SemaDeclCXX.cpp revision f05a422bad3cc5dbe20c57b69c8ce3ad74c202e8
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      // We don't want access-control diagnostics here.
1080      R.suppressDiagnostics();
1081
1082      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1083        bool NotUnknownSpecialization = false;
1084        DeclContext *DC = computeDeclContext(SS, false);
1085        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1086          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1087
1088        if (!NotUnknownSpecialization) {
1089          // When the scope specifier can refer to a member of an unknown
1090          // specialization, we take it as a type name.
1091          BaseType = CheckTypenameType(ETK_None,
1092                                       (NestedNameSpecifier *)SS.getScopeRep(),
1093                                       *MemberOrBase, SS.getRange());
1094          if (BaseType.isNull())
1095            return true;
1096
1097          R.clear();
1098        }
1099      }
1100
1101      // If no results were found, try to correct typos.
1102      if (R.empty() && BaseType.isNull() &&
1103          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1104          R.isSingleResult()) {
1105        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1106          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1107            // We have found a non-static data member with a similar
1108            // name to what was typed; complain and initialize that
1109            // member.
1110            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1111              << MemberOrBase << true << R.getLookupName()
1112              << FixItHint::CreateReplacement(R.getNameLoc(),
1113                                              R.getLookupName().getAsString());
1114            Diag(Member->getLocation(), diag::note_previous_decl)
1115              << Member->getDeclName();
1116
1117            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1118                                          LParenLoc, RParenLoc);
1119          }
1120        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1121          const CXXBaseSpecifier *DirectBaseSpec;
1122          const CXXBaseSpecifier *VirtualBaseSpec;
1123          if (FindBaseInitializer(*this, ClassDecl,
1124                                  Context.getTypeDeclType(Type),
1125                                  DirectBaseSpec, VirtualBaseSpec)) {
1126            // We have found a direct or virtual base class with a
1127            // similar name to what was typed; complain and initialize
1128            // that base class.
1129            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1130              << MemberOrBase << false << R.getLookupName()
1131              << FixItHint::CreateReplacement(R.getNameLoc(),
1132                                              R.getLookupName().getAsString());
1133
1134            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1135                                                             : VirtualBaseSpec;
1136            Diag(BaseSpec->getSourceRange().getBegin(),
1137                 diag::note_base_class_specified_here)
1138              << BaseSpec->getType()
1139              << BaseSpec->getSourceRange();
1140
1141            TyD = Type;
1142          }
1143        }
1144      }
1145
1146      if (!TyD && BaseType.isNull()) {
1147        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1148          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1149        return true;
1150      }
1151    }
1152
1153    if (BaseType.isNull()) {
1154      BaseType = Context.getTypeDeclType(TyD);
1155      if (SS.isSet()) {
1156        NestedNameSpecifier *Qualifier =
1157          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1158
1159        // FIXME: preserve source range information
1160        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1161      }
1162    }
1163  }
1164
1165  if (!TInfo)
1166    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1167
1168  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1169                              LParenLoc, RParenLoc, ClassDecl);
1170}
1171
1172/// Checks an initializer expression for use of uninitialized fields, such as
1173/// containing the field that is being initialized. Returns true if there is an
1174/// uninitialized field was used an updates the SourceLocation parameter; false
1175/// otherwise.
1176static bool InitExprContainsUninitializedFields(const Stmt* S,
1177                                                const FieldDecl* LhsField,
1178                                                SourceLocation* L) {
1179  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1180  if (ME) {
1181    const NamedDecl* RhsField = ME->getMemberDecl();
1182    if (RhsField == LhsField) {
1183      // Initializing a field with itself. Throw a warning.
1184      // But wait; there are exceptions!
1185      // Exception #1:  The field may not belong to this record.
1186      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1187      const Expr* base = ME->getBase();
1188      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1189        // Even though the field matches, it does not belong to this record.
1190        return false;
1191      }
1192      // None of the exceptions triggered; return true to indicate an
1193      // uninitialized field was used.
1194      *L = ME->getMemberLoc();
1195      return true;
1196    }
1197  }
1198  bool found = false;
1199  for (Stmt::const_child_iterator it = S->child_begin();
1200       it != S->child_end() && found == false;
1201       ++it) {
1202    if (isa<CallExpr>(S)) {
1203      // Do not descend into function calls or constructors, as the use
1204      // of an uninitialized field may be valid. One would have to inspect
1205      // the contents of the function/ctor to determine if it is safe or not.
1206      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1207      // may be safe, depending on what the function/ctor does.
1208      continue;
1209    }
1210    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1211  }
1212  return found;
1213}
1214
1215Sema::MemInitResult
1216Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1217                             unsigned NumArgs, SourceLocation IdLoc,
1218                             SourceLocation LParenLoc,
1219                             SourceLocation RParenLoc) {
1220  // Diagnose value-uses of fields to initialize themselves, e.g.
1221  //   foo(foo)
1222  // where foo is not also a parameter to the constructor.
1223  // TODO: implement -Wuninitialized and fold this into that framework.
1224  for (unsigned i = 0; i < NumArgs; ++i) {
1225    SourceLocation L;
1226    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1227      // FIXME: Return true in the case when other fields are used before being
1228      // uninitialized. For example, let this field be the i'th field. When
1229      // initializing the i'th field, throw a warning if any of the >= i'th
1230      // fields are used, as they are not yet initialized.
1231      // Right now we are only handling the case where the i'th field uses
1232      // itself in its initializer.
1233      Diag(L, diag::warn_field_is_uninit);
1234    }
1235  }
1236
1237  bool HasDependentArg = false;
1238  for (unsigned i = 0; i < NumArgs; i++)
1239    HasDependentArg |= Args[i]->isTypeDependent();
1240
1241  QualType FieldType = Member->getType();
1242  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1243    FieldType = Array->getElementType();
1244  if (FieldType->isDependentType() || HasDependentArg) {
1245    // Can't check initialization for a member of dependent type or when
1246    // any of the arguments are type-dependent expressions.
1247    OwningExprResult Init
1248      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1249                                          RParenLoc));
1250
1251    // Erase any temporaries within this evaluation context; we're not
1252    // going to track them in the AST, since we'll be rebuilding the
1253    // ASTs during template instantiation.
1254    ExprTemporaries.erase(
1255              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1256                          ExprTemporaries.end());
1257
1258    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1259                                                    LParenLoc,
1260                                                    Init.takeAs<Expr>(),
1261                                                    RParenLoc);
1262
1263  }
1264
1265  if (Member->isInvalidDecl())
1266    return true;
1267
1268  // Initialize the member.
1269  InitializedEntity MemberEntity =
1270    InitializedEntity::InitializeMember(Member, 0);
1271  InitializationKind Kind =
1272    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1273
1274  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1275
1276  OwningExprResult MemberInit =
1277    InitSeq.Perform(*this, MemberEntity, Kind,
1278                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1279  if (MemberInit.isInvalid())
1280    return true;
1281
1282  // C++0x [class.base.init]p7:
1283  //   The initialization of each base and member constitutes a
1284  //   full-expression.
1285  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1286  if (MemberInit.isInvalid())
1287    return true;
1288
1289  // If we are in a dependent context, template instantiation will
1290  // perform this type-checking again. Just save the arguments that we
1291  // received in a ParenListExpr.
1292  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1293  // of the information that we have about the member
1294  // initializer. However, deconstructing the ASTs is a dicey process,
1295  // and this approach is far more likely to get the corner cases right.
1296  if (CurContext->isDependentContext()) {
1297    // Bump the reference count of all of the arguments.
1298    for (unsigned I = 0; I != NumArgs; ++I)
1299      Args[I]->Retain();
1300
1301    OwningExprResult Init
1302      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1303                                          RParenLoc));
1304    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1305                                                    LParenLoc,
1306                                                    Init.takeAs<Expr>(),
1307                                                    RParenLoc);
1308  }
1309
1310  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1311                                                  LParenLoc,
1312                                                  MemberInit.takeAs<Expr>(),
1313                                                  RParenLoc);
1314}
1315
1316Sema::MemInitResult
1317Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1318                           Expr **Args, unsigned NumArgs,
1319                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1320                           CXXRecordDecl *ClassDecl) {
1321  bool HasDependentArg = false;
1322  for (unsigned i = 0; i < NumArgs; i++)
1323    HasDependentArg |= Args[i]->isTypeDependent();
1324
1325  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1326  if (BaseType->isDependentType() || HasDependentArg) {
1327    // Can't check initialization for a base of dependent type or when
1328    // any of the arguments are type-dependent expressions.
1329    OwningExprResult BaseInit
1330      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1331                                          RParenLoc));
1332
1333    // Erase any temporaries within this evaluation context; we're not
1334    // going to track them in the AST, since we'll be rebuilding the
1335    // ASTs during template instantiation.
1336    ExprTemporaries.erase(
1337              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1338                          ExprTemporaries.end());
1339
1340    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1341                                                    /*IsVirtual=*/false,
1342                                                    LParenLoc,
1343                                                    BaseInit.takeAs<Expr>(),
1344                                                    RParenLoc);
1345  }
1346
1347  if (!BaseType->isRecordType())
1348    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1349             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1350
1351  // C++ [class.base.init]p2:
1352  //   [...] Unless the mem-initializer-id names a nonstatic data
1353  //   member of the constructor’s class or a direct or virtual base
1354  //   of that class, the mem-initializer is ill-formed. A
1355  //   mem-initializer-list can initialize a base class using any
1356  //   name that denotes that base class type.
1357
1358  // Check for direct and virtual base classes.
1359  const CXXBaseSpecifier *DirectBaseSpec = 0;
1360  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1361  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1362                      VirtualBaseSpec);
1363
1364  // C++ [base.class.init]p2:
1365  //   If a mem-initializer-id is ambiguous because it designates both
1366  //   a direct non-virtual base class and an inherited virtual base
1367  //   class, the mem-initializer is ill-formed.
1368  if (DirectBaseSpec && VirtualBaseSpec)
1369    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1370      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1371  // C++ [base.class.init]p2:
1372  // Unless the mem-initializer-id names a nonstatic data membeer of the
1373  // constructor's class ot a direst or virtual base of that class, the
1374  // mem-initializer is ill-formed.
1375  if (!DirectBaseSpec && !VirtualBaseSpec)
1376    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1377      << BaseType << ClassDecl->getNameAsCString()
1378      << BaseTInfo->getTypeLoc().getSourceRange();
1379
1380  CXXBaseSpecifier *BaseSpec
1381    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1382  if (!BaseSpec)
1383    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1384
1385  // Initialize the base.
1386  InitializedEntity BaseEntity =
1387    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1388  InitializationKind Kind =
1389    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1390
1391  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1392
1393  OwningExprResult BaseInit =
1394    InitSeq.Perform(*this, BaseEntity, Kind,
1395                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1396  if (BaseInit.isInvalid())
1397    return true;
1398
1399  // C++0x [class.base.init]p7:
1400  //   The initialization of each base and member constitutes a
1401  //   full-expression.
1402  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1403  if (BaseInit.isInvalid())
1404    return true;
1405
1406  // If we are in a dependent context, template instantiation will
1407  // perform this type-checking again. Just save the arguments that we
1408  // received in a ParenListExpr.
1409  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1410  // of the information that we have about the base
1411  // initializer. However, deconstructing the ASTs is a dicey process,
1412  // and this approach is far more likely to get the corner cases right.
1413  if (CurContext->isDependentContext()) {
1414    // Bump the reference count of all of the arguments.
1415    for (unsigned I = 0; I != NumArgs; ++I)
1416      Args[I]->Retain();
1417
1418    OwningExprResult Init
1419      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1420                                          RParenLoc));
1421    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1422                                                    BaseSpec->isVirtual(),
1423                                                    LParenLoc,
1424                                                    Init.takeAs<Expr>(),
1425                                                    RParenLoc);
1426  }
1427
1428  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1429                                                  BaseSpec->isVirtual(),
1430                                                  LParenLoc,
1431                                                  BaseInit.takeAs<Expr>(),
1432                                                  RParenLoc);
1433}
1434
1435/// ImplicitInitializerKind - How an implicit base or member initializer should
1436/// initialize its base or member.
1437enum ImplicitInitializerKind {
1438  IIK_Default,
1439  IIK_Copy,
1440  IIK_Move
1441};
1442
1443static bool
1444BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1445                             ImplicitInitializerKind ImplicitInitKind,
1446                             CXXBaseSpecifier *BaseSpec,
1447                             bool IsInheritedVirtualBase,
1448                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1449  InitializedEntity InitEntity
1450    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1451                                        IsInheritedVirtualBase);
1452
1453  Sema::OwningExprResult BaseInit(SemaRef);
1454
1455  switch (ImplicitInitKind) {
1456  case IIK_Default: {
1457    InitializationKind InitKind
1458      = InitializationKind::CreateDefault(Constructor->getLocation());
1459    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1460    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1461                               Sema::MultiExprArg(SemaRef, 0, 0));
1462    break;
1463  }
1464
1465  case IIK_Copy: {
1466    ParmVarDecl *Param = Constructor->getParamDecl(0);
1467    QualType ParamType = Param->getType().getNonReferenceType();
1468
1469    Expr *CopyCtorArg =
1470      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1471                          SourceLocation(), ParamType, 0);
1472
1473    InitializationKind InitKind
1474      = InitializationKind::CreateDirect(Constructor->getLocation(),
1475                                         SourceLocation(), SourceLocation());
1476    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1477                                   &CopyCtorArg, 1);
1478    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1479                               Sema::MultiExprArg(SemaRef,
1480                                                  (void**)&CopyCtorArg, 1));
1481    break;
1482  }
1483
1484  case IIK_Move:
1485    assert(false && "Unhandled initializer kind!");
1486  }
1487
1488  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1489  if (BaseInit.isInvalid())
1490    return true;
1491
1492  CXXBaseInit =
1493    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1494               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1495                                                        SourceLocation()),
1496                                             BaseSpec->isVirtual(),
1497                                             SourceLocation(),
1498                                             BaseInit.takeAs<Expr>(),
1499                                             SourceLocation());
1500
1501  return false;
1502}
1503
1504static bool
1505BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1506                               ImplicitInitializerKind ImplicitInitKind,
1507                               FieldDecl *Field,
1508                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1509  if (ImplicitInitKind == IIK_Copy) {
1510    ParmVarDecl *Param = Constructor->getParamDecl(0);
1511    QualType ParamType = Param->getType().getNonReferenceType();
1512
1513    Expr *MemberExprBase =
1514      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1515                          SourceLocation(), ParamType, 0);
1516
1517
1518    Expr *CopyCtorArg =
1519      MemberExpr::Create(SemaRef.Context, MemberExprBase, /*IsArrow=*/false,
1520                         0, SourceRange(), Field,
1521                         DeclAccessPair::make(Field, Field->getAccess()),
1522                         SourceLocation(), 0,
1523                         Field->getType().getNonReferenceType());
1524
1525    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1526    InitializationKind InitKind =
1527      InitializationKind::CreateDirect(Constructor->getLocation(),
1528                                       SourceLocation(), SourceLocation());
1529
1530    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1531                                   &CopyCtorArg, 1);
1532
1533    Sema::OwningExprResult MemberInit =
1534      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1535                      Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArg, 1), 0);
1536    if (MemberInit.isInvalid())
1537      return true;
1538
1539    CXXMemberInit = 0;
1540    return false;
1541  }
1542
1543  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1544
1545  QualType FieldBaseElementType =
1546    SemaRef.Context.getBaseElementType(Field->getType());
1547
1548  if (FieldBaseElementType->isRecordType()) {
1549    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1550    InitializationKind InitKind =
1551      InitializationKind::CreateDefault(Constructor->getLocation());
1552
1553    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1554    Sema::OwningExprResult MemberInit =
1555      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1556                      Sema::MultiExprArg(SemaRef, 0, 0));
1557    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1558    if (MemberInit.isInvalid())
1559      return true;
1560
1561    CXXMemberInit =
1562      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1563                                                       Field, SourceLocation(),
1564                                                       SourceLocation(),
1565                                                      MemberInit.takeAs<Expr>(),
1566                                                       SourceLocation());
1567    return false;
1568  }
1569
1570  if (FieldBaseElementType->isReferenceType()) {
1571    SemaRef.Diag(Constructor->getLocation(),
1572                 diag::err_uninitialized_member_in_ctor)
1573    << (int)Constructor->isImplicit()
1574    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1575    << 0 << Field->getDeclName();
1576    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1577    return true;
1578  }
1579
1580  if (FieldBaseElementType.isConstQualified()) {
1581    SemaRef.Diag(Constructor->getLocation(),
1582                 diag::err_uninitialized_member_in_ctor)
1583    << (int)Constructor->isImplicit()
1584    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1585    << 1 << Field->getDeclName();
1586    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1587    return true;
1588  }
1589
1590  // Nothing to initialize.
1591  CXXMemberInit = 0;
1592  return false;
1593}
1594
1595bool
1596Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1597                                  CXXBaseOrMemberInitializer **Initializers,
1598                                  unsigned NumInitializers,
1599                                  bool AnyErrors) {
1600  if (Constructor->getDeclContext()->isDependentContext()) {
1601    // Just store the initializers as written, they will be checked during
1602    // instantiation.
1603    if (NumInitializers > 0) {
1604      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1605      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1606        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1607      memcpy(baseOrMemberInitializers, Initializers,
1608             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1609      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1610    }
1611
1612    return false;
1613  }
1614
1615  ImplicitInitializerKind ImplicitInitKind = IIK_Default;
1616
1617  // FIXME: Handle implicit move constructors.
1618  if (Constructor->isImplicit() && Constructor->isCopyConstructor())
1619    ImplicitInitKind = IIK_Copy;
1620
1621  // We need to build the initializer AST according to order of construction
1622  // and not what user specified in the Initializers list.
1623  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1624  if (!ClassDecl)
1625    return true;
1626
1627  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1628  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1629  bool HadError = false;
1630
1631  for (unsigned i = 0; i < NumInitializers; i++) {
1632    CXXBaseOrMemberInitializer *Member = Initializers[i];
1633
1634    if (Member->isBaseInitializer())
1635      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1636    else
1637      AllBaseFields[Member->getMember()] = Member;
1638  }
1639
1640  // Keep track of the direct virtual bases.
1641  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1642  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1643       E = ClassDecl->bases_end(); I != E; ++I) {
1644    if (I->isVirtual())
1645      DirectVBases.insert(I);
1646  }
1647
1648  // Push virtual bases before others.
1649  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1650       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1651
1652    if (CXXBaseOrMemberInitializer *Value
1653        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1654      AllToInit.push_back(Value);
1655    } else if (!AnyErrors) {
1656      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1657      CXXBaseOrMemberInitializer *CXXBaseInit;
1658      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1659                                       VBase, IsInheritedVirtualBase,
1660                                       CXXBaseInit)) {
1661        HadError = true;
1662        continue;
1663      }
1664
1665      AllToInit.push_back(CXXBaseInit);
1666    }
1667  }
1668
1669  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1670       E = ClassDecl->bases_end(); Base != E; ++Base) {
1671    // Virtuals are in the virtual base list and already constructed.
1672    if (Base->isVirtual())
1673      continue;
1674
1675    if (CXXBaseOrMemberInitializer *Value
1676          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1677      AllToInit.push_back(Value);
1678    } else if (!AnyErrors) {
1679      CXXBaseOrMemberInitializer *CXXBaseInit;
1680      if (BuildImplicitBaseInitializer(*this, Constructor, ImplicitInitKind,
1681                                       Base, /*IsInheritedVirtualBase=*/false,
1682                                       CXXBaseInit)) {
1683        HadError = true;
1684        continue;
1685      }
1686
1687      AllToInit.push_back(CXXBaseInit);
1688    }
1689  }
1690
1691  // non-static data members.
1692  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1693       E = ClassDecl->field_end(); Field != E; ++Field) {
1694    if ((*Field)->isAnonymousStructOrUnion()) {
1695      if (const RecordType *FieldClassType =
1696          Field->getType()->getAs<RecordType>()) {
1697        CXXRecordDecl *FieldClassDecl
1698          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1699        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1700            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1701          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1702            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1703            // set to the anonymous union data member used in the initializer
1704            // list.
1705            Value->setMember(*Field);
1706            Value->setAnonUnionMember(*FA);
1707            AllToInit.push_back(Value);
1708            break;
1709          }
1710        }
1711      }
1712      continue;
1713    }
1714    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1715      AllToInit.push_back(Value);
1716      continue;
1717    }
1718
1719    if (AnyErrors)
1720      continue;
1721
1722    CXXBaseOrMemberInitializer *Member;
1723    if (BuildImplicitMemberInitializer(*this, Constructor, ImplicitInitKind,
1724                                       *Field, Member)) {
1725      HadError = true;
1726      continue;
1727    }
1728
1729    // If the member doesn't need to be initialized, it will be null.
1730    if (Member)
1731      AllToInit.push_back(Member);
1732  }
1733
1734  NumInitializers = AllToInit.size();
1735  if (NumInitializers > 0) {
1736    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1737    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1738      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1739    memcpy(baseOrMemberInitializers, AllToInit.data(),
1740           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1741    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1742
1743    // Constructors implicitly reference the base and member
1744    // destructors.
1745    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1746                                           Constructor->getParent());
1747  }
1748
1749  return HadError;
1750}
1751
1752static void *GetKeyForTopLevelField(FieldDecl *Field) {
1753  // For anonymous unions, use the class declaration as the key.
1754  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1755    if (RT->getDecl()->isAnonymousStructOrUnion())
1756      return static_cast<void *>(RT->getDecl());
1757  }
1758  return static_cast<void *>(Field);
1759}
1760
1761static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1762  return Context.getCanonicalType(BaseType).getTypePtr();
1763}
1764
1765static void *GetKeyForMember(ASTContext &Context,
1766                             CXXBaseOrMemberInitializer *Member,
1767                             bool MemberMaybeAnon = false) {
1768  if (!Member->isMemberInitializer())
1769    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1770
1771  // For fields injected into the class via declaration of an anonymous union,
1772  // use its anonymous union class declaration as the unique key.
1773  FieldDecl *Field = Member->getMember();
1774
1775  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1776  // data member of the class. Data member used in the initializer list is
1777  // in AnonUnionMember field.
1778  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1779    Field = Member->getAnonUnionMember();
1780
1781  // If the field is a member of an anonymous struct or union, our key
1782  // is the anonymous record decl that's a direct child of the class.
1783  RecordDecl *RD = Field->getParent();
1784  if (RD->isAnonymousStructOrUnion()) {
1785    while (true) {
1786      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1787      if (Parent->isAnonymousStructOrUnion())
1788        RD = Parent;
1789      else
1790        break;
1791    }
1792
1793    return static_cast<void *>(RD);
1794  }
1795
1796  return static_cast<void *>(Field);
1797}
1798
1799static void
1800DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1801                                  const CXXConstructorDecl *Constructor,
1802                                  CXXBaseOrMemberInitializer **Inits,
1803                                  unsigned NumInits) {
1804  if (Constructor->getDeclContext()->isDependentContext())
1805    return;
1806
1807  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1808        == Diagnostic::Ignored)
1809    return;
1810
1811  // Build the list of bases and members in the order that they'll
1812  // actually be initialized.  The explicit initializers should be in
1813  // this same order but may be missing things.
1814  llvm::SmallVector<const void*, 32> IdealInitKeys;
1815
1816  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1817
1818  // 1. Virtual bases.
1819  for (CXXRecordDecl::base_class_const_iterator VBase =
1820       ClassDecl->vbases_begin(),
1821       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1822    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1823
1824  // 2. Non-virtual bases.
1825  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1826       E = ClassDecl->bases_end(); Base != E; ++Base) {
1827    if (Base->isVirtual())
1828      continue;
1829    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1830  }
1831
1832  // 3. Direct fields.
1833  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1834       E = ClassDecl->field_end(); Field != E; ++Field)
1835    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1836
1837  unsigned NumIdealInits = IdealInitKeys.size();
1838  unsigned IdealIndex = 0;
1839
1840  CXXBaseOrMemberInitializer *PrevInit = 0;
1841  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1842    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1843    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1844
1845    // Scan forward to try to find this initializer in the idealized
1846    // initializers list.
1847    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1848      if (InitKey == IdealInitKeys[IdealIndex])
1849        break;
1850
1851    // If we didn't find this initializer, it must be because we
1852    // scanned past it on a previous iteration.  That can only
1853    // happen if we're out of order;  emit a warning.
1854    if (IdealIndex == NumIdealInits) {
1855      assert(PrevInit && "initializer not found in initializer list");
1856
1857      Sema::SemaDiagnosticBuilder D =
1858        SemaRef.Diag(PrevInit->getSourceLocation(),
1859                     diag::warn_initializer_out_of_order);
1860
1861      if (PrevInit->isMemberInitializer())
1862        D << 0 << PrevInit->getMember()->getDeclName();
1863      else
1864        D << 1 << PrevInit->getBaseClassInfo()->getType();
1865
1866      if (Init->isMemberInitializer())
1867        D << 0 << Init->getMember()->getDeclName();
1868      else
1869        D << 1 << Init->getBaseClassInfo()->getType();
1870
1871      // Move back to the initializer's location in the ideal list.
1872      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1873        if (InitKey == IdealInitKeys[IdealIndex])
1874          break;
1875
1876      assert(IdealIndex != NumIdealInits &&
1877             "initializer not found in initializer list");
1878    }
1879
1880    PrevInit = Init;
1881  }
1882}
1883
1884namespace {
1885bool CheckRedundantInit(Sema &S,
1886                        CXXBaseOrMemberInitializer *Init,
1887                        CXXBaseOrMemberInitializer *&PrevInit) {
1888  if (!PrevInit) {
1889    PrevInit = Init;
1890    return false;
1891  }
1892
1893  if (FieldDecl *Field = Init->getMember())
1894    S.Diag(Init->getSourceLocation(),
1895           diag::err_multiple_mem_initialization)
1896      << Field->getDeclName()
1897      << Init->getSourceRange();
1898  else {
1899    Type *BaseClass = Init->getBaseClass();
1900    assert(BaseClass && "neither field nor base");
1901    S.Diag(Init->getSourceLocation(),
1902           diag::err_multiple_base_initialization)
1903      << QualType(BaseClass, 0)
1904      << Init->getSourceRange();
1905  }
1906  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
1907    << 0 << PrevInit->getSourceRange();
1908
1909  return true;
1910}
1911
1912typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
1913typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
1914
1915bool CheckRedundantUnionInit(Sema &S,
1916                             CXXBaseOrMemberInitializer *Init,
1917                             RedundantUnionMap &Unions) {
1918  FieldDecl *Field = Init->getMember();
1919  RecordDecl *Parent = Field->getParent();
1920  if (!Parent->isAnonymousStructOrUnion())
1921    return false;
1922
1923  NamedDecl *Child = Field;
1924  do {
1925    if (Parent->isUnion()) {
1926      UnionEntry &En = Unions[Parent];
1927      if (En.first && En.first != Child) {
1928        S.Diag(Init->getSourceLocation(),
1929               diag::err_multiple_mem_union_initialization)
1930          << Field->getDeclName()
1931          << Init->getSourceRange();
1932        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
1933          << 0 << En.second->getSourceRange();
1934        return true;
1935      } else if (!En.first) {
1936        En.first = Child;
1937        En.second = Init;
1938      }
1939    }
1940
1941    Child = Parent;
1942    Parent = cast<RecordDecl>(Parent->getDeclContext());
1943  } while (Parent->isAnonymousStructOrUnion());
1944
1945  return false;
1946}
1947}
1948
1949/// ActOnMemInitializers - Handle the member initializers for a constructor.
1950void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1951                                SourceLocation ColonLoc,
1952                                MemInitTy **meminits, unsigned NumMemInits,
1953                                bool AnyErrors) {
1954  if (!ConstructorDecl)
1955    return;
1956
1957  AdjustDeclIfTemplate(ConstructorDecl);
1958
1959  CXXConstructorDecl *Constructor
1960    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1961
1962  if (!Constructor) {
1963    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1964    return;
1965  }
1966
1967  CXXBaseOrMemberInitializer **MemInits =
1968    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1969
1970  // Mapping for the duplicate initializers check.
1971  // For member initializers, this is keyed with a FieldDecl*.
1972  // For base initializers, this is keyed with a Type*.
1973  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1974
1975  // Mapping for the inconsistent anonymous-union initializers check.
1976  RedundantUnionMap MemberUnions;
1977
1978  bool HadError = false;
1979  for (unsigned i = 0; i < NumMemInits; i++) {
1980    CXXBaseOrMemberInitializer *Init = MemInits[i];
1981
1982    if (Init->isMemberInitializer()) {
1983      FieldDecl *Field = Init->getMember();
1984      if (CheckRedundantInit(*this, Init, Members[Field]) ||
1985          CheckRedundantUnionInit(*this, Init, MemberUnions))
1986        HadError = true;
1987    } else {
1988      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
1989      if (CheckRedundantInit(*this, Init, Members[Key]))
1990        HadError = true;
1991    }
1992  }
1993
1994  if (HadError)
1995    return;
1996
1997  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1998
1999  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2000}
2001
2002void
2003Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2004                                             CXXRecordDecl *ClassDecl) {
2005  // Ignore dependent contexts.
2006  if (ClassDecl->isDependentContext())
2007    return;
2008
2009  // FIXME: all the access-control diagnostics are positioned on the
2010  // field/base declaration.  That's probably good; that said, the
2011  // user might reasonably want to know why the destructor is being
2012  // emitted, and we currently don't say.
2013
2014  // Non-static data members.
2015  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2016       E = ClassDecl->field_end(); I != E; ++I) {
2017    FieldDecl *Field = *I;
2018
2019    QualType FieldType = Context.getBaseElementType(Field->getType());
2020
2021    const RecordType* RT = FieldType->getAs<RecordType>();
2022    if (!RT)
2023      continue;
2024
2025    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2026    if (FieldClassDecl->hasTrivialDestructor())
2027      continue;
2028
2029    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2030    CheckDestructorAccess(Field->getLocation(), Dtor,
2031                          PDiag(diag::err_access_dtor_field)
2032                            << Field->getDeclName()
2033                            << FieldType);
2034
2035    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2036  }
2037
2038  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2039
2040  // Bases.
2041  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2042       E = ClassDecl->bases_end(); Base != E; ++Base) {
2043    // Bases are always records in a well-formed non-dependent class.
2044    const RecordType *RT = Base->getType()->getAs<RecordType>();
2045
2046    // Remember direct virtual bases.
2047    if (Base->isVirtual())
2048      DirectVirtualBases.insert(RT);
2049
2050    // Ignore trivial destructors.
2051    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2052    if (BaseClassDecl->hasTrivialDestructor())
2053      continue;
2054
2055    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2056
2057    // FIXME: caret should be on the start of the class name
2058    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2059                          PDiag(diag::err_access_dtor_base)
2060                            << Base->getType()
2061                            << Base->getSourceRange());
2062
2063    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2064  }
2065
2066  // Virtual bases.
2067  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2068       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2069
2070    // Bases are always records in a well-formed non-dependent class.
2071    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2072
2073    // Ignore direct virtual bases.
2074    if (DirectVirtualBases.count(RT))
2075      continue;
2076
2077    // Ignore trivial destructors.
2078    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2079    if (BaseClassDecl->hasTrivialDestructor())
2080      continue;
2081
2082    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2083    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2084                          PDiag(diag::err_access_dtor_vbase)
2085                            << VBase->getType());
2086
2087    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2088  }
2089}
2090
2091void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2092  if (!CDtorDecl)
2093    return;
2094
2095  if (CXXConstructorDecl *Constructor
2096      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2097    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2098}
2099
2100bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2101                                  unsigned DiagID, AbstractDiagSelID SelID,
2102                                  const CXXRecordDecl *CurrentRD) {
2103  if (SelID == -1)
2104    return RequireNonAbstractType(Loc, T,
2105                                  PDiag(DiagID), CurrentRD);
2106  else
2107    return RequireNonAbstractType(Loc, T,
2108                                  PDiag(DiagID) << SelID, CurrentRD);
2109}
2110
2111bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2112                                  const PartialDiagnostic &PD,
2113                                  const CXXRecordDecl *CurrentRD) {
2114  if (!getLangOptions().CPlusPlus)
2115    return false;
2116
2117  if (const ArrayType *AT = Context.getAsArrayType(T))
2118    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2119                                  CurrentRD);
2120
2121  if (const PointerType *PT = T->getAs<PointerType>()) {
2122    // Find the innermost pointer type.
2123    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2124      PT = T;
2125
2126    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2127      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2128  }
2129
2130  const RecordType *RT = T->getAs<RecordType>();
2131  if (!RT)
2132    return false;
2133
2134  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2135
2136  if (CurrentRD && CurrentRD != RD)
2137    return false;
2138
2139  // FIXME: is this reasonable?  It matches current behavior, but....
2140  if (!RD->getDefinition())
2141    return false;
2142
2143  if (!RD->isAbstract())
2144    return false;
2145
2146  Diag(Loc, PD) << RD->getDeclName();
2147
2148  // Check if we've already emitted the list of pure virtual functions for this
2149  // class.
2150  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2151    return true;
2152
2153  CXXFinalOverriderMap FinalOverriders;
2154  RD->getFinalOverriders(FinalOverriders);
2155
2156  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2157                                   MEnd = FinalOverriders.end();
2158       M != MEnd;
2159       ++M) {
2160    for (OverridingMethods::iterator SO = M->second.begin(),
2161                                  SOEnd = M->second.end();
2162         SO != SOEnd; ++SO) {
2163      // C++ [class.abstract]p4:
2164      //   A class is abstract if it contains or inherits at least one
2165      //   pure virtual function for which the final overrider is pure
2166      //   virtual.
2167
2168      //
2169      if (SO->second.size() != 1)
2170        continue;
2171
2172      if (!SO->second.front().Method->isPure())
2173        continue;
2174
2175      Diag(SO->second.front().Method->getLocation(),
2176           diag::note_pure_virtual_function)
2177        << SO->second.front().Method->getDeclName();
2178    }
2179  }
2180
2181  if (!PureVirtualClassDiagSet)
2182    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2183  PureVirtualClassDiagSet->insert(RD);
2184
2185  return true;
2186}
2187
2188namespace {
2189  class AbstractClassUsageDiagnoser
2190    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2191    Sema &SemaRef;
2192    CXXRecordDecl *AbstractClass;
2193
2194    bool VisitDeclContext(const DeclContext *DC) {
2195      bool Invalid = false;
2196
2197      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2198           E = DC->decls_end(); I != E; ++I)
2199        Invalid |= Visit(*I);
2200
2201      return Invalid;
2202    }
2203
2204  public:
2205    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2206      : SemaRef(SemaRef), AbstractClass(ac) {
2207        Visit(SemaRef.Context.getTranslationUnitDecl());
2208    }
2209
2210    bool VisitFunctionDecl(const FunctionDecl *FD) {
2211      if (FD->isThisDeclarationADefinition()) {
2212        // No need to do the check if we're in a definition, because it requires
2213        // that the return/param types are complete.
2214        // because that requires
2215        return VisitDeclContext(FD);
2216      }
2217
2218      // Check the return type.
2219      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2220      bool Invalid =
2221        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2222                                       diag::err_abstract_type_in_decl,
2223                                       Sema::AbstractReturnType,
2224                                       AbstractClass);
2225
2226      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2227           E = FD->param_end(); I != E; ++I) {
2228        const ParmVarDecl *VD = *I;
2229        Invalid |=
2230          SemaRef.RequireNonAbstractType(VD->getLocation(),
2231                                         VD->getOriginalType(),
2232                                         diag::err_abstract_type_in_decl,
2233                                         Sema::AbstractParamType,
2234                                         AbstractClass);
2235      }
2236
2237      return Invalid;
2238    }
2239
2240    bool VisitDecl(const Decl* D) {
2241      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2242        return VisitDeclContext(DC);
2243
2244      return false;
2245    }
2246  };
2247}
2248
2249/// \brief Perform semantic checks on a class definition that has been
2250/// completing, introducing implicitly-declared members, checking for
2251/// abstract types, etc.
2252void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2253  if (!Record || Record->isInvalidDecl())
2254    return;
2255
2256  if (!Record->isDependentType())
2257    AddImplicitlyDeclaredMembersToClass(S, Record);
2258
2259  if (Record->isInvalidDecl())
2260    return;
2261
2262  // Set access bits correctly on the directly-declared conversions.
2263  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2264  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2265    Convs->setAccess(I, (*I)->getAccess());
2266
2267  // Determine whether we need to check for final overriders. We do
2268  // this either when there are virtual base classes (in which case we
2269  // may end up finding multiple final overriders for a given virtual
2270  // function) or any of the base classes is abstract (in which case
2271  // we might detect that this class is abstract).
2272  bool CheckFinalOverriders = false;
2273  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2274      !Record->isDependentType()) {
2275    if (Record->getNumVBases())
2276      CheckFinalOverriders = true;
2277    else if (!Record->isAbstract()) {
2278      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2279                                                 BEnd = Record->bases_end();
2280           B != BEnd; ++B) {
2281        CXXRecordDecl *BaseDecl
2282          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2283        if (BaseDecl->isAbstract()) {
2284          CheckFinalOverriders = true;
2285          break;
2286        }
2287      }
2288    }
2289  }
2290
2291  if (CheckFinalOverriders) {
2292    CXXFinalOverriderMap FinalOverriders;
2293    Record->getFinalOverriders(FinalOverriders);
2294
2295    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2296                                     MEnd = FinalOverriders.end();
2297         M != MEnd; ++M) {
2298      for (OverridingMethods::iterator SO = M->second.begin(),
2299                                    SOEnd = M->second.end();
2300           SO != SOEnd; ++SO) {
2301        assert(SO->second.size() > 0 &&
2302               "All virtual functions have overridding virtual functions");
2303        if (SO->second.size() == 1) {
2304          // C++ [class.abstract]p4:
2305          //   A class is abstract if it contains or inherits at least one
2306          //   pure virtual function for which the final overrider is pure
2307          //   virtual.
2308          if (SO->second.front().Method->isPure())
2309            Record->setAbstract(true);
2310          continue;
2311        }
2312
2313        // C++ [class.virtual]p2:
2314        //   In a derived class, if a virtual member function of a base
2315        //   class subobject has more than one final overrider the
2316        //   program is ill-formed.
2317        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2318          << (NamedDecl *)M->first << Record;
2319        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2320        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2321                                                 OMEnd = SO->second.end();
2322             OM != OMEnd; ++OM)
2323          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2324            << (NamedDecl *)M->first << OM->Method->getParent();
2325
2326        Record->setInvalidDecl();
2327      }
2328    }
2329  }
2330
2331  if (Record->isAbstract() && !Record->isInvalidDecl())
2332    (void)AbstractClassUsageDiagnoser(*this, Record);
2333
2334  // If this is not an aggregate type and has no user-declared constructor,
2335  // complain about any non-static data members of reference or const scalar
2336  // type, since they will never get initializers.
2337  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2338      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2339    bool Complained = false;
2340    for (RecordDecl::field_iterator F = Record->field_begin(),
2341                                 FEnd = Record->field_end();
2342         F != FEnd; ++F) {
2343      if (F->getType()->isReferenceType() ||
2344          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2345        if (!Complained) {
2346          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2347            << Record->getTagKind() << Record;
2348          Complained = true;
2349        }
2350
2351        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2352          << F->getType()->isReferenceType()
2353          << F->getDeclName();
2354      }
2355    }
2356  }
2357}
2358
2359void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2360                                             DeclPtrTy TagDecl,
2361                                             SourceLocation LBrac,
2362                                             SourceLocation RBrac,
2363                                             AttributeList *AttrList) {
2364  if (!TagDecl)
2365    return;
2366
2367  AdjustDeclIfTemplate(TagDecl);
2368
2369  ActOnFields(S, RLoc, TagDecl,
2370              (DeclPtrTy*)FieldCollector->getCurFields(),
2371              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2372
2373  CheckCompletedCXXClass(S,
2374                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2375}
2376
2377/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2378/// special functions, such as the default constructor, copy
2379/// constructor, or destructor, to the given C++ class (C++
2380/// [special]p1).  This routine can only be executed just before the
2381/// definition of the class is complete.
2382///
2383/// The scope, if provided, is the class scope.
2384void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2385                                               CXXRecordDecl *ClassDecl) {
2386  CanQualType ClassType
2387    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2388
2389  // FIXME: Implicit declarations have exception specifications, which are
2390  // the union of the specifications of the implicitly called functions.
2391
2392  if (!ClassDecl->hasUserDeclaredConstructor()) {
2393    // C++ [class.ctor]p5:
2394    //   A default constructor for a class X is a constructor of class X
2395    //   that can be called without an argument. If there is no
2396    //   user-declared constructor for class X, a default constructor is
2397    //   implicitly declared. An implicitly-declared default constructor
2398    //   is an inline public member of its class.
2399    DeclarationName Name
2400      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2401    CXXConstructorDecl *DefaultCon =
2402      CXXConstructorDecl::Create(Context, ClassDecl,
2403                                 ClassDecl->getLocation(), Name,
2404                                 Context.getFunctionType(Context.VoidTy,
2405                                                         0, 0, false, 0,
2406                                                         /*FIXME*/false, false,
2407                                                         0, 0,
2408                                                       FunctionType::ExtInfo()),
2409                                 /*TInfo=*/0,
2410                                 /*isExplicit=*/false,
2411                                 /*isInline=*/true,
2412                                 /*isImplicitlyDeclared=*/true);
2413    DefaultCon->setAccess(AS_public);
2414    DefaultCon->setImplicit();
2415    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2416    if (S)
2417      PushOnScopeChains(DefaultCon, S, true);
2418    else
2419      ClassDecl->addDecl(DefaultCon);
2420  }
2421
2422  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2423    // C++ [class.copy]p4:
2424    //   If the class definition does not explicitly declare a copy
2425    //   constructor, one is declared implicitly.
2426
2427    // C++ [class.copy]p5:
2428    //   The implicitly-declared copy constructor for a class X will
2429    //   have the form
2430    //
2431    //       X::X(const X&)
2432    //
2433    //   if
2434    bool HasConstCopyConstructor = true;
2435
2436    //     -- each direct or virtual base class B of X has a copy
2437    //        constructor whose first parameter is of type const B& or
2438    //        const volatile B&, and
2439    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2440         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2441      const CXXRecordDecl *BaseClassDecl
2442        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2443      HasConstCopyConstructor
2444        = BaseClassDecl->hasConstCopyConstructor(Context);
2445    }
2446
2447    //     -- for all the nonstatic data members of X that are of a
2448    //        class type M (or array thereof), each such class type
2449    //        has a copy constructor whose first parameter is of type
2450    //        const M& or const volatile M&.
2451    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2452         HasConstCopyConstructor && Field != ClassDecl->field_end();
2453         ++Field) {
2454      QualType FieldType = (*Field)->getType();
2455      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2456        FieldType = Array->getElementType();
2457      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2458        const CXXRecordDecl *FieldClassDecl
2459          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2460        HasConstCopyConstructor
2461          = FieldClassDecl->hasConstCopyConstructor(Context);
2462      }
2463    }
2464
2465    //   Otherwise, the implicitly declared copy constructor will have
2466    //   the form
2467    //
2468    //       X::X(X&)
2469    QualType ArgType = ClassType;
2470    if (HasConstCopyConstructor)
2471      ArgType = ArgType.withConst();
2472    ArgType = Context.getLValueReferenceType(ArgType);
2473
2474    //   An implicitly-declared copy constructor is an inline public
2475    //   member of its class.
2476    DeclarationName Name
2477      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2478    CXXConstructorDecl *CopyConstructor
2479      = CXXConstructorDecl::Create(Context, ClassDecl,
2480                                   ClassDecl->getLocation(), Name,
2481                                   Context.getFunctionType(Context.VoidTy,
2482                                                           &ArgType, 1,
2483                                                           false, 0,
2484                                                           /*FIXME:*/false,
2485                                                           false, 0, 0,
2486                                                       FunctionType::ExtInfo()),
2487                                   /*TInfo=*/0,
2488                                   /*isExplicit=*/false,
2489                                   /*isInline=*/true,
2490                                   /*isImplicitlyDeclared=*/true);
2491    CopyConstructor->setAccess(AS_public);
2492    CopyConstructor->setImplicit();
2493    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2494
2495    // Add the parameter to the constructor.
2496    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2497                                                 ClassDecl->getLocation(),
2498                                                 /*IdentifierInfo=*/0,
2499                                                 ArgType, /*TInfo=*/0,
2500                                                 VarDecl::None,
2501                                                 VarDecl::None, 0);
2502    CopyConstructor->setParams(&FromParam, 1);
2503    if (S)
2504      PushOnScopeChains(CopyConstructor, S, true);
2505    else
2506      ClassDecl->addDecl(CopyConstructor);
2507  }
2508
2509  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2510    // Note: The following rules are largely analoguous to the copy
2511    // constructor rules. Note that virtual bases are not taken into account
2512    // for determining the argument type of the operator. Note also that
2513    // operators taking an object instead of a reference are allowed.
2514    //
2515    // C++ [class.copy]p10:
2516    //   If the class definition does not explicitly declare a copy
2517    //   assignment operator, one is declared implicitly.
2518    //   The implicitly-defined copy assignment operator for a class X
2519    //   will have the form
2520    //
2521    //       X& X::operator=(const X&)
2522    //
2523    //   if
2524    bool HasConstCopyAssignment = true;
2525
2526    //       -- each direct base class B of X has a copy assignment operator
2527    //          whose parameter is of type const B&, const volatile B& or B,
2528    //          and
2529    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2530         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2531      assert(!Base->getType()->isDependentType() &&
2532            "Cannot generate implicit members for class with dependent bases.");
2533      const CXXRecordDecl *BaseClassDecl
2534        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2535      const CXXMethodDecl *MD = 0;
2536      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2537                                                                     MD);
2538    }
2539
2540    //       -- for all the nonstatic data members of X that are of a class
2541    //          type M (or array thereof), each such class type has a copy
2542    //          assignment operator whose parameter is of type const M&,
2543    //          const volatile M& or M.
2544    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2545         HasConstCopyAssignment && Field != ClassDecl->field_end();
2546         ++Field) {
2547      QualType FieldType = (*Field)->getType();
2548      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2549        FieldType = Array->getElementType();
2550      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2551        const CXXRecordDecl *FieldClassDecl
2552          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2553        const CXXMethodDecl *MD = 0;
2554        HasConstCopyAssignment
2555          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2556      }
2557    }
2558
2559    //   Otherwise, the implicitly declared copy assignment operator will
2560    //   have the form
2561    //
2562    //       X& X::operator=(X&)
2563    QualType ArgType = ClassType;
2564    QualType RetType = Context.getLValueReferenceType(ArgType);
2565    if (HasConstCopyAssignment)
2566      ArgType = ArgType.withConst();
2567    ArgType = Context.getLValueReferenceType(ArgType);
2568
2569    //   An implicitly-declared copy assignment operator is an inline public
2570    //   member of its class.
2571    DeclarationName Name =
2572      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2573    CXXMethodDecl *CopyAssignment =
2574      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2575                            Context.getFunctionType(RetType, &ArgType, 1,
2576                                                    false, 0,
2577                                                    /*FIXME:*/false,
2578                                                    false, 0, 0,
2579                                                    FunctionType::ExtInfo()),
2580                            /*TInfo=*/0, /*isStatic=*/false,
2581                            /*StorageClassAsWritten=*/FunctionDecl::None,
2582                            /*isInline=*/true);
2583    CopyAssignment->setAccess(AS_public);
2584    CopyAssignment->setImplicit();
2585    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2586    CopyAssignment->setCopyAssignment(true);
2587
2588    // Add the parameter to the operator.
2589    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2590                                                 ClassDecl->getLocation(),
2591                                                 /*IdentifierInfo=*/0,
2592                                                 ArgType, /*TInfo=*/0,
2593                                                 VarDecl::None,
2594                                                 VarDecl::None, 0);
2595    CopyAssignment->setParams(&FromParam, 1);
2596
2597    // Don't call addedAssignmentOperator. There is no way to distinguish an
2598    // implicit from an explicit assignment operator.
2599    if (S)
2600      PushOnScopeChains(CopyAssignment, S, true);
2601    else
2602      ClassDecl->addDecl(CopyAssignment);
2603    AddOverriddenMethods(ClassDecl, CopyAssignment);
2604  }
2605
2606  if (!ClassDecl->hasUserDeclaredDestructor()) {
2607    // C++ [class.dtor]p2:
2608    //   If a class has no user-declared destructor, a destructor is
2609    //   declared implicitly. An implicitly-declared destructor is an
2610    //   inline public member of its class.
2611    QualType Ty = Context.getFunctionType(Context.VoidTy,
2612                                          0, 0, false, 0,
2613                                          /*FIXME:*/false,
2614                                          false, 0, 0, FunctionType::ExtInfo());
2615
2616    DeclarationName Name
2617      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2618    CXXDestructorDecl *Destructor
2619      = CXXDestructorDecl::Create(Context, ClassDecl,
2620                                  ClassDecl->getLocation(), Name, Ty,
2621                                  /*isInline=*/true,
2622                                  /*isImplicitlyDeclared=*/true);
2623    Destructor->setAccess(AS_public);
2624    Destructor->setImplicit();
2625    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2626    if (S)
2627      PushOnScopeChains(Destructor, S, true);
2628    else
2629      ClassDecl->addDecl(Destructor);
2630
2631    // This could be uniqued if it ever proves significant.
2632    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2633
2634    AddOverriddenMethods(ClassDecl, Destructor);
2635  }
2636}
2637
2638void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2639  Decl *D = TemplateD.getAs<Decl>();
2640  if (!D)
2641    return;
2642
2643  TemplateParameterList *Params = 0;
2644  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2645    Params = Template->getTemplateParameters();
2646  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2647           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2648    Params = PartialSpec->getTemplateParameters();
2649  else
2650    return;
2651
2652  for (TemplateParameterList::iterator Param = Params->begin(),
2653                                    ParamEnd = Params->end();
2654       Param != ParamEnd; ++Param) {
2655    NamedDecl *Named = cast<NamedDecl>(*Param);
2656    if (Named->getDeclName()) {
2657      S->AddDecl(DeclPtrTy::make(Named));
2658      IdResolver.AddDecl(Named);
2659    }
2660  }
2661}
2662
2663void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2664  if (!RecordD) return;
2665  AdjustDeclIfTemplate(RecordD);
2666  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2667  PushDeclContext(S, Record);
2668}
2669
2670void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2671  if (!RecordD) return;
2672  PopDeclContext();
2673}
2674
2675/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2676/// parsing a top-level (non-nested) C++ class, and we are now
2677/// parsing those parts of the given Method declaration that could
2678/// not be parsed earlier (C++ [class.mem]p2), such as default
2679/// arguments. This action should enter the scope of the given
2680/// Method declaration as if we had just parsed the qualified method
2681/// name. However, it should not bring the parameters into scope;
2682/// that will be performed by ActOnDelayedCXXMethodParameter.
2683void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2684}
2685
2686/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2687/// C++ method declaration. We're (re-)introducing the given
2688/// function parameter into scope for use in parsing later parts of
2689/// the method declaration. For example, we could see an
2690/// ActOnParamDefaultArgument event for this parameter.
2691void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2692  if (!ParamD)
2693    return;
2694
2695  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2696
2697  // If this parameter has an unparsed default argument, clear it out
2698  // to make way for the parsed default argument.
2699  if (Param->hasUnparsedDefaultArg())
2700    Param->setDefaultArg(0);
2701
2702  S->AddDecl(DeclPtrTy::make(Param));
2703  if (Param->getDeclName())
2704    IdResolver.AddDecl(Param);
2705}
2706
2707/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2708/// processing the delayed method declaration for Method. The method
2709/// declaration is now considered finished. There may be a separate
2710/// ActOnStartOfFunctionDef action later (not necessarily
2711/// immediately!) for this method, if it was also defined inside the
2712/// class body.
2713void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2714  if (!MethodD)
2715    return;
2716
2717  AdjustDeclIfTemplate(MethodD);
2718
2719  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2720
2721  // Now that we have our default arguments, check the constructor
2722  // again. It could produce additional diagnostics or affect whether
2723  // the class has implicitly-declared destructors, among other
2724  // things.
2725  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2726    CheckConstructor(Constructor);
2727
2728  // Check the default arguments, which we may have added.
2729  if (!Method->isInvalidDecl())
2730    CheckCXXDefaultArguments(Method);
2731}
2732
2733/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2734/// the well-formedness of the constructor declarator @p D with type @p
2735/// R. If there are any errors in the declarator, this routine will
2736/// emit diagnostics and set the invalid bit to true.  In any case, the type
2737/// will be updated to reflect a well-formed type for the constructor and
2738/// returned.
2739QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2740                                          FunctionDecl::StorageClass &SC) {
2741  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2742
2743  // C++ [class.ctor]p3:
2744  //   A constructor shall not be virtual (10.3) or static (9.4). A
2745  //   constructor can be invoked for a const, volatile or const
2746  //   volatile object. A constructor shall not be declared const,
2747  //   volatile, or const volatile (9.3.2).
2748  if (isVirtual) {
2749    if (!D.isInvalidType())
2750      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2751        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2752        << SourceRange(D.getIdentifierLoc());
2753    D.setInvalidType();
2754  }
2755  if (SC == FunctionDecl::Static) {
2756    if (!D.isInvalidType())
2757      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2758        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2759        << SourceRange(D.getIdentifierLoc());
2760    D.setInvalidType();
2761    SC = FunctionDecl::None;
2762  }
2763
2764  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2765  if (FTI.TypeQuals != 0) {
2766    if (FTI.TypeQuals & Qualifiers::Const)
2767      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2768        << "const" << SourceRange(D.getIdentifierLoc());
2769    if (FTI.TypeQuals & Qualifiers::Volatile)
2770      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2771        << "volatile" << SourceRange(D.getIdentifierLoc());
2772    if (FTI.TypeQuals & Qualifiers::Restrict)
2773      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2774        << "restrict" << SourceRange(D.getIdentifierLoc());
2775  }
2776
2777  // Rebuild the function type "R" without any type qualifiers (in
2778  // case any of the errors above fired) and with "void" as the
2779  // return type, since constructors don't have return types. We
2780  // *always* have to do this, because GetTypeForDeclarator will
2781  // put in a result type of "int" when none was specified.
2782  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2783  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2784                                 Proto->getNumArgs(),
2785                                 Proto->isVariadic(), 0,
2786                                 Proto->hasExceptionSpec(),
2787                                 Proto->hasAnyExceptionSpec(),
2788                                 Proto->getNumExceptions(),
2789                                 Proto->exception_begin(),
2790                                 Proto->getExtInfo());
2791}
2792
2793/// CheckConstructor - Checks a fully-formed constructor for
2794/// well-formedness, issuing any diagnostics required. Returns true if
2795/// the constructor declarator is invalid.
2796void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2797  CXXRecordDecl *ClassDecl
2798    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2799  if (!ClassDecl)
2800    return Constructor->setInvalidDecl();
2801
2802  // C++ [class.copy]p3:
2803  //   A declaration of a constructor for a class X is ill-formed if
2804  //   its first parameter is of type (optionally cv-qualified) X and
2805  //   either there are no other parameters or else all other
2806  //   parameters have default arguments.
2807  if (!Constructor->isInvalidDecl() &&
2808      ((Constructor->getNumParams() == 1) ||
2809       (Constructor->getNumParams() > 1 &&
2810        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2811      Constructor->getTemplateSpecializationKind()
2812                                              != TSK_ImplicitInstantiation) {
2813    QualType ParamType = Constructor->getParamDecl(0)->getType();
2814    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2815    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2816      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2817      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2818        << FixItHint::CreateInsertion(ParamLoc, " const &");
2819
2820      // FIXME: Rather that making the constructor invalid, we should endeavor
2821      // to fix the type.
2822      Constructor->setInvalidDecl();
2823    }
2824  }
2825
2826  // Notify the class that we've added a constructor.  In principle we
2827  // don't need to do this for out-of-line declarations; in practice
2828  // we only instantiate the most recent declaration of a method, so
2829  // we have to call this for everything but friends.
2830  if (!Constructor->getFriendObjectKind())
2831    ClassDecl->addedConstructor(Context, Constructor);
2832}
2833
2834/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2835/// issuing any diagnostics required. Returns true on error.
2836bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2837  CXXRecordDecl *RD = Destructor->getParent();
2838
2839  if (Destructor->isVirtual()) {
2840    SourceLocation Loc;
2841
2842    if (!Destructor->isImplicit())
2843      Loc = Destructor->getLocation();
2844    else
2845      Loc = RD->getLocation();
2846
2847    // If we have a virtual destructor, look up the deallocation function
2848    FunctionDecl *OperatorDelete = 0;
2849    DeclarationName Name =
2850    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2851    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2852      return true;
2853
2854    Destructor->setOperatorDelete(OperatorDelete);
2855  }
2856
2857  return false;
2858}
2859
2860static inline bool
2861FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2862  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2863          FTI.ArgInfo[0].Param &&
2864          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2865}
2866
2867/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2868/// the well-formednes of the destructor declarator @p D with type @p
2869/// R. If there are any errors in the declarator, this routine will
2870/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2871/// will be updated to reflect a well-formed type for the destructor and
2872/// returned.
2873QualType Sema::CheckDestructorDeclarator(Declarator &D,
2874                                         FunctionDecl::StorageClass& SC) {
2875  // C++ [class.dtor]p1:
2876  //   [...] A typedef-name that names a class is a class-name
2877  //   (7.1.3); however, a typedef-name that names a class shall not
2878  //   be used as the identifier in the declarator for a destructor
2879  //   declaration.
2880  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2881  if (isa<TypedefType>(DeclaratorType)) {
2882    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2883      << DeclaratorType;
2884    D.setInvalidType();
2885  }
2886
2887  // C++ [class.dtor]p2:
2888  //   A destructor is used to destroy objects of its class type. A
2889  //   destructor takes no parameters, and no return type can be
2890  //   specified for it (not even void). The address of a destructor
2891  //   shall not be taken. A destructor shall not be static. A
2892  //   destructor can be invoked for a const, volatile or const
2893  //   volatile object. A destructor shall not be declared const,
2894  //   volatile or const volatile (9.3.2).
2895  if (SC == FunctionDecl::Static) {
2896    if (!D.isInvalidType())
2897      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2898        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2899        << SourceRange(D.getIdentifierLoc());
2900    SC = FunctionDecl::None;
2901    D.setInvalidType();
2902  }
2903  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2904    // Destructors don't have return types, but the parser will
2905    // happily parse something like:
2906    //
2907    //   class X {
2908    //     float ~X();
2909    //   };
2910    //
2911    // The return type will be eliminated later.
2912    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2913      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2914      << SourceRange(D.getIdentifierLoc());
2915  }
2916
2917  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2918  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2919    if (FTI.TypeQuals & Qualifiers::Const)
2920      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2921        << "const" << SourceRange(D.getIdentifierLoc());
2922    if (FTI.TypeQuals & Qualifiers::Volatile)
2923      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2924        << "volatile" << SourceRange(D.getIdentifierLoc());
2925    if (FTI.TypeQuals & Qualifiers::Restrict)
2926      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2927        << "restrict" << SourceRange(D.getIdentifierLoc());
2928    D.setInvalidType();
2929  }
2930
2931  // Make sure we don't have any parameters.
2932  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2933    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2934
2935    // Delete the parameters.
2936    FTI.freeArgs();
2937    D.setInvalidType();
2938  }
2939
2940  // Make sure the destructor isn't variadic.
2941  if (FTI.isVariadic) {
2942    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2943    D.setInvalidType();
2944  }
2945
2946  // Rebuild the function type "R" without any type qualifiers or
2947  // parameters (in case any of the errors above fired) and with
2948  // "void" as the return type, since destructors don't have return
2949  // types. We *always* have to do this, because GetTypeForDeclarator
2950  // will put in a result type of "int" when none was specified.
2951  // FIXME: Exceptions!
2952  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2953                                 false, false, 0, 0, FunctionType::ExtInfo());
2954}
2955
2956/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2957/// well-formednes of the conversion function declarator @p D with
2958/// type @p R. If there are any errors in the declarator, this routine
2959/// will emit diagnostics and return true. Otherwise, it will return
2960/// false. Either way, the type @p R will be updated to reflect a
2961/// well-formed type for the conversion operator.
2962void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2963                                     FunctionDecl::StorageClass& SC) {
2964  // C++ [class.conv.fct]p1:
2965  //   Neither parameter types nor return type can be specified. The
2966  //   type of a conversion function (8.3.5) is "function taking no
2967  //   parameter returning conversion-type-id."
2968  if (SC == FunctionDecl::Static) {
2969    if (!D.isInvalidType())
2970      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2971        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2972        << SourceRange(D.getIdentifierLoc());
2973    D.setInvalidType();
2974    SC = FunctionDecl::None;
2975  }
2976
2977  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2978
2979  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2980    // Conversion functions don't have return types, but the parser will
2981    // happily parse something like:
2982    //
2983    //   class X {
2984    //     float operator bool();
2985    //   };
2986    //
2987    // The return type will be changed later anyway.
2988    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2989      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2990      << SourceRange(D.getIdentifierLoc());
2991    D.setInvalidType();
2992  }
2993
2994  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2995
2996  // Make sure we don't have any parameters.
2997  if (Proto->getNumArgs() > 0) {
2998    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2999
3000    // Delete the parameters.
3001    D.getTypeObject(0).Fun.freeArgs();
3002    D.setInvalidType();
3003  } else if (Proto->isVariadic()) {
3004    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3005    D.setInvalidType();
3006  }
3007
3008  // Diagnose "&operator bool()" and other such nonsense.  This
3009  // is actually a gcc extension which we don't support.
3010  if (Proto->getResultType() != ConvType) {
3011    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3012      << Proto->getResultType();
3013    D.setInvalidType();
3014    ConvType = Proto->getResultType();
3015  }
3016
3017  // C++ [class.conv.fct]p4:
3018  //   The conversion-type-id shall not represent a function type nor
3019  //   an array type.
3020  if (ConvType->isArrayType()) {
3021    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3022    ConvType = Context.getPointerType(ConvType);
3023    D.setInvalidType();
3024  } else if (ConvType->isFunctionType()) {
3025    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3026    ConvType = Context.getPointerType(ConvType);
3027    D.setInvalidType();
3028  }
3029
3030  // Rebuild the function type "R" without any parameters (in case any
3031  // of the errors above fired) and with the conversion type as the
3032  // return type.
3033  if (D.isInvalidType()) {
3034    R = Context.getFunctionType(ConvType, 0, 0, false,
3035                                Proto->getTypeQuals(),
3036                                Proto->hasExceptionSpec(),
3037                                Proto->hasAnyExceptionSpec(),
3038                                Proto->getNumExceptions(),
3039                                Proto->exception_begin(),
3040                                Proto->getExtInfo());
3041  }
3042
3043  // C++0x explicit conversion operators.
3044  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3045    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3046         diag::warn_explicit_conversion_functions)
3047      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3048}
3049
3050/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3051/// the declaration of the given C++ conversion function. This routine
3052/// is responsible for recording the conversion function in the C++
3053/// class, if possible.
3054Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3055  assert(Conversion && "Expected to receive a conversion function declaration");
3056
3057  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3058
3059  // Make sure we aren't redeclaring the conversion function.
3060  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3061
3062  // C++ [class.conv.fct]p1:
3063  //   [...] A conversion function is never used to convert a
3064  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3065  //   same object type (or a reference to it), to a (possibly
3066  //   cv-qualified) base class of that type (or a reference to it),
3067  //   or to (possibly cv-qualified) void.
3068  // FIXME: Suppress this warning if the conversion function ends up being a
3069  // virtual function that overrides a virtual function in a base class.
3070  QualType ClassType
3071    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3072  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3073    ConvType = ConvTypeRef->getPointeeType();
3074  if (ConvType->isRecordType()) {
3075    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3076    if (ConvType == ClassType)
3077      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3078        << ClassType;
3079    else if (IsDerivedFrom(ClassType, ConvType))
3080      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3081        <<  ClassType << ConvType;
3082  } else if (ConvType->isVoidType()) {
3083    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3084      << ClassType << ConvType;
3085  }
3086
3087  if (Conversion->getPrimaryTemplate()) {
3088    // ignore specializations
3089  } else if (Conversion->getPreviousDeclaration()) {
3090    if (FunctionTemplateDecl *ConversionTemplate
3091                                  = Conversion->getDescribedFunctionTemplate()) {
3092      if (ClassDecl->replaceConversion(
3093                                   ConversionTemplate->getPreviousDeclaration(),
3094                                       ConversionTemplate))
3095        return DeclPtrTy::make(ConversionTemplate);
3096    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3097                                            Conversion))
3098      return DeclPtrTy::make(Conversion);
3099    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3100  } else if (FunctionTemplateDecl *ConversionTemplate
3101               = Conversion->getDescribedFunctionTemplate())
3102    ClassDecl->addConversionFunction(ConversionTemplate);
3103  else
3104    ClassDecl->addConversionFunction(Conversion);
3105
3106  return DeclPtrTy::make(Conversion);
3107}
3108
3109//===----------------------------------------------------------------------===//
3110// Namespace Handling
3111//===----------------------------------------------------------------------===//
3112
3113/// ActOnStartNamespaceDef - This is called at the start of a namespace
3114/// definition.
3115Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3116                                             SourceLocation IdentLoc,
3117                                             IdentifierInfo *II,
3118                                             SourceLocation LBrace,
3119                                             AttributeList *AttrList) {
3120  NamespaceDecl *Namespc =
3121      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3122  Namespc->setLBracLoc(LBrace);
3123
3124  Scope *DeclRegionScope = NamespcScope->getParent();
3125
3126  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3127
3128  if (II) {
3129    // C++ [namespace.def]p2:
3130    // The identifier in an original-namespace-definition shall not have been
3131    // previously defined in the declarative region in which the
3132    // original-namespace-definition appears. The identifier in an
3133    // original-namespace-definition is the name of the namespace. Subsequently
3134    // in that declarative region, it is treated as an original-namespace-name.
3135
3136    NamedDecl *PrevDecl
3137      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3138                         ForRedeclaration);
3139
3140    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3141      // This is an extended namespace definition.
3142      // Attach this namespace decl to the chain of extended namespace
3143      // definitions.
3144      OrigNS->setNextNamespace(Namespc);
3145      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3146
3147      // Remove the previous declaration from the scope.
3148      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3149        IdResolver.RemoveDecl(OrigNS);
3150        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3151      }
3152    } else if (PrevDecl) {
3153      // This is an invalid name redefinition.
3154      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3155       << Namespc->getDeclName();
3156      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3157      Namespc->setInvalidDecl();
3158      // Continue on to push Namespc as current DeclContext and return it.
3159    } else if (II->isStr("std") &&
3160               CurContext->getLookupContext()->isTranslationUnit()) {
3161      // This is the first "real" definition of the namespace "std", so update
3162      // our cache of the "std" namespace to point at this definition.
3163      if (StdNamespace) {
3164        // We had already defined a dummy namespace "std". Link this new
3165        // namespace definition to the dummy namespace "std".
3166        StdNamespace->setNextNamespace(Namespc);
3167        StdNamespace->setLocation(IdentLoc);
3168        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3169      }
3170
3171      // Make our StdNamespace cache point at the first real definition of the
3172      // "std" namespace.
3173      StdNamespace = Namespc;
3174    }
3175
3176    PushOnScopeChains(Namespc, DeclRegionScope);
3177  } else {
3178    // Anonymous namespaces.
3179    assert(Namespc->isAnonymousNamespace());
3180
3181    // Link the anonymous namespace into its parent.
3182    NamespaceDecl *PrevDecl;
3183    DeclContext *Parent = CurContext->getLookupContext();
3184    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3185      PrevDecl = TU->getAnonymousNamespace();
3186      TU->setAnonymousNamespace(Namespc);
3187    } else {
3188      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3189      PrevDecl = ND->getAnonymousNamespace();
3190      ND->setAnonymousNamespace(Namespc);
3191    }
3192
3193    // Link the anonymous namespace with its previous declaration.
3194    if (PrevDecl) {
3195      assert(PrevDecl->isAnonymousNamespace());
3196      assert(!PrevDecl->getNextNamespace());
3197      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3198      PrevDecl->setNextNamespace(Namespc);
3199    }
3200
3201    CurContext->addDecl(Namespc);
3202
3203    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3204    //   behaves as if it were replaced by
3205    //     namespace unique { /* empty body */ }
3206    //     using namespace unique;
3207    //     namespace unique { namespace-body }
3208    //   where all occurrences of 'unique' in a translation unit are
3209    //   replaced by the same identifier and this identifier differs
3210    //   from all other identifiers in the entire program.
3211
3212    // We just create the namespace with an empty name and then add an
3213    // implicit using declaration, just like the standard suggests.
3214    //
3215    // CodeGen enforces the "universally unique" aspect by giving all
3216    // declarations semantically contained within an anonymous
3217    // namespace internal linkage.
3218
3219    if (!PrevDecl) {
3220      UsingDirectiveDecl* UD
3221        = UsingDirectiveDecl::Create(Context, CurContext,
3222                                     /* 'using' */ LBrace,
3223                                     /* 'namespace' */ SourceLocation(),
3224                                     /* qualifier */ SourceRange(),
3225                                     /* NNS */ NULL,
3226                                     /* identifier */ SourceLocation(),
3227                                     Namespc,
3228                                     /* Ancestor */ CurContext);
3229      UD->setImplicit();
3230      CurContext->addDecl(UD);
3231    }
3232  }
3233
3234  // Although we could have an invalid decl (i.e. the namespace name is a
3235  // redefinition), push it as current DeclContext and try to continue parsing.
3236  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3237  // for the namespace has the declarations that showed up in that particular
3238  // namespace definition.
3239  PushDeclContext(NamespcScope, Namespc);
3240  return DeclPtrTy::make(Namespc);
3241}
3242
3243/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3244/// is a namespace alias, returns the namespace it points to.
3245static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3246  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3247    return AD->getNamespace();
3248  return dyn_cast_or_null<NamespaceDecl>(D);
3249}
3250
3251/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3252/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3253void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3254  Decl *Dcl = D.getAs<Decl>();
3255  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3256  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3257  Namespc->setRBracLoc(RBrace);
3258  PopDeclContext();
3259}
3260
3261Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3262                                          SourceLocation UsingLoc,
3263                                          SourceLocation NamespcLoc,
3264                                          CXXScopeSpec &SS,
3265                                          SourceLocation IdentLoc,
3266                                          IdentifierInfo *NamespcName,
3267                                          AttributeList *AttrList) {
3268  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3269  assert(NamespcName && "Invalid NamespcName.");
3270  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3271  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3272
3273  UsingDirectiveDecl *UDir = 0;
3274
3275  // Lookup namespace name.
3276  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3277  LookupParsedName(R, S, &SS);
3278  if (R.isAmbiguous())
3279    return DeclPtrTy();
3280
3281  if (!R.empty()) {
3282    NamedDecl *Named = R.getFoundDecl();
3283    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3284        && "expected namespace decl");
3285    // C++ [namespace.udir]p1:
3286    //   A using-directive specifies that the names in the nominated
3287    //   namespace can be used in the scope in which the
3288    //   using-directive appears after the using-directive. During
3289    //   unqualified name lookup (3.4.1), the names appear as if they
3290    //   were declared in the nearest enclosing namespace which
3291    //   contains both the using-directive and the nominated
3292    //   namespace. [Note: in this context, "contains" means "contains
3293    //   directly or indirectly". ]
3294
3295    // Find enclosing context containing both using-directive and
3296    // nominated namespace.
3297    NamespaceDecl *NS = getNamespaceDecl(Named);
3298    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3299    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3300      CommonAncestor = CommonAncestor->getParent();
3301
3302    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3303                                      SS.getRange(),
3304                                      (NestedNameSpecifier *)SS.getScopeRep(),
3305                                      IdentLoc, Named, CommonAncestor);
3306    PushUsingDirective(S, UDir);
3307  } else {
3308    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3309  }
3310
3311  // FIXME: We ignore attributes for now.
3312  delete AttrList;
3313  return DeclPtrTy::make(UDir);
3314}
3315
3316void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3317  // If scope has associated entity, then using directive is at namespace
3318  // or translation unit scope. We add UsingDirectiveDecls, into
3319  // it's lookup structure.
3320  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3321    Ctx->addDecl(UDir);
3322  else
3323    // Otherwise it is block-sope. using-directives will affect lookup
3324    // only to the end of scope.
3325    S->PushUsingDirective(DeclPtrTy::make(UDir));
3326}
3327
3328
3329Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3330                                            AccessSpecifier AS,
3331                                            bool HasUsingKeyword,
3332                                            SourceLocation UsingLoc,
3333                                            CXXScopeSpec &SS,
3334                                            UnqualifiedId &Name,
3335                                            AttributeList *AttrList,
3336                                            bool IsTypeName,
3337                                            SourceLocation TypenameLoc) {
3338  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3339
3340  switch (Name.getKind()) {
3341  case UnqualifiedId::IK_Identifier:
3342  case UnqualifiedId::IK_OperatorFunctionId:
3343  case UnqualifiedId::IK_LiteralOperatorId:
3344  case UnqualifiedId::IK_ConversionFunctionId:
3345    break;
3346
3347  case UnqualifiedId::IK_ConstructorName:
3348  case UnqualifiedId::IK_ConstructorTemplateId:
3349    // C++0x inherited constructors.
3350    if (getLangOptions().CPlusPlus0x) break;
3351
3352    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3353      << SS.getRange();
3354    return DeclPtrTy();
3355
3356  case UnqualifiedId::IK_DestructorName:
3357    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3358      << SS.getRange();
3359    return DeclPtrTy();
3360
3361  case UnqualifiedId::IK_TemplateId:
3362    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3363      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3364    return DeclPtrTy();
3365  }
3366
3367  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3368  if (!TargetName)
3369    return DeclPtrTy();
3370
3371  // Warn about using declarations.
3372  // TODO: store that the declaration was written without 'using' and
3373  // talk about access decls instead of using decls in the
3374  // diagnostics.
3375  if (!HasUsingKeyword) {
3376    UsingLoc = Name.getSourceRange().getBegin();
3377
3378    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3379      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3380  }
3381
3382  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3383                                        Name.getSourceRange().getBegin(),
3384                                        TargetName, AttrList,
3385                                        /* IsInstantiation */ false,
3386                                        IsTypeName, TypenameLoc);
3387  if (UD)
3388    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3389
3390  return DeclPtrTy::make(UD);
3391}
3392
3393/// Determines whether to create a using shadow decl for a particular
3394/// decl, given the set of decls existing prior to this using lookup.
3395bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3396                                const LookupResult &Previous) {
3397  // Diagnose finding a decl which is not from a base class of the
3398  // current class.  We do this now because there are cases where this
3399  // function will silently decide not to build a shadow decl, which
3400  // will pre-empt further diagnostics.
3401  //
3402  // We don't need to do this in C++0x because we do the check once on
3403  // the qualifier.
3404  //
3405  // FIXME: diagnose the following if we care enough:
3406  //   struct A { int foo; };
3407  //   struct B : A { using A::foo; };
3408  //   template <class T> struct C : A {};
3409  //   template <class T> struct D : C<T> { using B::foo; } // <---
3410  // This is invalid (during instantiation) in C++03 because B::foo
3411  // resolves to the using decl in B, which is not a base class of D<T>.
3412  // We can't diagnose it immediately because C<T> is an unknown
3413  // specialization.  The UsingShadowDecl in D<T> then points directly
3414  // to A::foo, which will look well-formed when we instantiate.
3415  // The right solution is to not collapse the shadow-decl chain.
3416  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3417    DeclContext *OrigDC = Orig->getDeclContext();
3418
3419    // Handle enums and anonymous structs.
3420    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3421    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3422    while (OrigRec->isAnonymousStructOrUnion())
3423      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3424
3425    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3426      if (OrigDC == CurContext) {
3427        Diag(Using->getLocation(),
3428             diag::err_using_decl_nested_name_specifier_is_current_class)
3429          << Using->getNestedNameRange();
3430        Diag(Orig->getLocation(), diag::note_using_decl_target);
3431        return true;
3432      }
3433
3434      Diag(Using->getNestedNameRange().getBegin(),
3435           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3436        << Using->getTargetNestedNameDecl()
3437        << cast<CXXRecordDecl>(CurContext)
3438        << Using->getNestedNameRange();
3439      Diag(Orig->getLocation(), diag::note_using_decl_target);
3440      return true;
3441    }
3442  }
3443
3444  if (Previous.empty()) return false;
3445
3446  NamedDecl *Target = Orig;
3447  if (isa<UsingShadowDecl>(Target))
3448    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3449
3450  // If the target happens to be one of the previous declarations, we
3451  // don't have a conflict.
3452  //
3453  // FIXME: but we might be increasing its access, in which case we
3454  // should redeclare it.
3455  NamedDecl *NonTag = 0, *Tag = 0;
3456  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3457         I != E; ++I) {
3458    NamedDecl *D = (*I)->getUnderlyingDecl();
3459    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3460      return false;
3461
3462    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3463  }
3464
3465  if (Target->isFunctionOrFunctionTemplate()) {
3466    FunctionDecl *FD;
3467    if (isa<FunctionTemplateDecl>(Target))
3468      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3469    else
3470      FD = cast<FunctionDecl>(Target);
3471
3472    NamedDecl *OldDecl = 0;
3473    switch (CheckOverload(FD, Previous, OldDecl)) {
3474    case Ovl_Overload:
3475      return false;
3476
3477    case Ovl_NonFunction:
3478      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3479      break;
3480
3481    // We found a decl with the exact signature.
3482    case Ovl_Match:
3483      if (isa<UsingShadowDecl>(OldDecl)) {
3484        // Silently ignore the possible conflict.
3485        return false;
3486      }
3487
3488      // If we're in a record, we want to hide the target, so we
3489      // return true (without a diagnostic) to tell the caller not to
3490      // build a shadow decl.
3491      if (CurContext->isRecord())
3492        return true;
3493
3494      // If we're not in a record, this is an error.
3495      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3496      break;
3497    }
3498
3499    Diag(Target->getLocation(), diag::note_using_decl_target);
3500    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3501    return true;
3502  }
3503
3504  // Target is not a function.
3505
3506  if (isa<TagDecl>(Target)) {
3507    // No conflict between a tag and a non-tag.
3508    if (!Tag) return false;
3509
3510    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3511    Diag(Target->getLocation(), diag::note_using_decl_target);
3512    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3513    return true;
3514  }
3515
3516  // No conflict between a tag and a non-tag.
3517  if (!NonTag) return false;
3518
3519  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3520  Diag(Target->getLocation(), diag::note_using_decl_target);
3521  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3522  return true;
3523}
3524
3525/// Builds a shadow declaration corresponding to a 'using' declaration.
3526UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3527                                            UsingDecl *UD,
3528                                            NamedDecl *Orig) {
3529
3530  // If we resolved to another shadow declaration, just coalesce them.
3531  NamedDecl *Target = Orig;
3532  if (isa<UsingShadowDecl>(Target)) {
3533    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3534    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3535  }
3536
3537  UsingShadowDecl *Shadow
3538    = UsingShadowDecl::Create(Context, CurContext,
3539                              UD->getLocation(), UD, Target);
3540  UD->addShadowDecl(Shadow);
3541
3542  if (S)
3543    PushOnScopeChains(Shadow, S);
3544  else
3545    CurContext->addDecl(Shadow);
3546  Shadow->setAccess(UD->getAccess());
3547
3548  // Register it as a conversion if appropriate.
3549  if (Shadow->getDeclName().getNameKind()
3550        == DeclarationName::CXXConversionFunctionName)
3551    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3552
3553  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3554    Shadow->setInvalidDecl();
3555
3556  return Shadow;
3557}
3558
3559/// Hides a using shadow declaration.  This is required by the current
3560/// using-decl implementation when a resolvable using declaration in a
3561/// class is followed by a declaration which would hide or override
3562/// one or more of the using decl's targets; for example:
3563///
3564///   struct Base { void foo(int); };
3565///   struct Derived : Base {
3566///     using Base::foo;
3567///     void foo(int);
3568///   };
3569///
3570/// The governing language is C++03 [namespace.udecl]p12:
3571///
3572///   When a using-declaration brings names from a base class into a
3573///   derived class scope, member functions in the derived class
3574///   override and/or hide member functions with the same name and
3575///   parameter types in a base class (rather than conflicting).
3576///
3577/// There are two ways to implement this:
3578///   (1) optimistically create shadow decls when they're not hidden
3579///       by existing declarations, or
3580///   (2) don't create any shadow decls (or at least don't make them
3581///       visible) until we've fully parsed/instantiated the class.
3582/// The problem with (1) is that we might have to retroactively remove
3583/// a shadow decl, which requires several O(n) operations because the
3584/// decl structures are (very reasonably) not designed for removal.
3585/// (2) avoids this but is very fiddly and phase-dependent.
3586void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3587  if (Shadow->getDeclName().getNameKind() ==
3588        DeclarationName::CXXConversionFunctionName)
3589    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3590
3591  // Remove it from the DeclContext...
3592  Shadow->getDeclContext()->removeDecl(Shadow);
3593
3594  // ...and the scope, if applicable...
3595  if (S) {
3596    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3597    IdResolver.RemoveDecl(Shadow);
3598  }
3599
3600  // ...and the using decl.
3601  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3602
3603  // TODO: complain somehow if Shadow was used.  It shouldn't
3604  // be possible for this to happen, because...?
3605}
3606
3607/// Builds a using declaration.
3608///
3609/// \param IsInstantiation - Whether this call arises from an
3610///   instantiation of an unresolved using declaration.  We treat
3611///   the lookup differently for these declarations.
3612NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3613                                       SourceLocation UsingLoc,
3614                                       CXXScopeSpec &SS,
3615                                       SourceLocation IdentLoc,
3616                                       DeclarationName Name,
3617                                       AttributeList *AttrList,
3618                                       bool IsInstantiation,
3619                                       bool IsTypeName,
3620                                       SourceLocation TypenameLoc) {
3621  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3622  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3623
3624  // FIXME: We ignore attributes for now.
3625  delete AttrList;
3626
3627  if (SS.isEmpty()) {
3628    Diag(IdentLoc, diag::err_using_requires_qualname);
3629    return 0;
3630  }
3631
3632  // Do the redeclaration lookup in the current scope.
3633  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3634                        ForRedeclaration);
3635  Previous.setHideTags(false);
3636  if (S) {
3637    LookupName(Previous, S);
3638
3639    // It is really dumb that we have to do this.
3640    LookupResult::Filter F = Previous.makeFilter();
3641    while (F.hasNext()) {
3642      NamedDecl *D = F.next();
3643      if (!isDeclInScope(D, CurContext, S))
3644        F.erase();
3645    }
3646    F.done();
3647  } else {
3648    assert(IsInstantiation && "no scope in non-instantiation");
3649    assert(CurContext->isRecord() && "scope not record in instantiation");
3650    LookupQualifiedName(Previous, CurContext);
3651  }
3652
3653  NestedNameSpecifier *NNS =
3654    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3655
3656  // Check for invalid redeclarations.
3657  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3658    return 0;
3659
3660  // Check for bad qualifiers.
3661  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3662    return 0;
3663
3664  DeclContext *LookupContext = computeDeclContext(SS);
3665  NamedDecl *D;
3666  if (!LookupContext) {
3667    if (IsTypeName) {
3668      // FIXME: not all declaration name kinds are legal here
3669      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3670                                              UsingLoc, TypenameLoc,
3671                                              SS.getRange(), NNS,
3672                                              IdentLoc, Name);
3673    } else {
3674      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3675                                           UsingLoc, SS.getRange(), NNS,
3676                                           IdentLoc, Name);
3677    }
3678  } else {
3679    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3680                          SS.getRange(), UsingLoc, NNS, Name,
3681                          IsTypeName);
3682  }
3683  D->setAccess(AS);
3684  CurContext->addDecl(D);
3685
3686  if (!LookupContext) return D;
3687  UsingDecl *UD = cast<UsingDecl>(D);
3688
3689  if (RequireCompleteDeclContext(SS)) {
3690    UD->setInvalidDecl();
3691    return UD;
3692  }
3693
3694  // Look up the target name.
3695
3696  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3697
3698  // Unlike most lookups, we don't always want to hide tag
3699  // declarations: tag names are visible through the using declaration
3700  // even if hidden by ordinary names, *except* in a dependent context
3701  // where it's important for the sanity of two-phase lookup.
3702  if (!IsInstantiation)
3703    R.setHideTags(false);
3704
3705  LookupQualifiedName(R, LookupContext);
3706
3707  if (R.empty()) {
3708    Diag(IdentLoc, diag::err_no_member)
3709      << Name << LookupContext << SS.getRange();
3710    UD->setInvalidDecl();
3711    return UD;
3712  }
3713
3714  if (R.isAmbiguous()) {
3715    UD->setInvalidDecl();
3716    return UD;
3717  }
3718
3719  if (IsTypeName) {
3720    // If we asked for a typename and got a non-type decl, error out.
3721    if (!R.getAsSingle<TypeDecl>()) {
3722      Diag(IdentLoc, diag::err_using_typename_non_type);
3723      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3724        Diag((*I)->getUnderlyingDecl()->getLocation(),
3725             diag::note_using_decl_target);
3726      UD->setInvalidDecl();
3727      return UD;
3728    }
3729  } else {
3730    // If we asked for a non-typename and we got a type, error out,
3731    // but only if this is an instantiation of an unresolved using
3732    // decl.  Otherwise just silently find the type name.
3733    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3734      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3735      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3736      UD->setInvalidDecl();
3737      return UD;
3738    }
3739  }
3740
3741  // C++0x N2914 [namespace.udecl]p6:
3742  // A using-declaration shall not name a namespace.
3743  if (R.getAsSingle<NamespaceDecl>()) {
3744    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3745      << SS.getRange();
3746    UD->setInvalidDecl();
3747    return UD;
3748  }
3749
3750  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3751    if (!CheckUsingShadowDecl(UD, *I, Previous))
3752      BuildUsingShadowDecl(S, UD, *I);
3753  }
3754
3755  return UD;
3756}
3757
3758/// Checks that the given using declaration is not an invalid
3759/// redeclaration.  Note that this is checking only for the using decl
3760/// itself, not for any ill-formedness among the UsingShadowDecls.
3761bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3762                                       bool isTypeName,
3763                                       const CXXScopeSpec &SS,
3764                                       SourceLocation NameLoc,
3765                                       const LookupResult &Prev) {
3766  // C++03 [namespace.udecl]p8:
3767  // C++0x [namespace.udecl]p10:
3768  //   A using-declaration is a declaration and can therefore be used
3769  //   repeatedly where (and only where) multiple declarations are
3770  //   allowed.
3771  // That's only in file contexts.
3772  if (CurContext->getLookupContext()->isFileContext())
3773    return false;
3774
3775  NestedNameSpecifier *Qual
3776    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3777
3778  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3779    NamedDecl *D = *I;
3780
3781    bool DTypename;
3782    NestedNameSpecifier *DQual;
3783    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3784      DTypename = UD->isTypeName();
3785      DQual = UD->getTargetNestedNameDecl();
3786    } else if (UnresolvedUsingValueDecl *UD
3787                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3788      DTypename = false;
3789      DQual = UD->getTargetNestedNameSpecifier();
3790    } else if (UnresolvedUsingTypenameDecl *UD
3791                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3792      DTypename = true;
3793      DQual = UD->getTargetNestedNameSpecifier();
3794    } else continue;
3795
3796    // using decls differ if one says 'typename' and the other doesn't.
3797    // FIXME: non-dependent using decls?
3798    if (isTypeName != DTypename) continue;
3799
3800    // using decls differ if they name different scopes (but note that
3801    // template instantiation can cause this check to trigger when it
3802    // didn't before instantiation).
3803    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3804        Context.getCanonicalNestedNameSpecifier(DQual))
3805      continue;
3806
3807    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3808    Diag(D->getLocation(), diag::note_using_decl) << 1;
3809    return true;
3810  }
3811
3812  return false;
3813}
3814
3815
3816/// Checks that the given nested-name qualifier used in a using decl
3817/// in the current context is appropriately related to the current
3818/// scope.  If an error is found, diagnoses it and returns true.
3819bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3820                                   const CXXScopeSpec &SS,
3821                                   SourceLocation NameLoc) {
3822  DeclContext *NamedContext = computeDeclContext(SS);
3823
3824  if (!CurContext->isRecord()) {
3825    // C++03 [namespace.udecl]p3:
3826    // C++0x [namespace.udecl]p8:
3827    //   A using-declaration for a class member shall be a member-declaration.
3828
3829    // If we weren't able to compute a valid scope, it must be a
3830    // dependent class scope.
3831    if (!NamedContext || NamedContext->isRecord()) {
3832      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3833        << SS.getRange();
3834      return true;
3835    }
3836
3837    // Otherwise, everything is known to be fine.
3838    return false;
3839  }
3840
3841  // The current scope is a record.
3842
3843  // If the named context is dependent, we can't decide much.
3844  if (!NamedContext) {
3845    // FIXME: in C++0x, we can diagnose if we can prove that the
3846    // nested-name-specifier does not refer to a base class, which is
3847    // still possible in some cases.
3848
3849    // Otherwise we have to conservatively report that things might be
3850    // okay.
3851    return false;
3852  }
3853
3854  if (!NamedContext->isRecord()) {
3855    // Ideally this would point at the last name in the specifier,
3856    // but we don't have that level of source info.
3857    Diag(SS.getRange().getBegin(),
3858         diag::err_using_decl_nested_name_specifier_is_not_class)
3859      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3860    return true;
3861  }
3862
3863  if (getLangOptions().CPlusPlus0x) {
3864    // C++0x [namespace.udecl]p3:
3865    //   In a using-declaration used as a member-declaration, the
3866    //   nested-name-specifier shall name a base class of the class
3867    //   being defined.
3868
3869    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3870                                 cast<CXXRecordDecl>(NamedContext))) {
3871      if (CurContext == NamedContext) {
3872        Diag(NameLoc,
3873             diag::err_using_decl_nested_name_specifier_is_current_class)
3874          << SS.getRange();
3875        return true;
3876      }
3877
3878      Diag(SS.getRange().getBegin(),
3879           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3880        << (NestedNameSpecifier*) SS.getScopeRep()
3881        << cast<CXXRecordDecl>(CurContext)
3882        << SS.getRange();
3883      return true;
3884    }
3885
3886    return false;
3887  }
3888
3889  // C++03 [namespace.udecl]p4:
3890  //   A using-declaration used as a member-declaration shall refer
3891  //   to a member of a base class of the class being defined [etc.].
3892
3893  // Salient point: SS doesn't have to name a base class as long as
3894  // lookup only finds members from base classes.  Therefore we can
3895  // diagnose here only if we can prove that that can't happen,
3896  // i.e. if the class hierarchies provably don't intersect.
3897
3898  // TODO: it would be nice if "definitely valid" results were cached
3899  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3900  // need to be repeated.
3901
3902  struct UserData {
3903    llvm::DenseSet<const CXXRecordDecl*> Bases;
3904
3905    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3906      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3907      Data->Bases.insert(Base);
3908      return true;
3909    }
3910
3911    bool hasDependentBases(const CXXRecordDecl *Class) {
3912      return !Class->forallBases(collect, this);
3913    }
3914
3915    /// Returns true if the base is dependent or is one of the
3916    /// accumulated base classes.
3917    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3918      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3919      return !Data->Bases.count(Base);
3920    }
3921
3922    bool mightShareBases(const CXXRecordDecl *Class) {
3923      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3924    }
3925  };
3926
3927  UserData Data;
3928
3929  // Returns false if we find a dependent base.
3930  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3931    return false;
3932
3933  // Returns false if the class has a dependent base or if it or one
3934  // of its bases is present in the base set of the current context.
3935  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3936    return false;
3937
3938  Diag(SS.getRange().getBegin(),
3939       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3940    << (NestedNameSpecifier*) SS.getScopeRep()
3941    << cast<CXXRecordDecl>(CurContext)
3942    << SS.getRange();
3943
3944  return true;
3945}
3946
3947Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3948                                             SourceLocation NamespaceLoc,
3949                                             SourceLocation AliasLoc,
3950                                             IdentifierInfo *Alias,
3951                                             CXXScopeSpec &SS,
3952                                             SourceLocation IdentLoc,
3953                                             IdentifierInfo *Ident) {
3954
3955  // Lookup the namespace name.
3956  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3957  LookupParsedName(R, S, &SS);
3958
3959  // Check if we have a previous declaration with the same name.
3960  if (NamedDecl *PrevDecl
3961        = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
3962                           ForRedeclaration)) {
3963    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3964      // We already have an alias with the same name that points to the same
3965      // namespace, so don't create a new one.
3966      // FIXME: At some point, we'll want to create the (redundant)
3967      // declaration to maintain better source information.
3968      if (!R.isAmbiguous() && !R.empty() &&
3969          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3970        return DeclPtrTy();
3971    }
3972
3973    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3974      diag::err_redefinition_different_kind;
3975    Diag(AliasLoc, DiagID) << Alias;
3976    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3977    return DeclPtrTy();
3978  }
3979
3980  if (R.isAmbiguous())
3981    return DeclPtrTy();
3982
3983  if (R.empty()) {
3984    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3985    return DeclPtrTy();
3986  }
3987
3988  NamespaceAliasDecl *AliasDecl =
3989    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3990                               Alias, SS.getRange(),
3991                               (NestedNameSpecifier *)SS.getScopeRep(),
3992                               IdentLoc, R.getFoundDecl());
3993
3994  PushOnScopeChains(AliasDecl, S);
3995  return DeclPtrTy::make(AliasDecl);
3996}
3997
3998void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3999                                            CXXConstructorDecl *Constructor) {
4000  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4001          !Constructor->isUsed()) &&
4002    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4003
4004  CXXRecordDecl *ClassDecl = Constructor->getParent();
4005  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4006
4007  DeclContext *PreviousContext = CurContext;
4008  CurContext = Constructor;
4009  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
4010    Diag(CurrentLocation, diag::note_member_synthesized_at)
4011      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4012    Constructor->setInvalidDecl();
4013  } else {
4014    Constructor->setUsed();
4015  }
4016  CurContext = PreviousContext;
4017}
4018
4019void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4020                                    CXXDestructorDecl *Destructor) {
4021  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4022         "DefineImplicitDestructor - call it for implicit default dtor");
4023  CXXRecordDecl *ClassDecl = Destructor->getParent();
4024  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4025
4026  DeclContext *PreviousContext = CurContext;
4027  CurContext = Destructor;
4028
4029  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4030                                         Destructor->getParent());
4031
4032  // FIXME: If CheckDestructor fails, we should emit a note about where the
4033  // implicit destructor was needed.
4034  if (CheckDestructor(Destructor)) {
4035    Diag(CurrentLocation, diag::note_member_synthesized_at)
4036      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4037
4038    Destructor->setInvalidDecl();
4039    CurContext = PreviousContext;
4040
4041    return;
4042  }
4043  CurContext = PreviousContext;
4044
4045  Destructor->setUsed();
4046}
4047
4048void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
4049                                          CXXMethodDecl *MethodDecl) {
4050  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
4051          MethodDecl->getOverloadedOperator() == OO_Equal &&
4052          !MethodDecl->isUsed()) &&
4053         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
4054
4055  CXXRecordDecl *ClassDecl
4056    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
4057
4058  DeclContext *PreviousContext = CurContext;
4059  CurContext = MethodDecl;
4060
4061  // C++[class.copy] p12
4062  // Before the implicitly-declared copy assignment operator for a class is
4063  // implicitly defined, all implicitly-declared copy assignment operators
4064  // for its direct base classes and its nonstatic data members shall have
4065  // been implicitly defined.
4066  bool err = false;
4067  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4068       E = ClassDecl->bases_end(); Base != E; ++Base) {
4069    CXXRecordDecl *BaseClassDecl
4070      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4071    if (CXXMethodDecl *BaseAssignOpMethod =
4072          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
4073                                  BaseClassDecl)) {
4074      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4075                              BaseAssignOpMethod,
4076                              PDiag(diag::err_access_assign_base)
4077                                << Base->getType());
4078
4079      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
4080    }
4081  }
4082  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4083       E = ClassDecl->field_end(); Field != E; ++Field) {
4084    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4085    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4086      FieldType = Array->getElementType();
4087    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4088      CXXRecordDecl *FieldClassDecl
4089        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4090      if (CXXMethodDecl *FieldAssignOpMethod =
4091          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
4092                                  FieldClassDecl)) {
4093        CheckDirectMemberAccess(Field->getLocation(),
4094                                FieldAssignOpMethod,
4095                                PDiag(diag::err_access_assign_field)
4096                                  << Field->getDeclName() << Field->getType());
4097
4098        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
4099      }
4100    } else if (FieldType->isReferenceType()) {
4101      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4102      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4103      Diag(Field->getLocation(), diag::note_declared_at);
4104      Diag(CurrentLocation, diag::note_first_required_here);
4105      err = true;
4106    } else if (FieldType.isConstQualified()) {
4107      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4108      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4109      Diag(Field->getLocation(), diag::note_declared_at);
4110      Diag(CurrentLocation, diag::note_first_required_here);
4111      err = true;
4112    }
4113  }
4114  if (!err)
4115    MethodDecl->setUsed();
4116
4117  CurContext = PreviousContext;
4118}
4119
4120CXXMethodDecl *
4121Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
4122                              ParmVarDecl *ParmDecl,
4123                              CXXRecordDecl *ClassDecl) {
4124  QualType LHSType = Context.getTypeDeclType(ClassDecl);
4125  QualType RHSType(LHSType);
4126  // If class's assignment operator argument is const/volatile qualified,
4127  // look for operator = (const/volatile B&). Otherwise, look for
4128  // operator = (B&).
4129  RHSType = Context.getCVRQualifiedType(RHSType,
4130                                     ParmDecl->getType().getCVRQualifiers());
4131  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
4132                                                           LHSType,
4133                                                           SourceLocation()));
4134  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
4135                                                           RHSType,
4136                                                           CurrentLocation));
4137  Expr *Args[2] = { &*LHS, &*RHS };
4138  OverloadCandidateSet CandidateSet(CurrentLocation);
4139  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
4140                              CandidateSet);
4141  OverloadCandidateSet::iterator Best;
4142  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
4143    return cast<CXXMethodDecl>(Best->Function);
4144  assert(false &&
4145         "getAssignOperatorMethod - copy assignment operator method not found");
4146  return 0;
4147}
4148
4149void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4150                                   CXXConstructorDecl *CopyConstructor,
4151                                   unsigned TypeQuals) {
4152  assert((CopyConstructor->isImplicit() &&
4153          CopyConstructor->isCopyConstructor(TypeQuals) &&
4154          !CopyConstructor->isUsed()) &&
4155         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4156
4157  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4158  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4159
4160  DeclContext *PreviousContext = CurContext;
4161  CurContext = CopyConstructor;
4162
4163  // C++ [class.copy] p209
4164  // Before the implicitly-declared copy constructor for a class is
4165  // implicitly defined, all the implicitly-declared copy constructors
4166  // for its base class and its non-static data members shall have been
4167  // implicitly defined.
4168  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
4169       Base != ClassDecl->bases_end(); ++Base) {
4170    CXXRecordDecl *BaseClassDecl
4171      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4172    if (CXXConstructorDecl *BaseCopyCtor =
4173        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
4174      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4175                              BaseCopyCtor,
4176                              PDiag(diag::err_access_copy_base)
4177                                << Base->getType());
4178
4179      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
4180    }
4181  }
4182  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4183                                  FieldEnd = ClassDecl->field_end();
4184       Field != FieldEnd; ++Field) {
4185    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4186    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4187      FieldType = Array->getElementType();
4188    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4189      CXXRecordDecl *FieldClassDecl
4190        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4191      if (CXXConstructorDecl *FieldCopyCtor =
4192          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
4193        CheckDirectMemberAccess(Field->getLocation(),
4194                                FieldCopyCtor,
4195                                PDiag(diag::err_access_copy_field)
4196                                  << Field->getDeclName() << Field->getType());
4197
4198        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
4199      }
4200    }
4201  }
4202  CopyConstructor->setUsed();
4203
4204  CurContext = PreviousContext;
4205}
4206
4207Sema::OwningExprResult
4208Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4209                            CXXConstructorDecl *Constructor,
4210                            MultiExprArg ExprArgs,
4211                            bool RequiresZeroInit,
4212                            bool BaseInitialization) {
4213  bool Elidable = false;
4214
4215  // C++0x [class.copy]p34:
4216  //   When certain criteria are met, an implementation is allowed to
4217  //   omit the copy/move construction of a class object, even if the
4218  //   copy/move constructor and/or destructor for the object have
4219  //   side effects. [...]
4220  //     - when a temporary class object that has not been bound to a
4221  //       reference (12.2) would be copied/moved to a class object
4222  //       with the same cv-unqualified type, the copy/move operation
4223  //       can be omitted by constructing the temporary object
4224  //       directly into the target of the omitted copy/move
4225  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4226    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4227    Elidable = SubExpr->isTemporaryObject() &&
4228      Context.hasSameUnqualifiedType(SubExpr->getType(),
4229                           Context.getTypeDeclType(Constructor->getParent()));
4230  }
4231
4232  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4233                               Elidable, move(ExprArgs), RequiresZeroInit,
4234                               BaseInitialization);
4235}
4236
4237/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4238/// including handling of its default argument expressions.
4239Sema::OwningExprResult
4240Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4241                            CXXConstructorDecl *Constructor, bool Elidable,
4242                            MultiExprArg ExprArgs,
4243                            bool RequiresZeroInit,
4244                            bool BaseInitialization) {
4245  unsigned NumExprs = ExprArgs.size();
4246  Expr **Exprs = (Expr **)ExprArgs.release();
4247
4248  MarkDeclarationReferenced(ConstructLoc, Constructor);
4249  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4250                                        Constructor, Elidable, Exprs, NumExprs,
4251                                        RequiresZeroInit, BaseInitialization));
4252}
4253
4254bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4255                                        CXXConstructorDecl *Constructor,
4256                                        MultiExprArg Exprs) {
4257  OwningExprResult TempResult =
4258    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4259                          move(Exprs));
4260  if (TempResult.isInvalid())
4261    return true;
4262
4263  Expr *Temp = TempResult.takeAs<Expr>();
4264  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4265  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4266  VD->setInit(Temp);
4267
4268  return false;
4269}
4270
4271void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4272  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4273  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4274      !ClassDecl->hasTrivialDestructor()) {
4275    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4276    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4277    CheckDestructorAccess(VD->getLocation(), Destructor,
4278                          PDiag(diag::err_access_dtor_var)
4279                            << VD->getDeclName()
4280                            << VD->getType());
4281  }
4282}
4283
4284/// AddCXXDirectInitializerToDecl - This action is called immediately after
4285/// ActOnDeclarator, when a C++ direct initializer is present.
4286/// e.g: "int x(1);"
4287void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4288                                         SourceLocation LParenLoc,
4289                                         MultiExprArg Exprs,
4290                                         SourceLocation *CommaLocs,
4291                                         SourceLocation RParenLoc) {
4292  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4293  Decl *RealDecl = Dcl.getAs<Decl>();
4294
4295  // If there is no declaration, there was an error parsing it.  Just ignore
4296  // the initializer.
4297  if (RealDecl == 0)
4298    return;
4299
4300  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4301  if (!VDecl) {
4302    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4303    RealDecl->setInvalidDecl();
4304    return;
4305  }
4306
4307  // We will represent direct-initialization similarly to copy-initialization:
4308  //    int x(1);  -as-> int x = 1;
4309  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4310  //
4311  // Clients that want to distinguish between the two forms, can check for
4312  // direct initializer using VarDecl::hasCXXDirectInitializer().
4313  // A major benefit is that clients that don't particularly care about which
4314  // exactly form was it (like the CodeGen) can handle both cases without
4315  // special case code.
4316
4317  // C++ 8.5p11:
4318  // The form of initialization (using parentheses or '=') is generally
4319  // insignificant, but does matter when the entity being initialized has a
4320  // class type.
4321  QualType DeclInitType = VDecl->getType();
4322  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4323    DeclInitType = Context.getBaseElementType(Array);
4324
4325  if (!VDecl->getType()->isDependentType() &&
4326      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4327                          diag::err_typecheck_decl_incomplete_type)) {
4328    VDecl->setInvalidDecl();
4329    return;
4330  }
4331
4332  // The variable can not have an abstract class type.
4333  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4334                             diag::err_abstract_type_in_decl,
4335                             AbstractVariableType))
4336    VDecl->setInvalidDecl();
4337
4338  const VarDecl *Def;
4339  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4340    Diag(VDecl->getLocation(), diag::err_redefinition)
4341    << VDecl->getDeclName();
4342    Diag(Def->getLocation(), diag::note_previous_definition);
4343    VDecl->setInvalidDecl();
4344    return;
4345  }
4346
4347  // If either the declaration has a dependent type or if any of the
4348  // expressions is type-dependent, we represent the initialization
4349  // via a ParenListExpr for later use during template instantiation.
4350  if (VDecl->getType()->isDependentType() ||
4351      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4352    // Let clients know that initialization was done with a direct initializer.
4353    VDecl->setCXXDirectInitializer(true);
4354
4355    // Store the initialization expressions as a ParenListExpr.
4356    unsigned NumExprs = Exprs.size();
4357    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4358                                               (Expr **)Exprs.release(),
4359                                               NumExprs, RParenLoc));
4360    return;
4361  }
4362
4363  // Capture the variable that is being initialized and the style of
4364  // initialization.
4365  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4366
4367  // FIXME: Poor source location information.
4368  InitializationKind Kind
4369    = InitializationKind::CreateDirect(VDecl->getLocation(),
4370                                       LParenLoc, RParenLoc);
4371
4372  InitializationSequence InitSeq(*this, Entity, Kind,
4373                                 (Expr**)Exprs.get(), Exprs.size());
4374  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4375  if (Result.isInvalid()) {
4376    VDecl->setInvalidDecl();
4377    return;
4378  }
4379
4380  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4381  VDecl->setInit(Result.takeAs<Expr>());
4382  VDecl->setCXXDirectInitializer(true);
4383
4384  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4385    FinalizeVarWithDestructor(VDecl, Record);
4386}
4387
4388/// \brief Given a constructor and the set of arguments provided for the
4389/// constructor, convert the arguments and add any required default arguments
4390/// to form a proper call to this constructor.
4391///
4392/// \returns true if an error occurred, false otherwise.
4393bool
4394Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4395                              MultiExprArg ArgsPtr,
4396                              SourceLocation Loc,
4397                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4398  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4399  unsigned NumArgs = ArgsPtr.size();
4400  Expr **Args = (Expr **)ArgsPtr.get();
4401
4402  const FunctionProtoType *Proto
4403    = Constructor->getType()->getAs<FunctionProtoType>();
4404  assert(Proto && "Constructor without a prototype?");
4405  unsigned NumArgsInProto = Proto->getNumArgs();
4406
4407  // If too few arguments are available, we'll fill in the rest with defaults.
4408  if (NumArgs < NumArgsInProto)
4409    ConvertedArgs.reserve(NumArgsInProto);
4410  else
4411    ConvertedArgs.reserve(NumArgs);
4412
4413  VariadicCallType CallType =
4414    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4415  llvm::SmallVector<Expr *, 8> AllArgs;
4416  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4417                                        Proto, 0, Args, NumArgs, AllArgs,
4418                                        CallType);
4419  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4420    ConvertedArgs.push_back(AllArgs[i]);
4421  return Invalid;
4422}
4423
4424static inline bool
4425CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4426                                       const FunctionDecl *FnDecl) {
4427  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4428  if (isa<NamespaceDecl>(DC)) {
4429    return SemaRef.Diag(FnDecl->getLocation(),
4430                        diag::err_operator_new_delete_declared_in_namespace)
4431      << FnDecl->getDeclName();
4432  }
4433
4434  if (isa<TranslationUnitDecl>(DC) &&
4435      FnDecl->getStorageClass() == FunctionDecl::Static) {
4436    return SemaRef.Diag(FnDecl->getLocation(),
4437                        diag::err_operator_new_delete_declared_static)
4438      << FnDecl->getDeclName();
4439  }
4440
4441  return false;
4442}
4443
4444static inline bool
4445CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4446                            CanQualType ExpectedResultType,
4447                            CanQualType ExpectedFirstParamType,
4448                            unsigned DependentParamTypeDiag,
4449                            unsigned InvalidParamTypeDiag) {
4450  QualType ResultType =
4451    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4452
4453  // Check that the result type is not dependent.
4454  if (ResultType->isDependentType())
4455    return SemaRef.Diag(FnDecl->getLocation(),
4456                        diag::err_operator_new_delete_dependent_result_type)
4457    << FnDecl->getDeclName() << ExpectedResultType;
4458
4459  // Check that the result type is what we expect.
4460  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4461    return SemaRef.Diag(FnDecl->getLocation(),
4462                        diag::err_operator_new_delete_invalid_result_type)
4463    << FnDecl->getDeclName() << ExpectedResultType;
4464
4465  // A function template must have at least 2 parameters.
4466  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4467    return SemaRef.Diag(FnDecl->getLocation(),
4468                      diag::err_operator_new_delete_template_too_few_parameters)
4469        << FnDecl->getDeclName();
4470
4471  // The function decl must have at least 1 parameter.
4472  if (FnDecl->getNumParams() == 0)
4473    return SemaRef.Diag(FnDecl->getLocation(),
4474                        diag::err_operator_new_delete_too_few_parameters)
4475      << FnDecl->getDeclName();
4476
4477  // Check the the first parameter type is not dependent.
4478  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4479  if (FirstParamType->isDependentType())
4480    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4481      << FnDecl->getDeclName() << ExpectedFirstParamType;
4482
4483  // Check that the first parameter type is what we expect.
4484  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4485      ExpectedFirstParamType)
4486    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4487    << FnDecl->getDeclName() << ExpectedFirstParamType;
4488
4489  return false;
4490}
4491
4492static bool
4493CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4494  // C++ [basic.stc.dynamic.allocation]p1:
4495  //   A program is ill-formed if an allocation function is declared in a
4496  //   namespace scope other than global scope or declared static in global
4497  //   scope.
4498  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4499    return true;
4500
4501  CanQualType SizeTy =
4502    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4503
4504  // C++ [basic.stc.dynamic.allocation]p1:
4505  //  The return type shall be void*. The first parameter shall have type
4506  //  std::size_t.
4507  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4508                                  SizeTy,
4509                                  diag::err_operator_new_dependent_param_type,
4510                                  diag::err_operator_new_param_type))
4511    return true;
4512
4513  // C++ [basic.stc.dynamic.allocation]p1:
4514  //  The first parameter shall not have an associated default argument.
4515  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4516    return SemaRef.Diag(FnDecl->getLocation(),
4517                        diag::err_operator_new_default_arg)
4518      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4519
4520  return false;
4521}
4522
4523static bool
4524CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4525  // C++ [basic.stc.dynamic.deallocation]p1:
4526  //   A program is ill-formed if deallocation functions are declared in a
4527  //   namespace scope other than global scope or declared static in global
4528  //   scope.
4529  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4530    return true;
4531
4532  // C++ [basic.stc.dynamic.deallocation]p2:
4533  //   Each deallocation function shall return void and its first parameter
4534  //   shall be void*.
4535  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4536                                  SemaRef.Context.VoidPtrTy,
4537                                 diag::err_operator_delete_dependent_param_type,
4538                                 diag::err_operator_delete_param_type))
4539    return true;
4540
4541  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4542  if (FirstParamType->isDependentType())
4543    return SemaRef.Diag(FnDecl->getLocation(),
4544                        diag::err_operator_delete_dependent_param_type)
4545    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4546
4547  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4548      SemaRef.Context.VoidPtrTy)
4549    return SemaRef.Diag(FnDecl->getLocation(),
4550                        diag::err_operator_delete_param_type)
4551      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4552
4553  return false;
4554}
4555
4556/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4557/// of this overloaded operator is well-formed. If so, returns false;
4558/// otherwise, emits appropriate diagnostics and returns true.
4559bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4560  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4561         "Expected an overloaded operator declaration");
4562
4563  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4564
4565  // C++ [over.oper]p5:
4566  //   The allocation and deallocation functions, operator new,
4567  //   operator new[], operator delete and operator delete[], are
4568  //   described completely in 3.7.3. The attributes and restrictions
4569  //   found in the rest of this subclause do not apply to them unless
4570  //   explicitly stated in 3.7.3.
4571  if (Op == OO_Delete || Op == OO_Array_Delete)
4572    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4573
4574  if (Op == OO_New || Op == OO_Array_New)
4575    return CheckOperatorNewDeclaration(*this, FnDecl);
4576
4577  // C++ [over.oper]p6:
4578  //   An operator function shall either be a non-static member
4579  //   function or be a non-member function and have at least one
4580  //   parameter whose type is a class, a reference to a class, an
4581  //   enumeration, or a reference to an enumeration.
4582  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4583    if (MethodDecl->isStatic())
4584      return Diag(FnDecl->getLocation(),
4585                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4586  } else {
4587    bool ClassOrEnumParam = false;
4588    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4589                                   ParamEnd = FnDecl->param_end();
4590         Param != ParamEnd; ++Param) {
4591      QualType ParamType = (*Param)->getType().getNonReferenceType();
4592      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4593          ParamType->isEnumeralType()) {
4594        ClassOrEnumParam = true;
4595        break;
4596      }
4597    }
4598
4599    if (!ClassOrEnumParam)
4600      return Diag(FnDecl->getLocation(),
4601                  diag::err_operator_overload_needs_class_or_enum)
4602        << FnDecl->getDeclName();
4603  }
4604
4605  // C++ [over.oper]p8:
4606  //   An operator function cannot have default arguments (8.3.6),
4607  //   except where explicitly stated below.
4608  //
4609  // Only the function-call operator allows default arguments
4610  // (C++ [over.call]p1).
4611  if (Op != OO_Call) {
4612    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4613         Param != FnDecl->param_end(); ++Param) {
4614      if ((*Param)->hasDefaultArg())
4615        return Diag((*Param)->getLocation(),
4616                    diag::err_operator_overload_default_arg)
4617          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4618    }
4619  }
4620
4621  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4622    { false, false, false }
4623#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4624    , { Unary, Binary, MemberOnly }
4625#include "clang/Basic/OperatorKinds.def"
4626  };
4627
4628  bool CanBeUnaryOperator = OperatorUses[Op][0];
4629  bool CanBeBinaryOperator = OperatorUses[Op][1];
4630  bool MustBeMemberOperator = OperatorUses[Op][2];
4631
4632  // C++ [over.oper]p8:
4633  //   [...] Operator functions cannot have more or fewer parameters
4634  //   than the number required for the corresponding operator, as
4635  //   described in the rest of this subclause.
4636  unsigned NumParams = FnDecl->getNumParams()
4637                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4638  if (Op != OO_Call &&
4639      ((NumParams == 1 && !CanBeUnaryOperator) ||
4640       (NumParams == 2 && !CanBeBinaryOperator) ||
4641       (NumParams < 1) || (NumParams > 2))) {
4642    // We have the wrong number of parameters.
4643    unsigned ErrorKind;
4644    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4645      ErrorKind = 2;  // 2 -> unary or binary.
4646    } else if (CanBeUnaryOperator) {
4647      ErrorKind = 0;  // 0 -> unary
4648    } else {
4649      assert(CanBeBinaryOperator &&
4650             "All non-call overloaded operators are unary or binary!");
4651      ErrorKind = 1;  // 1 -> binary
4652    }
4653
4654    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4655      << FnDecl->getDeclName() << NumParams << ErrorKind;
4656  }
4657
4658  // Overloaded operators other than operator() cannot be variadic.
4659  if (Op != OO_Call &&
4660      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4661    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4662      << FnDecl->getDeclName();
4663  }
4664
4665  // Some operators must be non-static member functions.
4666  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4667    return Diag(FnDecl->getLocation(),
4668                diag::err_operator_overload_must_be_member)
4669      << FnDecl->getDeclName();
4670  }
4671
4672  // C++ [over.inc]p1:
4673  //   The user-defined function called operator++ implements the
4674  //   prefix and postfix ++ operator. If this function is a member
4675  //   function with no parameters, or a non-member function with one
4676  //   parameter of class or enumeration type, it defines the prefix
4677  //   increment operator ++ for objects of that type. If the function
4678  //   is a member function with one parameter (which shall be of type
4679  //   int) or a non-member function with two parameters (the second
4680  //   of which shall be of type int), it defines the postfix
4681  //   increment operator ++ for objects of that type.
4682  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4683    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4684    bool ParamIsInt = false;
4685    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4686      ParamIsInt = BT->getKind() == BuiltinType::Int;
4687
4688    if (!ParamIsInt)
4689      return Diag(LastParam->getLocation(),
4690                  diag::err_operator_overload_post_incdec_must_be_int)
4691        << LastParam->getType() << (Op == OO_MinusMinus);
4692  }
4693
4694  // Notify the class if it got an assignment operator.
4695  if (Op == OO_Equal) {
4696    // Would have returned earlier otherwise.
4697    assert(isa<CXXMethodDecl>(FnDecl) &&
4698      "Overloaded = not member, but not filtered.");
4699    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4700    Method->getParent()->addedAssignmentOperator(Context, Method);
4701  }
4702
4703  return false;
4704}
4705
4706/// CheckLiteralOperatorDeclaration - Check whether the declaration
4707/// of this literal operator function is well-formed. If so, returns
4708/// false; otherwise, emits appropriate diagnostics and returns true.
4709bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
4710  DeclContext *DC = FnDecl->getDeclContext();
4711  Decl::Kind Kind = DC->getDeclKind();
4712  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
4713      Kind != Decl::LinkageSpec) {
4714    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
4715      << FnDecl->getDeclName();
4716    return true;
4717  }
4718
4719  bool Valid = false;
4720
4721  // template <char...> type operator "" name() is the only valid template
4722  // signature, and the only valid signature with no parameters.
4723  if (FnDecl->param_size() == 0) {
4724    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
4725      // Must have only one template parameter
4726      TemplateParameterList *Params = TpDecl->getTemplateParameters();
4727      if (Params->size() == 1) {
4728        NonTypeTemplateParmDecl *PmDecl =
4729          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
4730
4731        // The template parameter must be a char parameter pack.
4732        // FIXME: This test will always fail because non-type parameter packs
4733        //   have not been implemented.
4734        if (PmDecl && PmDecl->isTemplateParameterPack() &&
4735            Context.hasSameType(PmDecl->getType(), Context.CharTy))
4736          Valid = true;
4737      }
4738    }
4739  } else {
4740    // Check the first parameter
4741    FunctionDecl::param_iterator Param = FnDecl->param_begin();
4742
4743    QualType T = (*Param)->getType();
4744
4745    // unsigned long long int, long double, and any character type are allowed
4746    // as the only parameters.
4747    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
4748        Context.hasSameType(T, Context.LongDoubleTy) ||
4749        Context.hasSameType(T, Context.CharTy) ||
4750        Context.hasSameType(T, Context.WCharTy) ||
4751        Context.hasSameType(T, Context.Char16Ty) ||
4752        Context.hasSameType(T, Context.Char32Ty)) {
4753      if (++Param == FnDecl->param_end())
4754        Valid = true;
4755      goto FinishedParams;
4756    }
4757
4758    // Otherwise it must be a pointer to const; let's strip those qualifiers.
4759    const PointerType *PT = T->getAs<PointerType>();
4760    if (!PT)
4761      goto FinishedParams;
4762    T = PT->getPointeeType();
4763    if (!T.isConstQualified())
4764      goto FinishedParams;
4765    T = T.getUnqualifiedType();
4766
4767    // Move on to the second parameter;
4768    ++Param;
4769
4770    // If there is no second parameter, the first must be a const char *
4771    if (Param == FnDecl->param_end()) {
4772      if (Context.hasSameType(T, Context.CharTy))
4773        Valid = true;
4774      goto FinishedParams;
4775    }
4776
4777    // const char *, const wchar_t*, const char16_t*, and const char32_t*
4778    // are allowed as the first parameter to a two-parameter function
4779    if (!(Context.hasSameType(T, Context.CharTy) ||
4780          Context.hasSameType(T, Context.WCharTy) ||
4781          Context.hasSameType(T, Context.Char16Ty) ||
4782          Context.hasSameType(T, Context.Char32Ty)))
4783      goto FinishedParams;
4784
4785    // The second and final parameter must be an std::size_t
4786    T = (*Param)->getType().getUnqualifiedType();
4787    if (Context.hasSameType(T, Context.getSizeType()) &&
4788        ++Param == FnDecl->param_end())
4789      Valid = true;
4790  }
4791
4792  // FIXME: This diagnostic is absolutely terrible.
4793FinishedParams:
4794  if (!Valid) {
4795    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
4796      << FnDecl->getDeclName();
4797    return true;
4798  }
4799
4800  return false;
4801}
4802
4803/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4804/// linkage specification, including the language and (if present)
4805/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4806/// the location of the language string literal, which is provided
4807/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4808/// the '{' brace. Otherwise, this linkage specification does not
4809/// have any braces.
4810Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4811                                                     SourceLocation ExternLoc,
4812                                                     SourceLocation LangLoc,
4813                                                     const char *Lang,
4814                                                     unsigned StrSize,
4815                                                     SourceLocation LBraceLoc) {
4816  LinkageSpecDecl::LanguageIDs Language;
4817  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4818    Language = LinkageSpecDecl::lang_c;
4819  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4820    Language = LinkageSpecDecl::lang_cxx;
4821  else {
4822    Diag(LangLoc, diag::err_bad_language);
4823    return DeclPtrTy();
4824  }
4825
4826  // FIXME: Add all the various semantics of linkage specifications
4827
4828  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4829                                               LangLoc, Language,
4830                                               LBraceLoc.isValid());
4831  CurContext->addDecl(D);
4832  PushDeclContext(S, D);
4833  return DeclPtrTy::make(D);
4834}
4835
4836/// ActOnFinishLinkageSpecification - Completely the definition of
4837/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4838/// valid, it's the position of the closing '}' brace in a linkage
4839/// specification that uses braces.
4840Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4841                                                      DeclPtrTy LinkageSpec,
4842                                                      SourceLocation RBraceLoc) {
4843  if (LinkageSpec)
4844    PopDeclContext();
4845  return LinkageSpec;
4846}
4847
4848/// \brief Perform semantic analysis for the variable declaration that
4849/// occurs within a C++ catch clause, returning the newly-created
4850/// variable.
4851VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4852                                         TypeSourceInfo *TInfo,
4853                                         IdentifierInfo *Name,
4854                                         SourceLocation Loc,
4855                                         SourceRange Range) {
4856  bool Invalid = false;
4857
4858  // Arrays and functions decay.
4859  if (ExDeclType->isArrayType())
4860    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4861  else if (ExDeclType->isFunctionType())
4862    ExDeclType = Context.getPointerType(ExDeclType);
4863
4864  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4865  // The exception-declaration shall not denote a pointer or reference to an
4866  // incomplete type, other than [cv] void*.
4867  // N2844 forbids rvalue references.
4868  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4869    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4870    Invalid = true;
4871  }
4872
4873  // GCC allows catching pointers and references to incomplete types
4874  // as an extension; so do we, but we warn by default.
4875
4876  QualType BaseType = ExDeclType;
4877  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4878  unsigned DK = diag::err_catch_incomplete;
4879  bool IncompleteCatchIsInvalid = true;
4880  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4881    BaseType = Ptr->getPointeeType();
4882    Mode = 1;
4883    DK = diag::ext_catch_incomplete_ptr;
4884    IncompleteCatchIsInvalid = false;
4885  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4886    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4887    BaseType = Ref->getPointeeType();
4888    Mode = 2;
4889    DK = diag::ext_catch_incomplete_ref;
4890    IncompleteCatchIsInvalid = false;
4891  }
4892  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4893      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
4894      IncompleteCatchIsInvalid)
4895    Invalid = true;
4896
4897  if (!Invalid && !ExDeclType->isDependentType() &&
4898      RequireNonAbstractType(Loc, ExDeclType,
4899                             diag::err_abstract_type_in_decl,
4900                             AbstractVariableType))
4901    Invalid = true;
4902
4903  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4904                                    Name, ExDeclType, TInfo, VarDecl::None,
4905                                    VarDecl::None);
4906
4907  if (!Invalid) {
4908    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
4909      // C++ [except.handle]p16:
4910      //   The object declared in an exception-declaration or, if the
4911      //   exception-declaration does not specify a name, a temporary (12.2) is
4912      //   copy-initialized (8.5) from the exception object. [...]
4913      //   The object is destroyed when the handler exits, after the destruction
4914      //   of any automatic objects initialized within the handler.
4915      //
4916      // We just pretend to initialize the object with itself, then make sure
4917      // it can be destroyed later.
4918      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
4919      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
4920                                            Loc, ExDeclType, 0);
4921      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
4922                                                               SourceLocation());
4923      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
4924      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4925                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
4926      if (Result.isInvalid())
4927        Invalid = true;
4928      else
4929        FinalizeVarWithDestructor(ExDecl, RecordTy);
4930    }
4931  }
4932
4933  if (Invalid)
4934    ExDecl->setInvalidDecl();
4935
4936  return ExDecl;
4937}
4938
4939/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4940/// handler.
4941Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4942  TypeSourceInfo *TInfo = 0;
4943  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
4944
4945  bool Invalid = D.isInvalidType();
4946  IdentifierInfo *II = D.getIdentifier();
4947  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
4948                                             LookupOrdinaryName,
4949                                             ForRedeclaration)) {
4950    // The scope should be freshly made just for us. There is just no way
4951    // it contains any previous declaration.
4952    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4953    if (PrevDecl->isTemplateParameter()) {
4954      // Maybe we will complain about the shadowed template parameter.
4955      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4956    }
4957  }
4958
4959  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4960    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4961      << D.getCXXScopeSpec().getRange();
4962    Invalid = true;
4963  }
4964
4965  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
4966                                              D.getIdentifier(),
4967                                              D.getIdentifierLoc(),
4968                                            D.getDeclSpec().getSourceRange());
4969
4970  if (Invalid)
4971    ExDecl->setInvalidDecl();
4972
4973  // Add the exception declaration into this scope.
4974  if (II)
4975    PushOnScopeChains(ExDecl, S);
4976  else
4977    CurContext->addDecl(ExDecl);
4978
4979  ProcessDeclAttributes(S, ExDecl, D);
4980  return DeclPtrTy::make(ExDecl);
4981}
4982
4983Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4984                                                   ExprArg assertexpr,
4985                                                   ExprArg assertmessageexpr) {
4986  Expr *AssertExpr = (Expr *)assertexpr.get();
4987  StringLiteral *AssertMessage =
4988    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4989
4990  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4991    llvm::APSInt Value(32);
4992    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4993      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4994        AssertExpr->getSourceRange();
4995      return DeclPtrTy();
4996    }
4997
4998    if (Value == 0) {
4999      Diag(AssertLoc, diag::err_static_assert_failed)
5000        << AssertMessage->getString() << AssertExpr->getSourceRange();
5001    }
5002  }
5003
5004  assertexpr.release();
5005  assertmessageexpr.release();
5006  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5007                                        AssertExpr, AssertMessage);
5008
5009  CurContext->addDecl(Decl);
5010  return DeclPtrTy::make(Decl);
5011}
5012
5013/// \brief Perform semantic analysis of the given friend type declaration.
5014///
5015/// \returns A friend declaration that.
5016FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5017                                      TypeSourceInfo *TSInfo) {
5018  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5019
5020  QualType T = TSInfo->getType();
5021  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
5022
5023  if (!getLangOptions().CPlusPlus0x) {
5024    // C++03 [class.friend]p2:
5025    //   An elaborated-type-specifier shall be used in a friend declaration
5026    //   for a class.*
5027    //
5028    //   * The class-key of the elaborated-type-specifier is required.
5029    if (!ActiveTemplateInstantiations.empty()) {
5030      // Do not complain about the form of friend template types during
5031      // template instantiation; we will already have complained when the
5032      // template was declared.
5033    } else if (!T->isElaboratedTypeSpecifier()) {
5034      // If we evaluated the type to a record type, suggest putting
5035      // a tag in front.
5036      if (const RecordType *RT = T->getAs<RecordType>()) {
5037        RecordDecl *RD = RT->getDecl();
5038
5039        std::string InsertionText = std::string(" ") + RD->getKindName();
5040
5041        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5042          << (unsigned) RD->getTagKind()
5043          << T
5044          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5045                                        InsertionText);
5046      } else {
5047        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5048          << T
5049          << SourceRange(FriendLoc, TypeRange.getEnd());
5050      }
5051    } else if (T->getAs<EnumType>()) {
5052      Diag(FriendLoc, diag::ext_enum_friend)
5053        << T
5054        << SourceRange(FriendLoc, TypeRange.getEnd());
5055    }
5056  }
5057
5058  // C++0x [class.friend]p3:
5059  //   If the type specifier in a friend declaration designates a (possibly
5060  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5061  //   the friend declaration is ignored.
5062
5063  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5064  // in [class.friend]p3 that we do not implement.
5065
5066  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5067}
5068
5069/// Handle a friend type declaration.  This works in tandem with
5070/// ActOnTag.
5071///
5072/// Notes on friend class templates:
5073///
5074/// We generally treat friend class declarations as if they were
5075/// declaring a class.  So, for example, the elaborated type specifier
5076/// in a friend declaration is required to obey the restrictions of a
5077/// class-head (i.e. no typedefs in the scope chain), template
5078/// parameters are required to match up with simple template-ids, &c.
5079/// However, unlike when declaring a template specialization, it's
5080/// okay to refer to a template specialization without an empty
5081/// template parameter declaration, e.g.
5082///   friend class A<T>::B<unsigned>;
5083/// We permit this as a special case; if there are any template
5084/// parameters present at all, require proper matching, i.e.
5085///   template <> template <class T> friend class A<int>::B;
5086Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5087                                          MultiTemplateParamsArg TempParams) {
5088  SourceLocation Loc = DS.getSourceRange().getBegin();
5089
5090  assert(DS.isFriendSpecified());
5091  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5092
5093  // Try to convert the decl specifier to a type.  This works for
5094  // friend templates because ActOnTag never produces a ClassTemplateDecl
5095  // for a TUK_Friend.
5096  Declarator TheDeclarator(DS, Declarator::MemberContext);
5097  TypeSourceInfo *TSI;
5098  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5099  if (TheDeclarator.isInvalidType())
5100    return DeclPtrTy();
5101
5102  if (!TSI)
5103    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5104
5105  // This is definitely an error in C++98.  It's probably meant to
5106  // be forbidden in C++0x, too, but the specification is just
5107  // poorly written.
5108  //
5109  // The problem is with declarations like the following:
5110  //   template <T> friend A<T>::foo;
5111  // where deciding whether a class C is a friend or not now hinges
5112  // on whether there exists an instantiation of A that causes
5113  // 'foo' to equal C.  There are restrictions on class-heads
5114  // (which we declare (by fiat) elaborated friend declarations to
5115  // be) that makes this tractable.
5116  //
5117  // FIXME: handle "template <> friend class A<T>;", which
5118  // is possibly well-formed?  Who even knows?
5119  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5120    Diag(Loc, diag::err_tagless_friend_type_template)
5121      << DS.getSourceRange();
5122    return DeclPtrTy();
5123  }
5124
5125  // C++98 [class.friend]p1: A friend of a class is a function
5126  //   or class that is not a member of the class . . .
5127  // This is fixed in DR77, which just barely didn't make the C++03
5128  // deadline.  It's also a very silly restriction that seriously
5129  // affects inner classes and which nobody else seems to implement;
5130  // thus we never diagnose it, not even in -pedantic.
5131  //
5132  // But note that we could warn about it: it's always useless to
5133  // friend one of your own members (it's not, however, worthless to
5134  // friend a member of an arbitrary specialization of your template).
5135
5136  Decl *D;
5137  if (unsigned NumTempParamLists = TempParams.size())
5138    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5139                                   NumTempParamLists,
5140                                 (TemplateParameterList**) TempParams.release(),
5141                                   TSI,
5142                                   DS.getFriendSpecLoc());
5143  else
5144    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5145
5146  if (!D)
5147    return DeclPtrTy();
5148
5149  D->setAccess(AS_public);
5150  CurContext->addDecl(D);
5151
5152  return DeclPtrTy::make(D);
5153}
5154
5155Sema::DeclPtrTy
5156Sema::ActOnFriendFunctionDecl(Scope *S,
5157                              Declarator &D,
5158                              bool IsDefinition,
5159                              MultiTemplateParamsArg TemplateParams) {
5160  const DeclSpec &DS = D.getDeclSpec();
5161
5162  assert(DS.isFriendSpecified());
5163  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5164
5165  SourceLocation Loc = D.getIdentifierLoc();
5166  TypeSourceInfo *TInfo = 0;
5167  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5168
5169  // C++ [class.friend]p1
5170  //   A friend of a class is a function or class....
5171  // Note that this sees through typedefs, which is intended.
5172  // It *doesn't* see through dependent types, which is correct
5173  // according to [temp.arg.type]p3:
5174  //   If a declaration acquires a function type through a
5175  //   type dependent on a template-parameter and this causes
5176  //   a declaration that does not use the syntactic form of a
5177  //   function declarator to have a function type, the program
5178  //   is ill-formed.
5179  if (!T->isFunctionType()) {
5180    Diag(Loc, diag::err_unexpected_friend);
5181
5182    // It might be worthwhile to try to recover by creating an
5183    // appropriate declaration.
5184    return DeclPtrTy();
5185  }
5186
5187  // C++ [namespace.memdef]p3
5188  //  - If a friend declaration in a non-local class first declares a
5189  //    class or function, the friend class or function is a member
5190  //    of the innermost enclosing namespace.
5191  //  - The name of the friend is not found by simple name lookup
5192  //    until a matching declaration is provided in that namespace
5193  //    scope (either before or after the class declaration granting
5194  //    friendship).
5195  //  - If a friend function is called, its name may be found by the
5196  //    name lookup that considers functions from namespaces and
5197  //    classes associated with the types of the function arguments.
5198  //  - When looking for a prior declaration of a class or a function
5199  //    declared as a friend, scopes outside the innermost enclosing
5200  //    namespace scope are not considered.
5201
5202  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5203  DeclarationName Name = GetNameForDeclarator(D);
5204  assert(Name);
5205
5206  // The context we found the declaration in, or in which we should
5207  // create the declaration.
5208  DeclContext *DC;
5209
5210  // FIXME: handle local classes
5211
5212  // Recover from invalid scope qualifiers as if they just weren't there.
5213  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5214                        ForRedeclaration);
5215  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5216    // FIXME: RequireCompleteDeclContext
5217    DC = computeDeclContext(ScopeQual);
5218
5219    // FIXME: handle dependent contexts
5220    if (!DC) return DeclPtrTy();
5221
5222    LookupQualifiedName(Previous, DC);
5223
5224    // If searching in that context implicitly found a declaration in
5225    // a different context, treat it like it wasn't found at all.
5226    // TODO: better diagnostics for this case.  Suggesting the right
5227    // qualified scope would be nice...
5228    // FIXME: getRepresentativeDecl() is not right here at all
5229    if (Previous.empty() ||
5230        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5231      D.setInvalidType();
5232      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5233      return DeclPtrTy();
5234    }
5235
5236    // C++ [class.friend]p1: A friend of a class is a function or
5237    //   class that is not a member of the class . . .
5238    if (DC->Equals(CurContext))
5239      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5240
5241  // Otherwise walk out to the nearest namespace scope looking for matches.
5242  } else {
5243    // TODO: handle local class contexts.
5244
5245    DC = CurContext;
5246    while (true) {
5247      // Skip class contexts.  If someone can cite chapter and verse
5248      // for this behavior, that would be nice --- it's what GCC and
5249      // EDG do, and it seems like a reasonable intent, but the spec
5250      // really only says that checks for unqualified existing
5251      // declarations should stop at the nearest enclosing namespace,
5252      // not that they should only consider the nearest enclosing
5253      // namespace.
5254      while (DC->isRecord())
5255        DC = DC->getParent();
5256
5257      LookupQualifiedName(Previous, DC);
5258
5259      // TODO: decide what we think about using declarations.
5260      if (!Previous.empty())
5261        break;
5262
5263      if (DC->isFileContext()) break;
5264      DC = DC->getParent();
5265    }
5266
5267    // C++ [class.friend]p1: A friend of a class is a function or
5268    //   class that is not a member of the class . . .
5269    // C++0x changes this for both friend types and functions.
5270    // Most C++ 98 compilers do seem to give an error here, so
5271    // we do, too.
5272    if (!Previous.empty() && DC->Equals(CurContext)
5273        && !getLangOptions().CPlusPlus0x)
5274      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5275  }
5276
5277  if (DC->isFileContext()) {
5278    // This implies that it has to be an operator or function.
5279    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5280        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5281        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5282      Diag(Loc, diag::err_introducing_special_friend) <<
5283        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5284         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5285      return DeclPtrTy();
5286    }
5287  }
5288
5289  bool Redeclaration = false;
5290  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5291                                          move(TemplateParams),
5292                                          IsDefinition,
5293                                          Redeclaration);
5294  if (!ND) return DeclPtrTy();
5295
5296  assert(ND->getDeclContext() == DC);
5297  assert(ND->getLexicalDeclContext() == CurContext);
5298
5299  // Add the function declaration to the appropriate lookup tables,
5300  // adjusting the redeclarations list as necessary.  We don't
5301  // want to do this yet if the friending class is dependent.
5302  //
5303  // Also update the scope-based lookup if the target context's
5304  // lookup context is in lexical scope.
5305  if (!CurContext->isDependentContext()) {
5306    DC = DC->getLookupContext();
5307    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5308    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5309      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5310  }
5311
5312  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5313                                       D.getIdentifierLoc(), ND,
5314                                       DS.getFriendSpecLoc());
5315  FrD->setAccess(AS_public);
5316  CurContext->addDecl(FrD);
5317
5318  return DeclPtrTy::make(ND);
5319}
5320
5321void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5322  AdjustDeclIfTemplate(dcl);
5323
5324  Decl *Dcl = dcl.getAs<Decl>();
5325  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5326  if (!Fn) {
5327    Diag(DelLoc, diag::err_deleted_non_function);
5328    return;
5329  }
5330  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5331    Diag(DelLoc, diag::err_deleted_decl_not_first);
5332    Diag(Prev->getLocation(), diag::note_previous_declaration);
5333    // If the declaration wasn't the first, we delete the function anyway for
5334    // recovery.
5335  }
5336  Fn->setDeleted();
5337}
5338
5339static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5340  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5341       ++CI) {
5342    Stmt *SubStmt = *CI;
5343    if (!SubStmt)
5344      continue;
5345    if (isa<ReturnStmt>(SubStmt))
5346      Self.Diag(SubStmt->getSourceRange().getBegin(),
5347           diag::err_return_in_constructor_handler);
5348    if (!isa<Expr>(SubStmt))
5349      SearchForReturnInStmt(Self, SubStmt);
5350  }
5351}
5352
5353void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5354  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5355    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5356    SearchForReturnInStmt(*this, Handler);
5357  }
5358}
5359
5360bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5361                                             const CXXMethodDecl *Old) {
5362  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5363  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5364
5365  if (Context.hasSameType(NewTy, OldTy) ||
5366      NewTy->isDependentType() || OldTy->isDependentType())
5367    return false;
5368
5369  // Check if the return types are covariant
5370  QualType NewClassTy, OldClassTy;
5371
5372  /// Both types must be pointers or references to classes.
5373  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5374    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5375      NewClassTy = NewPT->getPointeeType();
5376      OldClassTy = OldPT->getPointeeType();
5377    }
5378  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5379    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5380      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5381        NewClassTy = NewRT->getPointeeType();
5382        OldClassTy = OldRT->getPointeeType();
5383      }
5384    }
5385  }
5386
5387  // The return types aren't either both pointers or references to a class type.
5388  if (NewClassTy.isNull()) {
5389    Diag(New->getLocation(),
5390         diag::err_different_return_type_for_overriding_virtual_function)
5391      << New->getDeclName() << NewTy << OldTy;
5392    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5393
5394    return true;
5395  }
5396
5397  // C++ [class.virtual]p6:
5398  //   If the return type of D::f differs from the return type of B::f, the
5399  //   class type in the return type of D::f shall be complete at the point of
5400  //   declaration of D::f or shall be the class type D.
5401  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5402    if (!RT->isBeingDefined() &&
5403        RequireCompleteType(New->getLocation(), NewClassTy,
5404                            PDiag(diag::err_covariant_return_incomplete)
5405                              << New->getDeclName()))
5406    return true;
5407  }
5408
5409  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5410    // Check if the new class derives from the old class.
5411    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5412      Diag(New->getLocation(),
5413           diag::err_covariant_return_not_derived)
5414      << New->getDeclName() << NewTy << OldTy;
5415      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5416      return true;
5417    }
5418
5419    // Check if we the conversion from derived to base is valid.
5420    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5421                      diag::err_covariant_return_inaccessible_base,
5422                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5423                      // FIXME: Should this point to the return type?
5424                      New->getLocation(), SourceRange(), New->getDeclName())) {
5425      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5426      return true;
5427    }
5428  }
5429
5430  // The qualifiers of the return types must be the same.
5431  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5432    Diag(New->getLocation(),
5433         diag::err_covariant_return_type_different_qualifications)
5434    << New->getDeclName() << NewTy << OldTy;
5435    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5436    return true;
5437  };
5438
5439
5440  // The new class type must have the same or less qualifiers as the old type.
5441  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5442    Diag(New->getLocation(),
5443         diag::err_covariant_return_type_class_type_more_qualified)
5444    << New->getDeclName() << NewTy << OldTy;
5445    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5446    return true;
5447  };
5448
5449  return false;
5450}
5451
5452bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5453                                             const CXXMethodDecl *Old)
5454{
5455  if (Old->hasAttr<FinalAttr>()) {
5456    Diag(New->getLocation(), diag::err_final_function_overridden)
5457      << New->getDeclName();
5458    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5459    return true;
5460  }
5461
5462  return false;
5463}
5464
5465/// \brief Mark the given method pure.
5466///
5467/// \param Method the method to be marked pure.
5468///
5469/// \param InitRange the source range that covers the "0" initializer.
5470bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5471  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5472    Method->setPure();
5473
5474    // A class is abstract if at least one function is pure virtual.
5475    Method->getParent()->setAbstract(true);
5476    return false;
5477  }
5478
5479  if (!Method->isInvalidDecl())
5480    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5481      << Method->getDeclName() << InitRange;
5482  return true;
5483}
5484
5485/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5486/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5487/// is a fresh scope pushed for just this purpose.
5488///
5489/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5490/// static data member of class X, names should be looked up in the scope of
5491/// class X.
5492void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5493  // If there is no declaration, there was an error parsing it.
5494  Decl *D = Dcl.getAs<Decl>();
5495  if (D == 0) return;
5496
5497  // We should only get called for declarations with scope specifiers, like:
5498  //   int foo::bar;
5499  assert(D->isOutOfLine());
5500  EnterDeclaratorContext(S, D->getDeclContext());
5501}
5502
5503/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5504/// initializer for the out-of-line declaration 'Dcl'.
5505void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5506  // If there is no declaration, there was an error parsing it.
5507  Decl *D = Dcl.getAs<Decl>();
5508  if (D == 0) return;
5509
5510  assert(D->isOutOfLine());
5511  ExitDeclaratorContext(S);
5512}
5513
5514/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5515/// C++ if/switch/while/for statement.
5516/// e.g: "if (int x = f()) {...}"
5517Action::DeclResult
5518Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5519  // C++ 6.4p2:
5520  // The declarator shall not specify a function or an array.
5521  // The type-specifier-seq shall not contain typedef and shall not declare a
5522  // new class or enumeration.
5523  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5524         "Parser allowed 'typedef' as storage class of condition decl.");
5525
5526  TypeSourceInfo *TInfo = 0;
5527  TagDecl *OwnedTag = 0;
5528  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5529
5530  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5531                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5532                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5533    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5534      << D.getSourceRange();
5535    return DeclResult();
5536  } else if (OwnedTag && OwnedTag->isDefinition()) {
5537    // The type-specifier-seq shall not declare a new class or enumeration.
5538    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5539  }
5540
5541  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5542  if (!Dcl)
5543    return DeclResult();
5544
5545  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5546  VD->setDeclaredInCondition(true);
5547  return Dcl;
5548}
5549
5550static bool needsVTable(CXXMethodDecl *MD, ASTContext &Context) {
5551  // Ignore dependent types.
5552  if (MD->isDependentContext())
5553    return false;
5554
5555  // Ignore declarations that are not definitions.
5556  if (!MD->isThisDeclarationADefinition())
5557    return false;
5558
5559  CXXRecordDecl *RD = MD->getParent();
5560
5561  // Ignore classes without a vtable.
5562  if (!RD->isDynamicClass())
5563    return false;
5564
5565  switch (MD->getParent()->getTemplateSpecializationKind()) {
5566  case TSK_Undeclared:
5567  case TSK_ExplicitSpecialization:
5568    // Classes that aren't instantiations of templates don't need their
5569    // virtual methods marked until we see the definition of the key
5570    // function.
5571    break;
5572
5573  case TSK_ImplicitInstantiation:
5574    // This is a constructor of a class template; mark all of the virtual
5575    // members as referenced to ensure that they get instantiatied.
5576    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5577      return true;
5578    break;
5579
5580  case TSK_ExplicitInstantiationDeclaration:
5581    return false;
5582
5583  case TSK_ExplicitInstantiationDefinition:
5584    // This is method of a explicit instantiation; mark all of the virtual
5585    // members as referenced to ensure that they get instantiatied.
5586    return true;
5587  }
5588
5589  // Consider only out-of-line definitions of member functions. When we see
5590  // an inline definition, it's too early to compute the key function.
5591  if (!MD->isOutOfLine())
5592    return false;
5593
5594  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5595
5596  // If there is no key function, we will need a copy of the vtable.
5597  if (!KeyFunction)
5598    return true;
5599
5600  // If this is the key function, we need to mark virtual members.
5601  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5602    return true;
5603
5604  return false;
5605}
5606
5607void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5608                                             CXXMethodDecl *MD) {
5609  CXXRecordDecl *RD = MD->getParent();
5610
5611  // We will need to mark all of the virtual members as referenced to build the
5612  // vtable.
5613  if (!needsVTable(MD, Context))
5614    return;
5615
5616  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5617  if (kind == TSK_ImplicitInstantiation)
5618    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5619  else
5620    MarkVirtualMembersReferenced(Loc, RD);
5621}
5622
5623bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5624  if (ClassesWithUnmarkedVirtualMembers.empty())
5625    return false;
5626
5627  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5628    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5629    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5630    ClassesWithUnmarkedVirtualMembers.pop_back();
5631    MarkVirtualMembersReferenced(Loc, RD);
5632  }
5633
5634  return true;
5635}
5636
5637void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5638                                        const CXXRecordDecl *RD) {
5639  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5640       e = RD->method_end(); i != e; ++i) {
5641    CXXMethodDecl *MD = *i;
5642
5643    // C++ [basic.def.odr]p2:
5644    //   [...] A virtual member function is used if it is not pure. [...]
5645    if (MD->isVirtual() && !MD->isPure())
5646      MarkDeclarationReferenced(Loc, MD);
5647  }
5648
5649  // Only classes that have virtual bases need a VTT.
5650  if (RD->getNumVBases() == 0)
5651    return;
5652
5653  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5654           e = RD->bases_end(); i != e; ++i) {
5655    const CXXRecordDecl *Base =
5656        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5657    if (i->isVirtual())
5658      continue;
5659    if (Base->getNumVBases() == 0)
5660      continue;
5661    MarkVirtualMembersReferenced(Loc, Base);
5662  }
5663}
5664