SemaDeclCXX.cpp revision f0459f87aaf05e76ce0d8c8c1e4c68e3c22195b7
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/StmtVisitor.h"
29#include "clang/AST/TypeLoc.h"
30#include "clang/AST/TypeOrdering.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Lex/Preprocessor.h"
35#include "llvm/ADT/DenseSet.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getSourceRange().getBegin(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getSourceRange().getBegin(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getSourceRange().getBegin(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(CXXMethodDecl *Method) {
129  assert(Context && "ImplicitExceptionSpecification without an ASTContext");
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136
137  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
138
139  // If this function can throw any exceptions, make a note of that.
140  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
141    ClearExceptions();
142    ComputedEST = EST;
143    return;
144  }
145
146  // FIXME: If the call to this decl is using any of its default arguments, we
147  // need to search them for potentially-throwing calls.
148
149  // If this function has a basic noexcept, it doesn't affect the outcome.
150  if (EST == EST_BasicNoexcept)
151    return;
152
153  // If we have a throw-all spec at this point, ignore the function.
154  if (ComputedEST == EST_None)
155    return;
156
157  // If we're still at noexcept(true) and there's a nothrow() callee,
158  // change to that specification.
159  if (EST == EST_DynamicNone) {
160    if (ComputedEST == EST_BasicNoexcept)
161      ComputedEST = EST_DynamicNone;
162    return;
163  }
164
165  // Check out noexcept specs.
166  if (EST == EST_ComputedNoexcept) {
167    FunctionProtoType::NoexceptResult NR = Proto->getNoexceptSpec(*Context);
168    assert(NR != FunctionProtoType::NR_NoNoexcept &&
169           "Must have noexcept result for EST_ComputedNoexcept.");
170    assert(NR != FunctionProtoType::NR_Dependent &&
171           "Should not generate implicit declarations for dependent cases, "
172           "and don't know how to handle them anyway.");
173
174    // noexcept(false) -> no spec on the new function
175    if (NR == FunctionProtoType::NR_Throw) {
176      ClearExceptions();
177      ComputedEST = EST_None;
178    }
179    // noexcept(true) won't change anything either.
180    return;
181  }
182
183  assert(EST == EST_Dynamic && "EST case not considered earlier.");
184  assert(ComputedEST != EST_None &&
185         "Shouldn't collect exceptions when throw-all is guaranteed.");
186  ComputedEST = EST_Dynamic;
187  // Record the exceptions in this function's exception specification.
188  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
189                                          EEnd = Proto->exception_end();
190       E != EEnd; ++E)
191    if (ExceptionsSeen.insert(Context->getCanonicalType(*E)))
192      Exceptions.push_back(*E);
193}
194
195void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
196  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
197    return;
198
199  // FIXME:
200  //
201  // C++0x [except.spec]p14:
202  //   [An] implicit exception-specification specifies the type-id T if and
203  // only if T is allowed by the exception-specification of a function directly
204  // invoked by f's implicit definition; f shall allow all exceptions if any
205  // function it directly invokes allows all exceptions, and f shall allow no
206  // exceptions if every function it directly invokes allows no exceptions.
207  //
208  // Note in particular that if an implicit exception-specification is generated
209  // for a function containing a throw-expression, that specification can still
210  // be noexcept(true).
211  //
212  // Note also that 'directly invoked' is not defined in the standard, and there
213  // is no indication that we should only consider potentially-evaluated calls.
214  //
215  // Ultimately we should implement the intent of the standard: the exception
216  // specification should be the set of exceptions which can be thrown by the
217  // implicit definition. For now, we assume that any non-nothrow expression can
218  // throw any exception.
219
220  if (E->CanThrow(*Context))
221    ComputedEST = EST_None;
222}
223
224bool
225Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
226                              SourceLocation EqualLoc) {
227  if (RequireCompleteType(Param->getLocation(), Param->getType(),
228                          diag::err_typecheck_decl_incomplete_type)) {
229    Param->setInvalidDecl();
230    return true;
231  }
232
233  // C++ [dcl.fct.default]p5
234  //   A default argument expression is implicitly converted (clause
235  //   4) to the parameter type. The default argument expression has
236  //   the same semantic constraints as the initializer expression in
237  //   a declaration of a variable of the parameter type, using the
238  //   copy-initialization semantics (8.5).
239  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
240                                                                    Param);
241  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
242                                                           EqualLoc);
243  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
244  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
245                                      MultiExprArg(*this, &Arg, 1));
246  if (Result.isInvalid())
247    return true;
248  Arg = Result.takeAs<Expr>();
249
250  CheckImplicitConversions(Arg, EqualLoc);
251  Arg = MaybeCreateExprWithCleanups(Arg);
252
253  // Okay: add the default argument to the parameter
254  Param->setDefaultArg(Arg);
255
256  // We have already instantiated this parameter; provide each of the
257  // instantiations with the uninstantiated default argument.
258  UnparsedDefaultArgInstantiationsMap::iterator InstPos
259    = UnparsedDefaultArgInstantiations.find(Param);
260  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
261    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
262      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
263
264    // We're done tracking this parameter's instantiations.
265    UnparsedDefaultArgInstantiations.erase(InstPos);
266  }
267
268  return false;
269}
270
271/// ActOnParamDefaultArgument - Check whether the default argument
272/// provided for a function parameter is well-formed. If so, attach it
273/// to the parameter declaration.
274void
275Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
276                                Expr *DefaultArg) {
277  if (!param || !DefaultArg)
278    return;
279
280  ParmVarDecl *Param = cast<ParmVarDecl>(param);
281  UnparsedDefaultArgLocs.erase(Param);
282
283  // Default arguments are only permitted in C++
284  if (!getLangOptions().CPlusPlus) {
285    Diag(EqualLoc, diag::err_param_default_argument)
286      << DefaultArg->getSourceRange();
287    Param->setInvalidDecl();
288    return;
289  }
290
291  // Check for unexpanded parameter packs.
292  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
293    Param->setInvalidDecl();
294    return;
295  }
296
297  // Check that the default argument is well-formed
298  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
299  if (DefaultArgChecker.Visit(DefaultArg)) {
300    Param->setInvalidDecl();
301    return;
302  }
303
304  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
305}
306
307/// ActOnParamUnparsedDefaultArgument - We've seen a default
308/// argument for a function parameter, but we can't parse it yet
309/// because we're inside a class definition. Note that this default
310/// argument will be parsed later.
311void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
312                                             SourceLocation EqualLoc,
313                                             SourceLocation ArgLoc) {
314  if (!param)
315    return;
316
317  ParmVarDecl *Param = cast<ParmVarDecl>(param);
318  if (Param)
319    Param->setUnparsedDefaultArg();
320
321  UnparsedDefaultArgLocs[Param] = ArgLoc;
322}
323
324/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
325/// the default argument for the parameter param failed.
326void Sema::ActOnParamDefaultArgumentError(Decl *param) {
327  if (!param)
328    return;
329
330  ParmVarDecl *Param = cast<ParmVarDecl>(param);
331
332  Param->setInvalidDecl();
333
334  UnparsedDefaultArgLocs.erase(Param);
335}
336
337/// CheckExtraCXXDefaultArguments - Check for any extra default
338/// arguments in the declarator, which is not a function declaration
339/// or definition and therefore is not permitted to have default
340/// arguments. This routine should be invoked for every declarator
341/// that is not a function declaration or definition.
342void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
343  // C++ [dcl.fct.default]p3
344  //   A default argument expression shall be specified only in the
345  //   parameter-declaration-clause of a function declaration or in a
346  //   template-parameter (14.1). It shall not be specified for a
347  //   parameter pack. If it is specified in a
348  //   parameter-declaration-clause, it shall not occur within a
349  //   declarator or abstract-declarator of a parameter-declaration.
350  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
351    DeclaratorChunk &chunk = D.getTypeObject(i);
352    if (chunk.Kind == DeclaratorChunk::Function) {
353      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
354        ParmVarDecl *Param =
355          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
356        if (Param->hasUnparsedDefaultArg()) {
357          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
358          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
359            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
360          delete Toks;
361          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
362        } else if (Param->getDefaultArg()) {
363          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
364            << Param->getDefaultArg()->getSourceRange();
365          Param->setDefaultArg(0);
366        }
367      }
368    }
369  }
370}
371
372// MergeCXXFunctionDecl - Merge two declarations of the same C++
373// function, once we already know that they have the same
374// type. Subroutine of MergeFunctionDecl. Returns true if there was an
375// error, false otherwise.
376bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
377  bool Invalid = false;
378
379  // C++ [dcl.fct.default]p4:
380  //   For non-template functions, default arguments can be added in
381  //   later declarations of a function in the same
382  //   scope. Declarations in different scopes have completely
383  //   distinct sets of default arguments. That is, declarations in
384  //   inner scopes do not acquire default arguments from
385  //   declarations in outer scopes, and vice versa. In a given
386  //   function declaration, all parameters subsequent to a
387  //   parameter with a default argument shall have default
388  //   arguments supplied in this or previous declarations. A
389  //   default argument shall not be redefined by a later
390  //   declaration (not even to the same value).
391  //
392  // C++ [dcl.fct.default]p6:
393  //   Except for member functions of class templates, the default arguments
394  //   in a member function definition that appears outside of the class
395  //   definition are added to the set of default arguments provided by the
396  //   member function declaration in the class definition.
397  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
398    ParmVarDecl *OldParam = Old->getParamDecl(p);
399    ParmVarDecl *NewParam = New->getParamDecl(p);
400
401    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
402
403      unsigned DiagDefaultParamID =
404        diag::err_param_default_argument_redefinition;
405
406      // MSVC accepts that default parameters be redefined for member functions
407      // of template class. The new default parameter's value is ignored.
408      Invalid = true;
409      if (getLangOptions().MicrosoftExt) {
410        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
411        if (MD && MD->getParent()->getDescribedClassTemplate()) {
412          // Merge the old default argument into the new parameter.
413          NewParam->setHasInheritedDefaultArg();
414          if (OldParam->hasUninstantiatedDefaultArg())
415            NewParam->setUninstantiatedDefaultArg(
416                                      OldParam->getUninstantiatedDefaultArg());
417          else
418            NewParam->setDefaultArg(OldParam->getInit());
419          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
420          Invalid = false;
421        }
422      }
423
424      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
425      // hint here. Alternatively, we could walk the type-source information
426      // for NewParam to find the last source location in the type... but it
427      // isn't worth the effort right now. This is the kind of test case that
428      // is hard to get right:
429      //   int f(int);
430      //   void g(int (*fp)(int) = f);
431      //   void g(int (*fp)(int) = &f);
432      Diag(NewParam->getLocation(), DiagDefaultParamID)
433        << NewParam->getDefaultArgRange();
434
435      // Look for the function declaration where the default argument was
436      // actually written, which may be a declaration prior to Old.
437      for (FunctionDecl *Older = Old->getPreviousDecl();
438           Older; Older = Older->getPreviousDecl()) {
439        if (!Older->getParamDecl(p)->hasDefaultArg())
440          break;
441
442        OldParam = Older->getParamDecl(p);
443      }
444
445      Diag(OldParam->getLocation(), diag::note_previous_definition)
446        << OldParam->getDefaultArgRange();
447    } else if (OldParam->hasDefaultArg()) {
448      // Merge the old default argument into the new parameter.
449      // It's important to use getInit() here;  getDefaultArg()
450      // strips off any top-level ExprWithCleanups.
451      NewParam->setHasInheritedDefaultArg();
452      if (OldParam->hasUninstantiatedDefaultArg())
453        NewParam->setUninstantiatedDefaultArg(
454                                      OldParam->getUninstantiatedDefaultArg());
455      else
456        NewParam->setDefaultArg(OldParam->getInit());
457    } else if (NewParam->hasDefaultArg()) {
458      if (New->getDescribedFunctionTemplate()) {
459        // Paragraph 4, quoted above, only applies to non-template functions.
460        Diag(NewParam->getLocation(),
461             diag::err_param_default_argument_template_redecl)
462          << NewParam->getDefaultArgRange();
463        Diag(Old->getLocation(), diag::note_template_prev_declaration)
464          << false;
465      } else if (New->getTemplateSpecializationKind()
466                   != TSK_ImplicitInstantiation &&
467                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
468        // C++ [temp.expr.spec]p21:
469        //   Default function arguments shall not be specified in a declaration
470        //   or a definition for one of the following explicit specializations:
471        //     - the explicit specialization of a function template;
472        //     - the explicit specialization of a member function template;
473        //     - the explicit specialization of a member function of a class
474        //       template where the class template specialization to which the
475        //       member function specialization belongs is implicitly
476        //       instantiated.
477        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
478          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
479          << New->getDeclName()
480          << NewParam->getDefaultArgRange();
481      } else if (New->getDeclContext()->isDependentContext()) {
482        // C++ [dcl.fct.default]p6 (DR217):
483        //   Default arguments for a member function of a class template shall
484        //   be specified on the initial declaration of the member function
485        //   within the class template.
486        //
487        // Reading the tea leaves a bit in DR217 and its reference to DR205
488        // leads me to the conclusion that one cannot add default function
489        // arguments for an out-of-line definition of a member function of a
490        // dependent type.
491        int WhichKind = 2;
492        if (CXXRecordDecl *Record
493              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
494          if (Record->getDescribedClassTemplate())
495            WhichKind = 0;
496          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
497            WhichKind = 1;
498          else
499            WhichKind = 2;
500        }
501
502        Diag(NewParam->getLocation(),
503             diag::err_param_default_argument_member_template_redecl)
504          << WhichKind
505          << NewParam->getDefaultArgRange();
506      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
507        CXXSpecialMember NewSM = getSpecialMember(Ctor),
508                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
509        if (NewSM != OldSM) {
510          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
511            << NewParam->getDefaultArgRange() << NewSM;
512          Diag(Old->getLocation(), diag::note_previous_declaration_special)
513            << OldSM;
514        }
515      }
516    }
517  }
518
519  // C++0x [dcl.constexpr]p1: If any declaration of a function or function
520  // template has a constexpr specifier then all its declarations shall
521  // contain the constexpr specifier. [Note: An explicit specialization can
522  // differ from the template declaration with respect to the constexpr
523  // specifier. -- end note]
524  //
525  // FIXME: Don't reject changes in constexpr in explicit specializations.
526  if (New->isConstexpr() != Old->isConstexpr()) {
527    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
528      << New << New->isConstexpr();
529    Diag(Old->getLocation(), diag::note_previous_declaration);
530    Invalid = true;
531  }
532
533  if (CheckEquivalentExceptionSpec(Old, New))
534    Invalid = true;
535
536  return Invalid;
537}
538
539/// \brief Merge the exception specifications of two variable declarations.
540///
541/// This is called when there's a redeclaration of a VarDecl. The function
542/// checks if the redeclaration might have an exception specification and
543/// validates compatibility and merges the specs if necessary.
544void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
545  // Shortcut if exceptions are disabled.
546  if (!getLangOptions().CXXExceptions)
547    return;
548
549  assert(Context.hasSameType(New->getType(), Old->getType()) &&
550         "Should only be called if types are otherwise the same.");
551
552  QualType NewType = New->getType();
553  QualType OldType = Old->getType();
554
555  // We're only interested in pointers and references to functions, as well
556  // as pointers to member functions.
557  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
558    NewType = R->getPointeeType();
559    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
560  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
561    NewType = P->getPointeeType();
562    OldType = OldType->getAs<PointerType>()->getPointeeType();
563  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
564    NewType = M->getPointeeType();
565    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
566  }
567
568  if (!NewType->isFunctionProtoType())
569    return;
570
571  // There's lots of special cases for functions. For function pointers, system
572  // libraries are hopefully not as broken so that we don't need these
573  // workarounds.
574  if (CheckEquivalentExceptionSpec(
575        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
576        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
577    New->setInvalidDecl();
578  }
579}
580
581/// CheckCXXDefaultArguments - Verify that the default arguments for a
582/// function declaration are well-formed according to C++
583/// [dcl.fct.default].
584void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
585  unsigned NumParams = FD->getNumParams();
586  unsigned p;
587
588  // Find first parameter with a default argument
589  for (p = 0; p < NumParams; ++p) {
590    ParmVarDecl *Param = FD->getParamDecl(p);
591    if (Param->hasDefaultArg())
592      break;
593  }
594
595  // C++ [dcl.fct.default]p4:
596  //   In a given function declaration, all parameters
597  //   subsequent to a parameter with a default argument shall
598  //   have default arguments supplied in this or previous
599  //   declarations. A default argument shall not be redefined
600  //   by a later declaration (not even to the same value).
601  unsigned LastMissingDefaultArg = 0;
602  for (; p < NumParams; ++p) {
603    ParmVarDecl *Param = FD->getParamDecl(p);
604    if (!Param->hasDefaultArg()) {
605      if (Param->isInvalidDecl())
606        /* We already complained about this parameter. */;
607      else if (Param->getIdentifier())
608        Diag(Param->getLocation(),
609             diag::err_param_default_argument_missing_name)
610          << Param->getIdentifier();
611      else
612        Diag(Param->getLocation(),
613             diag::err_param_default_argument_missing);
614
615      LastMissingDefaultArg = p;
616    }
617  }
618
619  if (LastMissingDefaultArg > 0) {
620    // Some default arguments were missing. Clear out all of the
621    // default arguments up to (and including) the last missing
622    // default argument, so that we leave the function parameters
623    // in a semantically valid state.
624    for (p = 0; p <= LastMissingDefaultArg; ++p) {
625      ParmVarDecl *Param = FD->getParamDecl(p);
626      if (Param->hasDefaultArg()) {
627        Param->setDefaultArg(0);
628      }
629    }
630  }
631}
632
633// CheckConstexprParameterTypes - Check whether a function's parameter types
634// are all literal types. If so, return true. If not, produce a suitable
635// diagnostic depending on @p CCK and return false.
636static bool CheckConstexprParameterTypes(Sema &SemaRef, const FunctionDecl *FD,
637                                         Sema::CheckConstexprKind CCK) {
638  unsigned ArgIndex = 0;
639  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
640  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
641       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
642    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
643    SourceLocation ParamLoc = PD->getLocation();
644    if (!(*i)->isDependentType() &&
645        SemaRef.RequireLiteralType(ParamLoc, *i, CCK == Sema::CCK_Declaration ?
646                            SemaRef.PDiag(diag::err_constexpr_non_literal_param)
647                                     << ArgIndex+1 << PD->getSourceRange()
648                                     << isa<CXXConstructorDecl>(FD) :
649                                   SemaRef.PDiag(),
650                                   /*AllowIncompleteType*/ true)) {
651      if (CCK == Sema::CCK_NoteNonConstexprInstantiation)
652        SemaRef.Diag(ParamLoc, diag::note_constexpr_tmpl_non_literal_param)
653          << ArgIndex+1 << PD->getSourceRange()
654          << isa<CXXConstructorDecl>(FD) << *i;
655      return false;
656    }
657  }
658  return true;
659}
660
661// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
662// the requirements of a constexpr function declaration or a constexpr
663// constructor declaration. Return true if it does, false if not.
664//
665// This implements C++11 [dcl.constexpr]p3,4, as amended by N3308.
666//
667// \param CCK Specifies whether to produce diagnostics if the function does not
668// satisfy the requirements.
669bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD,
670                                      CheckConstexprKind CCK) {
671  assert((CCK != CCK_NoteNonConstexprInstantiation ||
672          (NewFD->getTemplateInstantiationPattern() &&
673           NewFD->getTemplateInstantiationPattern()->isConstexpr())) &&
674         "only constexpr templates can be instantiated non-constexpr");
675
676  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
677  if (MD && MD->isInstance()) {
678    // C++11 [dcl.constexpr]p4: In the definition of a constexpr constructor...
679    //  In addition, either its function-body shall be = delete or = default or
680    //  it shall satisfy the following constraints:
681    //  - the class shall not have any virtual base classes;
682    //
683    // We apply this to constexpr member functions too: the class cannot be a
684    // literal type, so the members are not permitted to be constexpr.
685    const CXXRecordDecl *RD = MD->getParent();
686    if (RD->getNumVBases()) {
687      // Note, this is still illegal if the body is = default, since the
688      // implicit body does not satisfy the requirements of a constexpr
689      // constructor. We also reject cases where the body is = delete, as
690      // required by N3308.
691      if (CCK != CCK_Instantiation) {
692        Diag(NewFD->getLocation(),
693             CCK == CCK_Declaration ? diag::err_constexpr_virtual_base
694                                    : diag::note_constexpr_tmpl_virtual_base)
695          << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
696          << RD->getNumVBases();
697        for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
698               E = RD->vbases_end(); I != E; ++I)
699          Diag(I->getSourceRange().getBegin(),
700               diag::note_constexpr_virtual_base_here) << I->getSourceRange();
701      }
702      return false;
703    }
704  }
705
706  if (!isa<CXXConstructorDecl>(NewFD)) {
707    // C++11 [dcl.constexpr]p3:
708    //  The definition of a constexpr function shall satisfy the following
709    //  constraints:
710    // - it shall not be virtual;
711    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
712    if (Method && Method->isVirtual()) {
713      if (CCK != CCK_Instantiation) {
714        Diag(NewFD->getLocation(),
715             CCK == CCK_Declaration ? diag::err_constexpr_virtual
716                                    : diag::note_constexpr_tmpl_virtual);
717
718        // If it's not obvious why this function is virtual, find an overridden
719        // function which uses the 'virtual' keyword.
720        const CXXMethodDecl *WrittenVirtual = Method;
721        while (!WrittenVirtual->isVirtualAsWritten())
722          WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
723        if (WrittenVirtual != Method)
724          Diag(WrittenVirtual->getLocation(),
725               diag::note_overridden_virtual_function);
726      }
727      return false;
728    }
729
730    // - its return type shall be a literal type;
731    QualType RT = NewFD->getResultType();
732    if (!RT->isDependentType() &&
733        RequireLiteralType(NewFD->getLocation(), RT, CCK == CCK_Declaration ?
734                           PDiag(diag::err_constexpr_non_literal_return) :
735                           PDiag(),
736                           /*AllowIncompleteType*/ true)) {
737      if (CCK == CCK_NoteNonConstexprInstantiation)
738        Diag(NewFD->getLocation(),
739             diag::note_constexpr_tmpl_non_literal_return) << RT;
740      return false;
741    }
742  }
743
744  // - each of its parameter types shall be a literal type;
745  if (!CheckConstexprParameterTypes(*this, NewFD, CCK))
746    return false;
747
748  return true;
749}
750
751/// Check the given declaration statement is legal within a constexpr function
752/// body. C++0x [dcl.constexpr]p3,p4.
753///
754/// \return true if the body is OK, false if we have diagnosed a problem.
755static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
756                                   DeclStmt *DS) {
757  // C++0x [dcl.constexpr]p3 and p4:
758  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
759  //  contain only
760  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
761         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
762    switch ((*DclIt)->getKind()) {
763    case Decl::StaticAssert:
764    case Decl::Using:
765    case Decl::UsingShadow:
766    case Decl::UsingDirective:
767    case Decl::UnresolvedUsingTypename:
768      //   - static_assert-declarations
769      //   - using-declarations,
770      //   - using-directives,
771      continue;
772
773    case Decl::Typedef:
774    case Decl::TypeAlias: {
775      //   - typedef declarations and alias-declarations that do not define
776      //     classes or enumerations,
777      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
778      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
779        // Don't allow variably-modified types in constexpr functions.
780        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
781        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
782          << TL.getSourceRange() << TL.getType()
783          << isa<CXXConstructorDecl>(Dcl);
784        return false;
785      }
786      continue;
787    }
788
789    case Decl::Enum:
790    case Decl::CXXRecord:
791      // As an extension, we allow the declaration (but not the definition) of
792      // classes and enumerations in all declarations, not just in typedef and
793      // alias declarations.
794      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
795        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
796          << isa<CXXConstructorDecl>(Dcl);
797        return false;
798      }
799      continue;
800
801    case Decl::Var:
802      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
803        << isa<CXXConstructorDecl>(Dcl);
804      return false;
805
806    default:
807      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
808        << isa<CXXConstructorDecl>(Dcl);
809      return false;
810    }
811  }
812
813  return true;
814}
815
816/// Check that the given field is initialized within a constexpr constructor.
817///
818/// \param Dcl The constexpr constructor being checked.
819/// \param Field The field being checked. This may be a member of an anonymous
820///        struct or union nested within the class being checked.
821/// \param Inits All declarations, including anonymous struct/union members and
822///        indirect members, for which any initialization was provided.
823/// \param Diagnosed Set to true if an error is produced.
824static void CheckConstexprCtorInitializer(Sema &SemaRef,
825                                          const FunctionDecl *Dcl,
826                                          FieldDecl *Field,
827                                          llvm::SmallSet<Decl*, 16> &Inits,
828                                          bool &Diagnosed) {
829  if (Field->isUnnamedBitfield())
830    return;
831
832  if (Field->isAnonymousStructOrUnion() &&
833      Field->getType()->getAsCXXRecordDecl()->isEmpty())
834    return;
835
836  if (!Inits.count(Field)) {
837    if (!Diagnosed) {
838      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
839      Diagnosed = true;
840    }
841    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
842  } else if (Field->isAnonymousStructOrUnion()) {
843    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
844    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
845         I != E; ++I)
846      // If an anonymous union contains an anonymous struct of which any member
847      // is initialized, all members must be initialized.
848      if (!RD->isUnion() || Inits.count(*I))
849        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
850  }
851}
852
853/// Check the body for the given constexpr function declaration only contains
854/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
855///
856/// \return true if the body is OK, false if we have diagnosed a problem.
857bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body,
858                                      bool IsInstantiation) {
859  if (isa<CXXTryStmt>(Body)) {
860    // C++11 [dcl.constexpr]p3:
861    //  The definition of a constexpr function shall satisfy the following
862    //  constraints: [...]
863    // - its function-body shall be = delete, = default, or a
864    //   compound-statement
865    //
866    // C++11 [dcl.constexpr]p4:
867    //  In the definition of a constexpr constructor, [...]
868    // - its function-body shall not be a function-try-block;
869    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
870      << isa<CXXConstructorDecl>(Dcl);
871    return false;
872  }
873
874  // - its function-body shall be [...] a compound-statement that contains only
875  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
876
877  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
878  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
879         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
880    switch ((*BodyIt)->getStmtClass()) {
881    case Stmt::NullStmtClass:
882      //   - null statements,
883      continue;
884
885    case Stmt::DeclStmtClass:
886      //   - static_assert-declarations
887      //   - using-declarations,
888      //   - using-directives,
889      //   - typedef declarations and alias-declarations that do not define
890      //     classes or enumerations,
891      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
892        return false;
893      continue;
894
895    case Stmt::ReturnStmtClass:
896      //   - and exactly one return statement;
897      if (isa<CXXConstructorDecl>(Dcl))
898        break;
899
900      ReturnStmts.push_back((*BodyIt)->getLocStart());
901      // FIXME
902      // - every constructor call and implicit conversion used in initializing
903      //   the return value shall be one of those allowed in a constant
904      //   expression.
905      // Deal with this as part of a general check that the function can produce
906      // a constant expression (for [dcl.constexpr]p5).
907      continue;
908
909    default:
910      break;
911    }
912
913    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
914      << isa<CXXConstructorDecl>(Dcl);
915    return false;
916  }
917
918  if (const CXXConstructorDecl *Constructor
919        = dyn_cast<CXXConstructorDecl>(Dcl)) {
920    const CXXRecordDecl *RD = Constructor->getParent();
921    // DR1359:
922    // - every non-variant non-static data member and base class sub-object
923    //   shall be initialized;
924    // - if the class is a non-empty union, or for each non-empty anonymous
925    //   union member of a non-union class, exactly one non-static data member
926    //   shall be initialized;
927    if (RD->isUnion()) {
928      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
929        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
930        return false;
931      }
932    } else if (!Constructor->isDependentContext() &&
933               !Constructor->isDelegatingConstructor()) {
934      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
935
936      // Skip detailed checking if we have enough initializers, and we would
937      // allow at most one initializer per member.
938      bool AnyAnonStructUnionMembers = false;
939      unsigned Fields = 0;
940      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
941           E = RD->field_end(); I != E; ++I, ++Fields) {
942        if ((*I)->isAnonymousStructOrUnion()) {
943          AnyAnonStructUnionMembers = true;
944          break;
945        }
946      }
947      if (AnyAnonStructUnionMembers ||
948          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
949        // Check initialization of non-static data members. Base classes are
950        // always initialized so do not need to be checked. Dependent bases
951        // might not have initializers in the member initializer list.
952        llvm::SmallSet<Decl*, 16> Inits;
953        for (CXXConstructorDecl::init_const_iterator
954               I = Constructor->init_begin(), E = Constructor->init_end();
955             I != E; ++I) {
956          if (FieldDecl *FD = (*I)->getMember())
957            Inits.insert(FD);
958          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
959            Inits.insert(ID->chain_begin(), ID->chain_end());
960        }
961
962        bool Diagnosed = false;
963        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
964             E = RD->field_end(); I != E; ++I)
965          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
966        if (Diagnosed)
967          return false;
968      }
969    }
970
971    // FIXME
972    // - every constructor involved in initializing non-static data members
973    //   and base class sub-objects shall be a constexpr constructor;
974    // - every assignment-expression that is an initializer-clause appearing
975    //   directly or indirectly within a brace-or-equal-initializer for
976    //   a non-static data member that is not named by a mem-initializer-id
977    //   shall be a constant expression; and
978    // - every implicit conversion used in converting a constructor argument
979    //   to the corresponding parameter type and converting
980    //   a full-expression to the corresponding member type shall be one of
981    //   those allowed in a constant expression.
982    // Deal with these as part of a general check that the function can produce
983    // a constant expression (for [dcl.constexpr]p5).
984  } else {
985    if (ReturnStmts.empty()) {
986      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
987      return false;
988    }
989    if (ReturnStmts.size() > 1) {
990      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
991      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
992        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
993      return false;
994    }
995  }
996
997  // C++11 [dcl.constexpr]p5:
998  //   if no function argument values exist such that the function invocation
999  //   substitution would produce a constant expression, the program is
1000  //   ill-formed; no diagnostic required.
1001  // C++11 [dcl.constexpr]p3:
1002  //   - every constructor call and implicit conversion used in initializing the
1003  //     return value shall be one of those allowed in a constant expression.
1004  // C++11 [dcl.constexpr]p4:
1005  //   - every constructor involved in initializing non-static data members and
1006  //     base class sub-objects shall be a constexpr constructor.
1007  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
1008  if (!IsInstantiation && !Expr::isPotentialConstantExpr(Dcl, Diags)) {
1009    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
1010      << isa<CXXConstructorDecl>(Dcl);
1011    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1012      Diag(Diags[I].first, Diags[I].second);
1013    return false;
1014  }
1015
1016  return true;
1017}
1018
1019/// isCurrentClassName - Determine whether the identifier II is the
1020/// name of the class type currently being defined. In the case of
1021/// nested classes, this will only return true if II is the name of
1022/// the innermost class.
1023bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1024                              const CXXScopeSpec *SS) {
1025  assert(getLangOptions().CPlusPlus && "No class names in C!");
1026
1027  CXXRecordDecl *CurDecl;
1028  if (SS && SS->isSet() && !SS->isInvalid()) {
1029    DeclContext *DC = computeDeclContext(*SS, true);
1030    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1031  } else
1032    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1033
1034  if (CurDecl && CurDecl->getIdentifier())
1035    return &II == CurDecl->getIdentifier();
1036  else
1037    return false;
1038}
1039
1040/// \brief Check the validity of a C++ base class specifier.
1041///
1042/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1043/// and returns NULL otherwise.
1044CXXBaseSpecifier *
1045Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1046                         SourceRange SpecifierRange,
1047                         bool Virtual, AccessSpecifier Access,
1048                         TypeSourceInfo *TInfo,
1049                         SourceLocation EllipsisLoc) {
1050  QualType BaseType = TInfo->getType();
1051
1052  // C++ [class.union]p1:
1053  //   A union shall not have base classes.
1054  if (Class->isUnion()) {
1055    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1056      << SpecifierRange;
1057    return 0;
1058  }
1059
1060  if (EllipsisLoc.isValid() &&
1061      !TInfo->getType()->containsUnexpandedParameterPack()) {
1062    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1063      << TInfo->getTypeLoc().getSourceRange();
1064    EllipsisLoc = SourceLocation();
1065  }
1066
1067  if (BaseType->isDependentType())
1068    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1069                                          Class->getTagKind() == TTK_Class,
1070                                          Access, TInfo, EllipsisLoc);
1071
1072  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1073
1074  // Base specifiers must be record types.
1075  if (!BaseType->isRecordType()) {
1076    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1077    return 0;
1078  }
1079
1080  // C++ [class.union]p1:
1081  //   A union shall not be used as a base class.
1082  if (BaseType->isUnionType()) {
1083    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1084    return 0;
1085  }
1086
1087  // C++ [class.derived]p2:
1088  //   The class-name in a base-specifier shall not be an incompletely
1089  //   defined class.
1090  if (RequireCompleteType(BaseLoc, BaseType,
1091                          PDiag(diag::err_incomplete_base_class)
1092                            << SpecifierRange)) {
1093    Class->setInvalidDecl();
1094    return 0;
1095  }
1096
1097  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1098  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1099  assert(BaseDecl && "Record type has no declaration");
1100  BaseDecl = BaseDecl->getDefinition();
1101  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1102  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1103  assert(CXXBaseDecl && "Base type is not a C++ type");
1104
1105  // C++ [class]p3:
1106  //   If a class is marked final and it appears as a base-type-specifier in
1107  //   base-clause, the program is ill-formed.
1108  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1109    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1110      << CXXBaseDecl->getDeclName();
1111    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1112      << CXXBaseDecl->getDeclName();
1113    return 0;
1114  }
1115
1116  if (BaseDecl->isInvalidDecl())
1117    Class->setInvalidDecl();
1118
1119  // Create the base specifier.
1120  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1121                                        Class->getTagKind() == TTK_Class,
1122                                        Access, TInfo, EllipsisLoc);
1123}
1124
1125/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1126/// one entry in the base class list of a class specifier, for
1127/// example:
1128///    class foo : public bar, virtual private baz {
1129/// 'public bar' and 'virtual private baz' are each base-specifiers.
1130BaseResult
1131Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1132                         bool Virtual, AccessSpecifier Access,
1133                         ParsedType basetype, SourceLocation BaseLoc,
1134                         SourceLocation EllipsisLoc) {
1135  if (!classdecl)
1136    return true;
1137
1138  AdjustDeclIfTemplate(classdecl);
1139  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1140  if (!Class)
1141    return true;
1142
1143  TypeSourceInfo *TInfo = 0;
1144  GetTypeFromParser(basetype, &TInfo);
1145
1146  if (EllipsisLoc.isInvalid() &&
1147      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1148                                      UPPC_BaseType))
1149    return true;
1150
1151  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1152                                                      Virtual, Access, TInfo,
1153                                                      EllipsisLoc))
1154    return BaseSpec;
1155
1156  return true;
1157}
1158
1159/// \brief Performs the actual work of attaching the given base class
1160/// specifiers to a C++ class.
1161bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1162                                unsigned NumBases) {
1163 if (NumBases == 0)
1164    return false;
1165
1166  // Used to keep track of which base types we have already seen, so
1167  // that we can properly diagnose redundant direct base types. Note
1168  // that the key is always the unqualified canonical type of the base
1169  // class.
1170  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1171
1172  // Copy non-redundant base specifiers into permanent storage.
1173  unsigned NumGoodBases = 0;
1174  bool Invalid = false;
1175  for (unsigned idx = 0; idx < NumBases; ++idx) {
1176    QualType NewBaseType
1177      = Context.getCanonicalType(Bases[idx]->getType());
1178    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1179    if (KnownBaseTypes[NewBaseType]) {
1180      // C++ [class.mi]p3:
1181      //   A class shall not be specified as a direct base class of a
1182      //   derived class more than once.
1183      Diag(Bases[idx]->getSourceRange().getBegin(),
1184           diag::err_duplicate_base_class)
1185        << KnownBaseTypes[NewBaseType]->getType()
1186        << Bases[idx]->getSourceRange();
1187
1188      // Delete the duplicate base class specifier; we're going to
1189      // overwrite its pointer later.
1190      Context.Deallocate(Bases[idx]);
1191
1192      Invalid = true;
1193    } else {
1194      // Okay, add this new base class.
1195      KnownBaseTypes[NewBaseType] = Bases[idx];
1196      Bases[NumGoodBases++] = Bases[idx];
1197      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1198        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1199          if (RD->hasAttr<WeakAttr>())
1200            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1201    }
1202  }
1203
1204  // Attach the remaining base class specifiers to the derived class.
1205  Class->setBases(Bases, NumGoodBases);
1206
1207  // Delete the remaining (good) base class specifiers, since their
1208  // data has been copied into the CXXRecordDecl.
1209  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1210    Context.Deallocate(Bases[idx]);
1211
1212  return Invalid;
1213}
1214
1215/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1216/// class, after checking whether there are any duplicate base
1217/// classes.
1218void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1219                               unsigned NumBases) {
1220  if (!ClassDecl || !Bases || !NumBases)
1221    return;
1222
1223  AdjustDeclIfTemplate(ClassDecl);
1224  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1225                       (CXXBaseSpecifier**)(Bases), NumBases);
1226}
1227
1228static CXXRecordDecl *GetClassForType(QualType T) {
1229  if (const RecordType *RT = T->getAs<RecordType>())
1230    return cast<CXXRecordDecl>(RT->getDecl());
1231  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1232    return ICT->getDecl();
1233  else
1234    return 0;
1235}
1236
1237/// \brief Determine whether the type \p Derived is a C++ class that is
1238/// derived from the type \p Base.
1239bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1240  if (!getLangOptions().CPlusPlus)
1241    return false;
1242
1243  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1244  if (!DerivedRD)
1245    return false;
1246
1247  CXXRecordDecl *BaseRD = GetClassForType(Base);
1248  if (!BaseRD)
1249    return false;
1250
1251  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1252  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1253}
1254
1255/// \brief Determine whether the type \p Derived is a C++ class that is
1256/// derived from the type \p Base.
1257bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1258  if (!getLangOptions().CPlusPlus)
1259    return false;
1260
1261  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1262  if (!DerivedRD)
1263    return false;
1264
1265  CXXRecordDecl *BaseRD = GetClassForType(Base);
1266  if (!BaseRD)
1267    return false;
1268
1269  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1270}
1271
1272void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1273                              CXXCastPath &BasePathArray) {
1274  assert(BasePathArray.empty() && "Base path array must be empty!");
1275  assert(Paths.isRecordingPaths() && "Must record paths!");
1276
1277  const CXXBasePath &Path = Paths.front();
1278
1279  // We first go backward and check if we have a virtual base.
1280  // FIXME: It would be better if CXXBasePath had the base specifier for
1281  // the nearest virtual base.
1282  unsigned Start = 0;
1283  for (unsigned I = Path.size(); I != 0; --I) {
1284    if (Path[I - 1].Base->isVirtual()) {
1285      Start = I - 1;
1286      break;
1287    }
1288  }
1289
1290  // Now add all bases.
1291  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1292    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1293}
1294
1295/// \brief Determine whether the given base path includes a virtual
1296/// base class.
1297bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1298  for (CXXCastPath::const_iterator B = BasePath.begin(),
1299                                BEnd = BasePath.end();
1300       B != BEnd; ++B)
1301    if ((*B)->isVirtual())
1302      return true;
1303
1304  return false;
1305}
1306
1307/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1308/// conversion (where Derived and Base are class types) is
1309/// well-formed, meaning that the conversion is unambiguous (and
1310/// that all of the base classes are accessible). Returns true
1311/// and emits a diagnostic if the code is ill-formed, returns false
1312/// otherwise. Loc is the location where this routine should point to
1313/// if there is an error, and Range is the source range to highlight
1314/// if there is an error.
1315bool
1316Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1317                                   unsigned InaccessibleBaseID,
1318                                   unsigned AmbigiousBaseConvID,
1319                                   SourceLocation Loc, SourceRange Range,
1320                                   DeclarationName Name,
1321                                   CXXCastPath *BasePath) {
1322  // First, determine whether the path from Derived to Base is
1323  // ambiguous. This is slightly more expensive than checking whether
1324  // the Derived to Base conversion exists, because here we need to
1325  // explore multiple paths to determine if there is an ambiguity.
1326  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1327                     /*DetectVirtual=*/false);
1328  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1329  assert(DerivationOkay &&
1330         "Can only be used with a derived-to-base conversion");
1331  (void)DerivationOkay;
1332
1333  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1334    if (InaccessibleBaseID) {
1335      // Check that the base class can be accessed.
1336      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1337                                   InaccessibleBaseID)) {
1338        case AR_inaccessible:
1339          return true;
1340        case AR_accessible:
1341        case AR_dependent:
1342        case AR_delayed:
1343          break;
1344      }
1345    }
1346
1347    // Build a base path if necessary.
1348    if (BasePath)
1349      BuildBasePathArray(Paths, *BasePath);
1350    return false;
1351  }
1352
1353  // We know that the derived-to-base conversion is ambiguous, and
1354  // we're going to produce a diagnostic. Perform the derived-to-base
1355  // search just one more time to compute all of the possible paths so
1356  // that we can print them out. This is more expensive than any of
1357  // the previous derived-to-base checks we've done, but at this point
1358  // performance isn't as much of an issue.
1359  Paths.clear();
1360  Paths.setRecordingPaths(true);
1361  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1362  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1363  (void)StillOkay;
1364
1365  // Build up a textual representation of the ambiguous paths, e.g.,
1366  // D -> B -> A, that will be used to illustrate the ambiguous
1367  // conversions in the diagnostic. We only print one of the paths
1368  // to each base class subobject.
1369  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1370
1371  Diag(Loc, AmbigiousBaseConvID)
1372  << Derived << Base << PathDisplayStr << Range << Name;
1373  return true;
1374}
1375
1376bool
1377Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1378                                   SourceLocation Loc, SourceRange Range,
1379                                   CXXCastPath *BasePath,
1380                                   bool IgnoreAccess) {
1381  return CheckDerivedToBaseConversion(Derived, Base,
1382                                      IgnoreAccess ? 0
1383                                       : diag::err_upcast_to_inaccessible_base,
1384                                      diag::err_ambiguous_derived_to_base_conv,
1385                                      Loc, Range, DeclarationName(),
1386                                      BasePath);
1387}
1388
1389
1390/// @brief Builds a string representing ambiguous paths from a
1391/// specific derived class to different subobjects of the same base
1392/// class.
1393///
1394/// This function builds a string that can be used in error messages
1395/// to show the different paths that one can take through the
1396/// inheritance hierarchy to go from the derived class to different
1397/// subobjects of a base class. The result looks something like this:
1398/// @code
1399/// struct D -> struct B -> struct A
1400/// struct D -> struct C -> struct A
1401/// @endcode
1402std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1403  std::string PathDisplayStr;
1404  std::set<unsigned> DisplayedPaths;
1405  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1406       Path != Paths.end(); ++Path) {
1407    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1408      // We haven't displayed a path to this particular base
1409      // class subobject yet.
1410      PathDisplayStr += "\n    ";
1411      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1412      for (CXXBasePath::const_iterator Element = Path->begin();
1413           Element != Path->end(); ++Element)
1414        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1415    }
1416  }
1417
1418  return PathDisplayStr;
1419}
1420
1421//===----------------------------------------------------------------------===//
1422// C++ class member Handling
1423//===----------------------------------------------------------------------===//
1424
1425/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1426bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1427                                SourceLocation ASLoc,
1428                                SourceLocation ColonLoc,
1429                                AttributeList *Attrs) {
1430  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1431  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1432                                                  ASLoc, ColonLoc);
1433  CurContext->addHiddenDecl(ASDecl);
1434  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1435}
1436
1437/// CheckOverrideControl - Check C++0x override control semantics.
1438void Sema::CheckOverrideControl(const Decl *D) {
1439  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1440  if (!MD || !MD->isVirtual())
1441    return;
1442
1443  if (MD->isDependentContext())
1444    return;
1445
1446  // C++0x [class.virtual]p3:
1447  //   If a virtual function is marked with the virt-specifier override and does
1448  //   not override a member function of a base class,
1449  //   the program is ill-formed.
1450  bool HasOverriddenMethods =
1451    MD->begin_overridden_methods() != MD->end_overridden_methods();
1452  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1453    Diag(MD->getLocation(),
1454                 diag::err_function_marked_override_not_overriding)
1455      << MD->getDeclName();
1456    return;
1457  }
1458}
1459
1460/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1461/// function overrides a virtual member function marked 'final', according to
1462/// C++0x [class.virtual]p3.
1463bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1464                                                  const CXXMethodDecl *Old) {
1465  if (!Old->hasAttr<FinalAttr>())
1466    return false;
1467
1468  Diag(New->getLocation(), diag::err_final_function_overridden)
1469    << New->getDeclName();
1470  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1471  return true;
1472}
1473
1474/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1475/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1476/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1477/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1478/// present but parsing it has been deferred.
1479Decl *
1480Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1481                               MultiTemplateParamsArg TemplateParameterLists,
1482                               Expr *BW, const VirtSpecifiers &VS,
1483                               bool HasDeferredInit) {
1484  const DeclSpec &DS = D.getDeclSpec();
1485  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1486  DeclarationName Name = NameInfo.getName();
1487  SourceLocation Loc = NameInfo.getLoc();
1488
1489  // For anonymous bitfields, the location should point to the type.
1490  if (Loc.isInvalid())
1491    Loc = D.getSourceRange().getBegin();
1492
1493  Expr *BitWidth = static_cast<Expr*>(BW);
1494
1495  assert(isa<CXXRecordDecl>(CurContext));
1496  assert(!DS.isFriendSpecified());
1497
1498  bool isFunc = D.isDeclarationOfFunction();
1499
1500  // C++ 9.2p6: A member shall not be declared to have automatic storage
1501  // duration (auto, register) or with the extern storage-class-specifier.
1502  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1503  // data members and cannot be applied to names declared const or static,
1504  // and cannot be applied to reference members.
1505  switch (DS.getStorageClassSpec()) {
1506    case DeclSpec::SCS_unspecified:
1507    case DeclSpec::SCS_typedef:
1508    case DeclSpec::SCS_static:
1509      // FALL THROUGH.
1510      break;
1511    case DeclSpec::SCS_mutable:
1512      if (isFunc) {
1513        if (DS.getStorageClassSpecLoc().isValid())
1514          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1515        else
1516          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1517
1518        // FIXME: It would be nicer if the keyword was ignored only for this
1519        // declarator. Otherwise we could get follow-up errors.
1520        D.getMutableDeclSpec().ClearStorageClassSpecs();
1521      }
1522      break;
1523    default:
1524      if (DS.getStorageClassSpecLoc().isValid())
1525        Diag(DS.getStorageClassSpecLoc(),
1526             diag::err_storageclass_invalid_for_member);
1527      else
1528        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1529      D.getMutableDeclSpec().ClearStorageClassSpecs();
1530  }
1531
1532  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1533                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1534                      !isFunc);
1535
1536  Decl *Member;
1537  if (isInstField) {
1538    CXXScopeSpec &SS = D.getCXXScopeSpec();
1539
1540    // Data members must have identifiers for names.
1541    if (Name.getNameKind() != DeclarationName::Identifier) {
1542      Diag(Loc, diag::err_bad_variable_name)
1543        << Name;
1544      return 0;
1545    }
1546
1547    IdentifierInfo *II = Name.getAsIdentifierInfo();
1548
1549    // Member field could not be with "template" keyword.
1550    // So TemplateParameterLists should be empty in this case.
1551    if (TemplateParameterLists.size()) {
1552      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1553      if (TemplateParams->size()) {
1554        // There is no such thing as a member field template.
1555        Diag(D.getIdentifierLoc(), diag::err_template_member)
1556            << II
1557            << SourceRange(TemplateParams->getTemplateLoc(),
1558                TemplateParams->getRAngleLoc());
1559      } else {
1560        // There is an extraneous 'template<>' for this member.
1561        Diag(TemplateParams->getTemplateLoc(),
1562            diag::err_template_member_noparams)
1563            << II
1564            << SourceRange(TemplateParams->getTemplateLoc(),
1565                TemplateParams->getRAngleLoc());
1566      }
1567      return 0;
1568    }
1569
1570    if (SS.isSet() && !SS.isInvalid()) {
1571      // The user provided a superfluous scope specifier inside a class
1572      // definition:
1573      //
1574      // class X {
1575      //   int X::member;
1576      // };
1577      DeclContext *DC = 0;
1578      if ((DC = computeDeclContext(SS, false)) && DC->Equals(CurContext))
1579        Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
1580          << Name << FixItHint::CreateRemoval(SS.getRange());
1581      else
1582        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1583          << Name << SS.getRange();
1584
1585      SS.clear();
1586    }
1587
1588    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1589                         HasDeferredInit, AS);
1590    assert(Member && "HandleField never returns null");
1591  } else {
1592    assert(!HasDeferredInit);
1593
1594    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1595    if (!Member) {
1596      return 0;
1597    }
1598
1599    // Non-instance-fields can't have a bitfield.
1600    if (BitWidth) {
1601      if (Member->isInvalidDecl()) {
1602        // don't emit another diagnostic.
1603      } else if (isa<VarDecl>(Member)) {
1604        // C++ 9.6p3: A bit-field shall not be a static member.
1605        // "static member 'A' cannot be a bit-field"
1606        Diag(Loc, diag::err_static_not_bitfield)
1607          << Name << BitWidth->getSourceRange();
1608      } else if (isa<TypedefDecl>(Member)) {
1609        // "typedef member 'x' cannot be a bit-field"
1610        Diag(Loc, diag::err_typedef_not_bitfield)
1611          << Name << BitWidth->getSourceRange();
1612      } else {
1613        // A function typedef ("typedef int f(); f a;").
1614        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1615        Diag(Loc, diag::err_not_integral_type_bitfield)
1616          << Name << cast<ValueDecl>(Member)->getType()
1617          << BitWidth->getSourceRange();
1618      }
1619
1620      BitWidth = 0;
1621      Member->setInvalidDecl();
1622    }
1623
1624    Member->setAccess(AS);
1625
1626    // If we have declared a member function template, set the access of the
1627    // templated declaration as well.
1628    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1629      FunTmpl->getTemplatedDecl()->setAccess(AS);
1630  }
1631
1632  if (VS.isOverrideSpecified()) {
1633    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1634    if (!MD || !MD->isVirtual()) {
1635      Diag(Member->getLocStart(),
1636           diag::override_keyword_only_allowed_on_virtual_member_functions)
1637        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1638    } else
1639      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1640  }
1641  if (VS.isFinalSpecified()) {
1642    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1643    if (!MD || !MD->isVirtual()) {
1644      Diag(Member->getLocStart(),
1645           diag::override_keyword_only_allowed_on_virtual_member_functions)
1646      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1647    } else
1648      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1649  }
1650
1651  if (VS.getLastLocation().isValid()) {
1652    // Update the end location of a method that has a virt-specifiers.
1653    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1654      MD->setRangeEnd(VS.getLastLocation());
1655  }
1656
1657  CheckOverrideControl(Member);
1658
1659  assert((Name || isInstField) && "No identifier for non-field ?");
1660
1661  if (isInstField)
1662    FieldCollector->Add(cast<FieldDecl>(Member));
1663  return Member;
1664}
1665
1666/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1667/// in-class initializer for a non-static C++ class member, and after
1668/// instantiating an in-class initializer in a class template. Such actions
1669/// are deferred until the class is complete.
1670void
1671Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1672                                       Expr *InitExpr) {
1673  FieldDecl *FD = cast<FieldDecl>(D);
1674
1675  if (!InitExpr) {
1676    FD->setInvalidDecl();
1677    FD->removeInClassInitializer();
1678    return;
1679  }
1680
1681  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1682    FD->setInvalidDecl();
1683    FD->removeInClassInitializer();
1684    return;
1685  }
1686
1687  ExprResult Init = InitExpr;
1688  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1689    // FIXME: if there is no EqualLoc, this is list-initialization.
1690    Init = PerformCopyInitialization(
1691      InitializedEntity::InitializeMember(FD), EqualLoc, InitExpr);
1692    if (Init.isInvalid()) {
1693      FD->setInvalidDecl();
1694      return;
1695    }
1696
1697    CheckImplicitConversions(Init.get(), EqualLoc);
1698  }
1699
1700  // C++0x [class.base.init]p7:
1701  //   The initialization of each base and member constitutes a
1702  //   full-expression.
1703  Init = MaybeCreateExprWithCleanups(Init);
1704  if (Init.isInvalid()) {
1705    FD->setInvalidDecl();
1706    return;
1707  }
1708
1709  InitExpr = Init.release();
1710
1711  FD->setInClassInitializer(InitExpr);
1712}
1713
1714/// \brief Find the direct and/or virtual base specifiers that
1715/// correspond to the given base type, for use in base initialization
1716/// within a constructor.
1717static bool FindBaseInitializer(Sema &SemaRef,
1718                                CXXRecordDecl *ClassDecl,
1719                                QualType BaseType,
1720                                const CXXBaseSpecifier *&DirectBaseSpec,
1721                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1722  // First, check for a direct base class.
1723  DirectBaseSpec = 0;
1724  for (CXXRecordDecl::base_class_const_iterator Base
1725         = ClassDecl->bases_begin();
1726       Base != ClassDecl->bases_end(); ++Base) {
1727    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1728      // We found a direct base of this type. That's what we're
1729      // initializing.
1730      DirectBaseSpec = &*Base;
1731      break;
1732    }
1733  }
1734
1735  // Check for a virtual base class.
1736  // FIXME: We might be able to short-circuit this if we know in advance that
1737  // there are no virtual bases.
1738  VirtualBaseSpec = 0;
1739  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1740    // We haven't found a base yet; search the class hierarchy for a
1741    // virtual base class.
1742    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1743                       /*DetectVirtual=*/false);
1744    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1745                              BaseType, Paths)) {
1746      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1747           Path != Paths.end(); ++Path) {
1748        if (Path->back().Base->isVirtual()) {
1749          VirtualBaseSpec = Path->back().Base;
1750          break;
1751        }
1752      }
1753    }
1754  }
1755
1756  return DirectBaseSpec || VirtualBaseSpec;
1757}
1758
1759/// \brief Handle a C++ member initializer using braced-init-list syntax.
1760MemInitResult
1761Sema::ActOnMemInitializer(Decl *ConstructorD,
1762                          Scope *S,
1763                          CXXScopeSpec &SS,
1764                          IdentifierInfo *MemberOrBase,
1765                          ParsedType TemplateTypeTy,
1766                          const DeclSpec &DS,
1767                          SourceLocation IdLoc,
1768                          Expr *InitList,
1769                          SourceLocation EllipsisLoc) {
1770  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1771                             DS, IdLoc, MultiInitializer(InitList),
1772                             EllipsisLoc);
1773}
1774
1775/// \brief Handle a C++ member initializer using parentheses syntax.
1776MemInitResult
1777Sema::ActOnMemInitializer(Decl *ConstructorD,
1778                          Scope *S,
1779                          CXXScopeSpec &SS,
1780                          IdentifierInfo *MemberOrBase,
1781                          ParsedType TemplateTypeTy,
1782                          const DeclSpec &DS,
1783                          SourceLocation IdLoc,
1784                          SourceLocation LParenLoc,
1785                          Expr **Args, unsigned NumArgs,
1786                          SourceLocation RParenLoc,
1787                          SourceLocation EllipsisLoc) {
1788  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1789                             DS, IdLoc, MultiInitializer(LParenLoc, Args,
1790                                                         NumArgs, RParenLoc),
1791                             EllipsisLoc);
1792}
1793
1794namespace {
1795
1796// Callback to only accept typo corrections that can be a valid C++ member
1797// intializer: either a non-static field member or a base class.
1798class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1799 public:
1800  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1801      : ClassDecl(ClassDecl) {}
1802
1803  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1804    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1805      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1806        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1807      else
1808        return isa<TypeDecl>(ND);
1809    }
1810    return false;
1811  }
1812
1813 private:
1814  CXXRecordDecl *ClassDecl;
1815};
1816
1817}
1818
1819/// \brief Handle a C++ member initializer.
1820MemInitResult
1821Sema::BuildMemInitializer(Decl *ConstructorD,
1822                          Scope *S,
1823                          CXXScopeSpec &SS,
1824                          IdentifierInfo *MemberOrBase,
1825                          ParsedType TemplateTypeTy,
1826                          const DeclSpec &DS,
1827                          SourceLocation IdLoc,
1828                          const MultiInitializer &Args,
1829                          SourceLocation EllipsisLoc) {
1830  if (!ConstructorD)
1831    return true;
1832
1833  AdjustDeclIfTemplate(ConstructorD);
1834
1835  CXXConstructorDecl *Constructor
1836    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1837  if (!Constructor) {
1838    // The user wrote a constructor initializer on a function that is
1839    // not a C++ constructor. Ignore the error for now, because we may
1840    // have more member initializers coming; we'll diagnose it just
1841    // once in ActOnMemInitializers.
1842    return true;
1843  }
1844
1845  CXXRecordDecl *ClassDecl = Constructor->getParent();
1846
1847  // C++ [class.base.init]p2:
1848  //   Names in a mem-initializer-id are looked up in the scope of the
1849  //   constructor's class and, if not found in that scope, are looked
1850  //   up in the scope containing the constructor's definition.
1851  //   [Note: if the constructor's class contains a member with the
1852  //   same name as a direct or virtual base class of the class, a
1853  //   mem-initializer-id naming the member or base class and composed
1854  //   of a single identifier refers to the class member. A
1855  //   mem-initializer-id for the hidden base class may be specified
1856  //   using a qualified name. ]
1857  if (!SS.getScopeRep() && !TemplateTypeTy) {
1858    // Look for a member, first.
1859    DeclContext::lookup_result Result
1860      = ClassDecl->lookup(MemberOrBase);
1861    if (Result.first != Result.second) {
1862      ValueDecl *Member;
1863      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1864          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1865        if (EllipsisLoc.isValid())
1866          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1867            << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1868
1869        return BuildMemberInitializer(Member, Args, IdLoc);
1870      }
1871    }
1872  }
1873  // It didn't name a member, so see if it names a class.
1874  QualType BaseType;
1875  TypeSourceInfo *TInfo = 0;
1876
1877  if (TemplateTypeTy) {
1878    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1879  } else if (DS.getTypeSpecType() == TST_decltype) {
1880    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1881  } else {
1882    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1883    LookupParsedName(R, S, &SS);
1884
1885    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1886    if (!TyD) {
1887      if (R.isAmbiguous()) return true;
1888
1889      // We don't want access-control diagnostics here.
1890      R.suppressDiagnostics();
1891
1892      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1893        bool NotUnknownSpecialization = false;
1894        DeclContext *DC = computeDeclContext(SS, false);
1895        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1896          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1897
1898        if (!NotUnknownSpecialization) {
1899          // When the scope specifier can refer to a member of an unknown
1900          // specialization, we take it as a type name.
1901          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1902                                       SS.getWithLocInContext(Context),
1903                                       *MemberOrBase, IdLoc);
1904          if (BaseType.isNull())
1905            return true;
1906
1907          R.clear();
1908          R.setLookupName(MemberOrBase);
1909        }
1910      }
1911
1912      // If no results were found, try to correct typos.
1913      TypoCorrection Corr;
1914      MemInitializerValidatorCCC Validator(ClassDecl);
1915      if (R.empty() && BaseType.isNull() &&
1916          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1917                              Validator, ClassDecl))) {
1918        std::string CorrectedStr(Corr.getAsString(getLangOptions()));
1919        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOptions()));
1920        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1921          // We have found a non-static data member with a similar
1922          // name to what was typed; complain and initialize that
1923          // member.
1924          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1925            << MemberOrBase << true << CorrectedQuotedStr
1926            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1927          Diag(Member->getLocation(), diag::note_previous_decl)
1928            << CorrectedQuotedStr;
1929
1930          return BuildMemberInitializer(Member, Args, IdLoc);
1931        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1932          const CXXBaseSpecifier *DirectBaseSpec;
1933          const CXXBaseSpecifier *VirtualBaseSpec;
1934          if (FindBaseInitializer(*this, ClassDecl,
1935                                  Context.getTypeDeclType(Type),
1936                                  DirectBaseSpec, VirtualBaseSpec)) {
1937            // We have found a direct or virtual base class with a
1938            // similar name to what was typed; complain and initialize
1939            // that base class.
1940            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1941              << MemberOrBase << false << CorrectedQuotedStr
1942              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1943
1944            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1945                                                             : VirtualBaseSpec;
1946            Diag(BaseSpec->getSourceRange().getBegin(),
1947                 diag::note_base_class_specified_here)
1948              << BaseSpec->getType()
1949              << BaseSpec->getSourceRange();
1950
1951            TyD = Type;
1952          }
1953        }
1954      }
1955
1956      if (!TyD && BaseType.isNull()) {
1957        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1958          << MemberOrBase << SourceRange(IdLoc, Args.getEndLoc());
1959        return true;
1960      }
1961    }
1962
1963    if (BaseType.isNull()) {
1964      BaseType = Context.getTypeDeclType(TyD);
1965      if (SS.isSet()) {
1966        NestedNameSpecifier *Qualifier =
1967          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1968
1969        // FIXME: preserve source range information
1970        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1971      }
1972    }
1973  }
1974
1975  if (!TInfo)
1976    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1977
1978  return BuildBaseInitializer(BaseType, TInfo, Args, ClassDecl, EllipsisLoc);
1979}
1980
1981/// Checks a member initializer expression for cases where reference (or
1982/// pointer) members are bound to by-value parameters (or their addresses).
1983static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1984                                               Expr *Init,
1985                                               SourceLocation IdLoc) {
1986  QualType MemberTy = Member->getType();
1987
1988  // We only handle pointers and references currently.
1989  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1990  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1991    return;
1992
1993  const bool IsPointer = MemberTy->isPointerType();
1994  if (IsPointer) {
1995    if (const UnaryOperator *Op
1996          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1997      // The only case we're worried about with pointers requires taking the
1998      // address.
1999      if (Op->getOpcode() != UO_AddrOf)
2000        return;
2001
2002      Init = Op->getSubExpr();
2003    } else {
2004      // We only handle address-of expression initializers for pointers.
2005      return;
2006    }
2007  }
2008
2009  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2010    // Taking the address of a temporary will be diagnosed as a hard error.
2011    if (IsPointer)
2012      return;
2013
2014    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2015      << Member << Init->getSourceRange();
2016  } else if (const DeclRefExpr *DRE
2017               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2018    // We only warn when referring to a non-reference parameter declaration.
2019    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2020    if (!Parameter || Parameter->getType()->isReferenceType())
2021      return;
2022
2023    S.Diag(Init->getExprLoc(),
2024           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2025                     : diag::warn_bind_ref_member_to_parameter)
2026      << Member << Parameter << Init->getSourceRange();
2027  } else {
2028    // Other initializers are fine.
2029    return;
2030  }
2031
2032  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2033    << (unsigned)IsPointer;
2034}
2035
2036/// Checks an initializer expression for use of uninitialized fields, such as
2037/// containing the field that is being initialized. Returns true if there is an
2038/// uninitialized field was used an updates the SourceLocation parameter; false
2039/// otherwise.
2040static bool InitExprContainsUninitializedFields(const Stmt *S,
2041                                                const ValueDecl *LhsField,
2042                                                SourceLocation *L) {
2043  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2044
2045  if (isa<CallExpr>(S)) {
2046    // Do not descend into function calls or constructors, as the use
2047    // of an uninitialized field may be valid. One would have to inspect
2048    // the contents of the function/ctor to determine if it is safe or not.
2049    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2050    // may be safe, depending on what the function/ctor does.
2051    return false;
2052  }
2053  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2054    const NamedDecl *RhsField = ME->getMemberDecl();
2055
2056    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2057      // The member expression points to a static data member.
2058      assert(VD->isStaticDataMember() &&
2059             "Member points to non-static data member!");
2060      (void)VD;
2061      return false;
2062    }
2063
2064    if (isa<EnumConstantDecl>(RhsField)) {
2065      // The member expression points to an enum.
2066      return false;
2067    }
2068
2069    if (RhsField == LhsField) {
2070      // Initializing a field with itself. Throw a warning.
2071      // But wait; there are exceptions!
2072      // Exception #1:  The field may not belong to this record.
2073      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2074      const Expr *base = ME->getBase();
2075      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2076        // Even though the field matches, it does not belong to this record.
2077        return false;
2078      }
2079      // None of the exceptions triggered; return true to indicate an
2080      // uninitialized field was used.
2081      *L = ME->getMemberLoc();
2082      return true;
2083    }
2084  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2085    // sizeof/alignof doesn't reference contents, do not warn.
2086    return false;
2087  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2088    // address-of doesn't reference contents (the pointer may be dereferenced
2089    // in the same expression but it would be rare; and weird).
2090    if (UOE->getOpcode() == UO_AddrOf)
2091      return false;
2092  }
2093  for (Stmt::const_child_range it = S->children(); it; ++it) {
2094    if (!*it) {
2095      // An expression such as 'member(arg ?: "")' may trigger this.
2096      continue;
2097    }
2098    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2099      return true;
2100  }
2101  return false;
2102}
2103
2104MemInitResult
2105Sema::BuildMemberInitializer(ValueDecl *Member,
2106                             const MultiInitializer &Args,
2107                             SourceLocation IdLoc) {
2108  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2109  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2110  assert((DirectMember || IndirectMember) &&
2111         "Member must be a FieldDecl or IndirectFieldDecl");
2112
2113  if (Args.DiagnoseUnexpandedParameterPack(*this))
2114    return true;
2115
2116  if (Member->isInvalidDecl())
2117    return true;
2118
2119  // Diagnose value-uses of fields to initialize themselves, e.g.
2120  //   foo(foo)
2121  // where foo is not also a parameter to the constructor.
2122  // TODO: implement -Wuninitialized and fold this into that framework.
2123  for (MultiInitializer::iterator I = Args.begin(), E = Args.end();
2124       I != E; ++I) {
2125    SourceLocation L;
2126    Expr *Arg = *I;
2127    if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Arg))
2128      Arg = DIE->getInit();
2129    if (InitExprContainsUninitializedFields(Arg, Member, &L)) {
2130      // FIXME: Return true in the case when other fields are used before being
2131      // uninitialized. For example, let this field be the i'th field. When
2132      // initializing the i'th field, throw a warning if any of the >= i'th
2133      // fields are used, as they are not yet initialized.
2134      // Right now we are only handling the case where the i'th field uses
2135      // itself in its initializer.
2136      Diag(L, diag::warn_field_is_uninit);
2137    }
2138  }
2139
2140  bool HasDependentArg = Args.isTypeDependent();
2141
2142  Expr *Init;
2143  if (Member->getType()->isDependentType() || HasDependentArg) {
2144    // Can't check initialization for a member of dependent type or when
2145    // any of the arguments are type-dependent expressions.
2146    Init = Args.CreateInitExpr(Context,Member->getType().getNonReferenceType());
2147
2148    DiscardCleanupsInEvaluationContext();
2149  } else {
2150    // Initialize the member.
2151    InitializedEntity MemberEntity =
2152      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2153                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2154    InitializationKind Kind =
2155      InitializationKind::CreateDirect(IdLoc, Args.getStartLoc(),
2156                                       Args.getEndLoc());
2157
2158    ExprResult MemberInit = Args.PerformInit(*this, MemberEntity, Kind);
2159    if (MemberInit.isInvalid())
2160      return true;
2161
2162    CheckImplicitConversions(MemberInit.get(), Args.getStartLoc());
2163
2164    // C++0x [class.base.init]p7:
2165    //   The initialization of each base and member constitutes a
2166    //   full-expression.
2167    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2168    if (MemberInit.isInvalid())
2169      return true;
2170
2171    // If we are in a dependent context, template instantiation will
2172    // perform this type-checking again. Just save the arguments that we
2173    // received in a ParenListExpr.
2174    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2175    // of the information that we have about the member
2176    // initializer. However, deconstructing the ASTs is a dicey process,
2177    // and this approach is far more likely to get the corner cases right.
2178    if (CurContext->isDependentContext()) {
2179      Init = Args.CreateInitExpr(Context,
2180                                 Member->getType().getNonReferenceType());
2181    } else {
2182      Init = MemberInit.get();
2183      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2184    }
2185  }
2186
2187  if (DirectMember) {
2188    return new (Context) CXXCtorInitializer(Context, DirectMember,
2189                                                    IdLoc, Args.getStartLoc(),
2190                                                    Init, Args.getEndLoc());
2191  } else {
2192    return new (Context) CXXCtorInitializer(Context, IndirectMember,
2193                                                    IdLoc, Args.getStartLoc(),
2194                                                    Init, Args.getEndLoc());
2195  }
2196}
2197
2198MemInitResult
2199Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo,
2200                                 const MultiInitializer &Args,
2201                                 CXXRecordDecl *ClassDecl) {
2202  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2203  if (!LangOpts.CPlusPlus0x)
2204    return Diag(NameLoc, diag::err_delegating_ctor)
2205      << TInfo->getTypeLoc().getLocalSourceRange();
2206  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2207
2208  // Initialize the object.
2209  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2210                                     QualType(ClassDecl->getTypeForDecl(), 0));
2211  InitializationKind Kind =
2212    InitializationKind::CreateDirect(NameLoc, Args.getStartLoc(),
2213                                     Args.getEndLoc());
2214
2215  ExprResult DelegationInit = Args.PerformInit(*this, DelegationEntity, Kind);
2216  if (DelegationInit.isInvalid())
2217    return true;
2218
2219  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2220         "Delegating constructor with no target?");
2221
2222  CheckImplicitConversions(DelegationInit.get(), Args.getStartLoc());
2223
2224  // C++0x [class.base.init]p7:
2225  //   The initialization of each base and member constitutes a
2226  //   full-expression.
2227  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2228  if (DelegationInit.isInvalid())
2229    return true;
2230
2231  return new (Context) CXXCtorInitializer(Context, TInfo, Args.getStartLoc(),
2232                                          DelegationInit.takeAs<Expr>(),
2233                                          Args.getEndLoc());
2234}
2235
2236MemInitResult
2237Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2238                           const MultiInitializer &Args,
2239                           CXXRecordDecl *ClassDecl,
2240                           SourceLocation EllipsisLoc) {
2241  bool HasDependentArg = Args.isTypeDependent();
2242
2243  SourceLocation BaseLoc
2244    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2245
2246  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2247    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2248             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2249
2250  // C++ [class.base.init]p2:
2251  //   [...] Unless the mem-initializer-id names a nonstatic data
2252  //   member of the constructor's class or a direct or virtual base
2253  //   of that class, the mem-initializer is ill-formed. A
2254  //   mem-initializer-list can initialize a base class using any
2255  //   name that denotes that base class type.
2256  bool Dependent = BaseType->isDependentType() || HasDependentArg;
2257
2258  if (EllipsisLoc.isValid()) {
2259    // This is a pack expansion.
2260    if (!BaseType->containsUnexpandedParameterPack())  {
2261      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2262        << SourceRange(BaseLoc, Args.getEndLoc());
2263
2264      EllipsisLoc = SourceLocation();
2265    }
2266  } else {
2267    // Check for any unexpanded parameter packs.
2268    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2269      return true;
2270
2271    if (Args.DiagnoseUnexpandedParameterPack(*this))
2272      return true;
2273  }
2274
2275  // Check for direct and virtual base classes.
2276  const CXXBaseSpecifier *DirectBaseSpec = 0;
2277  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2278  if (!Dependent) {
2279    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2280                                       BaseType))
2281      return BuildDelegatingInitializer(BaseTInfo, Args, ClassDecl);
2282
2283    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2284                        VirtualBaseSpec);
2285
2286    // C++ [base.class.init]p2:
2287    // Unless the mem-initializer-id names a nonstatic data member of the
2288    // constructor's class or a direct or virtual base of that class, the
2289    // mem-initializer is ill-formed.
2290    if (!DirectBaseSpec && !VirtualBaseSpec) {
2291      // If the class has any dependent bases, then it's possible that
2292      // one of those types will resolve to the same type as
2293      // BaseType. Therefore, just treat this as a dependent base
2294      // class initialization.  FIXME: Should we try to check the
2295      // initialization anyway? It seems odd.
2296      if (ClassDecl->hasAnyDependentBases())
2297        Dependent = true;
2298      else
2299        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2300          << BaseType << Context.getTypeDeclType(ClassDecl)
2301          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2302    }
2303  }
2304
2305  if (Dependent) {
2306    // Can't check initialization for a base of dependent type or when
2307    // any of the arguments are type-dependent expressions.
2308    Expr *BaseInit = Args.CreateInitExpr(Context, BaseType);
2309
2310    DiscardCleanupsInEvaluationContext();
2311
2312    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2313                                            /*IsVirtual=*/false,
2314                                            Args.getStartLoc(), BaseInit,
2315                                            Args.getEndLoc(), EllipsisLoc);
2316  }
2317
2318  // C++ [base.class.init]p2:
2319  //   If a mem-initializer-id is ambiguous because it designates both
2320  //   a direct non-virtual base class and an inherited virtual base
2321  //   class, the mem-initializer is ill-formed.
2322  if (DirectBaseSpec && VirtualBaseSpec)
2323    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2324      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2325
2326  CXXBaseSpecifier *BaseSpec
2327    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2328  if (!BaseSpec)
2329    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2330
2331  // Initialize the base.
2332  InitializedEntity BaseEntity =
2333    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2334  InitializationKind Kind =
2335    InitializationKind::CreateDirect(BaseLoc, Args.getStartLoc(),
2336                                     Args.getEndLoc());
2337
2338  ExprResult BaseInit = Args.PerformInit(*this, BaseEntity, Kind);
2339  if (BaseInit.isInvalid())
2340    return true;
2341
2342  CheckImplicitConversions(BaseInit.get(), Args.getStartLoc());
2343
2344  // C++0x [class.base.init]p7:
2345  //   The initialization of each base and member constitutes a
2346  //   full-expression.
2347  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2348  if (BaseInit.isInvalid())
2349    return true;
2350
2351  // If we are in a dependent context, template instantiation will
2352  // perform this type-checking again. Just save the arguments that we
2353  // received in a ParenListExpr.
2354  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2355  // of the information that we have about the base
2356  // initializer. However, deconstructing the ASTs is a dicey process,
2357  // and this approach is far more likely to get the corner cases right.
2358  if (CurContext->isDependentContext())
2359    BaseInit = Owned(Args.CreateInitExpr(Context, BaseType));
2360
2361  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2362                                          BaseSpec->isVirtual(),
2363                                          Args.getStartLoc(),
2364                                          BaseInit.takeAs<Expr>(),
2365                                          Args.getEndLoc(), EllipsisLoc);
2366}
2367
2368// Create a static_cast\<T&&>(expr).
2369static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2370  QualType ExprType = E->getType();
2371  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2372  SourceLocation ExprLoc = E->getLocStart();
2373  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2374      TargetType, ExprLoc);
2375
2376  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2377                                   SourceRange(ExprLoc, ExprLoc),
2378                                   E->getSourceRange()).take();
2379}
2380
2381/// ImplicitInitializerKind - How an implicit base or member initializer should
2382/// initialize its base or member.
2383enum ImplicitInitializerKind {
2384  IIK_Default,
2385  IIK_Copy,
2386  IIK_Move
2387};
2388
2389static bool
2390BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2391                             ImplicitInitializerKind ImplicitInitKind,
2392                             CXXBaseSpecifier *BaseSpec,
2393                             bool IsInheritedVirtualBase,
2394                             CXXCtorInitializer *&CXXBaseInit) {
2395  InitializedEntity InitEntity
2396    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2397                                        IsInheritedVirtualBase);
2398
2399  ExprResult BaseInit;
2400
2401  switch (ImplicitInitKind) {
2402  case IIK_Default: {
2403    InitializationKind InitKind
2404      = InitializationKind::CreateDefault(Constructor->getLocation());
2405    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2406    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2407                               MultiExprArg(SemaRef, 0, 0));
2408    break;
2409  }
2410
2411  case IIK_Move:
2412  case IIK_Copy: {
2413    bool Moving = ImplicitInitKind == IIK_Move;
2414    ParmVarDecl *Param = Constructor->getParamDecl(0);
2415    QualType ParamType = Param->getType().getNonReferenceType();
2416
2417    Expr *CopyCtorArg =
2418      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2419                          SourceLocation(), Param,
2420                          Constructor->getLocation(), ParamType,
2421                          VK_LValue, 0);
2422
2423    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2424
2425    // Cast to the base class to avoid ambiguities.
2426    QualType ArgTy =
2427      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2428                                       ParamType.getQualifiers());
2429
2430    if (Moving) {
2431      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2432    }
2433
2434    CXXCastPath BasePath;
2435    BasePath.push_back(BaseSpec);
2436    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2437                                            CK_UncheckedDerivedToBase,
2438                                            Moving ? VK_XValue : VK_LValue,
2439                                            &BasePath).take();
2440
2441    InitializationKind InitKind
2442      = InitializationKind::CreateDirect(Constructor->getLocation(),
2443                                         SourceLocation(), SourceLocation());
2444    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2445                                   &CopyCtorArg, 1);
2446    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2447                               MultiExprArg(&CopyCtorArg, 1));
2448    break;
2449  }
2450  }
2451
2452  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2453  if (BaseInit.isInvalid())
2454    return true;
2455
2456  CXXBaseInit =
2457    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2458               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2459                                                        SourceLocation()),
2460                                             BaseSpec->isVirtual(),
2461                                             SourceLocation(),
2462                                             BaseInit.takeAs<Expr>(),
2463                                             SourceLocation(),
2464                                             SourceLocation());
2465
2466  return false;
2467}
2468
2469static bool RefersToRValueRef(Expr *MemRef) {
2470  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2471  return Referenced->getType()->isRValueReferenceType();
2472}
2473
2474static bool
2475BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2476                               ImplicitInitializerKind ImplicitInitKind,
2477                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2478                               CXXCtorInitializer *&CXXMemberInit) {
2479  if (Field->isInvalidDecl())
2480    return true;
2481
2482  SourceLocation Loc = Constructor->getLocation();
2483
2484  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2485    bool Moving = ImplicitInitKind == IIK_Move;
2486    ParmVarDecl *Param = Constructor->getParamDecl(0);
2487    QualType ParamType = Param->getType().getNonReferenceType();
2488
2489    // Suppress copying zero-width bitfields.
2490    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2491      return false;
2492
2493    Expr *MemberExprBase =
2494      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2495                          SourceLocation(), Param,
2496                          Loc, ParamType, VK_LValue, 0);
2497
2498    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2499
2500    if (Moving) {
2501      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2502    }
2503
2504    // Build a reference to this field within the parameter.
2505    CXXScopeSpec SS;
2506    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2507                              Sema::LookupMemberName);
2508    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2509                                  : cast<ValueDecl>(Field), AS_public);
2510    MemberLookup.resolveKind();
2511    ExprResult CtorArg
2512      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2513                                         ParamType, Loc,
2514                                         /*IsArrow=*/false,
2515                                         SS,
2516                                         /*TemplateKWLoc=*/SourceLocation(),
2517                                         /*FirstQualifierInScope=*/0,
2518                                         MemberLookup,
2519                                         /*TemplateArgs=*/0);
2520    if (CtorArg.isInvalid())
2521      return true;
2522
2523    // C++11 [class.copy]p15:
2524    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2525    //     with static_cast<T&&>(x.m);
2526    if (RefersToRValueRef(CtorArg.get())) {
2527      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2528    }
2529
2530    // When the field we are copying is an array, create index variables for
2531    // each dimension of the array. We use these index variables to subscript
2532    // the source array, and other clients (e.g., CodeGen) will perform the
2533    // necessary iteration with these index variables.
2534    SmallVector<VarDecl *, 4> IndexVariables;
2535    QualType BaseType = Field->getType();
2536    QualType SizeType = SemaRef.Context.getSizeType();
2537    bool InitializingArray = false;
2538    while (const ConstantArrayType *Array
2539                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2540      InitializingArray = true;
2541      // Create the iteration variable for this array index.
2542      IdentifierInfo *IterationVarName = 0;
2543      {
2544        SmallString<8> Str;
2545        llvm::raw_svector_ostream OS(Str);
2546        OS << "__i" << IndexVariables.size();
2547        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2548      }
2549      VarDecl *IterationVar
2550        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2551                          IterationVarName, SizeType,
2552                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2553                          SC_None, SC_None);
2554      IndexVariables.push_back(IterationVar);
2555
2556      // Create a reference to the iteration variable.
2557      ExprResult IterationVarRef
2558        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2559      assert(!IterationVarRef.isInvalid() &&
2560             "Reference to invented variable cannot fail!");
2561      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2562      assert(!IterationVarRef.isInvalid() &&
2563             "Conversion of invented variable cannot fail!");
2564
2565      // Subscript the array with this iteration variable.
2566      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2567                                                        IterationVarRef.take(),
2568                                                        Loc);
2569      if (CtorArg.isInvalid())
2570        return true;
2571
2572      BaseType = Array->getElementType();
2573    }
2574
2575    // The array subscript expression is an lvalue, which is wrong for moving.
2576    if (Moving && InitializingArray)
2577      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2578
2579    // Construct the entity that we will be initializing. For an array, this
2580    // will be first element in the array, which may require several levels
2581    // of array-subscript entities.
2582    SmallVector<InitializedEntity, 4> Entities;
2583    Entities.reserve(1 + IndexVariables.size());
2584    if (Indirect)
2585      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2586    else
2587      Entities.push_back(InitializedEntity::InitializeMember(Field));
2588    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2589      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2590                                                              0,
2591                                                              Entities.back()));
2592
2593    // Direct-initialize to use the copy constructor.
2594    InitializationKind InitKind =
2595      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2596
2597    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2598    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2599                                   &CtorArgE, 1);
2600
2601    ExprResult MemberInit
2602      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2603                        MultiExprArg(&CtorArgE, 1));
2604    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2605    if (MemberInit.isInvalid())
2606      return true;
2607
2608    if (Indirect) {
2609      assert(IndexVariables.size() == 0 &&
2610             "Indirect field improperly initialized");
2611      CXXMemberInit
2612        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2613                                                   Loc, Loc,
2614                                                   MemberInit.takeAs<Expr>(),
2615                                                   Loc);
2616    } else
2617      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2618                                                 Loc, MemberInit.takeAs<Expr>(),
2619                                                 Loc,
2620                                                 IndexVariables.data(),
2621                                                 IndexVariables.size());
2622    return false;
2623  }
2624
2625  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2626
2627  QualType FieldBaseElementType =
2628    SemaRef.Context.getBaseElementType(Field->getType());
2629
2630  if (FieldBaseElementType->isRecordType()) {
2631    InitializedEntity InitEntity
2632      = Indirect? InitializedEntity::InitializeMember(Indirect)
2633                : InitializedEntity::InitializeMember(Field);
2634    InitializationKind InitKind =
2635      InitializationKind::CreateDefault(Loc);
2636
2637    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2638    ExprResult MemberInit =
2639      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2640
2641    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2642    if (MemberInit.isInvalid())
2643      return true;
2644
2645    if (Indirect)
2646      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2647                                                               Indirect, Loc,
2648                                                               Loc,
2649                                                               MemberInit.get(),
2650                                                               Loc);
2651    else
2652      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2653                                                               Field, Loc, Loc,
2654                                                               MemberInit.get(),
2655                                                               Loc);
2656    return false;
2657  }
2658
2659  if (!Field->getParent()->isUnion()) {
2660    if (FieldBaseElementType->isReferenceType()) {
2661      SemaRef.Diag(Constructor->getLocation(),
2662                   diag::err_uninitialized_member_in_ctor)
2663      << (int)Constructor->isImplicit()
2664      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2665      << 0 << Field->getDeclName();
2666      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2667      return true;
2668    }
2669
2670    if (FieldBaseElementType.isConstQualified()) {
2671      SemaRef.Diag(Constructor->getLocation(),
2672                   diag::err_uninitialized_member_in_ctor)
2673      << (int)Constructor->isImplicit()
2674      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2675      << 1 << Field->getDeclName();
2676      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2677      return true;
2678    }
2679  }
2680
2681  if (SemaRef.getLangOptions().ObjCAutoRefCount &&
2682      FieldBaseElementType->isObjCRetainableType() &&
2683      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2684      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2685    // Instant objects:
2686    //   Default-initialize Objective-C pointers to NULL.
2687    CXXMemberInit
2688      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2689                                                 Loc, Loc,
2690                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2691                                                 Loc);
2692    return false;
2693  }
2694
2695  // Nothing to initialize.
2696  CXXMemberInit = 0;
2697  return false;
2698}
2699
2700namespace {
2701struct BaseAndFieldInfo {
2702  Sema &S;
2703  CXXConstructorDecl *Ctor;
2704  bool AnyErrorsInInits;
2705  ImplicitInitializerKind IIK;
2706  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2707  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2708
2709  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2710    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2711    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2712    if (Generated && Ctor->isCopyConstructor())
2713      IIK = IIK_Copy;
2714    else if (Generated && Ctor->isMoveConstructor())
2715      IIK = IIK_Move;
2716    else
2717      IIK = IIK_Default;
2718  }
2719
2720  bool isImplicitCopyOrMove() const {
2721    switch (IIK) {
2722    case IIK_Copy:
2723    case IIK_Move:
2724      return true;
2725
2726    case IIK_Default:
2727      return false;
2728    }
2729
2730    llvm_unreachable("Invalid ImplicitInitializerKind!");
2731  }
2732};
2733}
2734
2735/// \brief Determine whether the given indirect field declaration is somewhere
2736/// within an anonymous union.
2737static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2738  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2739                                      CEnd = F->chain_end();
2740       C != CEnd; ++C)
2741    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2742      if (Record->isUnion())
2743        return true;
2744
2745  return false;
2746}
2747
2748/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2749/// array type.
2750static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2751  if (T->isIncompleteArrayType())
2752    return true;
2753
2754  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2755    if (!ArrayT->getSize())
2756      return true;
2757
2758    T = ArrayT->getElementType();
2759  }
2760
2761  return false;
2762}
2763
2764static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2765                                    FieldDecl *Field,
2766                                    IndirectFieldDecl *Indirect = 0) {
2767
2768  // Overwhelmingly common case: we have a direct initializer for this field.
2769  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2770    Info.AllToInit.push_back(Init);
2771    return false;
2772  }
2773
2774  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2775  // has a brace-or-equal-initializer, the entity is initialized as specified
2776  // in [dcl.init].
2777  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2778    CXXCtorInitializer *Init;
2779    if (Indirect)
2780      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2781                                                      SourceLocation(),
2782                                                      SourceLocation(), 0,
2783                                                      SourceLocation());
2784    else
2785      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2786                                                      SourceLocation(),
2787                                                      SourceLocation(), 0,
2788                                                      SourceLocation());
2789    Info.AllToInit.push_back(Init);
2790    return false;
2791  }
2792
2793  // Don't build an implicit initializer for union members if none was
2794  // explicitly specified.
2795  if (Field->getParent()->isUnion() ||
2796      (Indirect && isWithinAnonymousUnion(Indirect)))
2797    return false;
2798
2799  // Don't initialize incomplete or zero-length arrays.
2800  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2801    return false;
2802
2803  // Don't try to build an implicit initializer if there were semantic
2804  // errors in any of the initializers (and therefore we might be
2805  // missing some that the user actually wrote).
2806  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2807    return false;
2808
2809  CXXCtorInitializer *Init = 0;
2810  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2811                                     Indirect, Init))
2812    return true;
2813
2814  if (Init)
2815    Info.AllToInit.push_back(Init);
2816
2817  return false;
2818}
2819
2820bool
2821Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2822                               CXXCtorInitializer *Initializer) {
2823  assert(Initializer->isDelegatingInitializer());
2824  Constructor->setNumCtorInitializers(1);
2825  CXXCtorInitializer **initializer =
2826    new (Context) CXXCtorInitializer*[1];
2827  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2828  Constructor->setCtorInitializers(initializer);
2829
2830  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2831    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2832    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2833  }
2834
2835  DelegatingCtorDecls.push_back(Constructor);
2836
2837  return false;
2838}
2839
2840bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2841                               CXXCtorInitializer **Initializers,
2842                               unsigned NumInitializers,
2843                               bool AnyErrors) {
2844  if (Constructor->isDependentContext()) {
2845    // Just store the initializers as written, they will be checked during
2846    // instantiation.
2847    if (NumInitializers > 0) {
2848      Constructor->setNumCtorInitializers(NumInitializers);
2849      CXXCtorInitializer **baseOrMemberInitializers =
2850        new (Context) CXXCtorInitializer*[NumInitializers];
2851      memcpy(baseOrMemberInitializers, Initializers,
2852             NumInitializers * sizeof(CXXCtorInitializer*));
2853      Constructor->setCtorInitializers(baseOrMemberInitializers);
2854    }
2855
2856    return false;
2857  }
2858
2859  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2860
2861  // We need to build the initializer AST according to order of construction
2862  // and not what user specified in the Initializers list.
2863  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2864  if (!ClassDecl)
2865    return true;
2866
2867  bool HadError = false;
2868
2869  for (unsigned i = 0; i < NumInitializers; i++) {
2870    CXXCtorInitializer *Member = Initializers[i];
2871
2872    if (Member->isBaseInitializer())
2873      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2874    else
2875      Info.AllBaseFields[Member->getAnyMember()] = Member;
2876  }
2877
2878  // Keep track of the direct virtual bases.
2879  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2880  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2881       E = ClassDecl->bases_end(); I != E; ++I) {
2882    if (I->isVirtual())
2883      DirectVBases.insert(I);
2884  }
2885
2886  // Push virtual bases before others.
2887  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2888       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2889
2890    if (CXXCtorInitializer *Value
2891        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2892      Info.AllToInit.push_back(Value);
2893    } else if (!AnyErrors) {
2894      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2895      CXXCtorInitializer *CXXBaseInit;
2896      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2897                                       VBase, IsInheritedVirtualBase,
2898                                       CXXBaseInit)) {
2899        HadError = true;
2900        continue;
2901      }
2902
2903      Info.AllToInit.push_back(CXXBaseInit);
2904    }
2905  }
2906
2907  // Non-virtual bases.
2908  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2909       E = ClassDecl->bases_end(); Base != E; ++Base) {
2910    // Virtuals are in the virtual base list and already constructed.
2911    if (Base->isVirtual())
2912      continue;
2913
2914    if (CXXCtorInitializer *Value
2915          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2916      Info.AllToInit.push_back(Value);
2917    } else if (!AnyErrors) {
2918      CXXCtorInitializer *CXXBaseInit;
2919      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2920                                       Base, /*IsInheritedVirtualBase=*/false,
2921                                       CXXBaseInit)) {
2922        HadError = true;
2923        continue;
2924      }
2925
2926      Info.AllToInit.push_back(CXXBaseInit);
2927    }
2928  }
2929
2930  // Fields.
2931  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
2932                               MemEnd = ClassDecl->decls_end();
2933       Mem != MemEnd; ++Mem) {
2934    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
2935      // C++ [class.bit]p2:
2936      //   A declaration for a bit-field that omits the identifier declares an
2937      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
2938      //   initialized.
2939      if (F->isUnnamedBitfield())
2940        continue;
2941
2942      // If we're not generating the implicit copy/move constructor, then we'll
2943      // handle anonymous struct/union fields based on their individual
2944      // indirect fields.
2945      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
2946        continue;
2947
2948      if (CollectFieldInitializer(*this, Info, F))
2949        HadError = true;
2950      continue;
2951    }
2952
2953    // Beyond this point, we only consider default initialization.
2954    if (Info.IIK != IIK_Default)
2955      continue;
2956
2957    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
2958      if (F->getType()->isIncompleteArrayType()) {
2959        assert(ClassDecl->hasFlexibleArrayMember() &&
2960               "Incomplete array type is not valid");
2961        continue;
2962      }
2963
2964      // Initialize each field of an anonymous struct individually.
2965      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
2966        HadError = true;
2967
2968      continue;
2969    }
2970  }
2971
2972  NumInitializers = Info.AllToInit.size();
2973  if (NumInitializers > 0) {
2974    Constructor->setNumCtorInitializers(NumInitializers);
2975    CXXCtorInitializer **baseOrMemberInitializers =
2976      new (Context) CXXCtorInitializer*[NumInitializers];
2977    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
2978           NumInitializers * sizeof(CXXCtorInitializer*));
2979    Constructor->setCtorInitializers(baseOrMemberInitializers);
2980
2981    // Constructors implicitly reference the base and member
2982    // destructors.
2983    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
2984                                           Constructor->getParent());
2985  }
2986
2987  return HadError;
2988}
2989
2990static void *GetKeyForTopLevelField(FieldDecl *Field) {
2991  // For anonymous unions, use the class declaration as the key.
2992  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
2993    if (RT->getDecl()->isAnonymousStructOrUnion())
2994      return static_cast<void *>(RT->getDecl());
2995  }
2996  return static_cast<void *>(Field);
2997}
2998
2999static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3000  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3001}
3002
3003static void *GetKeyForMember(ASTContext &Context,
3004                             CXXCtorInitializer *Member) {
3005  if (!Member->isAnyMemberInitializer())
3006    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3007
3008  // For fields injected into the class via declaration of an anonymous union,
3009  // use its anonymous union class declaration as the unique key.
3010  FieldDecl *Field = Member->getAnyMember();
3011
3012  // If the field is a member of an anonymous struct or union, our key
3013  // is the anonymous record decl that's a direct child of the class.
3014  RecordDecl *RD = Field->getParent();
3015  if (RD->isAnonymousStructOrUnion()) {
3016    while (true) {
3017      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3018      if (Parent->isAnonymousStructOrUnion())
3019        RD = Parent;
3020      else
3021        break;
3022    }
3023
3024    return static_cast<void *>(RD);
3025  }
3026
3027  return static_cast<void *>(Field);
3028}
3029
3030static void
3031DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3032                                  const CXXConstructorDecl *Constructor,
3033                                  CXXCtorInitializer **Inits,
3034                                  unsigned NumInits) {
3035  if (Constructor->getDeclContext()->isDependentContext())
3036    return;
3037
3038  // Don't check initializers order unless the warning is enabled at the
3039  // location of at least one initializer.
3040  bool ShouldCheckOrder = false;
3041  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3042    CXXCtorInitializer *Init = Inits[InitIndex];
3043    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3044                                         Init->getSourceLocation())
3045          != DiagnosticsEngine::Ignored) {
3046      ShouldCheckOrder = true;
3047      break;
3048    }
3049  }
3050  if (!ShouldCheckOrder)
3051    return;
3052
3053  // Build the list of bases and members in the order that they'll
3054  // actually be initialized.  The explicit initializers should be in
3055  // this same order but may be missing things.
3056  SmallVector<const void*, 32> IdealInitKeys;
3057
3058  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3059
3060  // 1. Virtual bases.
3061  for (CXXRecordDecl::base_class_const_iterator VBase =
3062       ClassDecl->vbases_begin(),
3063       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3064    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3065
3066  // 2. Non-virtual bases.
3067  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3068       E = ClassDecl->bases_end(); Base != E; ++Base) {
3069    if (Base->isVirtual())
3070      continue;
3071    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3072  }
3073
3074  // 3. Direct fields.
3075  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3076       E = ClassDecl->field_end(); Field != E; ++Field) {
3077    if (Field->isUnnamedBitfield())
3078      continue;
3079
3080    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
3081  }
3082
3083  unsigned NumIdealInits = IdealInitKeys.size();
3084  unsigned IdealIndex = 0;
3085
3086  CXXCtorInitializer *PrevInit = 0;
3087  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3088    CXXCtorInitializer *Init = Inits[InitIndex];
3089    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3090
3091    // Scan forward to try to find this initializer in the idealized
3092    // initializers list.
3093    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3094      if (InitKey == IdealInitKeys[IdealIndex])
3095        break;
3096
3097    // If we didn't find this initializer, it must be because we
3098    // scanned past it on a previous iteration.  That can only
3099    // happen if we're out of order;  emit a warning.
3100    if (IdealIndex == NumIdealInits && PrevInit) {
3101      Sema::SemaDiagnosticBuilder D =
3102        SemaRef.Diag(PrevInit->getSourceLocation(),
3103                     diag::warn_initializer_out_of_order);
3104
3105      if (PrevInit->isAnyMemberInitializer())
3106        D << 0 << PrevInit->getAnyMember()->getDeclName();
3107      else
3108        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3109
3110      if (Init->isAnyMemberInitializer())
3111        D << 0 << Init->getAnyMember()->getDeclName();
3112      else
3113        D << 1 << Init->getTypeSourceInfo()->getType();
3114
3115      // Move back to the initializer's location in the ideal list.
3116      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3117        if (InitKey == IdealInitKeys[IdealIndex])
3118          break;
3119
3120      assert(IdealIndex != NumIdealInits &&
3121             "initializer not found in initializer list");
3122    }
3123
3124    PrevInit = Init;
3125  }
3126}
3127
3128namespace {
3129bool CheckRedundantInit(Sema &S,
3130                        CXXCtorInitializer *Init,
3131                        CXXCtorInitializer *&PrevInit) {
3132  if (!PrevInit) {
3133    PrevInit = Init;
3134    return false;
3135  }
3136
3137  if (FieldDecl *Field = Init->getMember())
3138    S.Diag(Init->getSourceLocation(),
3139           diag::err_multiple_mem_initialization)
3140      << Field->getDeclName()
3141      << Init->getSourceRange();
3142  else {
3143    const Type *BaseClass = Init->getBaseClass();
3144    assert(BaseClass && "neither field nor base");
3145    S.Diag(Init->getSourceLocation(),
3146           diag::err_multiple_base_initialization)
3147      << QualType(BaseClass, 0)
3148      << Init->getSourceRange();
3149  }
3150  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3151    << 0 << PrevInit->getSourceRange();
3152
3153  return true;
3154}
3155
3156typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3157typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3158
3159bool CheckRedundantUnionInit(Sema &S,
3160                             CXXCtorInitializer *Init,
3161                             RedundantUnionMap &Unions) {
3162  FieldDecl *Field = Init->getAnyMember();
3163  RecordDecl *Parent = Field->getParent();
3164  NamedDecl *Child = Field;
3165
3166  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3167    if (Parent->isUnion()) {
3168      UnionEntry &En = Unions[Parent];
3169      if (En.first && En.first != Child) {
3170        S.Diag(Init->getSourceLocation(),
3171               diag::err_multiple_mem_union_initialization)
3172          << Field->getDeclName()
3173          << Init->getSourceRange();
3174        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3175          << 0 << En.second->getSourceRange();
3176        return true;
3177      }
3178      if (!En.first) {
3179        En.first = Child;
3180        En.second = Init;
3181      }
3182      if (!Parent->isAnonymousStructOrUnion())
3183        return false;
3184    }
3185
3186    Child = Parent;
3187    Parent = cast<RecordDecl>(Parent->getDeclContext());
3188  }
3189
3190  return false;
3191}
3192}
3193
3194/// ActOnMemInitializers - Handle the member initializers for a constructor.
3195void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3196                                SourceLocation ColonLoc,
3197                                CXXCtorInitializer **meminits,
3198                                unsigned NumMemInits,
3199                                bool AnyErrors) {
3200  if (!ConstructorDecl)
3201    return;
3202
3203  AdjustDeclIfTemplate(ConstructorDecl);
3204
3205  CXXConstructorDecl *Constructor
3206    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3207
3208  if (!Constructor) {
3209    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3210    return;
3211  }
3212
3213  CXXCtorInitializer **MemInits =
3214    reinterpret_cast<CXXCtorInitializer **>(meminits);
3215
3216  // Mapping for the duplicate initializers check.
3217  // For member initializers, this is keyed with a FieldDecl*.
3218  // For base initializers, this is keyed with a Type*.
3219  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3220
3221  // Mapping for the inconsistent anonymous-union initializers check.
3222  RedundantUnionMap MemberUnions;
3223
3224  bool HadError = false;
3225  for (unsigned i = 0; i < NumMemInits; i++) {
3226    CXXCtorInitializer *Init = MemInits[i];
3227
3228    // Set the source order index.
3229    Init->setSourceOrder(i);
3230
3231    if (Init->isAnyMemberInitializer()) {
3232      FieldDecl *Field = Init->getAnyMember();
3233      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3234          CheckRedundantUnionInit(*this, Init, MemberUnions))
3235        HadError = true;
3236    } else if (Init->isBaseInitializer()) {
3237      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3238      if (CheckRedundantInit(*this, Init, Members[Key]))
3239        HadError = true;
3240    } else {
3241      assert(Init->isDelegatingInitializer());
3242      // This must be the only initializer
3243      if (i != 0 || NumMemInits > 1) {
3244        Diag(MemInits[0]->getSourceLocation(),
3245             diag::err_delegating_initializer_alone)
3246          << MemInits[0]->getSourceRange();
3247        HadError = true;
3248        // We will treat this as being the only initializer.
3249      }
3250      SetDelegatingInitializer(Constructor, MemInits[i]);
3251      // Return immediately as the initializer is set.
3252      return;
3253    }
3254  }
3255
3256  if (HadError)
3257    return;
3258
3259  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3260
3261  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3262}
3263
3264void
3265Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3266                                             CXXRecordDecl *ClassDecl) {
3267  // Ignore dependent contexts. Also ignore unions, since their members never
3268  // have destructors implicitly called.
3269  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3270    return;
3271
3272  // FIXME: all the access-control diagnostics are positioned on the
3273  // field/base declaration.  That's probably good; that said, the
3274  // user might reasonably want to know why the destructor is being
3275  // emitted, and we currently don't say.
3276
3277  // Non-static data members.
3278  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3279       E = ClassDecl->field_end(); I != E; ++I) {
3280    FieldDecl *Field = *I;
3281    if (Field->isInvalidDecl())
3282      continue;
3283
3284    // Don't destroy incomplete or zero-length arrays.
3285    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3286      continue;
3287
3288    QualType FieldType = Context.getBaseElementType(Field->getType());
3289
3290    const RecordType* RT = FieldType->getAs<RecordType>();
3291    if (!RT)
3292      continue;
3293
3294    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3295    if (FieldClassDecl->isInvalidDecl())
3296      continue;
3297    if (FieldClassDecl->hasTrivialDestructor())
3298      continue;
3299
3300    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3301    assert(Dtor && "No dtor found for FieldClassDecl!");
3302    CheckDestructorAccess(Field->getLocation(), Dtor,
3303                          PDiag(diag::err_access_dtor_field)
3304                            << Field->getDeclName()
3305                            << FieldType);
3306
3307    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3308  }
3309
3310  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3311
3312  // Bases.
3313  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3314       E = ClassDecl->bases_end(); Base != E; ++Base) {
3315    // Bases are always records in a well-formed non-dependent class.
3316    const RecordType *RT = Base->getType()->getAs<RecordType>();
3317
3318    // Remember direct virtual bases.
3319    if (Base->isVirtual())
3320      DirectVirtualBases.insert(RT);
3321
3322    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3323    // If our base class is invalid, we probably can't get its dtor anyway.
3324    if (BaseClassDecl->isInvalidDecl())
3325      continue;
3326    // Ignore trivial destructors.
3327    if (BaseClassDecl->hasTrivialDestructor())
3328      continue;
3329
3330    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3331    assert(Dtor && "No dtor found for BaseClassDecl!");
3332
3333    // FIXME: caret should be on the start of the class name
3334    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
3335                          PDiag(diag::err_access_dtor_base)
3336                            << Base->getType()
3337                            << Base->getSourceRange());
3338
3339    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3340  }
3341
3342  // Virtual bases.
3343  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3344       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3345
3346    // Bases are always records in a well-formed non-dependent class.
3347    const RecordType *RT = VBase->getType()->getAs<RecordType>();
3348
3349    // Ignore direct virtual bases.
3350    if (DirectVirtualBases.count(RT))
3351      continue;
3352
3353    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3354    // If our base class is invalid, we probably can't get its dtor anyway.
3355    if (BaseClassDecl->isInvalidDecl())
3356      continue;
3357    // Ignore trivial destructors.
3358    if (BaseClassDecl->hasTrivialDestructor())
3359      continue;
3360
3361    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3362    assert(Dtor && "No dtor found for BaseClassDecl!");
3363    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3364                          PDiag(diag::err_access_dtor_vbase)
3365                            << VBase->getType());
3366
3367    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3368  }
3369}
3370
3371void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3372  if (!CDtorDecl)
3373    return;
3374
3375  if (CXXConstructorDecl *Constructor
3376      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3377    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3378}
3379
3380bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3381                                  unsigned DiagID, AbstractDiagSelID SelID) {
3382  if (SelID == -1)
3383    return RequireNonAbstractType(Loc, T, PDiag(DiagID));
3384  else
3385    return RequireNonAbstractType(Loc, T, PDiag(DiagID) << SelID);
3386}
3387
3388bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3389                                  const PartialDiagnostic &PD) {
3390  if (!getLangOptions().CPlusPlus)
3391    return false;
3392
3393  if (const ArrayType *AT = Context.getAsArrayType(T))
3394    return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3395
3396  if (const PointerType *PT = T->getAs<PointerType>()) {
3397    // Find the innermost pointer type.
3398    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3399      PT = T;
3400
3401    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3402      return RequireNonAbstractType(Loc, AT->getElementType(), PD);
3403  }
3404
3405  const RecordType *RT = T->getAs<RecordType>();
3406  if (!RT)
3407    return false;
3408
3409  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3410
3411  // We can't answer whether something is abstract until it has a
3412  // definition.  If it's currently being defined, we'll walk back
3413  // over all the declarations when we have a full definition.
3414  const CXXRecordDecl *Def = RD->getDefinition();
3415  if (!Def || Def->isBeingDefined())
3416    return false;
3417
3418  if (!RD->isAbstract())
3419    return false;
3420
3421  Diag(Loc, PD) << RD->getDeclName();
3422  DiagnoseAbstractType(RD);
3423
3424  return true;
3425}
3426
3427void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3428  // Check if we've already emitted the list of pure virtual functions
3429  // for this class.
3430  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3431    return;
3432
3433  CXXFinalOverriderMap FinalOverriders;
3434  RD->getFinalOverriders(FinalOverriders);
3435
3436  // Keep a set of seen pure methods so we won't diagnose the same method
3437  // more than once.
3438  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3439
3440  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3441                                   MEnd = FinalOverriders.end();
3442       M != MEnd;
3443       ++M) {
3444    for (OverridingMethods::iterator SO = M->second.begin(),
3445                                  SOEnd = M->second.end();
3446         SO != SOEnd; ++SO) {
3447      // C++ [class.abstract]p4:
3448      //   A class is abstract if it contains or inherits at least one
3449      //   pure virtual function for which the final overrider is pure
3450      //   virtual.
3451
3452      //
3453      if (SO->second.size() != 1)
3454        continue;
3455
3456      if (!SO->second.front().Method->isPure())
3457        continue;
3458
3459      if (!SeenPureMethods.insert(SO->second.front().Method))
3460        continue;
3461
3462      Diag(SO->second.front().Method->getLocation(),
3463           diag::note_pure_virtual_function)
3464        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3465    }
3466  }
3467
3468  if (!PureVirtualClassDiagSet)
3469    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3470  PureVirtualClassDiagSet->insert(RD);
3471}
3472
3473namespace {
3474struct AbstractUsageInfo {
3475  Sema &S;
3476  CXXRecordDecl *Record;
3477  CanQualType AbstractType;
3478  bool Invalid;
3479
3480  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3481    : S(S), Record(Record),
3482      AbstractType(S.Context.getCanonicalType(
3483                   S.Context.getTypeDeclType(Record))),
3484      Invalid(false) {}
3485
3486  void DiagnoseAbstractType() {
3487    if (Invalid) return;
3488    S.DiagnoseAbstractType(Record);
3489    Invalid = true;
3490  }
3491
3492  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3493};
3494
3495struct CheckAbstractUsage {
3496  AbstractUsageInfo &Info;
3497  const NamedDecl *Ctx;
3498
3499  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3500    : Info(Info), Ctx(Ctx) {}
3501
3502  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3503    switch (TL.getTypeLocClass()) {
3504#define ABSTRACT_TYPELOC(CLASS, PARENT)
3505#define TYPELOC(CLASS, PARENT) \
3506    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3507#include "clang/AST/TypeLocNodes.def"
3508    }
3509  }
3510
3511  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3512    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3513    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3514      if (!TL.getArg(I))
3515        continue;
3516
3517      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3518      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3519    }
3520  }
3521
3522  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3523    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3524  }
3525
3526  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3527    // Visit the type parameters from a permissive context.
3528    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3529      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3530      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3531        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3532          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3533      // TODO: other template argument types?
3534    }
3535  }
3536
3537  // Visit pointee types from a permissive context.
3538#define CheckPolymorphic(Type) \
3539  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3540    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3541  }
3542  CheckPolymorphic(PointerTypeLoc)
3543  CheckPolymorphic(ReferenceTypeLoc)
3544  CheckPolymorphic(MemberPointerTypeLoc)
3545  CheckPolymorphic(BlockPointerTypeLoc)
3546  CheckPolymorphic(AtomicTypeLoc)
3547
3548  /// Handle all the types we haven't given a more specific
3549  /// implementation for above.
3550  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3551    // Every other kind of type that we haven't called out already
3552    // that has an inner type is either (1) sugar or (2) contains that
3553    // inner type in some way as a subobject.
3554    if (TypeLoc Next = TL.getNextTypeLoc())
3555      return Visit(Next, Sel);
3556
3557    // If there's no inner type and we're in a permissive context,
3558    // don't diagnose.
3559    if (Sel == Sema::AbstractNone) return;
3560
3561    // Check whether the type matches the abstract type.
3562    QualType T = TL.getType();
3563    if (T->isArrayType()) {
3564      Sel = Sema::AbstractArrayType;
3565      T = Info.S.Context.getBaseElementType(T);
3566    }
3567    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3568    if (CT != Info.AbstractType) return;
3569
3570    // It matched; do some magic.
3571    if (Sel == Sema::AbstractArrayType) {
3572      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3573        << T << TL.getSourceRange();
3574    } else {
3575      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3576        << Sel << T << TL.getSourceRange();
3577    }
3578    Info.DiagnoseAbstractType();
3579  }
3580};
3581
3582void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3583                                  Sema::AbstractDiagSelID Sel) {
3584  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3585}
3586
3587}
3588
3589/// Check for invalid uses of an abstract type in a method declaration.
3590static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3591                                    CXXMethodDecl *MD) {
3592  // No need to do the check on definitions, which require that
3593  // the return/param types be complete.
3594  if (MD->doesThisDeclarationHaveABody())
3595    return;
3596
3597  // For safety's sake, just ignore it if we don't have type source
3598  // information.  This should never happen for non-implicit methods,
3599  // but...
3600  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3601    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3602}
3603
3604/// Check for invalid uses of an abstract type within a class definition.
3605static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3606                                    CXXRecordDecl *RD) {
3607  for (CXXRecordDecl::decl_iterator
3608         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3609    Decl *D = *I;
3610    if (D->isImplicit()) continue;
3611
3612    // Methods and method templates.
3613    if (isa<CXXMethodDecl>(D)) {
3614      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3615    } else if (isa<FunctionTemplateDecl>(D)) {
3616      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3617      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3618
3619    // Fields and static variables.
3620    } else if (isa<FieldDecl>(D)) {
3621      FieldDecl *FD = cast<FieldDecl>(D);
3622      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3623        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3624    } else if (isa<VarDecl>(D)) {
3625      VarDecl *VD = cast<VarDecl>(D);
3626      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3627        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3628
3629    // Nested classes and class templates.
3630    } else if (isa<CXXRecordDecl>(D)) {
3631      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3632    } else if (isa<ClassTemplateDecl>(D)) {
3633      CheckAbstractClassUsage(Info,
3634                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3635    }
3636  }
3637}
3638
3639/// \brief Perform semantic checks on a class definition that has been
3640/// completing, introducing implicitly-declared members, checking for
3641/// abstract types, etc.
3642void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3643  if (!Record)
3644    return;
3645
3646  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3647    AbstractUsageInfo Info(*this, Record);
3648    CheckAbstractClassUsage(Info, Record);
3649  }
3650
3651  // If this is not an aggregate type and has no user-declared constructor,
3652  // complain about any non-static data members of reference or const scalar
3653  // type, since they will never get initializers.
3654  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3655      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3656      !Record->isLambda()) {
3657    bool Complained = false;
3658    for (RecordDecl::field_iterator F = Record->field_begin(),
3659                                 FEnd = Record->field_end();
3660         F != FEnd; ++F) {
3661      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3662        continue;
3663
3664      if (F->getType()->isReferenceType() ||
3665          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3666        if (!Complained) {
3667          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3668            << Record->getTagKind() << Record;
3669          Complained = true;
3670        }
3671
3672        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3673          << F->getType()->isReferenceType()
3674          << F->getDeclName();
3675      }
3676    }
3677  }
3678
3679  if (Record->isDynamicClass() && !Record->isDependentType())
3680    DynamicClasses.push_back(Record);
3681
3682  if (Record->getIdentifier()) {
3683    // C++ [class.mem]p13:
3684    //   If T is the name of a class, then each of the following shall have a
3685    //   name different from T:
3686    //     - every member of every anonymous union that is a member of class T.
3687    //
3688    // C++ [class.mem]p14:
3689    //   In addition, if class T has a user-declared constructor (12.1), every
3690    //   non-static data member of class T shall have a name different from T.
3691    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3692         R.first != R.second; ++R.first) {
3693      NamedDecl *D = *R.first;
3694      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3695          isa<IndirectFieldDecl>(D)) {
3696        Diag(D->getLocation(), diag::err_member_name_of_class)
3697          << D->getDeclName();
3698        break;
3699      }
3700    }
3701  }
3702
3703  // Warn if the class has virtual methods but non-virtual public destructor.
3704  if (Record->isPolymorphic() && !Record->isDependentType()) {
3705    CXXDestructorDecl *dtor = Record->getDestructor();
3706    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3707      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3708           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3709  }
3710
3711  // See if a method overloads virtual methods in a base
3712  /// class without overriding any.
3713  if (!Record->isDependentType()) {
3714    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3715                                     MEnd = Record->method_end();
3716         M != MEnd; ++M) {
3717      if (!(*M)->isStatic())
3718        DiagnoseHiddenVirtualMethods(Record, *M);
3719    }
3720  }
3721
3722  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3723  // function that is not a constructor declares that member function to be
3724  // const. [...] The class of which that function is a member shall be
3725  // a literal type.
3726  //
3727  // It's fine to diagnose constructors here too: such constructors cannot
3728  // produce a constant expression, so are ill-formed (no diagnostic required).
3729  //
3730  // If the class has virtual bases, any constexpr members will already have
3731  // been diagnosed by the checks performed on the member declaration, so
3732  // suppress this (less useful) diagnostic.
3733  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3734      !Record->isLiteral() && !Record->getNumVBases()) {
3735    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3736                                     MEnd = Record->method_end();
3737         M != MEnd; ++M) {
3738      if (M->isConstexpr() && M->isInstance()) {
3739        switch (Record->getTemplateSpecializationKind()) {
3740        case TSK_ImplicitInstantiation:
3741        case TSK_ExplicitInstantiationDeclaration:
3742        case TSK_ExplicitInstantiationDefinition:
3743          // If a template instantiates to a non-literal type, but its members
3744          // instantiate to constexpr functions, the template is technically
3745          // ill-formed, but we allow it for sanity. Such members are treated as
3746          // non-constexpr.
3747          (*M)->setConstexpr(false);
3748          continue;
3749
3750        case TSK_Undeclared:
3751        case TSK_ExplicitSpecialization:
3752          RequireLiteralType((*M)->getLocation(), Context.getRecordType(Record),
3753                             PDiag(diag::err_constexpr_method_non_literal));
3754          break;
3755        }
3756
3757        // Only produce one error per class.
3758        break;
3759      }
3760    }
3761  }
3762
3763  // Declare inherited constructors. We do this eagerly here because:
3764  // - The standard requires an eager diagnostic for conflicting inherited
3765  //   constructors from different classes.
3766  // - The lazy declaration of the other implicit constructors is so as to not
3767  //   waste space and performance on classes that are not meant to be
3768  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3769  //   have inherited constructors.
3770  DeclareInheritedConstructors(Record);
3771
3772  if (!Record->isDependentType())
3773    CheckExplicitlyDefaultedMethods(Record);
3774}
3775
3776void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3777  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3778                                      ME = Record->method_end();
3779       MI != ME; ++MI) {
3780    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted()) {
3781      switch (getSpecialMember(*MI)) {
3782      case CXXDefaultConstructor:
3783        CheckExplicitlyDefaultedDefaultConstructor(
3784                                                  cast<CXXConstructorDecl>(*MI));
3785        break;
3786
3787      case CXXDestructor:
3788        CheckExplicitlyDefaultedDestructor(cast<CXXDestructorDecl>(*MI));
3789        break;
3790
3791      case CXXCopyConstructor:
3792        CheckExplicitlyDefaultedCopyConstructor(cast<CXXConstructorDecl>(*MI));
3793        break;
3794
3795      case CXXCopyAssignment:
3796        CheckExplicitlyDefaultedCopyAssignment(*MI);
3797        break;
3798
3799      case CXXMoveConstructor:
3800        CheckExplicitlyDefaultedMoveConstructor(cast<CXXConstructorDecl>(*MI));
3801        break;
3802
3803      case CXXMoveAssignment:
3804        CheckExplicitlyDefaultedMoveAssignment(*MI);
3805        break;
3806
3807      case CXXInvalid:
3808        llvm_unreachable("non-special member explicitly defaulted!");
3809      }
3810    }
3811  }
3812
3813}
3814
3815void Sema::CheckExplicitlyDefaultedDefaultConstructor(CXXConstructorDecl *CD) {
3816  assert(CD->isExplicitlyDefaulted() && CD->isDefaultConstructor());
3817
3818  // Whether this was the first-declared instance of the constructor.
3819  // This affects whether we implicitly add an exception spec (and, eventually,
3820  // constexpr). It is also ill-formed to explicitly default a constructor such
3821  // that it would be deleted. (C++0x [decl.fct.def.default])
3822  bool First = CD == CD->getCanonicalDecl();
3823
3824  bool HadError = false;
3825  if (CD->getNumParams() != 0) {
3826    Diag(CD->getLocation(), diag::err_defaulted_default_ctor_params)
3827      << CD->getSourceRange();
3828    HadError = true;
3829  }
3830
3831  ImplicitExceptionSpecification Spec
3832    = ComputeDefaultedDefaultCtorExceptionSpec(CD->getParent());
3833  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3834  if (EPI.ExceptionSpecType == EST_Delayed) {
3835    // Exception specification depends on some deferred part of the class. We'll
3836    // try again when the class's definition has been fully processed.
3837    return;
3838  }
3839  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3840                          *ExceptionType = Context.getFunctionType(
3841                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3842
3843  // C++11 [dcl.fct.def.default]p2:
3844  //   An explicitly-defaulted function may be declared constexpr only if it
3845  //   would have been implicitly declared as constexpr,
3846  if (CD->isConstexpr()) {
3847    if (!CD->getParent()->defaultedDefaultConstructorIsConstexpr()) {
3848      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3849        << CXXDefaultConstructor;
3850      HadError = true;
3851    }
3852  }
3853  //   and may have an explicit exception-specification only if it is compatible
3854  //   with the exception-specification on the implicit declaration.
3855  if (CtorType->hasExceptionSpec()) {
3856    if (CheckEquivalentExceptionSpec(
3857          PDiag(diag::err_incorrect_defaulted_exception_spec)
3858            << CXXDefaultConstructor,
3859          PDiag(),
3860          ExceptionType, SourceLocation(),
3861          CtorType, CD->getLocation())) {
3862      HadError = true;
3863    }
3864  }
3865
3866  //   If a function is explicitly defaulted on its first declaration,
3867  if (First) {
3868    //  -- it is implicitly considered to be constexpr if the implicit
3869    //     definition would be,
3870    CD->setConstexpr(CD->getParent()->defaultedDefaultConstructorIsConstexpr());
3871
3872    //  -- it is implicitly considered to have the same
3873    //     exception-specification as if it had been implicitly declared
3874    //
3875    // FIXME: a compatible, but different, explicit exception specification
3876    // will be silently overridden. We should issue a warning if this happens.
3877    EPI.ExtInfo = CtorType->getExtInfo();
3878  }
3879
3880  if (HadError) {
3881    CD->setInvalidDecl();
3882    return;
3883  }
3884
3885  if (ShouldDeleteSpecialMember(CD, CXXDefaultConstructor)) {
3886    if (First) {
3887      CD->setDeletedAsWritten();
3888    } else {
3889      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3890        << CXXDefaultConstructor;
3891      CD->setInvalidDecl();
3892    }
3893  }
3894}
3895
3896void Sema::CheckExplicitlyDefaultedCopyConstructor(CXXConstructorDecl *CD) {
3897  assert(CD->isExplicitlyDefaulted() && CD->isCopyConstructor());
3898
3899  // Whether this was the first-declared instance of the constructor.
3900  bool First = CD == CD->getCanonicalDecl();
3901
3902  bool HadError = false;
3903  if (CD->getNumParams() != 1) {
3904    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_params)
3905      << CD->getSourceRange();
3906    HadError = true;
3907  }
3908
3909  ImplicitExceptionSpecification Spec(Context);
3910  bool Const;
3911  llvm::tie(Spec, Const) =
3912    ComputeDefaultedCopyCtorExceptionSpecAndConst(CD->getParent());
3913
3914  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
3915  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
3916                          *ExceptionType = Context.getFunctionType(
3917                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
3918
3919  // Check for parameter type matching.
3920  // This is a copy ctor so we know it's a cv-qualified reference to T.
3921  QualType ArgType = CtorType->getArgType(0);
3922  if (ArgType->getPointeeType().isVolatileQualified()) {
3923    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_volatile_param);
3924    HadError = true;
3925  }
3926  if (ArgType->getPointeeType().isConstQualified() && !Const) {
3927    Diag(CD->getLocation(), diag::err_defaulted_copy_ctor_const_param);
3928    HadError = true;
3929  }
3930
3931  // C++11 [dcl.fct.def.default]p2:
3932  //   An explicitly-defaulted function may be declared constexpr only if it
3933  //   would have been implicitly declared as constexpr,
3934  if (CD->isConstexpr()) {
3935    if (!CD->getParent()->defaultedCopyConstructorIsConstexpr()) {
3936      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
3937        << CXXCopyConstructor;
3938      HadError = true;
3939    }
3940  }
3941  //   and may have an explicit exception-specification only if it is compatible
3942  //   with the exception-specification on the implicit declaration.
3943  if (CtorType->hasExceptionSpec()) {
3944    if (CheckEquivalentExceptionSpec(
3945          PDiag(diag::err_incorrect_defaulted_exception_spec)
3946            << CXXCopyConstructor,
3947          PDiag(),
3948          ExceptionType, SourceLocation(),
3949          CtorType, CD->getLocation())) {
3950      HadError = true;
3951    }
3952  }
3953
3954  //   If a function is explicitly defaulted on its first declaration,
3955  if (First) {
3956    //  -- it is implicitly considered to be constexpr if the implicit
3957    //     definition would be,
3958    CD->setConstexpr(CD->getParent()->defaultedCopyConstructorIsConstexpr());
3959
3960    //  -- it is implicitly considered to have the same
3961    //     exception-specification as if it had been implicitly declared, and
3962    //
3963    // FIXME: a compatible, but different, explicit exception specification
3964    // will be silently overridden. We should issue a warning if this happens.
3965    EPI.ExtInfo = CtorType->getExtInfo();
3966
3967    //  -- [...] it shall have the same parameter type as if it had been
3968    //     implicitly declared.
3969    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
3970  }
3971
3972  if (HadError) {
3973    CD->setInvalidDecl();
3974    return;
3975  }
3976
3977  if (ShouldDeleteSpecialMember(CD, CXXCopyConstructor)) {
3978    if (First) {
3979      CD->setDeletedAsWritten();
3980    } else {
3981      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
3982        << CXXCopyConstructor;
3983      CD->setInvalidDecl();
3984    }
3985  }
3986}
3987
3988void Sema::CheckExplicitlyDefaultedCopyAssignment(CXXMethodDecl *MD) {
3989  assert(MD->isExplicitlyDefaulted());
3990
3991  // Whether this was the first-declared instance of the operator
3992  bool First = MD == MD->getCanonicalDecl();
3993
3994  bool HadError = false;
3995  if (MD->getNumParams() != 1) {
3996    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_params)
3997      << MD->getSourceRange();
3998    HadError = true;
3999  }
4000
4001  QualType ReturnType =
4002    MD->getType()->getAs<FunctionType>()->getResultType();
4003  if (!ReturnType->isLValueReferenceType() ||
4004      !Context.hasSameType(
4005        Context.getCanonicalType(ReturnType->getPointeeType()),
4006        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4007    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_return_type);
4008    HadError = true;
4009  }
4010
4011  ImplicitExceptionSpecification Spec(Context);
4012  bool Const;
4013  llvm::tie(Spec, Const) =
4014    ComputeDefaultedCopyCtorExceptionSpecAndConst(MD->getParent());
4015
4016  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4017  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4018                          *ExceptionType = Context.getFunctionType(
4019                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4020
4021  QualType ArgType = OperType->getArgType(0);
4022  if (!ArgType->isLValueReferenceType()) {
4023    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4024    HadError = true;
4025  } else {
4026    if (ArgType->getPointeeType().isVolatileQualified()) {
4027      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_volatile_param);
4028      HadError = true;
4029    }
4030    if (ArgType->getPointeeType().isConstQualified() && !Const) {
4031      Diag(MD->getLocation(), diag::err_defaulted_copy_assign_const_param);
4032      HadError = true;
4033    }
4034  }
4035
4036  if (OperType->getTypeQuals()) {
4037    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_quals);
4038    HadError = true;
4039  }
4040
4041  if (OperType->hasExceptionSpec()) {
4042    if (CheckEquivalentExceptionSpec(
4043          PDiag(diag::err_incorrect_defaulted_exception_spec)
4044            << CXXCopyAssignment,
4045          PDiag(),
4046          ExceptionType, SourceLocation(),
4047          OperType, MD->getLocation())) {
4048      HadError = true;
4049    }
4050  }
4051  if (First) {
4052    // We set the declaration to have the computed exception spec here.
4053    // We duplicate the one parameter type.
4054    EPI.RefQualifier = OperType->getRefQualifier();
4055    EPI.ExtInfo = OperType->getExtInfo();
4056    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4057  }
4058
4059  if (HadError) {
4060    MD->setInvalidDecl();
4061    return;
4062  }
4063
4064  if (ShouldDeleteCopyAssignmentOperator(MD)) {
4065    if (First) {
4066      MD->setDeletedAsWritten();
4067    } else {
4068      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4069        << CXXCopyAssignment;
4070      MD->setInvalidDecl();
4071    }
4072  }
4073}
4074
4075void Sema::CheckExplicitlyDefaultedMoveConstructor(CXXConstructorDecl *CD) {
4076  assert(CD->isExplicitlyDefaulted() && CD->isMoveConstructor());
4077
4078  // Whether this was the first-declared instance of the constructor.
4079  bool First = CD == CD->getCanonicalDecl();
4080
4081  bool HadError = false;
4082  if (CD->getNumParams() != 1) {
4083    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_params)
4084      << CD->getSourceRange();
4085    HadError = true;
4086  }
4087
4088  ImplicitExceptionSpecification Spec(
4089      ComputeDefaultedMoveCtorExceptionSpec(CD->getParent()));
4090
4091  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4092  const FunctionProtoType *CtorType = CD->getType()->getAs<FunctionProtoType>(),
4093                          *ExceptionType = Context.getFunctionType(
4094                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4095
4096  // Check for parameter type matching.
4097  // This is a move ctor so we know it's a cv-qualified rvalue reference to T.
4098  QualType ArgType = CtorType->getArgType(0);
4099  if (ArgType->getPointeeType().isVolatileQualified()) {
4100    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_volatile_param);
4101    HadError = true;
4102  }
4103  if (ArgType->getPointeeType().isConstQualified()) {
4104    Diag(CD->getLocation(), diag::err_defaulted_move_ctor_const_param);
4105    HadError = true;
4106  }
4107
4108  // C++11 [dcl.fct.def.default]p2:
4109  //   An explicitly-defaulted function may be declared constexpr only if it
4110  //   would have been implicitly declared as constexpr,
4111  if (CD->isConstexpr()) {
4112    if (!CD->getParent()->defaultedMoveConstructorIsConstexpr()) {
4113      Diag(CD->getLocStart(), diag::err_incorrect_defaulted_constexpr)
4114        << CXXMoveConstructor;
4115      HadError = true;
4116    }
4117  }
4118  //   and may have an explicit exception-specification only if it is compatible
4119  //   with the exception-specification on the implicit declaration.
4120  if (CtorType->hasExceptionSpec()) {
4121    if (CheckEquivalentExceptionSpec(
4122          PDiag(diag::err_incorrect_defaulted_exception_spec)
4123            << CXXMoveConstructor,
4124          PDiag(),
4125          ExceptionType, SourceLocation(),
4126          CtorType, CD->getLocation())) {
4127      HadError = true;
4128    }
4129  }
4130
4131  //   If a function is explicitly defaulted on its first declaration,
4132  if (First) {
4133    //  -- it is implicitly considered to be constexpr if the implicit
4134    //     definition would be,
4135    CD->setConstexpr(CD->getParent()->defaultedMoveConstructorIsConstexpr());
4136
4137    //  -- it is implicitly considered to have the same
4138    //     exception-specification as if it had been implicitly declared, and
4139    //
4140    // FIXME: a compatible, but different, explicit exception specification
4141    // will be silently overridden. We should issue a warning if this happens.
4142    EPI.ExtInfo = CtorType->getExtInfo();
4143
4144    //  -- [...] it shall have the same parameter type as if it had been
4145    //     implicitly declared.
4146    CD->setType(Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI));
4147  }
4148
4149  if (HadError) {
4150    CD->setInvalidDecl();
4151    return;
4152  }
4153
4154  if (ShouldDeleteSpecialMember(CD, CXXMoveConstructor)) {
4155    if (First) {
4156      CD->setDeletedAsWritten();
4157    } else {
4158      Diag(CD->getLocation(), diag::err_out_of_line_default_deletes)
4159        << CXXMoveConstructor;
4160      CD->setInvalidDecl();
4161    }
4162  }
4163}
4164
4165void Sema::CheckExplicitlyDefaultedMoveAssignment(CXXMethodDecl *MD) {
4166  assert(MD->isExplicitlyDefaulted());
4167
4168  // Whether this was the first-declared instance of the operator
4169  bool First = MD == MD->getCanonicalDecl();
4170
4171  bool HadError = false;
4172  if (MD->getNumParams() != 1) {
4173    Diag(MD->getLocation(), diag::err_defaulted_move_assign_params)
4174      << MD->getSourceRange();
4175    HadError = true;
4176  }
4177
4178  QualType ReturnType =
4179    MD->getType()->getAs<FunctionType>()->getResultType();
4180  if (!ReturnType->isLValueReferenceType() ||
4181      !Context.hasSameType(
4182        Context.getCanonicalType(ReturnType->getPointeeType()),
4183        Context.getCanonicalType(Context.getTypeDeclType(MD->getParent())))) {
4184    Diag(MD->getLocation(), diag::err_defaulted_move_assign_return_type);
4185    HadError = true;
4186  }
4187
4188  ImplicitExceptionSpecification Spec(
4189      ComputeDefaultedMoveCtorExceptionSpec(MD->getParent()));
4190
4191  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4192  const FunctionProtoType *OperType = MD->getType()->getAs<FunctionProtoType>(),
4193                          *ExceptionType = Context.getFunctionType(
4194                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4195
4196  QualType ArgType = OperType->getArgType(0);
4197  if (!ArgType->isRValueReferenceType()) {
4198    Diag(MD->getLocation(), diag::err_defaulted_move_assign_not_ref);
4199    HadError = true;
4200  } else {
4201    if (ArgType->getPointeeType().isVolatileQualified()) {
4202      Diag(MD->getLocation(), diag::err_defaulted_move_assign_volatile_param);
4203      HadError = true;
4204    }
4205    if (ArgType->getPointeeType().isConstQualified()) {
4206      Diag(MD->getLocation(), diag::err_defaulted_move_assign_const_param);
4207      HadError = true;
4208    }
4209  }
4210
4211  if (OperType->getTypeQuals()) {
4212    Diag(MD->getLocation(), diag::err_defaulted_move_assign_quals);
4213    HadError = true;
4214  }
4215
4216  if (OperType->hasExceptionSpec()) {
4217    if (CheckEquivalentExceptionSpec(
4218          PDiag(diag::err_incorrect_defaulted_exception_spec)
4219            << CXXMoveAssignment,
4220          PDiag(),
4221          ExceptionType, SourceLocation(),
4222          OperType, MD->getLocation())) {
4223      HadError = true;
4224    }
4225  }
4226  if (First) {
4227    // We set the declaration to have the computed exception spec here.
4228    // We duplicate the one parameter type.
4229    EPI.RefQualifier = OperType->getRefQualifier();
4230    EPI.ExtInfo = OperType->getExtInfo();
4231    MD->setType(Context.getFunctionType(ReturnType, &ArgType, 1, EPI));
4232  }
4233
4234  if (HadError) {
4235    MD->setInvalidDecl();
4236    return;
4237  }
4238
4239  if (ShouldDeleteMoveAssignmentOperator(MD)) {
4240    if (First) {
4241      MD->setDeletedAsWritten();
4242    } else {
4243      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes)
4244        << CXXMoveAssignment;
4245      MD->setInvalidDecl();
4246    }
4247  }
4248}
4249
4250void Sema::CheckExplicitlyDefaultedDestructor(CXXDestructorDecl *DD) {
4251  assert(DD->isExplicitlyDefaulted());
4252
4253  // Whether this was the first-declared instance of the destructor.
4254  bool First = DD == DD->getCanonicalDecl();
4255
4256  ImplicitExceptionSpecification Spec
4257    = ComputeDefaultedDtorExceptionSpec(DD->getParent());
4258  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
4259  const FunctionProtoType *DtorType = DD->getType()->getAs<FunctionProtoType>(),
4260                          *ExceptionType = Context.getFunctionType(
4261                         Context.VoidTy, 0, 0, EPI)->getAs<FunctionProtoType>();
4262
4263  if (DtorType->hasExceptionSpec()) {
4264    if (CheckEquivalentExceptionSpec(
4265          PDiag(diag::err_incorrect_defaulted_exception_spec)
4266            << CXXDestructor,
4267          PDiag(),
4268          ExceptionType, SourceLocation(),
4269          DtorType, DD->getLocation())) {
4270      DD->setInvalidDecl();
4271      return;
4272    }
4273  }
4274  if (First) {
4275    // We set the declaration to have the computed exception spec here.
4276    // There are no parameters.
4277    EPI.ExtInfo = DtorType->getExtInfo();
4278    DD->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
4279  }
4280
4281  if (ShouldDeleteDestructor(DD)) {
4282    if (First) {
4283      DD->setDeletedAsWritten();
4284    } else {
4285      Diag(DD->getLocation(), diag::err_out_of_line_default_deletes)
4286        << CXXDestructor;
4287      DD->setInvalidDecl();
4288    }
4289  }
4290}
4291
4292/// This function implements the following C++0x paragraphs:
4293///  - [class.ctor]/5
4294///  - [class.copy]/11
4295bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM) {
4296  assert(!MD->isInvalidDecl());
4297  CXXRecordDecl *RD = MD->getParent();
4298  assert(!RD->isDependentType() && "do deletion after instantiation");
4299  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4300    return false;
4301
4302  bool IsUnion = RD->isUnion();
4303  bool IsConstructor = false;
4304  bool IsAssignment = false;
4305  bool IsMove = false;
4306
4307  bool ConstArg = false;
4308
4309  switch (CSM) {
4310  case CXXDefaultConstructor:
4311    IsConstructor = true;
4312    break;
4313  case CXXCopyConstructor:
4314    IsConstructor = true;
4315    ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4316    break;
4317  case CXXMoveConstructor:
4318    IsConstructor = true;
4319    IsMove = true;
4320    break;
4321  default:
4322    llvm_unreachable("function only currently implemented for default ctors");
4323  }
4324
4325  SourceLocation Loc = MD->getLocation();
4326
4327  // Do access control from the special member function
4328  ContextRAII MethodContext(*this, MD);
4329
4330  bool AllConst = true;
4331
4332  // We do this because we should never actually use an anonymous
4333  // union's constructor.
4334  if (IsUnion && RD->isAnonymousStructOrUnion())
4335    return false;
4336
4337  // FIXME: We should put some diagnostic logic right into this function.
4338
4339  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4340                                          BE = RD->bases_end();
4341       BI != BE; ++BI) {
4342    // We'll handle this one later
4343    if (BI->isVirtual())
4344      continue;
4345
4346    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4347    assert(BaseDecl && "base isn't a CXXRecordDecl");
4348
4349    // Unless we have an assignment operator, the base's destructor must
4350    // be accessible and not deleted.
4351    if (!IsAssignment) {
4352      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4353      if (BaseDtor->isDeleted())
4354        return true;
4355      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4356          AR_accessible)
4357        return true;
4358    }
4359
4360    // Finding the corresponding member in the base should lead to a
4361    // unique, accessible, non-deleted function. If we are doing
4362    // a destructor, we have already checked this case.
4363    if (CSM != CXXDestructor) {
4364      SpecialMemberOverloadResult *SMOR =
4365        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4366                            false);
4367      if (!SMOR->hasSuccess())
4368        return true;
4369      CXXMethodDecl *BaseMember = SMOR->getMethod();
4370      if (IsConstructor) {
4371        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4372        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4373                                   PDiag()) != AR_accessible)
4374          return true;
4375
4376        // For a move operation, the corresponding operation must actually
4377        // be a move operation (and not a copy selected by overload
4378        // resolution) unless we are working on a trivially copyable class.
4379        if (IsMove && !BaseCtor->isMoveConstructor() &&
4380            !BaseDecl->isTriviallyCopyable())
4381          return true;
4382      }
4383    }
4384  }
4385
4386  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4387                                          BE = RD->vbases_end();
4388       BI != BE; ++BI) {
4389    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4390    assert(BaseDecl && "base isn't a CXXRecordDecl");
4391
4392    // Unless we have an assignment operator, the base's destructor must
4393    // be accessible and not deleted.
4394    if (!IsAssignment) {
4395      CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4396      if (BaseDtor->isDeleted())
4397        return true;
4398      if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4399          AR_accessible)
4400        return true;
4401    }
4402
4403    // Finding the corresponding member in the base should lead to a
4404    // unique, accessible, non-deleted function.
4405    if (CSM != CXXDestructor) {
4406      SpecialMemberOverloadResult *SMOR =
4407        LookupSpecialMember(BaseDecl, CSM, ConstArg, false, false, false,
4408                            false);
4409      if (!SMOR->hasSuccess())
4410        return true;
4411      CXXMethodDecl *BaseMember = SMOR->getMethod();
4412      if (IsConstructor) {
4413        CXXConstructorDecl *BaseCtor = cast<CXXConstructorDecl>(BaseMember);
4414        if (CheckConstructorAccess(Loc, BaseCtor, BaseCtor->getAccess(),
4415                                   PDiag()) != AR_accessible)
4416          return true;
4417
4418        // For a move operation, the corresponding operation must actually
4419        // be a move operation (and not a copy selected by overload
4420        // resolution) unless we are working on a trivially copyable class.
4421        if (IsMove && !BaseCtor->isMoveConstructor() &&
4422            !BaseDecl->isTriviallyCopyable())
4423          return true;
4424      }
4425    }
4426  }
4427
4428  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4429                                     FE = RD->field_end();
4430       FI != FE; ++FI) {
4431    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
4432      continue;
4433
4434    QualType FieldType = Context.getBaseElementType(FI->getType());
4435    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4436
4437    // For a default constructor, all references must be initialized in-class
4438    // and, if a union, it must have a non-const member.
4439    if (CSM == CXXDefaultConstructor) {
4440      if (FieldType->isReferenceType() && !FI->hasInClassInitializer())
4441        return true;
4442
4443      if (IsUnion && !FieldType.isConstQualified())
4444        AllConst = false;
4445    // For a copy constructor, data members must not be of rvalue reference
4446    // type.
4447    } else if (CSM == CXXCopyConstructor) {
4448      if (FieldType->isRValueReferenceType())
4449        return true;
4450    }
4451
4452    if (FieldRecord) {
4453      // For a default constructor, a const member must have a user-provided
4454      // default constructor or else be explicitly initialized.
4455      if (CSM == CXXDefaultConstructor && FieldType.isConstQualified() &&
4456          !FI->hasInClassInitializer() &&
4457          !FieldRecord->hasUserProvidedDefaultConstructor())
4458        return true;
4459
4460      // Some additional restrictions exist on the variant members.
4461      if (!IsUnion && FieldRecord->isUnion() &&
4462          FieldRecord->isAnonymousStructOrUnion()) {
4463        // We're okay to reuse AllConst here since we only care about the
4464        // value otherwise if we're in a union.
4465        AllConst = true;
4466
4467        for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4468                                           UE = FieldRecord->field_end();
4469             UI != UE; ++UI) {
4470          QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4471          CXXRecordDecl *UnionFieldRecord =
4472            UnionFieldType->getAsCXXRecordDecl();
4473
4474          if (!UnionFieldType.isConstQualified())
4475            AllConst = false;
4476
4477          if (UnionFieldRecord) {
4478            // FIXME: Checking for accessibility and validity of this
4479            //        destructor is technically going beyond the
4480            //        standard, but this is believed to be a defect.
4481            if (!IsAssignment) {
4482              CXXDestructorDecl *FieldDtor = LookupDestructor(UnionFieldRecord);
4483              if (FieldDtor->isDeleted())
4484                return true;
4485              if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4486                  AR_accessible)
4487                return true;
4488              if (!FieldDtor->isTrivial())
4489                return true;
4490            }
4491
4492            if (CSM != CXXDestructor) {
4493              SpecialMemberOverloadResult *SMOR =
4494                LookupSpecialMember(UnionFieldRecord, CSM, ConstArg, false,
4495                                    false, false, false);
4496              // FIXME: Checking for accessibility and validity of this
4497              //        corresponding member is technically going beyond the
4498              //        standard, but this is believed to be a defect.
4499              if (!SMOR->hasSuccess())
4500                return true;
4501
4502              CXXMethodDecl *FieldMember = SMOR->getMethod();
4503              // A member of a union must have a trivial corresponding
4504              // constructor.
4505              if (!FieldMember->isTrivial())
4506                return true;
4507
4508              if (IsConstructor) {
4509                CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4510                if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4511                                           PDiag()) != AR_accessible)
4512                return true;
4513              }
4514            }
4515          }
4516        }
4517
4518        // At least one member in each anonymous union must be non-const
4519        if (CSM == CXXDefaultConstructor && AllConst)
4520          return true;
4521
4522        // Don't try to initialize the anonymous union
4523        // This is technically non-conformant, but sanity demands it.
4524        continue;
4525      }
4526
4527      // Unless we're doing assignment, the field's destructor must be
4528      // accessible and not deleted.
4529      if (!IsAssignment) {
4530        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4531        if (FieldDtor->isDeleted())
4532          return true;
4533        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4534            AR_accessible)
4535          return true;
4536      }
4537
4538      // Check that the corresponding member of the field is accessible,
4539      // unique, and non-deleted. We don't do this if it has an explicit
4540      // initialization when default-constructing.
4541      if (CSM != CXXDestructor &&
4542          (CSM != CXXDefaultConstructor || !FI->hasInClassInitializer())) {
4543        SpecialMemberOverloadResult *SMOR =
4544          LookupSpecialMember(FieldRecord, CSM, ConstArg, false, false, false,
4545                              false);
4546        if (!SMOR->hasSuccess())
4547          return true;
4548
4549        CXXMethodDecl *FieldMember = SMOR->getMethod();
4550        if (IsConstructor) {
4551          CXXConstructorDecl *FieldCtor = cast<CXXConstructorDecl>(FieldMember);
4552          if (CheckConstructorAccess(Loc, FieldCtor, FieldCtor->getAccess(),
4553                                     PDiag()) != AR_accessible)
4554          return true;
4555
4556          // For a move operation, the corresponding operation must actually
4557          // be a move operation (and not a copy selected by overload
4558          // resolution) unless we are working on a trivially copyable class.
4559          if (IsMove && !FieldCtor->isMoveConstructor() &&
4560              !FieldRecord->isTriviallyCopyable())
4561            return true;
4562        }
4563
4564        // We need the corresponding member of a union to be trivial so that
4565        // we can safely copy them all simultaneously.
4566        // FIXME: Note that performing the check here (where we rely on the lack
4567        // of an in-class initializer) is technically ill-formed. However, this
4568        // seems most obviously to be a bug in the standard.
4569        if (IsUnion && !FieldMember->isTrivial())
4570          return true;
4571      }
4572    } else if (CSM == CXXDefaultConstructor && !IsUnion &&
4573               FieldType.isConstQualified() && !FI->hasInClassInitializer()) {
4574      // We can't initialize a const member of non-class type to any value.
4575      return true;
4576    }
4577  }
4578
4579  // We can't have all const members in a union when default-constructing,
4580  // or else they're all nonsensical garbage values that can't be changed.
4581  if (CSM == CXXDefaultConstructor && IsUnion && AllConst)
4582    return true;
4583
4584  return false;
4585}
4586
4587bool Sema::ShouldDeleteCopyAssignmentOperator(CXXMethodDecl *MD) {
4588  CXXRecordDecl *RD = MD->getParent();
4589  assert(!RD->isDependentType() && "do deletion after instantiation");
4590  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4591    return false;
4592
4593  SourceLocation Loc = MD->getLocation();
4594
4595  // Do access control from the constructor
4596  ContextRAII MethodContext(*this, MD);
4597
4598  bool Union = RD->isUnion();
4599
4600  unsigned ArgQuals =
4601    MD->getParamDecl(0)->getType()->getPointeeType().isConstQualified() ?
4602      Qualifiers::Const : 0;
4603
4604  // We do this because we should never actually use an anonymous
4605  // union's constructor.
4606  if (Union && RD->isAnonymousStructOrUnion())
4607    return false;
4608
4609  // FIXME: We should put some diagnostic logic right into this function.
4610
4611  // C++0x [class.copy]/20
4612  //    A defaulted [copy] assignment operator for class X is defined as deleted
4613  //    if X has:
4614
4615  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4616                                          BE = RD->bases_end();
4617       BI != BE; ++BI) {
4618    // We'll handle this one later
4619    if (BI->isVirtual())
4620      continue;
4621
4622    QualType BaseType = BI->getType();
4623    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4624    assert(BaseDecl && "base isn't a CXXRecordDecl");
4625
4626    // -- a [direct base class] B that cannot be [copied] because overload
4627    //    resolution, as applied to B's [copy] assignment operator, results in
4628    //    an ambiguity or a function that is deleted or inaccessible from the
4629    //    assignment operator
4630    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4631                                                      0);
4632    if (!CopyOper || CopyOper->isDeleted())
4633      return true;
4634    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4635      return true;
4636  }
4637
4638  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4639                                          BE = RD->vbases_end();
4640       BI != BE; ++BI) {
4641    QualType BaseType = BI->getType();
4642    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4643    assert(BaseDecl && "base isn't a CXXRecordDecl");
4644
4645    // -- a [virtual base class] B that cannot be [copied] because overload
4646    //    resolution, as applied to B's [copy] assignment operator, results in
4647    //    an ambiguity or a function that is deleted or inaccessible from the
4648    //    assignment operator
4649    CXXMethodDecl *CopyOper = LookupCopyingAssignment(BaseDecl, ArgQuals, false,
4650                                                      0);
4651    if (!CopyOper || CopyOper->isDeleted())
4652      return true;
4653    if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4654      return true;
4655  }
4656
4657  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4658                                     FE = RD->field_end();
4659       FI != FE; ++FI) {
4660    if (FI->isUnnamedBitfield())
4661      continue;
4662
4663    QualType FieldType = Context.getBaseElementType(FI->getType());
4664
4665    // -- a non-static data member of reference type
4666    if (FieldType->isReferenceType())
4667      return true;
4668
4669    // -- a non-static data member of const non-class type (or array thereof)
4670    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4671      return true;
4672
4673    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4674
4675    if (FieldRecord) {
4676      // This is an anonymous union
4677      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4678        // Anonymous unions inside unions do not variant members create
4679        if (!Union) {
4680          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4681                                             UE = FieldRecord->field_end();
4682               UI != UE; ++UI) {
4683            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4684            CXXRecordDecl *UnionFieldRecord =
4685              UnionFieldType->getAsCXXRecordDecl();
4686
4687            // -- a variant member with a non-trivial [copy] assignment operator
4688            //    and X is a union-like class
4689            if (UnionFieldRecord &&
4690                !UnionFieldRecord->hasTrivialCopyAssignment())
4691              return true;
4692          }
4693        }
4694
4695        // Don't try to initalize an anonymous union
4696        continue;
4697      // -- a variant member with a non-trivial [copy] assignment operator
4698      //    and X is a union-like class
4699      } else if (Union && !FieldRecord->hasTrivialCopyAssignment()) {
4700          return true;
4701      }
4702
4703      CXXMethodDecl *CopyOper = LookupCopyingAssignment(FieldRecord, ArgQuals,
4704                                                        false, 0);
4705      if (!CopyOper || CopyOper->isDeleted())
4706        return true;
4707      if (CheckDirectMemberAccess(Loc, CopyOper, PDiag()) != AR_accessible)
4708        return true;
4709    }
4710  }
4711
4712  return false;
4713}
4714
4715bool Sema::ShouldDeleteMoveAssignmentOperator(CXXMethodDecl *MD) {
4716  CXXRecordDecl *RD = MD->getParent();
4717  assert(!RD->isDependentType() && "do deletion after instantiation");
4718  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4719    return false;
4720
4721  SourceLocation Loc = MD->getLocation();
4722
4723  // Do access control from the constructor
4724  ContextRAII MethodContext(*this, MD);
4725
4726  bool Union = RD->isUnion();
4727
4728  // We do this because we should never actually use an anonymous
4729  // union's constructor.
4730  if (Union && RD->isAnonymousStructOrUnion())
4731    return false;
4732
4733  // C++0x [class.copy]/20
4734  //    A defaulted [move] assignment operator for class X is defined as deleted
4735  //    if X has:
4736
4737  //    -- for the move constructor, [...] any direct or indirect virtual base
4738  //       class.
4739  if (RD->getNumVBases() != 0)
4740    return true;
4741
4742  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4743                                          BE = RD->bases_end();
4744       BI != BE; ++BI) {
4745
4746    QualType BaseType = BI->getType();
4747    CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl();
4748    assert(BaseDecl && "base isn't a CXXRecordDecl");
4749
4750    // -- a [direct base class] B that cannot be [moved] because overload
4751    //    resolution, as applied to B's [move] assignment operator, results in
4752    //    an ambiguity or a function that is deleted or inaccessible from the
4753    //    assignment operator
4754    CXXMethodDecl *MoveOper = LookupMovingAssignment(BaseDecl, false, 0);
4755    if (!MoveOper || MoveOper->isDeleted())
4756      return true;
4757    if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4758      return true;
4759
4760    // -- for the move assignment operator, a [direct base class] with a type
4761    //    that does not have a move assignment operator and is not trivially
4762    //    copyable.
4763    if (!MoveOper->isMoveAssignmentOperator() &&
4764        !BaseDecl->isTriviallyCopyable())
4765      return true;
4766  }
4767
4768  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4769                                     FE = RD->field_end();
4770       FI != FE; ++FI) {
4771    if (FI->isUnnamedBitfield())
4772      continue;
4773
4774    QualType FieldType = Context.getBaseElementType(FI->getType());
4775
4776    // -- a non-static data member of reference type
4777    if (FieldType->isReferenceType())
4778      return true;
4779
4780    // -- a non-static data member of const non-class type (or array thereof)
4781    if (FieldType.isConstQualified() && !FieldType->isRecordType())
4782      return true;
4783
4784    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4785
4786    if (FieldRecord) {
4787      // This is an anonymous union
4788      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4789        // Anonymous unions inside unions do not variant members create
4790        if (!Union) {
4791          for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4792                                             UE = FieldRecord->field_end();
4793               UI != UE; ++UI) {
4794            QualType UnionFieldType = Context.getBaseElementType(UI->getType());
4795            CXXRecordDecl *UnionFieldRecord =
4796              UnionFieldType->getAsCXXRecordDecl();
4797
4798            // -- a variant member with a non-trivial [move] assignment operator
4799            //    and X is a union-like class
4800            if (UnionFieldRecord &&
4801                !UnionFieldRecord->hasTrivialMoveAssignment())
4802              return true;
4803          }
4804        }
4805
4806        // Don't try to initalize an anonymous union
4807        continue;
4808      // -- a variant member with a non-trivial [move] assignment operator
4809      //    and X is a union-like class
4810      } else if (Union && !FieldRecord->hasTrivialMoveAssignment()) {
4811          return true;
4812      }
4813
4814      CXXMethodDecl *MoveOper = LookupMovingAssignment(FieldRecord, false, 0);
4815      if (!MoveOper || MoveOper->isDeleted())
4816        return true;
4817      if (CheckDirectMemberAccess(Loc, MoveOper, PDiag()) != AR_accessible)
4818        return true;
4819
4820      // -- for the move assignment operator, a [non-static data member] with a
4821      //    type that does not have a move assignment operator and is not
4822      //    trivially copyable.
4823      if (!MoveOper->isMoveAssignmentOperator() &&
4824          !FieldRecord->isTriviallyCopyable())
4825        return true;
4826    }
4827  }
4828
4829  return false;
4830}
4831
4832bool Sema::ShouldDeleteDestructor(CXXDestructorDecl *DD) {
4833  CXXRecordDecl *RD = DD->getParent();
4834  assert(!RD->isDependentType() && "do deletion after instantiation");
4835  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4836    return false;
4837
4838  SourceLocation Loc = DD->getLocation();
4839
4840  // Do access control from the destructor
4841  ContextRAII CtorContext(*this, DD);
4842
4843  bool Union = RD->isUnion();
4844
4845  // We do this because we should never actually use an anonymous
4846  // union's destructor.
4847  if (Union && RD->isAnonymousStructOrUnion())
4848    return false;
4849
4850  // C++0x [class.dtor]p5
4851  //    A defaulted destructor for a class X is defined as deleted if:
4852  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4853                                          BE = RD->bases_end();
4854       BI != BE; ++BI) {
4855    // We'll handle this one later
4856    if (BI->isVirtual())
4857      continue;
4858
4859    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4860    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4861    assert(BaseDtor && "base has no destructor");
4862
4863    // -- any direct or virtual base class has a deleted destructor or
4864    //    a destructor that is inaccessible from the defaulted destructor
4865    if (BaseDtor->isDeleted())
4866      return true;
4867    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4868        AR_accessible)
4869      return true;
4870  }
4871
4872  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4873                                          BE = RD->vbases_end();
4874       BI != BE; ++BI) {
4875    CXXRecordDecl *BaseDecl = BI->getType()->getAsCXXRecordDecl();
4876    CXXDestructorDecl *BaseDtor = LookupDestructor(BaseDecl);
4877    assert(BaseDtor && "base has no destructor");
4878
4879    // -- any direct or virtual base class has a deleted destructor or
4880    //    a destructor that is inaccessible from the defaulted destructor
4881    if (BaseDtor->isDeleted())
4882      return true;
4883    if (CheckDestructorAccess(Loc, BaseDtor, PDiag()) !=
4884        AR_accessible)
4885      return true;
4886  }
4887
4888  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4889                                     FE = RD->field_end();
4890       FI != FE; ++FI) {
4891    QualType FieldType = Context.getBaseElementType(FI->getType());
4892    CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4893    if (FieldRecord) {
4894      if (FieldRecord->isUnion() && FieldRecord->isAnonymousStructOrUnion()) {
4895         for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4896                                            UE = FieldRecord->field_end();
4897              UI != UE; ++UI) {
4898           QualType UnionFieldType = Context.getBaseElementType(FI->getType());
4899           CXXRecordDecl *UnionFieldRecord =
4900             UnionFieldType->getAsCXXRecordDecl();
4901
4902           // -- X is a union-like class that has a variant member with a non-
4903           //    trivial destructor.
4904           if (UnionFieldRecord && !UnionFieldRecord->hasTrivialDestructor())
4905             return true;
4906         }
4907      // Technically we are supposed to do this next check unconditionally.
4908      // But that makes absolutely no sense.
4909      } else {
4910        CXXDestructorDecl *FieldDtor = LookupDestructor(FieldRecord);
4911
4912        // -- any of the non-static data members has class type M (or array
4913        //    thereof) and M has a deleted destructor or a destructor that is
4914        //    inaccessible from the defaulted destructor
4915        if (FieldDtor->isDeleted())
4916          return true;
4917        if (CheckDestructorAccess(Loc, FieldDtor, PDiag()) !=
4918          AR_accessible)
4919        return true;
4920
4921        // -- X is a union-like class that has a variant member with a non-
4922        //    trivial destructor.
4923        if (Union && !FieldDtor->isTrivial())
4924          return true;
4925      }
4926    }
4927  }
4928
4929  if (DD->isVirtual()) {
4930    FunctionDecl *OperatorDelete = 0;
4931    DeclarationName Name =
4932      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4933    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete,
4934          false))
4935      return true;
4936  }
4937
4938
4939  return false;
4940}
4941
4942/// \brief Data used with FindHiddenVirtualMethod
4943namespace {
4944  struct FindHiddenVirtualMethodData {
4945    Sema *S;
4946    CXXMethodDecl *Method;
4947    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4948    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4949  };
4950}
4951
4952/// \brief Member lookup function that determines whether a given C++
4953/// method overloads virtual methods in a base class without overriding any,
4954/// to be used with CXXRecordDecl::lookupInBases().
4955static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4956                                    CXXBasePath &Path,
4957                                    void *UserData) {
4958  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4959
4960  FindHiddenVirtualMethodData &Data
4961    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4962
4963  DeclarationName Name = Data.Method->getDeclName();
4964  assert(Name.getNameKind() == DeclarationName::Identifier);
4965
4966  bool foundSameNameMethod = false;
4967  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4968  for (Path.Decls = BaseRecord->lookup(Name);
4969       Path.Decls.first != Path.Decls.second;
4970       ++Path.Decls.first) {
4971    NamedDecl *D = *Path.Decls.first;
4972    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4973      MD = MD->getCanonicalDecl();
4974      foundSameNameMethod = true;
4975      // Interested only in hidden virtual methods.
4976      if (!MD->isVirtual())
4977        continue;
4978      // If the method we are checking overrides a method from its base
4979      // don't warn about the other overloaded methods.
4980      if (!Data.S->IsOverload(Data.Method, MD, false))
4981        return true;
4982      // Collect the overload only if its hidden.
4983      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4984        overloadedMethods.push_back(MD);
4985    }
4986  }
4987
4988  if (foundSameNameMethod)
4989    Data.OverloadedMethods.append(overloadedMethods.begin(),
4990                                   overloadedMethods.end());
4991  return foundSameNameMethod;
4992}
4993
4994/// \brief See if a method overloads virtual methods in a base class without
4995/// overriding any.
4996void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4997  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4998                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4999    return;
5000  if (MD->getDeclName().getNameKind() != DeclarationName::Identifier)
5001    return;
5002
5003  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5004                     /*bool RecordPaths=*/false,
5005                     /*bool DetectVirtual=*/false);
5006  FindHiddenVirtualMethodData Data;
5007  Data.Method = MD;
5008  Data.S = this;
5009
5010  // Keep the base methods that were overriden or introduced in the subclass
5011  // by 'using' in a set. A base method not in this set is hidden.
5012  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
5013       res.first != res.second; ++res.first) {
5014    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
5015      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5016                                          E = MD->end_overridden_methods();
5017           I != E; ++I)
5018        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
5019    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
5020      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
5021        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
5022  }
5023
5024  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5025      !Data.OverloadedMethods.empty()) {
5026    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5027      << MD << (Data.OverloadedMethods.size() > 1);
5028
5029    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5030      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5031      Diag(overloadedMD->getLocation(),
5032           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5033    }
5034  }
5035}
5036
5037void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5038                                             Decl *TagDecl,
5039                                             SourceLocation LBrac,
5040                                             SourceLocation RBrac,
5041                                             AttributeList *AttrList) {
5042  if (!TagDecl)
5043    return;
5044
5045  AdjustDeclIfTemplate(TagDecl);
5046
5047  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5048              // strict aliasing violation!
5049              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5050              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5051
5052  CheckCompletedCXXClass(
5053                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5054}
5055
5056/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5057/// special functions, such as the default constructor, copy
5058/// constructor, or destructor, to the given C++ class (C++
5059/// [special]p1).  This routine can only be executed just before the
5060/// definition of the class is complete.
5061void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5062  if (!ClassDecl->hasUserDeclaredConstructor())
5063    ++ASTContext::NumImplicitDefaultConstructors;
5064
5065  if (!ClassDecl->hasUserDeclaredCopyConstructor())
5066    ++ASTContext::NumImplicitCopyConstructors;
5067
5068  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
5069    ++ASTContext::NumImplicitMoveConstructors;
5070
5071  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5072    ++ASTContext::NumImplicitCopyAssignmentOperators;
5073
5074    // If we have a dynamic class, then the copy assignment operator may be
5075    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5076    // it shows up in the right place in the vtable and that we diagnose
5077    // problems with the implicit exception specification.
5078    if (ClassDecl->isDynamicClass())
5079      DeclareImplicitCopyAssignment(ClassDecl);
5080  }
5081
5082  if (getLangOptions().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()){
5083    ++ASTContext::NumImplicitMoveAssignmentOperators;
5084
5085    // Likewise for the move assignment operator.
5086    if (ClassDecl->isDynamicClass())
5087      DeclareImplicitMoveAssignment(ClassDecl);
5088  }
5089
5090  if (!ClassDecl->hasUserDeclaredDestructor()) {
5091    ++ASTContext::NumImplicitDestructors;
5092
5093    // If we have a dynamic class, then the destructor may be virtual, so we
5094    // have to declare the destructor immediately. This ensures that, e.g., it
5095    // shows up in the right place in the vtable and that we diagnose problems
5096    // with the implicit exception specification.
5097    if (ClassDecl->isDynamicClass())
5098      DeclareImplicitDestructor(ClassDecl);
5099  }
5100}
5101
5102void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5103  if (!D)
5104    return;
5105
5106  int NumParamList = D->getNumTemplateParameterLists();
5107  for (int i = 0; i < NumParamList; i++) {
5108    TemplateParameterList* Params = D->getTemplateParameterList(i);
5109    for (TemplateParameterList::iterator Param = Params->begin(),
5110                                      ParamEnd = Params->end();
5111          Param != ParamEnd; ++Param) {
5112      NamedDecl *Named = cast<NamedDecl>(*Param);
5113      if (Named->getDeclName()) {
5114        S->AddDecl(Named);
5115        IdResolver.AddDecl(Named);
5116      }
5117    }
5118  }
5119}
5120
5121void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5122  if (!D)
5123    return;
5124
5125  TemplateParameterList *Params = 0;
5126  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5127    Params = Template->getTemplateParameters();
5128  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5129           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5130    Params = PartialSpec->getTemplateParameters();
5131  else
5132    return;
5133
5134  for (TemplateParameterList::iterator Param = Params->begin(),
5135                                    ParamEnd = Params->end();
5136       Param != ParamEnd; ++Param) {
5137    NamedDecl *Named = cast<NamedDecl>(*Param);
5138    if (Named->getDeclName()) {
5139      S->AddDecl(Named);
5140      IdResolver.AddDecl(Named);
5141    }
5142  }
5143}
5144
5145void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5146  if (!RecordD) return;
5147  AdjustDeclIfTemplate(RecordD);
5148  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5149  PushDeclContext(S, Record);
5150}
5151
5152void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5153  if (!RecordD) return;
5154  PopDeclContext();
5155}
5156
5157/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5158/// parsing a top-level (non-nested) C++ class, and we are now
5159/// parsing those parts of the given Method declaration that could
5160/// not be parsed earlier (C++ [class.mem]p2), such as default
5161/// arguments. This action should enter the scope of the given
5162/// Method declaration as if we had just parsed the qualified method
5163/// name. However, it should not bring the parameters into scope;
5164/// that will be performed by ActOnDelayedCXXMethodParameter.
5165void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5166}
5167
5168/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5169/// C++ method declaration. We're (re-)introducing the given
5170/// function parameter into scope for use in parsing later parts of
5171/// the method declaration. For example, we could see an
5172/// ActOnParamDefaultArgument event for this parameter.
5173void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5174  if (!ParamD)
5175    return;
5176
5177  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5178
5179  // If this parameter has an unparsed default argument, clear it out
5180  // to make way for the parsed default argument.
5181  if (Param->hasUnparsedDefaultArg())
5182    Param->setDefaultArg(0);
5183
5184  S->AddDecl(Param);
5185  if (Param->getDeclName())
5186    IdResolver.AddDecl(Param);
5187}
5188
5189/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5190/// processing the delayed method declaration for Method. The method
5191/// declaration is now considered finished. There may be a separate
5192/// ActOnStartOfFunctionDef action later (not necessarily
5193/// immediately!) for this method, if it was also defined inside the
5194/// class body.
5195void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5196  if (!MethodD)
5197    return;
5198
5199  AdjustDeclIfTemplate(MethodD);
5200
5201  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5202
5203  // Now that we have our default arguments, check the constructor
5204  // again. It could produce additional diagnostics or affect whether
5205  // the class has implicitly-declared destructors, among other
5206  // things.
5207  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5208    CheckConstructor(Constructor);
5209
5210  // Check the default arguments, which we may have added.
5211  if (!Method->isInvalidDecl())
5212    CheckCXXDefaultArguments(Method);
5213}
5214
5215/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5216/// the well-formedness of the constructor declarator @p D with type @p
5217/// R. If there are any errors in the declarator, this routine will
5218/// emit diagnostics and set the invalid bit to true.  In any case, the type
5219/// will be updated to reflect a well-formed type for the constructor and
5220/// returned.
5221QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5222                                          StorageClass &SC) {
5223  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5224
5225  // C++ [class.ctor]p3:
5226  //   A constructor shall not be virtual (10.3) or static (9.4). A
5227  //   constructor can be invoked for a const, volatile or const
5228  //   volatile object. A constructor shall not be declared const,
5229  //   volatile, or const volatile (9.3.2).
5230  if (isVirtual) {
5231    if (!D.isInvalidType())
5232      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5233        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5234        << SourceRange(D.getIdentifierLoc());
5235    D.setInvalidType();
5236  }
5237  if (SC == SC_Static) {
5238    if (!D.isInvalidType())
5239      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5240        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5241        << SourceRange(D.getIdentifierLoc());
5242    D.setInvalidType();
5243    SC = SC_None;
5244  }
5245
5246  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5247  if (FTI.TypeQuals != 0) {
5248    if (FTI.TypeQuals & Qualifiers::Const)
5249      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5250        << "const" << SourceRange(D.getIdentifierLoc());
5251    if (FTI.TypeQuals & Qualifiers::Volatile)
5252      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5253        << "volatile" << SourceRange(D.getIdentifierLoc());
5254    if (FTI.TypeQuals & Qualifiers::Restrict)
5255      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5256        << "restrict" << SourceRange(D.getIdentifierLoc());
5257    D.setInvalidType();
5258  }
5259
5260  // C++0x [class.ctor]p4:
5261  //   A constructor shall not be declared with a ref-qualifier.
5262  if (FTI.hasRefQualifier()) {
5263    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5264      << FTI.RefQualifierIsLValueRef
5265      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5266    D.setInvalidType();
5267  }
5268
5269  // Rebuild the function type "R" without any type qualifiers (in
5270  // case any of the errors above fired) and with "void" as the
5271  // return type, since constructors don't have return types.
5272  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5273  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5274    return R;
5275
5276  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5277  EPI.TypeQuals = 0;
5278  EPI.RefQualifier = RQ_None;
5279
5280  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
5281                                 Proto->getNumArgs(), EPI);
5282}
5283
5284/// CheckConstructor - Checks a fully-formed constructor for
5285/// well-formedness, issuing any diagnostics required. Returns true if
5286/// the constructor declarator is invalid.
5287void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5288  CXXRecordDecl *ClassDecl
5289    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5290  if (!ClassDecl)
5291    return Constructor->setInvalidDecl();
5292
5293  // C++ [class.copy]p3:
5294  //   A declaration of a constructor for a class X is ill-formed if
5295  //   its first parameter is of type (optionally cv-qualified) X and
5296  //   either there are no other parameters or else all other
5297  //   parameters have default arguments.
5298  if (!Constructor->isInvalidDecl() &&
5299      ((Constructor->getNumParams() == 1) ||
5300       (Constructor->getNumParams() > 1 &&
5301        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5302      Constructor->getTemplateSpecializationKind()
5303                                              != TSK_ImplicitInstantiation) {
5304    QualType ParamType = Constructor->getParamDecl(0)->getType();
5305    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5306    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5307      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5308      const char *ConstRef
5309        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5310                                                        : " const &";
5311      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5312        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5313
5314      // FIXME: Rather that making the constructor invalid, we should endeavor
5315      // to fix the type.
5316      Constructor->setInvalidDecl();
5317    }
5318  }
5319}
5320
5321/// CheckDestructor - Checks a fully-formed destructor definition for
5322/// well-formedness, issuing any diagnostics required.  Returns true
5323/// on error.
5324bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5325  CXXRecordDecl *RD = Destructor->getParent();
5326
5327  if (Destructor->isVirtual()) {
5328    SourceLocation Loc;
5329
5330    if (!Destructor->isImplicit())
5331      Loc = Destructor->getLocation();
5332    else
5333      Loc = RD->getLocation();
5334
5335    // If we have a virtual destructor, look up the deallocation function
5336    FunctionDecl *OperatorDelete = 0;
5337    DeclarationName Name =
5338    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5339    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5340      return true;
5341
5342    MarkFunctionReferenced(Loc, OperatorDelete);
5343
5344    Destructor->setOperatorDelete(OperatorDelete);
5345  }
5346
5347  return false;
5348}
5349
5350static inline bool
5351FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5352  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5353          FTI.ArgInfo[0].Param &&
5354          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5355}
5356
5357/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5358/// the well-formednes of the destructor declarator @p D with type @p
5359/// R. If there are any errors in the declarator, this routine will
5360/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5361/// will be updated to reflect a well-formed type for the destructor and
5362/// returned.
5363QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5364                                         StorageClass& SC) {
5365  // C++ [class.dtor]p1:
5366  //   [...] A typedef-name that names a class is a class-name
5367  //   (7.1.3); however, a typedef-name that names a class shall not
5368  //   be used as the identifier in the declarator for a destructor
5369  //   declaration.
5370  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5371  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5372    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5373      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5374  else if (const TemplateSpecializationType *TST =
5375             DeclaratorType->getAs<TemplateSpecializationType>())
5376    if (TST->isTypeAlias())
5377      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5378        << DeclaratorType << 1;
5379
5380  // C++ [class.dtor]p2:
5381  //   A destructor is used to destroy objects of its class type. A
5382  //   destructor takes no parameters, and no return type can be
5383  //   specified for it (not even void). The address of a destructor
5384  //   shall not be taken. A destructor shall not be static. A
5385  //   destructor can be invoked for a const, volatile or const
5386  //   volatile object. A destructor shall not be declared const,
5387  //   volatile or const volatile (9.3.2).
5388  if (SC == SC_Static) {
5389    if (!D.isInvalidType())
5390      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5391        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5392        << SourceRange(D.getIdentifierLoc())
5393        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5394
5395    SC = SC_None;
5396  }
5397  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5398    // Destructors don't have return types, but the parser will
5399    // happily parse something like:
5400    //
5401    //   class X {
5402    //     float ~X();
5403    //   };
5404    //
5405    // The return type will be eliminated later.
5406    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5407      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5408      << SourceRange(D.getIdentifierLoc());
5409  }
5410
5411  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5412  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
5413    if (FTI.TypeQuals & Qualifiers::Const)
5414      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5415        << "const" << SourceRange(D.getIdentifierLoc());
5416    if (FTI.TypeQuals & Qualifiers::Volatile)
5417      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5418        << "volatile" << SourceRange(D.getIdentifierLoc());
5419    if (FTI.TypeQuals & Qualifiers::Restrict)
5420      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
5421        << "restrict" << SourceRange(D.getIdentifierLoc());
5422    D.setInvalidType();
5423  }
5424
5425  // C++0x [class.dtor]p2:
5426  //   A destructor shall not be declared with a ref-qualifier.
5427  if (FTI.hasRefQualifier()) {
5428    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
5429      << FTI.RefQualifierIsLValueRef
5430      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5431    D.setInvalidType();
5432  }
5433
5434  // Make sure we don't have any parameters.
5435  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
5436    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
5437
5438    // Delete the parameters.
5439    FTI.freeArgs();
5440    D.setInvalidType();
5441  }
5442
5443  // Make sure the destructor isn't variadic.
5444  if (FTI.isVariadic) {
5445    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
5446    D.setInvalidType();
5447  }
5448
5449  // Rebuild the function type "R" without any type qualifiers or
5450  // parameters (in case any of the errors above fired) and with
5451  // "void" as the return type, since destructors don't have return
5452  // types.
5453  if (!D.isInvalidType())
5454    return R;
5455
5456  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5457  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5458  EPI.Variadic = false;
5459  EPI.TypeQuals = 0;
5460  EPI.RefQualifier = RQ_None;
5461  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
5462}
5463
5464/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
5465/// well-formednes of the conversion function declarator @p D with
5466/// type @p R. If there are any errors in the declarator, this routine
5467/// will emit diagnostics and return true. Otherwise, it will return
5468/// false. Either way, the type @p R will be updated to reflect a
5469/// well-formed type for the conversion operator.
5470void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5471                                     StorageClass& SC) {
5472  // C++ [class.conv.fct]p1:
5473  //   Neither parameter types nor return type can be specified. The
5474  //   type of a conversion function (8.3.5) is "function taking no
5475  //   parameter returning conversion-type-id."
5476  if (SC == SC_Static) {
5477    if (!D.isInvalidType())
5478      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5479        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5480        << SourceRange(D.getIdentifierLoc());
5481    D.setInvalidType();
5482    SC = SC_None;
5483  }
5484
5485  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5486
5487  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5488    // Conversion functions don't have return types, but the parser will
5489    // happily parse something like:
5490    //
5491    //   class X {
5492    //     float operator bool();
5493    //   };
5494    //
5495    // The return type will be changed later anyway.
5496    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5497      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5498      << SourceRange(D.getIdentifierLoc());
5499    D.setInvalidType();
5500  }
5501
5502  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5503
5504  // Make sure we don't have any parameters.
5505  if (Proto->getNumArgs() > 0) {
5506    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5507
5508    // Delete the parameters.
5509    D.getFunctionTypeInfo().freeArgs();
5510    D.setInvalidType();
5511  } else if (Proto->isVariadic()) {
5512    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5513    D.setInvalidType();
5514  }
5515
5516  // Diagnose "&operator bool()" and other such nonsense.  This
5517  // is actually a gcc extension which we don't support.
5518  if (Proto->getResultType() != ConvType) {
5519    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5520      << Proto->getResultType();
5521    D.setInvalidType();
5522    ConvType = Proto->getResultType();
5523  }
5524
5525  // C++ [class.conv.fct]p4:
5526  //   The conversion-type-id shall not represent a function type nor
5527  //   an array type.
5528  if (ConvType->isArrayType()) {
5529    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5530    ConvType = Context.getPointerType(ConvType);
5531    D.setInvalidType();
5532  } else if (ConvType->isFunctionType()) {
5533    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5534    ConvType = Context.getPointerType(ConvType);
5535    D.setInvalidType();
5536  }
5537
5538  // Rebuild the function type "R" without any parameters (in case any
5539  // of the errors above fired) and with the conversion type as the
5540  // return type.
5541  if (D.isInvalidType())
5542    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5543
5544  // C++0x explicit conversion operators.
5545  if (D.getDeclSpec().isExplicitSpecified())
5546    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5547         getLangOptions().CPlusPlus0x ?
5548           diag::warn_cxx98_compat_explicit_conversion_functions :
5549           diag::ext_explicit_conversion_functions)
5550      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5551}
5552
5553/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5554/// the declaration of the given C++ conversion function. This routine
5555/// is responsible for recording the conversion function in the C++
5556/// class, if possible.
5557Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5558  assert(Conversion && "Expected to receive a conversion function declaration");
5559
5560  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5561
5562  // Make sure we aren't redeclaring the conversion function.
5563  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5564
5565  // C++ [class.conv.fct]p1:
5566  //   [...] A conversion function is never used to convert a
5567  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5568  //   same object type (or a reference to it), to a (possibly
5569  //   cv-qualified) base class of that type (or a reference to it),
5570  //   or to (possibly cv-qualified) void.
5571  // FIXME: Suppress this warning if the conversion function ends up being a
5572  // virtual function that overrides a virtual function in a base class.
5573  QualType ClassType
5574    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5575  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5576    ConvType = ConvTypeRef->getPointeeType();
5577  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5578      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5579    /* Suppress diagnostics for instantiations. */;
5580  else if (ConvType->isRecordType()) {
5581    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5582    if (ConvType == ClassType)
5583      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5584        << ClassType;
5585    else if (IsDerivedFrom(ClassType, ConvType))
5586      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5587        <<  ClassType << ConvType;
5588  } else if (ConvType->isVoidType()) {
5589    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5590      << ClassType << ConvType;
5591  }
5592
5593  if (FunctionTemplateDecl *ConversionTemplate
5594                                = Conversion->getDescribedFunctionTemplate())
5595    return ConversionTemplate;
5596
5597  return Conversion;
5598}
5599
5600//===----------------------------------------------------------------------===//
5601// Namespace Handling
5602//===----------------------------------------------------------------------===//
5603
5604
5605
5606/// ActOnStartNamespaceDef - This is called at the start of a namespace
5607/// definition.
5608Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5609                                   SourceLocation InlineLoc,
5610                                   SourceLocation NamespaceLoc,
5611                                   SourceLocation IdentLoc,
5612                                   IdentifierInfo *II,
5613                                   SourceLocation LBrace,
5614                                   AttributeList *AttrList) {
5615  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5616  // For anonymous namespace, take the location of the left brace.
5617  SourceLocation Loc = II ? IdentLoc : LBrace;
5618  bool IsInline = InlineLoc.isValid();
5619  bool IsInvalid = false;
5620  bool IsStd = false;
5621  bool AddToKnown = false;
5622  Scope *DeclRegionScope = NamespcScope->getParent();
5623
5624  NamespaceDecl *PrevNS = 0;
5625  if (II) {
5626    // C++ [namespace.def]p2:
5627    //   The identifier in an original-namespace-definition shall not
5628    //   have been previously defined in the declarative region in
5629    //   which the original-namespace-definition appears. The
5630    //   identifier in an original-namespace-definition is the name of
5631    //   the namespace. Subsequently in that declarative region, it is
5632    //   treated as an original-namespace-name.
5633    //
5634    // Since namespace names are unique in their scope, and we don't
5635    // look through using directives, just look for any ordinary names.
5636
5637    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5638    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5639    Decl::IDNS_Namespace;
5640    NamedDecl *PrevDecl = 0;
5641    for (DeclContext::lookup_result R
5642         = CurContext->getRedeclContext()->lookup(II);
5643         R.first != R.second; ++R.first) {
5644      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5645        PrevDecl = *R.first;
5646        break;
5647      }
5648    }
5649
5650    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5651
5652    if (PrevNS) {
5653      // This is an extended namespace definition.
5654      if (IsInline != PrevNS->isInline()) {
5655        // inline-ness must match
5656        if (PrevNS->isInline()) {
5657          // The user probably just forgot the 'inline', so suggest that it
5658          // be added back.
5659          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5660            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5661        } else {
5662          Diag(Loc, diag::err_inline_namespace_mismatch)
5663            << IsInline;
5664        }
5665        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5666
5667        IsInline = PrevNS->isInline();
5668      }
5669    } else if (PrevDecl) {
5670      // This is an invalid name redefinition.
5671      Diag(Loc, diag::err_redefinition_different_kind)
5672        << II;
5673      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5674      IsInvalid = true;
5675      // Continue on to push Namespc as current DeclContext and return it.
5676    } else if (II->isStr("std") &&
5677               CurContext->getRedeclContext()->isTranslationUnit()) {
5678      // This is the first "real" definition of the namespace "std", so update
5679      // our cache of the "std" namespace to point at this definition.
5680      PrevNS = getStdNamespace();
5681      IsStd = true;
5682      AddToKnown = !IsInline;
5683    } else {
5684      // We've seen this namespace for the first time.
5685      AddToKnown = !IsInline;
5686    }
5687  } else {
5688    // Anonymous namespaces.
5689
5690    // Determine whether the parent already has an anonymous namespace.
5691    DeclContext *Parent = CurContext->getRedeclContext();
5692    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5693      PrevNS = TU->getAnonymousNamespace();
5694    } else {
5695      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5696      PrevNS = ND->getAnonymousNamespace();
5697    }
5698
5699    if (PrevNS && IsInline != PrevNS->isInline()) {
5700      // inline-ness must match
5701      Diag(Loc, diag::err_inline_namespace_mismatch)
5702        << IsInline;
5703      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5704
5705      // Recover by ignoring the new namespace's inline status.
5706      IsInline = PrevNS->isInline();
5707    }
5708  }
5709
5710  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5711                                                 StartLoc, Loc, II, PrevNS);
5712  if (IsInvalid)
5713    Namespc->setInvalidDecl();
5714
5715  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5716
5717  // FIXME: Should we be merging attributes?
5718  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5719    PushNamespaceVisibilityAttr(Attr, Loc);
5720
5721  if (IsStd)
5722    StdNamespace = Namespc;
5723  if (AddToKnown)
5724    KnownNamespaces[Namespc] = false;
5725
5726  if (II) {
5727    PushOnScopeChains(Namespc, DeclRegionScope);
5728  } else {
5729    // Link the anonymous namespace into its parent.
5730    DeclContext *Parent = CurContext->getRedeclContext();
5731    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5732      TU->setAnonymousNamespace(Namespc);
5733    } else {
5734      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5735    }
5736
5737    CurContext->addDecl(Namespc);
5738
5739    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5740    //   behaves as if it were replaced by
5741    //     namespace unique { /* empty body */ }
5742    //     using namespace unique;
5743    //     namespace unique { namespace-body }
5744    //   where all occurrences of 'unique' in a translation unit are
5745    //   replaced by the same identifier and this identifier differs
5746    //   from all other identifiers in the entire program.
5747
5748    // We just create the namespace with an empty name and then add an
5749    // implicit using declaration, just like the standard suggests.
5750    //
5751    // CodeGen enforces the "universally unique" aspect by giving all
5752    // declarations semantically contained within an anonymous
5753    // namespace internal linkage.
5754
5755    if (!PrevNS) {
5756      UsingDirectiveDecl* UD
5757        = UsingDirectiveDecl::Create(Context, CurContext,
5758                                     /* 'using' */ LBrace,
5759                                     /* 'namespace' */ SourceLocation(),
5760                                     /* qualifier */ NestedNameSpecifierLoc(),
5761                                     /* identifier */ SourceLocation(),
5762                                     Namespc,
5763                                     /* Ancestor */ CurContext);
5764      UD->setImplicit();
5765      CurContext->addDecl(UD);
5766    }
5767  }
5768
5769  // Although we could have an invalid decl (i.e. the namespace name is a
5770  // redefinition), push it as current DeclContext and try to continue parsing.
5771  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5772  // for the namespace has the declarations that showed up in that particular
5773  // namespace definition.
5774  PushDeclContext(NamespcScope, Namespc);
5775  return Namespc;
5776}
5777
5778/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5779/// is a namespace alias, returns the namespace it points to.
5780static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5781  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5782    return AD->getNamespace();
5783  return dyn_cast_or_null<NamespaceDecl>(D);
5784}
5785
5786/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5787/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5788void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5789  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5790  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5791  Namespc->setRBraceLoc(RBrace);
5792  PopDeclContext();
5793  if (Namespc->hasAttr<VisibilityAttr>())
5794    PopPragmaVisibility(true, RBrace);
5795}
5796
5797CXXRecordDecl *Sema::getStdBadAlloc() const {
5798  return cast_or_null<CXXRecordDecl>(
5799                                  StdBadAlloc.get(Context.getExternalSource()));
5800}
5801
5802NamespaceDecl *Sema::getStdNamespace() const {
5803  return cast_or_null<NamespaceDecl>(
5804                                 StdNamespace.get(Context.getExternalSource()));
5805}
5806
5807/// \brief Retrieve the special "std" namespace, which may require us to
5808/// implicitly define the namespace.
5809NamespaceDecl *Sema::getOrCreateStdNamespace() {
5810  if (!StdNamespace) {
5811    // The "std" namespace has not yet been defined, so build one implicitly.
5812    StdNamespace = NamespaceDecl::Create(Context,
5813                                         Context.getTranslationUnitDecl(),
5814                                         /*Inline=*/false,
5815                                         SourceLocation(), SourceLocation(),
5816                                         &PP.getIdentifierTable().get("std"),
5817                                         /*PrevDecl=*/0);
5818    getStdNamespace()->setImplicit(true);
5819  }
5820
5821  return getStdNamespace();
5822}
5823
5824bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5825  assert(getLangOptions().CPlusPlus &&
5826         "Looking for std::initializer_list outside of C++.");
5827
5828  // We're looking for implicit instantiations of
5829  // template <typename E> class std::initializer_list.
5830
5831  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5832    return false;
5833
5834  ClassTemplateDecl *Template = 0;
5835  const TemplateArgument *Arguments = 0;
5836
5837  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5838
5839    ClassTemplateSpecializationDecl *Specialization =
5840        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5841    if (!Specialization)
5842      return false;
5843
5844    Template = Specialization->getSpecializedTemplate();
5845    Arguments = Specialization->getTemplateArgs().data();
5846  } else if (const TemplateSpecializationType *TST =
5847                 Ty->getAs<TemplateSpecializationType>()) {
5848    Template = dyn_cast_or_null<ClassTemplateDecl>(
5849        TST->getTemplateName().getAsTemplateDecl());
5850    Arguments = TST->getArgs();
5851  }
5852  if (!Template)
5853    return false;
5854
5855  if (!StdInitializerList) {
5856    // Haven't recognized std::initializer_list yet, maybe this is it.
5857    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5858    if (TemplateClass->getIdentifier() !=
5859            &PP.getIdentifierTable().get("initializer_list") ||
5860        !getStdNamespace()->InEnclosingNamespaceSetOf(
5861            TemplateClass->getDeclContext()))
5862      return false;
5863    // This is a template called std::initializer_list, but is it the right
5864    // template?
5865    TemplateParameterList *Params = Template->getTemplateParameters();
5866    if (Params->getMinRequiredArguments() != 1)
5867      return false;
5868    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5869      return false;
5870
5871    // It's the right template.
5872    StdInitializerList = Template;
5873  }
5874
5875  if (Template != StdInitializerList)
5876    return false;
5877
5878  // This is an instance of std::initializer_list. Find the argument type.
5879  if (Element)
5880    *Element = Arguments[0].getAsType();
5881  return true;
5882}
5883
5884static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5885  NamespaceDecl *Std = S.getStdNamespace();
5886  if (!Std) {
5887    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5888    return 0;
5889  }
5890
5891  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5892                      Loc, Sema::LookupOrdinaryName);
5893  if (!S.LookupQualifiedName(Result, Std)) {
5894    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5895    return 0;
5896  }
5897  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5898  if (!Template) {
5899    Result.suppressDiagnostics();
5900    // We found something weird. Complain about the first thing we found.
5901    NamedDecl *Found = *Result.begin();
5902    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5903    return 0;
5904  }
5905
5906  // We found some template called std::initializer_list. Now verify that it's
5907  // correct.
5908  TemplateParameterList *Params = Template->getTemplateParameters();
5909  if (Params->getMinRequiredArguments() != 1 ||
5910      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5911    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5912    return 0;
5913  }
5914
5915  return Template;
5916}
5917
5918QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5919  if (!StdInitializerList) {
5920    StdInitializerList = LookupStdInitializerList(*this, Loc);
5921    if (!StdInitializerList)
5922      return QualType();
5923  }
5924
5925  TemplateArgumentListInfo Args(Loc, Loc);
5926  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5927                                       Context.getTrivialTypeSourceInfo(Element,
5928                                                                        Loc)));
5929  return Context.getCanonicalType(
5930      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5931}
5932
5933bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5934  // C++ [dcl.init.list]p2:
5935  //   A constructor is an initializer-list constructor if its first parameter
5936  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5937  //   std::initializer_list<E> for some type E, and either there are no other
5938  //   parameters or else all other parameters have default arguments.
5939  if (Ctor->getNumParams() < 1 ||
5940      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5941    return false;
5942
5943  QualType ArgType = Ctor->getParamDecl(0)->getType();
5944  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5945    ArgType = RT->getPointeeType().getUnqualifiedType();
5946
5947  return isStdInitializerList(ArgType, 0);
5948}
5949
5950/// \brief Determine whether a using statement is in a context where it will be
5951/// apply in all contexts.
5952static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5953  switch (CurContext->getDeclKind()) {
5954    case Decl::TranslationUnit:
5955      return true;
5956    case Decl::LinkageSpec:
5957      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5958    default:
5959      return false;
5960  }
5961}
5962
5963namespace {
5964
5965// Callback to only accept typo corrections that are namespaces.
5966class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5967 public:
5968  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5969    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5970      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5971    }
5972    return false;
5973  }
5974};
5975
5976}
5977
5978static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5979                                       CXXScopeSpec &SS,
5980                                       SourceLocation IdentLoc,
5981                                       IdentifierInfo *Ident) {
5982  NamespaceValidatorCCC Validator;
5983  R.clear();
5984  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5985                                               R.getLookupKind(), Sc, &SS,
5986                                               Validator)) {
5987    std::string CorrectedStr(Corrected.getAsString(S.getLangOptions()));
5988    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOptions()));
5989    if (DeclContext *DC = S.computeDeclContext(SS, false))
5990      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5991        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5992        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5993    else
5994      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5995        << Ident << CorrectedQuotedStr
5996        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5997
5998    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5999         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6000
6001    Ident = Corrected.getCorrectionAsIdentifierInfo();
6002    R.addDecl(Corrected.getCorrectionDecl());
6003    return true;
6004  }
6005  return false;
6006}
6007
6008Decl *Sema::ActOnUsingDirective(Scope *S,
6009                                          SourceLocation UsingLoc,
6010                                          SourceLocation NamespcLoc,
6011                                          CXXScopeSpec &SS,
6012                                          SourceLocation IdentLoc,
6013                                          IdentifierInfo *NamespcName,
6014                                          AttributeList *AttrList) {
6015  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6016  assert(NamespcName && "Invalid NamespcName.");
6017  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6018
6019  // This can only happen along a recovery path.
6020  while (S->getFlags() & Scope::TemplateParamScope)
6021    S = S->getParent();
6022  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6023
6024  UsingDirectiveDecl *UDir = 0;
6025  NestedNameSpecifier *Qualifier = 0;
6026  if (SS.isSet())
6027    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6028
6029  // Lookup namespace name.
6030  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6031  LookupParsedName(R, S, &SS);
6032  if (R.isAmbiguous())
6033    return 0;
6034
6035  if (R.empty()) {
6036    R.clear();
6037    // Allow "using namespace std;" or "using namespace ::std;" even if
6038    // "std" hasn't been defined yet, for GCC compatibility.
6039    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6040        NamespcName->isStr("std")) {
6041      Diag(IdentLoc, diag::ext_using_undefined_std);
6042      R.addDecl(getOrCreateStdNamespace());
6043      R.resolveKind();
6044    }
6045    // Otherwise, attempt typo correction.
6046    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6047  }
6048
6049  if (!R.empty()) {
6050    NamedDecl *Named = R.getFoundDecl();
6051    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6052        && "expected namespace decl");
6053    // C++ [namespace.udir]p1:
6054    //   A using-directive specifies that the names in the nominated
6055    //   namespace can be used in the scope in which the
6056    //   using-directive appears after the using-directive. During
6057    //   unqualified name lookup (3.4.1), the names appear as if they
6058    //   were declared in the nearest enclosing namespace which
6059    //   contains both the using-directive and the nominated
6060    //   namespace. [Note: in this context, "contains" means "contains
6061    //   directly or indirectly". ]
6062
6063    // Find enclosing context containing both using-directive and
6064    // nominated namespace.
6065    NamespaceDecl *NS = getNamespaceDecl(Named);
6066    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6067    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6068      CommonAncestor = CommonAncestor->getParent();
6069
6070    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6071                                      SS.getWithLocInContext(Context),
6072                                      IdentLoc, Named, CommonAncestor);
6073
6074    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6075        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6076      Diag(IdentLoc, diag::warn_using_directive_in_header);
6077    }
6078
6079    PushUsingDirective(S, UDir);
6080  } else {
6081    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6082  }
6083
6084  // FIXME: We ignore attributes for now.
6085  return UDir;
6086}
6087
6088void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6089  // If scope has associated entity, then using directive is at namespace
6090  // or translation unit scope. We add UsingDirectiveDecls, into
6091  // it's lookup structure.
6092  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
6093    Ctx->addDecl(UDir);
6094  else
6095    // Otherwise it is block-sope. using-directives will affect lookup
6096    // only to the end of scope.
6097    S->PushUsingDirective(UDir);
6098}
6099
6100
6101Decl *Sema::ActOnUsingDeclaration(Scope *S,
6102                                  AccessSpecifier AS,
6103                                  bool HasUsingKeyword,
6104                                  SourceLocation UsingLoc,
6105                                  CXXScopeSpec &SS,
6106                                  UnqualifiedId &Name,
6107                                  AttributeList *AttrList,
6108                                  bool IsTypeName,
6109                                  SourceLocation TypenameLoc) {
6110  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6111
6112  switch (Name.getKind()) {
6113  case UnqualifiedId::IK_ImplicitSelfParam:
6114  case UnqualifiedId::IK_Identifier:
6115  case UnqualifiedId::IK_OperatorFunctionId:
6116  case UnqualifiedId::IK_LiteralOperatorId:
6117  case UnqualifiedId::IK_ConversionFunctionId:
6118    break;
6119
6120  case UnqualifiedId::IK_ConstructorName:
6121  case UnqualifiedId::IK_ConstructorTemplateId:
6122    // C++0x inherited constructors.
6123    Diag(Name.getSourceRange().getBegin(),
6124         getLangOptions().CPlusPlus0x ?
6125           diag::warn_cxx98_compat_using_decl_constructor :
6126           diag::err_using_decl_constructor)
6127      << SS.getRange();
6128
6129    if (getLangOptions().CPlusPlus0x) break;
6130
6131    return 0;
6132
6133  case UnqualifiedId::IK_DestructorName:
6134    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
6135      << SS.getRange();
6136    return 0;
6137
6138  case UnqualifiedId::IK_TemplateId:
6139    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
6140      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6141    return 0;
6142  }
6143
6144  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6145  DeclarationName TargetName = TargetNameInfo.getName();
6146  if (!TargetName)
6147    return 0;
6148
6149  // Warn about using declarations.
6150  // TODO: store that the declaration was written without 'using' and
6151  // talk about access decls instead of using decls in the
6152  // diagnostics.
6153  if (!HasUsingKeyword) {
6154    UsingLoc = Name.getSourceRange().getBegin();
6155
6156    Diag(UsingLoc, diag::warn_access_decl_deprecated)
6157      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6158  }
6159
6160  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6161      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6162    return 0;
6163
6164  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6165                                        TargetNameInfo, AttrList,
6166                                        /* IsInstantiation */ false,
6167                                        IsTypeName, TypenameLoc);
6168  if (UD)
6169    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6170
6171  return UD;
6172}
6173
6174/// \brief Determine whether a using declaration considers the given
6175/// declarations as "equivalent", e.g., if they are redeclarations of
6176/// the same entity or are both typedefs of the same type.
6177static bool
6178IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6179                         bool &SuppressRedeclaration) {
6180  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6181    SuppressRedeclaration = false;
6182    return true;
6183  }
6184
6185  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6186    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6187      SuppressRedeclaration = true;
6188      return Context.hasSameType(TD1->getUnderlyingType(),
6189                                 TD2->getUnderlyingType());
6190    }
6191
6192  return false;
6193}
6194
6195
6196/// Determines whether to create a using shadow decl for a particular
6197/// decl, given the set of decls existing prior to this using lookup.
6198bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6199                                const LookupResult &Previous) {
6200  // Diagnose finding a decl which is not from a base class of the
6201  // current class.  We do this now because there are cases where this
6202  // function will silently decide not to build a shadow decl, which
6203  // will pre-empt further diagnostics.
6204  //
6205  // We don't need to do this in C++0x because we do the check once on
6206  // the qualifier.
6207  //
6208  // FIXME: diagnose the following if we care enough:
6209  //   struct A { int foo; };
6210  //   struct B : A { using A::foo; };
6211  //   template <class T> struct C : A {};
6212  //   template <class T> struct D : C<T> { using B::foo; } // <---
6213  // This is invalid (during instantiation) in C++03 because B::foo
6214  // resolves to the using decl in B, which is not a base class of D<T>.
6215  // We can't diagnose it immediately because C<T> is an unknown
6216  // specialization.  The UsingShadowDecl in D<T> then points directly
6217  // to A::foo, which will look well-formed when we instantiate.
6218  // The right solution is to not collapse the shadow-decl chain.
6219  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
6220    DeclContext *OrigDC = Orig->getDeclContext();
6221
6222    // Handle enums and anonymous structs.
6223    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6224    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6225    while (OrigRec->isAnonymousStructOrUnion())
6226      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6227
6228    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6229      if (OrigDC == CurContext) {
6230        Diag(Using->getLocation(),
6231             diag::err_using_decl_nested_name_specifier_is_current_class)
6232          << Using->getQualifierLoc().getSourceRange();
6233        Diag(Orig->getLocation(), diag::note_using_decl_target);
6234        return true;
6235      }
6236
6237      Diag(Using->getQualifierLoc().getBeginLoc(),
6238           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6239        << Using->getQualifier()
6240        << cast<CXXRecordDecl>(CurContext)
6241        << Using->getQualifierLoc().getSourceRange();
6242      Diag(Orig->getLocation(), diag::note_using_decl_target);
6243      return true;
6244    }
6245  }
6246
6247  if (Previous.empty()) return false;
6248
6249  NamedDecl *Target = Orig;
6250  if (isa<UsingShadowDecl>(Target))
6251    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6252
6253  // If the target happens to be one of the previous declarations, we
6254  // don't have a conflict.
6255  //
6256  // FIXME: but we might be increasing its access, in which case we
6257  // should redeclare it.
6258  NamedDecl *NonTag = 0, *Tag = 0;
6259  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6260         I != E; ++I) {
6261    NamedDecl *D = (*I)->getUnderlyingDecl();
6262    bool Result;
6263    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6264      return Result;
6265
6266    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6267  }
6268
6269  if (Target->isFunctionOrFunctionTemplate()) {
6270    FunctionDecl *FD;
6271    if (isa<FunctionTemplateDecl>(Target))
6272      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6273    else
6274      FD = cast<FunctionDecl>(Target);
6275
6276    NamedDecl *OldDecl = 0;
6277    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6278    case Ovl_Overload:
6279      return false;
6280
6281    case Ovl_NonFunction:
6282      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6283      break;
6284
6285    // We found a decl with the exact signature.
6286    case Ovl_Match:
6287      // If we're in a record, we want to hide the target, so we
6288      // return true (without a diagnostic) to tell the caller not to
6289      // build a shadow decl.
6290      if (CurContext->isRecord())
6291        return true;
6292
6293      // If we're not in a record, this is an error.
6294      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6295      break;
6296    }
6297
6298    Diag(Target->getLocation(), diag::note_using_decl_target);
6299    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6300    return true;
6301  }
6302
6303  // Target is not a function.
6304
6305  if (isa<TagDecl>(Target)) {
6306    // No conflict between a tag and a non-tag.
6307    if (!Tag) return false;
6308
6309    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6310    Diag(Target->getLocation(), diag::note_using_decl_target);
6311    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6312    return true;
6313  }
6314
6315  // No conflict between a tag and a non-tag.
6316  if (!NonTag) return false;
6317
6318  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6319  Diag(Target->getLocation(), diag::note_using_decl_target);
6320  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6321  return true;
6322}
6323
6324/// Builds a shadow declaration corresponding to a 'using' declaration.
6325UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6326                                            UsingDecl *UD,
6327                                            NamedDecl *Orig) {
6328
6329  // If we resolved to another shadow declaration, just coalesce them.
6330  NamedDecl *Target = Orig;
6331  if (isa<UsingShadowDecl>(Target)) {
6332    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6333    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6334  }
6335
6336  UsingShadowDecl *Shadow
6337    = UsingShadowDecl::Create(Context, CurContext,
6338                              UD->getLocation(), UD, Target);
6339  UD->addShadowDecl(Shadow);
6340
6341  Shadow->setAccess(UD->getAccess());
6342  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6343    Shadow->setInvalidDecl();
6344
6345  if (S)
6346    PushOnScopeChains(Shadow, S);
6347  else
6348    CurContext->addDecl(Shadow);
6349
6350
6351  return Shadow;
6352}
6353
6354/// Hides a using shadow declaration.  This is required by the current
6355/// using-decl implementation when a resolvable using declaration in a
6356/// class is followed by a declaration which would hide or override
6357/// one or more of the using decl's targets; for example:
6358///
6359///   struct Base { void foo(int); };
6360///   struct Derived : Base {
6361///     using Base::foo;
6362///     void foo(int);
6363///   };
6364///
6365/// The governing language is C++03 [namespace.udecl]p12:
6366///
6367///   When a using-declaration brings names from a base class into a
6368///   derived class scope, member functions in the derived class
6369///   override and/or hide member functions with the same name and
6370///   parameter types in a base class (rather than conflicting).
6371///
6372/// There are two ways to implement this:
6373///   (1) optimistically create shadow decls when they're not hidden
6374///       by existing declarations, or
6375///   (2) don't create any shadow decls (or at least don't make them
6376///       visible) until we've fully parsed/instantiated the class.
6377/// The problem with (1) is that we might have to retroactively remove
6378/// a shadow decl, which requires several O(n) operations because the
6379/// decl structures are (very reasonably) not designed for removal.
6380/// (2) avoids this but is very fiddly and phase-dependent.
6381void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6382  if (Shadow->getDeclName().getNameKind() ==
6383        DeclarationName::CXXConversionFunctionName)
6384    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
6385
6386  // Remove it from the DeclContext...
6387  Shadow->getDeclContext()->removeDecl(Shadow);
6388
6389  // ...and the scope, if applicable...
6390  if (S) {
6391    S->RemoveDecl(Shadow);
6392    IdResolver.RemoveDecl(Shadow);
6393  }
6394
6395  // ...and the using decl.
6396  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
6397
6398  // TODO: complain somehow if Shadow was used.  It shouldn't
6399  // be possible for this to happen, because...?
6400}
6401
6402/// Builds a using declaration.
6403///
6404/// \param IsInstantiation - Whether this call arises from an
6405///   instantiation of an unresolved using declaration.  We treat
6406///   the lookup differently for these declarations.
6407NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
6408                                       SourceLocation UsingLoc,
6409                                       CXXScopeSpec &SS,
6410                                       const DeclarationNameInfo &NameInfo,
6411                                       AttributeList *AttrList,
6412                                       bool IsInstantiation,
6413                                       bool IsTypeName,
6414                                       SourceLocation TypenameLoc) {
6415  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6416  SourceLocation IdentLoc = NameInfo.getLoc();
6417  assert(IdentLoc.isValid() && "Invalid TargetName location.");
6418
6419  // FIXME: We ignore attributes for now.
6420
6421  if (SS.isEmpty()) {
6422    Diag(IdentLoc, diag::err_using_requires_qualname);
6423    return 0;
6424  }
6425
6426  // Do the redeclaration lookup in the current scope.
6427  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
6428                        ForRedeclaration);
6429  Previous.setHideTags(false);
6430  if (S) {
6431    LookupName(Previous, S);
6432
6433    // It is really dumb that we have to do this.
6434    LookupResult::Filter F = Previous.makeFilter();
6435    while (F.hasNext()) {
6436      NamedDecl *D = F.next();
6437      if (!isDeclInScope(D, CurContext, S))
6438        F.erase();
6439    }
6440    F.done();
6441  } else {
6442    assert(IsInstantiation && "no scope in non-instantiation");
6443    assert(CurContext->isRecord() && "scope not record in instantiation");
6444    LookupQualifiedName(Previous, CurContext);
6445  }
6446
6447  // Check for invalid redeclarations.
6448  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
6449    return 0;
6450
6451  // Check for bad qualifiers.
6452  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
6453    return 0;
6454
6455  DeclContext *LookupContext = computeDeclContext(SS);
6456  NamedDecl *D;
6457  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
6458  if (!LookupContext) {
6459    if (IsTypeName) {
6460      // FIXME: not all declaration name kinds are legal here
6461      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
6462                                              UsingLoc, TypenameLoc,
6463                                              QualifierLoc,
6464                                              IdentLoc, NameInfo.getName());
6465    } else {
6466      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6467                                           QualifierLoc, NameInfo);
6468    }
6469  } else {
6470    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6471                          NameInfo, IsTypeName);
6472  }
6473  D->setAccess(AS);
6474  CurContext->addDecl(D);
6475
6476  if (!LookupContext) return D;
6477  UsingDecl *UD = cast<UsingDecl>(D);
6478
6479  if (RequireCompleteDeclContext(SS, LookupContext)) {
6480    UD->setInvalidDecl();
6481    return UD;
6482  }
6483
6484  // Constructor inheriting using decls get special treatment.
6485  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6486    if (CheckInheritedConstructorUsingDecl(UD))
6487      UD->setInvalidDecl();
6488    return UD;
6489  }
6490
6491  // Otherwise, look up the target name.
6492
6493  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6494
6495  // Unlike most lookups, we don't always want to hide tag
6496  // declarations: tag names are visible through the using declaration
6497  // even if hidden by ordinary names, *except* in a dependent context
6498  // where it's important for the sanity of two-phase lookup.
6499  if (!IsInstantiation)
6500    R.setHideTags(false);
6501
6502  LookupQualifiedName(R, LookupContext);
6503
6504  if (R.empty()) {
6505    Diag(IdentLoc, diag::err_no_member)
6506      << NameInfo.getName() << LookupContext << SS.getRange();
6507    UD->setInvalidDecl();
6508    return UD;
6509  }
6510
6511  if (R.isAmbiguous()) {
6512    UD->setInvalidDecl();
6513    return UD;
6514  }
6515
6516  if (IsTypeName) {
6517    // If we asked for a typename and got a non-type decl, error out.
6518    if (!R.getAsSingle<TypeDecl>()) {
6519      Diag(IdentLoc, diag::err_using_typename_non_type);
6520      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6521        Diag((*I)->getUnderlyingDecl()->getLocation(),
6522             diag::note_using_decl_target);
6523      UD->setInvalidDecl();
6524      return UD;
6525    }
6526  } else {
6527    // If we asked for a non-typename and we got a type, error out,
6528    // but only if this is an instantiation of an unresolved using
6529    // decl.  Otherwise just silently find the type name.
6530    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6531      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6532      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6533      UD->setInvalidDecl();
6534      return UD;
6535    }
6536  }
6537
6538  // C++0x N2914 [namespace.udecl]p6:
6539  // A using-declaration shall not name a namespace.
6540  if (R.getAsSingle<NamespaceDecl>()) {
6541    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6542      << SS.getRange();
6543    UD->setInvalidDecl();
6544    return UD;
6545  }
6546
6547  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6548    if (!CheckUsingShadowDecl(UD, *I, Previous))
6549      BuildUsingShadowDecl(S, UD, *I);
6550  }
6551
6552  return UD;
6553}
6554
6555/// Additional checks for a using declaration referring to a constructor name.
6556bool Sema::CheckInheritedConstructorUsingDecl(UsingDecl *UD) {
6557  if (UD->isTypeName()) {
6558    // FIXME: Cannot specify typename when specifying constructor
6559    return true;
6560  }
6561
6562  const Type *SourceType = UD->getQualifier()->getAsType();
6563  assert(SourceType &&
6564         "Using decl naming constructor doesn't have type in scope spec.");
6565  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6566
6567  // Check whether the named type is a direct base class.
6568  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6569  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6570  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6571       BaseIt != BaseE; ++BaseIt) {
6572    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6573    if (CanonicalSourceType == BaseType)
6574      break;
6575  }
6576
6577  if (BaseIt == BaseE) {
6578    // Did not find SourceType in the bases.
6579    Diag(UD->getUsingLocation(),
6580         diag::err_using_decl_constructor_not_in_direct_base)
6581      << UD->getNameInfo().getSourceRange()
6582      << QualType(SourceType, 0) << TargetClass;
6583    return true;
6584  }
6585
6586  BaseIt->setInheritConstructors();
6587
6588  return false;
6589}
6590
6591/// Checks that the given using declaration is not an invalid
6592/// redeclaration.  Note that this is checking only for the using decl
6593/// itself, not for any ill-formedness among the UsingShadowDecls.
6594bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6595                                       bool isTypeName,
6596                                       const CXXScopeSpec &SS,
6597                                       SourceLocation NameLoc,
6598                                       const LookupResult &Prev) {
6599  // C++03 [namespace.udecl]p8:
6600  // C++0x [namespace.udecl]p10:
6601  //   A using-declaration is a declaration and can therefore be used
6602  //   repeatedly where (and only where) multiple declarations are
6603  //   allowed.
6604  //
6605  // That's in non-member contexts.
6606  if (!CurContext->getRedeclContext()->isRecord())
6607    return false;
6608
6609  NestedNameSpecifier *Qual
6610    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6611
6612  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6613    NamedDecl *D = *I;
6614
6615    bool DTypename;
6616    NestedNameSpecifier *DQual;
6617    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6618      DTypename = UD->isTypeName();
6619      DQual = UD->getQualifier();
6620    } else if (UnresolvedUsingValueDecl *UD
6621                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6622      DTypename = false;
6623      DQual = UD->getQualifier();
6624    } else if (UnresolvedUsingTypenameDecl *UD
6625                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6626      DTypename = true;
6627      DQual = UD->getQualifier();
6628    } else continue;
6629
6630    // using decls differ if one says 'typename' and the other doesn't.
6631    // FIXME: non-dependent using decls?
6632    if (isTypeName != DTypename) continue;
6633
6634    // using decls differ if they name different scopes (but note that
6635    // template instantiation can cause this check to trigger when it
6636    // didn't before instantiation).
6637    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6638        Context.getCanonicalNestedNameSpecifier(DQual))
6639      continue;
6640
6641    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6642    Diag(D->getLocation(), diag::note_using_decl) << 1;
6643    return true;
6644  }
6645
6646  return false;
6647}
6648
6649
6650/// Checks that the given nested-name qualifier used in a using decl
6651/// in the current context is appropriately related to the current
6652/// scope.  If an error is found, diagnoses it and returns true.
6653bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6654                                   const CXXScopeSpec &SS,
6655                                   SourceLocation NameLoc) {
6656  DeclContext *NamedContext = computeDeclContext(SS);
6657
6658  if (!CurContext->isRecord()) {
6659    // C++03 [namespace.udecl]p3:
6660    // C++0x [namespace.udecl]p8:
6661    //   A using-declaration for a class member shall be a member-declaration.
6662
6663    // If we weren't able to compute a valid scope, it must be a
6664    // dependent class scope.
6665    if (!NamedContext || NamedContext->isRecord()) {
6666      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6667        << SS.getRange();
6668      return true;
6669    }
6670
6671    // Otherwise, everything is known to be fine.
6672    return false;
6673  }
6674
6675  // The current scope is a record.
6676
6677  // If the named context is dependent, we can't decide much.
6678  if (!NamedContext) {
6679    // FIXME: in C++0x, we can diagnose if we can prove that the
6680    // nested-name-specifier does not refer to a base class, which is
6681    // still possible in some cases.
6682
6683    // Otherwise we have to conservatively report that things might be
6684    // okay.
6685    return false;
6686  }
6687
6688  if (!NamedContext->isRecord()) {
6689    // Ideally this would point at the last name in the specifier,
6690    // but we don't have that level of source info.
6691    Diag(SS.getRange().getBegin(),
6692         diag::err_using_decl_nested_name_specifier_is_not_class)
6693      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6694    return true;
6695  }
6696
6697  if (!NamedContext->isDependentContext() &&
6698      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6699    return true;
6700
6701  if (getLangOptions().CPlusPlus0x) {
6702    // C++0x [namespace.udecl]p3:
6703    //   In a using-declaration used as a member-declaration, the
6704    //   nested-name-specifier shall name a base class of the class
6705    //   being defined.
6706
6707    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6708                                 cast<CXXRecordDecl>(NamedContext))) {
6709      if (CurContext == NamedContext) {
6710        Diag(NameLoc,
6711             diag::err_using_decl_nested_name_specifier_is_current_class)
6712          << SS.getRange();
6713        return true;
6714      }
6715
6716      Diag(SS.getRange().getBegin(),
6717           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6718        << (NestedNameSpecifier*) SS.getScopeRep()
6719        << cast<CXXRecordDecl>(CurContext)
6720        << SS.getRange();
6721      return true;
6722    }
6723
6724    return false;
6725  }
6726
6727  // C++03 [namespace.udecl]p4:
6728  //   A using-declaration used as a member-declaration shall refer
6729  //   to a member of a base class of the class being defined [etc.].
6730
6731  // Salient point: SS doesn't have to name a base class as long as
6732  // lookup only finds members from base classes.  Therefore we can
6733  // diagnose here only if we can prove that that can't happen,
6734  // i.e. if the class hierarchies provably don't intersect.
6735
6736  // TODO: it would be nice if "definitely valid" results were cached
6737  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6738  // need to be repeated.
6739
6740  struct UserData {
6741    llvm::DenseSet<const CXXRecordDecl*> Bases;
6742
6743    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6744      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6745      Data->Bases.insert(Base);
6746      return true;
6747    }
6748
6749    bool hasDependentBases(const CXXRecordDecl *Class) {
6750      return !Class->forallBases(collect, this);
6751    }
6752
6753    /// Returns true if the base is dependent or is one of the
6754    /// accumulated base classes.
6755    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6756      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6757      return !Data->Bases.count(Base);
6758    }
6759
6760    bool mightShareBases(const CXXRecordDecl *Class) {
6761      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6762    }
6763  };
6764
6765  UserData Data;
6766
6767  // Returns false if we find a dependent base.
6768  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6769    return false;
6770
6771  // Returns false if the class has a dependent base or if it or one
6772  // of its bases is present in the base set of the current context.
6773  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6774    return false;
6775
6776  Diag(SS.getRange().getBegin(),
6777       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6778    << (NestedNameSpecifier*) SS.getScopeRep()
6779    << cast<CXXRecordDecl>(CurContext)
6780    << SS.getRange();
6781
6782  return true;
6783}
6784
6785Decl *Sema::ActOnAliasDeclaration(Scope *S,
6786                                  AccessSpecifier AS,
6787                                  MultiTemplateParamsArg TemplateParamLists,
6788                                  SourceLocation UsingLoc,
6789                                  UnqualifiedId &Name,
6790                                  TypeResult Type) {
6791  // Skip up to the relevant declaration scope.
6792  while (S->getFlags() & Scope::TemplateParamScope)
6793    S = S->getParent();
6794  assert((S->getFlags() & Scope::DeclScope) &&
6795         "got alias-declaration outside of declaration scope");
6796
6797  if (Type.isInvalid())
6798    return 0;
6799
6800  bool Invalid = false;
6801  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6802  TypeSourceInfo *TInfo = 0;
6803  GetTypeFromParser(Type.get(), &TInfo);
6804
6805  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6806    return 0;
6807
6808  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6809                                      UPPC_DeclarationType)) {
6810    Invalid = true;
6811    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6812                                             TInfo->getTypeLoc().getBeginLoc());
6813  }
6814
6815  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6816  LookupName(Previous, S);
6817
6818  // Warn about shadowing the name of a template parameter.
6819  if (Previous.isSingleResult() &&
6820      Previous.getFoundDecl()->isTemplateParameter()) {
6821    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6822    Previous.clear();
6823  }
6824
6825  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6826         "name in alias declaration must be an identifier");
6827  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6828                                               Name.StartLocation,
6829                                               Name.Identifier, TInfo);
6830
6831  NewTD->setAccess(AS);
6832
6833  if (Invalid)
6834    NewTD->setInvalidDecl();
6835
6836  CheckTypedefForVariablyModifiedType(S, NewTD);
6837  Invalid |= NewTD->isInvalidDecl();
6838
6839  bool Redeclaration = false;
6840
6841  NamedDecl *NewND;
6842  if (TemplateParamLists.size()) {
6843    TypeAliasTemplateDecl *OldDecl = 0;
6844    TemplateParameterList *OldTemplateParams = 0;
6845
6846    if (TemplateParamLists.size() != 1) {
6847      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6848        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6849         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6850    }
6851    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6852
6853    // Only consider previous declarations in the same scope.
6854    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6855                         /*ExplicitInstantiationOrSpecialization*/false);
6856    if (!Previous.empty()) {
6857      Redeclaration = true;
6858
6859      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6860      if (!OldDecl && !Invalid) {
6861        Diag(UsingLoc, diag::err_redefinition_different_kind)
6862          << Name.Identifier;
6863
6864        NamedDecl *OldD = Previous.getRepresentativeDecl();
6865        if (OldD->getLocation().isValid())
6866          Diag(OldD->getLocation(), diag::note_previous_definition);
6867
6868        Invalid = true;
6869      }
6870
6871      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6872        if (TemplateParameterListsAreEqual(TemplateParams,
6873                                           OldDecl->getTemplateParameters(),
6874                                           /*Complain=*/true,
6875                                           TPL_TemplateMatch))
6876          OldTemplateParams = OldDecl->getTemplateParameters();
6877        else
6878          Invalid = true;
6879
6880        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6881        if (!Invalid &&
6882            !Context.hasSameType(OldTD->getUnderlyingType(),
6883                                 NewTD->getUnderlyingType())) {
6884          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6885          // but we can't reasonably accept it.
6886          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6887            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6888          if (OldTD->getLocation().isValid())
6889            Diag(OldTD->getLocation(), diag::note_previous_definition);
6890          Invalid = true;
6891        }
6892      }
6893    }
6894
6895    // Merge any previous default template arguments into our parameters,
6896    // and check the parameter list.
6897    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6898                                   TPC_TypeAliasTemplate))
6899      return 0;
6900
6901    TypeAliasTemplateDecl *NewDecl =
6902      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6903                                    Name.Identifier, TemplateParams,
6904                                    NewTD);
6905
6906    NewDecl->setAccess(AS);
6907
6908    if (Invalid)
6909      NewDecl->setInvalidDecl();
6910    else if (OldDecl)
6911      NewDecl->setPreviousDeclaration(OldDecl);
6912
6913    NewND = NewDecl;
6914  } else {
6915    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6916    NewND = NewTD;
6917  }
6918
6919  if (!Redeclaration)
6920    PushOnScopeChains(NewND, S);
6921
6922  return NewND;
6923}
6924
6925Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6926                                             SourceLocation NamespaceLoc,
6927                                             SourceLocation AliasLoc,
6928                                             IdentifierInfo *Alias,
6929                                             CXXScopeSpec &SS,
6930                                             SourceLocation IdentLoc,
6931                                             IdentifierInfo *Ident) {
6932
6933  // Lookup the namespace name.
6934  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6935  LookupParsedName(R, S, &SS);
6936
6937  // Check if we have a previous declaration with the same name.
6938  NamedDecl *PrevDecl
6939    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6940                       ForRedeclaration);
6941  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6942    PrevDecl = 0;
6943
6944  if (PrevDecl) {
6945    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6946      // We already have an alias with the same name that points to the same
6947      // namespace, so don't create a new one.
6948      // FIXME: At some point, we'll want to create the (redundant)
6949      // declaration to maintain better source information.
6950      if (!R.isAmbiguous() && !R.empty() &&
6951          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6952        return 0;
6953    }
6954
6955    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6956      diag::err_redefinition_different_kind;
6957    Diag(AliasLoc, DiagID) << Alias;
6958    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6959    return 0;
6960  }
6961
6962  if (R.isAmbiguous())
6963    return 0;
6964
6965  if (R.empty()) {
6966    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6967      Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
6968      return 0;
6969    }
6970  }
6971
6972  NamespaceAliasDecl *AliasDecl =
6973    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6974                               Alias, SS.getWithLocInContext(Context),
6975                               IdentLoc, R.getFoundDecl());
6976
6977  PushOnScopeChains(AliasDecl, S);
6978  return AliasDecl;
6979}
6980
6981namespace {
6982  /// \brief Scoped object used to handle the state changes required in Sema
6983  /// to implicitly define the body of a C++ member function;
6984  class ImplicitlyDefinedFunctionScope {
6985    Sema &S;
6986    Sema::ContextRAII SavedContext;
6987
6988  public:
6989    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6990      : S(S), SavedContext(S, Method)
6991    {
6992      S.PushFunctionScope();
6993      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6994    }
6995
6996    ~ImplicitlyDefinedFunctionScope() {
6997      S.PopExpressionEvaluationContext();
6998      S.PopFunctionScopeInfo();
6999    }
7000  };
7001}
7002
7003Sema::ImplicitExceptionSpecification
7004Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7005  // C++ [except.spec]p14:
7006  //   An implicitly declared special member function (Clause 12) shall have an
7007  //   exception-specification. [...]
7008  ImplicitExceptionSpecification ExceptSpec(Context);
7009  if (ClassDecl->isInvalidDecl())
7010    return ExceptSpec;
7011
7012  // Direct base-class constructors.
7013  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7014                                       BEnd = ClassDecl->bases_end();
7015       B != BEnd; ++B) {
7016    if (B->isVirtual()) // Handled below.
7017      continue;
7018
7019    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7020      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7021      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7022      // If this is a deleted function, add it anyway. This might be conformant
7023      // with the standard. This might not. I'm not sure. It might not matter.
7024      if (Constructor)
7025        ExceptSpec.CalledDecl(Constructor);
7026    }
7027  }
7028
7029  // Virtual base-class constructors.
7030  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7031                                       BEnd = ClassDecl->vbases_end();
7032       B != BEnd; ++B) {
7033    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7034      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7035      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7036      // If this is a deleted function, add it anyway. This might be conformant
7037      // with the standard. This might not. I'm not sure. It might not matter.
7038      if (Constructor)
7039        ExceptSpec.CalledDecl(Constructor);
7040    }
7041  }
7042
7043  // Field constructors.
7044  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7045                               FEnd = ClassDecl->field_end();
7046       F != FEnd; ++F) {
7047    if (F->hasInClassInitializer()) {
7048      if (Expr *E = F->getInClassInitializer())
7049        ExceptSpec.CalledExpr(E);
7050      else if (!F->isInvalidDecl())
7051        ExceptSpec.SetDelayed();
7052    } else if (const RecordType *RecordTy
7053              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7054      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7055      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7056      // If this is a deleted function, add it anyway. This might be conformant
7057      // with the standard. This might not. I'm not sure. It might not matter.
7058      // In particular, the problem is that this function never gets called. It
7059      // might just be ill-formed because this function attempts to refer to
7060      // a deleted function here.
7061      if (Constructor)
7062        ExceptSpec.CalledDecl(Constructor);
7063    }
7064  }
7065
7066  return ExceptSpec;
7067}
7068
7069CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7070                                                     CXXRecordDecl *ClassDecl) {
7071  // C++ [class.ctor]p5:
7072  //   A default constructor for a class X is a constructor of class X
7073  //   that can be called without an argument. If there is no
7074  //   user-declared constructor for class X, a default constructor is
7075  //   implicitly declared. An implicitly-declared default constructor
7076  //   is an inline public member of its class.
7077  assert(!ClassDecl->hasUserDeclaredConstructor() &&
7078         "Should not build implicit default constructor!");
7079
7080  ImplicitExceptionSpecification Spec =
7081    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7082  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7083
7084  // Create the actual constructor declaration.
7085  CanQualType ClassType
7086    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7087  SourceLocation ClassLoc = ClassDecl->getLocation();
7088  DeclarationName Name
7089    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7090  DeclarationNameInfo NameInfo(Name, ClassLoc);
7091  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7092      Context, ClassDecl, ClassLoc, NameInfo,
7093      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
7094      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7095      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
7096        getLangOptions().CPlusPlus0x);
7097  DefaultCon->setAccess(AS_public);
7098  DefaultCon->setDefaulted();
7099  DefaultCon->setImplicit();
7100  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7101
7102  // Note that we have declared this constructor.
7103  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7104
7105  if (Scope *S = getScopeForContext(ClassDecl))
7106    PushOnScopeChains(DefaultCon, S, false);
7107  ClassDecl->addDecl(DefaultCon);
7108
7109  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7110    DefaultCon->setDeletedAsWritten();
7111
7112  return DefaultCon;
7113}
7114
7115void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7116                                            CXXConstructorDecl *Constructor) {
7117  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7118          !Constructor->doesThisDeclarationHaveABody() &&
7119          !Constructor->isDeleted()) &&
7120    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7121
7122  CXXRecordDecl *ClassDecl = Constructor->getParent();
7123  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7124
7125  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
7126  DiagnosticErrorTrap Trap(Diags);
7127  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
7128      Trap.hasErrorOccurred()) {
7129    Diag(CurrentLocation, diag::note_member_synthesized_at)
7130      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7131    Constructor->setInvalidDecl();
7132    return;
7133  }
7134
7135  SourceLocation Loc = Constructor->getLocation();
7136  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7137
7138  Constructor->setUsed();
7139  MarkVTableUsed(CurrentLocation, ClassDecl);
7140
7141  if (ASTMutationListener *L = getASTMutationListener()) {
7142    L->CompletedImplicitDefinition(Constructor);
7143  }
7144}
7145
7146/// Get any existing defaulted default constructor for the given class. Do not
7147/// implicitly define one if it does not exist.
7148static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
7149                                                             CXXRecordDecl *D) {
7150  ASTContext &Context = Self.Context;
7151  QualType ClassType = Context.getTypeDeclType(D);
7152  DeclarationName ConstructorName
7153    = Context.DeclarationNames.getCXXConstructorName(
7154                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
7155
7156  DeclContext::lookup_const_iterator Con, ConEnd;
7157  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
7158       Con != ConEnd; ++Con) {
7159    // A function template cannot be defaulted.
7160    if (isa<FunctionTemplateDecl>(*Con))
7161      continue;
7162
7163    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
7164    if (Constructor->isDefaultConstructor())
7165      return Constructor->isDefaulted() ? Constructor : 0;
7166  }
7167  return 0;
7168}
7169
7170void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7171  if (!D) return;
7172  AdjustDeclIfTemplate(D);
7173
7174  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
7175  CXXConstructorDecl *CtorDecl
7176    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
7177
7178  if (!CtorDecl) return;
7179
7180  // Compute the exception specification for the default constructor.
7181  const FunctionProtoType *CtorTy =
7182    CtorDecl->getType()->castAs<FunctionProtoType>();
7183  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
7184    ImplicitExceptionSpecification Spec =
7185      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
7186    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7187    assert(EPI.ExceptionSpecType != EST_Delayed);
7188
7189    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
7190  }
7191
7192  // If the default constructor is explicitly defaulted, checking the exception
7193  // specification is deferred until now.
7194  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
7195      !ClassDecl->isDependentType())
7196    CheckExplicitlyDefaultedDefaultConstructor(CtorDecl);
7197}
7198
7199void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
7200  // We start with an initial pass over the base classes to collect those that
7201  // inherit constructors from. If there are none, we can forgo all further
7202  // processing.
7203  typedef SmallVector<const RecordType *, 4> BasesVector;
7204  BasesVector BasesToInheritFrom;
7205  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
7206                                          BaseE = ClassDecl->bases_end();
7207         BaseIt != BaseE; ++BaseIt) {
7208    if (BaseIt->getInheritConstructors()) {
7209      QualType Base = BaseIt->getType();
7210      if (Base->isDependentType()) {
7211        // If we inherit constructors from anything that is dependent, just
7212        // abort processing altogether. We'll get another chance for the
7213        // instantiations.
7214        return;
7215      }
7216      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
7217    }
7218  }
7219  if (BasesToInheritFrom.empty())
7220    return;
7221
7222  // Now collect the constructors that we already have in the current class.
7223  // Those take precedence over inherited constructors.
7224  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7225  //   unless there is a user-declared constructor with the same signature in
7226  //   the class where the using-declaration appears.
7227  llvm::SmallSet<const Type *, 8> ExistingConstructors;
7228  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
7229                                    CtorE = ClassDecl->ctor_end();
7230       CtorIt != CtorE; ++CtorIt) {
7231    ExistingConstructors.insert(
7232        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
7233  }
7234
7235  Scope *S = getScopeForContext(ClassDecl);
7236  DeclarationName CreatedCtorName =
7237      Context.DeclarationNames.getCXXConstructorName(
7238          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
7239
7240  // Now comes the true work.
7241  // First, we keep a map from constructor types to the base that introduced
7242  // them. Needed for finding conflicting constructors. We also keep the
7243  // actually inserted declarations in there, for pretty diagnostics.
7244  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
7245  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
7246  ConstructorToSourceMap InheritedConstructors;
7247  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
7248                             BaseE = BasesToInheritFrom.end();
7249       BaseIt != BaseE; ++BaseIt) {
7250    const RecordType *Base = *BaseIt;
7251    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
7252    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
7253    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
7254                                      CtorE = BaseDecl->ctor_end();
7255         CtorIt != CtorE; ++CtorIt) {
7256      // Find the using declaration for inheriting this base's constructors.
7257      DeclarationName Name =
7258          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
7259      UsingDecl *UD = dyn_cast_or_null<UsingDecl>(
7260          LookupSingleName(S, Name,SourceLocation(), LookupUsingDeclName));
7261      SourceLocation UsingLoc = UD ? UD->getLocation() :
7262                                     ClassDecl->getLocation();
7263
7264      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
7265      //   from the class X named in the using-declaration consists of actual
7266      //   constructors and notional constructors that result from the
7267      //   transformation of defaulted parameters as follows:
7268      //   - all non-template default constructors of X, and
7269      //   - for each non-template constructor of X that has at least one
7270      //     parameter with a default argument, the set of constructors that
7271      //     results from omitting any ellipsis parameter specification and
7272      //     successively omitting parameters with a default argument from the
7273      //     end of the parameter-type-list.
7274      CXXConstructorDecl *BaseCtor = *CtorIt;
7275      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
7276      const FunctionProtoType *BaseCtorType =
7277          BaseCtor->getType()->getAs<FunctionProtoType>();
7278
7279      for (unsigned params = BaseCtor->getMinRequiredArguments(),
7280                    maxParams = BaseCtor->getNumParams();
7281           params <= maxParams; ++params) {
7282        // Skip default constructors. They're never inherited.
7283        if (params == 0)
7284          continue;
7285        // Skip copy and move constructors for the same reason.
7286        if (CanBeCopyOrMove && params == 1)
7287          continue;
7288
7289        // Build up a function type for this particular constructor.
7290        // FIXME: The working paper does not consider that the exception spec
7291        // for the inheriting constructor might be larger than that of the
7292        // source. This code doesn't yet, either. When it does, this code will
7293        // need to be delayed until after exception specifications and in-class
7294        // member initializers are attached.
7295        const Type *NewCtorType;
7296        if (params == maxParams)
7297          NewCtorType = BaseCtorType;
7298        else {
7299          SmallVector<QualType, 16> Args;
7300          for (unsigned i = 0; i < params; ++i) {
7301            Args.push_back(BaseCtorType->getArgType(i));
7302          }
7303          FunctionProtoType::ExtProtoInfo ExtInfo =
7304              BaseCtorType->getExtProtoInfo();
7305          ExtInfo.Variadic = false;
7306          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
7307                                                Args.data(), params, ExtInfo)
7308                       .getTypePtr();
7309        }
7310        const Type *CanonicalNewCtorType =
7311            Context.getCanonicalType(NewCtorType);
7312
7313        // Now that we have the type, first check if the class already has a
7314        // constructor with this signature.
7315        if (ExistingConstructors.count(CanonicalNewCtorType))
7316          continue;
7317
7318        // Then we check if we have already declared an inherited constructor
7319        // with this signature.
7320        std::pair<ConstructorToSourceMap::iterator, bool> result =
7321            InheritedConstructors.insert(std::make_pair(
7322                CanonicalNewCtorType,
7323                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
7324        if (!result.second) {
7325          // Already in the map. If it came from a different class, that's an
7326          // error. Not if it's from the same.
7327          CanQualType PreviousBase = result.first->second.first;
7328          if (CanonicalBase != PreviousBase) {
7329            const CXXConstructorDecl *PrevCtor = result.first->second.second;
7330            const CXXConstructorDecl *PrevBaseCtor =
7331                PrevCtor->getInheritedConstructor();
7332            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
7333
7334            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
7335            Diag(BaseCtor->getLocation(),
7336                 diag::note_using_decl_constructor_conflict_current_ctor);
7337            Diag(PrevBaseCtor->getLocation(),
7338                 diag::note_using_decl_constructor_conflict_previous_ctor);
7339            Diag(PrevCtor->getLocation(),
7340                 diag::note_using_decl_constructor_conflict_previous_using);
7341          }
7342          continue;
7343        }
7344
7345        // OK, we're there, now add the constructor.
7346        // C++0x [class.inhctor]p8: [...] that would be performed by a
7347        //   user-written inline constructor [...]
7348        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
7349        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
7350            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
7351            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
7352            /*ImplicitlyDeclared=*/true,
7353            // FIXME: Due to a defect in the standard, we treat inherited
7354            // constructors as constexpr even if that makes them ill-formed.
7355            /*Constexpr=*/BaseCtor->isConstexpr());
7356        NewCtor->setAccess(BaseCtor->getAccess());
7357
7358        // Build up the parameter decls and add them.
7359        SmallVector<ParmVarDecl *, 16> ParamDecls;
7360        for (unsigned i = 0; i < params; ++i) {
7361          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
7362                                                   UsingLoc, UsingLoc,
7363                                                   /*IdentifierInfo=*/0,
7364                                                   BaseCtorType->getArgType(i),
7365                                                   /*TInfo=*/0, SC_None,
7366                                                   SC_None, /*DefaultArg=*/0));
7367        }
7368        NewCtor->setParams(ParamDecls);
7369        NewCtor->setInheritedConstructor(BaseCtor);
7370
7371        PushOnScopeChains(NewCtor, S, false);
7372        ClassDecl->addDecl(NewCtor);
7373        result.first->second.second = NewCtor;
7374      }
7375    }
7376  }
7377}
7378
7379Sema::ImplicitExceptionSpecification
7380Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
7381  // C++ [except.spec]p14:
7382  //   An implicitly declared special member function (Clause 12) shall have
7383  //   an exception-specification.
7384  ImplicitExceptionSpecification ExceptSpec(Context);
7385  if (ClassDecl->isInvalidDecl())
7386    return ExceptSpec;
7387
7388  // Direct base-class destructors.
7389  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7390                                       BEnd = ClassDecl->bases_end();
7391       B != BEnd; ++B) {
7392    if (B->isVirtual()) // Handled below.
7393      continue;
7394
7395    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7396      ExceptSpec.CalledDecl(
7397                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7398  }
7399
7400  // Virtual base-class destructors.
7401  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7402                                       BEnd = ClassDecl->vbases_end();
7403       B != BEnd; ++B) {
7404    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
7405      ExceptSpec.CalledDecl(
7406                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
7407  }
7408
7409  // Field destructors.
7410  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7411                               FEnd = ClassDecl->field_end();
7412       F != FEnd; ++F) {
7413    if (const RecordType *RecordTy
7414        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
7415      ExceptSpec.CalledDecl(
7416                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
7417  }
7418
7419  return ExceptSpec;
7420}
7421
7422CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
7423  // C++ [class.dtor]p2:
7424  //   If a class has no user-declared destructor, a destructor is
7425  //   declared implicitly. An implicitly-declared destructor is an
7426  //   inline public member of its class.
7427
7428  ImplicitExceptionSpecification Spec =
7429      ComputeDefaultedDtorExceptionSpec(ClassDecl);
7430  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7431
7432  // Create the actual destructor declaration.
7433  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
7434
7435  CanQualType ClassType
7436    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7437  SourceLocation ClassLoc = ClassDecl->getLocation();
7438  DeclarationName Name
7439    = Context.DeclarationNames.getCXXDestructorName(ClassType);
7440  DeclarationNameInfo NameInfo(Name, ClassLoc);
7441  CXXDestructorDecl *Destructor
7442      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
7443                                  /*isInline=*/true,
7444                                  /*isImplicitlyDeclared=*/true);
7445  Destructor->setAccess(AS_public);
7446  Destructor->setDefaulted();
7447  Destructor->setImplicit();
7448  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
7449
7450  // Note that we have declared this destructor.
7451  ++ASTContext::NumImplicitDestructorsDeclared;
7452
7453  // Introduce this destructor into its scope.
7454  if (Scope *S = getScopeForContext(ClassDecl))
7455    PushOnScopeChains(Destructor, S, false);
7456  ClassDecl->addDecl(Destructor);
7457
7458  // This could be uniqued if it ever proves significant.
7459  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7460
7461  if (ShouldDeleteDestructor(Destructor))
7462    Destructor->setDeletedAsWritten();
7463
7464  AddOverriddenMethods(ClassDecl, Destructor);
7465
7466  return Destructor;
7467}
7468
7469void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7470                                    CXXDestructorDecl *Destructor) {
7471  assert((Destructor->isDefaulted() &&
7472          !Destructor->doesThisDeclarationHaveABody()) &&
7473         "DefineImplicitDestructor - call it for implicit default dtor");
7474  CXXRecordDecl *ClassDecl = Destructor->getParent();
7475  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7476
7477  if (Destructor->isInvalidDecl())
7478    return;
7479
7480  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7481
7482  DiagnosticErrorTrap Trap(Diags);
7483  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7484                                         Destructor->getParent());
7485
7486  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7487    Diag(CurrentLocation, diag::note_member_synthesized_at)
7488      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7489
7490    Destructor->setInvalidDecl();
7491    return;
7492  }
7493
7494  SourceLocation Loc = Destructor->getLocation();
7495  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7496  Destructor->setImplicitlyDefined(true);
7497  Destructor->setUsed();
7498  MarkVTableUsed(CurrentLocation, ClassDecl);
7499
7500  if (ASTMutationListener *L = getASTMutationListener()) {
7501    L->CompletedImplicitDefinition(Destructor);
7502  }
7503}
7504
7505void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7506                                         CXXDestructorDecl *destructor) {
7507  // C++11 [class.dtor]p3:
7508  //   A declaration of a destructor that does not have an exception-
7509  //   specification is implicitly considered to have the same exception-
7510  //   specification as an implicit declaration.
7511  const FunctionProtoType *dtorType = destructor->getType()->
7512                                        getAs<FunctionProtoType>();
7513  if (dtorType->hasExceptionSpec())
7514    return;
7515
7516  ImplicitExceptionSpecification exceptSpec =
7517      ComputeDefaultedDtorExceptionSpec(classDecl);
7518
7519  // Replace the destructor's type, building off the existing one. Fortunately,
7520  // the only thing of interest in the destructor type is its extended info.
7521  // The return and arguments are fixed.
7522  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7523  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7524  epi.NumExceptions = exceptSpec.size();
7525  epi.Exceptions = exceptSpec.data();
7526  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7527
7528  destructor->setType(ty);
7529
7530  // FIXME: If the destructor has a body that could throw, and the newly created
7531  // spec doesn't allow exceptions, we should emit a warning, because this
7532  // change in behavior can break conforming C++03 programs at runtime.
7533  // However, we don't have a body yet, so it needs to be done somewhere else.
7534}
7535
7536/// \brief Builds a statement that copies/moves the given entity from \p From to
7537/// \c To.
7538///
7539/// This routine is used to copy/move the members of a class with an
7540/// implicitly-declared copy/move assignment operator. When the entities being
7541/// copied are arrays, this routine builds for loops to copy them.
7542///
7543/// \param S The Sema object used for type-checking.
7544///
7545/// \param Loc The location where the implicit copy/move is being generated.
7546///
7547/// \param T The type of the expressions being copied/moved. Both expressions
7548/// must have this type.
7549///
7550/// \param To The expression we are copying/moving to.
7551///
7552/// \param From The expression we are copying/moving from.
7553///
7554/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7555/// Otherwise, it's a non-static member subobject.
7556///
7557/// \param Copying Whether we're copying or moving.
7558///
7559/// \param Depth Internal parameter recording the depth of the recursion.
7560///
7561/// \returns A statement or a loop that copies the expressions.
7562static StmtResult
7563BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7564                      Expr *To, Expr *From,
7565                      bool CopyingBaseSubobject, bool Copying,
7566                      unsigned Depth = 0) {
7567  // C++0x [class.copy]p28:
7568  //   Each subobject is assigned in the manner appropriate to its type:
7569  //
7570  //     - if the subobject is of class type, as if by a call to operator= with
7571  //       the subobject as the object expression and the corresponding
7572  //       subobject of x as a single function argument (as if by explicit
7573  //       qualification; that is, ignoring any possible virtual overriding
7574  //       functions in more derived classes);
7575  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7576    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7577
7578    // Look for operator=.
7579    DeclarationName Name
7580      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7581    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7582    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7583
7584    // Filter out any result that isn't a copy/move-assignment operator.
7585    LookupResult::Filter F = OpLookup.makeFilter();
7586    while (F.hasNext()) {
7587      NamedDecl *D = F.next();
7588      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7589        if (Copying ? Method->isCopyAssignmentOperator() :
7590                      Method->isMoveAssignmentOperator())
7591          continue;
7592
7593      F.erase();
7594    }
7595    F.done();
7596
7597    // Suppress the protected check (C++ [class.protected]) for each of the
7598    // assignment operators we found. This strange dance is required when
7599    // we're assigning via a base classes's copy-assignment operator. To
7600    // ensure that we're getting the right base class subobject (without
7601    // ambiguities), we need to cast "this" to that subobject type; to
7602    // ensure that we don't go through the virtual call mechanism, we need
7603    // to qualify the operator= name with the base class (see below). However,
7604    // this means that if the base class has a protected copy assignment
7605    // operator, the protected member access check will fail. So, we
7606    // rewrite "protected" access to "public" access in this case, since we
7607    // know by construction that we're calling from a derived class.
7608    if (CopyingBaseSubobject) {
7609      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7610           L != LEnd; ++L) {
7611        if (L.getAccess() == AS_protected)
7612          L.setAccess(AS_public);
7613      }
7614    }
7615
7616    // Create the nested-name-specifier that will be used to qualify the
7617    // reference to operator=; this is required to suppress the virtual
7618    // call mechanism.
7619    CXXScopeSpec SS;
7620    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7621    SS.MakeTrivial(S.Context,
7622                   NestedNameSpecifier::Create(S.Context, 0, false,
7623                                               CanonicalT),
7624                   Loc);
7625
7626    // Create the reference to operator=.
7627    ExprResult OpEqualRef
7628      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7629                                   /*TemplateKWLoc=*/SourceLocation(),
7630                                   /*FirstQualifierInScope=*/0,
7631                                   OpLookup,
7632                                   /*TemplateArgs=*/0,
7633                                   /*SuppressQualifierCheck=*/true);
7634    if (OpEqualRef.isInvalid())
7635      return StmtError();
7636
7637    // Build the call to the assignment operator.
7638
7639    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7640                                                  OpEqualRef.takeAs<Expr>(),
7641                                                  Loc, &From, 1, Loc);
7642    if (Call.isInvalid())
7643      return StmtError();
7644
7645    return S.Owned(Call.takeAs<Stmt>());
7646  }
7647
7648  //     - if the subobject is of scalar type, the built-in assignment
7649  //       operator is used.
7650  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7651  if (!ArrayTy) {
7652    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7653    if (Assignment.isInvalid())
7654      return StmtError();
7655
7656    return S.Owned(Assignment.takeAs<Stmt>());
7657  }
7658
7659  //     - if the subobject is an array, each element is assigned, in the
7660  //       manner appropriate to the element type;
7661
7662  // Construct a loop over the array bounds, e.g.,
7663  //
7664  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7665  //
7666  // that will copy each of the array elements.
7667  QualType SizeType = S.Context.getSizeType();
7668
7669  // Create the iteration variable.
7670  IdentifierInfo *IterationVarName = 0;
7671  {
7672    SmallString<8> Str;
7673    llvm::raw_svector_ostream OS(Str);
7674    OS << "__i" << Depth;
7675    IterationVarName = &S.Context.Idents.get(OS.str());
7676  }
7677  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7678                                          IterationVarName, SizeType,
7679                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7680                                          SC_None, SC_None);
7681
7682  // Initialize the iteration variable to zero.
7683  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7684  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7685
7686  // Create a reference to the iteration variable; we'll use this several
7687  // times throughout.
7688  Expr *IterationVarRef
7689    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7690  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7691  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7692  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7693
7694  // Create the DeclStmt that holds the iteration variable.
7695  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7696
7697  // Create the comparison against the array bound.
7698  llvm::APInt Upper
7699    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7700  Expr *Comparison
7701    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7702                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7703                                     BO_NE, S.Context.BoolTy,
7704                                     VK_RValue, OK_Ordinary, Loc);
7705
7706  // Create the pre-increment of the iteration variable.
7707  Expr *Increment
7708    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7709                                    VK_LValue, OK_Ordinary, Loc);
7710
7711  // Subscript the "from" and "to" expressions with the iteration variable.
7712  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7713                                                         IterationVarRefRVal,
7714                                                         Loc));
7715  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7716                                                       IterationVarRefRVal,
7717                                                       Loc));
7718  if (!Copying) // Cast to rvalue
7719    From = CastForMoving(S, From);
7720
7721  // Build the copy/move for an individual element of the array.
7722  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7723                                          To, From, CopyingBaseSubobject,
7724                                          Copying, Depth + 1);
7725  if (Copy.isInvalid())
7726    return StmtError();
7727
7728  // Construct the loop that copies all elements of this array.
7729  return S.ActOnForStmt(Loc, Loc, InitStmt,
7730                        S.MakeFullExpr(Comparison),
7731                        0, S.MakeFullExpr(Increment),
7732                        Loc, Copy.take());
7733}
7734
7735std::pair<Sema::ImplicitExceptionSpecification, bool>
7736Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7737                                                   CXXRecordDecl *ClassDecl) {
7738  if (ClassDecl->isInvalidDecl())
7739    return std::make_pair(ImplicitExceptionSpecification(Context), false);
7740
7741  // C++ [class.copy]p10:
7742  //   If the class definition does not explicitly declare a copy
7743  //   assignment operator, one is declared implicitly.
7744  //   The implicitly-defined copy assignment operator for a class X
7745  //   will have the form
7746  //
7747  //       X& X::operator=(const X&)
7748  //
7749  //   if
7750  bool HasConstCopyAssignment = true;
7751
7752  //       -- each direct base class B of X has a copy assignment operator
7753  //          whose parameter is of type const B&, const volatile B& or B,
7754  //          and
7755  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7756                                       BaseEnd = ClassDecl->bases_end();
7757       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7758    // We'll handle this below
7759    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7760      continue;
7761
7762    assert(!Base->getType()->isDependentType() &&
7763           "Cannot generate implicit members for class with dependent bases.");
7764    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7765    LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7766                            &HasConstCopyAssignment);
7767  }
7768
7769  // In C++11, the above citation has "or virtual" added
7770  if (LangOpts.CPlusPlus0x) {
7771    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7772                                         BaseEnd = ClassDecl->vbases_end();
7773         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7774      assert(!Base->getType()->isDependentType() &&
7775             "Cannot generate implicit members for class with dependent bases.");
7776      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7777      LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const, false, 0,
7778                              &HasConstCopyAssignment);
7779    }
7780  }
7781
7782  //       -- for all the nonstatic data members of X that are of a class
7783  //          type M (or array thereof), each such class type has a copy
7784  //          assignment operator whose parameter is of type const M&,
7785  //          const volatile M& or M.
7786  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7787                                  FieldEnd = ClassDecl->field_end();
7788       HasConstCopyAssignment && Field != FieldEnd;
7789       ++Field) {
7790    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7791    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7792      LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const, false, 0,
7793                              &HasConstCopyAssignment);
7794    }
7795  }
7796
7797  //   Otherwise, the implicitly declared copy assignment operator will
7798  //   have the form
7799  //
7800  //       X& X::operator=(X&)
7801
7802  // C++ [except.spec]p14:
7803  //   An implicitly declared special member function (Clause 12) shall have an
7804  //   exception-specification. [...]
7805
7806  // It is unspecified whether or not an implicit copy assignment operator
7807  // attempts to deduplicate calls to assignment operators of virtual bases are
7808  // made. As such, this exception specification is effectively unspecified.
7809  // Based on a similar decision made for constness in C++0x, we're erring on
7810  // the side of assuming such calls to be made regardless of whether they
7811  // actually happen.
7812  ImplicitExceptionSpecification ExceptSpec(Context);
7813  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7814  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7815                                       BaseEnd = ClassDecl->bases_end();
7816       Base != BaseEnd; ++Base) {
7817    if (Base->isVirtual())
7818      continue;
7819
7820    CXXRecordDecl *BaseClassDecl
7821      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7822    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7823                                                            ArgQuals, false, 0))
7824      ExceptSpec.CalledDecl(CopyAssign);
7825  }
7826
7827  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7828                                       BaseEnd = ClassDecl->vbases_end();
7829       Base != BaseEnd; ++Base) {
7830    CXXRecordDecl *BaseClassDecl
7831      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7832    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7833                                                            ArgQuals, false, 0))
7834      ExceptSpec.CalledDecl(CopyAssign);
7835  }
7836
7837  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7838                                  FieldEnd = ClassDecl->field_end();
7839       Field != FieldEnd;
7840       ++Field) {
7841    QualType FieldType = Context.getBaseElementType((*Field)->getType());
7842    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7843      if (CXXMethodDecl *CopyAssign =
7844          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7845        ExceptSpec.CalledDecl(CopyAssign);
7846    }
7847  }
7848
7849  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7850}
7851
7852CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7853  // Note: The following rules are largely analoguous to the copy
7854  // constructor rules. Note that virtual bases are not taken into account
7855  // for determining the argument type of the operator. Note also that
7856  // operators taking an object instead of a reference are allowed.
7857
7858  ImplicitExceptionSpecification Spec(Context);
7859  bool Const;
7860  llvm::tie(Spec, Const) =
7861    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7862
7863  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7864  QualType RetType = Context.getLValueReferenceType(ArgType);
7865  if (Const)
7866    ArgType = ArgType.withConst();
7867  ArgType = Context.getLValueReferenceType(ArgType);
7868
7869  //   An implicitly-declared copy assignment operator is an inline public
7870  //   member of its class.
7871  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7872  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7873  SourceLocation ClassLoc = ClassDecl->getLocation();
7874  DeclarationNameInfo NameInfo(Name, ClassLoc);
7875  CXXMethodDecl *CopyAssignment
7876    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7877                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7878                            /*TInfo=*/0, /*isStatic=*/false,
7879                            /*StorageClassAsWritten=*/SC_None,
7880                            /*isInline=*/true, /*isConstexpr=*/false,
7881                            SourceLocation());
7882  CopyAssignment->setAccess(AS_public);
7883  CopyAssignment->setDefaulted();
7884  CopyAssignment->setImplicit();
7885  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7886
7887  // Add the parameter to the operator.
7888  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7889                                               ClassLoc, ClassLoc, /*Id=*/0,
7890                                               ArgType, /*TInfo=*/0,
7891                                               SC_None,
7892                                               SC_None, 0);
7893  CopyAssignment->setParams(FromParam);
7894
7895  // Note that we have added this copy-assignment operator.
7896  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7897
7898  if (Scope *S = getScopeForContext(ClassDecl))
7899    PushOnScopeChains(CopyAssignment, S, false);
7900  ClassDecl->addDecl(CopyAssignment);
7901
7902  // C++0x [class.copy]p19:
7903  //   ....  If the class definition does not explicitly declare a copy
7904  //   assignment operator, there is no user-declared move constructor, and
7905  //   there is no user-declared move assignment operator, a copy assignment
7906  //   operator is implicitly declared as defaulted.
7907  if ((ClassDecl->hasUserDeclaredMoveConstructor() &&
7908          !getLangOptions().MicrosoftMode) ||
7909      ClassDecl->hasUserDeclaredMoveAssignment() ||
7910      ShouldDeleteCopyAssignmentOperator(CopyAssignment))
7911    CopyAssignment->setDeletedAsWritten();
7912
7913  AddOverriddenMethods(ClassDecl, CopyAssignment);
7914  return CopyAssignment;
7915}
7916
7917void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7918                                        CXXMethodDecl *CopyAssignOperator) {
7919  assert((CopyAssignOperator->isDefaulted() &&
7920          CopyAssignOperator->isOverloadedOperator() &&
7921          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7922          !CopyAssignOperator->doesThisDeclarationHaveABody()) &&
7923         "DefineImplicitCopyAssignment called for wrong function");
7924
7925  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7926
7927  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7928    CopyAssignOperator->setInvalidDecl();
7929    return;
7930  }
7931
7932  CopyAssignOperator->setUsed();
7933
7934  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7935  DiagnosticErrorTrap Trap(Diags);
7936
7937  // C++0x [class.copy]p30:
7938  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7939  //   for a non-union class X performs memberwise copy assignment of its
7940  //   subobjects. The direct base classes of X are assigned first, in the
7941  //   order of their declaration in the base-specifier-list, and then the
7942  //   immediate non-static data members of X are assigned, in the order in
7943  //   which they were declared in the class definition.
7944
7945  // The statements that form the synthesized function body.
7946  ASTOwningVector<Stmt*> Statements(*this);
7947
7948  // The parameter for the "other" object, which we are copying from.
7949  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7950  Qualifiers OtherQuals = Other->getType().getQualifiers();
7951  QualType OtherRefType = Other->getType();
7952  if (const LValueReferenceType *OtherRef
7953                                = OtherRefType->getAs<LValueReferenceType>()) {
7954    OtherRefType = OtherRef->getPointeeType();
7955    OtherQuals = OtherRefType.getQualifiers();
7956  }
7957
7958  // Our location for everything implicitly-generated.
7959  SourceLocation Loc = CopyAssignOperator->getLocation();
7960
7961  // Construct a reference to the "other" object. We'll be using this
7962  // throughout the generated ASTs.
7963  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7964  assert(OtherRef && "Reference to parameter cannot fail!");
7965
7966  // Construct the "this" pointer. We'll be using this throughout the generated
7967  // ASTs.
7968  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7969  assert(This && "Reference to this cannot fail!");
7970
7971  // Assign base classes.
7972  bool Invalid = false;
7973  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7974       E = ClassDecl->bases_end(); Base != E; ++Base) {
7975    // Form the assignment:
7976    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7977    QualType BaseType = Base->getType().getUnqualifiedType();
7978    if (!BaseType->isRecordType()) {
7979      Invalid = true;
7980      continue;
7981    }
7982
7983    CXXCastPath BasePath;
7984    BasePath.push_back(Base);
7985
7986    // Construct the "from" expression, which is an implicit cast to the
7987    // appropriately-qualified base type.
7988    Expr *From = OtherRef;
7989    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7990                             CK_UncheckedDerivedToBase,
7991                             VK_LValue, &BasePath).take();
7992
7993    // Dereference "this".
7994    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7995
7996    // Implicitly cast "this" to the appropriately-qualified base type.
7997    To = ImpCastExprToType(To.take(),
7998                           Context.getCVRQualifiedType(BaseType,
7999                                     CopyAssignOperator->getTypeQualifiers()),
8000                           CK_UncheckedDerivedToBase,
8001                           VK_LValue, &BasePath);
8002
8003    // Build the copy.
8004    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
8005                                            To.get(), From,
8006                                            /*CopyingBaseSubobject=*/true,
8007                                            /*Copying=*/true);
8008    if (Copy.isInvalid()) {
8009      Diag(CurrentLocation, diag::note_member_synthesized_at)
8010        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8011      CopyAssignOperator->setInvalidDecl();
8012      return;
8013    }
8014
8015    // Success! Record the copy.
8016    Statements.push_back(Copy.takeAs<Expr>());
8017  }
8018
8019  // \brief Reference to the __builtin_memcpy function.
8020  Expr *BuiltinMemCpyRef = 0;
8021  // \brief Reference to the __builtin_objc_memmove_collectable function.
8022  Expr *CollectableMemCpyRef = 0;
8023
8024  // Assign non-static members.
8025  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8026                                  FieldEnd = ClassDecl->field_end();
8027       Field != FieldEnd; ++Field) {
8028    if (Field->isUnnamedBitfield())
8029      continue;
8030
8031    // Check for members of reference type; we can't copy those.
8032    if (Field->getType()->isReferenceType()) {
8033      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8034        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8035      Diag(Field->getLocation(), diag::note_declared_at);
8036      Diag(CurrentLocation, diag::note_member_synthesized_at)
8037        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8038      Invalid = true;
8039      continue;
8040    }
8041
8042    // Check for members of const-qualified, non-class type.
8043    QualType BaseType = Context.getBaseElementType(Field->getType());
8044    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8045      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8046        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8047      Diag(Field->getLocation(), diag::note_declared_at);
8048      Diag(CurrentLocation, diag::note_member_synthesized_at)
8049        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8050      Invalid = true;
8051      continue;
8052    }
8053
8054    // Suppress assigning zero-width bitfields.
8055    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8056      continue;
8057
8058    QualType FieldType = Field->getType().getNonReferenceType();
8059    if (FieldType->isIncompleteArrayType()) {
8060      assert(ClassDecl->hasFlexibleArrayMember() &&
8061             "Incomplete array type is not valid");
8062      continue;
8063    }
8064
8065    // Build references to the field in the object we're copying from and to.
8066    CXXScopeSpec SS; // Intentionally empty
8067    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8068                              LookupMemberName);
8069    MemberLookup.addDecl(*Field);
8070    MemberLookup.resolveKind();
8071    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8072                                               Loc, /*IsArrow=*/false,
8073                                               SS, SourceLocation(), 0,
8074                                               MemberLookup, 0);
8075    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8076                                             Loc, /*IsArrow=*/true,
8077                                             SS, SourceLocation(), 0,
8078                                             MemberLookup, 0);
8079    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8080    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8081
8082    // If the field should be copied with __builtin_memcpy rather than via
8083    // explicit assignments, do so. This optimization only applies for arrays
8084    // of scalars and arrays of class type with trivial copy-assignment
8085    // operators.
8086    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8087        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
8088      // Compute the size of the memory buffer to be copied.
8089      QualType SizeType = Context.getSizeType();
8090      llvm::APInt Size(Context.getTypeSize(SizeType),
8091                       Context.getTypeSizeInChars(BaseType).getQuantity());
8092      for (const ConstantArrayType *Array
8093              = Context.getAsConstantArrayType(FieldType);
8094           Array;
8095           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8096        llvm::APInt ArraySize
8097          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8098        Size *= ArraySize;
8099      }
8100
8101      // Take the address of the field references for "from" and "to".
8102      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
8103      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
8104
8105      bool NeedsCollectableMemCpy =
8106          (BaseType->isRecordType() &&
8107           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8108
8109      if (NeedsCollectableMemCpy) {
8110        if (!CollectableMemCpyRef) {
8111          // Create a reference to the __builtin_objc_memmove_collectable function.
8112          LookupResult R(*this,
8113                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8114                         Loc, LookupOrdinaryName);
8115          LookupName(R, TUScope, true);
8116
8117          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8118          if (!CollectableMemCpy) {
8119            // Something went horribly wrong earlier, and we will have
8120            // complained about it.
8121            Invalid = true;
8122            continue;
8123          }
8124
8125          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8126                                                  CollectableMemCpy->getType(),
8127                                                  VK_LValue, Loc, 0).take();
8128          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8129        }
8130      }
8131      // Create a reference to the __builtin_memcpy builtin function.
8132      else if (!BuiltinMemCpyRef) {
8133        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8134                       LookupOrdinaryName);
8135        LookupName(R, TUScope, true);
8136
8137        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8138        if (!BuiltinMemCpy) {
8139          // Something went horribly wrong earlier, and we will have complained
8140          // about it.
8141          Invalid = true;
8142          continue;
8143        }
8144
8145        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8146                                            BuiltinMemCpy->getType(),
8147                                            VK_LValue, Loc, 0).take();
8148        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8149      }
8150
8151      ASTOwningVector<Expr*> CallArgs(*this);
8152      CallArgs.push_back(To.takeAs<Expr>());
8153      CallArgs.push_back(From.takeAs<Expr>());
8154      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8155      ExprResult Call = ExprError();
8156      if (NeedsCollectableMemCpy)
8157        Call = ActOnCallExpr(/*Scope=*/0,
8158                             CollectableMemCpyRef,
8159                             Loc, move_arg(CallArgs),
8160                             Loc);
8161      else
8162        Call = ActOnCallExpr(/*Scope=*/0,
8163                             BuiltinMemCpyRef,
8164                             Loc, move_arg(CallArgs),
8165                             Loc);
8166
8167      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8168      Statements.push_back(Call.takeAs<Expr>());
8169      continue;
8170    }
8171
8172    // Build the copy of this field.
8173    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
8174                                            To.get(), From.get(),
8175                                            /*CopyingBaseSubobject=*/false,
8176                                            /*Copying=*/true);
8177    if (Copy.isInvalid()) {
8178      Diag(CurrentLocation, diag::note_member_synthesized_at)
8179        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8180      CopyAssignOperator->setInvalidDecl();
8181      return;
8182    }
8183
8184    // Success! Record the copy.
8185    Statements.push_back(Copy.takeAs<Stmt>());
8186  }
8187
8188  if (!Invalid) {
8189    // Add a "return *this;"
8190    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8191
8192    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8193    if (Return.isInvalid())
8194      Invalid = true;
8195    else {
8196      Statements.push_back(Return.takeAs<Stmt>());
8197
8198      if (Trap.hasErrorOccurred()) {
8199        Diag(CurrentLocation, diag::note_member_synthesized_at)
8200          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8201        Invalid = true;
8202      }
8203    }
8204  }
8205
8206  if (Invalid) {
8207    CopyAssignOperator->setInvalidDecl();
8208    return;
8209  }
8210
8211  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8212                                            /*isStmtExpr=*/false);
8213  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8214  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
8215
8216  if (ASTMutationListener *L = getASTMutationListener()) {
8217    L->CompletedImplicitDefinition(CopyAssignOperator);
8218  }
8219}
8220
8221Sema::ImplicitExceptionSpecification
8222Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
8223  ImplicitExceptionSpecification ExceptSpec(Context);
8224
8225  if (ClassDecl->isInvalidDecl())
8226    return ExceptSpec;
8227
8228  // C++0x [except.spec]p14:
8229  //   An implicitly declared special member function (Clause 12) shall have an
8230  //   exception-specification. [...]
8231
8232  // It is unspecified whether or not an implicit move assignment operator
8233  // attempts to deduplicate calls to assignment operators of virtual bases are
8234  // made. As such, this exception specification is effectively unspecified.
8235  // Based on a similar decision made for constness in C++0x, we're erring on
8236  // the side of assuming such calls to be made regardless of whether they
8237  // actually happen.
8238  // Note that a move constructor is not implicitly declared when there are
8239  // virtual bases, but it can still be user-declared and explicitly defaulted.
8240  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8241                                       BaseEnd = ClassDecl->bases_end();
8242       Base != BaseEnd; ++Base) {
8243    if (Base->isVirtual())
8244      continue;
8245
8246    CXXRecordDecl *BaseClassDecl
8247      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8248    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8249                                                           false, 0))
8250      ExceptSpec.CalledDecl(MoveAssign);
8251  }
8252
8253  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8254                                       BaseEnd = ClassDecl->vbases_end();
8255       Base != BaseEnd; ++Base) {
8256    CXXRecordDecl *BaseClassDecl
8257      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8258    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
8259                                                           false, 0))
8260      ExceptSpec.CalledDecl(MoveAssign);
8261  }
8262
8263  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8264                                  FieldEnd = ClassDecl->field_end();
8265       Field != FieldEnd;
8266       ++Field) {
8267    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8268    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8269      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
8270                                                             false, 0))
8271        ExceptSpec.CalledDecl(MoveAssign);
8272    }
8273  }
8274
8275  return ExceptSpec;
8276}
8277
8278CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
8279  // Note: The following rules are largely analoguous to the move
8280  // constructor rules.
8281
8282  ImplicitExceptionSpecification Spec(
8283      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
8284
8285  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8286  QualType RetType = Context.getLValueReferenceType(ArgType);
8287  ArgType = Context.getRValueReferenceType(ArgType);
8288
8289  //   An implicitly-declared move assignment operator is an inline public
8290  //   member of its class.
8291  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8292  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8293  SourceLocation ClassLoc = ClassDecl->getLocation();
8294  DeclarationNameInfo NameInfo(Name, ClassLoc);
8295  CXXMethodDecl *MoveAssignment
8296    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8297                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
8298                            /*TInfo=*/0, /*isStatic=*/false,
8299                            /*StorageClassAsWritten=*/SC_None,
8300                            /*isInline=*/true,
8301                            /*isConstexpr=*/false,
8302                            SourceLocation());
8303  MoveAssignment->setAccess(AS_public);
8304  MoveAssignment->setDefaulted();
8305  MoveAssignment->setImplicit();
8306  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8307
8308  // Add the parameter to the operator.
8309  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8310                                               ClassLoc, ClassLoc, /*Id=*/0,
8311                                               ArgType, /*TInfo=*/0,
8312                                               SC_None,
8313                                               SC_None, 0);
8314  MoveAssignment->setParams(FromParam);
8315
8316  // Note that we have added this copy-assignment operator.
8317  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8318
8319  // C++0x [class.copy]p9:
8320  //   If the definition of a class X does not explicitly declare a move
8321  //   assignment operator, one will be implicitly declared as defaulted if and
8322  //   only if:
8323  //   [...]
8324  //   - the move assignment operator would not be implicitly defined as
8325  //     deleted.
8326  if (ShouldDeleteMoveAssignmentOperator(MoveAssignment)) {
8327    // Cache this result so that we don't try to generate this over and over
8328    // on every lookup, leaking memory and wasting time.
8329    ClassDecl->setFailedImplicitMoveAssignment();
8330    return 0;
8331  }
8332
8333  if (Scope *S = getScopeForContext(ClassDecl))
8334    PushOnScopeChains(MoveAssignment, S, false);
8335  ClassDecl->addDecl(MoveAssignment);
8336
8337  AddOverriddenMethods(ClassDecl, MoveAssignment);
8338  return MoveAssignment;
8339}
8340
8341void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8342                                        CXXMethodDecl *MoveAssignOperator) {
8343  assert((MoveAssignOperator->isDefaulted() &&
8344          MoveAssignOperator->isOverloadedOperator() &&
8345          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8346          !MoveAssignOperator->doesThisDeclarationHaveABody()) &&
8347         "DefineImplicitMoveAssignment called for wrong function");
8348
8349  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8350
8351  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8352    MoveAssignOperator->setInvalidDecl();
8353    return;
8354  }
8355
8356  MoveAssignOperator->setUsed();
8357
8358  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8359  DiagnosticErrorTrap Trap(Diags);
8360
8361  // C++0x [class.copy]p28:
8362  //   The implicitly-defined or move assignment operator for a non-union class
8363  //   X performs memberwise move assignment of its subobjects. The direct base
8364  //   classes of X are assigned first, in the order of their declaration in the
8365  //   base-specifier-list, and then the immediate non-static data members of X
8366  //   are assigned, in the order in which they were declared in the class
8367  //   definition.
8368
8369  // The statements that form the synthesized function body.
8370  ASTOwningVector<Stmt*> Statements(*this);
8371
8372  // The parameter for the "other" object, which we are move from.
8373  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8374  QualType OtherRefType = Other->getType()->
8375      getAs<RValueReferenceType>()->getPointeeType();
8376  assert(OtherRefType.getQualifiers() == 0 &&
8377         "Bad argument type of defaulted move assignment");
8378
8379  // Our location for everything implicitly-generated.
8380  SourceLocation Loc = MoveAssignOperator->getLocation();
8381
8382  // Construct a reference to the "other" object. We'll be using this
8383  // throughout the generated ASTs.
8384  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8385  assert(OtherRef && "Reference to parameter cannot fail!");
8386  // Cast to rvalue.
8387  OtherRef = CastForMoving(*this, OtherRef);
8388
8389  // Construct the "this" pointer. We'll be using this throughout the generated
8390  // ASTs.
8391  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8392  assert(This && "Reference to this cannot fail!");
8393
8394  // Assign base classes.
8395  bool Invalid = false;
8396  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8397       E = ClassDecl->bases_end(); Base != E; ++Base) {
8398    // Form the assignment:
8399    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8400    QualType BaseType = Base->getType().getUnqualifiedType();
8401    if (!BaseType->isRecordType()) {
8402      Invalid = true;
8403      continue;
8404    }
8405
8406    CXXCastPath BasePath;
8407    BasePath.push_back(Base);
8408
8409    // Construct the "from" expression, which is an implicit cast to the
8410    // appropriately-qualified base type.
8411    Expr *From = OtherRef;
8412    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8413                             VK_XValue, &BasePath).take();
8414
8415    // Dereference "this".
8416    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8417
8418    // Implicitly cast "this" to the appropriately-qualified base type.
8419    To = ImpCastExprToType(To.take(),
8420                           Context.getCVRQualifiedType(BaseType,
8421                                     MoveAssignOperator->getTypeQualifiers()),
8422                           CK_UncheckedDerivedToBase,
8423                           VK_LValue, &BasePath);
8424
8425    // Build the move.
8426    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8427                                            To.get(), From,
8428                                            /*CopyingBaseSubobject=*/true,
8429                                            /*Copying=*/false);
8430    if (Move.isInvalid()) {
8431      Diag(CurrentLocation, diag::note_member_synthesized_at)
8432        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8433      MoveAssignOperator->setInvalidDecl();
8434      return;
8435    }
8436
8437    // Success! Record the move.
8438    Statements.push_back(Move.takeAs<Expr>());
8439  }
8440
8441  // \brief Reference to the __builtin_memcpy function.
8442  Expr *BuiltinMemCpyRef = 0;
8443  // \brief Reference to the __builtin_objc_memmove_collectable function.
8444  Expr *CollectableMemCpyRef = 0;
8445
8446  // Assign non-static members.
8447  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8448                                  FieldEnd = ClassDecl->field_end();
8449       Field != FieldEnd; ++Field) {
8450    if (Field->isUnnamedBitfield())
8451      continue;
8452
8453    // Check for members of reference type; we can't move those.
8454    if (Field->getType()->isReferenceType()) {
8455      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8456        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8457      Diag(Field->getLocation(), diag::note_declared_at);
8458      Diag(CurrentLocation, diag::note_member_synthesized_at)
8459        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8460      Invalid = true;
8461      continue;
8462    }
8463
8464    // Check for members of const-qualified, non-class type.
8465    QualType BaseType = Context.getBaseElementType(Field->getType());
8466    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8467      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8468        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8469      Diag(Field->getLocation(), diag::note_declared_at);
8470      Diag(CurrentLocation, diag::note_member_synthesized_at)
8471        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8472      Invalid = true;
8473      continue;
8474    }
8475
8476    // Suppress assigning zero-width bitfields.
8477    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8478      continue;
8479
8480    QualType FieldType = Field->getType().getNonReferenceType();
8481    if (FieldType->isIncompleteArrayType()) {
8482      assert(ClassDecl->hasFlexibleArrayMember() &&
8483             "Incomplete array type is not valid");
8484      continue;
8485    }
8486
8487    // Build references to the field in the object we're copying from and to.
8488    CXXScopeSpec SS; // Intentionally empty
8489    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8490                              LookupMemberName);
8491    MemberLookup.addDecl(*Field);
8492    MemberLookup.resolveKind();
8493    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8494                                               Loc, /*IsArrow=*/false,
8495                                               SS, SourceLocation(), 0,
8496                                               MemberLookup, 0);
8497    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8498                                             Loc, /*IsArrow=*/true,
8499                                             SS, SourceLocation(), 0,
8500                                             MemberLookup, 0);
8501    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8502    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8503
8504    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8505        "Member reference with rvalue base must be rvalue except for reference "
8506        "members, which aren't allowed for move assignment.");
8507
8508    // If the field should be copied with __builtin_memcpy rather than via
8509    // explicit assignments, do so. This optimization only applies for arrays
8510    // of scalars and arrays of class type with trivial move-assignment
8511    // operators.
8512    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8513        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8514      // Compute the size of the memory buffer to be copied.
8515      QualType SizeType = Context.getSizeType();
8516      llvm::APInt Size(Context.getTypeSize(SizeType),
8517                       Context.getTypeSizeInChars(BaseType).getQuantity());
8518      for (const ConstantArrayType *Array
8519              = Context.getAsConstantArrayType(FieldType);
8520           Array;
8521           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8522        llvm::APInt ArraySize
8523          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8524        Size *= ArraySize;
8525      }
8526
8527      // Take the address of the field references for "from" and "to". We
8528      // directly construct UnaryOperators here because semantic analysis
8529      // does not permit us to take the address of an xvalue.
8530      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8531                             Context.getPointerType(From.get()->getType()),
8532                             VK_RValue, OK_Ordinary, Loc);
8533      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8534                           Context.getPointerType(To.get()->getType()),
8535                           VK_RValue, OK_Ordinary, Loc);
8536
8537      bool NeedsCollectableMemCpy =
8538          (BaseType->isRecordType() &&
8539           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8540
8541      if (NeedsCollectableMemCpy) {
8542        if (!CollectableMemCpyRef) {
8543          // Create a reference to the __builtin_objc_memmove_collectable function.
8544          LookupResult R(*this,
8545                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8546                         Loc, LookupOrdinaryName);
8547          LookupName(R, TUScope, true);
8548
8549          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8550          if (!CollectableMemCpy) {
8551            // Something went horribly wrong earlier, and we will have
8552            // complained about it.
8553            Invalid = true;
8554            continue;
8555          }
8556
8557          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8558                                                  CollectableMemCpy->getType(),
8559                                                  VK_LValue, Loc, 0).take();
8560          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8561        }
8562      }
8563      // Create a reference to the __builtin_memcpy builtin function.
8564      else if (!BuiltinMemCpyRef) {
8565        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8566                       LookupOrdinaryName);
8567        LookupName(R, TUScope, true);
8568
8569        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8570        if (!BuiltinMemCpy) {
8571          // Something went horribly wrong earlier, and we will have complained
8572          // about it.
8573          Invalid = true;
8574          continue;
8575        }
8576
8577        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8578                                            BuiltinMemCpy->getType(),
8579                                            VK_LValue, Loc, 0).take();
8580        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8581      }
8582
8583      ASTOwningVector<Expr*> CallArgs(*this);
8584      CallArgs.push_back(To.takeAs<Expr>());
8585      CallArgs.push_back(From.takeAs<Expr>());
8586      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8587      ExprResult Call = ExprError();
8588      if (NeedsCollectableMemCpy)
8589        Call = ActOnCallExpr(/*Scope=*/0,
8590                             CollectableMemCpyRef,
8591                             Loc, move_arg(CallArgs),
8592                             Loc);
8593      else
8594        Call = ActOnCallExpr(/*Scope=*/0,
8595                             BuiltinMemCpyRef,
8596                             Loc, move_arg(CallArgs),
8597                             Loc);
8598
8599      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8600      Statements.push_back(Call.takeAs<Expr>());
8601      continue;
8602    }
8603
8604    // Build the move of this field.
8605    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8606                                            To.get(), From.get(),
8607                                            /*CopyingBaseSubobject=*/false,
8608                                            /*Copying=*/false);
8609    if (Move.isInvalid()) {
8610      Diag(CurrentLocation, diag::note_member_synthesized_at)
8611        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8612      MoveAssignOperator->setInvalidDecl();
8613      return;
8614    }
8615
8616    // Success! Record the copy.
8617    Statements.push_back(Move.takeAs<Stmt>());
8618  }
8619
8620  if (!Invalid) {
8621    // Add a "return *this;"
8622    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8623
8624    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8625    if (Return.isInvalid())
8626      Invalid = true;
8627    else {
8628      Statements.push_back(Return.takeAs<Stmt>());
8629
8630      if (Trap.hasErrorOccurred()) {
8631        Diag(CurrentLocation, diag::note_member_synthesized_at)
8632          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8633        Invalid = true;
8634      }
8635    }
8636  }
8637
8638  if (Invalid) {
8639    MoveAssignOperator->setInvalidDecl();
8640    return;
8641  }
8642
8643  StmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8644                                            /*isStmtExpr=*/false);
8645  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8646  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8647
8648  if (ASTMutationListener *L = getASTMutationListener()) {
8649    L->CompletedImplicitDefinition(MoveAssignOperator);
8650  }
8651}
8652
8653std::pair<Sema::ImplicitExceptionSpecification, bool>
8654Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8655  if (ClassDecl->isInvalidDecl())
8656    return std::make_pair(ImplicitExceptionSpecification(Context), false);
8657
8658  // C++ [class.copy]p5:
8659  //   The implicitly-declared copy constructor for a class X will
8660  //   have the form
8661  //
8662  //       X::X(const X&)
8663  //
8664  //   if
8665  // FIXME: It ought to be possible to store this on the record.
8666  bool HasConstCopyConstructor = true;
8667
8668  //     -- each direct or virtual base class B of X has a copy
8669  //        constructor whose first parameter is of type const B& or
8670  //        const volatile B&, and
8671  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8672                                       BaseEnd = ClassDecl->bases_end();
8673       HasConstCopyConstructor && Base != BaseEnd;
8674       ++Base) {
8675    // Virtual bases are handled below.
8676    if (Base->isVirtual())
8677      continue;
8678
8679    CXXRecordDecl *BaseClassDecl
8680      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8681    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8682                             &HasConstCopyConstructor);
8683  }
8684
8685  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8686                                       BaseEnd = ClassDecl->vbases_end();
8687       HasConstCopyConstructor && Base != BaseEnd;
8688       ++Base) {
8689    CXXRecordDecl *BaseClassDecl
8690      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8691    LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const,
8692                             &HasConstCopyConstructor);
8693  }
8694
8695  //     -- for all the nonstatic data members of X that are of a
8696  //        class type M (or array thereof), each such class type
8697  //        has a copy constructor whose first parameter is of type
8698  //        const M& or const volatile M&.
8699  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8700                                  FieldEnd = ClassDecl->field_end();
8701       HasConstCopyConstructor && Field != FieldEnd;
8702       ++Field) {
8703    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8704    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8705      LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const,
8706                               &HasConstCopyConstructor);
8707    }
8708  }
8709  //   Otherwise, the implicitly declared copy constructor will have
8710  //   the form
8711  //
8712  //       X::X(X&)
8713
8714  // C++ [except.spec]p14:
8715  //   An implicitly declared special member function (Clause 12) shall have an
8716  //   exception-specification. [...]
8717  ImplicitExceptionSpecification ExceptSpec(Context);
8718  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8719  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8720                                       BaseEnd = ClassDecl->bases_end();
8721       Base != BaseEnd;
8722       ++Base) {
8723    // Virtual bases are handled below.
8724    if (Base->isVirtual())
8725      continue;
8726
8727    CXXRecordDecl *BaseClassDecl
8728      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8729    if (CXXConstructorDecl *CopyConstructor =
8730          LookupCopyingConstructor(BaseClassDecl, Quals))
8731      ExceptSpec.CalledDecl(CopyConstructor);
8732  }
8733  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8734                                       BaseEnd = ClassDecl->vbases_end();
8735       Base != BaseEnd;
8736       ++Base) {
8737    CXXRecordDecl *BaseClassDecl
8738      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8739    if (CXXConstructorDecl *CopyConstructor =
8740          LookupCopyingConstructor(BaseClassDecl, Quals))
8741      ExceptSpec.CalledDecl(CopyConstructor);
8742  }
8743  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8744                                  FieldEnd = ClassDecl->field_end();
8745       Field != FieldEnd;
8746       ++Field) {
8747    QualType FieldType = Context.getBaseElementType((*Field)->getType());
8748    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8749      if (CXXConstructorDecl *CopyConstructor =
8750        LookupCopyingConstructor(FieldClassDecl, Quals))
8751      ExceptSpec.CalledDecl(CopyConstructor);
8752    }
8753  }
8754
8755  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8756}
8757
8758CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8759                                                    CXXRecordDecl *ClassDecl) {
8760  // C++ [class.copy]p4:
8761  //   If the class definition does not explicitly declare a copy
8762  //   constructor, one is declared implicitly.
8763
8764  ImplicitExceptionSpecification Spec(Context);
8765  bool Const;
8766  llvm::tie(Spec, Const) =
8767    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8768
8769  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8770  QualType ArgType = ClassType;
8771  if (Const)
8772    ArgType = ArgType.withConst();
8773  ArgType = Context.getLValueReferenceType(ArgType);
8774
8775  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8776
8777  DeclarationName Name
8778    = Context.DeclarationNames.getCXXConstructorName(
8779                                           Context.getCanonicalType(ClassType));
8780  SourceLocation ClassLoc = ClassDecl->getLocation();
8781  DeclarationNameInfo NameInfo(Name, ClassLoc);
8782
8783  //   An implicitly-declared copy constructor is an inline public
8784  //   member of its class.
8785  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8786      Context, ClassDecl, ClassLoc, NameInfo,
8787      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8788      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8789      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8790        getLangOptions().CPlusPlus0x);
8791  CopyConstructor->setAccess(AS_public);
8792  CopyConstructor->setDefaulted();
8793  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8794
8795  // Note that we have declared this constructor.
8796  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8797
8798  // Add the parameter to the constructor.
8799  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8800                                               ClassLoc, ClassLoc,
8801                                               /*IdentifierInfo=*/0,
8802                                               ArgType, /*TInfo=*/0,
8803                                               SC_None,
8804                                               SC_None, 0);
8805  CopyConstructor->setParams(FromParam);
8806
8807  if (Scope *S = getScopeForContext(ClassDecl))
8808    PushOnScopeChains(CopyConstructor, S, false);
8809  ClassDecl->addDecl(CopyConstructor);
8810
8811  // C++11 [class.copy]p8:
8812  //   ... If the class definition does not explicitly declare a copy
8813  //   constructor, there is no user-declared move constructor, and there is no
8814  //   user-declared move assignment operator, a copy constructor is implicitly
8815  //   declared as defaulted.
8816  if (ClassDecl->hasUserDeclaredMoveConstructor() ||
8817      (ClassDecl->hasUserDeclaredMoveAssignment() &&
8818          !getLangOptions().MicrosoftMode) ||
8819      ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8820    CopyConstructor->setDeletedAsWritten();
8821
8822  return CopyConstructor;
8823}
8824
8825void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8826                                   CXXConstructorDecl *CopyConstructor) {
8827  assert((CopyConstructor->isDefaulted() &&
8828          CopyConstructor->isCopyConstructor() &&
8829          !CopyConstructor->doesThisDeclarationHaveABody()) &&
8830         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8831
8832  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8833  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8834
8835  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8836  DiagnosticErrorTrap Trap(Diags);
8837
8838  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8839      Trap.hasErrorOccurred()) {
8840    Diag(CurrentLocation, diag::note_member_synthesized_at)
8841      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8842    CopyConstructor->setInvalidDecl();
8843  }  else {
8844    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8845                                               CopyConstructor->getLocation(),
8846                                               MultiStmtArg(*this, 0, 0),
8847                                               /*isStmtExpr=*/false)
8848                                                              .takeAs<Stmt>());
8849    CopyConstructor->setImplicitlyDefined(true);
8850  }
8851
8852  CopyConstructor->setUsed();
8853  if (ASTMutationListener *L = getASTMutationListener()) {
8854    L->CompletedImplicitDefinition(CopyConstructor);
8855  }
8856}
8857
8858Sema::ImplicitExceptionSpecification
8859Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8860  // C++ [except.spec]p14:
8861  //   An implicitly declared special member function (Clause 12) shall have an
8862  //   exception-specification. [...]
8863  ImplicitExceptionSpecification ExceptSpec(Context);
8864  if (ClassDecl->isInvalidDecl())
8865    return ExceptSpec;
8866
8867  // Direct base-class constructors.
8868  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8869                                       BEnd = ClassDecl->bases_end();
8870       B != BEnd; ++B) {
8871    if (B->isVirtual()) // Handled below.
8872      continue;
8873
8874    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8875      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8876      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8877      // If this is a deleted function, add it anyway. This might be conformant
8878      // with the standard. This might not. I'm not sure. It might not matter.
8879      if (Constructor)
8880        ExceptSpec.CalledDecl(Constructor);
8881    }
8882  }
8883
8884  // Virtual base-class constructors.
8885  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8886                                       BEnd = ClassDecl->vbases_end();
8887       B != BEnd; ++B) {
8888    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8889      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8890      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8891      // If this is a deleted function, add it anyway. This might be conformant
8892      // with the standard. This might not. I'm not sure. It might not matter.
8893      if (Constructor)
8894        ExceptSpec.CalledDecl(Constructor);
8895    }
8896  }
8897
8898  // Field constructors.
8899  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8900                               FEnd = ClassDecl->field_end();
8901       F != FEnd; ++F) {
8902    if (const RecordType *RecordTy
8903              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8904      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8905      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8906      // If this is a deleted function, add it anyway. This might be conformant
8907      // with the standard. This might not. I'm not sure. It might not matter.
8908      // In particular, the problem is that this function never gets called. It
8909      // might just be ill-formed because this function attempts to refer to
8910      // a deleted function here.
8911      if (Constructor)
8912        ExceptSpec.CalledDecl(Constructor);
8913    }
8914  }
8915
8916  return ExceptSpec;
8917}
8918
8919CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8920                                                    CXXRecordDecl *ClassDecl) {
8921  ImplicitExceptionSpecification Spec(
8922      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8923
8924  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8925  QualType ArgType = Context.getRValueReferenceType(ClassType);
8926
8927  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8928
8929  DeclarationName Name
8930    = Context.DeclarationNames.getCXXConstructorName(
8931                                           Context.getCanonicalType(ClassType));
8932  SourceLocation ClassLoc = ClassDecl->getLocation();
8933  DeclarationNameInfo NameInfo(Name, ClassLoc);
8934
8935  // C++0x [class.copy]p11:
8936  //   An implicitly-declared copy/move constructor is an inline public
8937  //   member of its class.
8938  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8939      Context, ClassDecl, ClassLoc, NameInfo,
8940      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8941      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8942      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8943        getLangOptions().CPlusPlus0x);
8944  MoveConstructor->setAccess(AS_public);
8945  MoveConstructor->setDefaulted();
8946  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8947
8948  // Add the parameter to the constructor.
8949  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8950                                               ClassLoc, ClassLoc,
8951                                               /*IdentifierInfo=*/0,
8952                                               ArgType, /*TInfo=*/0,
8953                                               SC_None,
8954                                               SC_None, 0);
8955  MoveConstructor->setParams(FromParam);
8956
8957  // C++0x [class.copy]p9:
8958  //   If the definition of a class X does not explicitly declare a move
8959  //   constructor, one will be implicitly declared as defaulted if and only if:
8960  //   [...]
8961  //   - the move constructor would not be implicitly defined as deleted.
8962  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8963    // Cache this result so that we don't try to generate this over and over
8964    // on every lookup, leaking memory and wasting time.
8965    ClassDecl->setFailedImplicitMoveConstructor();
8966    return 0;
8967  }
8968
8969  // Note that we have declared this constructor.
8970  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8971
8972  if (Scope *S = getScopeForContext(ClassDecl))
8973    PushOnScopeChains(MoveConstructor, S, false);
8974  ClassDecl->addDecl(MoveConstructor);
8975
8976  return MoveConstructor;
8977}
8978
8979void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8980                                   CXXConstructorDecl *MoveConstructor) {
8981  assert((MoveConstructor->isDefaulted() &&
8982          MoveConstructor->isMoveConstructor() &&
8983          !MoveConstructor->doesThisDeclarationHaveABody()) &&
8984         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8985
8986  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8987  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8988
8989  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8990  DiagnosticErrorTrap Trap(Diags);
8991
8992  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8993      Trap.hasErrorOccurred()) {
8994    Diag(CurrentLocation, diag::note_member_synthesized_at)
8995      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8996    MoveConstructor->setInvalidDecl();
8997  }  else {
8998    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8999                                               MoveConstructor->getLocation(),
9000                                               MultiStmtArg(*this, 0, 0),
9001                                               /*isStmtExpr=*/false)
9002                                                              .takeAs<Stmt>());
9003    MoveConstructor->setImplicitlyDefined(true);
9004  }
9005
9006  MoveConstructor->setUsed();
9007
9008  if (ASTMutationListener *L = getASTMutationListener()) {
9009    L->CompletedImplicitDefinition(MoveConstructor);
9010  }
9011}
9012
9013ExprResult
9014Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9015                            CXXConstructorDecl *Constructor,
9016                            MultiExprArg ExprArgs,
9017                            bool HadMultipleCandidates,
9018                            bool RequiresZeroInit,
9019                            unsigned ConstructKind,
9020                            SourceRange ParenRange) {
9021  bool Elidable = false;
9022
9023  // C++0x [class.copy]p34:
9024  //   When certain criteria are met, an implementation is allowed to
9025  //   omit the copy/move construction of a class object, even if the
9026  //   copy/move constructor and/or destructor for the object have
9027  //   side effects. [...]
9028  //     - when a temporary class object that has not been bound to a
9029  //       reference (12.2) would be copied/moved to a class object
9030  //       with the same cv-unqualified type, the copy/move operation
9031  //       can be omitted by constructing the temporary object
9032  //       directly into the target of the omitted copy/move
9033  if (ConstructKind == CXXConstructExpr::CK_Complete &&
9034      Constructor->isCopyOrMoveConstructor() && ExprArgs.size() >= 1) {
9035    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
9036    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
9037  }
9038
9039  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
9040                               Elidable, move(ExprArgs), HadMultipleCandidates,
9041                               RequiresZeroInit, ConstructKind, ParenRange);
9042}
9043
9044/// BuildCXXConstructExpr - Creates a complete call to a constructor,
9045/// including handling of its default argument expressions.
9046ExprResult
9047Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
9048                            CXXConstructorDecl *Constructor, bool Elidable,
9049                            MultiExprArg ExprArgs,
9050                            bool HadMultipleCandidates,
9051                            bool RequiresZeroInit,
9052                            unsigned ConstructKind,
9053                            SourceRange ParenRange) {
9054  unsigned NumExprs = ExprArgs.size();
9055  Expr **Exprs = (Expr **)ExprArgs.release();
9056
9057  for (specific_attr_iterator<NonNullAttr>
9058           i = Constructor->specific_attr_begin<NonNullAttr>(),
9059           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
9060    const NonNullAttr *NonNull = *i;
9061    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
9062  }
9063
9064  MarkFunctionReferenced(ConstructLoc, Constructor);
9065  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
9066                                        Constructor, Elidable, Exprs, NumExprs,
9067                                        HadMultipleCandidates, RequiresZeroInit,
9068              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
9069                                        ParenRange));
9070}
9071
9072bool Sema::InitializeVarWithConstructor(VarDecl *VD,
9073                                        CXXConstructorDecl *Constructor,
9074                                        MultiExprArg Exprs,
9075                                        bool HadMultipleCandidates) {
9076  // FIXME: Provide the correct paren SourceRange when available.
9077  ExprResult TempResult =
9078    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
9079                          move(Exprs), HadMultipleCandidates, false,
9080                          CXXConstructExpr::CK_Complete, SourceRange());
9081  if (TempResult.isInvalid())
9082    return true;
9083
9084  Expr *Temp = TempResult.takeAs<Expr>();
9085  CheckImplicitConversions(Temp, VD->getLocation());
9086  MarkFunctionReferenced(VD->getLocation(), Constructor);
9087  Temp = MaybeCreateExprWithCleanups(Temp);
9088  VD->setInit(Temp);
9089
9090  return false;
9091}
9092
9093void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
9094  if (VD->isInvalidDecl()) return;
9095
9096  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
9097  if (ClassDecl->isInvalidDecl()) return;
9098  if (ClassDecl->hasTrivialDestructor()) return;
9099  if (ClassDecl->isDependentContext()) return;
9100
9101  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
9102  MarkFunctionReferenced(VD->getLocation(), Destructor);
9103  CheckDestructorAccess(VD->getLocation(), Destructor,
9104                        PDiag(diag::err_access_dtor_var)
9105                        << VD->getDeclName()
9106                        << VD->getType());
9107
9108  if (!VD->hasGlobalStorage()) return;
9109
9110  // Emit warning for non-trivial dtor in global scope (a real global,
9111  // class-static, function-static).
9112  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
9113
9114  // TODO: this should be re-enabled for static locals by !CXAAtExit
9115  if (!VD->isStaticLocal())
9116    Diag(VD->getLocation(), diag::warn_global_destructor);
9117}
9118
9119/// AddCXXDirectInitializerToDecl - This action is called immediately after
9120/// ActOnDeclarator, when a C++ direct initializer is present.
9121/// e.g: "int x(1);"
9122void Sema::AddCXXDirectInitializerToDecl(Decl *RealDecl,
9123                                         SourceLocation LParenLoc,
9124                                         MultiExprArg Exprs,
9125                                         SourceLocation RParenLoc,
9126                                         bool TypeMayContainAuto) {
9127  // If there is no declaration, there was an error parsing it.  Just ignore
9128  // the initializer.
9129  if (RealDecl == 0)
9130    return;
9131
9132  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
9133  if (!VDecl) {
9134    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
9135    RealDecl->setInvalidDecl();
9136    return;
9137  }
9138
9139  // C++0x [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
9140  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
9141    if (Exprs.size() == 0) {
9142      // It isn't possible to write this directly, but it is possible to
9143      // end up in this situation with "auto x(some_pack...);"
9144      Diag(LParenLoc, diag::err_auto_var_init_no_expression)
9145        << VDecl->getDeclName() << VDecl->getType()
9146        << VDecl->getSourceRange();
9147      RealDecl->setInvalidDecl();
9148      return;
9149    }
9150
9151    if (Exprs.size() > 1) {
9152      Diag(Exprs.get()[1]->getSourceRange().getBegin(),
9153           diag::err_auto_var_init_multiple_expressions)
9154        << VDecl->getDeclName() << VDecl->getType()
9155        << VDecl->getSourceRange();
9156      RealDecl->setInvalidDecl();
9157      return;
9158    }
9159
9160    Expr *Init = Exprs.get()[0];
9161    TypeSourceInfo *DeducedType = 0;
9162    if (DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType) ==
9163            DAR_Failed)
9164      DiagnoseAutoDeductionFailure(VDecl, Init);
9165    if (!DeducedType) {
9166      RealDecl->setInvalidDecl();
9167      return;
9168    }
9169    VDecl->setTypeSourceInfo(DeducedType);
9170    VDecl->setType(DeducedType->getType());
9171
9172    // In ARC, infer lifetime.
9173    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
9174      VDecl->setInvalidDecl();
9175
9176    // If this is a redeclaration, check that the type we just deduced matches
9177    // the previously declared type.
9178    if (VarDecl *Old = VDecl->getPreviousDecl())
9179      MergeVarDeclTypes(VDecl, Old);
9180  }
9181
9182  // We will represent direct-initialization similarly to copy-initialization:
9183  //    int x(1);  -as-> int x = 1;
9184  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
9185  //
9186  // Clients that want to distinguish between the two forms, can check for
9187  // direct initializer using VarDecl::hasCXXDirectInitializer().
9188  // A major benefit is that clients that don't particularly care about which
9189  // exactly form was it (like the CodeGen) can handle both cases without
9190  // special case code.
9191
9192  // C++ 8.5p11:
9193  // The form of initialization (using parentheses or '=') is generally
9194  // insignificant, but does matter when the entity being initialized has a
9195  // class type.
9196
9197  if (!VDecl->getType()->isDependentType() &&
9198      !VDecl->getType()->isIncompleteArrayType() &&
9199      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
9200                          diag::err_typecheck_decl_incomplete_type)) {
9201    VDecl->setInvalidDecl();
9202    return;
9203  }
9204
9205  // The variable can not have an abstract class type.
9206  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
9207                             diag::err_abstract_type_in_decl,
9208                             AbstractVariableType))
9209    VDecl->setInvalidDecl();
9210
9211  const VarDecl *Def;
9212  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
9213    Diag(VDecl->getLocation(), diag::err_redefinition)
9214    << VDecl->getDeclName();
9215    Diag(Def->getLocation(), diag::note_previous_definition);
9216    VDecl->setInvalidDecl();
9217    return;
9218  }
9219
9220  // C++ [class.static.data]p4
9221  //   If a static data member is of const integral or const
9222  //   enumeration type, its declaration in the class definition can
9223  //   specify a constant-initializer which shall be an integral
9224  //   constant expression (5.19). In that case, the member can appear
9225  //   in integral constant expressions. The member shall still be
9226  //   defined in a namespace scope if it is used in the program and the
9227  //   namespace scope definition shall not contain an initializer.
9228  //
9229  // We already performed a redefinition check above, but for static
9230  // data members we also need to check whether there was an in-class
9231  // declaration with an initializer.
9232  const VarDecl* PrevInit = 0;
9233  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
9234    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
9235    Diag(PrevInit->getLocation(), diag::note_previous_definition);
9236    return;
9237  }
9238
9239  if (VDecl->hasLocalStorage())
9240    getCurFunction()->setHasBranchProtectedScope();
9241
9242  bool IsDependent = false;
9243  for (unsigned I = 0, N = Exprs.size(); I != N; ++I) {
9244    if (DiagnoseUnexpandedParameterPack(Exprs.get()[I], UPPC_Expression)) {
9245      VDecl->setInvalidDecl();
9246      return;
9247    }
9248
9249    if (Exprs.get()[I]->isTypeDependent())
9250      IsDependent = true;
9251  }
9252
9253  // If either the declaration has a dependent type or if any of the
9254  // expressions is type-dependent, we represent the initialization
9255  // via a ParenListExpr for later use during template instantiation.
9256  if (VDecl->getType()->isDependentType() || IsDependent) {
9257    // Let clients know that initialization was done with a direct initializer.
9258    VDecl->setCXXDirectInitializer(true);
9259
9260    // Store the initialization expressions as a ParenListExpr.
9261    unsigned NumExprs = Exprs.size();
9262    VDecl->setInit(new (Context) ParenListExpr(
9263        Context, LParenLoc, (Expr **)Exprs.release(), NumExprs, RParenLoc,
9264        VDecl->getType().getNonReferenceType()));
9265    return;
9266  }
9267
9268  // Capture the variable that is being initialized and the style of
9269  // initialization.
9270  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
9271
9272  // FIXME: Poor source location information.
9273  InitializationKind Kind
9274    = InitializationKind::CreateDirect(VDecl->getLocation(),
9275                                       LParenLoc, RParenLoc);
9276
9277  QualType T = VDecl->getType();
9278  InitializationSequence InitSeq(*this, Entity, Kind,
9279                                 Exprs.get(), Exprs.size());
9280  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs), &T);
9281  if (Result.isInvalid()) {
9282    VDecl->setInvalidDecl();
9283    return;
9284  } else if (T != VDecl->getType()) {
9285    VDecl->setType(T);
9286    Result.get()->setType(T);
9287  }
9288
9289
9290  Expr *Init = Result.get();
9291  CheckImplicitConversions(Init, LParenLoc);
9292
9293  Init = MaybeCreateExprWithCleanups(Init);
9294  VDecl->setInit(Init);
9295  VDecl->setCXXDirectInitializer(true);
9296
9297  CheckCompleteVariableDeclaration(VDecl);
9298}
9299
9300/// \brief Given a constructor and the set of arguments provided for the
9301/// constructor, convert the arguments and add any required default arguments
9302/// to form a proper call to this constructor.
9303///
9304/// \returns true if an error occurred, false otherwise.
9305bool
9306Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
9307                              MultiExprArg ArgsPtr,
9308                              SourceLocation Loc,
9309                              ASTOwningVector<Expr*> &ConvertedArgs) {
9310  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
9311  unsigned NumArgs = ArgsPtr.size();
9312  Expr **Args = (Expr **)ArgsPtr.get();
9313
9314  const FunctionProtoType *Proto
9315    = Constructor->getType()->getAs<FunctionProtoType>();
9316  assert(Proto && "Constructor without a prototype?");
9317  unsigned NumArgsInProto = Proto->getNumArgs();
9318
9319  // If too few arguments are available, we'll fill in the rest with defaults.
9320  if (NumArgs < NumArgsInProto)
9321    ConvertedArgs.reserve(NumArgsInProto);
9322  else
9323    ConvertedArgs.reserve(NumArgs);
9324
9325  VariadicCallType CallType =
9326    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
9327  SmallVector<Expr *, 8> AllArgs;
9328  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
9329                                        Proto, 0, Args, NumArgs, AllArgs,
9330                                        CallType);
9331  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
9332    ConvertedArgs.push_back(AllArgs[i]);
9333  return Invalid;
9334}
9335
9336static inline bool
9337CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9338                                       const FunctionDecl *FnDecl) {
9339  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9340  if (isa<NamespaceDecl>(DC)) {
9341    return SemaRef.Diag(FnDecl->getLocation(),
9342                        diag::err_operator_new_delete_declared_in_namespace)
9343      << FnDecl->getDeclName();
9344  }
9345
9346  if (isa<TranslationUnitDecl>(DC) &&
9347      FnDecl->getStorageClass() == SC_Static) {
9348    return SemaRef.Diag(FnDecl->getLocation(),
9349                        diag::err_operator_new_delete_declared_static)
9350      << FnDecl->getDeclName();
9351  }
9352
9353  return false;
9354}
9355
9356static inline bool
9357CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9358                            CanQualType ExpectedResultType,
9359                            CanQualType ExpectedFirstParamType,
9360                            unsigned DependentParamTypeDiag,
9361                            unsigned InvalidParamTypeDiag) {
9362  QualType ResultType =
9363    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9364
9365  // Check that the result type is not dependent.
9366  if (ResultType->isDependentType())
9367    return SemaRef.Diag(FnDecl->getLocation(),
9368                        diag::err_operator_new_delete_dependent_result_type)
9369    << FnDecl->getDeclName() << ExpectedResultType;
9370
9371  // Check that the result type is what we expect.
9372  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9373    return SemaRef.Diag(FnDecl->getLocation(),
9374                        diag::err_operator_new_delete_invalid_result_type)
9375    << FnDecl->getDeclName() << ExpectedResultType;
9376
9377  // A function template must have at least 2 parameters.
9378  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9379    return SemaRef.Diag(FnDecl->getLocation(),
9380                      diag::err_operator_new_delete_template_too_few_parameters)
9381        << FnDecl->getDeclName();
9382
9383  // The function decl must have at least 1 parameter.
9384  if (FnDecl->getNumParams() == 0)
9385    return SemaRef.Diag(FnDecl->getLocation(),
9386                        diag::err_operator_new_delete_too_few_parameters)
9387      << FnDecl->getDeclName();
9388
9389  // Check the the first parameter type is not dependent.
9390  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9391  if (FirstParamType->isDependentType())
9392    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9393      << FnDecl->getDeclName() << ExpectedFirstParamType;
9394
9395  // Check that the first parameter type is what we expect.
9396  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9397      ExpectedFirstParamType)
9398    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9399    << FnDecl->getDeclName() << ExpectedFirstParamType;
9400
9401  return false;
9402}
9403
9404static bool
9405CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9406  // C++ [basic.stc.dynamic.allocation]p1:
9407  //   A program is ill-formed if an allocation function is declared in a
9408  //   namespace scope other than global scope or declared static in global
9409  //   scope.
9410  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9411    return true;
9412
9413  CanQualType SizeTy =
9414    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9415
9416  // C++ [basic.stc.dynamic.allocation]p1:
9417  //  The return type shall be void*. The first parameter shall have type
9418  //  std::size_t.
9419  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9420                                  SizeTy,
9421                                  diag::err_operator_new_dependent_param_type,
9422                                  diag::err_operator_new_param_type))
9423    return true;
9424
9425  // C++ [basic.stc.dynamic.allocation]p1:
9426  //  The first parameter shall not have an associated default argument.
9427  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9428    return SemaRef.Diag(FnDecl->getLocation(),
9429                        diag::err_operator_new_default_arg)
9430      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9431
9432  return false;
9433}
9434
9435static bool
9436CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9437  // C++ [basic.stc.dynamic.deallocation]p1:
9438  //   A program is ill-formed if deallocation functions are declared in a
9439  //   namespace scope other than global scope or declared static in global
9440  //   scope.
9441  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9442    return true;
9443
9444  // C++ [basic.stc.dynamic.deallocation]p2:
9445  //   Each deallocation function shall return void and its first parameter
9446  //   shall be void*.
9447  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9448                                  SemaRef.Context.VoidPtrTy,
9449                                 diag::err_operator_delete_dependent_param_type,
9450                                 diag::err_operator_delete_param_type))
9451    return true;
9452
9453  return false;
9454}
9455
9456/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9457/// of this overloaded operator is well-formed. If so, returns false;
9458/// otherwise, emits appropriate diagnostics and returns true.
9459bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9460  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9461         "Expected an overloaded operator declaration");
9462
9463  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9464
9465  // C++ [over.oper]p5:
9466  //   The allocation and deallocation functions, operator new,
9467  //   operator new[], operator delete and operator delete[], are
9468  //   described completely in 3.7.3. The attributes and restrictions
9469  //   found in the rest of this subclause do not apply to them unless
9470  //   explicitly stated in 3.7.3.
9471  if (Op == OO_Delete || Op == OO_Array_Delete)
9472    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9473
9474  if (Op == OO_New || Op == OO_Array_New)
9475    return CheckOperatorNewDeclaration(*this, FnDecl);
9476
9477  // C++ [over.oper]p6:
9478  //   An operator function shall either be a non-static member
9479  //   function or be a non-member function and have at least one
9480  //   parameter whose type is a class, a reference to a class, an
9481  //   enumeration, or a reference to an enumeration.
9482  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9483    if (MethodDecl->isStatic())
9484      return Diag(FnDecl->getLocation(),
9485                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9486  } else {
9487    bool ClassOrEnumParam = false;
9488    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9489                                   ParamEnd = FnDecl->param_end();
9490         Param != ParamEnd; ++Param) {
9491      QualType ParamType = (*Param)->getType().getNonReferenceType();
9492      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9493          ParamType->isEnumeralType()) {
9494        ClassOrEnumParam = true;
9495        break;
9496      }
9497    }
9498
9499    if (!ClassOrEnumParam)
9500      return Diag(FnDecl->getLocation(),
9501                  diag::err_operator_overload_needs_class_or_enum)
9502        << FnDecl->getDeclName();
9503  }
9504
9505  // C++ [over.oper]p8:
9506  //   An operator function cannot have default arguments (8.3.6),
9507  //   except where explicitly stated below.
9508  //
9509  // Only the function-call operator allows default arguments
9510  // (C++ [over.call]p1).
9511  if (Op != OO_Call) {
9512    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9513         Param != FnDecl->param_end(); ++Param) {
9514      if ((*Param)->hasDefaultArg())
9515        return Diag((*Param)->getLocation(),
9516                    diag::err_operator_overload_default_arg)
9517          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9518    }
9519  }
9520
9521  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9522    { false, false, false }
9523#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9524    , { Unary, Binary, MemberOnly }
9525#include "clang/Basic/OperatorKinds.def"
9526  };
9527
9528  bool CanBeUnaryOperator = OperatorUses[Op][0];
9529  bool CanBeBinaryOperator = OperatorUses[Op][1];
9530  bool MustBeMemberOperator = OperatorUses[Op][2];
9531
9532  // C++ [over.oper]p8:
9533  //   [...] Operator functions cannot have more or fewer parameters
9534  //   than the number required for the corresponding operator, as
9535  //   described in the rest of this subclause.
9536  unsigned NumParams = FnDecl->getNumParams()
9537                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9538  if (Op != OO_Call &&
9539      ((NumParams == 1 && !CanBeUnaryOperator) ||
9540       (NumParams == 2 && !CanBeBinaryOperator) ||
9541       (NumParams < 1) || (NumParams > 2))) {
9542    // We have the wrong number of parameters.
9543    unsigned ErrorKind;
9544    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9545      ErrorKind = 2;  // 2 -> unary or binary.
9546    } else if (CanBeUnaryOperator) {
9547      ErrorKind = 0;  // 0 -> unary
9548    } else {
9549      assert(CanBeBinaryOperator &&
9550             "All non-call overloaded operators are unary or binary!");
9551      ErrorKind = 1;  // 1 -> binary
9552    }
9553
9554    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9555      << FnDecl->getDeclName() << NumParams << ErrorKind;
9556  }
9557
9558  // Overloaded operators other than operator() cannot be variadic.
9559  if (Op != OO_Call &&
9560      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9561    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9562      << FnDecl->getDeclName();
9563  }
9564
9565  // Some operators must be non-static member functions.
9566  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9567    return Diag(FnDecl->getLocation(),
9568                diag::err_operator_overload_must_be_member)
9569      << FnDecl->getDeclName();
9570  }
9571
9572  // C++ [over.inc]p1:
9573  //   The user-defined function called operator++ implements the
9574  //   prefix and postfix ++ operator. If this function is a member
9575  //   function with no parameters, or a non-member function with one
9576  //   parameter of class or enumeration type, it defines the prefix
9577  //   increment operator ++ for objects of that type. If the function
9578  //   is a member function with one parameter (which shall be of type
9579  //   int) or a non-member function with two parameters (the second
9580  //   of which shall be of type int), it defines the postfix
9581  //   increment operator ++ for objects of that type.
9582  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9583    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9584    bool ParamIsInt = false;
9585    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9586      ParamIsInt = BT->getKind() == BuiltinType::Int;
9587
9588    if (!ParamIsInt)
9589      return Diag(LastParam->getLocation(),
9590                  diag::err_operator_overload_post_incdec_must_be_int)
9591        << LastParam->getType() << (Op == OO_MinusMinus);
9592  }
9593
9594  return false;
9595}
9596
9597/// CheckLiteralOperatorDeclaration - Check whether the declaration
9598/// of this literal operator function is well-formed. If so, returns
9599/// false; otherwise, emits appropriate diagnostics and returns true.
9600bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9601  DeclContext *DC = FnDecl->getDeclContext();
9602  Decl::Kind Kind = DC->getDeclKind();
9603  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
9604      Kind != Decl::LinkageSpec) {
9605    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9606      << FnDecl->getDeclName();
9607    return true;
9608  }
9609
9610  bool Valid = false;
9611
9612  // template <char...> type operator "" name() is the only valid template
9613  // signature, and the only valid signature with no parameters.
9614  if (FnDecl->param_size() == 0) {
9615    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
9616      // Must have only one template parameter
9617      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9618      if (Params->size() == 1) {
9619        NonTypeTemplateParmDecl *PmDecl =
9620          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9621
9622        // The template parameter must be a char parameter pack.
9623        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9624            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9625          Valid = true;
9626      }
9627    }
9628  } else {
9629    // Check the first parameter
9630    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9631
9632    QualType T = (*Param)->getType();
9633
9634    // unsigned long long int, long double, and any character type are allowed
9635    // as the only parameters.
9636    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9637        Context.hasSameType(T, Context.LongDoubleTy) ||
9638        Context.hasSameType(T, Context.CharTy) ||
9639        Context.hasSameType(T, Context.WCharTy) ||
9640        Context.hasSameType(T, Context.Char16Ty) ||
9641        Context.hasSameType(T, Context.Char32Ty)) {
9642      if (++Param == FnDecl->param_end())
9643        Valid = true;
9644      goto FinishedParams;
9645    }
9646
9647    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9648    const PointerType *PT = T->getAs<PointerType>();
9649    if (!PT)
9650      goto FinishedParams;
9651    T = PT->getPointeeType();
9652    if (!T.isConstQualified())
9653      goto FinishedParams;
9654    T = T.getUnqualifiedType();
9655
9656    // Move on to the second parameter;
9657    ++Param;
9658
9659    // If there is no second parameter, the first must be a const char *
9660    if (Param == FnDecl->param_end()) {
9661      if (Context.hasSameType(T, Context.CharTy))
9662        Valid = true;
9663      goto FinishedParams;
9664    }
9665
9666    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9667    // are allowed as the first parameter to a two-parameter function
9668    if (!(Context.hasSameType(T, Context.CharTy) ||
9669          Context.hasSameType(T, Context.WCharTy) ||
9670          Context.hasSameType(T, Context.Char16Ty) ||
9671          Context.hasSameType(T, Context.Char32Ty)))
9672      goto FinishedParams;
9673
9674    // The second and final parameter must be an std::size_t
9675    T = (*Param)->getType().getUnqualifiedType();
9676    if (Context.hasSameType(T, Context.getSizeType()) &&
9677        ++Param == FnDecl->param_end())
9678      Valid = true;
9679  }
9680
9681  // FIXME: This diagnostic is absolutely terrible.
9682FinishedParams:
9683  if (!Valid) {
9684    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9685      << FnDecl->getDeclName();
9686    return true;
9687  }
9688
9689  StringRef LiteralName
9690    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9691  if (LiteralName[0] != '_') {
9692    // C++0x [usrlit.suffix]p1:
9693    //   Literal suffix identifiers that do not start with an underscore are
9694    //   reserved for future standardization.
9695    bool IsHexFloat = true;
9696    if (LiteralName.size() > 1 &&
9697        (LiteralName[0] == 'P' || LiteralName[0] == 'p')) {
9698      for (unsigned I = 1, N = LiteralName.size(); I < N; ++I) {
9699        if (!isdigit(LiteralName[I])) {
9700          IsHexFloat = false;
9701          break;
9702        }
9703      }
9704    }
9705
9706    if (IsHexFloat)
9707      Diag(FnDecl->getLocation(), diag::warn_user_literal_hexfloat)
9708        << LiteralName;
9709    else
9710      Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9711  }
9712
9713  return false;
9714}
9715
9716/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9717/// linkage specification, including the language and (if present)
9718/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9719/// the location of the language string literal, which is provided
9720/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9721/// the '{' brace. Otherwise, this linkage specification does not
9722/// have any braces.
9723Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9724                                           SourceLocation LangLoc,
9725                                           StringRef Lang,
9726                                           SourceLocation LBraceLoc) {
9727  LinkageSpecDecl::LanguageIDs Language;
9728  if (Lang == "\"C\"")
9729    Language = LinkageSpecDecl::lang_c;
9730  else if (Lang == "\"C++\"")
9731    Language = LinkageSpecDecl::lang_cxx;
9732  else {
9733    Diag(LangLoc, diag::err_bad_language);
9734    return 0;
9735  }
9736
9737  // FIXME: Add all the various semantics of linkage specifications
9738
9739  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9740                                               ExternLoc, LangLoc, Language);
9741  CurContext->addDecl(D);
9742  PushDeclContext(S, D);
9743  return D;
9744}
9745
9746/// ActOnFinishLinkageSpecification - Complete the definition of
9747/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9748/// valid, it's the position of the closing '}' brace in a linkage
9749/// specification that uses braces.
9750Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9751                                            Decl *LinkageSpec,
9752                                            SourceLocation RBraceLoc) {
9753  if (LinkageSpec) {
9754    if (RBraceLoc.isValid()) {
9755      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9756      LSDecl->setRBraceLoc(RBraceLoc);
9757    }
9758    PopDeclContext();
9759  }
9760  return LinkageSpec;
9761}
9762
9763/// \brief Perform semantic analysis for the variable declaration that
9764/// occurs within a C++ catch clause, returning the newly-created
9765/// variable.
9766VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9767                                         TypeSourceInfo *TInfo,
9768                                         SourceLocation StartLoc,
9769                                         SourceLocation Loc,
9770                                         IdentifierInfo *Name) {
9771  bool Invalid = false;
9772  QualType ExDeclType = TInfo->getType();
9773
9774  // Arrays and functions decay.
9775  if (ExDeclType->isArrayType())
9776    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9777  else if (ExDeclType->isFunctionType())
9778    ExDeclType = Context.getPointerType(ExDeclType);
9779
9780  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9781  // The exception-declaration shall not denote a pointer or reference to an
9782  // incomplete type, other than [cv] void*.
9783  // N2844 forbids rvalue references.
9784  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9785    Diag(Loc, diag::err_catch_rvalue_ref);
9786    Invalid = true;
9787  }
9788
9789  QualType BaseType = ExDeclType;
9790  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9791  unsigned DK = diag::err_catch_incomplete;
9792  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9793    BaseType = Ptr->getPointeeType();
9794    Mode = 1;
9795    DK = diag::err_catch_incomplete_ptr;
9796  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9797    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9798    BaseType = Ref->getPointeeType();
9799    Mode = 2;
9800    DK = diag::err_catch_incomplete_ref;
9801  }
9802  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9803      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9804    Invalid = true;
9805
9806  if (!Invalid && !ExDeclType->isDependentType() &&
9807      RequireNonAbstractType(Loc, ExDeclType,
9808                             diag::err_abstract_type_in_decl,
9809                             AbstractVariableType))
9810    Invalid = true;
9811
9812  // Only the non-fragile NeXT runtime currently supports C++ catches
9813  // of ObjC types, and no runtime supports catching ObjC types by value.
9814  if (!Invalid && getLangOptions().ObjC1) {
9815    QualType T = ExDeclType;
9816    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9817      T = RT->getPointeeType();
9818
9819    if (T->isObjCObjectType()) {
9820      Diag(Loc, diag::err_objc_object_catch);
9821      Invalid = true;
9822    } else if (T->isObjCObjectPointerType()) {
9823      if (!getLangOptions().ObjCNonFragileABI)
9824        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9825    }
9826  }
9827
9828  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9829                                    ExDeclType, TInfo, SC_None, SC_None);
9830  ExDecl->setExceptionVariable(true);
9831
9832  // In ARC, infer 'retaining' for variables of retainable type.
9833  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9834    Invalid = true;
9835
9836  if (!Invalid && !ExDeclType->isDependentType()) {
9837    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9838      // C++ [except.handle]p16:
9839      //   The object declared in an exception-declaration or, if the
9840      //   exception-declaration does not specify a name, a temporary (12.2) is
9841      //   copy-initialized (8.5) from the exception object. [...]
9842      //   The object is destroyed when the handler exits, after the destruction
9843      //   of any automatic objects initialized within the handler.
9844      //
9845      // We just pretend to initialize the object with itself, then make sure
9846      // it can be destroyed later.
9847      QualType initType = ExDeclType;
9848
9849      InitializedEntity entity =
9850        InitializedEntity::InitializeVariable(ExDecl);
9851      InitializationKind initKind =
9852        InitializationKind::CreateCopy(Loc, SourceLocation());
9853
9854      Expr *opaqueValue =
9855        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9856      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9857      ExprResult result = sequence.Perform(*this, entity, initKind,
9858                                           MultiExprArg(&opaqueValue, 1));
9859      if (result.isInvalid())
9860        Invalid = true;
9861      else {
9862        // If the constructor used was non-trivial, set this as the
9863        // "initializer".
9864        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9865        if (!construct->getConstructor()->isTrivial()) {
9866          Expr *init = MaybeCreateExprWithCleanups(construct);
9867          ExDecl->setInit(init);
9868        }
9869
9870        // And make sure it's destructable.
9871        FinalizeVarWithDestructor(ExDecl, recordType);
9872      }
9873    }
9874  }
9875
9876  if (Invalid)
9877    ExDecl->setInvalidDecl();
9878
9879  return ExDecl;
9880}
9881
9882/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9883/// handler.
9884Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9885  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9886  bool Invalid = D.isInvalidType();
9887
9888  // Check for unexpanded parameter packs.
9889  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9890                                               UPPC_ExceptionType)) {
9891    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9892                                             D.getIdentifierLoc());
9893    Invalid = true;
9894  }
9895
9896  IdentifierInfo *II = D.getIdentifier();
9897  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9898                                             LookupOrdinaryName,
9899                                             ForRedeclaration)) {
9900    // The scope should be freshly made just for us. There is just no way
9901    // it contains any previous declaration.
9902    assert(!S->isDeclScope(PrevDecl));
9903    if (PrevDecl->isTemplateParameter()) {
9904      // Maybe we will complain about the shadowed template parameter.
9905      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9906      PrevDecl = 0;
9907    }
9908  }
9909
9910  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9911    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9912      << D.getCXXScopeSpec().getRange();
9913    Invalid = true;
9914  }
9915
9916  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9917                                              D.getSourceRange().getBegin(),
9918                                              D.getIdentifierLoc(),
9919                                              D.getIdentifier());
9920  if (Invalid)
9921    ExDecl->setInvalidDecl();
9922
9923  // Add the exception declaration into this scope.
9924  if (II)
9925    PushOnScopeChains(ExDecl, S);
9926  else
9927    CurContext->addDecl(ExDecl);
9928
9929  ProcessDeclAttributes(S, ExDecl, D);
9930  return ExDecl;
9931}
9932
9933Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9934                                         Expr *AssertExpr,
9935                                         Expr *AssertMessageExpr_,
9936                                         SourceLocation RParenLoc) {
9937  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9938
9939  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9940    // In a static_assert-declaration, the constant-expression shall be a
9941    // constant expression that can be contextually converted to bool.
9942    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9943    if (Converted.isInvalid())
9944      return 0;
9945
9946    llvm::APSInt Cond;
9947    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9948          PDiag(diag::err_static_assert_expression_is_not_constant),
9949          /*AllowFold=*/false).isInvalid())
9950      return 0;
9951
9952    if (!Cond)
9953      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9954        << AssertMessage->getString() << AssertExpr->getSourceRange();
9955  }
9956
9957  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9958    return 0;
9959
9960  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9961                                        AssertExpr, AssertMessage, RParenLoc);
9962
9963  CurContext->addDecl(Decl);
9964  return Decl;
9965}
9966
9967/// \brief Perform semantic analysis of the given friend type declaration.
9968///
9969/// \returns A friend declaration that.
9970FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9971                                      SourceLocation FriendLoc,
9972                                      TypeSourceInfo *TSInfo) {
9973  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9974
9975  QualType T = TSInfo->getType();
9976  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9977
9978  // C++03 [class.friend]p2:
9979  //   An elaborated-type-specifier shall be used in a friend declaration
9980  //   for a class.*
9981  //
9982  //   * The class-key of the elaborated-type-specifier is required.
9983  if (!ActiveTemplateInstantiations.empty()) {
9984    // Do not complain about the form of friend template types during
9985    // template instantiation; we will already have complained when the
9986    // template was declared.
9987  } else if (!T->isElaboratedTypeSpecifier()) {
9988    // If we evaluated the type to a record type, suggest putting
9989    // a tag in front.
9990    if (const RecordType *RT = T->getAs<RecordType>()) {
9991      RecordDecl *RD = RT->getDecl();
9992
9993      std::string InsertionText = std::string(" ") + RD->getKindName();
9994
9995      Diag(TypeRange.getBegin(),
9996           getLangOptions().CPlusPlus0x ?
9997             diag::warn_cxx98_compat_unelaborated_friend_type :
9998             diag::ext_unelaborated_friend_type)
9999        << (unsigned) RD->getTagKind()
10000        << T
10001        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10002                                      InsertionText);
10003    } else {
10004      Diag(FriendLoc,
10005           getLangOptions().CPlusPlus0x ?
10006             diag::warn_cxx98_compat_nonclass_type_friend :
10007             diag::ext_nonclass_type_friend)
10008        << T
10009        << SourceRange(FriendLoc, TypeRange.getEnd());
10010    }
10011  } else if (T->getAs<EnumType>()) {
10012    Diag(FriendLoc,
10013         getLangOptions().CPlusPlus0x ?
10014           diag::warn_cxx98_compat_enum_friend :
10015           diag::ext_enum_friend)
10016      << T
10017      << SourceRange(FriendLoc, TypeRange.getEnd());
10018  }
10019
10020  // C++0x [class.friend]p3:
10021  //   If the type specifier in a friend declaration designates a (possibly
10022  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10023  //   the friend declaration is ignored.
10024
10025  // FIXME: C++0x has some syntactic restrictions on friend type declarations
10026  // in [class.friend]p3 that we do not implement.
10027
10028  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
10029}
10030
10031/// Handle a friend tag declaration where the scope specifier was
10032/// templated.
10033Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10034                                    unsigned TagSpec, SourceLocation TagLoc,
10035                                    CXXScopeSpec &SS,
10036                                    IdentifierInfo *Name, SourceLocation NameLoc,
10037                                    AttributeList *Attr,
10038                                    MultiTemplateParamsArg TempParamLists) {
10039  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10040
10041  bool isExplicitSpecialization = false;
10042  bool Invalid = false;
10043
10044  if (TemplateParameterList *TemplateParams
10045        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10046                                                  TempParamLists.get(),
10047                                                  TempParamLists.size(),
10048                                                  /*friend*/ true,
10049                                                  isExplicitSpecialization,
10050                                                  Invalid)) {
10051    if (TemplateParams->size() > 0) {
10052      // This is a declaration of a class template.
10053      if (Invalid)
10054        return 0;
10055
10056      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10057                                SS, Name, NameLoc, Attr,
10058                                TemplateParams, AS_public,
10059                                /*ModulePrivateLoc=*/SourceLocation(),
10060                                TempParamLists.size() - 1,
10061                   (TemplateParameterList**) TempParamLists.release()).take();
10062    } else {
10063      // The "template<>" header is extraneous.
10064      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10065        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10066      isExplicitSpecialization = true;
10067    }
10068  }
10069
10070  if (Invalid) return 0;
10071
10072  bool isAllExplicitSpecializations = true;
10073  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10074    if (TempParamLists.get()[I]->size()) {
10075      isAllExplicitSpecializations = false;
10076      break;
10077    }
10078  }
10079
10080  // FIXME: don't ignore attributes.
10081
10082  // If it's explicit specializations all the way down, just forget
10083  // about the template header and build an appropriate non-templated
10084  // friend.  TODO: for source fidelity, remember the headers.
10085  if (isAllExplicitSpecializations) {
10086    if (SS.isEmpty()) {
10087      bool Owned = false;
10088      bool IsDependent = false;
10089      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10090                      Attr, AS_public,
10091                      /*ModulePrivateLoc=*/SourceLocation(),
10092                      MultiTemplateParamsArg(), Owned, IsDependent,
10093                      /*ScopedEnumKWLoc=*/SourceLocation(),
10094                      /*ScopedEnumUsesClassTag=*/false,
10095                      /*UnderlyingType=*/TypeResult());
10096    }
10097
10098    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
10099    ElaboratedTypeKeyword Keyword
10100      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10101    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
10102                                   *Name, NameLoc);
10103    if (T.isNull())
10104      return 0;
10105
10106    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10107    if (isa<DependentNameType>(T)) {
10108      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10109      TL.setElaboratedKeywordLoc(TagLoc);
10110      TL.setQualifierLoc(QualifierLoc);
10111      TL.setNameLoc(NameLoc);
10112    } else {
10113      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
10114      TL.setElaboratedKeywordLoc(TagLoc);
10115      TL.setQualifierLoc(QualifierLoc);
10116      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
10117    }
10118
10119    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10120                                            TSI, FriendLoc);
10121    Friend->setAccess(AS_public);
10122    CurContext->addDecl(Friend);
10123    return Friend;
10124  }
10125
10126  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
10127
10128
10129
10130  // Handle the case of a templated-scope friend class.  e.g.
10131  //   template <class T> class A<T>::B;
10132  // FIXME: we don't support these right now.
10133  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
10134  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
10135  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
10136  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
10137  TL.setElaboratedKeywordLoc(TagLoc);
10138  TL.setQualifierLoc(SS.getWithLocInContext(Context));
10139  TL.setNameLoc(NameLoc);
10140
10141  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
10142                                          TSI, FriendLoc);
10143  Friend->setAccess(AS_public);
10144  Friend->setUnsupportedFriend(true);
10145  CurContext->addDecl(Friend);
10146  return Friend;
10147}
10148
10149
10150/// Handle a friend type declaration.  This works in tandem with
10151/// ActOnTag.
10152///
10153/// Notes on friend class templates:
10154///
10155/// We generally treat friend class declarations as if they were
10156/// declaring a class.  So, for example, the elaborated type specifier
10157/// in a friend declaration is required to obey the restrictions of a
10158/// class-head (i.e. no typedefs in the scope chain), template
10159/// parameters are required to match up with simple template-ids, &c.
10160/// However, unlike when declaring a template specialization, it's
10161/// okay to refer to a template specialization without an empty
10162/// template parameter declaration, e.g.
10163///   friend class A<T>::B<unsigned>;
10164/// We permit this as a special case; if there are any template
10165/// parameters present at all, require proper matching, i.e.
10166///   template <> template <class T> friend class A<int>::B;
10167Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
10168                                MultiTemplateParamsArg TempParams) {
10169  SourceLocation Loc = DS.getSourceRange().getBegin();
10170
10171  assert(DS.isFriendSpecified());
10172  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10173
10174  // Try to convert the decl specifier to a type.  This works for
10175  // friend templates because ActOnTag never produces a ClassTemplateDecl
10176  // for a TUK_Friend.
10177  Declarator TheDeclarator(DS, Declarator::MemberContext);
10178  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
10179  QualType T = TSI->getType();
10180  if (TheDeclarator.isInvalidType())
10181    return 0;
10182
10183  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
10184    return 0;
10185
10186  // This is definitely an error in C++98.  It's probably meant to
10187  // be forbidden in C++0x, too, but the specification is just
10188  // poorly written.
10189  //
10190  // The problem is with declarations like the following:
10191  //   template <T> friend A<T>::foo;
10192  // where deciding whether a class C is a friend or not now hinges
10193  // on whether there exists an instantiation of A that causes
10194  // 'foo' to equal C.  There are restrictions on class-heads
10195  // (which we declare (by fiat) elaborated friend declarations to
10196  // be) that makes this tractable.
10197  //
10198  // FIXME: handle "template <> friend class A<T>;", which
10199  // is possibly well-formed?  Who even knows?
10200  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
10201    Diag(Loc, diag::err_tagless_friend_type_template)
10202      << DS.getSourceRange();
10203    return 0;
10204  }
10205
10206  // C++98 [class.friend]p1: A friend of a class is a function
10207  //   or class that is not a member of the class . . .
10208  // This is fixed in DR77, which just barely didn't make the C++03
10209  // deadline.  It's also a very silly restriction that seriously
10210  // affects inner classes and which nobody else seems to implement;
10211  // thus we never diagnose it, not even in -pedantic.
10212  //
10213  // But note that we could warn about it: it's always useless to
10214  // friend one of your own members (it's not, however, worthless to
10215  // friend a member of an arbitrary specialization of your template).
10216
10217  Decl *D;
10218  if (unsigned NumTempParamLists = TempParams.size())
10219    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
10220                                   NumTempParamLists,
10221                                   TempParams.release(),
10222                                   TSI,
10223                                   DS.getFriendSpecLoc());
10224  else
10225    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
10226
10227  if (!D)
10228    return 0;
10229
10230  D->setAccess(AS_public);
10231  CurContext->addDecl(D);
10232
10233  return D;
10234}
10235
10236Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
10237                                    MultiTemplateParamsArg TemplateParams) {
10238  const DeclSpec &DS = D.getDeclSpec();
10239
10240  assert(DS.isFriendSpecified());
10241  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
10242
10243  SourceLocation Loc = D.getIdentifierLoc();
10244  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10245
10246  // C++ [class.friend]p1
10247  //   A friend of a class is a function or class....
10248  // Note that this sees through typedefs, which is intended.
10249  // It *doesn't* see through dependent types, which is correct
10250  // according to [temp.arg.type]p3:
10251  //   If a declaration acquires a function type through a
10252  //   type dependent on a template-parameter and this causes
10253  //   a declaration that does not use the syntactic form of a
10254  //   function declarator to have a function type, the program
10255  //   is ill-formed.
10256  if (!TInfo->getType()->isFunctionType()) {
10257    Diag(Loc, diag::err_unexpected_friend);
10258
10259    // It might be worthwhile to try to recover by creating an
10260    // appropriate declaration.
10261    return 0;
10262  }
10263
10264  // C++ [namespace.memdef]p3
10265  //  - If a friend declaration in a non-local class first declares a
10266  //    class or function, the friend class or function is a member
10267  //    of the innermost enclosing namespace.
10268  //  - The name of the friend is not found by simple name lookup
10269  //    until a matching declaration is provided in that namespace
10270  //    scope (either before or after the class declaration granting
10271  //    friendship).
10272  //  - If a friend function is called, its name may be found by the
10273  //    name lookup that considers functions from namespaces and
10274  //    classes associated with the types of the function arguments.
10275  //  - When looking for a prior declaration of a class or a function
10276  //    declared as a friend, scopes outside the innermost enclosing
10277  //    namespace scope are not considered.
10278
10279  CXXScopeSpec &SS = D.getCXXScopeSpec();
10280  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
10281  DeclarationName Name = NameInfo.getName();
10282  assert(Name);
10283
10284  // Check for unexpanded parameter packs.
10285  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
10286      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
10287      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
10288    return 0;
10289
10290  // The context we found the declaration in, or in which we should
10291  // create the declaration.
10292  DeclContext *DC;
10293  Scope *DCScope = S;
10294  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
10295                        ForRedeclaration);
10296
10297  // FIXME: there are different rules in local classes
10298
10299  // There are four cases here.
10300  //   - There's no scope specifier, in which case we just go to the
10301  //     appropriate scope and look for a function or function template
10302  //     there as appropriate.
10303  // Recover from invalid scope qualifiers as if they just weren't there.
10304  if (SS.isInvalid() || !SS.isSet()) {
10305    // C++0x [namespace.memdef]p3:
10306    //   If the name in a friend declaration is neither qualified nor
10307    //   a template-id and the declaration is a function or an
10308    //   elaborated-type-specifier, the lookup to determine whether
10309    //   the entity has been previously declared shall not consider
10310    //   any scopes outside the innermost enclosing namespace.
10311    // C++0x [class.friend]p11:
10312    //   If a friend declaration appears in a local class and the name
10313    //   specified is an unqualified name, a prior declaration is
10314    //   looked up without considering scopes that are outside the
10315    //   innermost enclosing non-class scope. For a friend function
10316    //   declaration, if there is no prior declaration, the program is
10317    //   ill-formed.
10318    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10319    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10320
10321    // Find the appropriate context according to the above.
10322    DC = CurContext;
10323    while (true) {
10324      // Skip class contexts.  If someone can cite chapter and verse
10325      // for this behavior, that would be nice --- it's what GCC and
10326      // EDG do, and it seems like a reasonable intent, but the spec
10327      // really only says that checks for unqualified existing
10328      // declarations should stop at the nearest enclosing namespace,
10329      // not that they should only consider the nearest enclosing
10330      // namespace.
10331      while (DC->isRecord())
10332        DC = DC->getParent();
10333
10334      LookupQualifiedName(Previous, DC);
10335
10336      // TODO: decide what we think about using declarations.
10337      if (isLocal || !Previous.empty())
10338        break;
10339
10340      if (isTemplateId) {
10341        if (isa<TranslationUnitDecl>(DC)) break;
10342      } else {
10343        if (DC->isFileContext()) break;
10344      }
10345      DC = DC->getParent();
10346    }
10347
10348    // C++ [class.friend]p1: A friend of a class is a function or
10349    //   class that is not a member of the class . . .
10350    // C++11 changes this for both friend types and functions.
10351    // Most C++ 98 compilers do seem to give an error here, so
10352    // we do, too.
10353    if (!Previous.empty() && DC->Equals(CurContext))
10354      Diag(DS.getFriendSpecLoc(),
10355           getLangOptions().CPlusPlus0x ?
10356             diag::warn_cxx98_compat_friend_is_member :
10357             diag::err_friend_is_member);
10358
10359    DCScope = getScopeForDeclContext(S, DC);
10360
10361    // C++ [class.friend]p6:
10362    //   A function can be defined in a friend declaration of a class if and
10363    //   only if the class is a non-local class (9.8), the function name is
10364    //   unqualified, and the function has namespace scope.
10365    if (isLocal && D.isFunctionDefinition()) {
10366      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10367    }
10368
10369  //   - There's a non-dependent scope specifier, in which case we
10370  //     compute it and do a previous lookup there for a function
10371  //     or function template.
10372  } else if (!SS.getScopeRep()->isDependent()) {
10373    DC = computeDeclContext(SS);
10374    if (!DC) return 0;
10375
10376    if (RequireCompleteDeclContext(SS, DC)) return 0;
10377
10378    LookupQualifiedName(Previous, DC);
10379
10380    // Ignore things found implicitly in the wrong scope.
10381    // TODO: better diagnostics for this case.  Suggesting the right
10382    // qualified scope would be nice...
10383    LookupResult::Filter F = Previous.makeFilter();
10384    while (F.hasNext()) {
10385      NamedDecl *D = F.next();
10386      if (!DC->InEnclosingNamespaceSetOf(
10387              D->getDeclContext()->getRedeclContext()))
10388        F.erase();
10389    }
10390    F.done();
10391
10392    if (Previous.empty()) {
10393      D.setInvalidType();
10394      Diag(Loc, diag::err_qualified_friend_not_found)
10395          << Name << TInfo->getType();
10396      return 0;
10397    }
10398
10399    // C++ [class.friend]p1: A friend of a class is a function or
10400    //   class that is not a member of the class . . .
10401    if (DC->Equals(CurContext))
10402      Diag(DS.getFriendSpecLoc(),
10403           getLangOptions().CPlusPlus0x ?
10404             diag::warn_cxx98_compat_friend_is_member :
10405             diag::err_friend_is_member);
10406
10407    if (D.isFunctionDefinition()) {
10408      // C++ [class.friend]p6:
10409      //   A function can be defined in a friend declaration of a class if and
10410      //   only if the class is a non-local class (9.8), the function name is
10411      //   unqualified, and the function has namespace scope.
10412      SemaDiagnosticBuilder DB
10413        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10414
10415      DB << SS.getScopeRep();
10416      if (DC->isFileContext())
10417        DB << FixItHint::CreateRemoval(SS.getRange());
10418      SS.clear();
10419    }
10420
10421  //   - There's a scope specifier that does not match any template
10422  //     parameter lists, in which case we use some arbitrary context,
10423  //     create a method or method template, and wait for instantiation.
10424  //   - There's a scope specifier that does match some template
10425  //     parameter lists, which we don't handle right now.
10426  } else {
10427    if (D.isFunctionDefinition()) {
10428      // C++ [class.friend]p6:
10429      //   A function can be defined in a friend declaration of a class if and
10430      //   only if the class is a non-local class (9.8), the function name is
10431      //   unqualified, and the function has namespace scope.
10432      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10433        << SS.getScopeRep();
10434    }
10435
10436    DC = CurContext;
10437    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10438  }
10439
10440  if (!DC->isRecord()) {
10441    // This implies that it has to be an operator or function.
10442    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10443        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10444        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10445      Diag(Loc, diag::err_introducing_special_friend) <<
10446        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10447         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10448      return 0;
10449    }
10450  }
10451
10452  // FIXME: This is an egregious hack to cope with cases where the scope stack
10453  // does not contain the declaration context, i.e., in an out-of-line
10454  // definition of a class.
10455  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10456  if (!DCScope) {
10457    FakeDCScope.setEntity(DC);
10458    DCScope = &FakeDCScope;
10459  }
10460
10461  bool AddToScope = true;
10462  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10463                                          move(TemplateParams), AddToScope);
10464  if (!ND) return 0;
10465
10466  assert(ND->getDeclContext() == DC);
10467  assert(ND->getLexicalDeclContext() == CurContext);
10468
10469  // Add the function declaration to the appropriate lookup tables,
10470  // adjusting the redeclarations list as necessary.  We don't
10471  // want to do this yet if the friending class is dependent.
10472  //
10473  // Also update the scope-based lookup if the target context's
10474  // lookup context is in lexical scope.
10475  if (!CurContext->isDependentContext()) {
10476    DC = DC->getRedeclContext();
10477    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
10478    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10479      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10480  }
10481
10482  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10483                                       D.getIdentifierLoc(), ND,
10484                                       DS.getFriendSpecLoc());
10485  FrD->setAccess(AS_public);
10486  CurContext->addDecl(FrD);
10487
10488  if (ND->isInvalidDecl())
10489    FrD->setInvalidDecl();
10490  else {
10491    FunctionDecl *FD;
10492    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10493      FD = FTD->getTemplatedDecl();
10494    else
10495      FD = cast<FunctionDecl>(ND);
10496
10497    // Mark templated-scope function declarations as unsupported.
10498    if (FD->getNumTemplateParameterLists())
10499      FrD->setUnsupportedFriend(true);
10500  }
10501
10502  return ND;
10503}
10504
10505void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10506  AdjustDeclIfTemplate(Dcl);
10507
10508  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10509  if (!Fn) {
10510    Diag(DelLoc, diag::err_deleted_non_function);
10511    return;
10512  }
10513  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10514    Diag(DelLoc, diag::err_deleted_decl_not_first);
10515    Diag(Prev->getLocation(), diag::note_previous_declaration);
10516    // If the declaration wasn't the first, we delete the function anyway for
10517    // recovery.
10518  }
10519  Fn->setDeletedAsWritten();
10520}
10521
10522void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10523  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10524
10525  if (MD) {
10526    if (MD->getParent()->isDependentType()) {
10527      MD->setDefaulted();
10528      MD->setExplicitlyDefaulted();
10529      return;
10530    }
10531
10532    CXXSpecialMember Member = getSpecialMember(MD);
10533    if (Member == CXXInvalid) {
10534      Diag(DefaultLoc, diag::err_default_special_members);
10535      return;
10536    }
10537
10538    MD->setDefaulted();
10539    MD->setExplicitlyDefaulted();
10540
10541    // If this definition appears within the record, do the checking when
10542    // the record is complete.
10543    const FunctionDecl *Primary = MD;
10544    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10545      // Find the uninstantiated declaration that actually had the '= default'
10546      // on it.
10547      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10548
10549    if (Primary == Primary->getCanonicalDecl())
10550      return;
10551
10552    switch (Member) {
10553    case CXXDefaultConstructor: {
10554      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10555      CheckExplicitlyDefaultedDefaultConstructor(CD);
10556      if (!CD->isInvalidDecl())
10557        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10558      break;
10559    }
10560
10561    case CXXCopyConstructor: {
10562      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10563      CheckExplicitlyDefaultedCopyConstructor(CD);
10564      if (!CD->isInvalidDecl())
10565        DefineImplicitCopyConstructor(DefaultLoc, CD);
10566      break;
10567    }
10568
10569    case CXXCopyAssignment: {
10570      CheckExplicitlyDefaultedCopyAssignment(MD);
10571      if (!MD->isInvalidDecl())
10572        DefineImplicitCopyAssignment(DefaultLoc, MD);
10573      break;
10574    }
10575
10576    case CXXDestructor: {
10577      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10578      CheckExplicitlyDefaultedDestructor(DD);
10579      if (!DD->isInvalidDecl())
10580        DefineImplicitDestructor(DefaultLoc, DD);
10581      break;
10582    }
10583
10584    case CXXMoveConstructor: {
10585      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10586      CheckExplicitlyDefaultedMoveConstructor(CD);
10587      if (!CD->isInvalidDecl())
10588        DefineImplicitMoveConstructor(DefaultLoc, CD);
10589      break;
10590    }
10591
10592    case CXXMoveAssignment: {
10593      CheckExplicitlyDefaultedMoveAssignment(MD);
10594      if (!MD->isInvalidDecl())
10595        DefineImplicitMoveAssignment(DefaultLoc, MD);
10596      break;
10597    }
10598
10599    case CXXInvalid:
10600      llvm_unreachable("Invalid special member.");
10601    }
10602  } else {
10603    Diag(DefaultLoc, diag::err_default_special_members);
10604  }
10605}
10606
10607static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10608  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10609    Stmt *SubStmt = *CI;
10610    if (!SubStmt)
10611      continue;
10612    if (isa<ReturnStmt>(SubStmt))
10613      Self.Diag(SubStmt->getSourceRange().getBegin(),
10614           diag::err_return_in_constructor_handler);
10615    if (!isa<Expr>(SubStmt))
10616      SearchForReturnInStmt(Self, SubStmt);
10617  }
10618}
10619
10620void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10621  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10622    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10623    SearchForReturnInStmt(*this, Handler);
10624  }
10625}
10626
10627bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10628                                             const CXXMethodDecl *Old) {
10629  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10630  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10631
10632  if (Context.hasSameType(NewTy, OldTy) ||
10633      NewTy->isDependentType() || OldTy->isDependentType())
10634    return false;
10635
10636  // Check if the return types are covariant
10637  QualType NewClassTy, OldClassTy;
10638
10639  /// Both types must be pointers or references to classes.
10640  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10641    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10642      NewClassTy = NewPT->getPointeeType();
10643      OldClassTy = OldPT->getPointeeType();
10644    }
10645  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10646    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10647      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10648        NewClassTy = NewRT->getPointeeType();
10649        OldClassTy = OldRT->getPointeeType();
10650      }
10651    }
10652  }
10653
10654  // The return types aren't either both pointers or references to a class type.
10655  if (NewClassTy.isNull()) {
10656    Diag(New->getLocation(),
10657         diag::err_different_return_type_for_overriding_virtual_function)
10658      << New->getDeclName() << NewTy << OldTy;
10659    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10660
10661    return true;
10662  }
10663
10664  // C++ [class.virtual]p6:
10665  //   If the return type of D::f differs from the return type of B::f, the
10666  //   class type in the return type of D::f shall be complete at the point of
10667  //   declaration of D::f or shall be the class type D.
10668  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10669    if (!RT->isBeingDefined() &&
10670        RequireCompleteType(New->getLocation(), NewClassTy,
10671                            PDiag(diag::err_covariant_return_incomplete)
10672                              << New->getDeclName()))
10673    return true;
10674  }
10675
10676  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10677    // Check if the new class derives from the old class.
10678    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10679      Diag(New->getLocation(),
10680           diag::err_covariant_return_not_derived)
10681      << New->getDeclName() << NewTy << OldTy;
10682      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10683      return true;
10684    }
10685
10686    // Check if we the conversion from derived to base is valid.
10687    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10688                    diag::err_covariant_return_inaccessible_base,
10689                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10690                    // FIXME: Should this point to the return type?
10691                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10692      // FIXME: this note won't trigger for delayed access control
10693      // diagnostics, and it's impossible to get an undelayed error
10694      // here from access control during the original parse because
10695      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10696      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10697      return true;
10698    }
10699  }
10700
10701  // The qualifiers of the return types must be the same.
10702  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10703    Diag(New->getLocation(),
10704         diag::err_covariant_return_type_different_qualifications)
10705    << New->getDeclName() << NewTy << OldTy;
10706    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10707    return true;
10708  };
10709
10710
10711  // The new class type must have the same or less qualifiers as the old type.
10712  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10713    Diag(New->getLocation(),
10714         diag::err_covariant_return_type_class_type_more_qualified)
10715    << New->getDeclName() << NewTy << OldTy;
10716    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10717    return true;
10718  };
10719
10720  return false;
10721}
10722
10723/// \brief Mark the given method pure.
10724///
10725/// \param Method the method to be marked pure.
10726///
10727/// \param InitRange the source range that covers the "0" initializer.
10728bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10729  SourceLocation EndLoc = InitRange.getEnd();
10730  if (EndLoc.isValid())
10731    Method->setRangeEnd(EndLoc);
10732
10733  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10734    Method->setPure();
10735    return false;
10736  }
10737
10738  if (!Method->isInvalidDecl())
10739    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10740      << Method->getDeclName() << InitRange;
10741  return true;
10742}
10743
10744/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10745/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10746/// is a fresh scope pushed for just this purpose.
10747///
10748/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10749/// static data member of class X, names should be looked up in the scope of
10750/// class X.
10751void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10752  // If there is no declaration, there was an error parsing it.
10753  if (D == 0 || D->isInvalidDecl()) return;
10754
10755  // We should only get called for declarations with scope specifiers, like:
10756  //   int foo::bar;
10757  assert(D->isOutOfLine());
10758  EnterDeclaratorContext(S, D->getDeclContext());
10759}
10760
10761/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10762/// initializer for the out-of-line declaration 'D'.
10763void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10764  // If there is no declaration, there was an error parsing it.
10765  if (D == 0 || D->isInvalidDecl()) return;
10766
10767  assert(D->isOutOfLine());
10768  ExitDeclaratorContext(S);
10769}
10770
10771/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10772/// C++ if/switch/while/for statement.
10773/// e.g: "if (int x = f()) {...}"
10774DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10775  // C++ 6.4p2:
10776  // The declarator shall not specify a function or an array.
10777  // The type-specifier-seq shall not contain typedef and shall not declare a
10778  // new class or enumeration.
10779  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10780         "Parser allowed 'typedef' as storage class of condition decl.");
10781
10782  Decl *Dcl = ActOnDeclarator(S, D);
10783  if (!Dcl)
10784    return true;
10785
10786  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10787    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10788      << D.getSourceRange();
10789    return true;
10790  }
10791
10792  return Dcl;
10793}
10794
10795void Sema::LoadExternalVTableUses() {
10796  if (!ExternalSource)
10797    return;
10798
10799  SmallVector<ExternalVTableUse, 4> VTables;
10800  ExternalSource->ReadUsedVTables(VTables);
10801  SmallVector<VTableUse, 4> NewUses;
10802  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10803    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10804      = VTablesUsed.find(VTables[I].Record);
10805    // Even if a definition wasn't required before, it may be required now.
10806    if (Pos != VTablesUsed.end()) {
10807      if (!Pos->second && VTables[I].DefinitionRequired)
10808        Pos->second = true;
10809      continue;
10810    }
10811
10812    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10813    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10814  }
10815
10816  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10817}
10818
10819void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10820                          bool DefinitionRequired) {
10821  // Ignore any vtable uses in unevaluated operands or for classes that do
10822  // not have a vtable.
10823  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10824      CurContext->isDependentContext() ||
10825      ExprEvalContexts.back().Context == Unevaluated)
10826    return;
10827
10828  // Try to insert this class into the map.
10829  LoadExternalVTableUses();
10830  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10831  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10832    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10833  if (!Pos.second) {
10834    // If we already had an entry, check to see if we are promoting this vtable
10835    // to required a definition. If so, we need to reappend to the VTableUses
10836    // list, since we may have already processed the first entry.
10837    if (DefinitionRequired && !Pos.first->second) {
10838      Pos.first->second = true;
10839    } else {
10840      // Otherwise, we can early exit.
10841      return;
10842    }
10843  }
10844
10845  // Local classes need to have their virtual members marked
10846  // immediately. For all other classes, we mark their virtual members
10847  // at the end of the translation unit.
10848  if (Class->isLocalClass())
10849    MarkVirtualMembersReferenced(Loc, Class);
10850  else
10851    VTableUses.push_back(std::make_pair(Class, Loc));
10852}
10853
10854bool Sema::DefineUsedVTables() {
10855  LoadExternalVTableUses();
10856  if (VTableUses.empty())
10857    return false;
10858
10859  // Note: The VTableUses vector could grow as a result of marking
10860  // the members of a class as "used", so we check the size each
10861  // time through the loop and prefer indices (with are stable) to
10862  // iterators (which are not).
10863  bool DefinedAnything = false;
10864  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10865    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10866    if (!Class)
10867      continue;
10868
10869    SourceLocation Loc = VTableUses[I].second;
10870
10871    // If this class has a key function, but that key function is
10872    // defined in another translation unit, we don't need to emit the
10873    // vtable even though we're using it.
10874    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10875    if (KeyFunction && !KeyFunction->hasBody()) {
10876      switch (KeyFunction->getTemplateSpecializationKind()) {
10877      case TSK_Undeclared:
10878      case TSK_ExplicitSpecialization:
10879      case TSK_ExplicitInstantiationDeclaration:
10880        // The key function is in another translation unit.
10881        continue;
10882
10883      case TSK_ExplicitInstantiationDefinition:
10884      case TSK_ImplicitInstantiation:
10885        // We will be instantiating the key function.
10886        break;
10887      }
10888    } else if (!KeyFunction) {
10889      // If we have a class with no key function that is the subject
10890      // of an explicit instantiation declaration, suppress the
10891      // vtable; it will live with the explicit instantiation
10892      // definition.
10893      bool IsExplicitInstantiationDeclaration
10894        = Class->getTemplateSpecializationKind()
10895                                      == TSK_ExplicitInstantiationDeclaration;
10896      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10897                                 REnd = Class->redecls_end();
10898           R != REnd; ++R) {
10899        TemplateSpecializationKind TSK
10900          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10901        if (TSK == TSK_ExplicitInstantiationDeclaration)
10902          IsExplicitInstantiationDeclaration = true;
10903        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10904          IsExplicitInstantiationDeclaration = false;
10905          break;
10906        }
10907      }
10908
10909      if (IsExplicitInstantiationDeclaration)
10910        continue;
10911    }
10912
10913    // Mark all of the virtual members of this class as referenced, so
10914    // that we can build a vtable. Then, tell the AST consumer that a
10915    // vtable for this class is required.
10916    DefinedAnything = true;
10917    MarkVirtualMembersReferenced(Loc, Class);
10918    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10919    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10920
10921    // Optionally warn if we're emitting a weak vtable.
10922    if (Class->getLinkage() == ExternalLinkage &&
10923        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10924      const FunctionDecl *KeyFunctionDef = 0;
10925      if (!KeyFunction ||
10926          (KeyFunction->hasBody(KeyFunctionDef) &&
10927           KeyFunctionDef->isInlined()))
10928        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10929             TSK_ExplicitInstantiationDefinition
10930             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10931          << Class;
10932    }
10933  }
10934  VTableUses.clear();
10935
10936  return DefinedAnything;
10937}
10938
10939void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10940                                        const CXXRecordDecl *RD) {
10941  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10942       e = RD->method_end(); i != e; ++i) {
10943    CXXMethodDecl *MD = *i;
10944
10945    // C++ [basic.def.odr]p2:
10946    //   [...] A virtual member function is used if it is not pure. [...]
10947    if (MD->isVirtual() && !MD->isPure())
10948      MarkFunctionReferenced(Loc, MD);
10949  }
10950
10951  // Only classes that have virtual bases need a VTT.
10952  if (RD->getNumVBases() == 0)
10953    return;
10954
10955  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10956           e = RD->bases_end(); i != e; ++i) {
10957    const CXXRecordDecl *Base =
10958        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10959    if (Base->getNumVBases() == 0)
10960      continue;
10961    MarkVirtualMembersReferenced(Loc, Base);
10962  }
10963}
10964
10965/// SetIvarInitializers - This routine builds initialization ASTs for the
10966/// Objective-C implementation whose ivars need be initialized.
10967void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10968  if (!getLangOptions().CPlusPlus)
10969    return;
10970  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10971    SmallVector<ObjCIvarDecl*, 8> ivars;
10972    CollectIvarsToConstructOrDestruct(OID, ivars);
10973    if (ivars.empty())
10974      return;
10975    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10976    for (unsigned i = 0; i < ivars.size(); i++) {
10977      FieldDecl *Field = ivars[i];
10978      if (Field->isInvalidDecl())
10979        continue;
10980
10981      CXXCtorInitializer *Member;
10982      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10983      InitializationKind InitKind =
10984        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10985
10986      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10987      ExprResult MemberInit =
10988        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10989      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10990      // Note, MemberInit could actually come back empty if no initialization
10991      // is required (e.g., because it would call a trivial default constructor)
10992      if (!MemberInit.get() || MemberInit.isInvalid())
10993        continue;
10994
10995      Member =
10996        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10997                                         SourceLocation(),
10998                                         MemberInit.takeAs<Expr>(),
10999                                         SourceLocation());
11000      AllToInit.push_back(Member);
11001
11002      // Be sure that the destructor is accessible and is marked as referenced.
11003      if (const RecordType *RecordTy
11004                  = Context.getBaseElementType(Field->getType())
11005                                                        ->getAs<RecordType>()) {
11006                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
11007        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
11008          MarkFunctionReferenced(Field->getLocation(), Destructor);
11009          CheckDestructorAccess(Field->getLocation(), Destructor,
11010                            PDiag(diag::err_access_dtor_ivar)
11011                              << Context.getBaseElementType(Field->getType()));
11012        }
11013      }
11014    }
11015    ObjCImplementation->setIvarInitializers(Context,
11016                                            AllToInit.data(), AllToInit.size());
11017  }
11018}
11019
11020static
11021void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
11022                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
11023                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
11024                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
11025                           Sema &S) {
11026  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11027                                                   CE = Current.end();
11028  if (Ctor->isInvalidDecl())
11029    return;
11030
11031  const FunctionDecl *FNTarget = 0;
11032  CXXConstructorDecl *Target;
11033
11034  // We ignore the result here since if we don't have a body, Target will be
11035  // null below.
11036  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
11037  Target
11038= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
11039
11040  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
11041                     // Avoid dereferencing a null pointer here.
11042                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
11043
11044  if (!Current.insert(Canonical))
11045    return;
11046
11047  // We know that beyond here, we aren't chaining into a cycle.
11048  if (!Target || !Target->isDelegatingConstructor() ||
11049      Target->isInvalidDecl() || Valid.count(TCanonical)) {
11050    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11051      Valid.insert(*CI);
11052    Current.clear();
11053  // We've hit a cycle.
11054  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
11055             Current.count(TCanonical)) {
11056    // If we haven't diagnosed this cycle yet, do so now.
11057    if (!Invalid.count(TCanonical)) {
11058      S.Diag((*Ctor->init_begin())->getSourceLocation(),
11059             diag::warn_delegating_ctor_cycle)
11060        << Ctor;
11061
11062      // Don't add a note for a function delegating directo to itself.
11063      if (TCanonical != Canonical)
11064        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
11065
11066      CXXConstructorDecl *C = Target;
11067      while (C->getCanonicalDecl() != Canonical) {
11068        (void)C->getTargetConstructor()->hasBody(FNTarget);
11069        assert(FNTarget && "Ctor cycle through bodiless function");
11070
11071        C
11072       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
11073        S.Diag(C->getLocation(), diag::note_which_delegates_to);
11074      }
11075    }
11076
11077    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
11078      Invalid.insert(*CI);
11079    Current.clear();
11080  } else {
11081    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
11082  }
11083}
11084
11085
11086void Sema::CheckDelegatingCtorCycles() {
11087  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
11088
11089  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
11090                                                   CE = Current.end();
11091
11092  for (DelegatingCtorDeclsType::iterator
11093         I = DelegatingCtorDecls.begin(ExternalSource),
11094         E = DelegatingCtorDecls.end();
11095       I != E; ++I) {
11096   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
11097  }
11098
11099  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
11100    (*CI)->setInvalidDecl();
11101}
11102
11103/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11104Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11105  // Implicitly declared functions (e.g. copy constructors) are
11106  // __host__ __device__
11107  if (D->isImplicit())
11108    return CFT_HostDevice;
11109
11110  if (D->hasAttr<CUDAGlobalAttr>())
11111    return CFT_Global;
11112
11113  if (D->hasAttr<CUDADeviceAttr>()) {
11114    if (D->hasAttr<CUDAHostAttr>())
11115      return CFT_HostDevice;
11116    else
11117      return CFT_Device;
11118  }
11119
11120  return CFT_Host;
11121}
11122
11123bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11124                           CUDAFunctionTarget CalleeTarget) {
11125  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11126  // Callable from the device only."
11127  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11128    return true;
11129
11130  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11131  // Callable from the host only."
11132  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11133  // Callable from the host only."
11134  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11135      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11136    return true;
11137
11138  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11139    return true;
11140
11141  return false;
11142}
11143