SemaDeclCXX.cpp revision f2fedc6aa0e3f74f3c53ff33cf432ba97258c94d
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Lex/Preprocessor.h"
22#include "clang/Parse/DeclSpec.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/Compiler.h"
25#include <algorithm> // for std::equal
26#include <map>
27
28using namespace clang;
29
30//===----------------------------------------------------------------------===//
31// CheckDefaultArgumentVisitor
32//===----------------------------------------------------------------------===//
33
34namespace {
35  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
36  /// the default argument of a parameter to determine whether it
37  /// contains any ill-formed subexpressions. For example, this will
38  /// diagnose the use of local variables or parameters within the
39  /// default argument expression.
40  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
41    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
42    Expr *DefaultArg;
43    Sema *S;
44
45  public:
46    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
47      : DefaultArg(defarg), S(s) {}
48
49    bool VisitExpr(Expr *Node);
50    bool VisitDeclRefExpr(DeclRefExpr *DRE);
51    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
52  };
53
54  /// VisitExpr - Visit all of the children of this expression.
55  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
56    bool IsInvalid = false;
57    for (Stmt::child_iterator I = Node->child_begin(),
58         E = Node->child_end(); I != E; ++I)
59      IsInvalid |= Visit(*I);
60    return IsInvalid;
61  }
62
63  /// VisitDeclRefExpr - Visit a reference to a declaration, to
64  /// determine whether this declaration can be used in the default
65  /// argument expression.
66  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
67    NamedDecl *Decl = DRE->getDecl();
68    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
69      // C++ [dcl.fct.default]p9
70      //   Default arguments are evaluated each time the function is
71      //   called. The order of evaluation of function arguments is
72      //   unspecified. Consequently, parameters of a function shall not
73      //   be used in default argument expressions, even if they are not
74      //   evaluated. Parameters of a function declared before a default
75      //   argument expression are in scope and can hide namespace and
76      //   class member names.
77      return S->Diag(DRE->getSourceRange().getBegin(),
78                     diag::err_param_default_argument_references_param)
79         << Param->getDeclName() << DefaultArg->getSourceRange();
80    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
81      // C++ [dcl.fct.default]p7
82      //   Local variables shall not be used in default argument
83      //   expressions.
84      if (VDecl->isBlockVarDecl())
85        return S->Diag(DRE->getSourceRange().getBegin(),
86                       diag::err_param_default_argument_references_local)
87          << VDecl->getDeclName() << DefaultArg->getSourceRange();
88    }
89
90    return false;
91  }
92
93  /// VisitCXXThisExpr - Visit a C++ "this" expression.
94  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
95    // C++ [dcl.fct.default]p8:
96    //   The keyword this shall not be used in a default argument of a
97    //   member function.
98    return S->Diag(ThisE->getSourceRange().getBegin(),
99                   diag::err_param_default_argument_references_this)
100               << ThisE->getSourceRange();
101  }
102}
103
104/// ActOnParamDefaultArgument - Check whether the default argument
105/// provided for a function parameter is well-formed. If so, attach it
106/// to the parameter declaration.
107void
108Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
109                                ExprArg defarg) {
110  if (!param || !defarg.get())
111    return;
112
113  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
114  UnparsedDefaultArgLocs.erase(Param);
115
116  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
117  QualType ParamType = Param->getType();
118
119  // Default arguments are only permitted in C++
120  if (!getLangOptions().CPlusPlus) {
121    Diag(EqualLoc, diag::err_param_default_argument)
122      << DefaultArg->getSourceRange();
123    Param->setInvalidDecl();
124    return;
125  }
126
127  // C++ [dcl.fct.default]p5
128  //   A default argument expression is implicitly converted (clause
129  //   4) to the parameter type. The default argument expression has
130  //   the same semantic constraints as the initializer expression in
131  //   a declaration of a variable of the parameter type, using the
132  //   copy-initialization semantics (8.5).
133  Expr *DefaultArgPtr = DefaultArg.get();
134  bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType,
135                                                 EqualLoc,
136                                                 Param->getDeclName(),
137                                                 /*DirectInit=*/false);
138  if (DefaultArgPtr != DefaultArg.get()) {
139    DefaultArg.take();
140    DefaultArg.reset(DefaultArgPtr);
141  }
142  if (DefaultInitFailed) {
143    return;
144  }
145
146  // Check that the default argument is well-formed
147  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
148  if (DefaultArgChecker.Visit(DefaultArg.get())) {
149    Param->setInvalidDecl();
150    return;
151  }
152
153  DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(),
154                                                    /*DestroyTemps=*/false);
155
156  // Okay: add the default argument to the parameter
157  Param->setDefaultArg(DefaultArgPtr);
158}
159
160/// ActOnParamUnparsedDefaultArgument - We've seen a default
161/// argument for a function parameter, but we can't parse it yet
162/// because we're inside a class definition. Note that this default
163/// argument will be parsed later.
164void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
165                                             SourceLocation EqualLoc,
166                                             SourceLocation ArgLoc) {
167  if (!param)
168    return;
169
170  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
171  if (Param)
172    Param->setUnparsedDefaultArg();
173
174  UnparsedDefaultArgLocs[Param] = ArgLoc;
175}
176
177/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
178/// the default argument for the parameter param failed.
179void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
180  if (!param)
181    return;
182
183  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
184
185  Param->setInvalidDecl();
186
187  UnparsedDefaultArgLocs.erase(Param);
188}
189
190/// CheckExtraCXXDefaultArguments - Check for any extra default
191/// arguments in the declarator, which is not a function declaration
192/// or definition and therefore is not permitted to have default
193/// arguments. This routine should be invoked for every declarator
194/// that is not a function declaration or definition.
195void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
196  // C++ [dcl.fct.default]p3
197  //   A default argument expression shall be specified only in the
198  //   parameter-declaration-clause of a function declaration or in a
199  //   template-parameter (14.1). It shall not be specified for a
200  //   parameter pack. If it is specified in a
201  //   parameter-declaration-clause, it shall not occur within a
202  //   declarator or abstract-declarator of a parameter-declaration.
203  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
204    DeclaratorChunk &chunk = D.getTypeObject(i);
205    if (chunk.Kind == DeclaratorChunk::Function) {
206      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
207        ParmVarDecl *Param =
208          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
209        if (Param->hasUnparsedDefaultArg()) {
210          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
211          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
212            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
213          delete Toks;
214          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
215        } else if (Param->getDefaultArg()) {
216          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
217            << Param->getDefaultArg()->getSourceRange();
218          Param->setDefaultArg(0);
219        }
220      }
221    }
222  }
223}
224
225// MergeCXXFunctionDecl - Merge two declarations of the same C++
226// function, once we already know that they have the same
227// type. Subroutine of MergeFunctionDecl. Returns true if there was an
228// error, false otherwise.
229bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
230  bool Invalid = false;
231
232  // C++ [dcl.fct.default]p4:
233  //
234  //   For non-template functions, default arguments can be added in
235  //   later declarations of a function in the same
236  //   scope. Declarations in different scopes have completely
237  //   distinct sets of default arguments. That is, declarations in
238  //   inner scopes do not acquire default arguments from
239  //   declarations in outer scopes, and vice versa. In a given
240  //   function declaration, all parameters subsequent to a
241  //   parameter with a default argument shall have default
242  //   arguments supplied in this or previous declarations. A
243  //   default argument shall not be redefined by a later
244  //   declaration (not even to the same value).
245  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
246    ParmVarDecl *OldParam = Old->getParamDecl(p);
247    ParmVarDecl *NewParam = New->getParamDecl(p);
248
249    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
250      Diag(NewParam->getLocation(),
251           diag::err_param_default_argument_redefinition)
252        << NewParam->getDefaultArg()->getSourceRange();
253      Diag(OldParam->getLocation(), diag::note_previous_definition);
254      Invalid = true;
255    } else if (OldParam->getDefaultArg()) {
256      // Merge the old default argument into the new parameter
257      NewParam->setDefaultArg(OldParam->getDefaultArg());
258    }
259  }
260
261  if (CheckEquivalentExceptionSpec(
262          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
263          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
264    Invalid = true;
265  }
266
267  return Invalid;
268}
269
270/// CheckCXXDefaultArguments - Verify that the default arguments for a
271/// function declaration are well-formed according to C++
272/// [dcl.fct.default].
273void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
274  unsigned NumParams = FD->getNumParams();
275  unsigned p;
276
277  // Find first parameter with a default argument
278  for (p = 0; p < NumParams; ++p) {
279    ParmVarDecl *Param = FD->getParamDecl(p);
280    if (Param->getDefaultArg())
281      break;
282  }
283
284  // C++ [dcl.fct.default]p4:
285  //   In a given function declaration, all parameters
286  //   subsequent to a parameter with a default argument shall
287  //   have default arguments supplied in this or previous
288  //   declarations. A default argument shall not be redefined
289  //   by a later declaration (not even to the same value).
290  unsigned LastMissingDefaultArg = 0;
291  for(; p < NumParams; ++p) {
292    ParmVarDecl *Param = FD->getParamDecl(p);
293    if (!Param->getDefaultArg()) {
294      if (Param->isInvalidDecl())
295        /* We already complained about this parameter. */;
296      else if (Param->getIdentifier())
297        Diag(Param->getLocation(),
298             diag::err_param_default_argument_missing_name)
299          << Param->getIdentifier();
300      else
301        Diag(Param->getLocation(),
302             diag::err_param_default_argument_missing);
303
304      LastMissingDefaultArg = p;
305    }
306  }
307
308  if (LastMissingDefaultArg > 0) {
309    // Some default arguments were missing. Clear out all of the
310    // default arguments up to (and including) the last missing
311    // default argument, so that we leave the function parameters
312    // in a semantically valid state.
313    for (p = 0; p <= LastMissingDefaultArg; ++p) {
314      ParmVarDecl *Param = FD->getParamDecl(p);
315      if (Param->hasDefaultArg()) {
316        if (!Param->hasUnparsedDefaultArg())
317          Param->getDefaultArg()->Destroy(Context);
318        Param->setDefaultArg(0);
319      }
320    }
321  }
322}
323
324/// isCurrentClassName - Determine whether the identifier II is the
325/// name of the class type currently being defined. In the case of
326/// nested classes, this will only return true if II is the name of
327/// the innermost class.
328bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
329                              const CXXScopeSpec *SS) {
330  CXXRecordDecl *CurDecl;
331  if (SS && SS->isSet() && !SS->isInvalid()) {
332    DeclContext *DC = computeDeclContext(*SS);
333    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
334  } else
335    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
336
337  if (CurDecl)
338    return &II == CurDecl->getIdentifier();
339  else
340    return false;
341}
342
343/// \brief Check the validity of a C++ base class specifier.
344///
345/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
346/// and returns NULL otherwise.
347CXXBaseSpecifier *
348Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
349                         SourceRange SpecifierRange,
350                         bool Virtual, AccessSpecifier Access,
351                         QualType BaseType,
352                         SourceLocation BaseLoc) {
353  // C++ [class.union]p1:
354  //   A union shall not have base classes.
355  if (Class->isUnion()) {
356    Diag(Class->getLocation(), diag::err_base_clause_on_union)
357      << SpecifierRange;
358    return 0;
359  }
360
361  if (BaseType->isDependentType())
362    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
363                                Class->getTagKind() == RecordDecl::TK_class,
364                                Access, BaseType);
365
366  // Base specifiers must be record types.
367  if (!BaseType->isRecordType()) {
368    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
369    return 0;
370  }
371
372  // C++ [class.union]p1:
373  //   A union shall not be used as a base class.
374  if (BaseType->isUnionType()) {
375    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
376    return 0;
377  }
378
379  // C++ [class.derived]p2:
380  //   The class-name in a base-specifier shall not be an incompletely
381  //   defined class.
382  if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class,
383                          SpecifierRange))
384    return 0;
385
386  // If the base class is polymorphic, the new one is, too.
387  RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl();
388  assert(BaseDecl && "Record type has no declaration");
389  BaseDecl = BaseDecl->getDefinition(Context);
390  assert(BaseDecl && "Base type is not incomplete, but has no definition");
391  if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic())
392    Class->setPolymorphic(true);
393
394  // C++ [dcl.init.aggr]p1:
395  //   An aggregate is [...] a class with [...] no base classes [...].
396  Class->setAggregate(false);
397  Class->setPOD(false);
398
399  if (Virtual) {
400    // C++ [class.ctor]p5:
401    //   A constructor is trivial if its class has no virtual base classes.
402    Class->setHasTrivialConstructor(false);
403
404    // C++ [class.copy]p6:
405    //   A copy constructor is trivial if its class has no virtual base classes.
406    Class->setHasTrivialCopyConstructor(false);
407
408    // C++ [class.copy]p11:
409    //   A copy assignment operator is trivial if its class has no virtual
410    //   base classes.
411    Class->setHasTrivialCopyAssignment(false);
412  } else {
413    // C++ [class.ctor]p5:
414    //   A constructor is trivial if all the direct base classes of its
415    //   class have trivial constructors.
416    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
417      Class->setHasTrivialConstructor(false);
418
419    // C++ [class.copy]p6:
420    //   A copy constructor is trivial if all the direct base classes of its
421    //   class have trivial copy constructors.
422    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
423      Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if all the direct base classes
427    //   of its class have trivial copy assignment operators.
428    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
429      Class->setHasTrivialCopyAssignment(false);
430  }
431
432  // C++ [class.ctor]p3:
433  //   A destructor is trivial if all the direct base classes of its class
434  //   have trivial destructors.
435  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
436    Class->setHasTrivialDestructor(false);
437
438  // Create the base specifier.
439  // FIXME: Allocate via ASTContext?
440  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
441                              Class->getTagKind() == RecordDecl::TK_class,
442                              Access, BaseType);
443}
444
445/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
446/// one entry in the base class list of a class specifier, for
447/// example:
448///    class foo : public bar, virtual private baz {
449/// 'public bar' and 'virtual private baz' are each base-specifiers.
450Sema::BaseResult
451Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
452                         bool Virtual, AccessSpecifier Access,
453                         TypeTy *basetype, SourceLocation BaseLoc) {
454  if (!classdecl)
455    return true;
456
457  AdjustDeclIfTemplate(classdecl);
458  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
459  QualType BaseType = QualType::getFromOpaquePtr(basetype);
460  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
461                                                      Virtual, Access,
462                                                      BaseType, BaseLoc))
463    return BaseSpec;
464
465  return true;
466}
467
468/// \brief Performs the actual work of attaching the given base class
469/// specifiers to a C++ class.
470bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
471                                unsigned NumBases) {
472 if (NumBases == 0)
473    return false;
474
475  // Used to keep track of which base types we have already seen, so
476  // that we can properly diagnose redundant direct base types. Note
477  // that the key is always the unqualified canonical type of the base
478  // class.
479  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
480
481  // Copy non-redundant base specifiers into permanent storage.
482  unsigned NumGoodBases = 0;
483  bool Invalid = false;
484  for (unsigned idx = 0; idx < NumBases; ++idx) {
485    QualType NewBaseType
486      = Context.getCanonicalType(Bases[idx]->getType());
487    NewBaseType = NewBaseType.getUnqualifiedType();
488
489    if (KnownBaseTypes[NewBaseType]) {
490      // C++ [class.mi]p3:
491      //   A class shall not be specified as a direct base class of a
492      //   derived class more than once.
493      Diag(Bases[idx]->getSourceRange().getBegin(),
494           diag::err_duplicate_base_class)
495        << KnownBaseTypes[NewBaseType]->getType()
496        << Bases[idx]->getSourceRange();
497
498      // Delete the duplicate base class specifier; we're going to
499      // overwrite its pointer later.
500      Context.Deallocate(Bases[idx]);
501
502      Invalid = true;
503    } else {
504      // Okay, add this new base class.
505      KnownBaseTypes[NewBaseType] = Bases[idx];
506      Bases[NumGoodBases++] = Bases[idx];
507    }
508  }
509
510  // Attach the remaining base class specifiers to the derived class.
511  Class->setBases(Context, Bases, NumGoodBases);
512
513  // Delete the remaining (good) base class specifiers, since their
514  // data has been copied into the CXXRecordDecl.
515  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
516    Context.Deallocate(Bases[idx]);
517
518  return Invalid;
519}
520
521/// ActOnBaseSpecifiers - Attach the given base specifiers to the
522/// class, after checking whether there are any duplicate base
523/// classes.
524void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
525                               unsigned NumBases) {
526  if (!ClassDecl || !Bases || !NumBases)
527    return;
528
529  AdjustDeclIfTemplate(ClassDecl);
530  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
531                       (CXXBaseSpecifier**)(Bases), NumBases);
532}
533
534//===----------------------------------------------------------------------===//
535// C++ class member Handling
536//===----------------------------------------------------------------------===//
537
538/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
539/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
540/// bitfield width if there is one and 'InitExpr' specifies the initializer if
541/// any.
542Sema::DeclPtrTy
543Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
544                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
545  const DeclSpec &DS = D.getDeclSpec();
546  DeclarationName Name = GetNameForDeclarator(D);
547  Expr *BitWidth = static_cast<Expr*>(BW);
548  Expr *Init = static_cast<Expr*>(InitExpr);
549  SourceLocation Loc = D.getIdentifierLoc();
550
551  bool isFunc = D.isFunctionDeclarator();
552
553  // C++ 9.2p6: A member shall not be declared to have automatic storage
554  // duration (auto, register) or with the extern storage-class-specifier.
555  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
556  // data members and cannot be applied to names declared const or static,
557  // and cannot be applied to reference members.
558  switch (DS.getStorageClassSpec()) {
559    case DeclSpec::SCS_unspecified:
560    case DeclSpec::SCS_typedef:
561    case DeclSpec::SCS_static:
562      // FALL THROUGH.
563      break;
564    case DeclSpec::SCS_mutable:
565      if (isFunc) {
566        if (DS.getStorageClassSpecLoc().isValid())
567          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
568        else
569          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
570
571        // FIXME: It would be nicer if the keyword was ignored only for this
572        // declarator. Otherwise we could get follow-up errors.
573        D.getMutableDeclSpec().ClearStorageClassSpecs();
574      } else {
575        QualType T = GetTypeForDeclarator(D, S);
576        diag::kind err = static_cast<diag::kind>(0);
577        if (T->isReferenceType())
578          err = diag::err_mutable_reference;
579        else if (T.isConstQualified())
580          err = diag::err_mutable_const;
581        if (err != 0) {
582          if (DS.getStorageClassSpecLoc().isValid())
583            Diag(DS.getStorageClassSpecLoc(), err);
584          else
585            Diag(DS.getThreadSpecLoc(), err);
586          // FIXME: It would be nicer if the keyword was ignored only for this
587          // declarator. Otherwise we could get follow-up errors.
588          D.getMutableDeclSpec().ClearStorageClassSpecs();
589        }
590      }
591      break;
592    default:
593      if (DS.getStorageClassSpecLoc().isValid())
594        Diag(DS.getStorageClassSpecLoc(),
595             diag::err_storageclass_invalid_for_member);
596      else
597        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
598      D.getMutableDeclSpec().ClearStorageClassSpecs();
599  }
600
601  if (!isFunc &&
602      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
603      D.getNumTypeObjects() == 0) {
604    // Check also for this case:
605    //
606    // typedef int f();
607    // f a;
608    //
609    QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep());
610    isFunc = TDType->isFunctionType();
611  }
612
613  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
614                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
615                      !isFunc);
616
617  Decl *Member;
618  if (isInstField) {
619    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
620                         AS);
621    assert(Member && "HandleField never returns null");
622  } else {
623    Member = ActOnDeclarator(S, D).getAs<Decl>();
624    if (!Member) {
625      if (BitWidth) DeleteExpr(BitWidth);
626      return DeclPtrTy();
627    }
628
629    // Non-instance-fields can't have a bitfield.
630    if (BitWidth) {
631      if (Member->isInvalidDecl()) {
632        // don't emit another diagnostic.
633      } else if (isa<VarDecl>(Member)) {
634        // C++ 9.6p3: A bit-field shall not be a static member.
635        // "static member 'A' cannot be a bit-field"
636        Diag(Loc, diag::err_static_not_bitfield)
637          << Name << BitWidth->getSourceRange();
638      } else if (isa<TypedefDecl>(Member)) {
639        // "typedef member 'x' cannot be a bit-field"
640        Diag(Loc, diag::err_typedef_not_bitfield)
641          << Name << BitWidth->getSourceRange();
642      } else {
643        // A function typedef ("typedef int f(); f a;").
644        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
645        Diag(Loc, diag::err_not_integral_type_bitfield)
646          << Name << cast<ValueDecl>(Member)->getType()
647          << BitWidth->getSourceRange();
648      }
649
650      DeleteExpr(BitWidth);
651      BitWidth = 0;
652      Member->setInvalidDecl();
653    }
654
655    Member->setAccess(AS);
656  }
657
658  assert((Name || isInstField) && "No identifier for non-field ?");
659
660  if (Init)
661    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
662  if (Deleted) // FIXME: Source location is not very good.
663    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
664
665  if (isInstField) {
666    FieldCollector->Add(cast<FieldDecl>(Member));
667    return DeclPtrTy();
668  }
669  return DeclPtrTy::make(Member);
670}
671
672/// ActOnMemInitializer - Handle a C++ member initializer.
673Sema::MemInitResult
674Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
675                          Scope *S,
676                          const CXXScopeSpec &SS,
677                          IdentifierInfo *MemberOrBase,
678                          TypeTy *TemplateTypeTy,
679                          SourceLocation IdLoc,
680                          SourceLocation LParenLoc,
681                          ExprTy **Args, unsigned NumArgs,
682                          SourceLocation *CommaLocs,
683                          SourceLocation RParenLoc) {
684  if (!ConstructorD)
685    return true;
686
687  CXXConstructorDecl *Constructor
688    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
689  if (!Constructor) {
690    // The user wrote a constructor initializer on a function that is
691    // not a C++ constructor. Ignore the error for now, because we may
692    // have more member initializers coming; we'll diagnose it just
693    // once in ActOnMemInitializers.
694    return true;
695  }
696
697  CXXRecordDecl *ClassDecl = Constructor->getParent();
698
699  // C++ [class.base.init]p2:
700  //   Names in a mem-initializer-id are looked up in the scope of the
701  //   constructor’s class and, if not found in that scope, are looked
702  //   up in the scope containing the constructor’s
703  //   definition. [Note: if the constructor’s class contains a member
704  //   with the same name as a direct or virtual base class of the
705  //   class, a mem-initializer-id naming the member or base class and
706  //   composed of a single identifier refers to the class member. A
707  //   mem-initializer-id for the hidden base class may be specified
708  //   using a qualified name. ]
709  if (!SS.getScopeRep() && !TemplateTypeTy) {
710    // Look for a member, first.
711    FieldDecl *Member = 0;
712    DeclContext::lookup_result Result
713      = ClassDecl->lookup(MemberOrBase);
714    if (Result.first != Result.second)
715      Member = dyn_cast<FieldDecl>(*Result.first);
716
717    // FIXME: Handle members of an anonymous union.
718
719    if (Member) {
720      // FIXME: Perform direct initialization of the member.
721      return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
722                                                      NumArgs, IdLoc);
723    }
724  }
725  // It didn't name a member, so see if it names a class.
726  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
727                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
728  if (!BaseTy)
729    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
730      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
731
732  QualType BaseType = QualType::getFromOpaquePtr(BaseTy);
733  if (!BaseType->isRecordType() && !BaseType->isDependentType())
734    return Diag(IdLoc, diag::err_base_init_does_not_name_class)
735      << BaseType << SourceRange(IdLoc, RParenLoc);
736
737  // C++ [class.base.init]p2:
738  //   [...] Unless the mem-initializer-id names a nonstatic data
739  //   member of the constructor’s class or a direct or virtual base
740  //   of that class, the mem-initializer is ill-formed. A
741  //   mem-initializer-list can initialize a base class using any
742  //   name that denotes that base class type.
743
744  // First, check for a direct base class.
745  const CXXBaseSpecifier *DirectBaseSpec = 0;
746  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin();
747       Base != ClassDecl->bases_end(); ++Base) {
748    if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
749        Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
750      // We found a direct base of this type. That's what we're
751      // initializing.
752      DirectBaseSpec = &*Base;
753      break;
754    }
755  }
756
757  // Check for a virtual base class.
758  // FIXME: We might be able to short-circuit this if we know in advance that
759  // there are no virtual bases.
760  const CXXBaseSpecifier *VirtualBaseSpec = 0;
761  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
762    // We haven't found a base yet; search the class hierarchy for a
763    // virtual base class.
764    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
765                    /*DetectVirtual=*/false);
766    if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
767      for (BasePaths::paths_iterator Path = Paths.begin();
768           Path != Paths.end(); ++Path) {
769        if (Path->back().Base->isVirtual()) {
770          VirtualBaseSpec = Path->back().Base;
771          break;
772        }
773      }
774    }
775  }
776
777  // C++ [base.class.init]p2:
778  //   If a mem-initializer-id is ambiguous because it designates both
779  //   a direct non-virtual base class and an inherited virtual base
780  //   class, the mem-initializer is ill-formed.
781  if (DirectBaseSpec && VirtualBaseSpec)
782    return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
783      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
784  // C++ [base.class.init]p2:
785  // Unless the mem-initializer-id names a nonstatic data membeer of the
786  // constructor's class ot a direst or virtual base of that class, the
787  // mem-initializer is ill-formed.
788  if (!DirectBaseSpec && !VirtualBaseSpec)
789    return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
790    << BaseType << ClassDecl->getNameAsCString()
791    << SourceRange(IdLoc, RParenLoc);
792
793
794  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
795                                                  NumArgs, IdLoc);
796}
797
798static void *GetKeyForTopLevelField(FieldDecl *Field) {
799  // For anonymous unions, use the class declaration as the key.
800  if (const RecordType *RT = Field->getType()->getAsRecordType()) {
801    if (RT->getDecl()->isAnonymousStructOrUnion())
802      return static_cast<void *>(RT->getDecl());
803  }
804  return static_cast<void *>(Field);
805}
806
807static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member) {
808  // For fields injected into the class via declaration of an anonymous union,
809  // use its anonymous union class declaration as the unique key.
810  if (FieldDecl *Field = Member->getMember()) {
811    if (Field->getDeclContext()->isRecord()) {
812      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
813      if (RD->isAnonymousStructOrUnion())
814        return static_cast<void *>(RD);
815    }
816    return static_cast<void *>(Field);
817  }
818  return static_cast<RecordType *>(Member->getBaseClass());
819}
820
821void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
822                                SourceLocation ColonLoc,
823                                MemInitTy **MemInits, unsigned NumMemInits) {
824  if (!ConstructorDecl)
825    return;
826
827  CXXConstructorDecl *Constructor
828    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
829
830  if (!Constructor) {
831    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
832    return;
833  }
834  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
835  bool err = false;
836  for (unsigned i = 0; i < NumMemInits; i++) {
837    CXXBaseOrMemberInitializer *Member =
838      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
839    void *KeyToMember = GetKeyForMember(Member);
840    CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
841    if (!PrevMember) {
842      PrevMember = Member;
843      continue;
844    }
845    if (FieldDecl *Field = Member->getMember())
846      Diag(Member->getSourceLocation(),
847           diag::error_multiple_mem_initialization)
848      << Field->getNameAsString();
849    else {
850      Type *BaseClass = Member->getBaseClass();
851      assert(BaseClass && "ActOnMemInitializers - neither field or base");
852      Diag(Member->getSourceLocation(),
853           diag::error_multiple_base_initialization)
854        << BaseClass->getDesugaredType(true);
855    }
856    Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
857      << 0;
858    err = true;
859  }
860  if (!err) {
861    Constructor->setBaseOrMemberInitializers(Context,
862                    reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
863                    NumMemInits);
864  }
865  if (!err && (Diags.getDiagnosticLevel(diag::warn_base_initialized)
866               != Diagnostic::Ignored ||
867               Diags.getDiagnosticLevel(diag::warn_field_initialized)
868               != Diagnostic::Ignored)) {
869    // Also issue warning if order of ctor-initializer list does not match order
870    // of 1) base class declarations and 2) order of non-static data members.
871    llvm::SmallVector<const void*, 32> AllBaseOrMembers;
872
873    CXXRecordDecl *ClassDecl
874      = cast<CXXRecordDecl>(Constructor->getDeclContext());
875    // Push virtual bases before others.
876    for (CXXRecordDecl::base_class_iterator VBase =
877         ClassDecl->vbases_begin(),
878         E = ClassDecl->vbases_end(); VBase != E; ++VBase)
879      AllBaseOrMembers.push_back(VBase->getType()->getAsRecordType());
880
881    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
882         E = ClassDecl->bases_end(); Base != E; ++Base) {
883      // Virtuals are alread in the virtual base list and are constructed
884      // first.
885      if (Base->isVirtual())
886        continue;
887      AllBaseOrMembers.push_back(Base->getType()->getAsRecordType());
888    }
889
890    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
891         E = ClassDecl->field_end(); Field != E; ++Field)
892      AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
893
894    int Last = AllBaseOrMembers.size();
895    int curIndex = 0;
896    CXXBaseOrMemberInitializer *PrevMember = 0;
897    for (unsigned i = 0; i < NumMemInits; i++) {
898      CXXBaseOrMemberInitializer *Member =
899        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
900      void *MemberInCtorList = GetKeyForMember(Member);
901
902      for (; curIndex < Last; curIndex++)
903        if (MemberInCtorList == AllBaseOrMembers[curIndex])
904          break;
905      if (curIndex == Last) {
906        assert(PrevMember && "Member not in member list?!");
907        // Initializer as specified in ctor-initializer list is out of order.
908        // Issue a warning diagnostic.
909        if (PrevMember->isBaseInitializer()) {
910          // Diagnostics is for an initialized base class.
911          Type *BaseClass = PrevMember->getBaseClass();
912          Diag(PrevMember->getSourceLocation(),
913               diag::warn_base_initialized)
914                << BaseClass->getDesugaredType(true);
915        }
916        else {
917          FieldDecl *Field = PrevMember->getMember();
918          Diag(PrevMember->getSourceLocation(),
919               diag::warn_field_initialized)
920            << Field->getNameAsString();
921        }
922        // Also the note!
923        if (FieldDecl *Field = Member->getMember())
924          Diag(Member->getSourceLocation(),
925               diag::note_fieldorbase_initialized_here) << 0
926            << Field->getNameAsString();
927        else {
928          Type *BaseClass = Member->getBaseClass();
929          Diag(Member->getSourceLocation(),
930               diag::note_fieldorbase_initialized_here) << 1
931            << BaseClass->getDesugaredType(true);
932        }
933        for (curIndex = 0; curIndex < Last; curIndex++)
934          if (MemberInCtorList == AllBaseOrMembers[curIndex])
935            break;
936      }
937      PrevMember = Member;
938    }
939  }
940}
941
942void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
943  if (!CDtorDecl)
944    return;
945
946  if (CXXConstructorDecl *Constructor
947      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
948    Constructor->setBaseOrMemberInitializers(Context,
949                                           (CXXBaseOrMemberInitializer **)0, 0);
950}
951
952namespace {
953  /// PureVirtualMethodCollector - traverses a class and its superclasses
954  /// and determines if it has any pure virtual methods.
955  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
956    ASTContext &Context;
957
958  public:
959    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
960
961  private:
962    MethodList Methods;
963
964    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
965
966  public:
967    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
968      : Context(Ctx) {
969
970      MethodList List;
971      Collect(RD, List);
972
973      // Copy the temporary list to methods, and make sure to ignore any
974      // null entries.
975      for (size_t i = 0, e = List.size(); i != e; ++i) {
976        if (List[i])
977          Methods.push_back(List[i]);
978      }
979    }
980
981    bool empty() const { return Methods.empty(); }
982
983    MethodList::const_iterator methods_begin() { return Methods.begin(); }
984    MethodList::const_iterator methods_end() { return Methods.end(); }
985  };
986
987  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
988                                           MethodList& Methods) {
989    // First, collect the pure virtual methods for the base classes.
990    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
991         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
992      if (const RecordType *RT = Base->getType()->getAsRecordType()) {
993        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
994        if (BaseDecl && BaseDecl->isAbstract())
995          Collect(BaseDecl, Methods);
996      }
997    }
998
999    // Next, zero out any pure virtual methods that this class overrides.
1000    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1001
1002    MethodSetTy OverriddenMethods;
1003    size_t MethodsSize = Methods.size();
1004
1005    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1006         i != e; ++i) {
1007      // Traverse the record, looking for methods.
1008      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1009        // If the method is pure virtual, add it to the methods vector.
1010        if (MD->isPure()) {
1011          Methods.push_back(MD);
1012          continue;
1013        }
1014
1015        // Otherwise, record all the overridden methods in our set.
1016        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1017             E = MD->end_overridden_methods(); I != E; ++I) {
1018          // Keep track of the overridden methods.
1019          OverriddenMethods.insert(*I);
1020        }
1021      }
1022    }
1023
1024    // Now go through the methods and zero out all the ones we know are
1025    // overridden.
1026    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1027      if (OverriddenMethods.count(Methods[i]))
1028        Methods[i] = 0;
1029    }
1030
1031  }
1032}
1033
1034bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1035                                  unsigned DiagID, AbstractDiagSelID SelID,
1036                                  const CXXRecordDecl *CurrentRD) {
1037
1038  if (!getLangOptions().CPlusPlus)
1039    return false;
1040
1041  if (const ArrayType *AT = Context.getAsArrayType(T))
1042    return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1043                                  CurrentRD);
1044
1045  if (const PointerType *PT = T->getAsPointerType()) {
1046    // Find the innermost pointer type.
1047    while (const PointerType *T = PT->getPointeeType()->getAsPointerType())
1048      PT = T;
1049
1050    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1051      return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID,
1052                                    CurrentRD);
1053  }
1054
1055  const RecordType *RT = T->getAsRecordType();
1056  if (!RT)
1057    return false;
1058
1059  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1060  if (!RD)
1061    return false;
1062
1063  if (CurrentRD && CurrentRD != RD)
1064    return false;
1065
1066  if (!RD->isAbstract())
1067    return false;
1068
1069  Diag(Loc, DiagID) << RD->getDeclName() << SelID;
1070
1071  // Check if we've already emitted the list of pure virtual functions for this
1072  // class.
1073  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1074    return true;
1075
1076  PureVirtualMethodCollector Collector(Context, RD);
1077
1078  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1079       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1080    const CXXMethodDecl *MD = *I;
1081
1082    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1083      MD->getDeclName();
1084  }
1085
1086  if (!PureVirtualClassDiagSet)
1087    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1088  PureVirtualClassDiagSet->insert(RD);
1089
1090  return true;
1091}
1092
1093namespace {
1094  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1095    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1096    Sema &SemaRef;
1097    CXXRecordDecl *AbstractClass;
1098
1099    bool VisitDeclContext(const DeclContext *DC) {
1100      bool Invalid = false;
1101
1102      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1103           E = DC->decls_end(); I != E; ++I)
1104        Invalid |= Visit(*I);
1105
1106      return Invalid;
1107    }
1108
1109  public:
1110    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1111      : SemaRef(SemaRef), AbstractClass(ac) {
1112        Visit(SemaRef.Context.getTranslationUnitDecl());
1113    }
1114
1115    bool VisitFunctionDecl(const FunctionDecl *FD) {
1116      if (FD->isThisDeclarationADefinition()) {
1117        // No need to do the check if we're in a definition, because it requires
1118        // that the return/param types are complete.
1119        // because that requires
1120        return VisitDeclContext(FD);
1121      }
1122
1123      // Check the return type.
1124      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1125      bool Invalid =
1126        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1127                                       diag::err_abstract_type_in_decl,
1128                                       Sema::AbstractReturnType,
1129                                       AbstractClass);
1130
1131      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1132           E = FD->param_end(); I != E; ++I) {
1133        const ParmVarDecl *VD = *I;
1134        Invalid |=
1135          SemaRef.RequireNonAbstractType(VD->getLocation(),
1136                                         VD->getOriginalType(),
1137                                         diag::err_abstract_type_in_decl,
1138                                         Sema::AbstractParamType,
1139                                         AbstractClass);
1140      }
1141
1142      return Invalid;
1143    }
1144
1145    bool VisitDecl(const Decl* D) {
1146      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1147        return VisitDeclContext(DC);
1148
1149      return false;
1150    }
1151  };
1152}
1153
1154void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1155                                             DeclPtrTy TagDecl,
1156                                             SourceLocation LBrac,
1157                                             SourceLocation RBrac) {
1158  if (!TagDecl)
1159    return;
1160
1161  AdjustDeclIfTemplate(TagDecl);
1162  ActOnFields(S, RLoc, TagDecl,
1163              (DeclPtrTy*)FieldCollector->getCurFields(),
1164              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1165
1166  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1167  if (!RD->isAbstract()) {
1168    // Collect all the pure virtual methods and see if this is an abstract
1169    // class after all.
1170    PureVirtualMethodCollector Collector(Context, RD);
1171    if (!Collector.empty())
1172      RD->setAbstract(true);
1173  }
1174
1175  if (RD->isAbstract())
1176    AbstractClassUsageDiagnoser(*this, RD);
1177
1178  if (!RD->isDependentType())
1179    AddImplicitlyDeclaredMembersToClass(RD);
1180}
1181
1182/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1183/// special functions, such as the default constructor, copy
1184/// constructor, or destructor, to the given C++ class (C++
1185/// [special]p1).  This routine can only be executed just before the
1186/// definition of the class is complete.
1187void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1188  QualType ClassType = Context.getTypeDeclType(ClassDecl);
1189  ClassType = Context.getCanonicalType(ClassType);
1190
1191  // FIXME: Implicit declarations have exception specifications, which are
1192  // the union of the specifications of the implicitly called functions.
1193
1194  if (!ClassDecl->hasUserDeclaredConstructor()) {
1195    // C++ [class.ctor]p5:
1196    //   A default constructor for a class X is a constructor of class X
1197    //   that can be called without an argument. If there is no
1198    //   user-declared constructor for class X, a default constructor is
1199    //   implicitly declared. An implicitly-declared default constructor
1200    //   is an inline public member of its class.
1201    DeclarationName Name
1202      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1203    CXXConstructorDecl *DefaultCon =
1204      CXXConstructorDecl::Create(Context, ClassDecl,
1205                                 ClassDecl->getLocation(), Name,
1206                                 Context.getFunctionType(Context.VoidTy,
1207                                                         0, 0, false, 0),
1208                                 /*isExplicit=*/false,
1209                                 /*isInline=*/true,
1210                                 /*isImplicitlyDeclared=*/true);
1211    DefaultCon->setAccess(AS_public);
1212    DefaultCon->setImplicit();
1213    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1214    ClassDecl->addDecl(DefaultCon);
1215  }
1216
1217  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1218    // C++ [class.copy]p4:
1219    //   If the class definition does not explicitly declare a copy
1220    //   constructor, one is declared implicitly.
1221
1222    // C++ [class.copy]p5:
1223    //   The implicitly-declared copy constructor for a class X will
1224    //   have the form
1225    //
1226    //       X::X(const X&)
1227    //
1228    //   if
1229    bool HasConstCopyConstructor = true;
1230
1231    //     -- each direct or virtual base class B of X has a copy
1232    //        constructor whose first parameter is of type const B& or
1233    //        const volatile B&, and
1234    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1235         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1236      const CXXRecordDecl *BaseClassDecl
1237        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1238      HasConstCopyConstructor
1239        = BaseClassDecl->hasConstCopyConstructor(Context);
1240    }
1241
1242    //     -- for all the nonstatic data members of X that are of a
1243    //        class type M (or array thereof), each such class type
1244    //        has a copy constructor whose first parameter is of type
1245    //        const M& or const volatile M&.
1246    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1247         HasConstCopyConstructor && Field != ClassDecl->field_end();
1248         ++Field) {
1249      QualType FieldType = (*Field)->getType();
1250      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1251        FieldType = Array->getElementType();
1252      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1253        const CXXRecordDecl *FieldClassDecl
1254          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1255        HasConstCopyConstructor
1256          = FieldClassDecl->hasConstCopyConstructor(Context);
1257      }
1258    }
1259
1260    //   Otherwise, the implicitly declared copy constructor will have
1261    //   the form
1262    //
1263    //       X::X(X&)
1264    QualType ArgType = ClassType;
1265    if (HasConstCopyConstructor)
1266      ArgType = ArgType.withConst();
1267    ArgType = Context.getLValueReferenceType(ArgType);
1268
1269    //   An implicitly-declared copy constructor is an inline public
1270    //   member of its class.
1271    DeclarationName Name
1272      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1273    CXXConstructorDecl *CopyConstructor
1274      = CXXConstructorDecl::Create(Context, ClassDecl,
1275                                   ClassDecl->getLocation(), Name,
1276                                   Context.getFunctionType(Context.VoidTy,
1277                                                           &ArgType, 1,
1278                                                           false, 0),
1279                                   /*isExplicit=*/false,
1280                                   /*isInline=*/true,
1281                                   /*isImplicitlyDeclared=*/true);
1282    CopyConstructor->setAccess(AS_public);
1283    CopyConstructor->setImplicit();
1284    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1285
1286    // Add the parameter to the constructor.
1287    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1288                                                 ClassDecl->getLocation(),
1289                                                 /*IdentifierInfo=*/0,
1290                                                 ArgType, VarDecl::None, 0);
1291    CopyConstructor->setParams(Context, &FromParam, 1);
1292    ClassDecl->addDecl(CopyConstructor);
1293  }
1294
1295  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1296    // Note: The following rules are largely analoguous to the copy
1297    // constructor rules. Note that virtual bases are not taken into account
1298    // for determining the argument type of the operator. Note also that
1299    // operators taking an object instead of a reference are allowed.
1300    //
1301    // C++ [class.copy]p10:
1302    //   If the class definition does not explicitly declare a copy
1303    //   assignment operator, one is declared implicitly.
1304    //   The implicitly-defined copy assignment operator for a class X
1305    //   will have the form
1306    //
1307    //       X& X::operator=(const X&)
1308    //
1309    //   if
1310    bool HasConstCopyAssignment = true;
1311
1312    //       -- each direct base class B of X has a copy assignment operator
1313    //          whose parameter is of type const B&, const volatile B& or B,
1314    //          and
1315    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1316         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1317      const CXXRecordDecl *BaseClassDecl
1318        = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
1319      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context);
1320    }
1321
1322    //       -- for all the nonstatic data members of X that are of a class
1323    //          type M (or array thereof), each such class type has a copy
1324    //          assignment operator whose parameter is of type const M&,
1325    //          const volatile M& or M.
1326    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1327         HasConstCopyAssignment && Field != ClassDecl->field_end();
1328         ++Field) {
1329      QualType FieldType = (*Field)->getType();
1330      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1331        FieldType = Array->getElementType();
1332      if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
1333        const CXXRecordDecl *FieldClassDecl
1334          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1335        HasConstCopyAssignment
1336          = FieldClassDecl->hasConstCopyAssignment(Context);
1337      }
1338    }
1339
1340    //   Otherwise, the implicitly declared copy assignment operator will
1341    //   have the form
1342    //
1343    //       X& X::operator=(X&)
1344    QualType ArgType = ClassType;
1345    QualType RetType = Context.getLValueReferenceType(ArgType);
1346    if (HasConstCopyAssignment)
1347      ArgType = ArgType.withConst();
1348    ArgType = Context.getLValueReferenceType(ArgType);
1349
1350    //   An implicitly-declared copy assignment operator is an inline public
1351    //   member of its class.
1352    DeclarationName Name =
1353      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1354    CXXMethodDecl *CopyAssignment =
1355      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1356                            Context.getFunctionType(RetType, &ArgType, 1,
1357                                                    false, 0),
1358                            /*isStatic=*/false, /*isInline=*/true);
1359    CopyAssignment->setAccess(AS_public);
1360    CopyAssignment->setImplicit();
1361    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1362
1363    // Add the parameter to the operator.
1364    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1365                                                 ClassDecl->getLocation(),
1366                                                 /*IdentifierInfo=*/0,
1367                                                 ArgType, VarDecl::None, 0);
1368    CopyAssignment->setParams(Context, &FromParam, 1);
1369
1370    // Don't call addedAssignmentOperator. There is no way to distinguish an
1371    // implicit from an explicit assignment operator.
1372    ClassDecl->addDecl(CopyAssignment);
1373  }
1374
1375  if (!ClassDecl->hasUserDeclaredDestructor()) {
1376    // C++ [class.dtor]p2:
1377    //   If a class has no user-declared destructor, a destructor is
1378    //   declared implicitly. An implicitly-declared destructor is an
1379    //   inline public member of its class.
1380    DeclarationName Name
1381      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1382    CXXDestructorDecl *Destructor
1383      = CXXDestructorDecl::Create(Context, ClassDecl,
1384                                  ClassDecl->getLocation(), Name,
1385                                  Context.getFunctionType(Context.VoidTy,
1386                                                          0, 0, false, 0),
1387                                  /*isInline=*/true,
1388                                  /*isImplicitlyDeclared=*/true);
1389    Destructor->setAccess(AS_public);
1390    Destructor->setImplicit();
1391    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1392    ClassDecl->addDecl(Destructor);
1393  }
1394}
1395
1396void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1397  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1398  if (!Template)
1399    return;
1400
1401  TemplateParameterList *Params = Template->getTemplateParameters();
1402  for (TemplateParameterList::iterator Param = Params->begin(),
1403                                    ParamEnd = Params->end();
1404       Param != ParamEnd; ++Param) {
1405    NamedDecl *Named = cast<NamedDecl>(*Param);
1406    if (Named->getDeclName()) {
1407      S->AddDecl(DeclPtrTy::make(Named));
1408      IdResolver.AddDecl(Named);
1409    }
1410  }
1411}
1412
1413/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1414/// parsing a top-level (non-nested) C++ class, and we are now
1415/// parsing those parts of the given Method declaration that could
1416/// not be parsed earlier (C++ [class.mem]p2), such as default
1417/// arguments. This action should enter the scope of the given
1418/// Method declaration as if we had just parsed the qualified method
1419/// name. However, it should not bring the parameters into scope;
1420/// that will be performed by ActOnDelayedCXXMethodParameter.
1421void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1422  if (!MethodD)
1423    return;
1424
1425  CXXScopeSpec SS;
1426  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1427  QualType ClassTy
1428    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1429  SS.setScopeRep(
1430    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1431  ActOnCXXEnterDeclaratorScope(S, SS);
1432}
1433
1434/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1435/// C++ method declaration. We're (re-)introducing the given
1436/// function parameter into scope for use in parsing later parts of
1437/// the method declaration. For example, we could see an
1438/// ActOnParamDefaultArgument event for this parameter.
1439void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1440  if (!ParamD)
1441    return;
1442
1443  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1444
1445  // If this parameter has an unparsed default argument, clear it out
1446  // to make way for the parsed default argument.
1447  if (Param->hasUnparsedDefaultArg())
1448    Param->setDefaultArg(0);
1449
1450  S->AddDecl(DeclPtrTy::make(Param));
1451  if (Param->getDeclName())
1452    IdResolver.AddDecl(Param);
1453}
1454
1455/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1456/// processing the delayed method declaration for Method. The method
1457/// declaration is now considered finished. There may be a separate
1458/// ActOnStartOfFunctionDef action later (not necessarily
1459/// immediately!) for this method, if it was also defined inside the
1460/// class body.
1461void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1462  if (!MethodD)
1463    return;
1464
1465  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1466  CXXScopeSpec SS;
1467  QualType ClassTy
1468    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1469  SS.setScopeRep(
1470    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1471  ActOnCXXExitDeclaratorScope(S, SS);
1472
1473  // Now that we have our default arguments, check the constructor
1474  // again. It could produce additional diagnostics or affect whether
1475  // the class has implicitly-declared destructors, among other
1476  // things.
1477  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1478    CheckConstructor(Constructor);
1479
1480  // Check the default arguments, which we may have added.
1481  if (!Method->isInvalidDecl())
1482    CheckCXXDefaultArguments(Method);
1483}
1484
1485/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1486/// the well-formedness of the constructor declarator @p D with type @p
1487/// R. If there are any errors in the declarator, this routine will
1488/// emit diagnostics and set the invalid bit to true.  In any case, the type
1489/// will be updated to reflect a well-formed type for the constructor and
1490/// returned.
1491QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1492                                          FunctionDecl::StorageClass &SC) {
1493  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1494
1495  // C++ [class.ctor]p3:
1496  //   A constructor shall not be virtual (10.3) or static (9.4). A
1497  //   constructor can be invoked for a const, volatile or const
1498  //   volatile object. A constructor shall not be declared const,
1499  //   volatile, or const volatile (9.3.2).
1500  if (isVirtual) {
1501    if (!D.isInvalidType())
1502      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1503        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1504        << SourceRange(D.getIdentifierLoc());
1505    D.setInvalidType();
1506  }
1507  if (SC == FunctionDecl::Static) {
1508    if (!D.isInvalidType())
1509      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1510        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1511        << SourceRange(D.getIdentifierLoc());
1512    D.setInvalidType();
1513    SC = FunctionDecl::None;
1514  }
1515
1516  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1517  if (FTI.TypeQuals != 0) {
1518    if (FTI.TypeQuals & QualType::Const)
1519      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1520        << "const" << SourceRange(D.getIdentifierLoc());
1521    if (FTI.TypeQuals & QualType::Volatile)
1522      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1523        << "volatile" << SourceRange(D.getIdentifierLoc());
1524    if (FTI.TypeQuals & QualType::Restrict)
1525      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1526        << "restrict" << SourceRange(D.getIdentifierLoc());
1527  }
1528
1529  // Rebuild the function type "R" without any type qualifiers (in
1530  // case any of the errors above fired) and with "void" as the
1531  // return type, since constructors don't have return types. We
1532  // *always* have to do this, because GetTypeForDeclarator will
1533  // put in a result type of "int" when none was specified.
1534  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1535  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1536                                 Proto->getNumArgs(),
1537                                 Proto->isVariadic(), 0);
1538}
1539
1540/// CheckConstructor - Checks a fully-formed constructor for
1541/// well-formedness, issuing any diagnostics required. Returns true if
1542/// the constructor declarator is invalid.
1543void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1544  CXXRecordDecl *ClassDecl
1545    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1546  if (!ClassDecl)
1547    return Constructor->setInvalidDecl();
1548
1549  // C++ [class.copy]p3:
1550  //   A declaration of a constructor for a class X is ill-formed if
1551  //   its first parameter is of type (optionally cv-qualified) X and
1552  //   either there are no other parameters or else all other
1553  //   parameters have default arguments.
1554  if (!Constructor->isInvalidDecl() &&
1555      ((Constructor->getNumParams() == 1) ||
1556       (Constructor->getNumParams() > 1 &&
1557        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1558    QualType ParamType = Constructor->getParamDecl(0)->getType();
1559    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1560    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1561      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1562      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1563        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1564      Constructor->setInvalidDecl();
1565    }
1566  }
1567
1568  // Notify the class that we've added a constructor.
1569  ClassDecl->addedConstructor(Context, Constructor);
1570}
1571
1572static inline bool
1573FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1574  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1575          FTI.ArgInfo[0].Param &&
1576          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1577}
1578
1579/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1580/// the well-formednes of the destructor declarator @p D with type @p
1581/// R. If there are any errors in the declarator, this routine will
1582/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1583/// will be updated to reflect a well-formed type for the destructor and
1584/// returned.
1585QualType Sema::CheckDestructorDeclarator(Declarator &D,
1586                                         FunctionDecl::StorageClass& SC) {
1587  // C++ [class.dtor]p1:
1588  //   [...] A typedef-name that names a class is a class-name
1589  //   (7.1.3); however, a typedef-name that names a class shall not
1590  //   be used as the identifier in the declarator for a destructor
1591  //   declaration.
1592  QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1593  if (isa<TypedefType>(DeclaratorType)) {
1594    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1595      << DeclaratorType;
1596    D.setInvalidType();
1597  }
1598
1599  // C++ [class.dtor]p2:
1600  //   A destructor is used to destroy objects of its class type. A
1601  //   destructor takes no parameters, and no return type can be
1602  //   specified for it (not even void). The address of a destructor
1603  //   shall not be taken. A destructor shall not be static. A
1604  //   destructor can be invoked for a const, volatile or const
1605  //   volatile object. A destructor shall not be declared const,
1606  //   volatile or const volatile (9.3.2).
1607  if (SC == FunctionDecl::Static) {
1608    if (!D.isInvalidType())
1609      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1610        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1611        << SourceRange(D.getIdentifierLoc());
1612    SC = FunctionDecl::None;
1613    D.setInvalidType();
1614  }
1615  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1616    // Destructors don't have return types, but the parser will
1617    // happily parse something like:
1618    //
1619    //   class X {
1620    //     float ~X();
1621    //   };
1622    //
1623    // The return type will be eliminated later.
1624    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1625      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1626      << SourceRange(D.getIdentifierLoc());
1627  }
1628
1629  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1630  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1631    if (FTI.TypeQuals & QualType::Const)
1632      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1633        << "const" << SourceRange(D.getIdentifierLoc());
1634    if (FTI.TypeQuals & QualType::Volatile)
1635      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1636        << "volatile" << SourceRange(D.getIdentifierLoc());
1637    if (FTI.TypeQuals & QualType::Restrict)
1638      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1639        << "restrict" << SourceRange(D.getIdentifierLoc());
1640    D.setInvalidType();
1641  }
1642
1643  // Make sure we don't have any parameters.
1644  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1645    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1646
1647    // Delete the parameters.
1648    FTI.freeArgs();
1649    D.setInvalidType();
1650  }
1651
1652  // Make sure the destructor isn't variadic.
1653  if (FTI.isVariadic) {
1654    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1655    D.setInvalidType();
1656  }
1657
1658  // Rebuild the function type "R" without any type qualifiers or
1659  // parameters (in case any of the errors above fired) and with
1660  // "void" as the return type, since destructors don't have return
1661  // types. We *always* have to do this, because GetTypeForDeclarator
1662  // will put in a result type of "int" when none was specified.
1663  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1664}
1665
1666/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1667/// well-formednes of the conversion function declarator @p D with
1668/// type @p R. If there are any errors in the declarator, this routine
1669/// will emit diagnostics and return true. Otherwise, it will return
1670/// false. Either way, the type @p R will be updated to reflect a
1671/// well-formed type for the conversion operator.
1672void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1673                                     FunctionDecl::StorageClass& SC) {
1674  // C++ [class.conv.fct]p1:
1675  //   Neither parameter types nor return type can be specified. The
1676  //   type of a conversion function (8.3.5) is “function taking no
1677  //   parameter returning conversion-type-id.”
1678  if (SC == FunctionDecl::Static) {
1679    if (!D.isInvalidType())
1680      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1681        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1682        << SourceRange(D.getIdentifierLoc());
1683    D.setInvalidType();
1684    SC = FunctionDecl::None;
1685  }
1686  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1687    // Conversion functions don't have return types, but the parser will
1688    // happily parse something like:
1689    //
1690    //   class X {
1691    //     float operator bool();
1692    //   };
1693    //
1694    // The return type will be changed later anyway.
1695    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1696      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1697      << SourceRange(D.getIdentifierLoc());
1698  }
1699
1700  // Make sure we don't have any parameters.
1701  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1702    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1703
1704    // Delete the parameters.
1705    D.getTypeObject(0).Fun.freeArgs();
1706    D.setInvalidType();
1707  }
1708
1709  // Make sure the conversion function isn't variadic.
1710  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1711    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1712    D.setInvalidType();
1713  }
1714
1715  // C++ [class.conv.fct]p4:
1716  //   The conversion-type-id shall not represent a function type nor
1717  //   an array type.
1718  QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1719  if (ConvType->isArrayType()) {
1720    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1721    ConvType = Context.getPointerType(ConvType);
1722    D.setInvalidType();
1723  } else if (ConvType->isFunctionType()) {
1724    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1725    ConvType = Context.getPointerType(ConvType);
1726    D.setInvalidType();
1727  }
1728
1729  // Rebuild the function type "R" without any parameters (in case any
1730  // of the errors above fired) and with the conversion type as the
1731  // return type.
1732  R = Context.getFunctionType(ConvType, 0, 0, false,
1733                              R->getAsFunctionProtoType()->getTypeQuals());
1734
1735  // C++0x explicit conversion operators.
1736  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1737    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1738         diag::warn_explicit_conversion_functions)
1739      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1740}
1741
1742/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1743/// the declaration of the given C++ conversion function. This routine
1744/// is responsible for recording the conversion function in the C++
1745/// class, if possible.
1746Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1747  assert(Conversion && "Expected to receive a conversion function declaration");
1748
1749  // Set the lexical context of this conversion function
1750  Conversion->setLexicalDeclContext(CurContext);
1751
1752  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1753
1754  // Make sure we aren't redeclaring the conversion function.
1755  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1756
1757  // C++ [class.conv.fct]p1:
1758  //   [...] A conversion function is never used to convert a
1759  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1760  //   same object type (or a reference to it), to a (possibly
1761  //   cv-qualified) base class of that type (or a reference to it),
1762  //   or to (possibly cv-qualified) void.
1763  // FIXME: Suppress this warning if the conversion function ends up being a
1764  // virtual function that overrides a virtual function in a base class.
1765  QualType ClassType
1766    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1767  if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType())
1768    ConvType = ConvTypeRef->getPointeeType();
1769  if (ConvType->isRecordType()) {
1770    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1771    if (ConvType == ClassType)
1772      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1773        << ClassType;
1774    else if (IsDerivedFrom(ClassType, ConvType))
1775      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1776        <<  ClassType << ConvType;
1777  } else if (ConvType->isVoidType()) {
1778    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1779      << ClassType << ConvType;
1780  }
1781
1782  if (Conversion->getPreviousDeclaration()) {
1783    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1784    for (OverloadedFunctionDecl::function_iterator
1785           Conv = Conversions->function_begin(),
1786           ConvEnd = Conversions->function_end();
1787         Conv != ConvEnd; ++Conv) {
1788      if (*Conv
1789            == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) {
1790        *Conv = Conversion;
1791        return DeclPtrTy::make(Conversion);
1792      }
1793    }
1794    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1795  } else
1796    ClassDecl->addConversionFunction(Context, Conversion);
1797
1798  return DeclPtrTy::make(Conversion);
1799}
1800
1801//===----------------------------------------------------------------------===//
1802// Namespace Handling
1803//===----------------------------------------------------------------------===//
1804
1805/// ActOnStartNamespaceDef - This is called at the start of a namespace
1806/// definition.
1807Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1808                                             SourceLocation IdentLoc,
1809                                             IdentifierInfo *II,
1810                                             SourceLocation LBrace) {
1811  NamespaceDecl *Namespc =
1812      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1813  Namespc->setLBracLoc(LBrace);
1814
1815  Scope *DeclRegionScope = NamespcScope->getParent();
1816
1817  if (II) {
1818    // C++ [namespace.def]p2:
1819    // The identifier in an original-namespace-definition shall not have been
1820    // previously defined in the declarative region in which the
1821    // original-namespace-definition appears. The identifier in an
1822    // original-namespace-definition is the name of the namespace. Subsequently
1823    // in that declarative region, it is treated as an original-namespace-name.
1824
1825    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1826                                     true);
1827
1828    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1829      // This is an extended namespace definition.
1830      // Attach this namespace decl to the chain of extended namespace
1831      // definitions.
1832      OrigNS->setNextNamespace(Namespc);
1833      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1834
1835      // Remove the previous declaration from the scope.
1836      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1837        IdResolver.RemoveDecl(OrigNS);
1838        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1839      }
1840    } else if (PrevDecl) {
1841      // This is an invalid name redefinition.
1842      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1843       << Namespc->getDeclName();
1844      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1845      Namespc->setInvalidDecl();
1846      // Continue on to push Namespc as current DeclContext and return it.
1847    }
1848
1849    PushOnScopeChains(Namespc, DeclRegionScope);
1850  } else {
1851    // FIXME: Handle anonymous namespaces
1852  }
1853
1854  // Although we could have an invalid decl (i.e. the namespace name is a
1855  // redefinition), push it as current DeclContext and try to continue parsing.
1856  // FIXME: We should be able to push Namespc here, so that the each DeclContext
1857  // for the namespace has the declarations that showed up in that particular
1858  // namespace definition.
1859  PushDeclContext(NamespcScope, Namespc);
1860  return DeclPtrTy::make(Namespc);
1861}
1862
1863/// ActOnFinishNamespaceDef - This callback is called after a namespace is
1864/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
1865void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
1866  Decl *Dcl = D.getAs<Decl>();
1867  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
1868  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
1869  Namespc->setRBracLoc(RBrace);
1870  PopDeclContext();
1871}
1872
1873Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
1874                                          SourceLocation UsingLoc,
1875                                          SourceLocation NamespcLoc,
1876                                          const CXXScopeSpec &SS,
1877                                          SourceLocation IdentLoc,
1878                                          IdentifierInfo *NamespcName,
1879                                          AttributeList *AttrList) {
1880  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1881  assert(NamespcName && "Invalid NamespcName.");
1882  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
1883  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1884
1885  UsingDirectiveDecl *UDir = 0;
1886
1887  // Lookup namespace name.
1888  LookupResult R = LookupParsedName(S, &SS, NamespcName,
1889                                    LookupNamespaceName, false);
1890  if (R.isAmbiguous()) {
1891    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
1892    return DeclPtrTy();
1893  }
1894  if (NamedDecl *NS = R) {
1895    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
1896    // C++ [namespace.udir]p1:
1897    //   A using-directive specifies that the names in the nominated
1898    //   namespace can be used in the scope in which the
1899    //   using-directive appears after the using-directive. During
1900    //   unqualified name lookup (3.4.1), the names appear as if they
1901    //   were declared in the nearest enclosing namespace which
1902    //   contains both the using-directive and the nominated
1903    //   namespace. [Note: in this context, “contains” means “contains
1904    //   directly or indirectly”. ]
1905
1906    // Find enclosing context containing both using-directive and
1907    // nominated namespace.
1908    DeclContext *CommonAncestor = cast<DeclContext>(NS);
1909    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
1910      CommonAncestor = CommonAncestor->getParent();
1911
1912    UDir = UsingDirectiveDecl::Create(Context,
1913                                      CurContext, UsingLoc,
1914                                      NamespcLoc,
1915                                      SS.getRange(),
1916                                      (NestedNameSpecifier *)SS.getScopeRep(),
1917                                      IdentLoc,
1918                                      cast<NamespaceDecl>(NS),
1919                                      CommonAncestor);
1920    PushUsingDirective(S, UDir);
1921  } else {
1922    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
1923  }
1924
1925  // FIXME: We ignore attributes for now.
1926  delete AttrList;
1927  return DeclPtrTy::make(UDir);
1928}
1929
1930void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
1931  // If scope has associated entity, then using directive is at namespace
1932  // or translation unit scope. We add UsingDirectiveDecls, into
1933  // it's lookup structure.
1934  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
1935    Ctx->addDecl(UDir);
1936  else
1937    // Otherwise it is block-sope. using-directives will affect lookup
1938    // only to the end of scope.
1939    S->PushUsingDirective(DeclPtrTy::make(UDir));
1940}
1941
1942
1943Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
1944                                          SourceLocation UsingLoc,
1945                                          const CXXScopeSpec &SS,
1946                                          SourceLocation IdentLoc,
1947                                          IdentifierInfo *TargetName,
1948                                          OverloadedOperatorKind Op,
1949                                          AttributeList *AttrList,
1950                                          bool IsTypeName) {
1951  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
1952  assert((TargetName || Op) && "Invalid TargetName.");
1953  assert(IdentLoc.isValid() && "Invalid TargetName location.");
1954  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
1955
1956  UsingDecl *UsingAlias = 0;
1957
1958  DeclarationName Name;
1959  if (TargetName)
1960    Name = TargetName;
1961  else
1962    Name = Context.DeclarationNames.getCXXOperatorName(Op);
1963
1964  // Lookup target name.
1965  LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false);
1966
1967  if (NamedDecl *NS = R) {
1968    if (IsTypeName && !isa<TypeDecl>(NS)) {
1969      Diag(IdentLoc, diag::err_using_typename_non_type);
1970    }
1971    UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
1972        NS->getLocation(), UsingLoc, NS,
1973        static_cast<NestedNameSpecifier *>(SS.getScopeRep()),
1974        IsTypeName);
1975    PushOnScopeChains(UsingAlias, S);
1976  } else {
1977    Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange();
1978  }
1979
1980  // FIXME: We ignore attributes for now.
1981  delete AttrList;
1982  return DeclPtrTy::make(UsingAlias);
1983}
1984
1985/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
1986/// is a namespace alias, returns the namespace it points to.
1987static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
1988  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
1989    return AD->getNamespace();
1990  return dyn_cast_or_null<NamespaceDecl>(D);
1991}
1992
1993Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
1994                                             SourceLocation NamespaceLoc,
1995                                             SourceLocation AliasLoc,
1996                                             IdentifierInfo *Alias,
1997                                             const CXXScopeSpec &SS,
1998                                             SourceLocation IdentLoc,
1999                                             IdentifierInfo *Ident) {
2000
2001  // Lookup the namespace name.
2002  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2003
2004  // Check if we have a previous declaration with the same name.
2005  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2006    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2007      // We already have an alias with the same name that points to the same
2008      // namespace, so don't create a new one.
2009      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2010        return DeclPtrTy();
2011    }
2012
2013    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2014      diag::err_redefinition_different_kind;
2015    Diag(AliasLoc, DiagID) << Alias;
2016    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2017    return DeclPtrTy();
2018  }
2019
2020  if (R.isAmbiguous()) {
2021    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2022    return DeclPtrTy();
2023  }
2024
2025  if (!R) {
2026    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2027    return DeclPtrTy();
2028  }
2029
2030  NamespaceAliasDecl *AliasDecl =
2031    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2032                               Alias, SS.getRange(),
2033                               (NestedNameSpecifier *)SS.getScopeRep(),
2034                               IdentLoc, R);
2035
2036  CurContext->addDecl(AliasDecl);
2037  return DeclPtrTy::make(AliasDecl);
2038}
2039
2040void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2041                                            CXXConstructorDecl *Constructor) {
2042  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2043          !Constructor->isUsed()) &&
2044    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2045
2046  CXXRecordDecl *ClassDecl
2047    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2048  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2049  // Before the implicitly-declared default constructor for a class is
2050  // implicitly defined, all the implicitly-declared default constructors
2051  // for its base class and its non-static data members shall have been
2052  // implicitly defined.
2053  bool err = false;
2054  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2055       E = ClassDecl->bases_end(); Base != E; ++Base) {
2056    CXXRecordDecl *BaseClassDecl
2057      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2058    if (!BaseClassDecl->hasTrivialConstructor()) {
2059      if (CXXConstructorDecl *BaseCtor =
2060            BaseClassDecl->getDefaultConstructor(Context))
2061        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2062      else {
2063        Diag(CurrentLocation, diag::err_defining_default_ctor)
2064          << Context.getTagDeclType(ClassDecl) << 1
2065          << Context.getTagDeclType(BaseClassDecl);
2066        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2067              << Context.getTagDeclType(BaseClassDecl);
2068        err = true;
2069      }
2070    }
2071  }
2072  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2073       E = ClassDecl->field_end(); Field != E; ++Field) {
2074    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2075    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2076      FieldType = Array->getElementType();
2077    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2078      CXXRecordDecl *FieldClassDecl
2079        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2080      if (!FieldClassDecl->hasTrivialConstructor()) {
2081        if (CXXConstructorDecl *FieldCtor =
2082            FieldClassDecl->getDefaultConstructor(Context))
2083          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2084        else {
2085          Diag(CurrentLocation, diag::err_defining_default_ctor)
2086          << Context.getTagDeclType(ClassDecl) << 0 <<
2087              Context.getTagDeclType(FieldClassDecl);
2088          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2089          << Context.getTagDeclType(FieldClassDecl);
2090          err = true;
2091        }
2092      }
2093    }
2094    else if (FieldType->isReferenceType()) {
2095      Diag(CurrentLocation, diag::err_unintialized_member)
2096        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2097      Diag((*Field)->getLocation(), diag::note_declared_at);
2098      err = true;
2099    }
2100    else if (FieldType.isConstQualified()) {
2101      Diag(CurrentLocation, diag::err_unintialized_member)
2102        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2103       Diag((*Field)->getLocation(), diag::note_declared_at);
2104      err = true;
2105    }
2106  }
2107  if (!err)
2108    Constructor->setUsed();
2109  else
2110    Constructor->setInvalidDecl();
2111}
2112
2113void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2114                                            CXXDestructorDecl *Destructor) {
2115  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2116         "DefineImplicitDestructor - call it for implicit default dtor");
2117
2118  CXXRecordDecl *ClassDecl
2119  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2120  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2121  // C++ [class.dtor] p5
2122  // Before the implicitly-declared default destructor for a class is
2123  // implicitly defined, all the implicitly-declared default destructors
2124  // for its base class and its non-static data members shall have been
2125  // implicitly defined.
2126  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2127       E = ClassDecl->bases_end(); Base != E; ++Base) {
2128    CXXRecordDecl *BaseClassDecl
2129      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2130    if (!BaseClassDecl->hasTrivialDestructor()) {
2131      if (CXXDestructorDecl *BaseDtor =
2132          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2133        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2134      else
2135        assert(false &&
2136               "DefineImplicitDestructor - missing dtor in a base class");
2137    }
2138  }
2139
2140  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2141       E = ClassDecl->field_end(); Field != E; ++Field) {
2142    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2143    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2144      FieldType = Array->getElementType();
2145    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2146      CXXRecordDecl *FieldClassDecl
2147        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2148      if (!FieldClassDecl->hasTrivialDestructor()) {
2149        if (CXXDestructorDecl *FieldDtor =
2150            const_cast<CXXDestructorDecl*>(
2151                                        FieldClassDecl->getDestructor(Context)))
2152          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2153        else
2154          assert(false &&
2155          "DefineImplicitDestructor - missing dtor in class of a data member");
2156      }
2157    }
2158  }
2159  Destructor->setUsed();
2160}
2161
2162void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2163                                          CXXMethodDecl *MethodDecl) {
2164  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2165          MethodDecl->getOverloadedOperator() == OO_Equal &&
2166          !MethodDecl->isUsed()) &&
2167         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2168
2169  CXXRecordDecl *ClassDecl
2170    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2171
2172  // C++[class.copy] p12
2173  // Before the implicitly-declared copy assignment operator for a class is
2174  // implicitly defined, all implicitly-declared copy assignment operators
2175  // for its direct base classes and its nonstatic data members shall have
2176  // been implicitly defined.
2177  bool err = false;
2178  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2179       E = ClassDecl->bases_end(); Base != E; ++Base) {
2180    CXXRecordDecl *BaseClassDecl
2181      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2182    if (CXXMethodDecl *BaseAssignOpMethod =
2183          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2184      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2185  }
2186  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2187       E = ClassDecl->field_end(); Field != E; ++Field) {
2188    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2189    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2190      FieldType = Array->getElementType();
2191    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2192      CXXRecordDecl *FieldClassDecl
2193        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2194      if (CXXMethodDecl *FieldAssignOpMethod =
2195          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2196        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2197    }
2198    else if (FieldType->isReferenceType()) {
2199      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2200      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2201      Diag(Field->getLocation(), diag::note_declared_at);
2202      Diag(CurrentLocation, diag::note_first_required_here);
2203      err = true;
2204    }
2205    else if (FieldType.isConstQualified()) {
2206      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2207      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2208      Diag(Field->getLocation(), diag::note_declared_at);
2209      Diag(CurrentLocation, diag::note_first_required_here);
2210      err = true;
2211    }
2212  }
2213  if (!err)
2214    MethodDecl->setUsed();
2215}
2216
2217CXXMethodDecl *
2218Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2219                              CXXRecordDecl *ClassDecl) {
2220  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2221  QualType RHSType(LHSType);
2222  // If class's assignment operator argument is const/volatile qualified,
2223  // look for operator = (const/volatile B&). Otherwise, look for
2224  // operator = (B&).
2225  if (ParmDecl->getType().isConstQualified())
2226    RHSType.addConst();
2227  if (ParmDecl->getType().isVolatileQualified())
2228    RHSType.addVolatile();
2229  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2230                                                          LHSType,
2231                                                          SourceLocation()));
2232  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2233                                                          RHSType,
2234                                                          SourceLocation()));
2235  Expr *Args[2] = { &*LHS, &*RHS };
2236  OverloadCandidateSet CandidateSet;
2237  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2238                              CandidateSet);
2239  OverloadCandidateSet::iterator Best;
2240  if (BestViableFunction(CandidateSet,
2241                         ClassDecl->getLocation(), Best) == OR_Success)
2242    return cast<CXXMethodDecl>(Best->Function);
2243  assert(false &&
2244         "getAssignOperatorMethod - copy assignment operator method not found");
2245  return 0;
2246}
2247
2248void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2249                                   CXXConstructorDecl *CopyConstructor,
2250                                   unsigned TypeQuals) {
2251  assert((CopyConstructor->isImplicit() &&
2252          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2253          !CopyConstructor->isUsed()) &&
2254         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2255
2256  CXXRecordDecl *ClassDecl
2257    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2258  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2259  // C++ [class.copy] p209
2260  // Before the implicitly-declared copy constructor for a class is
2261  // implicitly defined, all the implicitly-declared copy constructors
2262  // for its base class and its non-static data members shall have been
2263  // implicitly defined.
2264  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2265       Base != ClassDecl->bases_end(); ++Base) {
2266    CXXRecordDecl *BaseClassDecl
2267      = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl());
2268    if (CXXConstructorDecl *BaseCopyCtor =
2269        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2270      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2271  }
2272  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2273                                  FieldEnd = ClassDecl->field_end();
2274       Field != FieldEnd; ++Field) {
2275    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2276    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2277      FieldType = Array->getElementType();
2278    if (const RecordType *FieldClassType = FieldType->getAsRecordType()) {
2279      CXXRecordDecl *FieldClassDecl
2280        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2281      if (CXXConstructorDecl *FieldCopyCtor =
2282          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2283        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2284    }
2285  }
2286  CopyConstructor->setUsed();
2287}
2288
2289void Sema::InitializeVarWithConstructor(VarDecl *VD,
2290                                        CXXConstructorDecl *Constructor,
2291                                        QualType DeclInitType,
2292                                        Expr **Exprs, unsigned NumExprs) {
2293  Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor,
2294                                        false, Exprs, NumExprs);
2295  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2296  VD->setInit(Context, Temp);
2297}
2298
2299void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType)
2300{
2301  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2302                                  DeclInitType->getAsRecordType()->getDecl());
2303  if (!ClassDecl->hasTrivialDestructor())
2304    if (CXXDestructorDecl *Destructor =
2305        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2306      MarkDeclarationReferenced(Loc, Destructor);
2307}
2308
2309/// AddCXXDirectInitializerToDecl - This action is called immediately after
2310/// ActOnDeclarator, when a C++ direct initializer is present.
2311/// e.g: "int x(1);"
2312void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2313                                         SourceLocation LParenLoc,
2314                                         MultiExprArg Exprs,
2315                                         SourceLocation *CommaLocs,
2316                                         SourceLocation RParenLoc) {
2317  unsigned NumExprs = Exprs.size();
2318  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2319  Decl *RealDecl = Dcl.getAs<Decl>();
2320
2321  // If there is no declaration, there was an error parsing it.  Just ignore
2322  // the initializer.
2323  if (RealDecl == 0)
2324    return;
2325
2326  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2327  if (!VDecl) {
2328    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2329    RealDecl->setInvalidDecl();
2330    return;
2331  }
2332
2333  // FIXME: Need to handle dependent types and expressions here.
2334
2335  // We will treat direct-initialization as a copy-initialization:
2336  //    int x(1);  -as-> int x = 1;
2337  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2338  //
2339  // Clients that want to distinguish between the two forms, can check for
2340  // direct initializer using VarDecl::hasCXXDirectInitializer().
2341  // A major benefit is that clients that don't particularly care about which
2342  // exactly form was it (like the CodeGen) can handle both cases without
2343  // special case code.
2344
2345  // C++ 8.5p11:
2346  // The form of initialization (using parentheses or '=') is generally
2347  // insignificant, but does matter when the entity being initialized has a
2348  // class type.
2349  QualType DeclInitType = VDecl->getType();
2350  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2351    DeclInitType = Array->getElementType();
2352
2353  // FIXME: This isn't the right place to complete the type.
2354  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2355                          diag::err_typecheck_decl_incomplete_type)) {
2356    VDecl->setInvalidDecl();
2357    return;
2358  }
2359
2360  if (VDecl->getType()->isRecordType()) {
2361    CXXConstructorDecl *Constructor
2362      = PerformInitializationByConstructor(DeclInitType,
2363                                           (Expr **)Exprs.get(), NumExprs,
2364                                           VDecl->getLocation(),
2365                                           SourceRange(VDecl->getLocation(),
2366                                                       RParenLoc),
2367                                           VDecl->getDeclName(),
2368                                           IK_Direct);
2369    if (!Constructor)
2370      RealDecl->setInvalidDecl();
2371    else {
2372      VDecl->setCXXDirectInitializer(true);
2373      InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2374                                   (Expr**)Exprs.release(), NumExprs);
2375      // FIXME. Must do all that is needed to destroy the object
2376      // on scope exit. For now, just mark the destructor as used.
2377      MarkDestructorReferenced(VDecl->getLocation(), DeclInitType);
2378    }
2379    return;
2380  }
2381
2382  if (NumExprs > 1) {
2383    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2384      << SourceRange(VDecl->getLocation(), RParenLoc);
2385    RealDecl->setInvalidDecl();
2386    return;
2387  }
2388
2389  // Let clients know that initialization was done with a direct initializer.
2390  VDecl->setCXXDirectInitializer(true);
2391
2392  assert(NumExprs == 1 && "Expected 1 expression");
2393  // Set the init expression, handles conversions.
2394  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2395                       /*DirectInit=*/true);
2396}
2397
2398/// PerformInitializationByConstructor - Perform initialization by
2399/// constructor (C++ [dcl.init]p14), which may occur as part of
2400/// direct-initialization or copy-initialization. We are initializing
2401/// an object of type @p ClassType with the given arguments @p
2402/// Args. @p Loc is the location in the source code where the
2403/// initializer occurs (e.g., a declaration, member initializer,
2404/// functional cast, etc.) while @p Range covers the whole
2405/// initialization. @p InitEntity is the entity being initialized,
2406/// which may by the name of a declaration or a type. @p Kind is the
2407/// kind of initialization we're performing, which affects whether
2408/// explicit constructors will be considered. When successful, returns
2409/// the constructor that will be used to perform the initialization;
2410/// when the initialization fails, emits a diagnostic and returns
2411/// null.
2412CXXConstructorDecl *
2413Sema::PerformInitializationByConstructor(QualType ClassType,
2414                                         Expr **Args, unsigned NumArgs,
2415                                         SourceLocation Loc, SourceRange Range,
2416                                         DeclarationName InitEntity,
2417                                         InitializationKind Kind) {
2418  const RecordType *ClassRec = ClassType->getAsRecordType();
2419  assert(ClassRec && "Can only initialize a class type here");
2420
2421  // C++ [dcl.init]p14:
2422  //
2423  //   If the initialization is direct-initialization, or if it is
2424  //   copy-initialization where the cv-unqualified version of the
2425  //   source type is the same class as, or a derived class of, the
2426  //   class of the destination, constructors are considered. The
2427  //   applicable constructors are enumerated (13.3.1.3), and the
2428  //   best one is chosen through overload resolution (13.3). The
2429  //   constructor so selected is called to initialize the object,
2430  //   with the initializer expression(s) as its argument(s). If no
2431  //   constructor applies, or the overload resolution is ambiguous,
2432  //   the initialization is ill-formed.
2433  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2434  OverloadCandidateSet CandidateSet;
2435
2436  // Add constructors to the overload set.
2437  DeclarationName ConstructorName
2438    = Context.DeclarationNames.getCXXConstructorName(
2439                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2440  DeclContext::lookup_const_iterator Con, ConEnd;
2441  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2442       Con != ConEnd; ++Con) {
2443    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2444    if ((Kind == IK_Direct) ||
2445        (Kind == IK_Copy && Constructor->isConvertingConstructor()) ||
2446        (Kind == IK_Default && Constructor->isDefaultConstructor()))
2447      AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2448  }
2449
2450  // FIXME: When we decide not to synthesize the implicitly-declared
2451  // constructors, we'll need to make them appear here.
2452
2453  OverloadCandidateSet::iterator Best;
2454  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2455  case OR_Success:
2456    // We found a constructor. Return it.
2457    return cast<CXXConstructorDecl>(Best->Function);
2458
2459  case OR_No_Viable_Function:
2460    if (InitEntity)
2461      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2462        << InitEntity << Range;
2463    else
2464      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2465        << ClassType << Range;
2466    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2467    return 0;
2468
2469  case OR_Ambiguous:
2470    if (InitEntity)
2471      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2472    else
2473      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2474    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2475    return 0;
2476
2477  case OR_Deleted:
2478    if (InitEntity)
2479      Diag(Loc, diag::err_ovl_deleted_init)
2480        << Best->Function->isDeleted()
2481        << InitEntity << Range;
2482    else
2483      Diag(Loc, diag::err_ovl_deleted_init)
2484        << Best->Function->isDeleted()
2485        << InitEntity << Range;
2486    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2487    return 0;
2488  }
2489
2490  return 0;
2491}
2492
2493/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2494/// determine whether they are reference-related,
2495/// reference-compatible, reference-compatible with added
2496/// qualification, or incompatible, for use in C++ initialization by
2497/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2498/// type, and the first type (T1) is the pointee type of the reference
2499/// type being initialized.
2500Sema::ReferenceCompareResult
2501Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2502                                   bool& DerivedToBase) {
2503  assert(!T1->isReferenceType() &&
2504    "T1 must be the pointee type of the reference type");
2505  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2506
2507  T1 = Context.getCanonicalType(T1);
2508  T2 = Context.getCanonicalType(T2);
2509  QualType UnqualT1 = T1.getUnqualifiedType();
2510  QualType UnqualT2 = T2.getUnqualifiedType();
2511
2512  // C++ [dcl.init.ref]p4:
2513  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
2514  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
2515  //   T1 is a base class of T2.
2516  if (UnqualT1 == UnqualT2)
2517    DerivedToBase = false;
2518  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2519    DerivedToBase = true;
2520  else
2521    return Ref_Incompatible;
2522
2523  // At this point, we know that T1 and T2 are reference-related (at
2524  // least).
2525
2526  // C++ [dcl.init.ref]p4:
2527  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
2528  //   reference-related to T2 and cv1 is the same cv-qualification
2529  //   as, or greater cv-qualification than, cv2. For purposes of
2530  //   overload resolution, cases for which cv1 is greater
2531  //   cv-qualification than cv2 are identified as
2532  //   reference-compatible with added qualification (see 13.3.3.2).
2533  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2534    return Ref_Compatible;
2535  else if (T1.isMoreQualifiedThan(T2))
2536    return Ref_Compatible_With_Added_Qualification;
2537  else
2538    return Ref_Related;
2539}
2540
2541/// CheckReferenceInit - Check the initialization of a reference
2542/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2543/// the initializer (either a simple initializer or an initializer
2544/// list), and DeclType is the type of the declaration. When ICS is
2545/// non-null, this routine will compute the implicit conversion
2546/// sequence according to C++ [over.ics.ref] and will not produce any
2547/// diagnostics; when ICS is null, it will emit diagnostics when any
2548/// errors are found. Either way, a return value of true indicates
2549/// that there was a failure, a return value of false indicates that
2550/// the reference initialization succeeded.
2551///
2552/// When @p SuppressUserConversions, user-defined conversions are
2553/// suppressed.
2554/// When @p AllowExplicit, we also permit explicit user-defined
2555/// conversion functions.
2556/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2557bool
2558Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2559                         ImplicitConversionSequence *ICS,
2560                         bool SuppressUserConversions,
2561                         bool AllowExplicit, bool ForceRValue) {
2562  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2563
2564  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
2565  QualType T2 = Init->getType();
2566
2567  // If the initializer is the address of an overloaded function, try
2568  // to resolve the overloaded function. If all goes well, T2 is the
2569  // type of the resulting function.
2570  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2571    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2572                                                          ICS != 0);
2573    if (Fn) {
2574      // Since we're performing this reference-initialization for
2575      // real, update the initializer with the resulting function.
2576      if (!ICS) {
2577        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2578          return true;
2579
2580        FixOverloadedFunctionReference(Init, Fn);
2581      }
2582
2583      T2 = Fn->getType();
2584    }
2585  }
2586
2587  // Compute some basic properties of the types and the initializer.
2588  bool isRValRef = DeclType->isRValueReferenceType();
2589  bool DerivedToBase = false;
2590  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2591                                                  Init->isLvalue(Context);
2592  ReferenceCompareResult RefRelationship
2593    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2594
2595  // Most paths end in a failed conversion.
2596  if (ICS)
2597    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2598
2599  // C++ [dcl.init.ref]p5:
2600  //   A reference to type “cv1 T1” is initialized by an expression
2601  //   of type “cv2 T2” as follows:
2602
2603  //     -- If the initializer expression
2604
2605  // Rvalue references cannot bind to lvalues (N2812).
2606  // There is absolutely no situation where they can. In particular, note that
2607  // this is ill-formed, even if B has a user-defined conversion to A&&:
2608  //   B b;
2609  //   A&& r = b;
2610  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2611    if (!ICS)
2612      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2613        << Init->getSourceRange();
2614    return true;
2615  }
2616
2617  bool BindsDirectly = false;
2618  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
2619  //          reference-compatible with “cv2 T2,” or
2620  //
2621  // Note that the bit-field check is skipped if we are just computing
2622  // the implicit conversion sequence (C++ [over.best.ics]p2).
2623  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2624      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2625    BindsDirectly = true;
2626
2627    if (ICS) {
2628      // C++ [over.ics.ref]p1:
2629      //   When a parameter of reference type binds directly (8.5.3)
2630      //   to an argument expression, the implicit conversion sequence
2631      //   is the identity conversion, unless the argument expression
2632      //   has a type that is a derived class of the parameter type,
2633      //   in which case the implicit conversion sequence is a
2634      //   derived-to-base Conversion (13.3.3.1).
2635      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2636      ICS->Standard.First = ICK_Identity;
2637      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2638      ICS->Standard.Third = ICK_Identity;
2639      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2640      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2641      ICS->Standard.ReferenceBinding = true;
2642      ICS->Standard.DirectBinding = true;
2643      ICS->Standard.RRefBinding = false;
2644      ICS->Standard.CopyConstructor = 0;
2645
2646      // Nothing more to do: the inaccessibility/ambiguity check for
2647      // derived-to-base conversions is suppressed when we're
2648      // computing the implicit conversion sequence (C++
2649      // [over.best.ics]p2).
2650      return false;
2651    } else {
2652      // Perform the conversion.
2653      // FIXME: Binding to a subobject of the lvalue is going to require more
2654      // AST annotation than this.
2655      ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2656    }
2657  }
2658
2659  //       -- has a class type (i.e., T2 is a class type) and can be
2660  //          implicitly converted to an lvalue of type “cv3 T3,”
2661  //          where “cv1 T1” is reference-compatible with “cv3 T3”
2662  //          92) (this conversion is selected by enumerating the
2663  //          applicable conversion functions (13.3.1.6) and choosing
2664  //          the best one through overload resolution (13.3)),
2665  if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) {
2666    // FIXME: Look for conversions in base classes!
2667    CXXRecordDecl *T2RecordDecl
2668      = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl());
2669
2670    OverloadCandidateSet CandidateSet;
2671    OverloadedFunctionDecl *Conversions
2672      = T2RecordDecl->getConversionFunctions();
2673    for (OverloadedFunctionDecl::function_iterator Func
2674           = Conversions->function_begin();
2675         Func != Conversions->function_end(); ++Func) {
2676      CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func);
2677
2678      // If the conversion function doesn't return a reference type,
2679      // it can't be considered for this conversion.
2680      if (Conv->getConversionType()->isLValueReferenceType() &&
2681          (AllowExplicit || !Conv->isExplicit()))
2682        AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
2683    }
2684
2685    OverloadCandidateSet::iterator Best;
2686    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
2687    case OR_Success:
2688      // This is a direct binding.
2689      BindsDirectly = true;
2690
2691      if (ICS) {
2692        // C++ [over.ics.ref]p1:
2693        //
2694        //   [...] If the parameter binds directly to the result of
2695        //   applying a conversion function to the argument
2696        //   expression, the implicit conversion sequence is a
2697        //   user-defined conversion sequence (13.3.3.1.2), with the
2698        //   second standard conversion sequence either an identity
2699        //   conversion or, if the conversion function returns an
2700        //   entity of a type that is a derived class of the parameter
2701        //   type, a derived-to-base Conversion.
2702        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
2703        ICS->UserDefined.Before = Best->Conversions[0].Standard;
2704        ICS->UserDefined.After = Best->FinalConversion;
2705        ICS->UserDefined.ConversionFunction = Best->Function;
2706        assert(ICS->UserDefined.After.ReferenceBinding &&
2707               ICS->UserDefined.After.DirectBinding &&
2708               "Expected a direct reference binding!");
2709        return false;
2710      } else {
2711        // Perform the conversion.
2712        // FIXME: Binding to a subobject of the lvalue is going to require more
2713        // AST annotation than this.
2714        ImpCastExprToType(Init, T1, /*isLvalue=*/true);
2715      }
2716      break;
2717
2718    case OR_Ambiguous:
2719      assert(false && "Ambiguous reference binding conversions not implemented.");
2720      return true;
2721
2722    case OR_No_Viable_Function:
2723    case OR_Deleted:
2724      // There was no suitable conversion, or we found a deleted
2725      // conversion; continue with other checks.
2726      break;
2727    }
2728  }
2729
2730  if (BindsDirectly) {
2731    // C++ [dcl.init.ref]p4:
2732    //   [...] In all cases where the reference-related or
2733    //   reference-compatible relationship of two types is used to
2734    //   establish the validity of a reference binding, and T1 is a
2735    //   base class of T2, a program that necessitates such a binding
2736    //   is ill-formed if T1 is an inaccessible (clause 11) or
2737    //   ambiguous (10.2) base class of T2.
2738    //
2739    // Note that we only check this condition when we're allowed to
2740    // complain about errors, because we should not be checking for
2741    // ambiguity (or inaccessibility) unless the reference binding
2742    // actually happens.
2743    if (DerivedToBase)
2744      return CheckDerivedToBaseConversion(T2, T1,
2745                                          Init->getSourceRange().getBegin(),
2746                                          Init->getSourceRange());
2747    else
2748      return false;
2749  }
2750
2751  //     -- Otherwise, the reference shall be to a non-volatile const
2752  //        type (i.e., cv1 shall be const), or the reference shall be an
2753  //        rvalue reference and the initializer expression shall be an rvalue.
2754  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
2755    if (!ICS)
2756      Diag(Init->getSourceRange().getBegin(),
2757           diag::err_not_reference_to_const_init)
2758        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2759        << T2 << Init->getSourceRange();
2760    return true;
2761  }
2762
2763  //       -- If the initializer expression is an rvalue, with T2 a
2764  //          class type, and “cv1 T1” is reference-compatible with
2765  //          “cv2 T2,” the reference is bound in one of the
2766  //          following ways (the choice is implementation-defined):
2767  //
2768  //          -- The reference is bound to the object represented by
2769  //             the rvalue (see 3.10) or to a sub-object within that
2770  //             object.
2771  //
2772  //          -- A temporary of type “cv1 T2” [sic] is created, and
2773  //             a constructor is called to copy the entire rvalue
2774  //             object into the temporary. The reference is bound to
2775  //             the temporary or to a sub-object within the
2776  //             temporary.
2777  //
2778  //          The constructor that would be used to make the copy
2779  //          shall be callable whether or not the copy is actually
2780  //          done.
2781  //
2782  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
2783  // freedom, so we will always take the first option and never build
2784  // a temporary in this case. FIXME: We will, however, have to check
2785  // for the presence of a copy constructor in C++98/03 mode.
2786  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
2787      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2788    if (ICS) {
2789      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2790      ICS->Standard.First = ICK_Identity;
2791      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2792      ICS->Standard.Third = ICK_Identity;
2793      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2794      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2795      ICS->Standard.ReferenceBinding = true;
2796      ICS->Standard.DirectBinding = false;
2797      ICS->Standard.RRefBinding = isRValRef;
2798      ICS->Standard.CopyConstructor = 0;
2799    } else {
2800      // FIXME: Binding to a subobject of the rvalue is going to require more
2801      // AST annotation than this.
2802      ImpCastExprToType(Init, T1, /*isLvalue=*/false);
2803    }
2804    return false;
2805  }
2806
2807  //       -- Otherwise, a temporary of type “cv1 T1” is created and
2808  //          initialized from the initializer expression using the
2809  //          rules for a non-reference copy initialization (8.5). The
2810  //          reference is then bound to the temporary. If T1 is
2811  //          reference-related to T2, cv1 must be the same
2812  //          cv-qualification as, or greater cv-qualification than,
2813  //          cv2; otherwise, the program is ill-formed.
2814  if (RefRelationship == Ref_Related) {
2815    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
2816    // we would be reference-compatible or reference-compatible with
2817    // added qualification. But that wasn't the case, so the reference
2818    // initialization fails.
2819    if (!ICS)
2820      Diag(Init->getSourceRange().getBegin(),
2821           diag::err_reference_init_drops_quals)
2822        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
2823        << T2 << Init->getSourceRange();
2824    return true;
2825  }
2826
2827  // If at least one of the types is a class type, the types are not
2828  // related, and we aren't allowed any user conversions, the
2829  // reference binding fails. This case is important for breaking
2830  // recursion, since TryImplicitConversion below will attempt to
2831  // create a temporary through the use of a copy constructor.
2832  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
2833      (T1->isRecordType() || T2->isRecordType())) {
2834    if (!ICS)
2835      Diag(Init->getSourceRange().getBegin(),
2836           diag::err_typecheck_convert_incompatible)
2837        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
2838    return true;
2839  }
2840
2841  // Actually try to convert the initializer to T1.
2842  if (ICS) {
2843    // C++ [over.ics.ref]p2:
2844    //
2845    //   When a parameter of reference type is not bound directly to
2846    //   an argument expression, the conversion sequence is the one
2847    //   required to convert the argument expression to the
2848    //   underlying type of the reference according to
2849    //   13.3.3.1. Conceptually, this conversion sequence corresponds
2850    //   to copy-initializing a temporary of the underlying type with
2851    //   the argument expression. Any difference in top-level
2852    //   cv-qualification is subsumed by the initialization itself
2853    //   and does not constitute a conversion.
2854    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions);
2855    // Of course, that's still a reference binding.
2856    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
2857      ICS->Standard.ReferenceBinding = true;
2858      ICS->Standard.RRefBinding = isRValRef;
2859    } else if(ICS->ConversionKind ==
2860              ImplicitConversionSequence::UserDefinedConversion) {
2861      ICS->UserDefined.After.ReferenceBinding = true;
2862      ICS->UserDefined.After.RRefBinding = isRValRef;
2863    }
2864    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
2865  } else {
2866    return PerformImplicitConversion(Init, T1, "initializing");
2867  }
2868}
2869
2870/// CheckOverloadedOperatorDeclaration - Check whether the declaration
2871/// of this overloaded operator is well-formed. If so, returns false;
2872/// otherwise, emits appropriate diagnostics and returns true.
2873bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
2874  assert(FnDecl && FnDecl->isOverloadedOperator() &&
2875         "Expected an overloaded operator declaration");
2876
2877  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
2878
2879  // C++ [over.oper]p5:
2880  //   The allocation and deallocation functions, operator new,
2881  //   operator new[], operator delete and operator delete[], are
2882  //   described completely in 3.7.3. The attributes and restrictions
2883  //   found in the rest of this subclause do not apply to them unless
2884  //   explicitly stated in 3.7.3.
2885  // FIXME: Write a separate routine for checking this. For now, just allow it.
2886  if (Op == OO_New || Op == OO_Array_New ||
2887      Op == OO_Delete || Op == OO_Array_Delete)
2888    return false;
2889
2890  // C++ [over.oper]p6:
2891  //   An operator function shall either be a non-static member
2892  //   function or be a non-member function and have at least one
2893  //   parameter whose type is a class, a reference to a class, an
2894  //   enumeration, or a reference to an enumeration.
2895  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
2896    if (MethodDecl->isStatic())
2897      return Diag(FnDecl->getLocation(),
2898                  diag::err_operator_overload_static) << FnDecl->getDeclName();
2899  } else {
2900    bool ClassOrEnumParam = false;
2901    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
2902                                   ParamEnd = FnDecl->param_end();
2903         Param != ParamEnd; ++Param) {
2904      QualType ParamType = (*Param)->getType().getNonReferenceType();
2905      if (ParamType->isDependentType() || ParamType->isRecordType() ||
2906          ParamType->isEnumeralType()) {
2907        ClassOrEnumParam = true;
2908        break;
2909      }
2910    }
2911
2912    if (!ClassOrEnumParam)
2913      return Diag(FnDecl->getLocation(),
2914                  diag::err_operator_overload_needs_class_or_enum)
2915        << FnDecl->getDeclName();
2916  }
2917
2918  // C++ [over.oper]p8:
2919  //   An operator function cannot have default arguments (8.3.6),
2920  //   except where explicitly stated below.
2921  //
2922  // Only the function-call operator allows default arguments
2923  // (C++ [over.call]p1).
2924  if (Op != OO_Call) {
2925    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
2926         Param != FnDecl->param_end(); ++Param) {
2927      if ((*Param)->hasUnparsedDefaultArg())
2928        return Diag((*Param)->getLocation(),
2929                    diag::err_operator_overload_default_arg)
2930          << FnDecl->getDeclName();
2931      else if (Expr *DefArg = (*Param)->getDefaultArg())
2932        return Diag((*Param)->getLocation(),
2933                    diag::err_operator_overload_default_arg)
2934          << FnDecl->getDeclName() << DefArg->getSourceRange();
2935    }
2936  }
2937
2938  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
2939    { false, false, false }
2940#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
2941    , { Unary, Binary, MemberOnly }
2942#include "clang/Basic/OperatorKinds.def"
2943  };
2944
2945  bool CanBeUnaryOperator = OperatorUses[Op][0];
2946  bool CanBeBinaryOperator = OperatorUses[Op][1];
2947  bool MustBeMemberOperator = OperatorUses[Op][2];
2948
2949  // C++ [over.oper]p8:
2950  //   [...] Operator functions cannot have more or fewer parameters
2951  //   than the number required for the corresponding operator, as
2952  //   described in the rest of this subclause.
2953  unsigned NumParams = FnDecl->getNumParams()
2954                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
2955  if (Op != OO_Call &&
2956      ((NumParams == 1 && !CanBeUnaryOperator) ||
2957       (NumParams == 2 && !CanBeBinaryOperator) ||
2958       (NumParams < 1) || (NumParams > 2))) {
2959    // We have the wrong number of parameters.
2960    unsigned ErrorKind;
2961    if (CanBeUnaryOperator && CanBeBinaryOperator) {
2962      ErrorKind = 2;  // 2 -> unary or binary.
2963    } else if (CanBeUnaryOperator) {
2964      ErrorKind = 0;  // 0 -> unary
2965    } else {
2966      assert(CanBeBinaryOperator &&
2967             "All non-call overloaded operators are unary or binary!");
2968      ErrorKind = 1;  // 1 -> binary
2969    }
2970
2971    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
2972      << FnDecl->getDeclName() << NumParams << ErrorKind;
2973  }
2974
2975  // Overloaded operators other than operator() cannot be variadic.
2976  if (Op != OO_Call &&
2977      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
2978    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
2979      << FnDecl->getDeclName();
2980  }
2981
2982  // Some operators must be non-static member functions.
2983  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
2984    return Diag(FnDecl->getLocation(),
2985                diag::err_operator_overload_must_be_member)
2986      << FnDecl->getDeclName();
2987  }
2988
2989  // C++ [over.inc]p1:
2990  //   The user-defined function called operator++ implements the
2991  //   prefix and postfix ++ operator. If this function is a member
2992  //   function with no parameters, or a non-member function with one
2993  //   parameter of class or enumeration type, it defines the prefix
2994  //   increment operator ++ for objects of that type. If the function
2995  //   is a member function with one parameter (which shall be of type
2996  //   int) or a non-member function with two parameters (the second
2997  //   of which shall be of type int), it defines the postfix
2998  //   increment operator ++ for objects of that type.
2999  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3000    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3001    bool ParamIsInt = false;
3002    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3003      ParamIsInt = BT->getKind() == BuiltinType::Int;
3004
3005    if (!ParamIsInt)
3006      return Diag(LastParam->getLocation(),
3007                  diag::err_operator_overload_post_incdec_must_be_int)
3008        << LastParam->getType() << (Op == OO_MinusMinus);
3009  }
3010
3011  // Notify the class if it got an assignment operator.
3012  if (Op == OO_Equal) {
3013    // Would have returned earlier otherwise.
3014    assert(isa<CXXMethodDecl>(FnDecl) &&
3015      "Overloaded = not member, but not filtered.");
3016    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3017    Method->getParent()->addedAssignmentOperator(Context, Method);
3018  }
3019
3020  return false;
3021}
3022
3023/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3024/// linkage specification, including the language and (if present)
3025/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3026/// the location of the language string literal, which is provided
3027/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3028/// the '{' brace. Otherwise, this linkage specification does not
3029/// have any braces.
3030Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3031                                                     SourceLocation ExternLoc,
3032                                                     SourceLocation LangLoc,
3033                                                     const char *Lang,
3034                                                     unsigned StrSize,
3035                                                     SourceLocation LBraceLoc) {
3036  LinkageSpecDecl::LanguageIDs Language;
3037  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3038    Language = LinkageSpecDecl::lang_c;
3039  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3040    Language = LinkageSpecDecl::lang_cxx;
3041  else {
3042    Diag(LangLoc, diag::err_bad_language);
3043    return DeclPtrTy();
3044  }
3045
3046  // FIXME: Add all the various semantics of linkage specifications
3047
3048  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3049                                               LangLoc, Language,
3050                                               LBraceLoc.isValid());
3051  CurContext->addDecl(D);
3052  PushDeclContext(S, D);
3053  return DeclPtrTy::make(D);
3054}
3055
3056/// ActOnFinishLinkageSpecification - Completely the definition of
3057/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3058/// valid, it's the position of the closing '}' brace in a linkage
3059/// specification that uses braces.
3060Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3061                                                      DeclPtrTy LinkageSpec,
3062                                                      SourceLocation RBraceLoc) {
3063  if (LinkageSpec)
3064    PopDeclContext();
3065  return LinkageSpec;
3066}
3067
3068/// \brief Perform semantic analysis for the variable declaration that
3069/// occurs within a C++ catch clause, returning the newly-created
3070/// variable.
3071VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3072                                         IdentifierInfo *Name,
3073                                         SourceLocation Loc,
3074                                         SourceRange Range) {
3075  bool Invalid = false;
3076
3077  // Arrays and functions decay.
3078  if (ExDeclType->isArrayType())
3079    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3080  else if (ExDeclType->isFunctionType())
3081    ExDeclType = Context.getPointerType(ExDeclType);
3082
3083  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3084  // The exception-declaration shall not denote a pointer or reference to an
3085  // incomplete type, other than [cv] void*.
3086  // N2844 forbids rvalue references.
3087  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3088    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3089    Invalid = true;
3090  }
3091
3092  QualType BaseType = ExDeclType;
3093  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3094  unsigned DK = diag::err_catch_incomplete;
3095  if (const PointerType *Ptr = BaseType->getAsPointerType()) {
3096    BaseType = Ptr->getPointeeType();
3097    Mode = 1;
3098    DK = diag::err_catch_incomplete_ptr;
3099  } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) {
3100    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3101    BaseType = Ref->getPointeeType();
3102    Mode = 2;
3103    DK = diag::err_catch_incomplete_ref;
3104  }
3105  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3106      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3107    Invalid = true;
3108
3109  if (!Invalid && !ExDeclType->isDependentType() &&
3110      RequireNonAbstractType(Loc, ExDeclType,
3111                             diag::err_abstract_type_in_decl,
3112                             AbstractVariableType))
3113    Invalid = true;
3114
3115  // FIXME: Need to test for ability to copy-construct and destroy the
3116  // exception variable.
3117
3118  // FIXME: Need to check for abstract classes.
3119
3120  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3121                                    Name, ExDeclType, VarDecl::None,
3122                                    Range.getBegin());
3123
3124  if (Invalid)
3125    ExDecl->setInvalidDecl();
3126
3127  return ExDecl;
3128}
3129
3130/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3131/// handler.
3132Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3133  QualType ExDeclType = GetTypeForDeclarator(D, S);
3134
3135  bool Invalid = D.isInvalidType();
3136  IdentifierInfo *II = D.getIdentifier();
3137  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3138    // The scope should be freshly made just for us. There is just no way
3139    // it contains any previous declaration.
3140    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3141    if (PrevDecl->isTemplateParameter()) {
3142      // Maybe we will complain about the shadowed template parameter.
3143      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3144    }
3145  }
3146
3147  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3148    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3149      << D.getCXXScopeSpec().getRange();
3150    Invalid = true;
3151  }
3152
3153  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType,
3154                                              D.getIdentifier(),
3155                                              D.getIdentifierLoc(),
3156                                            D.getDeclSpec().getSourceRange());
3157
3158  if (Invalid)
3159    ExDecl->setInvalidDecl();
3160
3161  // Add the exception declaration into this scope.
3162  if (II)
3163    PushOnScopeChains(ExDecl, S);
3164  else
3165    CurContext->addDecl(ExDecl);
3166
3167  ProcessDeclAttributes(S, ExDecl, D);
3168  return DeclPtrTy::make(ExDecl);
3169}
3170
3171Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3172                                                   ExprArg assertexpr,
3173                                                   ExprArg assertmessageexpr) {
3174  Expr *AssertExpr = (Expr *)assertexpr.get();
3175  StringLiteral *AssertMessage =
3176    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3177
3178  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3179    llvm::APSInt Value(32);
3180    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3181      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3182        AssertExpr->getSourceRange();
3183      return DeclPtrTy();
3184    }
3185
3186    if (Value == 0) {
3187      std::string str(AssertMessage->getStrData(),
3188                      AssertMessage->getByteLength());
3189      Diag(AssertLoc, diag::err_static_assert_failed)
3190        << str << AssertExpr->getSourceRange();
3191    }
3192  }
3193
3194  assertexpr.release();
3195  assertmessageexpr.release();
3196  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3197                                        AssertExpr, AssertMessage);
3198
3199  CurContext->addDecl(Decl);
3200  return DeclPtrTy::make(Decl);
3201}
3202
3203bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) {
3204  if (!(S->getFlags() & Scope::ClassScope)) {
3205    Diag(FriendLoc, diag::err_friend_decl_outside_class);
3206    return true;
3207  }
3208
3209  return false;
3210}
3211
3212void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3213  Decl *Dcl = dcl.getAs<Decl>();
3214  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3215  if (!Fn) {
3216    Diag(DelLoc, diag::err_deleted_non_function);
3217    return;
3218  }
3219  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3220    Diag(DelLoc, diag::err_deleted_decl_not_first);
3221    Diag(Prev->getLocation(), diag::note_previous_declaration);
3222    // If the declaration wasn't the first, we delete the function anyway for
3223    // recovery.
3224  }
3225  Fn->setDeleted();
3226}
3227
3228static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3229  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3230       ++CI) {
3231    Stmt *SubStmt = *CI;
3232    if (!SubStmt)
3233      continue;
3234    if (isa<ReturnStmt>(SubStmt))
3235      Self.Diag(SubStmt->getSourceRange().getBegin(),
3236           diag::err_return_in_constructor_handler);
3237    if (!isa<Expr>(SubStmt))
3238      SearchForReturnInStmt(Self, SubStmt);
3239  }
3240}
3241
3242void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3243  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3244    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3245    SearchForReturnInStmt(*this, Handler);
3246  }
3247}
3248
3249bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3250                                             const CXXMethodDecl *Old) {
3251  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3252  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3253
3254  QualType CNewTy = Context.getCanonicalType(NewTy);
3255  QualType COldTy = Context.getCanonicalType(OldTy);
3256
3257  if (CNewTy == COldTy &&
3258      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3259    return false;
3260
3261  // Check if the return types are covariant
3262  QualType NewClassTy, OldClassTy;
3263
3264  /// Both types must be pointers or references to classes.
3265  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3266    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3267      NewClassTy = NewPT->getPointeeType();
3268      OldClassTy = OldPT->getPointeeType();
3269    }
3270  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3271    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3272      NewClassTy = NewRT->getPointeeType();
3273      OldClassTy = OldRT->getPointeeType();
3274    }
3275  }
3276
3277  // The return types aren't either both pointers or references to a class type.
3278  if (NewClassTy.isNull()) {
3279    Diag(New->getLocation(),
3280         diag::err_different_return_type_for_overriding_virtual_function)
3281      << New->getDeclName() << NewTy << OldTy;
3282    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3283
3284    return true;
3285  }
3286
3287  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3288    // Check if the new class derives from the old class.
3289    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3290      Diag(New->getLocation(),
3291           diag::err_covariant_return_not_derived)
3292      << New->getDeclName() << NewTy << OldTy;
3293      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3294      return true;
3295    }
3296
3297    // Check if we the conversion from derived to base is valid.
3298    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3299                      diag::err_covariant_return_inaccessible_base,
3300                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3301                      // FIXME: Should this point to the return type?
3302                      New->getLocation(), SourceRange(), New->getDeclName())) {
3303      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3304      return true;
3305    }
3306  }
3307
3308  // The qualifiers of the return types must be the same.
3309  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3310    Diag(New->getLocation(),
3311         diag::err_covariant_return_type_different_qualifications)
3312    << New->getDeclName() << NewTy << OldTy;
3313    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3314    return true;
3315  };
3316
3317
3318  // The new class type must have the same or less qualifiers as the old type.
3319  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3320    Diag(New->getLocation(),
3321         diag::err_covariant_return_type_class_type_more_qualified)
3322    << New->getDeclName() << NewTy << OldTy;
3323    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3324    return true;
3325  };
3326
3327  return false;
3328}
3329
3330bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3331                                                const CXXMethodDecl *Old)
3332{
3333  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3334                                  diag::note_overridden_virtual_function,
3335                                  Old->getType()->getAsFunctionProtoType(),
3336                                  Old->getLocation(),
3337                                  New->getType()->getAsFunctionProtoType(),
3338                                  New->getLocation());
3339}
3340
3341/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3342/// initializer for the declaration 'Dcl'.
3343/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3344/// static data member of class X, names should be looked up in the scope of
3345/// class X.
3346void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3347  Decl *D = Dcl.getAs<Decl>();
3348  // If there is no declaration, there was an error parsing it.
3349  if (D == 0)
3350    return;
3351
3352  // Check whether it is a declaration with a nested name specifier like
3353  // int foo::bar;
3354  if (!D->isOutOfLine())
3355    return;
3356
3357  // C++ [basic.lookup.unqual]p13
3358  //
3359  // A name used in the definition of a static data member of class X
3360  // (after the qualified-id of the static member) is looked up as if the name
3361  // was used in a member function of X.
3362
3363  // Change current context into the context of the initializing declaration.
3364  EnterDeclaratorContext(S, D->getDeclContext());
3365}
3366
3367/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3368/// initializer for the declaration 'Dcl'.
3369void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3370  Decl *D = Dcl.getAs<Decl>();
3371  // If there is no declaration, there was an error parsing it.
3372  if (D == 0)
3373    return;
3374
3375  // Check whether it is a declaration with a nested name specifier like
3376  // int foo::bar;
3377  if (!D->isOutOfLine())
3378    return;
3379
3380  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
3381  ExitDeclaratorContext(S);
3382}
3383