractArrayType;
2637      T = Info.S.Context.getBaseElementType(T);
2638    }
2639    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
2640    if (CT != Info.AbstractType) return;
2641
2642    // It matched; do some magic.
2643    if (Sel == Sema::AbstractArrayType) {
2644      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
2645        << T << TL.getSourceRange();
2646    } else {
2647      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
2648        << Sel << T << TL.getSourceRange();
2649    }
2650    Info.DiagnoseAbstractType();
2651  }
2652};
2653
2654void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
2655                                  Sema::AbstractDiagSelID Sel) {
2656  CheckAbstractUsage(*this, D).Visit(TL, Sel);
2657}
2658
2659}
2660
2661/// Check for invalid uses of an abstract type in a method declaration.
2662static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2663                                    CXXMethodDecl *MD) {
2664  // No need to do the check on definitions, which require that
2665  // the return/param types be complete.
2666  if (MD->isThisDeclarationADefinition())
2667    return;
2668
2669  // For safety's sake, just ignore it if we don't have type source
2670  // information.  This should never happen for non-implicit methods,
2671  // but...
2672  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
2673    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
2674}
2675
2676/// Check for invalid uses of an abstract type within a class definition.
2677static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
2678                                    CXXRecordDecl *RD) {
2679  for (CXXRecordDecl::decl_iterator
2680         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
2681    Decl *D = *I;
2682    if (D->isImplicit()) continue;
2683
2684    // Methods and method templates.
2685    if (isa<CXXMethodDecl>(D)) {
2686      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
2687    } else if (isa<FunctionTemplateDecl>(D)) {
2688      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
2689      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
2690
2691    // Fields and static variables.
2692    } else if (isa<FieldDecl>(D)) {
2693      FieldDecl *FD = cast<FieldDecl>(D);
2694      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
2695        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
2696    } else if (isa<VarDecl>(D)) {
2697      VarDecl *VD = cast<VarDecl>(D);
2698      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
2699        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
2700
2701    // Nested classes and class templates.
2702    } else if (isa<CXXRecordDecl>(D)) {
2703      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
2704    } else if (isa<ClassTemplateDecl>(D)) {
2705      CheckAbstractClassUsage(Info,
2706                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
2707    }
2708  }
2709}
2710
2711/// \brief Perform semantic checks on a class definition that has been
2712/// completing, introducing implicitly-declared members, checking for
2713/// abstract types, etc.
2714void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
2715  if (!Record)
2716    return;
2717
2718  if (Record->isAbstract() && !Record->isInvalidDecl()) {
2719    AbstractUsageInfo Info(*this, Record);
2720    CheckAbstractClassUsage(Info, Record);
2721  }
2722
2723  // If this is not an aggregate type and has no user-declared constructor,
2724  // complain about any non-static data members of reference or const scalar
2725  // type, since they will never get initializers.
2726  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2727      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2728    bool Complained = false;
2729    for (RecordDecl::field_iterator F = Record->field_begin(),
2730                                 FEnd = Record->field_end();
2731         F != FEnd; ++F) {
2732      if (F->getType()->isReferenceType() ||
2733          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2734        if (!Complained) {
2735          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2736            << Record->getTagKind() << Record;
2737          Complained = true;
2738        }
2739
2740        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2741          << F->getType()->isReferenceType()
2742          << F->getDeclName();
2743      }
2744    }
2745  }
2746
2747  if (Record->isDynamicClass() && !Record->isDependentType())
2748    DynamicClasses.push_back(Record);
2749
2750  if (Record->getIdentifier()) {
2751    // C++ [class.mem]p13:
2752    //   If T is the name of a class, then each of the following shall have a
2753    //   name different from T:
2754    //     - every member of every anonymous union that is a member of class T.
2755    //
2756    // C++ [class.mem]p14:
2757    //   In addition, if class T has a user-declared constructor (12.1), every
2758    //   non-static data member of class T shall have a name different from T.
2759    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
2760         R.first != R.second; ++R.first) {
2761      NamedDecl *D = *R.first;
2762      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
2763          isa<IndirectFieldDecl>(D)) {
2764        Diag(D->getLocation(), diag::err_member_name_of_class)
2765          << D->getDeclName();
2766        break;
2767      }
2768    }
2769  }
2770
2771  // Warn if the class has virtual methods but non-virtual public destructor.
2772  if (Record->isDynamicClass() && !Record->isDependentType()) {
2773    CXXDestructorDecl *dtor = Record->getDestructor();
2774    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
2775      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
2776           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
2777  }
2778
2779  // See if a method overloads virtual methods in a base
2780  /// class without overriding any.
2781  if (!Record->isDependentType()) {
2782    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
2783                                     MEnd = Record->method_end();
2784         M != MEnd; ++M) {
2785      DiagnoseHiddenVirtualMethods(Record, *M);
2786    }
2787  }
2788
2789  // Declare inherited constructors. We do this eagerly here because:
2790  // - The standard requires an eager diagnostic for conflicting inherited
2791  //   constructors from different classes.
2792  // - The lazy declaration of the other implicit constructors is so as to not
2793  //   waste space and performance on classes that are not meant to be
2794  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
2795  //   have inherited constructors.
2796  DeclareInheritedConstructors(Record);
2797}
2798
2799/// \brief Data used with FindHiddenVirtualMethod
2800struct FindHiddenVirtualMethodData {
2801  Sema *S;
2802  CXXMethodDecl *Method;
2803  llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
2804  llvm::SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2805};
2806
2807/// \brief Member lookup function that determines whether a given C++
2808/// method overloads virtual methods in a base class without overriding any,
2809/// to be used with CXXRecordDecl::lookupInBases().
2810static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
2811                                    CXXBasePath &Path,
2812                                    void *UserData) {
2813  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2814
2815  FindHiddenVirtualMethodData &Data
2816    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
2817
2818  DeclarationName Name = Data.Method->getDeclName();
2819  assert(Name.getNameKind() == DeclarationName::Identifier);
2820
2821  bool foundSameNameMethod = false;
2822  llvm::SmallVector<CXXMethodDecl *, 8> overloadedMethods;
2823  for (Path.Decls = BaseRecord->lookup(Name);
2824       Path.Decls.first != Path.Decls.second;
2825       ++Path.Decls.first) {
2826    NamedDecl *D = *Path.Decls.first;
2827    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2828      MD = MD->getCanonicalDecl();
2829      foundSameNameMethod = true;
2830      // Interested only in hidden virtual methods.
2831      if (!MD->isVirtual())
2832        continue;
2833      // If the method we are checking overrides a method from its base
2834      // don't warn about the other overloaded methods.
2835      if (!Data.S->IsOverload(Data.Method, MD, false))
2836        return true;
2837      // Collect the overload only if its hidden.
2838      if (!Data.OverridenAndUsingBaseMethods.count(MD))
2839        overloadedMethods.push_back(MD);
2840    }
2841  }
2842
2843  if (foundSameNameMethod)
2844    Data.OverloadedMethods.append(overloadedMethods.begin(),
2845                                   overloadedMethods.end());
2846  return foundSameNameMethod;
2847}
2848
2849/// \brief See if a method overloads virtual methods in a base class without
2850/// overriding any.
2851void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2852  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
2853                               MD->getLocation()) == Diagnostic::Ignored)
2854    return;
2855  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
2856    return;
2857
2858  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
2859                     /*bool RecordPaths=*/false,
2860                     /*bool DetectVirtual=*/false);
2861  FindHiddenVirtualMethodData Data;
2862  Data.Method = MD;
2863  Data.S = this;
2864
2865  // Keep the base methods that were overriden or introduced in the subclass
2866  // by 'using' in a set. A base method not in this set is hidden.
2867  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
2868       res.first != res.second; ++res.first) {
2869    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
2870      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
2871                                          E = MD->end_overridden_methods();
2872           I != E; ++I)
2873        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
2874    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
2875      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
2876        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
2877  }
2878
2879  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
2880      !Data.OverloadedMethods.empty()) {
2881    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
2882      << MD << (Data.OverloadedMethods.size() > 1);
2883
2884    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
2885      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
2886      Diag(overloadedMD->getLocation(),
2887           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
2888    }
2889  }
2890}
2891
2892void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2893                                             Decl *TagDecl,
2894                                             SourceLocation LBrac,
2895                                             SourceLocation RBrac,
2896                                             AttributeList *AttrList) {
2897  if (!TagDecl)
2898    return;
2899
2900  AdjustDeclIfTemplate(TagDecl);
2901
2902  ActOnFields(S, RLoc, TagDecl,
2903              // strict aliasing violation!
2904              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
2905              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2906
2907  CheckCompletedCXXClass(
2908                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
2909}
2910
2911namespace {
2912  /// \brief Helper class that collects exception specifications for
2913  /// implicitly-declared special member functions.
2914  class ImplicitExceptionSpecification {
2915    ASTContext &Context;
2916    bool AllowsAllExceptions;
2917    llvm::SmallPtrSet<CanQualType, 4> ExceptionsSeen;
2918    llvm::SmallVector<QualType, 4> Exceptions;
2919
2920  public:
2921    explicit ImplicitExceptionSpecification(ASTContext &Context)
2922      : Context(Context), AllowsAllExceptions(false) { }
2923
2924    /// \brief Whether the special member function should have any
2925    /// exception specification at all.
2926    bool hasExceptionSpecification() const {
2927      return !AllowsAllExceptions;
2928    }
2929
2930    /// \brief Whether the special member function should have a
2931    /// throw(...) exception specification (a Microsoft extension).
2932    bool hasAnyExceptionSpecification() const {
2933      return false;
2934    }
2935
2936    /// \brief The number of exceptions in the exception specification.
2937    unsigned size() const { return Exceptions.size(); }
2938
2939    /// \brief The set of exceptions in the exception specification.
2940    const QualType *data() const { return Exceptions.data(); }
2941
2942    /// \brief Note that
2943    void CalledDecl(CXXMethodDecl *Method) {
2944      // If we already know that we allow all exceptions, do nothing.
2945      if (AllowsAllExceptions || !Method)
2946        return;
2947
2948      const FunctionProtoType *Proto
2949        = Method->getType()->getAs<FunctionProtoType>();
2950
2951      // If this function can throw any exceptions, make a note of that.
2952      if (!Proto->hasExceptionSpec() || Proto->hasAnyExceptionSpec()) {
2953        AllowsAllExceptions = true;
2954        ExceptionsSeen.clear();
2955        Exceptions.clear();
2956        return;
2957      }
2958
2959      // Record the exceptions in this function's exception specification.
2960      for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
2961                                              EEnd = Proto->exception_end();
2962           E != EEnd; ++E)
2963        if (ExceptionsSeen.insert(Context.getCanonicalType(*E)))
2964          Exceptions.push_back(*E);
2965    }
2966  };
2967}
2968
2969
2970/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2971/// special functions, such as the default constructor, copy
2972/// constructor, or destructor, to the given C++ class (C++
2973/// [special]p1).  This routine can only be executed just before the
2974/// definition of the class is complete.
2975void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
2976  if (!ClassDecl->hasUserDeclaredConstructor())
2977    ++ASTContext::NumImplicitDefaultConstructors;
2978
2979  if (!ClassDecl->hasUserDeclaredCopyConstructor())
2980    ++ASTContext::NumImplicitCopyConstructors;
2981
2982  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2983    ++ASTContext::NumImplicitCopyAssignmentOperators;
2984
2985    // If we have a dynamic class, then the copy assignment operator may be
2986    // virtual, so we have to declare it immediately. This ensures that, e.g.,
2987    // it shows up in the right place in the vtable and that we diagnose
2988    // problems with the implicit exception specification.
2989    if (ClassDecl->isDynamicClass())
2990      DeclareImplicitCopyAssignment(ClassDecl);
2991  }
2992
2993  if (!ClassDecl->hasUserDeclaredDestructor()) {
2994    ++ASTContext::NumImplicitDestructors;
2995
2996    // If we have a dynamic class, then the destructor may be virtual, so we
2997    // have to declare the destructor immediately. This ensures that, e.g., it
2998    // shows up in the right place in the vtable and that we diagnose problems
2999    // with the implicit exception specification.
3000    if (ClassDecl->isDynamicClass())
3001      DeclareImplicitDestructor(ClassDecl);
3002  }
3003}
3004
3005void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
3006  if (!D)
3007    return;
3008
3009  TemplateParameterList *Params = 0;
3010  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
3011    Params = Template->getTemplateParameters();
3012  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
3013           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
3014    Params = PartialSpec->getTemplateParameters();
3015  else
3016    return;
3017
3018  for (TemplateParameterList::iterator Param = Params->begin(),
3019                                    ParamEnd = Params->end();
3020       Param != ParamEnd; ++Param) {
3021    NamedDecl *Named = cast<NamedDecl>(*Param);
3022    if (Named->getDeclName()) {
3023      S->AddDecl(Named);
3024      IdResolver.AddDecl(Named);
3025    }
3026  }
3027}
3028
3029void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3030  if (!RecordD) return;
3031  AdjustDeclIfTemplate(RecordD);
3032  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
3033  PushDeclContext(S, Record);
3034}
3035
3036void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
3037  if (!RecordD) return;
3038  PopDeclContext();
3039}
3040
3041/// ActOnStartDelayedCXXMethodDeclaration - We have completed
3042/// parsing a top-level (non-nested) C++ class, and we are now
3043/// parsing those parts of the given Method declaration that could
3044/// not be parsed earlier (C++ [class.mem]p2), such as default
3045/// arguments. This action should enter the scope of the given
3046/// Method declaration as if we had just parsed the qualified method
3047/// name. However, it should not bring the parameters into scope;
3048/// that will be performed by ActOnDelayedCXXMethodParameter.
3049void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3050}
3051
3052/// ActOnDelayedCXXMethodParameter - We've already started a delayed
3053/// C++ method declaration. We're (re-)introducing the given
3054/// function parameter into scope for use in parsing later parts of
3055/// the method declaration. For example, we could see an
3056/// ActOnParamDefaultArgument event for this parameter.
3057void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
3058  if (!ParamD)
3059    return;
3060
3061  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
3062
3063  // If this parameter has an unparsed default argument, clear it out
3064  // to make way for the parsed default argument.
3065  if (Param->hasUnparsedDefaultArg())
3066    Param->setDefaultArg(0);
3067
3068  S->AddDecl(Param);
3069  if (Param->getDeclName())
3070    IdResolver.AddDecl(Param);
3071}
3072
3073/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
3074/// processing the delayed method declaration for Method. The method
3075/// declaration is now considered finished. There may be a separate
3076/// ActOnStartOfFunctionDef action later (not necessarily
3077/// immediately!) for this method, if it was also defined inside the
3078/// class body.
3079void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
3080  if (!MethodD)
3081    return;
3082
3083  AdjustDeclIfTemplate(MethodD);
3084
3085  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
3086
3087  // Now that we have our default arguments, check the constructor
3088  // again. It could produce additional diagnostics or affect whether
3089  // the class has implicitly-declared destructors, among other
3090  // things.
3091  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
3092    CheckConstructor(Constructor);
3093
3094  // Check the default arguments, which we may have added.
3095  if (!Method->isInvalidDecl())
3096    CheckCXXDefaultArguments(Method);
3097}
3098
3099/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
3100/// the well-formedness of the constructor declarator @p D with type @p
3101/// R. If there are any errors in the declarator, this routine will
3102/// emit diagnostics and set the invalid bit to true.  In any case, the type
3103/// will be updated to reflect a well-formed type for the constructor and
3104/// returned.
3105QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
3106                                          StorageClass &SC) {
3107  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3108
3109  // C++ [class.ctor]p3:
3110  //   A constructor shall not be virtual (10.3) or static (9.4). A
3111  //   constructor can be invoked for a const, volatile or const
3112  //   volatile object. A constructor shall not be declared const,
3113  //   volatile, or const volatile (9.3.2).
3114  if (isVirtual) {
3115    if (!D.isInvalidType())
3116      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3117        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
3118        << SourceRange(D.getIdentifierLoc());
3119    D.setInvalidType();
3120  }
3121  if (SC == SC_Static) {
3122    if (!D.isInvalidType())
3123      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
3124        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3125        << SourceRange(D.getIdentifierLoc());
3126    D.setInvalidType();
3127    SC = SC_None;
3128  }
3129
3130  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3131  if (FTI.TypeQuals != 0) {
3132    if (FTI.TypeQuals & Qualifiers::Const)
3133      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3134        << "const" << SourceRange(D.getIdentifierLoc());
3135    if (FTI.TypeQuals & Qualifiers::Volatile)
3136      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3137        << "volatile" << SourceRange(D.getIdentifierLoc());
3138    if (FTI.TypeQuals & Qualifiers::Restrict)
3139      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
3140        << "restrict" << SourceRange(D.getIdentifierLoc());
3141    D.setInvalidType();
3142  }
3143
3144  // C++0x [class.ctor]p4:
3145  //   A constructor shall not be declared with a ref-qualifier.
3146  if (FTI.hasRefQualifier()) {
3147    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
3148      << FTI.RefQualifierIsLValueRef
3149      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3150    D.setInvalidType();
3151  }
3152
3153  // Rebuild the function type "R" without any type qualifiers (in
3154  // case any of the errors above fired) and with "void" as the
3155  // return type, since constructors don't have return types.
3156  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3157  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
3158    return R;
3159
3160  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3161  EPI.TypeQuals = 0;
3162  EPI.RefQualifier = RQ_None;
3163
3164  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
3165                                 Proto->getNumArgs(), EPI);
3166}
3167
3168/// CheckConstructor - Checks a fully-formed constructor for
3169/// well-formedness, issuing any diagnostics required. Returns true if
3170/// the constructor declarator is invalid.
3171void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
3172  CXXRecordDecl *ClassDecl
3173    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
3174  if (!ClassDecl)
3175    return Constructor->setInvalidDecl();
3176
3177  // C++ [class.copy]p3:
3178  //   A declaration of a constructor for a class X is ill-formed if
3179  //   its first parameter is of type (optionally cv-qualified) X and
3180  //   either there are no other parameters or else all other
3181  //   parameters have default arguments.
3182  if (!Constructor->isInvalidDecl() &&
3183      ((Constructor->getNumParams() == 1) ||
3184       (Constructor->getNumParams() > 1 &&
3185        Constructor->getParamDecl(1)->hasDefaultArg())) &&
3186      Constructor->getTemplateSpecializationKind()
3187                                              != TSK_ImplicitInstantiation) {
3188    QualType ParamType = Constructor->getParamDecl(0)->getType();
3189    QualType ClassTy = Context.getTagDeclType(ClassDecl);
3190    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
3191      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
3192      const char *ConstRef
3193        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
3194                                                        : " const &";
3195      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
3196        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
3197
3198      // FIXME: Rather that making the constructor invalid, we should endeavor
3199      // to fix the type.
3200      Constructor->setInvalidDecl();
3201    }
3202  }
3203}
3204
3205/// CheckDestructor - Checks a fully-formed destructor definition for
3206/// well-formedness, issuing any diagnostics required.  Returns true
3207/// on error.
3208bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3209  CXXRecordDecl *RD = Destructor->getParent();
3210
3211  if (Destructor->isVirtual()) {
3212    SourceLocation Loc;
3213
3214    if (!Destructor->isImplicit())
3215      Loc = Destructor->getLocation();
3216    else
3217      Loc = RD->getLocation();
3218
3219    // If we have a virtual destructor, look up the deallocation function
3220    FunctionDecl *OperatorDelete = 0;
3221    DeclarationName Name =
3222    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3223    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3224      return true;
3225
3226    MarkDeclarationReferenced(Loc, OperatorDelete);
3227
3228    Destructor->setOperatorDelete(OperatorDelete);
3229  }
3230
3231  return false;
3232}
3233
3234static inline bool
3235FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3236  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3237          FTI.ArgInfo[0].Param &&
3238          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
3239}
3240
3241/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3242/// the well-formednes of the destructor declarator @p D with type @p
3243/// R. If there are any errors in the declarator, this routine will
3244/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3245/// will be updated to reflect a well-formed type for the destructor and
3246/// returned.
3247QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
3248                                         StorageClass& SC) {
3249  // C++ [class.dtor]p1:
3250  //   [...] A typedef-name that names a class is a class-name
3251  //   (7.1.3); however, a typedef-name that names a class shall not
3252  //   be used as the identifier in the declarator for a destructor
3253  //   declaration.
3254  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3255  if (isa<TypedefType>(DeclaratorType))
3256    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3257      << DeclaratorType;
3258
3259  // C++ [class.dtor]p2:
3260  //   A destructor is used to destroy objects of its class type. A
3261  //   destructor takes no parameters, and no return type can be
3262  //   specified for it (not even void). The address of a destructor
3263  //   shall not be taken. A destructor shall not be static. A
3264  //   destructor can be invoked for a const, volatile or const
3265  //   volatile object. A destructor shall not be declared const,
3266  //   volatile or const volatile (9.3.2).
3267  if (SC == SC_Static) {
3268    if (!D.isInvalidType())
3269      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3270        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3271        << SourceRange(D.getIdentifierLoc())
3272        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3273
3274    SC = SC_None;
3275  }
3276  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3277    // Destructors don't have return types, but the parser will
3278    // happily parse something like:
3279    //
3280    //   class X {
3281    //     float ~X();
3282    //   };
3283    //
3284    // The return type will be eliminated later.
3285    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3286      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3287      << SourceRange(D.getIdentifierLoc());
3288  }
3289
3290  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3291  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3292    if (FTI.TypeQuals & Qualifiers::Const)
3293      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3294        << "const" << SourceRange(D.getIdentifierLoc());
3295    if (FTI.TypeQuals & Qualifiers::Volatile)
3296      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3297        << "volatile" << SourceRange(D.getIdentifierLoc());
3298    if (FTI.TypeQuals & Qualifiers::Restrict)
3299      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3300        << "restrict" << SourceRange(D.getIdentifierLoc());
3301    D.setInvalidType();
3302  }
3303
3304  // C++0x [class.dtor]p2:
3305  //   A destructor shall not be declared with a ref-qualifier.
3306  if (FTI.hasRefQualifier()) {
3307    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
3308      << FTI.RefQualifierIsLValueRef
3309      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
3310    D.setInvalidType();
3311  }
3312
3313  // Make sure we don't have any parameters.
3314  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3315    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3316
3317    // Delete the parameters.
3318    FTI.freeArgs();
3319    D.setInvalidType();
3320  }
3321
3322  // Make sure the destructor isn't variadic.
3323  if (FTI.isVariadic) {
3324    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3325    D.setInvalidType();
3326  }
3327
3328  // Rebuild the function type "R" without any type qualifiers or
3329  // parameters (in case any of the errors above fired) and with
3330  // "void" as the return type, since destructors don't have return
3331  // types.
3332  if (!D.isInvalidType())
3333    return R;
3334
3335  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3336  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
3337  EPI.Variadic = false;
3338  EPI.TypeQuals = 0;
3339  EPI.RefQualifier = RQ_None;
3340  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
3341}
3342
3343/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3344/// well-formednes of the conversion function declarator @p D with
3345/// type @p R. If there are any errors in the declarator, this routine
3346/// will emit diagnostics and return true. Otherwise, it will return
3347/// false. Either way, the type @p R will be updated to reflect a
3348/// well-formed type for the conversion operator.
3349void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3350                                     StorageClass& SC) {
3351  // C++ [class.conv.fct]p1:
3352  //   Neither parameter types nor return type can be specified. The
3353  //   type of a conversion function (8.3.5) is "function taking no
3354  //   parameter returning conversion-type-id."
3355  if (SC == SC_Static) {
3356    if (!D.isInvalidType())
3357      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3358        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3359        << SourceRange(D.getIdentifierLoc());
3360    D.setInvalidType();
3361    SC = SC_None;
3362  }
3363
3364  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3365
3366  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3367    // Conversion functions don't have return types, but the parser will
3368    // happily parse something like:
3369    //
3370    //   class X {
3371    //     float operator bool();
3372    //   };
3373    //
3374    // The return type will be changed later anyway.
3375    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3376      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3377      << SourceRange(D.getIdentifierLoc());
3378    D.setInvalidType();
3379  }
3380
3381  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3382
3383  // Make sure we don't have any parameters.
3384  if (Proto->getNumArgs() > 0) {
3385    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3386
3387    // Delete the parameters.
3388    D.getFunctionTypeInfo().freeArgs();
3389    D.setInvalidType();
3390  } else if (Proto->isVariadic()) {
3391    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3392    D.setInvalidType();
3393  }
3394
3395  // Diagnose "&operator bool()" and other such nonsense.  This
3396  // is actually a gcc extension which we don't support.
3397  if (Proto->getResultType() != ConvType) {
3398    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3399      << Proto->getResultType();
3400    D.setInvalidType();
3401    ConvType = Proto->getResultType();
3402  }
3403
3404  // C++ [class.conv.fct]p4:
3405  //   The conversion-type-id shall not represent a function type nor
3406  //   an array type.
3407  if (ConvType->isArrayType()) {
3408    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3409    ConvType = Context.getPointerType(ConvType);
3410    D.setInvalidType();
3411  } else if (ConvType->isFunctionType()) {
3412    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3413    ConvType = Context.getPointerType(ConvType);
3414    D.setInvalidType();
3415  }
3416
3417  // Rebuild the function type "R" without any parameters (in case any
3418  // of the errors above fired) and with the conversion type as the
3419  // return type.
3420  if (D.isInvalidType())
3421    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
3422
3423  // C++0x explicit conversion operators.
3424  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3425    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3426         diag::warn_explicit_conversion_functions)
3427      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3428}
3429
3430/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3431/// the declaration of the given C++ conversion function. This routine
3432/// is responsible for recording the conversion function in the C++
3433/// class, if possible.
3434Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3435  assert(Conversion && "Expected to receive a conversion function declaration");
3436
3437  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3438
3439  // Make sure we aren't redeclaring the conversion function.
3440  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3441
3442  // C++ [class.conv.fct]p1:
3443  //   [...] A conversion function is never used to convert a
3444  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3445  //   same object type (or a reference to it), to a (possibly
3446  //   cv-qualified) base class of that type (or a reference to it),
3447  //   or to (possibly cv-qualified) void.
3448  // FIXME: Suppress this warning if the conversion function ends up being a
3449  // virtual function that overrides a virtual function in a base class.
3450  QualType ClassType
3451    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3452  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3453    ConvType = ConvTypeRef->getPointeeType();
3454  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
3455      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
3456    /* Suppress diagnostics for instantiations. */;
3457  else if (ConvType->isRecordType()) {
3458    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3459    if (ConvType == ClassType)
3460      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3461        << ClassType;
3462    else if (IsDerivedFrom(ClassType, ConvType))
3463      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3464        <<  ClassType << ConvType;
3465  } else if (ConvType->isVoidType()) {
3466    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3467      << ClassType << ConvType;
3468  }
3469
3470  if (FunctionTemplateDecl *ConversionTemplate
3471                                = Conversion->getDescribedFunctionTemplate())
3472    return ConversionTemplate;
3473
3474  return Conversion;
3475}
3476
3477//===----------------------------------------------------------------------===//
3478// Namespace Handling
3479//===----------------------------------------------------------------------===//
3480
3481
3482
3483/// ActOnStartNamespaceDef - This is called at the start of a namespace
3484/// definition.
3485Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3486                                   SourceLocation InlineLoc,
3487                                   SourceLocation IdentLoc,
3488                                   IdentifierInfo *II,
3489                                   SourceLocation LBrace,
3490                                   AttributeList *AttrList) {
3491  // anonymous namespace starts at its left brace
3492  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext,
3493    (II ? IdentLoc : LBrace) , II);
3494  Namespc->setLBracLoc(LBrace);
3495  Namespc->setInline(InlineLoc.isValid());
3496
3497  Scope *DeclRegionScope = NamespcScope->getParent();
3498
3499  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3500
3501  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
3502    PushNamespaceVisibilityAttr(Attr);
3503
3504  if (II) {
3505    // C++ [namespace.def]p2:
3506    //   The identifier in an original-namespace-definition shall not
3507    //   have been previously defined in the declarative region in
3508    //   which the original-namespace-definition appears. The
3509    //   identifier in an original-namespace-definition is the name of
3510    //   the namespace. Subsequently in that declarative region, it is
3511    //   treated as an original-namespace-name.
3512    //
3513    // Since namespace names are unique in their scope, and we don't
3514    // look through using directives, just
3515    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
3516    NamedDecl *PrevDecl = R.first == R.second? 0 : *R.first;
3517
3518    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3519      // This is an extended namespace definition.
3520      if (Namespc->isInline() != OrigNS->isInline()) {
3521        // inline-ness must match
3522        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3523          << Namespc->isInline();
3524        Diag(OrigNS->getLocation(), diag::note_previous_definition);
3525        Namespc->setInvalidDecl();
3526        // Recover by ignoring the new namespace's inline status.
3527        Namespc->setInline(OrigNS->isInline());
3528      }
3529
3530      // Attach this namespace decl to the chain of extended namespace
3531      // definitions.
3532      OrigNS->setNextNamespace(Namespc);
3533      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3534
3535      // Remove the previous declaration from the scope.
3536      if (DeclRegionScope->isDeclScope(OrigNS)) {
3537        IdResolver.RemoveDecl(OrigNS);
3538        DeclRegionScope->RemoveDecl(OrigNS);
3539      }
3540    } else if (PrevDecl) {
3541      // This is an invalid name redefinition.
3542      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3543       << Namespc->getDeclName();
3544      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3545      Namespc->setInvalidDecl();
3546      // Continue on to push Namespc as current DeclContext and return it.
3547    } else if (II->isStr("std") &&
3548               CurContext->getRedeclContext()->isTranslationUnit()) {
3549      // This is the first "real" definition of the namespace "std", so update
3550      // our cache of the "std" namespace to point at this definition.
3551      if (NamespaceDecl *StdNS = getStdNamespace()) {
3552        // We had already defined a dummy namespace "std". Link this new
3553        // namespace definition to the dummy namespace "std".
3554        StdNS->setNextNamespace(Namespc);
3555        StdNS->setLocation(IdentLoc);
3556        Namespc->setOriginalNamespace(StdNS->getOriginalNamespace());
3557      }
3558
3559      // Make our StdNamespace cache point at the first real definition of the
3560      // "std" namespace.
3561      StdNamespace = Namespc;
3562    }
3563
3564    PushOnScopeChains(Namespc, DeclRegionScope);
3565  } else {
3566    // Anonymous namespaces.
3567    assert(Namespc->isAnonymousNamespace());
3568
3569    // Link the anonymous namespace into its parent.
3570    NamespaceDecl *PrevDecl;
3571    DeclContext *Parent = CurContext->getRedeclContext();
3572    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3573      PrevDecl = TU->getAnonymousNamespace();
3574      TU->setAnonymousNamespace(Namespc);
3575    } else {
3576      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3577      PrevDecl = ND->getAnonymousNamespace();
3578      ND->setAnonymousNamespace(Namespc);
3579    }
3580
3581    // Link the anonymous namespace with its previous declaration.
3582    if (PrevDecl) {
3583      assert(PrevDecl->isAnonymousNamespace());
3584      assert(!PrevDecl->getNextNamespace());
3585      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3586      PrevDecl->setNextNamespace(Namespc);
3587
3588      if (Namespc->isInline() != PrevDecl->isInline()) {
3589        // inline-ness must match
3590        Diag(Namespc->getLocation(), diag::err_inline_namespace_mismatch)
3591          << Namespc->isInline();
3592        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3593        Namespc->setInvalidDecl();
3594        // Recover by ignoring the new namespace's inline status.
3595        Namespc->setInline(PrevDecl->isInline());
3596      }
3597    }
3598
3599    CurContext->addDecl(Namespc);
3600
3601    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3602    //   behaves as if it were replaced by
3603    //     namespace unique { /* empty body */ }
3604    //     using namespace unique;
3605    //     namespace unique { namespace-body }
3606    //   where all occurrences of 'unique' in a translation unit are
3607    //   replaced by the same identifier and this identifier differs
3608    //   from all other identifiers in the entire program.
3609
3610    // We just create the namespace with an empty name and then add an
3611    // implicit using declaration, just like the standard suggests.
3612    //
3613    // CodeGen enforces the "universally unique" aspect by giving all
3614    // declarations semantically contained within an anonymous
3615    // namespace internal linkage.
3616
3617    if (!PrevDecl) {
3618      UsingDirectiveDecl* UD
3619        = UsingDirectiveDecl::Create(Context, CurContext,
3620                                     /* 'using' */ LBrace,
3621                                     /* 'namespace' */ SourceLocation(),
3622                                     /* qualifier */ SourceRange(),
3623                                     /* NNS */ NULL,
3624                                     /* identifier */ SourceLocation(),
3625                                     Namespc,
3626                                     /* Ancestor */ CurContext);
3627      UD->setImplicit();
3628      CurContext->addDecl(UD);
3629    }
3630  }
3631
3632  // Although we could have an invalid decl (i.e. the namespace name is a
3633  // redefinition), push it as current DeclContext and try to continue parsing.
3634  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3635  // for the namespace has the declarations that showed up in that particular
3636  // namespace definition.
3637  PushDeclContext(NamespcScope, Namespc);
3638  return Namespc;
3639}
3640
3641/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3642/// is a namespace alias, returns the namespace it points to.
3643static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3644  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3645    return AD->getNamespace();
3646  return dyn_cast_or_null<NamespaceDecl>(D);
3647}
3648
3649/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3650/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3651void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
3652  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3653  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3654  Namespc->setRBracLoc(RBrace);
3655  PopDeclContext();
3656  if (Namespc->hasAttr<VisibilityAttr>())
3657    PopPragmaVisibility();
3658}
3659
3660CXXRecordDecl *Sema::getStdBadAlloc() const {
3661  return cast_or_null<CXXRecordDecl>(
3662                                  StdBadAlloc.get(Context.getExternalSource()));
3663}
3664
3665NamespaceDecl *Sema::getStdNamespace() const {
3666  return cast_or_null<NamespaceDecl>(
3667                                 StdNamespace.get(Context.getExternalSource()));
3668}
3669
3670/// \brief Retrieve the special "std" namespace, which may require us to
3671/// implicitly define the namespace.
3672NamespaceDecl *Sema::getOrCreateStdNamespace() {
3673  if (!StdNamespace) {
3674    // The "std" namespace has not yet been defined, so build one implicitly.
3675    StdNamespace = NamespaceDecl::Create(Context,
3676                                         Context.getTranslationUnitDecl(),
3677                                         SourceLocation(),
3678                                         &PP.getIdentifierTable().get("std"));
3679    getStdNamespace()->setImplicit(true);
3680  }
3681
3682  return getStdNamespace();
3683}
3684
3685Decl *Sema::ActOnUsingDirective(Scope *S,
3686                                          SourceLocation UsingLoc,
3687                                          SourceLocation NamespcLoc,
3688                                          CXXScopeSpec &SS,
3689                                          SourceLocation IdentLoc,
3690                                          IdentifierInfo *NamespcName,
3691                                          AttributeList *AttrList) {
3692  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3693  assert(NamespcName && "Invalid NamespcName.");
3694  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3695
3696  // This can only happen along a recovery path.
3697  while (S->getFlags() & Scope::TemplateParamScope)
3698    S = S->getParent();
3699  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3700
3701  UsingDirectiveDecl *UDir = 0;
3702  NestedNameSpecifier *Qualifier = 0;
3703  if (SS.isSet())
3704    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3705
3706  // Lookup namespace name.
3707  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3708  LookupParsedName(R, S, &SS);
3709  if (R.isAmbiguous())
3710    return 0;
3711
3712  if (R.empty()) {
3713    // Allow "using namespace std;" or "using namespace ::std;" even if
3714    // "std" hasn't been defined yet, for GCC compatibility.
3715    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
3716        NamespcName->isStr("std")) {
3717      Diag(IdentLoc, diag::ext_using_undefined_std);
3718      R.addDecl(getOrCreateStdNamespace());
3719      R.resolveKind();
3720    }
3721    // Otherwise, attempt typo correction.
3722    else if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
3723                                                       CTC_NoKeywords, 0)) {
3724      if (R.getAsSingle<NamespaceDecl>() ||
3725          R.getAsSingle<NamespaceAliasDecl>()) {
3726        if (DeclContext *DC = computeDeclContext(SS, false))
3727          Diag(IdentLoc, diag::err_using_directive_member_suggest)
3728            << NamespcName << DC << Corrected << SS.getRange()
3729            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3730        else
3731          Diag(IdentLoc, diag::err_using_directive_suggest)
3732            << NamespcName << Corrected
3733            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
3734        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
3735          << Corrected;
3736
3737        NamespcName = Corrected.getAsIdentifierInfo();
3738      } else {
3739        R.clear();
3740        R.setLookupName(NamespcName);
3741      }
3742    }
3743  }
3744
3745  if (!R.empty()) {
3746    NamedDecl *Named = R.getFoundDecl();
3747    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3748        && "expected namespace decl");
3749    // C++ [namespace.udir]p1:
3750    //   A using-directive specifies that the names in the nominated
3751    //   namespace can be used in the scope in which the
3752    //   using-directive appears after the using-directive. During
3753    //   unqualified name lookup (3.4.1), the names appear as if they
3754    //   were declared in the nearest enclosing namespace which
3755    //   contains both the using-directive and the nominated
3756    //   namespace. [Note: in this context, "contains" means "contains
3757    //   directly or indirectly". ]
3758
3759    // Find enclosing context containing both using-directive and
3760    // nominated namespace.
3761    NamespaceDecl *NS = getNamespaceDecl(Named);
3762    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3763    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3764      CommonAncestor = CommonAncestor->getParent();
3765
3766    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3767                                      SS.getRange(),
3768                                      (NestedNameSpecifier *)SS.getScopeRep(),
3769                                      IdentLoc, Named, CommonAncestor);
3770    PushUsingDirective(S, UDir);
3771  } else {
3772    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3773  }
3774
3775  // FIXME: We ignore attributes for now.
3776  return UDir;
3777}
3778
3779void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3780  // If scope has associated entity, then using directive is at namespace
3781  // or translation unit scope. We add UsingDirectiveDecls, into
3782  // it's lookup structure.
3783  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3784    Ctx->addDecl(UDir);
3785  else
3786    // Otherwise it is block-sope. using-directives will affect lookup
3787    // only to the end of scope.
3788    S->PushUsingDirective(UDir);
3789}
3790
3791
3792Decl *Sema::ActOnUsingDeclaration(Scope *S,
3793                                  AccessSpecifier AS,
3794                                  bool HasUsingKeyword,
3795                                  SourceLocation UsingLoc,
3796                                  CXXScopeSpec &SS,
3797                                  UnqualifiedId &Name,
3798                                  AttributeList *AttrList,
3799                                  bool IsTypeName,
3800                                  SourceLocation TypenameLoc) {
3801  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3802
3803  switch (Name.getKind()) {
3804  case UnqualifiedId::IK_Identifier:
3805  case UnqualifiedId::IK_OperatorFunctionId:
3806  case UnqualifiedId::IK_LiteralOperatorId:
3807  case UnqualifiedId::IK_ConversionFunctionId:
3808    break;
3809
3810  case UnqualifiedId::IK_ConstructorName:
3811  case UnqualifiedId::IK_ConstructorTemplateId:
3812    // C++0x inherited constructors.
3813    if (getLangOptions().CPlusPlus0x) break;
3814
3815    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3816      << SS.getRange();
3817    return 0;
3818
3819  case UnqualifiedId::IK_DestructorName:
3820    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3821      << SS.getRange();
3822    return 0;
3823
3824  case UnqualifiedId::IK_TemplateId:
3825    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3826      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3827    return 0;
3828  }
3829
3830  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
3831  DeclarationName TargetName = TargetNameInfo.getName();
3832  if (!TargetName)
3833    return 0;
3834
3835  // Warn about using declarations.
3836  // TODO: store that the declaration was written without 'using' and
3837  // talk about access decls instead of using decls in the
3838  // diagnostics.
3839  if (!HasUsingKeyword) {
3840    UsingLoc = Name.getSourceRange().getBegin();
3841
3842    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3843      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3844  }
3845
3846  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
3847      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
3848    return 0;
3849
3850  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3851                                        TargetNameInfo, AttrList,
3852                                        /* IsInstantiation */ false,
3853                                        IsTypeName, TypenameLoc);
3854  if (UD)
3855    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3856
3857  return UD;
3858}
3859
3860/// \brief Determine whether a using declaration considers the given
3861/// declarations as "equivalent", e.g., if they are redeclarations of
3862/// the same entity or are both typedefs of the same type.
3863static bool
3864IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
3865                         bool &SuppressRedeclaration) {
3866  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
3867    SuppressRedeclaration = false;
3868    return true;
3869  }
3870
3871  if (TypedefDecl *TD1 = dyn_cast<TypedefDecl>(D1))
3872    if (TypedefDecl *TD2 = dyn_cast<TypedefDecl>(D2)) {
3873      SuppressRedeclaration = true;
3874      return Context.hasSameType(TD1->getUnderlyingType(),
3875                                 TD2->getUnderlyingType());
3876    }
3877
3878  return false;
3879}
3880
3881
3882/// Determines whether to create a using shadow decl for a particular
3883/// decl, given the set of decls existing prior to this using lookup.
3884bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3885                                const LookupResult &Previous) {
3886  // Diagnose finding a decl which is not from a base class of the
3887  // current class.  We do this now because there are cases where this
3888  // function will silently decide not to build a shadow decl, which
3889  // will pre-empt further diagnostics.
3890  //
3891  // We don't need to do this in C++0x because we do the check once on
3892  // the qualifier.
3893  //
3894  // FIXME: diagnose the following if we care enough:
3895  //   struct A { int foo; };
3896  //   struct B : A { using A::foo; };
3897  //   template <class T> struct C : A {};
3898  //   template <class T> struct D : C<T> { using B::foo; } // <---
3899  // This is invalid (during instantiation) in C++03 because B::foo
3900  // resolves to the using decl in B, which is not a base class of D<T>.
3901  // We can't diagnose it immediately because C<T> is an unknown
3902  // specialization.  The UsingShadowDecl in D<T> then points directly
3903  // to A::foo, which will look well-formed when we instantiate.
3904  // The right solution is to not collapse the shadow-decl chain.
3905  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3906    DeclContext *OrigDC = Orig->getDeclContext();
3907
3908    // Handle enums and anonymous structs.
3909    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3910    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3911    while (OrigRec->isAnonymousStructOrUnion())
3912      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3913
3914    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3915      if (OrigDC == CurContext) {
3916        Diag(Using->getLocation(),
3917             diag::err_using_decl_nested_name_specifier_is_current_class)
3918          << Using->getNestedNameRange();
3919        Diag(Orig->getLocation(), diag::note_using_decl_target);
3920        return true;
3921      }
3922
3923      Diag(Using->getNestedNameRange().getBegin(),
3924           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3925        << Using->getTargetNestedNameDecl()
3926        << cast<CXXRecordDecl>(CurContext)
3927        << Using->getNestedNameRange();
3928      Diag(Orig->getLocation(), diag::note_using_decl_target);
3929      return true;
3930    }
3931  }
3932
3933  if (Previous.empty()) return false;
3934
3935  NamedDecl *Target = Orig;
3936  if (isa<UsingShadowDecl>(Target))
3937    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3938
3939  // If the target happens to be one of the previous declarations, we
3940  // don't have a conflict.
3941  //
3942  // FIXME: but we might be increasing its access, in which case we
3943  // should redeclare it.
3944  NamedDecl *NonTag = 0, *Tag = 0;
3945  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3946         I != E; ++I) {
3947    NamedDecl *D = (*I)->getUnderlyingDecl();
3948    bool Result;
3949    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
3950      return Result;
3951
3952    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3953  }
3954
3955  if (Target->isFunctionOrFunctionTemplate()) {
3956    FunctionDecl *FD;
3957    if (isa<FunctionTemplateDecl>(Target))
3958      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3959    else
3960      FD = cast<FunctionDecl>(Target);
3961
3962    NamedDecl *OldDecl = 0;
3963    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
3964    case Ovl_Overload:
3965      return false;
3966
3967    case Ovl_NonFunction:
3968      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3969      break;
3970
3971    // We found a decl with the exact signature.
3972    case Ovl_Match:
3973      // If we're in a record, we want to hide the target, so we
3974      // return true (without a diagnostic) to tell the caller not to
3975      // build a shadow decl.
3976      if (CurContext->isRecord())
3977        return true;
3978
3979      // If we're not in a record, this is an error.
3980      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3981      break;
3982    }
3983
3984    Diag(Target->getLocation(), diag::note_using_decl_target);
3985    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3986    return true;
3987  }
3988
3989  // Target is not a function.
3990
3991  if (isa<TagDecl>(Target)) {
3992    // No conflict between a tag and a non-tag.
3993    if (!Tag) return false;
3994
3995    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3996    Diag(Target->getLocation(), diag::note_using_decl_target);
3997    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3998    return true;
3999  }
4000
4001  // No conflict between a tag and a non-tag.
4002  if (!NonTag) return false;
4003
4004  Diag(Using->getLocation(), diag::err_using_decl_conflict);
4005  Diag(Target->getLocation(), diag::note_using_decl_target);
4006  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
4007  return true;
4008}
4009
4010/// Builds a shadow declaration corresponding to a 'using' declaration.
4011UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
4012                                            UsingDecl *UD,
4013                                            NamedDecl *Orig) {
4014
4015  // If we resolved to another shadow declaration, just coalesce them.
4016  NamedDecl *Target = Orig;
4017  if (isa<UsingShadowDecl>(Target)) {
4018    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
4019    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
4020  }
4021
4022  UsingShadowDecl *Shadow
4023    = UsingShadowDecl::Create(Context, CurContext,
4024                              UD->getLocation(), UD, Target);
4025  UD->addShadowDecl(Shadow);
4026
4027  Shadow->setAccess(UD->getAccess());
4028  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
4029    Shadow->setInvalidDecl();
4030
4031  if (S)
4032    PushOnScopeChains(Shadow, S);
4033  else
4034    CurContext->addDecl(Shadow);
4035
4036
4037  return Shadow;
4038}
4039
4040/// Hides a using shadow declaration.  This is required by the current
4041/// using-decl implementation when a resolvable using declaration in a
4042/// class is followed by a declaration which would hide or override
4043/// one or more of the using decl's targets; for example:
4044///
4045///   struct Base { void foo(int); };
4046///   struct Derived : Base {
4047///     using Base::foo;
4048///     void foo(int);
4049///   };
4050///
4051/// The governing language is C++03 [namespace.udecl]p12:
4052///
4053///   When a using-declaration brings names from a base class into a
4054///   derived class scope, member functions in the derived class
4055///   override and/or hide member functions with the same name and
4056///   parameter types in a base class (rather than conflicting).
4057///
4058/// There are two ways to implement this:
4059///   (1) optimistically create shadow decls when they're not hidden
4060///       by existing declarations, or
4061///   (2) don't create any shadow decls (or at least don't make them
4062///       visible) until we've fully parsed/instantiated the class.
4063/// The problem with (1) is that we might have to retroactively remove
4064/// a shadow decl, which requires several O(n) operations because the
4065/// decl structures are (very reasonably) not designed for removal.
4066/// (2) avoids this but is very fiddly and phase-dependent.
4067void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
4068  if (Shadow->getDeclName().getNameKind() ==
4069        DeclarationName::CXXConversionFunctionName)
4070    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
4071
4072  // Remove it from the DeclContext...
4073  Shadow->getDeclContext()->removeDecl(Shadow);
4074
4075  // ...and the scope, if applicable...
4076  if (S) {
4077    S->RemoveDecl(Shadow);
4078    IdResolver.RemoveDecl(Shadow);
4079  }
4080
4081  // ...and the using decl.
4082  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
4083
4084  // TODO: complain somehow if Shadow was used.  It shouldn't
4085  // be possible for this to happen, because...?
4086}
4087
4088/// Builds a using declaration.
4089///
4090/// \param IsInstantiation - Whether this call arises from an
4091///   instantiation of an unresolved using declaration.  We treat
4092///   the lookup differently for these declarations.
4093NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
4094                                       SourceLocation UsingLoc,
4095                                       CXXScopeSpec &SS,
4096                                       const DeclarationNameInfo &NameInfo,
4097                                       AttributeList *AttrList,
4098                                       bool IsInstantiation,
4099                                       bool IsTypeName,
4100                                       SourceLocation TypenameLoc) {
4101  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
4102  SourceLocation IdentLoc = NameInfo.getLoc();
4103  assert(IdentLoc.isValid() && "Invalid TargetName location.");
4104
4105  // FIXME: We ignore attributes for now.
4106
4107  if (SS.isEmpty()) {
4108    Diag(IdentLoc, diag::err_using_requires_qualname);
4109    return 0;
4110  }
4111
4112  // Do the redeclaration lookup in the current scope.
4113  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
4114                        ForRedeclaration);
4115  Previous.setHideTags(false);
4116  if (S) {
4117    LookupName(Previous, S);
4118
4119    // It is really dumb that we have to do this.
4120    LookupResult::Filter F = Previous.makeFilter();
4121    while (F.hasNext()) {
4122      NamedDecl *D = F.next();
4123      if (!isDeclInScope(D, CurContext, S))
4124        F.erase();
4125    }
4126    F.done();
4127  } else {
4128    assert(IsInstantiation && "no scope in non-instantiation");
4129    assert(CurContext->isRecord() && "scope not record in instantiation");
4130    LookupQualifiedName(Previous, CurContext);
4131  }
4132
4133  NestedNameSpecifier *NNS = SS.getScopeRep();
4134
4135  // Check for invalid redeclarations.
4136  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
4137    return 0;
4138
4139  // Check for bad qualifiers.
4140  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
4141    return 0;
4142
4143  DeclContext *LookupContext = computeDeclContext(SS);
4144  NamedDecl *D;
4145  if (!LookupContext) {
4146    if (IsTypeName) {
4147      // FIXME: not all declaration name kinds are legal here
4148      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
4149                                              UsingLoc, TypenameLoc,
4150                                              SS.getRange(), NNS,
4151                                              IdentLoc, NameInfo.getName());
4152    } else {
4153      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
4154                                           UsingLoc, SS.getRange(),
4155                                           NNS, NameInfo);
4156    }
4157  } else {
4158    D = UsingDecl::Create(Context, CurContext,
4159                          SS.getRange(), UsingLoc, NNS, NameInfo,
4160                          IsTypeName);
4161  }
4162  D->setAccess(AS);
4163  CurContext->addDecl(D);
4164
4165  if (!LookupContext) return D;
4166  UsingDecl *UD = cast<UsingDecl>(D);
4167
4168  if (RequireCompleteDeclContext(SS, LookupContext)) {
4169    UD->setInvalidDecl();
4170    return UD;
4171  }
4172
4173  // Constructor inheriting using decls get special treatment.
4174  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
4175    if (CheckInheritedConstructorUsingDecl(UD))
4176      UD->setInvalidDecl();
4177    return UD;
4178  }
4179
4180  // Otherwise, look up the target name.
4181
4182  LookupResult R(*this, NameInfo, LookupOrdinaryName);
4183
4184  // Unlike most lookups, we don't always want to hide tag
4185  // declarations: tag names are visible through the using declaration
4186  // even if hidden by ordinary names, *except* in a dependent context
4187  // where it's important for the sanity of two-phase lookup.
4188  if (!IsInstantiation)
4189    R.setHideTags(false);
4190
4191  LookupQualifiedName(R, LookupContext);
4192
4193  if (R.empty()) {
4194    Diag(IdentLoc, diag::err_no_member)
4195      << NameInfo.getName() << LookupContext << SS.getRange();
4196    UD->setInvalidDecl();
4197    return UD;
4198  }
4199
4200  if (R.isAmbiguous()) {
4201    UD->setInvalidDecl();
4202    return UD;
4203  }
4204
4205  if (IsTypeName) {
4206    // If we asked for a typename and got a non-type decl, error out.
4207    if (!R.getAsSingle<TypeDecl>()) {
4208      Diag(IdentLoc, diag::err_using_typename_non_type);
4209      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
4210        Diag((*I)->getUnderlyingDecl()->getLocation(),
4211             diag::note_using_decl_target);
4212      UD->setInvalidDecl();
4213      return UD;
4214    }
4215  } else {
4216    // If we asked for a non-typename and we got a type, error out,
4217    // but only if this is an instantiation of an unresolved using
4218    // decl.  Otherwise just silently find the type name.
4219    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
4220      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
4221      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
4222      UD->setInvalidDecl();
4223      return UD;
4224    }
4225  }
4226
4227  // C++0x N2914 [namespace.udecl]p6:
4228  // A using-declaration shall not name a namespace.
4229  if (R.getAsSingle<NamespaceDecl>()) {
4230    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
4231      << SS.getRange();
4232    UD->setInvalidDecl();
4233    return UD;
4234  }
4235
4236  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
4237    if (!CheckUsingShadowDecl(UD, *I, Previous))
4238      BuildUsingShadowDecl(S, UD, *I);
4239  }
4240
4241  return UD;
4242}
4243
4244/// Additional checks for a using declaration referring to a constructor name.
4245bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
4246  if (UD->isTypeName()) {
4247    // FIXME: Cannot specify typename when specifying constructor
4248    return true;
4249  }
4250
4251  const Type *SourceType = UD->getTargetNestedNameDecl()->getAsType();
4252  assert(SourceType &&
4253         "Using decl naming constructor doesn't have type in scope spec.");
4254  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
4255
4256  // Check whether the named type is a direct base class.
4257  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
4258  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
4259  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
4260       BaseIt != BaseE; ++BaseIt) {
4261    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
4262    if (CanonicalSourceType == BaseType)
4263      break;
4264  }
4265
4266  if (BaseIt == BaseE) {
4267    // Did not find SourceType in the bases.
4268    Diag(UD->getUsingLocation(),
4269         diag::err_using_decl_constructor_not_in_direct_base)
4270      << UD->getNameInfo().getSourceRange()
4271      << QualType(SourceType, 0) << TargetClass;
4272    return true;
4273  }
4274
4275  BaseIt->setInheritConstructors();
4276
4277  return false;
4278}
4279
4280/// Checks that the given using declaration is not an invalid
4281/// redeclaration.  Note that this is checking only for the using decl
4282/// itself, not for any ill-formedness among the UsingShadowDecls.
4283bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
4284                                       bool isTypeName,
4285                                       const CXXScopeSpec &SS,
4286                                       SourceLocation NameLoc,
4287                                       const LookupResult &Prev) {
4288  // C++03 [namespace.udecl]p8:
4289  // C++0x [namespace.udecl]p10:
4290  //   A using-declaration is a declaration and can therefore be used
4291  //   repeatedly where (and only where) multiple declarations are
4292  //   allowed.
4293  //
4294  // That's in non-member contexts.
4295  if (!CurContext->getRedeclContext()->isRecord())
4296    return false;
4297
4298  NestedNameSpecifier *Qual
4299    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
4300
4301  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
4302    NamedDecl *D = *I;
4303
4304    bool DTypename;
4305    NestedNameSpecifier *DQual;
4306    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
4307      DTypename = UD->isTypeName();
4308      DQual = UD->getTargetNestedNameDecl();
4309    } else if (UnresolvedUsingValueDecl *UD
4310                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
4311      DTypename = false;
4312      DQual = UD->getTargetNestedNameSpecifier();
4313    } else if (UnresolvedUsingTypenameDecl *UD
4314                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
4315      DTypename = true;
4316      DQual = UD->getTargetNestedNameSpecifier();
4317    } else continue;
4318
4319    // using decls differ if one says 'typename' and the other doesn't.
4320    // FIXME: non-dependent using decls?
4321    if (isTypeName != DTypename) continue;
4322
4323    // using decls differ if they name different scopes (but note that
4324    // template instantiation can cause this check to trigger when it
4325    // didn't before instantiation).
4326    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
4327        Context.getCanonicalNestedNameSpecifier(DQual))
4328      continue;
4329
4330    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
4331    Diag(D->getLocation(), diag::note_using_decl) << 1;
4332    return true;
4333  }
4334
4335  return false;
4336}
4337
4338
4339/// Checks that the given nested-name qualifier used in a using decl
4340/// in the current context is appropriately related to the current
4341/// scope.  If an error is found, diagnoses it and returns true.
4342bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
4343                                   const CXXScopeSpec &SS,
4344                                   SourceLocation NameLoc) {
4345  DeclContext *NamedContext = computeDeclContext(SS);
4346
4347  if (!CurContext->isRecord()) {
4348    // C++03 [namespace.udecl]p3:
4349    // C++0x [namespace.udecl]p8:
4350    //   A using-declaration for a class member shall be a member-declaration.
4351
4352    // If we weren't able to compute a valid scope, it must be a
4353    // dependent class scope.
4354    if (!NamedContext || NamedContext->isRecord()) {
4355      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4356        << SS.getRange();
4357      return true;
4358    }
4359
4360    // Otherwise, everything is known to be fine.
4361    return false;
4362  }
4363
4364  // The current scope is a record.
4365
4366  // If the named context is dependent, we can't decide much.
4367  if (!NamedContext) {
4368    // FIXME: in C++0x, we can diagnose if we can prove that the
4369    // nested-name-specifier does not refer to a base class, which is
4370    // still possible in some cases.
4371
4372    // Otherwise we have to conservatively report that things might be
4373    // okay.
4374    return false;
4375  }
4376
4377  if (!NamedContext->isRecord()) {
4378    // Ideally this would point at the last name in the specifier,
4379    // but we don't have that level of source info.
4380    Diag(SS.getRange().getBegin(),
4381         diag::err_using_decl_nested_name_specifier_is_not_class)
4382      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4383    return true;
4384  }
4385
4386  if (!NamedContext->isDependentContext() &&
4387      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
4388    return true;
4389
4390  if (getLangOptions().CPlusPlus0x) {
4391    // C++0x [namespace.udecl]p3:
4392    //   In a using-declaration used as a member-declaration, the
4393    //   nested-name-specifier shall name a base class of the class
4394    //   being defined.
4395
4396    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4397                                 cast<CXXRecordDecl>(NamedContext))) {
4398      if (CurContext == NamedContext) {
4399        Diag(NameLoc,
4400             diag::err_using_decl_nested_name_specifier_is_current_class)
4401          << SS.getRange();
4402        return true;
4403      }
4404
4405      Diag(SS.getRange().getBegin(),
4406           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4407        << (NestedNameSpecifier*) SS.getScopeRep()
4408        << cast<CXXRecordDecl>(CurContext)
4409        << SS.getRange();
4410      return true;
4411    }
4412
4413    return false;
4414  }
4415
4416  // C++03 [namespace.udecl]p4:
4417  //   A using-declaration used as a member-declaration shall refer
4418  //   to a member of a base class of the class being defined [etc.].
4419
4420  // Salient point: SS doesn't have to name a base class as long as
4421  // lookup only finds members from base classes.  Therefore we can
4422  // diagnose here only if we can prove that that can't happen,
4423  // i.e. if the class hierarchies provably don't intersect.
4424
4425  // TODO: it would be nice if "definitely valid" results were cached
4426  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4427  // need to be repeated.
4428
4429  struct UserData {
4430    llvm::DenseSet<const CXXRecordDecl*> Bases;
4431
4432    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4433      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4434      Data->Bases.insert(Base);
4435      return true;
4436    }
4437
4438    bool hasDependentBases(const CXXRecordDecl *Class) {
4439      return !Class->forallBases(collect, this);
4440    }
4441
4442    /// Returns true if the base is dependent or is one of the
4443    /// accumulated base classes.
4444    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4445      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4446      return !Data->Bases.count(Base);
4447    }
4448
4449    bool mightShareBases(const CXXRecordDecl *Class) {
4450      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4451    }
4452  };
4453
4454  UserData Data;
4455
4456  // Returns false if we find a dependent base.
4457  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4458    return false;
4459
4460  // Returns false if the class has a dependent base or if it or one
4461  // of its bases is present in the base set of the current context.
4462  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4463    return false;
4464
4465  Diag(SS.getRange().getBegin(),
4466       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4467    << (NestedNameSpecifier*) SS.getScopeRep()
4468    << cast<CXXRecordDecl>(CurContext)
4469    << SS.getRange();
4470
4471  return true;
4472}
4473
4474Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
4475                                             SourceLocation NamespaceLoc,
4476                                             SourceLocation AliasLoc,
4477                                             IdentifierInfo *Alias,
4478                                             CXXScopeSpec &SS,
4479                                             SourceLocation IdentLoc,
4480                                             IdentifierInfo *Ident) {
4481
4482  // Lookup the namespace name.
4483  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4484  LookupParsedName(R, S, &SS);
4485
4486  // Check if we have a previous declaration with the same name.
4487  NamedDecl *PrevDecl
4488    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4489                       ForRedeclaration);
4490  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4491    PrevDecl = 0;
4492
4493  if (PrevDecl) {
4494    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4495      // We already have an alias with the same name that points to the same
4496      // namespace, so don't create a new one.
4497      // FIXME: At some point, we'll want to create the (redundant)
4498      // declaration to maintain better source information.
4499      if (!R.isAmbiguous() && !R.empty() &&
4500          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4501        return 0;
4502    }
4503
4504    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4505      diag::err_redefinition_different_kind;
4506    Diag(AliasLoc, DiagID) << Alias;
4507    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4508    return 0;
4509  }
4510
4511  if (R.isAmbiguous())
4512    return 0;
4513
4514  if (R.empty()) {
4515    if (DeclarationName Corrected = CorrectTypo(R, S, &SS, 0, false,
4516                                                CTC_NoKeywords, 0)) {
4517      if (R.getAsSingle<NamespaceDecl>() ||
4518          R.getAsSingle<NamespaceAliasDecl>()) {
4519        if (DeclContext *DC = computeDeclContext(SS, false))
4520          Diag(IdentLoc, diag::err_using_directive_member_suggest)
4521            << Ident << DC << Corrected << SS.getRange()
4522            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4523        else
4524          Diag(IdentLoc, diag::err_using_directive_suggest)
4525            << Ident << Corrected
4526            << FixItHint::CreateReplacement(IdentLoc, Corrected.getAsString());
4527
4528        Diag(R.getFoundDecl()->getLocation(), diag::note_namespace_defined_here)
4529          << Corrected;
4530
4531        Ident = Corrected.getAsIdentifierInfo();
4532      } else {
4533        R.clear();
4534        R.setLookupName(Ident);
4535      }
4536    }
4537
4538    if (R.empty()) {
4539      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4540      return 0;
4541    }
4542  }
4543
4544  NamespaceAliasDecl *AliasDecl =
4545    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4546                               Alias, SS.getRange(),
4547                               (NestedNameSpecifier *)SS.getScopeRep(),
4548                               IdentLoc, R.getFoundDecl());
4549
4550  PushOnScopeChains(AliasDecl, S);
4551  return AliasDecl;
4552}
4553
4554namespace {
4555  /// \brief Scoped object used to handle the state changes required in Sema
4556  /// to implicitly define the body of a C++ member function;
4557  class ImplicitlyDefinedFunctionScope {
4558    Sema &S;
4559    Sema::ContextRAII SavedContext;
4560
4561  public:
4562    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4563      : S(S), SavedContext(S, Method)
4564    {
4565      S.PushFunctionScope();
4566      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4567    }
4568
4569    ~ImplicitlyDefinedFunctionScope() {
4570      S.PopExpressionEvaluationContext();
4571      S.PopFunctionOrBlockScope();
4572    }
4573  };
4574}
4575
4576static CXXConstructorDecl *getDefaultConstructorUnsafe(Sema &Self,
4577                                                       CXXRecordDecl *D) {
4578  ASTContext &Context = Self.Context;
4579  QualType ClassType = Context.getTypeDeclType(D);
4580  DeclarationName ConstructorName
4581    = Context.DeclarationNames.getCXXConstructorName(
4582                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
4583
4584  DeclContext::lookup_const_iterator Con, ConEnd;
4585  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
4586       Con != ConEnd; ++Con) {
4587    // FIXME: In C++0x, a constructor template can be a default constructor.
4588    if (isa<FunctionTemplateDecl>(*Con))
4589      continue;
4590
4591    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
4592    if (Constructor->isDefaultConstructor())
4593      return Constructor;
4594  }
4595  return 0;
4596}
4597
4598CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
4599                                                     CXXRecordDecl *ClassDecl) {
4600  // C++ [class.ctor]p5:
4601  //   A default constructor for a class X is a constructor of class X
4602  //   that can be called without an argument. If there is no
4603  //   user-declared constructor for class X, a default constructor is
4604  //   implicitly declared. An implicitly-declared default constructor
4605  //   is an inline public member of its class.
4606  assert(!ClassDecl->hasUserDeclaredConstructor() &&
4607         "Should not build implicit default constructor!");
4608
4609  // C++ [except.spec]p14:
4610  //   An implicitly declared special member function (Clause 12) shall have an
4611  //   exception-specification. [...]
4612  ImplicitExceptionSpecification ExceptSpec(Context);
4613
4614  // Direct base-class destructors.
4615  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4616                                       BEnd = ClassDecl->bases_end();
4617       B != BEnd; ++B) {
4618    if (B->isVirtual()) // Handled below.
4619      continue;
4620
4621    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4622      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4623      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4624        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4625      else if (CXXConstructorDecl *Constructor
4626                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4627        ExceptSpec.CalledDecl(Constructor);
4628    }
4629  }
4630
4631  // Virtual base-class destructors.
4632  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4633                                       BEnd = ClassDecl->vbases_end();
4634       B != BEnd; ++B) {
4635    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
4636      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4637      if (!BaseClassDecl->hasDeclaredDefaultConstructor())
4638        ExceptSpec.CalledDecl(DeclareImplicitDefaultConstructor(BaseClassDecl));
4639      else if (CXXConstructorDecl *Constructor
4640                            = getDefaultConstructorUnsafe(*this, BaseClassDecl))
4641        ExceptSpec.CalledDecl(Constructor);
4642    }
4643  }
4644
4645  // Field destructors.
4646  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4647                               FEnd = ClassDecl->field_end();
4648       F != FEnd; ++F) {
4649    if (const RecordType *RecordTy
4650              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4651      CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4652      if (!FieldClassDecl->hasDeclaredDefaultConstructor())
4653        ExceptSpec.CalledDecl(
4654                            DeclareImplicitDefaultConstructor(FieldClassDecl));
4655      else if (CXXConstructorDecl *Constructor
4656                           = getDefaultConstructorUnsafe(*this, FieldClassDecl))
4657        ExceptSpec.CalledDecl(Constructor);
4658    }
4659  }
4660
4661  FunctionProtoType::ExtProtoInfo EPI;
4662  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4663  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4664  EPI.NumExceptions = ExceptSpec.size();
4665  EPI.Exceptions = ExceptSpec.data();
4666
4667  // Create the actual constructor declaration.
4668  CanQualType ClassType
4669    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4670  DeclarationName Name
4671    = Context.DeclarationNames.getCXXConstructorName(ClassType);
4672  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4673  CXXConstructorDecl *DefaultCon
4674    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
4675                                 Context.getFunctionType(Context.VoidTy,
4676                                                         0, 0, EPI),
4677                                 /*TInfo=*/0,
4678                                 /*isExplicit=*/false,
4679                                 /*isInline=*/true,
4680                                 /*isImplicitlyDeclared=*/true);
4681  DefaultCon->setAccess(AS_public);
4682  DefaultCon->setImplicit();
4683  DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
4684
4685  // Note that we have declared this constructor.
4686  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
4687
4688  if (Scope *S = getScopeForContext(ClassDecl))
4689    PushOnScopeChains(DefaultCon, S, false);
4690  ClassDecl->addDecl(DefaultCon);
4691
4692  return DefaultCon;
4693}
4694
4695void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4696                                            CXXConstructorDecl *Constructor) {
4697  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4698          !Constructor->isUsed(false)) &&
4699    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4700
4701  CXXRecordDecl *ClassDecl = Constructor->getParent();
4702  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4703
4704  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4705  DiagnosticErrorTrap Trap(Diags);
4706  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4707      Trap.hasErrorOccurred()) {
4708    Diag(CurrentLocation, diag::note_member_synthesized_at)
4709      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4710    Constructor->setInvalidDecl();
4711    return;
4712  }
4713
4714  SourceLocation Loc = Constructor->getLocation();
4715  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
4716
4717  Constructor->setUsed();
4718  MarkVTableUsed(CurrentLocation, ClassDecl);
4719}
4720
4721void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
4722  // We start with an initial pass over the base classes to collect those that
4723  // inherit constructors from. If there are none, we can forgo all further
4724  // processing.
4725  typedef llvm::SmallVector<const RecordType *, 4> BasesVector;
4726  BasesVector BasesToInheritFrom;
4727  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
4728                                          BaseE = ClassDecl->bases_end();
4729         BaseIt != BaseE; ++BaseIt) {
4730    if (BaseIt->getInheritConstructors()) {
4731      QualType Base = BaseIt->getType();
4732      if (Base->isDependentType()) {
4733        // If we inherit constructors from anything that is dependent, just
4734        // abort processing altogether. We'll get another chance for the
4735        // instantiations.
4736        return;
4737      }
4738      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
4739    }
4740  }
4741  if (BasesToInheritFrom.empty())
4742    return;
4743
4744  // Now collect the constructors that we already have in the current class.
4745  // Those take precedence over inherited constructors.
4746  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
4747  //   unless there is a user-declared constructor with the same signature in
4748  //   the class where the using-declaration appears.
4749  llvm::SmallSet<const Type *, 8> ExistingConstructors;
4750  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
4751                                    CtorE = ClassDecl->ctor_end();
4752       CtorIt != CtorE; ++CtorIt) {
4753    ExistingConstructors.insert(
4754        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
4755  }
4756
4757  Scope *S = getScopeForContext(ClassDecl);
4758  DeclarationName CreatedCtorName =
4759      Context.DeclarationNames.getCXXConstructorName(
4760          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
4761
4762  // Now comes the true work.
4763  // First, we keep a map from constructor types to the base that introduced
4764  // them. Needed for finding conflicting constructors. We also keep the
4765  // actually inserted declarations in there, for pretty diagnostics.
4766  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
4767  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
4768  ConstructorToSourceMap InheritedConstructors;
4769  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
4770                             BaseE = BasesToInheritFrom.end();
4771       BaseIt != BaseE; ++BaseIt) {
4772    const RecordType *Base = *BaseIt;
4773    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
4774    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
4775    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
4776                                      CtorE = BaseDecl->ctor_end();
4777         CtorIt != CtorE; ++CtorIt) {
4778      // Find the using declaration for inheriting this base's constructors.
4779      DeclarationName Name =
4780          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
4781      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
4782          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
4783      SourceLocation UsingLoc = UD ? UD->getLocation() :
4784                                     ClassDecl->getLocation();
4785
4786      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
4787      //   from the class X named in the using-declaration consists of actual
4788      //   constructors and notional constructors that result from the
4789      //   transformation of defaulted parameters as follows:
4790      //   - all non-template default constructors of X, and
4791      //   - for each non-template constructor of X that has at least one
4792      //     parameter with a default argument, the set of constructors that
4793      //     results from omitting any ellipsis parameter specification and
4794      //     successively omitting parameters with a default argument from the
4795      //     end of the parameter-type-list.
4796      CXXConstructorDecl *BaseCtor = *CtorIt;
4797      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
4798      const FunctionProtoType *BaseCtorType =
4799          BaseCtor->getType()->getAs<FunctionProtoType>();
4800
4801      for (unsigned params = BaseCtor->getMinRequiredArguments(),
4802                    maxParams = BaseCtor->getNumParams();
4803           params <= maxParams; ++params) {
4804        // Skip default constructors. They're never inherited.
4805        if (params == 0)
4806          continue;
4807        // Skip copy and move constructors for the same reason.
4808        if (CanBeCopyOrMove && params == 1)
4809          continue;
4810
4811        // Build up a function type for this particular constructor.
4812        // FIXME: The working paper does not consider that the exception spec
4813        // for the inheriting constructor might be larger than that of the
4814        // source. This code doesn't yet, either.
4815        const Type *NewCtorType;
4816        if (params == maxParams)
4817          NewCtorType = BaseCtorType;
4818        else {
4819          llvm::SmallVector<QualType, 16> Args;
4820          for (unsigned i = 0; i < params; ++i) {
4821            Args.push_back(BaseCtorType->getArgType(i));
4822          }
4823          FunctionProtoType::ExtProtoInfo ExtInfo =
4824              BaseCtorType->getExtProtoInfo();
4825          ExtInfo.Variadic = false;
4826          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
4827                                                Args.data(), params, ExtInfo)
4828                       .getTypePtr();
4829        }
4830        const Type *CanonicalNewCtorType =
4831            Context.getCanonicalType(NewCtorType);
4832
4833        // Now that we have the type, first check if the class already has a
4834        // constructor with this signature.
4835        if (ExistingConstructors.count(CanonicalNewCtorType))
4836          continue;
4837
4838        // Then we check if we have already declared an inherited constructor
4839        // with this signature.
4840        std::pair<ConstructorToSourceMap::iterator, bool> result =
4841            InheritedConstructors.insert(std::make_pair(
4842                CanonicalNewCtorType,
4843                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
4844        if (!result.second) {
4845          // Already in the map. If it came from a different class, that's an
4846          // error. Not if it's from the same.
4847          CanQualType PreviousBase = result.first->second.first;
4848          if (CanonicalBase != PreviousBase) {
4849            const CXXConstructorDecl *PrevCtor = result.first->second.second;
4850            const CXXConstructorDecl *PrevBaseCtor =
4851                PrevCtor->getInheritedConstructor();
4852            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
4853
4854            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
4855            Diag(BaseCtor->getLocation(),
4856                 diag::note_using_decl_constructor_conflict_current_ctor);
4857            Diag(PrevBaseCtor->getLocation(),
4858                 diag::note_using_decl_constructor_conflict_previous_ctor);
4859            Diag(PrevCtor->getLocation(),
4860                 diag::note_using_decl_constructor_conflict_previous_using);
4861          }
4862          continue;
4863        }
4864
4865        // OK, we're there, now add the constructor.
4866        // C++0x [class.inhctor]p8: [...] that would be performed by a
4867        //   user-writtern inline constructor [...]
4868        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
4869        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
4870            Context, ClassDecl, DNI, QualType(NewCtorType, 0), /*TInfo=*/0,
4871            BaseCtor->isExplicit(), /*Inline=*/true,
4872            /*ImplicitlyDeclared=*/true);
4873        NewCtor->setAccess(BaseCtor->getAccess());
4874
4875        // Build up the parameter decls and add them.
4876        llvm::SmallVector<ParmVarDecl *, 16> ParamDecls;
4877        for (unsigned i = 0; i < params; ++i) {
4878          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor, UsingLoc,
4879                                                   /*IdentifierInfo=*/0,
4880                                                   BaseCtorType->getArgType(i),
4881                                                   /*TInfo=*/0, SC_None,
4882                                                   SC_None, /*DefaultArg=*/0));
4883        }
4884        NewCtor->setParams(ParamDecls.data(), ParamDecls.size());
4885        NewCtor->setInheritedConstructor(BaseCtor);
4886
4887        PushOnScopeChains(NewCtor, S, false);
4888        ClassDecl->addDecl(NewCtor);
4889        result.first->second.second = NewCtor;
4890      }
4891    }
4892  }
4893}
4894
4895CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
4896  // C++ [class.dtor]p2:
4897  //   If a class has no user-declared destructor, a destructor is
4898  //   declared implicitly. An implicitly-declared destructor is an
4899  //   inline public member of its class.
4900
4901  // C++ [except.spec]p14:
4902  //   An implicitly declared special member function (Clause 12) shall have
4903  //   an exception-specification.
4904  ImplicitExceptionSpecification ExceptSpec(Context);
4905
4906  // Direct base-class destructors.
4907  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4908                                       BEnd = ClassDecl->bases_end();
4909       B != BEnd; ++B) {
4910    if (B->isVirtual()) // Handled below.
4911      continue;
4912
4913    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4914      ExceptSpec.CalledDecl(
4915                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4916  }
4917
4918  // Virtual base-class destructors.
4919  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
4920                                       BEnd = ClassDecl->vbases_end();
4921       B != BEnd; ++B) {
4922    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
4923      ExceptSpec.CalledDecl(
4924                    LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
4925  }
4926
4927  // Field destructors.
4928  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4929                               FEnd = ClassDecl->field_end();
4930       F != FEnd; ++F) {
4931    if (const RecordType *RecordTy
4932        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
4933      ExceptSpec.CalledDecl(
4934                    LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
4935  }
4936
4937  // Create the actual destructor declaration.
4938  FunctionProtoType::ExtProtoInfo EPI;
4939  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
4940  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
4941  EPI.NumExceptions = ExceptSpec.size();
4942  EPI.Exceptions = ExceptSpec.data();
4943  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4944
4945  CanQualType ClassType
4946    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
4947  DeclarationName Name
4948    = Context.DeclarationNames.getCXXDestructorName(ClassType);
4949  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
4950  CXXDestructorDecl *Destructor
4951      = CXXDestructorDecl::Create(Context, ClassDecl, NameInfo, Ty, 0,
4952                                /*isInline=*/true,
4953                                /*isImplicitlyDeclared=*/true);
4954  Destructor->setAccess(AS_public);
4955  Destructor->setImplicit();
4956  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
4957
4958  // Note that we have declared this destructor.
4959  ++ASTContext::NumImplicitDestructorsDeclared;
4960
4961  // Introduce this destructor into its scope.
4962  if (Scope *S = getScopeForContext(ClassDecl))
4963    PushOnScopeChains(Destructor, S, false);
4964  ClassDecl->addDecl(Destructor);
4965
4966  // This could be uniqued if it ever proves significant.
4967  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
4968
4969  AddOverriddenMethods(ClassDecl, Destructor);
4970
4971  return Destructor;
4972}
4973
4974void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4975                                    CXXDestructorDecl *Destructor) {
4976  assert((Destructor->isImplicit() && !Destructor->isUsed(false)) &&
4977         "DefineImplicitDestructor - call it for implicit default dtor");
4978  CXXRecordDecl *ClassDecl = Destructor->getParent();
4979  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4980
4981  if (Destructor->isInvalidDecl())
4982    return;
4983
4984  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4985
4986  DiagnosticErrorTrap Trap(Diags);
4987  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4988                                         Destructor->getParent());
4989
4990  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4991    Diag(CurrentLocation, diag::note_member_synthesized_at)
4992      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4993
4994    Destructor->setInvalidDecl();
4995    return;
4996  }
4997
4998  SourceLocation Loc = Destructor->getLocation();
4999  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
5000
5001  Destructor->setUsed();
5002  MarkVTableUsed(CurrentLocation, ClassDecl);
5003}
5004
5005/// \brief Builds a statement that copies the given entity from \p From to
5006/// \c To.
5007///
5008/// This routine is used to copy the members of a class with an
5009/// implicitly-declared copy assignment operator. When the entities being
5010/// copied are arrays, this routine builds for loops to copy them.
5011///
5012/// \param S The Sema object used for type-checking.
5013///
5014/// \param Loc The location where the implicit copy is being generated.
5015///
5016/// \param T The type of the expressions being copied. Both expressions must
5017/// have this type.
5018///
5019/// \param To The expression we are copying to.
5020///
5021/// \param From The expression we are copying from.
5022///
5023/// \param CopyingBaseSubobject Whether we're copying a base subobject.
5024/// Otherwise, it's a non-static member subobject.
5025///
5026/// \param Depth Internal parameter recording the depth of the recursion.
5027///
5028/// \returns A statement or a loop that copies the expressions.
5029static StmtResult
5030BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
5031                      Expr *To, Expr *From,
5032                      bool CopyingBaseSubobject, unsigned Depth = 0) {
5033  // C++0x [class.copy]p30:
5034  //   Each subobject is assigned in the manner appropriate to its type:
5035  //
5036  //     - if the subobject is of class type, the copy assignment operator
5037  //       for the class is used (as if by explicit qualification; that is,
5038  //       ignoring any possible virtual overriding functions in more derived
5039  //       classes);
5040  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
5041    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
5042
5043    // Look for operator=.
5044    DeclarationName Name
5045      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5046    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
5047    S.LookupQualifiedName(OpLookup, ClassDecl, false);
5048
5049    // Filter out any result that isn't a copy-assignment operator.
5050    LookupResult::Filter F = OpLookup.makeFilter();
5051    while (F.hasNext()) {
5052      NamedDecl *D = F.next();
5053      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
5054        if (Method->isCopyAssignmentOperator())
5055          continue;
5056
5057      F.erase();
5058    }
5059    F.done();
5060
5061    // Suppress the protected check (C++ [class.protected]) for each of the
5062    // assignment operators we found. This strange dance is required when
5063    // we're assigning via a base classes's copy-assignment operator. To
5064    // ensure that we're getting the right base class subobject (without
5065    // ambiguities), we need to cast "this" to that subobject type; to
5066    // ensure that we don't go through the virtual call mechanism, we need
5067    // to qualify the operator= name with the base class (see below). However,
5068    // this means that if the base class has a protected copy assignment
5069    // operator, the protected member access check will fail. So, we
5070    // rewrite "protected" access to "public" access in this case, since we
5071    // know by construction that we're calling from a derived class.
5072    if (CopyingBaseSubobject) {
5073      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
5074           L != LEnd; ++L) {
5075        if (L.getAccess() == AS_protected)
5076          L.setAccess(AS_public);
5077      }
5078    }
5079
5080    // Create the nested-name-specifier that will be used to qualify the
5081    // reference to operator=; this is required to suppress the virtual
5082    // call mechanism.
5083    CXXScopeSpec SS;
5084    SS.setRange(Loc);
5085    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
5086                                               T.getTypePtr()));
5087
5088    // Create the reference to operator=.
5089    ExprResult OpEqualRef
5090      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
5091                                   /*FirstQualifierInScope=*/0, OpLookup,
5092                                   /*TemplateArgs=*/0,
5093                                   /*SuppressQualifierCheck=*/true);
5094    if (OpEqualRef.isInvalid())
5095      return StmtError();
5096
5097    // Build the call to the assignment operator.
5098
5099    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
5100                                                  OpEqualRef.takeAs<Expr>(),
5101                                                  Loc, &From, 1, Loc);
5102    if (Call.isInvalid())
5103      return StmtError();
5104
5105    return S.Owned(Call.takeAs<Stmt>());
5106  }
5107
5108  //     - if the subobject is of scalar type, the built-in assignment
5109  //       operator is used.
5110  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
5111  if (!ArrayTy) {
5112    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
5113    if (Assignment.isInvalid())
5114      return StmtError();
5115
5116    return S.Owned(Assignment.takeAs<Stmt>());
5117  }
5118
5119  //     - if the subobject is an array, each element is assigned, in the
5120  //       manner appropriate to the element type;
5121
5122  // Construct a loop over the array bounds, e.g.,
5123  //
5124  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
5125  //
5126  // that will copy each of the array elements.
5127  QualType SizeType = S.Context.getSizeType();
5128
5129  // Create the iteration variable.
5130  IdentifierInfo *IterationVarName = 0;
5131  {
5132    llvm::SmallString<8> Str;
5133    llvm::raw_svector_ostream OS(Str);
5134    OS << "__i" << Depth;
5135    IterationVarName = &S.Context.Idents.get(OS.str());
5136  }
5137  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
5138                                          IterationVarName, SizeType,
5139                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
5140                                          SC_None, SC_None);
5141
5142  // Initialize the iteration variable to zero.
5143  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
5144  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
5145
5146  // Create a reference to the iteration variable; we'll use this several
5147  // times throughout.
5148  Expr *IterationVarRef
5149    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_RValue, Loc).take();
5150  assert(IterationVarRef && "Reference to invented variable cannot fail!");
5151
5152  // Create the DeclStmt that holds the iteration variable.
5153  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
5154
5155  // Create the comparison against the array bound.
5156  llvm::APInt Upper
5157    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
5158  Expr *Comparison
5159    = new (S.Context) BinaryOperator(IterationVarRef,
5160                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
5161                                     BO_NE, S.Context.BoolTy,
5162                                     VK_RValue, OK_Ordinary, Loc);
5163
5164  // Create the pre-increment of the iteration variable.
5165  Expr *Increment
5166    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
5167                                    VK_LValue, OK_Ordinary, Loc);
5168
5169  // Subscript the "from" and "to" expressions with the iteration variable.
5170  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
5171                                                         IterationVarRef, Loc));
5172  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
5173                                                       IterationVarRef, Loc));
5174
5175  // Build the copy for an individual element of the array.
5176  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
5177                                          To, From, CopyingBaseSubobject,
5178                                          Depth + 1);
5179  if (Copy.isInvalid())
5180    return StmtError();
5181
5182  // Construct the loop that copies all elements of this array.
5183  return S.ActOnForStmt(Loc, Loc, InitStmt,
5184                        S.MakeFullExpr(Comparison),
5185                        0, S.MakeFullExpr(Increment),
5186                        Loc, Copy.take());
5187}
5188
5189/// \brief Determine whether the given class has a copy assignment operator
5190/// that accepts a const-qualified argument.
5191static bool hasConstCopyAssignment(Sema &S, const CXXRecordDecl *CClass) {
5192  CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(CClass);
5193
5194  if (!Class->hasDeclaredCopyAssignment())
5195    S.DeclareImplicitCopyAssignment(Class);
5196
5197  QualType ClassType = S.Context.getCanonicalType(S.Context.getTypeDeclType(Class));
5198  DeclarationName OpName
5199    = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5200
5201  DeclContext::lookup_const_iterator Op, OpEnd;
5202  for (llvm::tie(Op, OpEnd) = Class->lookup(OpName); Op != OpEnd; ++Op) {
5203    // C++ [class.copy]p9:
5204    //   A user-declared copy assignment operator is a non-static non-template
5205    //   member function of class X with exactly one parameter of type X, X&,
5206    //   const X&, volatile X& or const volatile X&.
5207    const CXXMethodDecl* Method = dyn_cast<CXXMethodDecl>(*Op);
5208    if (!Method)
5209      continue;
5210
5211    if (Method->isStatic())
5212      continue;
5213    if (Method->getPrimaryTemplate())
5214      continue;
5215    const FunctionProtoType *FnType =
5216    Method->getType()->getAs<FunctionProtoType>();
5217    assert(FnType && "Overloaded operator has no prototype.");
5218    // Don't assert on this; an invalid decl might have been left in the AST.
5219    if (FnType->getNumArgs() != 1 || FnType->isVariadic())
5220      continue;
5221    bool AcceptsConst = true;
5222    QualType ArgType = FnType->getArgType(0);
5223    if (const LValueReferenceType *Ref = ArgType->getAs<LValueReferenceType>()){
5224      ArgType = Ref->getPointeeType();
5225      // Is it a non-const lvalue reference?
5226      if (!ArgType.isConstQualified())
5227        AcceptsConst = false;
5228    }
5229    if (!S.Context.hasSameUnqualifiedType(ArgType, ClassType))
5230      continue;
5231
5232    // We have a single argument of type cv X or cv X&, i.e. we've found the
5233    // copy assignment operator. Return whether it accepts const arguments.
5234    return AcceptsConst;
5235  }
5236  assert(Class->isInvalidDecl() &&
5237         "No copy assignment operator declared in valid code.");
5238  return false;
5239}
5240
5241CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
5242  // Note: The following rules are largely analoguous to the copy
5243  // constructor rules. Note that virtual bases are not taken into account
5244  // for determining the argument type of the operator. Note also that
5245  // operators taking an object instead of a reference are allowed.
5246
5247
5248  // C++ [class.copy]p10:
5249  //   If the class definition does not explicitly declare a copy
5250  //   assignment operator, one is declared implicitly.
5251  //   The implicitly-defined copy assignment operator for a class X
5252  //   will have the form
5253  //
5254  //       X& X::operator=(const X&)
5255  //
5256  //   if
5257  bool HasConstCopyAssignment = true;
5258
5259  //       -- each direct base class B of X has a copy assignment operator
5260  //          whose parameter is of type const B&, const volatile B& or B,
5261  //          and
5262  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5263                                       BaseEnd = ClassDecl->bases_end();
5264       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
5265    assert(!Base->getType()->isDependentType() &&
5266           "Cannot generate implicit members for class with dependent bases.");
5267    const CXXRecordDecl *BaseClassDecl
5268      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5269    HasConstCopyAssignment = hasConstCopyAssignment(*this, BaseClassDecl);
5270  }
5271
5272  //       -- for all the nonstatic data members of X that are of a class
5273  //          type M (or array thereof), each such class type has a copy
5274  //          assignment operator whose parameter is of type const M&,
5275  //          const volatile M& or M.
5276  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5277                                  FieldEnd = ClassDecl->field_end();
5278       HasConstCopyAssignment && Field != FieldEnd;
5279       ++Field) {
5280    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5281    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5282      const CXXRecordDecl *FieldClassDecl
5283        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5284      HasConstCopyAssignment = hasConstCopyAssignment(*this, FieldClassDecl);
5285    }
5286  }
5287
5288  //   Otherwise, the implicitly declared copy assignment operator will
5289  //   have the form
5290  //
5291  //       X& X::operator=(X&)
5292  QualType ArgType = Context.getTypeDeclType(ClassDecl);
5293  QualType RetType = Context.getLValueReferenceType(ArgType);
5294  if (HasConstCopyAssignment)
5295    ArgType = ArgType.withConst();
5296  ArgType = Context.getLValueReferenceType(ArgType);
5297
5298  // C++ [except.spec]p14:
5299  //   An implicitly declared special member function (Clause 12) shall have an
5300  //   exception-specification. [...]
5301  ImplicitExceptionSpecification ExceptSpec(Context);
5302  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5303                                       BaseEnd = ClassDecl->bases_end();
5304       Base != BaseEnd; ++Base) {
5305    CXXRecordDecl *BaseClassDecl
5306      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5307
5308    if (!BaseClassDecl->hasDeclaredCopyAssignment())
5309      DeclareImplicitCopyAssignment(BaseClassDecl);
5310
5311    if (CXXMethodDecl *CopyAssign
5312           = BaseClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5313      ExceptSpec.CalledDecl(CopyAssign);
5314  }
5315  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5316                                  FieldEnd = ClassDecl->field_end();
5317       Field != FieldEnd;
5318       ++Field) {
5319    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5320    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5321      CXXRecordDecl *FieldClassDecl
5322        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5323
5324      if (!FieldClassDecl->hasDeclaredCopyAssignment())
5325        DeclareImplicitCopyAssignment(FieldClassDecl);
5326
5327      if (CXXMethodDecl *CopyAssign
5328            = FieldClassDecl->getCopyAssignmentOperator(HasConstCopyAssignment))
5329        ExceptSpec.CalledDecl(CopyAssign);
5330    }
5331  }
5332
5333  //   An implicitly-declared copy assignment operator is an inline public
5334  //   member of its class.
5335  FunctionProtoType::ExtProtoInfo EPI;
5336  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5337  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5338  EPI.NumExceptions = ExceptSpec.size();
5339  EPI.Exceptions = ExceptSpec.data();
5340  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
5341  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5342  CXXMethodDecl *CopyAssignment
5343    = CXXMethodDecl::Create(Context, ClassDecl, NameInfo,
5344                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
5345                            /*TInfo=*/0, /*isStatic=*/false,
5346                            /*StorageClassAsWritten=*/SC_None,
5347                            /*isInline=*/true);
5348  CopyAssignment->setAccess(AS_public);
5349  CopyAssignment->setImplicit();
5350  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
5351
5352  // Add the parameter to the operator.
5353  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
5354                                               ClassDecl->getLocation(),
5355                                               /*Id=*/0,
5356                                               ArgType, /*TInfo=*/0,
5357                                               SC_None,
5358                                               SC_None, 0);
5359  CopyAssignment->setParams(&FromParam, 1);
5360
5361  // Note that we have added this copy-assignment operator.
5362  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
5363
5364  if (Scope *S = getScopeForContext(ClassDecl))
5365    PushOnScopeChains(CopyAssignment, S, false);
5366  ClassDecl->addDecl(CopyAssignment);
5367
5368  AddOverriddenMethods(ClassDecl, CopyAssignment);
5369  return CopyAssignment;
5370}
5371
5372void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
5373                                        CXXMethodDecl *CopyAssignOperator) {
5374  assert((CopyAssignOperator->isImplicit() &&
5375          CopyAssignOperator->isOverloadedOperator() &&
5376          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
5377          !CopyAssignOperator->isUsed(false)) &&
5378         "DefineImplicitCopyAssignment called for wrong function");
5379
5380  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
5381
5382  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
5383    CopyAssignOperator->setInvalidDecl();
5384    return;
5385  }
5386
5387  CopyAssignOperator->setUsed();
5388
5389  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
5390  DiagnosticErrorTrap Trap(Diags);
5391
5392  // C++0x [class.copy]p30:
5393  //   The implicitly-defined or explicitly-defaulted copy assignment operator
5394  //   for a non-union class X performs memberwise copy assignment of its
5395  //   subobjects. The direct base classes of X are assigned first, in the
5396  //   order of their declaration in the base-specifier-list, and then the
5397  //   immediate non-static data members of X are assigned, in the order in
5398  //   which they were declared in the class definition.
5399
5400  // The statements that form the synthesized function body.
5401  ASTOwningVector<Stmt*> Statements(*this);
5402
5403  // The parameter for the "other" object, which we are copying from.
5404  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
5405  Qualifiers OtherQuals = Other->getType().getQualifiers();
5406  QualType OtherRefType = Other->getType();
5407  if (const LValueReferenceType *OtherRef
5408                                = OtherRefType->getAs<LValueReferenceType>()) {
5409    OtherRefType = OtherRef->getPointeeType();
5410    OtherQuals = OtherRefType.getQualifiers();
5411  }
5412
5413  // Our location for everything implicitly-generated.
5414  SourceLocation Loc = CopyAssignOperator->getLocation();
5415
5416  // Construct a reference to the "other" object. We'll be using this
5417  // throughout the generated ASTs.
5418  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
5419  assert(OtherRef && "Reference to parameter cannot fail!");
5420
5421  // Construct the "this" pointer. We'll be using this throughout the generated
5422  // ASTs.
5423  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
5424  assert(This && "Reference to this cannot fail!");
5425
5426  // Assign base classes.
5427  bool Invalid = false;
5428  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5429       E = ClassDecl->bases_end(); Base != E; ++Base) {
5430    // Form the assignment:
5431    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
5432    QualType BaseType = Base->getType().getUnqualifiedType();
5433    if (!BaseType->isRecordType()) {
5434      Invalid = true;
5435      continue;
5436    }
5437
5438    CXXCastPath BasePath;
5439    BasePath.push_back(Base);
5440
5441    // Construct the "from" expression, which is an implicit cast to the
5442    // appropriately-qualified base type.
5443    Expr *From = OtherRef;
5444    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
5445                      CK_UncheckedDerivedToBase,
5446                      VK_LValue, &BasePath);
5447
5448    // Dereference "this".
5449    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5450
5451    // Implicitly cast "this" to the appropriately-qualified base type.
5452    Expr *ToE = To.takeAs<Expr>();
5453    ImpCastExprToType(ToE,
5454                      Context.getCVRQualifiedType(BaseType,
5455                                      CopyAssignOperator->getTypeQualifiers()),
5456                      CK_UncheckedDerivedToBase,
5457                      VK_LValue, &BasePath);
5458    To = Owned(ToE);
5459
5460    // Build the copy.
5461    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
5462                                            To.get(), From,
5463                                            /*CopyingBaseSubobject=*/true);
5464    if (Copy.isInvalid()) {
5465      Diag(CurrentLocation, diag::note_member_synthesized_at)
5466        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5467      CopyAssignOperator->setInvalidDecl();
5468      return;
5469    }
5470
5471    // Success! Record the copy.
5472    Statements.push_back(Copy.takeAs<Expr>());
5473  }
5474
5475  // \brief Reference to the __builtin_memcpy function.
5476  Expr *BuiltinMemCpyRef = 0;
5477  // \brief Reference to the __builtin_objc_memmove_collectable function.
5478  Expr *CollectableMemCpyRef = 0;
5479
5480  // Assign non-static members.
5481  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5482                                  FieldEnd = ClassDecl->field_end();
5483       Field != FieldEnd; ++Field) {
5484    // Check for members of reference type; we can't copy those.
5485    if (Field->getType()->isReferenceType()) {
5486      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5487        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
5488      Diag(Field->getLocation(), diag::note_declared_at);
5489      Diag(CurrentLocation, diag::note_member_synthesized_at)
5490        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5491      Invalid = true;
5492      continue;
5493    }
5494
5495    // Check for members of const-qualified, non-class type.
5496    QualType BaseType = Context.getBaseElementType(Field->getType());
5497    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
5498      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
5499        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
5500      Diag(Field->getLocation(), diag::note_declared_at);
5501      Diag(CurrentLocation, diag::note_member_synthesized_at)
5502        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5503      Invalid = true;
5504      continue;
5505    }
5506
5507    QualType FieldType = Field->getType().getNonReferenceType();
5508    if (FieldType->isIncompleteArrayType()) {
5509      assert(ClassDecl->hasFlexibleArrayMember() &&
5510             "Incomplete array type is not valid");
5511      continue;
5512    }
5513
5514    // Build references to the field in the object we're copying from and to.
5515    CXXScopeSpec SS; // Intentionally empty
5516    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
5517                              LookupMemberName);
5518    MemberLookup.addDecl(*Field);
5519    MemberLookup.resolveKind();
5520    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
5521                                               Loc, /*IsArrow=*/false,
5522                                               SS, 0, MemberLookup, 0);
5523    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
5524                                             Loc, /*IsArrow=*/true,
5525                                             SS, 0, MemberLookup, 0);
5526    assert(!From.isInvalid() && "Implicit field reference cannot fail");
5527    assert(!To.isInvalid() && "Implicit field reference cannot fail");
5528
5529    // If the field should be copied with __builtin_memcpy rather than via
5530    // explicit assignments, do so. This optimization only applies for arrays
5531    // of scalars and arrays of class type with trivial copy-assignment
5532    // operators.
5533    if (FieldType->isArrayType() &&
5534        (!BaseType->isRecordType() ||
5535         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
5536           ->hasTrivialCopyAssignment())) {
5537      // Compute the size of the memory buffer to be copied.
5538      QualType SizeType = Context.getSizeType();
5539      llvm::APInt Size(Context.getTypeSize(SizeType),
5540                       Context.getTypeSizeInChars(BaseType).getQuantity());
5541      for (const ConstantArrayType *Array
5542              = Context.getAsConstantArrayType(FieldType);
5543           Array;
5544           Array = Context.getAsConstantArrayType(Array->getElementType())) {
5545        llvm::APInt ArraySize
5546          = Array->getSize().zextOrTrunc(Size.getBitWidth());
5547        Size *= ArraySize;
5548      }
5549
5550      // Take the address of the field references for "from" and "to".
5551      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
5552      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
5553
5554      bool NeedsCollectableMemCpy =
5555          (BaseType->isRecordType() &&
5556           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
5557
5558      if (NeedsCollectableMemCpy) {
5559        if (!CollectableMemCpyRef) {
5560          // Create a reference to the __builtin_objc_memmove_collectable function.
5561          LookupResult R(*this,
5562                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
5563                         Loc, LookupOrdinaryName);
5564          LookupName(R, TUScope, true);
5565
5566          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
5567          if (!CollectableMemCpy) {
5568            // Something went horribly wrong earlier, and we will have
5569            // complained about it.
5570            Invalid = true;
5571            continue;
5572          }
5573
5574          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
5575                                                  CollectableMemCpy->getType(),
5576                                                  VK_LValue, Loc, 0).take();
5577          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
5578        }
5579      }
5580      // Create a reference to the __builtin_memcpy builtin function.
5581      else if (!BuiltinMemCpyRef) {
5582        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
5583                       LookupOrdinaryName);
5584        LookupName(R, TUScope, true);
5585
5586        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
5587        if (!BuiltinMemCpy) {
5588          // Something went horribly wrong earlier, and we will have complained
5589          // about it.
5590          Invalid = true;
5591          continue;
5592        }
5593
5594        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
5595                                            BuiltinMemCpy->getType(),
5596                                            VK_LValue, Loc, 0).take();
5597        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
5598      }
5599
5600      ASTOwningVector<Expr*> CallArgs(*this);
5601      CallArgs.push_back(To.takeAs<Expr>());
5602      CallArgs.push_back(From.takeAs<Expr>());
5603      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
5604      ExprResult Call = ExprError();
5605      if (NeedsCollectableMemCpy)
5606        Call = ActOnCallExpr(/*Scope=*/0,
5607                             CollectableMemCpyRef,
5608                             Loc, move_arg(CallArgs),
5609                             Loc);
5610      else
5611        Call = ActOnCallExpr(/*Scope=*/0,
5612                             BuiltinMemCpyRef,
5613                             Loc, move_arg(CallArgs),
5614                             Loc);
5615
5616      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
5617      Statements.push_back(Call.takeAs<Expr>());
5618      continue;
5619    }
5620
5621    // Build the copy of this field.
5622    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
5623                                                  To.get(), From.get(),
5624                                              /*CopyingBaseSubobject=*/false);
5625    if (Copy.isInvalid()) {
5626      Diag(CurrentLocation, diag::note_member_synthesized_at)
5627        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5628      CopyAssignOperator->setInvalidDecl();
5629      return;
5630    }
5631
5632    // Success! Record the copy.
5633    Statements.push_back(Copy.takeAs<Stmt>());
5634  }
5635
5636  if (!Invalid) {
5637    // Add a "return *this;"
5638    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
5639
5640    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
5641    if (Return.isInvalid())
5642      Invalid = true;
5643    else {
5644      Statements.push_back(Return.takeAs<Stmt>());
5645
5646      if (Trap.hasErrorOccurred()) {
5647        Diag(CurrentLocation, diag::note_member_synthesized_at)
5648          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
5649        Invalid = true;
5650      }
5651    }
5652  }
5653
5654  if (Invalid) {
5655    CopyAssignOperator->setInvalidDecl();
5656    return;
5657  }
5658
5659  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
5660                                            /*isStmtExpr=*/false);
5661  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
5662  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
5663}
5664
5665CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
5666                                                    CXXRecordDecl *ClassDecl) {
5667  // C++ [class.copy]p4:
5668  //   If the class definition does not explicitly declare a copy
5669  //   constructor, one is declared implicitly.
5670
5671  // C++ [class.copy]p5:
5672  //   The implicitly-declared copy constructor for a class X will
5673  //   have the form
5674  //
5675  //       X::X(const X&)
5676  //
5677  //   if
5678  bool HasConstCopyConstructor = true;
5679
5680  //     -- each direct or virtual base class B of X has a copy
5681  //        constructor whose first parameter is of type const B& or
5682  //        const volatile B&, and
5683  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5684                                       BaseEnd = ClassDecl->bases_end();
5685       HasConstCopyConstructor && Base != BaseEnd;
5686       ++Base) {
5687    // Virtual bases are handled below.
5688    if (Base->isVirtual())
5689      continue;
5690
5691    CXXRecordDecl *BaseClassDecl
5692      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5693    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5694      DeclareImplicitCopyConstructor(BaseClassDecl);
5695
5696    HasConstCopyConstructor
5697      = BaseClassDecl->hasConstCopyConstructor(Context);
5698  }
5699
5700  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5701                                       BaseEnd = ClassDecl->vbases_end();
5702       HasConstCopyConstructor && Base != BaseEnd;
5703       ++Base) {
5704    CXXRecordDecl *BaseClassDecl
5705      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5706    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5707      DeclareImplicitCopyConstructor(BaseClassDecl);
5708
5709    HasConstCopyConstructor
5710      = BaseClassDecl->hasConstCopyConstructor(Context);
5711  }
5712
5713  //     -- for all the nonstatic data members of X that are of a
5714  //        class type M (or array thereof), each such class type
5715  //        has a copy constructor whose first parameter is of type
5716  //        const M& or const volatile M&.
5717  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5718                                  FieldEnd = ClassDecl->field_end();
5719       HasConstCopyConstructor && Field != FieldEnd;
5720       ++Field) {
5721    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5722    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5723      CXXRecordDecl *FieldClassDecl
5724        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5725      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5726        DeclareImplicitCopyConstructor(FieldClassDecl);
5727
5728      HasConstCopyConstructor
5729        = FieldClassDecl->hasConstCopyConstructor(Context);
5730    }
5731  }
5732
5733  //   Otherwise, the implicitly declared copy constructor will have
5734  //   the form
5735  //
5736  //       X::X(X&)
5737  QualType ClassType = Context.getTypeDeclType(ClassDecl);
5738  QualType ArgType = ClassType;
5739  if (HasConstCopyConstructor)
5740    ArgType = ArgType.withConst();
5741  ArgType = Context.getLValueReferenceType(ArgType);
5742
5743  // C++ [except.spec]p14:
5744  //   An implicitly declared special member function (Clause 12) shall have an
5745  //   exception-specification. [...]
5746  ImplicitExceptionSpecification ExceptSpec(Context);
5747  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
5748  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
5749                                       BaseEnd = ClassDecl->bases_end();
5750       Base != BaseEnd;
5751       ++Base) {
5752    // Virtual bases are handled below.
5753    if (Base->isVirtual())
5754      continue;
5755
5756    CXXRecordDecl *BaseClassDecl
5757      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5758    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5759      DeclareImplicitCopyConstructor(BaseClassDecl);
5760
5761    if (CXXConstructorDecl *CopyConstructor
5762                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5763      ExceptSpec.CalledDecl(CopyConstructor);
5764  }
5765  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
5766                                       BaseEnd = ClassDecl->vbases_end();
5767       Base != BaseEnd;
5768       ++Base) {
5769    CXXRecordDecl *BaseClassDecl
5770      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
5771    if (!BaseClassDecl->hasDeclaredCopyConstructor())
5772      DeclareImplicitCopyConstructor(BaseClassDecl);
5773
5774    if (CXXConstructorDecl *CopyConstructor
5775                          = BaseClassDecl->getCopyConstructor(Context, Quals))
5776      ExceptSpec.CalledDecl(CopyConstructor);
5777  }
5778  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
5779                                  FieldEnd = ClassDecl->field_end();
5780       Field != FieldEnd;
5781       ++Field) {
5782    QualType FieldType = Context.getBaseElementType((*Field)->getType());
5783    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
5784      CXXRecordDecl *FieldClassDecl
5785        = cast<CXXRecordDecl>(FieldClassType->getDecl());
5786      if (!FieldClassDecl->hasDeclaredCopyConstructor())
5787        DeclareImplicitCopyConstructor(FieldClassDecl);
5788
5789      if (CXXConstructorDecl *CopyConstructor
5790                          = FieldClassDecl->getCopyConstructor(Context, Quals))
5791        ExceptSpec.CalledDecl(CopyConstructor);
5792    }
5793  }
5794
5795  //   An implicitly-declared copy constructor is an inline public
5796  //   member of its class.
5797  FunctionProtoType::ExtProtoInfo EPI;
5798  EPI.HasExceptionSpec = ExceptSpec.hasExceptionSpecification();
5799  EPI.HasAnyExceptionSpec = ExceptSpec.hasAnyExceptionSpecification();
5800  EPI.NumExceptions = ExceptSpec.size();
5801  EPI.Exceptions = ExceptSpec.data();
5802  DeclarationName Name
5803    = Context.DeclarationNames.getCXXConstructorName(
5804                                           Context.getCanonicalType(ClassType));
5805  DeclarationNameInfo NameInfo(Name, ClassDecl->getLocation());
5806  CXXConstructorDecl *CopyConstructor
5807    = CXXConstructorDecl::Create(Context, ClassDecl, NameInfo,
5808                                 Context.getFunctionType(Context.VoidTy,
5809                                                         &ArgType, 1, EPI),
5810                                 /*TInfo=*/0,
5811                                 /*isExplicit=*/false,
5812                                 /*isInline=*/true,
5813                                 /*isImplicitlyDeclared=*/true);
5814  CopyConstructor->setAccess(AS_public);
5815  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
5816
5817  // Note that we have declared this constructor.
5818  ++ASTContext::NumImplicitCopyConstructorsDeclared;
5819
5820  // Add the parameter to the constructor.
5821  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
5822                                               ClassDecl->getLocation(),
5823                                               /*IdentifierInfo=*/0,
5824                                               ArgType, /*TInfo=*/0,
5825                                               SC_None,
5826                                               SC_None, 0);
5827  CopyConstructor->setParams(&FromParam, 1);
5828  if (Scope *S = getScopeForContext(ClassDecl))
5829    PushOnScopeChains(CopyConstructor, S, false);
5830  ClassDecl->addDecl(CopyConstructor);
5831
5832  return CopyConstructor;
5833}
5834
5835void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
5836                                   CXXConstructorDecl *CopyConstructor,
5837                                   unsigned TypeQuals) {
5838  assert((CopyConstructor->isImplicit() &&
5839          CopyConstructor->isCopyConstructor(TypeQuals) &&
5840          !CopyConstructor->isUsed(false)) &&
5841         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
5842
5843  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
5844  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
5845
5846  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
5847  DiagnosticErrorTrap Trap(Diags);
5848
5849  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
5850      Trap.hasErrorOccurred()) {
5851    Diag(CurrentLocation, diag::note_member_synthesized_at)
5852      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
5853    CopyConstructor->setInvalidDecl();
5854  }  else {
5855    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
5856                                               CopyConstructor->getLocation(),
5857                                               MultiStmtArg(*this, 0, 0),
5858                                               /*isStmtExpr=*/false)
5859                                                              .takeAs<Stmt>());
5860  }
5861
5862  CopyConstructor->setUsed();
5863}
5864
5865ExprResult
5866Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5867                            CXXConstructorDecl *Constructor,
5868                            MultiExprArg ExprArgs,
5869                            bool RequiresZeroInit,
5870                            unsigned ConstructKind,
5871                            SourceRange ParenRange) {
5872  bool Elidable = false;
5873
5874  // C++0x [class.copy]p34:
5875  //   When certain criteria are met, an implementation is allowed to
5876  //   omit the copy/move construction of a class object, even if the
5877  //   copy/move constructor and/or destructor for the object have
5878  //   side effects. [...]
5879  //     - when a temporary class object that has not been bound to a
5880  //       reference (12.2) would be copied/moved to a class object
5881  //       with the same cv-unqualified type, the copy/move operation
5882  //       can be omitted by constructing the temporary object
5883  //       directly into the target of the omitted copy/move
5884  if (ConstructKind == CXXConstructExpr::CK_Complete &&
5885      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
5886    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
5887    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
5888  }
5889
5890  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
5891                               Elidable, move(ExprArgs), RequiresZeroInit,
5892                               ConstructKind, ParenRange);
5893}
5894
5895/// BuildCXXConstructExpr - Creates a complete call to a constructor,
5896/// including handling of its default argument expressions.
5897ExprResult
5898Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
5899                            CXXConstructorDecl *Constructor, bool Elidable,
5900                            MultiExprArg ExprArgs,
5901                            bool RequiresZeroInit,
5902                            unsigned ConstructKind,
5903                            SourceRange ParenRange) {
5904  unsigned NumExprs = ExprArgs.size();
5905  Expr **Exprs = (Expr **)ExprArgs.release();
5906
5907  MarkDeclarationReferenced(ConstructLoc, Constructor);
5908  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
5909                                        Constructor, Elidable, Exprs, NumExprs,
5910                                        RequiresZeroInit,
5911              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
5912                                        ParenRange));
5913}
5914
5915bool Sema::InitializeVarWithConstructor(VarDecl *VD,
5916                                        CXXConstructorDecl *Constructor,
5917                                        MultiExprArg Exprs) {
5918  // FIXME: Provide the correct paren SourceRange when available.
5919  ExprResult TempResult =
5920    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
5921                          move(Exprs), false, CXXConstructExpr::CK_Complete,
5922                          SourceRange());
5923  if (TempResult.isInvalid())
5924    return true;
5925
5926  Expr *Temp = TempResult.takeAs<Expr>();
5927  CheckImplicitConversions(Temp, VD->getLocation());
5928  MarkDeclarationReferenced(VD->getLocation(), Constructor);
5929  Temp = MaybeCreateExprWithCleanups(Temp);
5930  VD->setInit(Temp);
5931
5932  return false;
5933}
5934
5935void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
5936  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
5937  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
5938      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
5939    CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
5940    MarkDeclarationReferenced(VD->getLocation(), Destructor);
5941    CheckDestructorAccess(VD->getLocation(), Destructor,
5942                          PDiag(diag::err_access_dtor_var)
5943                            << VD->getDeclName()
5944                            << VD->getType());
5945
5946    // TODO: this should be re-enabled for static locals by !CXAAtExit
5947    if (!VD->isInvalidDecl() && VD->hasGlobalStorage() && !VD->isStaticLocal())
5948      Diag(VD->getLocation(), diag::warn_global_destructor);
5949  }
5950}
5951
5952/// AddCXXDirectInitializerToDecl - This action is called immediately after
5953/// ActOnDeclarator, when a C++ direct initializer is present.
5954/// e.g: "int x(1);"
5955void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
5956                                         SourceLocation LParenLoc,
5957                                         MultiExprArg Exprs,
5958                                         SourceLocation RParenLoc) {
5959  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
5960
5961  // If there is no declaration, there was an error parsing it.  Just ignore
5962  // the initializer.
5963  if (RealDecl == 0)
5964    return;
5965
5966  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5967  if (!VDecl) {
5968    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5969    RealDecl->setInvalidDecl();
5970    return;
5971  }
5972
5973  // We will represent direct-initialization similarly to copy-initialization:
5974  //    int x(1);  -as-> int x = 1;
5975  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
5976  //
5977  // Clients that want to distinguish between the two forms, can check for
5978  // direct initializer using VarDecl::hasCXXDirectInitializer().
5979  // A major benefit is that clients that don't particularly care about which
5980  // exactly form was it (like the CodeGen) can handle both cases without
5981  // special case code.
5982
5983  // C++ 8.5p11:
5984  // The form of initialization (using parentheses or '=') is generally
5985  // insignificant, but does matter when the entity being initialized has a
5986  // class type.
5987
5988  if (!VDecl->getType()->isDependentType() &&
5989      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
5990                          diag::err_typecheck_decl_incomplete_type)) {
5991    VDecl->setInvalidDecl();
5992    return;
5993  }
5994
5995  // The variable can not have an abstract class type.
5996  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5997                             diag::err_abstract_type_in_decl,
5998                             AbstractVariableType))
5999    VDecl->setInvalidDecl();
6000
6001  const VarDecl *Def;
6002  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6003    Diag(VDecl->getLocation(), diag::err_redefinition)
6004    << VDecl->getDeclName();
6005    Diag(Def->getLocation(), diag::note_previous_definition);
6006    VDecl->setInvalidDecl();
6007    return;
6008  }
6009
6010  // C++ [class.static.data]p4
6011  //   If a static data member is of const integral or const
6012  //   enumeration type, its declaration in the class definition can
6013  //   specify a constant-initializer which shall be an integral
6014  //   constant expression (5.19). In that case, the member can appear
6015  //   in integral constant expressions. The member shall still be
6016  //   defined in a namespace scope if it is used in the program and the
6017  //   namespace scope definition shall not contain an initializer.
6018  //
6019  // We already performed a redefinition check above, but for static
6020  // data members we also need to check whether there was an in-class
6021  // declaration with an initializer.
6022  const VarDecl* PrevInit = 0;
6023  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6024    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
6025    Diag(PrevInit->getLocation(), diag::note_previous_definition);
6026    return;
6027  }
6028
6029  bool IsDependent = false;
6030  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
6031    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
6032      VDecl->setInvalidDecl();
6033      return;
6034    }
6035
6036    if (Exprs.get()[I]->isTypeDependent())
6037      IsDependent = true;
6038  }
6039
6040  // If either the declaration has a dependent type or if any of the
6041  // expressions is type-dependent, we represent the initialization
6042  // via a ParenListExpr for later use during template instantiation.
6043  if (VDecl->getType()->isDependentType() || IsDependent) {
6044    // Let clients know that initialization was done with a direct initializer.
6045    VDecl->setCXXDirectInitializer(true);
6046
6047    // Store the initialization expressions as a ParenListExpr.
6048    unsigned NumExprs = Exprs.size();
6049    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
6050                                               (Expr **)Exprs.release(),
6051                                               NumExprs, RParenLoc));
6052    return;
6053  }
6054
6055  // Capture the variable that is being initialized and the style of
6056  // initialization.
6057  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6058
6059  // FIXME: Poor source location information.
6060  InitializationKind Kind
6061    = InitializationKind::CreateDirect(VDecl->getLocation(),
6062                                       LParenLoc, RParenLoc);
6063
6064  InitializationSequence InitSeq(*this, Entity, Kind,
6065                                 Exprs.get(), Exprs.size());
6066  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
6067  if (Result.isInvalid()) {
6068    VDecl->setInvalidDecl();
6069    return;
6070  }
6071
6072  CheckImplicitConversions(Result.get(), LParenLoc);
6073
6074  Result = MaybeCreateExprWithCleanups(Result);
6075  VDecl->setInit(Result.takeAs<Expr>());
6076  VDecl->setCXXDirectInitializer(true);
6077
6078  CheckCompleteVariableDeclaration(VDecl);
6079}
6080
6081/// \brief Given a constructor and the set of arguments provided for the
6082/// constructor, convert the arguments and add any required default arguments
6083/// to form a proper call to this constructor.
6084///
6085/// \returns true if an error occurred, false otherwise.
6086bool
6087Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
6088                              MultiExprArg ArgsPtr,
6089                              SourceLocation Loc,
6090                              ASTOwningVector<Expr*> &ConvertedArgs) {
6091  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
6092  unsigned NumArgs = ArgsPtr.size();
6093  Expr **Args = (Expr **)ArgsPtr.get();
6094
6095  const FunctionProtoType *Proto
6096    = Constructor->getType()->getAs<FunctionProtoType>();
6097  assert(Proto && "Constructor without a prototype?");
6098  unsigned NumArgsInProto = Proto->getNumArgs();
6099
6100  // If too few arguments are available, we'll fill in the rest with defaults.
6101  if (NumArgs < NumArgsInProto)
6102    ConvertedArgs.reserve(NumArgsInProto);
6103  else
6104    ConvertedArgs.reserve(NumArgs);
6105
6106  VariadicCallType CallType =
6107    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
6108  llvm::SmallVector<Expr *, 8> AllArgs;
6109  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
6110                                        Proto, 0, Args, NumArgs, AllArgs,
6111                                        CallType);
6112  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
6113    ConvertedArgs.push_back(AllArgs[i]);
6114  return Invalid;
6115}
6116
6117static inline bool
6118CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
6119                                       const FunctionDecl *FnDecl) {
6120  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
6121  if (isa<NamespaceDecl>(DC)) {
6122    return SemaRef.Diag(FnDecl->getLocation(),
6123                        diag::err_operator_new_delete_declared_in_namespace)
6124      << FnDecl->getDeclName();
6125  }
6126
6127  if (isa<TranslationUnitDecl>(DC) &&
6128      FnDecl->getStorageClass() == SC_Static) {
6129    return SemaRef.Diag(FnDecl->getLocation(),
6130                        diag::err_operator_new_delete_declared_static)
6131      << FnDecl->getDeclName();
6132  }
6133
6134  return false;
6135}
6136
6137static inline bool
6138CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
6139                            CanQualType ExpectedResultType,
6140                            CanQualType ExpectedFirstParamType,
6141                            unsigned DependentParamTypeDiag,
6142                            unsigned InvalidParamTypeDiag) {
6143  QualType ResultType =
6144    FnDecl->getType()->getAs<FunctionType>()->getResultType();
6145
6146  // Check that the result type is not dependent.
6147  if (ResultType->isDependentType())
6148    return SemaRef.Diag(FnDecl->getLocation(),
6149                        diag::err_operator_new_delete_dependent_result_type)
6150    << FnDecl->getDeclName() << ExpectedResultType;
6151
6152  // Check that the result type is what we expect.
6153  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
6154    return SemaRef.Diag(FnDecl->getLocation(),
6155                        diag::err_operator_new_delete_invalid_result_type)
6156    << FnDecl->getDeclName() << ExpectedResultType;
6157
6158  // A function template must have at least 2 parameters.
6159  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
6160    return SemaRef.Diag(FnDecl->getLocation(),
6161                      diag::err_operator_new_delete_template_too_few_parameters)
6162        << FnDecl->getDeclName();
6163
6164  // The function decl must have at least 1 parameter.
6165  if (FnDecl->getNumParams() == 0)
6166    return SemaRef.Diag(FnDecl->getLocation(),
6167                        diag::err_operator_new_delete_too_few_parameters)
6168      << FnDecl->getDeclName();
6169
6170  // Check the the first parameter type is not dependent.
6171  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
6172  if (FirstParamType->isDependentType())
6173    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
6174      << FnDecl->getDeclName() << ExpectedFirstParamType;
6175
6176  // Check that the first parameter type is what we expect.
6177  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
6178      ExpectedFirstParamType)
6179    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
6180    << FnDecl->getDeclName() << ExpectedFirstParamType;
6181
6182  return false;
6183}
6184
6185static bool
6186CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6187  // C++ [basic.stc.dynamic.allocation]p1:
6188  //   A program is ill-formed if an allocation function is declared in a
6189  //   namespace scope other than global scope or declared static in global
6190  //   scope.
6191  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6192    return true;
6193
6194  CanQualType SizeTy =
6195    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
6196
6197  // C++ [basic.stc.dynamic.allocation]p1:
6198  //  The return type shall be void*. The first parameter shall have type
6199  //  std::size_t.
6200  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
6201                                  SizeTy,
6202                                  diag::err_operator_new_dependent_param_type,
6203                                  diag::err_operator_new_param_type))
6204    return true;
6205
6206  // C++ [basic.stc.dynamic.allocation]p1:
6207  //  The first parameter shall not have an associated default argument.
6208  if (FnDecl->getParamDecl(0)->hasDefaultArg())
6209    return SemaRef.Diag(FnDecl->getLocation(),
6210                        diag::err_operator_new_default_arg)
6211      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
6212
6213  return false;
6214}
6215
6216static bool
6217CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
6218  // C++ [basic.stc.dynamic.deallocation]p1:
6219  //   A program is ill-formed if deallocation functions are declared in a
6220  //   namespace scope other than global scope or declared static in global
6221  //   scope.
6222  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
6223    return true;
6224
6225  // C++ [basic.stc.dynamic.deallocation]p2:
6226  //   Each deallocation function shall return void and its first parameter
6227  //   shall be void*.
6228  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
6229                                  SemaRef.Context.VoidPtrTy,
6230                                 diag::err_operator_delete_dependent_param_type,
6231                                 diag::err_operator_delete_param_type))
6232    return true;
6233
6234  return false;
6235}
6236
6237/// CheckOverloadedOperatorDeclaration - Check whether the declaration
6238/// of this overloaded operator is well-formed. If so, returns false;
6239/// otherwise, emits appropriate diagnostics and returns true.
6240bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
6241  assert(FnDecl && FnDecl->isOverloadedOperator() &&
6242         "Expected an overloaded operator declaration");
6243
6244  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
6245
6246  // C++ [over.oper]p5:
6247  //   The allocation and deallocation functions, operator new,
6248  //   operator new[], operator delete and operator delete[], are
6249  //   described completely in 3.7.3. The attributes and restrictions
6250  //   found in the rest of this subclause do not apply to them unless
6251  //   explicitly stated in 3.7.3.
6252  if (Op == OO_Delete || Op == OO_Array_Delete)
6253    return CheckOperatorDeleteDeclaration(*this, FnDecl);
6254
6255  if (Op == OO_New || Op == OO_Array_New)
6256    return CheckOperatorNewDeclaration(*this, FnDecl);
6257
6258  // C++ [over.oper]p6:
6259  //   An operator function shall either be a non-static member
6260  //   function or be a non-member function and have at least one
6261  //   parameter whose type is a class, a reference to a class, an
6262  //   enumeration, or a reference to an enumeration.
6263  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
6264    if (MethodDecl->isStatic())
6265      return Diag(FnDecl->getLocation(),
6266                  diag::err_operator_overload_static) << FnDecl->getDeclName();
6267  } else {
6268    bool ClassOrEnumParam = false;
6269    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
6270                                   ParamEnd = FnDecl->param_end();
6271         Param != ParamEnd; ++Param) {
6272      QualType ParamType = (*Param)->getType().getNonReferenceType();
6273      if (ParamType->isDependentType() || ParamType->isRecordType() ||
6274          ParamType->isEnumeralType()) {
6275        ClassOrEnumParam = true;
6276        break;
6277      }
6278    }
6279
6280    if (!ClassOrEnumParam)
6281      return Diag(FnDecl->getLocation(),
6282                  diag::err_operator_overload_needs_class_or_enum)
6283        << FnDecl->getDeclName();
6284  }
6285
6286  // C++ [over.oper]p8:
6287  //   An operator function cannot have default arguments (8.3.6),
6288  //   except where explicitly stated below.
6289  //
6290  // Only the function-call operator allows default arguments
6291  // (C++ [over.call]p1).
6292  if (Op != OO_Call) {
6293    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
6294         Param != FnDecl->param_end(); ++Param) {
6295      if ((*Param)->hasDefaultArg())
6296        return Diag((*Param)->getLocation(),
6297                    diag::err_operator_overload_default_arg)
6298          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
6299    }
6300  }
6301
6302  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
6303    { false, false, false }
6304#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
6305    , { Unary, Binary, MemberOnly }
6306#include "clang/Basic/OperatorKinds.def"
6307  };
6308
6309  bool CanBeUnaryOperator = OperatorUses[Op][0];
6310  bool CanBeBinaryOperator = OperatorUses[Op][1];
6311  bool MustBeMemberOperator = OperatorUses[Op][2];
6312
6313  // C++ [over.oper]p8:
6314  //   [...] Operator functions cannot have more or fewer parameters
6315  //   than the number required for the corresponding operator, as
6316  //   described in the rest of this subclause.
6317  unsigned NumParams = FnDecl->getNumParams()
6318                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
6319  if (Op != OO_Call &&
6320      ((NumParams == 1 && !CanBeUnaryOperator) ||
6321       (NumParams == 2 && !CanBeBinaryOperator) ||
6322       (NumParams < 1) || (NumParams > 2))) {
6323    // We have the wrong number of parameters.
6324    unsigned ErrorKind;
6325    if (CanBeUnaryOperator && CanBeBinaryOperator) {
6326      ErrorKind = 2;  // 2 -> unary or binary.
6327    } else if (CanBeUnaryOperator) {
6328      ErrorKind = 0;  // 0 -> unary
6329    } else {
6330      assert(CanBeBinaryOperator &&
6331             "All non-call overloaded operators are unary or binary!");
6332      ErrorKind = 1;  // 1 -> binary
6333    }
6334
6335    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
6336      << FnDecl->getDeclName() << NumParams << ErrorKind;
6337  }
6338
6339  // Overloaded operators other than operator() cannot be variadic.
6340  if (Op != OO_Call &&
6341      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
6342    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
6343      << FnDecl->getDeclName();
6344  }
6345
6346  // Some operators must be non-static member functions.
6347  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
6348    return Diag(FnDecl->getLocation(),
6349                diag::err_operator_overload_must_be_member)
6350      << FnDecl->getDeclName();
6351  }
6352
6353  // C++ [over.inc]p1:
6354  //   The user-defined function called operator++ implements the
6355  //   prefix and postfix ++ operator. If this function is a member
6356  //   function with no parameters, or a non-member function with one
6357  //   parameter of class or enumeration type, it defines the prefix
6358  //   increment operator ++ for objects of that type. If the function
6359  //   is a member function with one parameter (which shall be of type
6360  //   int) or a non-member function with two parameters (the second
6361  //   of which shall be of type int), it defines the postfix
6362  //   increment operator ++ for objects of that type.
6363  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
6364    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
6365    bool ParamIsInt = false;
6366    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
6367      ParamIsInt = BT->getKind() == BuiltinType::Int;
6368
6369    if (!ParamIsInt)
6370      return Diag(LastParam->getLocation(),
6371                  diag::err_operator_overload_post_incdec_must_be_int)
6372        << LastParam->getType() << (Op == OO_MinusMinus);
6373  }
6374
6375  return false;
6376}
6377
6378/// CheckLiteralOperatorDeclaration - Check whether the declaration
6379/// of this literal operator function is well-formed. If so, returns
6380/// false; otherwise, emits appropriate diagnostics and returns true.
6381bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
6382  DeclContext *DC = FnDecl->getDeclContext();
6383  Decl::Kind Kind = DC->getDeclKind();
6384  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
6385      Kind != Decl::LinkageSpec) {
6386    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
6387      << FnDecl->getDeclName();
6388    return true;
6389  }
6390
6391  bool Valid = false;
6392
6393  // template <char...> type operator "" name() is the only valid template
6394  // signature, and the only valid signature with no parameters.
6395  if (FnDecl->param_size() == 0) {
6396    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
6397      // Must have only one template parameter
6398      TemplateParameterList *Params = TpDecl->getTemplateParameters();
6399      if (Params->size() == 1) {
6400        NonTypeTemplateParmDecl *PmDecl =
6401          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
6402
6403        // The template parameter must be a char parameter pack.
6404        if (PmDecl && PmDecl->isTemplateParameterPack() &&
6405            Context.hasSameType(PmDecl->getType(), Context.CharTy))
6406          Valid = true;
6407      }
6408    }
6409  } else {
6410    // Check the first parameter
6411    FunctionDecl::param_iterator Param = FnDecl->param_begin();
6412
6413    QualType T = (*Param)->getType();
6414
6415    // unsigned long long int, long double, and any character type are allowed
6416    // as the only parameters.
6417    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
6418        Context.hasSameType(T, Context.LongDoubleTy) ||
6419        Context.hasSameType(T, Context.CharTy) ||
6420        Context.hasSameType(T, Context.WCharTy) ||
6421        Context.hasSameType(T, Context.Char16Ty) ||
6422        Context.hasSameType(T, Context.Char32Ty)) {
6423      if (++Param == FnDecl->param_end())
6424        Valid = true;
6425      goto FinishedParams;
6426    }
6427
6428    // Otherwise it must be a pointer to const; let's strip those qualifiers.
6429    const PointerType *PT = T->getAs<PointerType>();
6430    if (!PT)
6431      goto FinishedParams;
6432    T = PT->getPointeeType();
6433    if (!T.isConstQualified())
6434      goto FinishedParams;
6435    T = T.getUnqualifiedType();
6436
6437    // Move on to the second parameter;
6438    ++Param;
6439
6440    // If there is no second parameter, the first must be a const char *
6441    if (Param == FnDecl->param_end()) {
6442      if (Context.hasSameType(T, Context.CharTy))
6443        Valid = true;
6444      goto FinishedParams;
6445    }
6446
6447    // const char *, const wchar_t*, const char16_t*, and const char32_t*
6448    // are allowed as the first parameter to a two-parameter function
6449    if (!(Context.hasSameType(T, Context.CharTy) ||
6450          Context.hasSameType(T, Context.WCharTy) ||
6451          Context.hasSameType(T, Context.Char16Ty) ||
6452          Context.hasSameType(T, Context.Char32Ty)))
6453      goto FinishedParams;
6454
6455    // The second and final parameter must be an std::size_t
6456    T = (*Param)->getType().getUnqualifiedType();
6457    if (Context.hasSameType(T, Context.getSizeType()) &&
6458        ++Param == FnDecl->param_end())
6459      Valid = true;
6460  }
6461
6462  // FIXME: This diagnostic is absolutely terrible.
6463FinishedParams:
6464  if (!Valid) {
6465    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
6466      << FnDecl->getDeclName();
6467    return true;
6468  }
6469
6470  return false;
6471}
6472
6473/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
6474/// linkage specification, including the language and (if present)
6475/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
6476/// the location of the language string literal, which is provided
6477/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
6478/// the '{' brace. Otherwise, this linkage specification does not
6479/// have any braces.
6480Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
6481                                           SourceLocation LangLoc,
6482                                           llvm::StringRef Lang,
6483                                           SourceLocation LBraceLoc) {
6484  LinkageSpecDecl::LanguageIDs Language;
6485  if (Lang == "\"C\"")
6486    Language = LinkageSpecDecl::lang_c;
6487  else if (Lang == "\"C++\"")
6488    Language = LinkageSpecDecl::lang_cxx;
6489  else {
6490    Diag(LangLoc, diag::err_bad_language);
6491    return 0;
6492  }
6493
6494  // FIXME: Add all the various semantics of linkage specifications
6495
6496  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
6497                                               LangLoc, Language,
6498                                               LBraceLoc.isValid());
6499  CurContext->addDecl(D);
6500  PushDeclContext(S, D);
6501  return D;
6502}
6503
6504/// ActOnFinishLinkageSpecification - Complete the definition of
6505/// the C++ linkage specification LinkageSpec. If RBraceLoc is
6506/// valid, it's the position of the closing '}' brace in a linkage
6507/// specification that uses braces.
6508Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
6509                                                      Decl *LinkageSpec,
6510                                                      SourceLocation RBraceLoc) {
6511  if (LinkageSpec)
6512    PopDeclContext();
6513  return LinkageSpec;
6514}
6515
6516/// \brief Perform semantic analysis for the variable declaration that
6517/// occurs within a C++ catch clause, returning the newly-created
6518/// variable.
6519VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
6520                                         TypeSourceInfo *TInfo,
6521                                         IdentifierInfo *Name,
6522                                         SourceLocation Loc) {
6523  bool Invalid = false;
6524  QualType ExDeclType = TInfo->getType();
6525
6526  // Arrays and functions decay.
6527  if (ExDeclType->isArrayType())
6528    ExDeclType = Context.getArrayDecayedType(ExDeclType);
6529  else if (ExDeclType->isFunctionType())
6530    ExDeclType = Context.getPointerType(ExDeclType);
6531
6532  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
6533  // The exception-declaration shall not denote a pointer or reference to an
6534  // incomplete type, other than [cv] void*.
6535  // N2844 forbids rvalue references.
6536  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
6537    Diag(Loc, diag::err_catch_rvalue_ref);
6538    Invalid = true;
6539  }
6540
6541  // GCC allows catching pointers and references to incomplete types
6542  // as an extension; so do we, but we warn by default.
6543
6544  QualType BaseType = ExDeclType;
6545  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
6546  unsigned DK = diag::err_catch_incomplete;
6547  bool IncompleteCatchIsInvalid = true;
6548  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
6549    BaseType = Ptr->getPointeeType();
6550    Mode = 1;
6551    DK = diag::ext_catch_incomplete_ptr;
6552    IncompleteCatchIsInvalid = false;
6553  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
6554    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
6555    BaseType = Ref->getPointeeType();
6556    Mode = 2;
6557    DK = diag::ext_catch_incomplete_ref;
6558    IncompleteCatchIsInvalid = false;
6559  }
6560  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
6561      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
6562      IncompleteCatchIsInvalid)
6563    Invalid = true;
6564
6565  if (!Invalid && !ExDeclType->isDependentType() &&
6566      RequireNonAbstractType(Loc, ExDeclType,
6567                             diag::err_abstract_type_in_decl,
6568                             AbstractVariableType))
6569    Invalid = true;
6570
6571  // Only the non-fragile NeXT runtime currently supports C++ catches
6572  // of ObjC types, and no runtime supports catching ObjC types by value.
6573  if (!Invalid && getLangOptions().ObjC1) {
6574    QualType T = ExDeclType;
6575    if (const ReferenceType *RT = T->getAs<ReferenceType>())
6576      T = RT->getPointeeType();
6577
6578    if (T->isObjCObjectType()) {
6579      Diag(Loc, diag::err_objc_object_catch);
6580      Invalid = true;
6581    } else if (T->isObjCObjectPointerType()) {
6582      if (!getLangOptions().NeXTRuntime) {
6583        Diag(Loc, diag::err_objc_pointer_cxx_catch_gnu);
6584        Invalid = true;
6585      } else if (!getLangOptions().ObjCNonFragileABI) {
6586        Diag(Loc, diag::err_objc_pointer_cxx_catch_fragile);
6587        Invalid = true;
6588      }
6589    }
6590  }
6591
6592  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
6593                                    Name, ExDeclType, TInfo, SC_None,
6594                                    SC_None);
6595  ExDecl->setExceptionVariable(true);
6596
6597  if (!Invalid) {
6598    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
6599      // C++ [except.handle]p16:
6600      //   The object declared in an exception-declaration or, if the
6601      //   exception-declaration does not specify a name, a temporary (12.2) is
6602      //   copy-initialized (8.5) from the exception object. [...]
6603      //   The object is destroyed when the handler exits, after the destruction
6604      //   of any automatic objects initialized within the handler.
6605      //
6606      // We just pretend to initialize the object with itself, then make sure
6607      // it can be destroyed later.
6608      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
6609      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
6610                                            Loc, ExDeclType, VK_LValue, 0);
6611      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
6612                                                               SourceLocation());
6613      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
6614      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6615                                         MultiExprArg(*this, &ExDeclRef, 1));
6616      if (Result.isInvalid())
6617        Invalid = true;
6618      else
6619        FinalizeVarWithDestructor(ExDecl, RecordTy);
6620    }
6621  }
6622
6623  if (Invalid)
6624    ExDecl->setInvalidDecl();
6625
6626  return ExDecl;
6627}
6628
6629/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
6630/// handler.
6631Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
6632  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6633  bool Invalid = D.isInvalidType();
6634
6635  // Check for unexpanded parameter packs.
6636  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6637                                               UPPC_ExceptionType)) {
6638    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6639                                             D.getIdentifierLoc());
6640    Invalid = true;
6641  }
6642
6643  IdentifierInfo *II = D.getIdentifier();
6644  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
6645                                             LookupOrdinaryName,
6646                                             ForRedeclaration)) {
6647    // The scope should be freshly made just for us. There is just no way
6648    // it contains any previous declaration.
6649    assert(!S->isDeclScope(PrevDecl));
6650    if (PrevDecl->isTemplateParameter()) {
6651      // Maybe we will complain about the shadowed template parameter.
6652      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6653    }
6654  }
6655
6656  if (D.getCXXScopeSpec().isSet() && !Invalid) {
6657    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
6658      << D.getCXXScopeSpec().getRange();
6659    Invalid = true;
6660  }
6661
6662  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
6663                                              D.getIdentifier(),
6664                                              D.getIdentifierLoc());
6665
6666  if (Invalid)
6667    ExDecl->setInvalidDecl();
6668
6669  // Add the exception declaration into this scope.
6670  if (II)
6671    PushOnScopeChains(ExDecl, S);
6672  else
6673    CurContext->addDecl(ExDecl);
6674
6675  ProcessDeclAttributes(S, ExDecl, D);
6676  return ExDecl;
6677}
6678
6679Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
6680                                         Expr *AssertExpr,
6681                                         Expr *AssertMessageExpr_) {
6682  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
6683
6684  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
6685    llvm::APSInt Value(32);
6686    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
6687      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
6688        AssertExpr->getSourceRange();
6689      return 0;
6690    }
6691
6692    if (Value == 0) {
6693      Diag(AssertLoc, diag::err_static_assert_failed)
6694        << AssertMessage->getString() << AssertExpr->getSourceRange();
6695    }
6696  }
6697
6698  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
6699    return 0;
6700
6701  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
6702                                        AssertExpr, AssertMessage);
6703
6704  CurContext->addDecl(Decl);
6705  return Decl;
6706}
6707
6708/// \brief Perform semantic analysis of the given friend type declaration.
6709///
6710/// \returns A friend declaration that.
6711FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
6712                                      TypeSourceInfo *TSInfo) {
6713  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
6714
6715  QualType T = TSInfo->getType();
6716  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
6717
6718  if (!getLangOptions().CPlusPlus0x) {
6719    // C++03 [class.friend]p2:
6720    //   An elaborated-type-specifier shall be used in a friend declaration
6721    //   for a class.*
6722    //
6723    //   * The class-key of the elaborated-type-specifier is required.
6724    if (!ActiveTemplateInstantiations.empty()) {
6725      // Do not complain about the form of friend template types during
6726      // template instantiation; we will already have complained when the
6727      // template was declared.
6728    } else if (!T->isElaboratedTypeSpecifier()) {
6729      // If we evaluated the type to a record type, suggest putting
6730      // a tag in front.
6731      if (const RecordType *RT = T->getAs<RecordType>()) {
6732        RecordDecl *RD = RT->getDecl();
6733
6734        std::string InsertionText = std::string(" ") + RD->getKindName();
6735
6736        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
6737          << (unsigned) RD->getTagKind()
6738          << T
6739          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
6740                                        InsertionText);
6741      } else {
6742        Diag(FriendLoc, diag::ext_nonclass_type_friend)
6743          << T
6744          << SourceRange(FriendLoc, TypeRange.getEnd());
6745      }
6746    } else if (T->getAs<EnumType>()) {
6747      Diag(FriendLoc, diag::ext_enum_friend)
6748        << T
6749        << SourceRange(FriendLoc, TypeRange.getEnd());
6750    }
6751  }
6752
6753  // C++0x [class.friend]p3:
6754  //   If the type specifier in a friend declaration designates a (possibly
6755  //   cv-qualified) class type, that class is declared as a friend; otherwise,
6756  //   the friend declaration is ignored.
6757
6758  // FIXME: C++0x has some syntactic restrictions on friend type declarations
6759  // in [class.friend]p3 that we do not implement.
6760
6761  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
6762}
6763
6764/// Handle a friend tag declaration where the scope specifier was
6765/// templated.
6766Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
6767                                    unsigned TagSpec, SourceLocation TagLoc,
6768                                    CXXScopeSpec &SS,
6769                                    IdentifierInfo *Name, SourceLocation NameLoc,
6770                                    AttributeList *Attr,
6771                                    MultiTemplateParamsArg TempParamLists) {
6772  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6773
6774  bool isExplicitSpecialization = false;
6775  unsigned NumMatchedTemplateParamLists = TempParamLists.size();
6776  bool Invalid = false;
6777
6778  if (TemplateParameterList *TemplateParams
6779        = MatchTemplateParametersToScopeSpecifier(TagLoc, SS,
6780                                                  TempParamLists.get(),
6781                                                  TempParamLists.size(),
6782                                                  /*friend*/ true,
6783                                                  isExplicitSpecialization,
6784                                                  Invalid)) {
6785    --NumMatchedTemplateParamLists;
6786
6787    if (TemplateParams->size() > 0) {
6788      // This is a declaration of a class template.
6789      if (Invalid)
6790        return 0;
6791
6792      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
6793                                SS, Name, NameLoc, Attr,
6794                                TemplateParams, AS_public).take();
6795    } else {
6796      // The "template<>" header is extraneous.
6797      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6798        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6799      isExplicitSpecialization = true;
6800    }
6801  }
6802
6803  if (Invalid) return 0;
6804
6805  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
6806
6807  bool isAllExplicitSpecializations = true;
6808  for (unsigned I = 0; I != NumMatchedTemplateParamLists; ++I) {
6809    if (TempParamLists.get()[I]->size()) {
6810      isAllExplicitSpecializations = false;
6811      break;
6812    }
6813  }
6814
6815  // FIXME: don't ignore attributes.
6816
6817  // If it's explicit specializations all the way down, just forget
6818  // about the template header and build an appropriate non-templated
6819  // friend.  TODO: for source fidelity, remember the headers.
6820  if (isAllExplicitSpecializations) {
6821    ElaboratedTypeKeyword Keyword
6822      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6823    QualType T = CheckTypenameType(Keyword, SS.getScopeRep(), *Name,
6824                                   TagLoc, SS.getRange(), NameLoc);
6825    if (T.isNull())
6826      return 0;
6827
6828    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6829    if (isa<DependentNameType>(T)) {
6830      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6831      TL.setKeywordLoc(TagLoc);
6832      TL.setQualifierRange(SS.getRange());
6833      TL.setNameLoc(NameLoc);
6834    } else {
6835      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
6836      TL.setKeywordLoc(TagLoc);
6837      TL.setQualifierRange(SS.getRange());
6838      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
6839    }
6840
6841    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6842                                            TSI, FriendLoc);
6843    Friend->setAccess(AS_public);
6844    CurContext->addDecl(Friend);
6845    return Friend;
6846  }
6847
6848  // Handle the case of a templated-scope friend class.  e.g.
6849  //   template <class T> class A<T>::B;
6850  // FIXME: we don't support these right now.
6851  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
6852  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
6853  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
6854  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
6855  TL.setKeywordLoc(TagLoc);
6856  TL.setQualifierRange(SS.getRange());
6857  TL.setNameLoc(NameLoc);
6858
6859  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
6860                                          TSI, FriendLoc);
6861  Friend->setAccess(AS_public);
6862  Friend->setUnsupportedFriend(true);
6863  CurContext->addDecl(Friend);
6864  return Friend;
6865}
6866
6867
6868/// Handle a friend type declaration.  This works in tandem with
6869/// ActOnTag.
6870///
6871/// Notes on friend class templates:
6872///
6873/// We generally treat friend class declarations as if they were
6874/// declaring a class.  So, for example, the elaborated type specifier
6875/// in a friend declaration is required to obey the restrictions of a
6876/// class-head (i.e. no typedefs in the scope chain), template
6877/// parameters are required to match up with simple template-ids, &c.
6878/// However, unlike when declaring a template specialization, it's
6879/// okay to refer to a template specialization without an empty
6880/// template parameter declaration, e.g.
6881///   friend class A<T>::B<unsigned>;
6882/// We permit this as a special case; if there are any template
6883/// parameters present at all, require proper matching, i.e.
6884///   template <> template <class T> friend class A<int>::B;
6885Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
6886                                MultiTemplateParamsArg TempParams) {
6887  SourceLocation Loc = DS.getSourceRange().getBegin();
6888
6889  assert(DS.isFriendSpecified());
6890  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6891
6892  // Try to convert the decl specifier to a type.  This works for
6893  // friend templates because ActOnTag never produces a ClassTemplateDecl
6894  // for a TUK_Friend.
6895  Declarator TheDeclarator(DS, Declarator::MemberContext);
6896  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
6897  QualType T = TSI->getType();
6898  if (TheDeclarator.isInvalidType())
6899    return 0;
6900
6901  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
6902    return 0;
6903
6904  // This is definitely an error in C++98.  It's probably meant to
6905  // be forbidden in C++0x, too, but the specification is just
6906  // poorly written.
6907  //
6908  // The problem is with declarations like the following:
6909  //   template <T> friend A<T>::foo;
6910  // where deciding whether a class C is a friend or not now hinges
6911  // on whether there exists an instantiation of A that causes
6912  // 'foo' to equal C.  There are restrictions on class-heads
6913  // (which we declare (by fiat) elaborated friend declarations to
6914  // be) that makes this tractable.
6915  //
6916  // FIXME: handle "template <> friend class A<T>;", which
6917  // is possibly well-formed?  Who even knows?
6918  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
6919    Diag(Loc, diag::err_tagless_friend_type_template)
6920      << DS.getSourceRange();
6921    return 0;
6922  }
6923
6924  // C++98 [class.friend]p1: A friend of a class is a function
6925  //   or class that is not a member of the class . . .
6926  // This is fixed in DR77, which just barely didn't make the C++03
6927  // deadline.  It's also a very silly restriction that seriously
6928  // affects inner classes and which nobody else seems to implement;
6929  // thus we never diagnose it, not even in -pedantic.
6930  //
6931  // But note that we could warn about it: it's always useless to
6932  // friend one of your own members (it's not, however, worthless to
6933  // friend a member of an arbitrary specialization of your template).
6934
6935  Decl *D;
6936  if (unsigned NumTempParamLists = TempParams.size())
6937    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
6938                                   NumTempParamLists,
6939                                   TempParams.release(),
6940                                   TSI,
6941                                   DS.getFriendSpecLoc());
6942  else
6943    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
6944
6945  if (!D)
6946    return 0;
6947
6948  D->setAccess(AS_public);
6949  CurContext->addDecl(D);
6950
6951  return D;
6952}
6953
6954Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D, bool IsDefinition,
6955                                    MultiTemplateParamsArg TemplateParams) {
6956  const DeclSpec &DS = D.getDeclSpec();
6957
6958  assert(DS.isFriendSpecified());
6959  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
6960
6961  SourceLocation Loc = D.getIdentifierLoc();
6962  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6963  QualType T = TInfo->getType();
6964
6965  // C++ [class.friend]p1
6966  //   A friend of a class is a function or class....
6967  // Note that this sees through typedefs, which is intended.
6968  // It *doesn't* see through dependent types, which is correct
6969  // according to [temp.arg.type]p3:
6970  //   If a declaration acquires a function type through a
6971  //   type dependent on a template-parameter and this causes
6972  //   a declaration that does not use the syntactic form of a
6973  //   function declarator to have a function type, the program
6974  //   is ill-formed.
6975  if (!T->isFunctionType()) {
6976    Diag(Loc, diag::err_unexpected_friend);
6977
6978    // It might be worthwhile to try to recover by creating an
6979    // appropriate declaration.
6980    return 0;
6981  }
6982
6983  // C++ [namespace.memdef]p3
6984  //  - If a friend declaration in a non-local class first declares a
6985  //    class or function, the friend class or function is a member
6986  //    of the innermost enclosing namespace.
6987  //  - The name of the friend is not found by simple name lookup
6988  //    until a matching declaration is provided in that namespace
6989  //    scope (either before or after the class declaration granting
6990  //    friendship).
6991  //  - If a friend function is called, its name may be found by the
6992  //    name lookup that considers functions from namespaces and
6993  //    classes associated with the types of the function arguments.
6994  //  - When looking for a prior declaration of a class or a function
6995  //    declared as a friend, scopes outside the innermost enclosing
6996  //    namespace scope are not considered.
6997
6998  CXXScopeSpec &SS = D.getCXXScopeSpec();
6999  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7000  DeclarationName Name = NameInfo.getName();
7001  assert(Name);
7002
7003  // Check for unexpanded parameter packs.
7004  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
7005      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
7006      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
7007    return 0;
7008
7009  // The context we found the declaration in, or in which we should
7010  // create the declaration.
7011  DeclContext *DC;
7012  Scope *DCScope = S;
7013  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
7014                        ForRedeclaration);
7015
7016  // FIXME: there are different rules in local classes
7017
7018  // There are four cases here.
7019  //   - There's no scope specifier, in which case we just go to the
7020  //     appropriate scope and look for a function or function template
7021  //     there as appropriate.
7022  // Recover from invalid scope qualifiers as if they just weren't there.
7023  if (SS.isInvalid() || !SS.isSet()) {
7024    // C++0x [namespace.memdef]p3:
7025    //   If the name in a friend declaration is neither qualified nor
7026    //   a template-id and the declaration is a function or an
7027    //   elaborated-type-specifier, the lookup to determine whether
7028    //   the entity has been previously declared shall not consider
7029    //   any scopes outside the innermost enclosing namespace.
7030    // C++0x [class.friend]p11:
7031    //   If a friend declaration appears in a local class and the name
7032    //   specified is an unqualified name, a prior declaration is
7033    //   looked up without considering scopes that are outside the
7034    //   innermost enclosing non-class scope. For a friend function
7035    //   declaration, if there is no prior declaration, the program is
7036    //   ill-formed.
7037    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
7038    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
7039
7040    // Find the appropriate context according to the above.
7041    DC = CurContext;
7042    while (true) {
7043      // Skip class contexts.  If someone can cite chapter and verse
7044      // for this behavior, that would be nice --- it's what GCC and
7045      // EDG do, and it seems like a reasonable intent, but the spec
7046      // really only says that checks for unqualified existing
7047      // declarations should stop at the nearest enclosing namespace,
7048      // not that they should only consider the nearest enclosing
7049      // namespace.
7050      while (DC->isRecord())
7051        DC = DC->getParent();
7052
7053      LookupQualifiedName(Previous, DC);
7054
7055      // TODO: decide what we think about using declarations.
7056      if (isLocal || !Previous.empty())
7057        break;
7058
7059      if (isTemplateId) {
7060        if (isa<TranslationUnitDecl>(DC)) break;
7061      } else {
7062        if (DC->isFileContext()) break;
7063      }
7064      DC = DC->getParent();
7065    }
7066
7067    // C++ [class.friend]p1: A friend of a class is a function or
7068    //   class that is not a member of the class . . .
7069    // C++0x changes this for both friend types and functions.
7070    // Most C++ 98 compilers do seem to give an error here, so
7071    // we do, too.
7072    if (!Previous.empty() && DC->Equals(CurContext)
7073        && !getLangOptions().CPlusPlus0x)
7074      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7075
7076    DCScope = getScopeForDeclContext(S, DC);
7077
7078  //   - There's a non-dependent scope specifier, in which case we
7079  //     compute it and do a previous lookup there for a function
7080  //     or function template.
7081  } else if (!SS.getScopeRep()->isDependent()) {
7082    DC = computeDeclContext(SS);
7083    if (!DC) return 0;
7084
7085    if (RequireCompleteDeclContext(SS, DC)) return 0;
7086
7087    LookupQualifiedName(Previous, DC);
7088
7089    // Ignore things found implicitly in the wrong scope.
7090    // TODO: better diagnostics for this case.  Suggesting the right
7091    // qualified scope would be nice...
7092    LookupResult::Filter F = Previous.makeFilter();
7093    while (F.hasNext()) {
7094      NamedDecl *D = F.next();
7095      if (!DC->InEnclosingNamespaceSetOf(
7096              D->getDeclContext()->getRedeclContext()))
7097        F.erase();
7098    }
7099    F.done();
7100
7101    if (Previous.empty()) {
7102      D.setInvalidType();
7103      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
7104      return 0;
7105    }
7106
7107    // C++ [class.friend]p1: A friend of a class is a function or
7108    //   class that is not a member of the class . . .
7109    if (DC->Equals(CurContext))
7110      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
7111
7112  //   - There's a scope specifier that does not match any template
7113  //     parameter lists, in which case we use some arbitrary context,
7114  //     create a method or method template, and wait for instantiation.
7115  //   - There's a scope specifier that does match some template
7116  //     parameter lists, which we don't handle right now.
7117  } else {
7118    DC = CurContext;
7119    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
7120  }
7121
7122  if (!DC->isRecord()) {
7123    // This implies that it has to be an operator or function.
7124    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
7125        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
7126        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
7127      Diag(Loc, diag::err_introducing_special_friend) <<
7128        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
7129         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
7130      return 0;
7131    }
7132  }
7133
7134  bool Redeclaration = false;
7135  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, T, TInfo, Previous,
7136                                          move(TemplateParams),
7137                                          IsDefinition,
7138                                          Redeclaration);
7139  if (!ND) return 0;
7140
7141  assert(ND->getDeclContext() == DC);
7142  assert(ND->getLexicalDeclContext() == CurContext);
7143
7144  // Add the function declaration to the appropriate lookup tables,
7145  // adjusting the redeclarations list as necessary.  We don't
7146  // want to do this yet if the friending class is dependent.
7147  //
7148  // Also update the scope-based lookup if the target context's
7149  // lookup context is in lexical scope.
7150  if (!CurContext->isDependentContext()) {
7151    DC = DC->getRedeclContext();
7152    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
7153    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7154      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
7155  }
7156
7157  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
7158                                       D.getIdentifierLoc(), ND,
7159                                       DS.getFriendSpecLoc());
7160  FrD->setAccess(AS_public);
7161  CurContext->addDecl(FrD);
7162
7163  if (ND->isInvalidDecl())
7164    FrD->setInvalidDecl();
7165  else {
7166    FunctionDecl *FD;
7167    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
7168      FD = FTD->getTemplatedDecl();
7169    else
7170      FD = cast<FunctionDecl>(ND);
7171
7172    // Mark templated-scope function declarations as unsupported.
7173    if (FD->getNumTemplateParameterLists())
7174      FrD->setUnsupportedFriend(true);
7175  }
7176
7177  return ND;
7178}
7179
7180void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
7181  AdjustDeclIfTemplate(Dcl);
7182
7183  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
7184  if (!Fn) {
7185    Diag(DelLoc, diag::err_deleted_non_function);
7186    return;
7187  }
7188  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
7189    Diag(DelLoc, diag::err_deleted_decl_not_first);
7190    Diag(Prev->getLocation(), diag::note_previous_declaration);
7191    // If the declaration wasn't the first, we delete the function anyway for
7192    // recovery.
7193  }
7194  Fn->setDeleted();
7195}
7196
7197static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
7198  for (Stmt::child_range CI = S->children(); CI; ++CI) {
7199    Stmt *SubStmt = *CI;
7200    if (!SubStmt)
7201      continue;
7202    if (isa<ReturnStmt>(SubStmt))
7203      Self.Diag(SubStmt->getSourceRange().getBegin(),
7204           diag::err_return_in_constructor_handler);
7205    if (!isa<Expr>(SubStmt))
7206      SearchForReturnInStmt(Self, SubStmt);
7207  }
7208}
7209
7210void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
7211  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
7212    CXXCatchStmt *Handler = TryBlock->getHandler(I);
7213    SearchForReturnInStmt(*this, Handler);
7214  }
7215}
7216
7217bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
7218                                             const CXXMethodDecl *Old) {
7219  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
7220  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
7221
7222  if (Context.hasSameType(NewTy, OldTy) ||
7223      NewTy->isDependentType() || OldTy->isDependentType())
7224    return false;
7225
7226  // Check if the return types are covariant
7227  QualType NewClassTy, OldClassTy;
7228
7229  /// Both types must be pointers or references to classes.
7230  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
7231    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
7232      NewClassTy = NewPT->getPointeeType();
7233      OldClassTy = OldPT->getPointeeType();
7234    }
7235  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
7236    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
7237      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
7238        NewClassTy = NewRT->getPointeeType();
7239        OldClassTy = OldRT->getPointeeType();
7240      }
7241    }
7242  }
7243
7244  // The return types aren't either both pointers or references to a class type.
7245  if (NewClassTy.isNull()) {
7246    Diag(New->getLocation(),
7247         diag::err_different_return_type_for_overriding_virtual_function)
7248      << New->getDeclName() << NewTy << OldTy;
7249    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7250
7251    return true;
7252  }
7253
7254  // C++ [class.virtual]p6:
7255  //   If the return type of D::f differs from the return type of B::f, the
7256  //   class type in the return type of D::f shall be complete at the point of
7257  //   declaration of D::f or shall be the class type D.
7258  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
7259    if (!RT->isBeingDefined() &&
7260        RequireCompleteType(New->getLocation(), NewClassTy,
7261                            PDiag(diag::err_covariant_return_incomplete)
7262                              << New->getDeclName()))
7263    return true;
7264  }
7265
7266  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
7267    // Check if the new class derives from the old class.
7268    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
7269      Diag(New->getLocation(),
7270           diag::err_covariant_return_not_derived)
7271      << New->getDeclName() << NewTy << OldTy;
7272      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7273      return true;
7274    }
7275
7276    // Check if we the conversion from derived to base is valid.
7277    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
7278                    diag::err_covariant_return_inaccessible_base,
7279                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
7280                    // FIXME: Should this point to the return type?
7281                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
7282      // FIXME: this note won't trigger for delayed access control
7283      // diagnostics, and it's impossible to get an undelayed error
7284      // here from access control during the original parse because
7285      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
7286      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7287      return true;
7288    }
7289  }
7290
7291  // The qualifiers of the return types must be the same.
7292  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
7293    Diag(New->getLocation(),
7294         diag::err_covariant_return_type_different_qualifications)
7295    << New->getDeclName() << NewTy << OldTy;
7296    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7297    return true;
7298  };
7299
7300
7301  // The new class type must have the same or less qualifiers as the old type.
7302  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
7303    Diag(New->getLocation(),
7304         diag::err_covariant_return_type_class_type_more_qualified)
7305    << New->getDeclName() << NewTy << OldTy;
7306    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
7307    return true;
7308  };
7309
7310  return false;
7311}
7312
7313/// \brief Mark the given method pure.
7314///
7315/// \param Method the method to be marked pure.
7316///
7317/// \param InitRange the source range that covers the "0" initializer.
7318bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
7319  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
7320    Method->setPure();
7321    return false;
7322  }
7323
7324  if (!Method->isInvalidDecl())
7325    Diag(Method->getLocation(), diag::err_non_virtual_pure)
7326      << Method->getDeclName() << InitRange;
7327  return true;
7328}
7329
7330/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
7331/// an initializer for the out-of-line declaration 'Dcl'.  The scope
7332/// is a fresh scope pushed for just this purpose.
7333///
7334/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
7335/// static data member of class X, names should be looked up in the scope of
7336/// class X.
7337void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
7338  // If there is no declaration, there was an error parsing it.
7339  if (D == 0) return;
7340
7341  // We should only get called for declarations with scope specifiers, like:
7342  //   int foo::bar;
7343  assert(D->isOutOfLine());
7344  EnterDeclaratorContext(S, D->getDeclContext());
7345}
7346
7347/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
7348/// initializer for the out-of-line declaration 'D'.
7349void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
7350  // If there is no declaration, there was an error parsing it.
7351  if (D == 0) return;
7352
7353  assert(D->isOutOfLine());
7354  ExitDeclaratorContext(S);
7355}
7356
7357/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
7358/// C++ if/switch/while/for statement.
7359/// e.g: "if (int x = f()) {...}"
7360DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
7361  // C++ 6.4p2:
7362  // The declarator shall not specify a function or an array.
7363  // The type-specifier-seq shall not contain typedef and shall not declare a
7364  // new class or enumeration.
7365  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7366         "Parser allowed 'typedef' as storage class of condition decl.");
7367
7368  TagDecl *OwnedTag = 0;
7369  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedTag);
7370  QualType Ty = TInfo->getType();
7371
7372  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
7373                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
7374                              // would be created and CXXConditionDeclExpr wants a VarDecl.
7375    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
7376      << D.getSourceRange();
7377    return DeclResult();
7378  } else if (OwnedTag && OwnedTag->isDefinition()) {
7379    // The type-specifier-seq shall not declare a new class or enumeration.
7380    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
7381  }
7382
7383  Decl *Dcl = ActOnDeclarator(S, D);
7384  if (!Dcl)
7385    return DeclResult();
7386
7387  return Dcl;
7388}
7389
7390void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
7391                          bool DefinitionRequired) {
7392  // Ignore any vtable uses in unevaluated operands or for classes that do
7393  // not have a vtable.
7394  if (!Class->isDynamicClass() || Class->isDependentContext() ||
7395      CurContext->isDependentContext() ||
7396      ExprEvalContexts.back().Context == Unevaluated)
7397    return;
7398
7399  // Try to insert this class into the map.
7400  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7401  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
7402    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
7403  if (!Pos.second) {
7404    // If we already had an entry, check to see if we are promoting this vtable
7405    // to required a definition. If so, we need to reappend to the VTableUses
7406    // list, since we may have already processed the first entry.
7407    if (DefinitionRequired && !Pos.first->second) {
7408      Pos.first->second = true;
7409    } else {
7410      // Otherwise, we can early exit.
7411      return;
7412    }
7413  }
7414
7415  // Local classes need to have their virtual members marked
7416  // immediately. For all other classes, we mark their virtual members
7417  // at the end of the translation unit.
7418  if (Class->isLocalClass())
7419    MarkVirtualMembersReferenced(Loc, Class);
7420  else
7421    VTableUses.push_back(std::make_pair(Class, Loc));
7422}
7423
7424bool Sema::DefineUsedVTables() {
7425  if (VTableUses.empty())
7426    return false;
7427
7428  // Note: The VTableUses vector could grow as a result of marking
7429  // the members of a class as "used", so we check the size each
7430  // time through the loop and prefer indices (with are stable) to
7431  // iterators (which are not).
7432  for (unsigned I = 0; I != VTableUses.size(); ++I) {
7433    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
7434    if (!Class)
7435      continue;
7436
7437    SourceLocation Loc = VTableUses[I].second;
7438
7439    // If this class has a key function, but that key function is
7440    // defined in another translation unit, we don't need to emit the
7441    // vtable even though we're using it.
7442    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
7443    if (KeyFunction && !KeyFunction->hasBody()) {
7444      switch (KeyFunction->getTemplateSpecializationKind()) {
7445      case TSK_Undeclared:
7446      case TSK_ExplicitSpecialization:
7447      case TSK_ExplicitInstantiationDeclaration:
7448        // The key function is in another translation unit.
7449        continue;
7450
7451      case TSK_ExplicitInstantiationDefinition:
7452      case TSK_ImplicitInstantiation:
7453        // We will be instantiating the key function.
7454        break;
7455      }
7456    } else if (!KeyFunction) {
7457      // If we have a class with no key function that is the subject
7458      // of an explicit instantiation declaration, suppress the
7459      // vtable; it will live with the explicit instantiation
7460      // definition.
7461      bool IsExplicitInstantiationDeclaration
7462        = Class->getTemplateSpecializationKind()
7463                                      == TSK_ExplicitInstantiationDeclaration;
7464      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
7465                                 REnd = Class->redecls_end();
7466           R != REnd; ++R) {
7467        TemplateSpecializationKind TSK
7468          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
7469        if (TSK == TSK_ExplicitInstantiationDeclaration)
7470          IsExplicitInstantiationDeclaration = true;
7471        else if (TSK == TSK_ExplicitInstantiationDefinition) {
7472          IsExplicitInstantiationDeclaration = false;
7473          break;
7474        }
7475      }
7476
7477      if (IsExplicitInstantiationDeclaration)
7478        continue;
7479    }
7480
7481    // Mark all of the virtual members of this class as referenced, so
7482    // that we can build a vtable. Then, tell the AST consumer that a
7483    // vtable for this class is required.
7484    MarkVirtualMembersReferenced(Loc, Class);
7485    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
7486    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
7487
7488    // Optionally warn if we're emitting a weak vtable.
7489    if (Class->getLinkage() == ExternalLinkage &&
7490        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
7491      if (!KeyFunction || (KeyFunction->hasBody() && KeyFunction->isInlined()))
7492        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
7493    }
7494  }
7495  VTableUses.clear();
7496
7497  return true;
7498}
7499
7500void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
7501                                        const CXXRecordDecl *RD) {
7502  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
7503       e = RD->method_end(); i != e; ++i) {
7504    CXXMethodDecl *MD = *i;
7505
7506    // C++ [basic.def.odr]p2:
7507    //   [...] A virtual member function is used if it is not pure. [...]
7508    if (MD->isVirtual() && !MD->isPure())
7509      MarkDeclarationReferenced(Loc, MD);
7510  }
7511
7512  // Only classes that have virtual bases need a VTT.
7513  if (RD->getNumVBases() == 0)
7514    return;
7515
7516  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
7517           e = RD->bases_end(); i != e; ++i) {
7518    const CXXRecordDecl *Base =
7519        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
7520    if (Base->getNumVBases() == 0)
7521      continue;
7522    MarkVirtualMembersReferenced(Loc, Base);
7523  }
7524}
7525
7526/// SetIvarInitializers - This routine builds initialization ASTs for the
7527/// Objective-C implementation whose ivars need be initialized.
7528void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
7529  if (!getLangOptions().CPlusPlus)
7530    return;
7531  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
7532    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
7533    CollectIvarsToConstructOrDestruct(OID, ivars);
7534    if (ivars.empty())
7535      return;
7536    llvm::SmallVector<CXXCtorInitializer*, 32> AllToInit;
7537    for (unsigned i = 0; i < ivars.size(); i++) {
7538      FieldDecl *Field = ivars[i];
7539      if (Field->isInvalidDecl())
7540        continue;
7541
7542      CXXCtorInitializer *Member;
7543      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
7544      InitializationKind InitKind =
7545        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
7546
7547      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
7548      ExprResult MemberInit =
7549        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
7550      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
7551      // Note, MemberInit could actually come back empty if no initialization
7552      // is required (e.g., because it would call a trivial default constructor)
7553      if (!MemberInit.get() || MemberInit.isInvalid())
7554        continue;
7555
7556      Member =
7557        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
7558                                         SourceLocation(),
7559                                         MemberInit.takeAs<Expr>(),
7560                                         SourceLocation());
7561      AllToInit.push_back(Member);
7562
7563      // Be sure that the destructor is accessible and is marked as referenced.
7564      if (const RecordType *RecordTy
7565                  = Context.getBaseElementType(Field->getType())
7566                                                        ->getAs<RecordType>()) {
7567                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
7568        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
7569          MarkDeclarationReferenced(Field->getLocation(), Destructor);
7570          CheckDestructorAccess(Field->getLocation(), Destructor,
7571                            PDiag(diag::err_access_dtor_ivar)
7572                              << Context.getBaseElementType(Field->getType()));
7573        }
7574      }
7575    }
7576    ObjCImplementation->setIvarInitializers(Context,
7577                                            AllToInit.data(), AllToInit.size());
7578  }
7579}
7580