SemaDeclCXX.cpp revision f6a144f5991c6b29622a31fdab86adede0648d12
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclVisitor.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/RecordLayout.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/AST/StmtVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/AST/TypeOrdering.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/SmallString.h"
40#include <map>
41#include <set>
42
43using namespace clang;
44
45//===----------------------------------------------------------------------===//
46// CheckDefaultArgumentVisitor
47//===----------------------------------------------------------------------===//
48
49namespace {
50  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
51  /// the default argument of a parameter to determine whether it
52  /// contains any ill-formed subexpressions. For example, this will
53  /// diagnose the use of local variables or parameters within the
54  /// default argument expression.
55  class CheckDefaultArgumentVisitor
56    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
57    Expr *DefaultArg;
58    Sema *S;
59
60  public:
61    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
62      : DefaultArg(defarg), S(s) {}
63
64    bool VisitExpr(Expr *Node);
65    bool VisitDeclRefExpr(DeclRefExpr *DRE);
66    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
67    bool VisitLambdaExpr(LambdaExpr *Lambda);
68    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
69  };
70
71  /// VisitExpr - Visit all of the children of this expression.
72  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
73    bool IsInvalid = false;
74    for (Stmt::child_range I = Node->children(); I; ++I)
75      IsInvalid |= Visit(*I);
76    return IsInvalid;
77  }
78
79  /// VisitDeclRefExpr - Visit a reference to a declaration, to
80  /// determine whether this declaration can be used in the default
81  /// argument expression.
82  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
83    NamedDecl *Decl = DRE->getDecl();
84    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
85      // C++ [dcl.fct.default]p9
86      //   Default arguments are evaluated each time the function is
87      //   called. The order of evaluation of function arguments is
88      //   unspecified. Consequently, parameters of a function shall not
89      //   be used in default argument expressions, even if they are not
90      //   evaluated. Parameters of a function declared before a default
91      //   argument expression are in scope and can hide namespace and
92      //   class member names.
93      return S->Diag(DRE->getLocStart(),
94                     diag::err_param_default_argument_references_param)
95         << Param->getDeclName() << DefaultArg->getSourceRange();
96    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
97      // C++ [dcl.fct.default]p7
98      //   Local variables shall not be used in default argument
99      //   expressions.
100      if (VDecl->isLocalVarDecl())
101        return S->Diag(DRE->getLocStart(),
102                       diag::err_param_default_argument_references_local)
103          << VDecl->getDeclName() << DefaultArg->getSourceRange();
104    }
105
106    return false;
107  }
108
109  /// VisitCXXThisExpr - Visit a C++ "this" expression.
110  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
111    // C++ [dcl.fct.default]p8:
112    //   The keyword this shall not be used in a default argument of a
113    //   member function.
114    return S->Diag(ThisE->getLocStart(),
115                   diag::err_param_default_argument_references_this)
116               << ThisE->getSourceRange();
117  }
118
119  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
120    bool Invalid = false;
121    for (PseudoObjectExpr::semantics_iterator
122           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
123      Expr *E = *i;
124
125      // Look through bindings.
126      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
127        E = OVE->getSourceExpr();
128        assert(E && "pseudo-object binding without source expression?");
129      }
130
131      Invalid |= Visit(E);
132    }
133    return Invalid;
134  }
135
136  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
137    // C++11 [expr.lambda.prim]p13:
138    //   A lambda-expression appearing in a default argument shall not
139    //   implicitly or explicitly capture any entity.
140    if (Lambda->capture_begin() == Lambda->capture_end())
141      return false;
142
143    return S->Diag(Lambda->getLocStart(),
144                   diag::err_lambda_capture_default_arg);
145  }
146}
147
148void
149Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
150                                                 const CXXMethodDecl *Method) {
151  // If we have an MSAny spec already, don't bother.
152  if (!Method || ComputedEST == EST_MSAny)
153    return;
154
155  const FunctionProtoType *Proto
156    = Method->getType()->getAs<FunctionProtoType>();
157  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
158  if (!Proto)
159    return;
160
161  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
162
163  // If this function can throw any exceptions, make a note of that.
164  if (EST == EST_MSAny || EST == EST_None) {
165    ClearExceptions();
166    ComputedEST = EST;
167    return;
168  }
169
170  // FIXME: If the call to this decl is using any of its default arguments, we
171  // need to search them for potentially-throwing calls.
172
173  // If this function has a basic noexcept, it doesn't affect the outcome.
174  if (EST == EST_BasicNoexcept)
175    return;
176
177  // If we have a throw-all spec at this point, ignore the function.
178  if (ComputedEST == EST_None)
179    return;
180
181  // If we're still at noexcept(true) and there's a nothrow() callee,
182  // change to that specification.
183  if (EST == EST_DynamicNone) {
184    if (ComputedEST == EST_BasicNoexcept)
185      ComputedEST = EST_DynamicNone;
186    return;
187  }
188
189  // Check out noexcept specs.
190  if (EST == EST_ComputedNoexcept) {
191    FunctionProtoType::NoexceptResult NR =
192        Proto->getNoexceptSpec(Self->Context);
193    assert(NR != FunctionProtoType::NR_NoNoexcept &&
194           "Must have noexcept result for EST_ComputedNoexcept.");
195    assert(NR != FunctionProtoType::NR_Dependent &&
196           "Should not generate implicit declarations for dependent cases, "
197           "and don't know how to handle them anyway.");
198
199    // noexcept(false) -> no spec on the new function
200    if (NR == FunctionProtoType::NR_Throw) {
201      ClearExceptions();
202      ComputedEST = EST_None;
203    }
204    // noexcept(true) won't change anything either.
205    return;
206  }
207
208  assert(EST == EST_Dynamic && "EST case not considered earlier.");
209  assert(ComputedEST != EST_None &&
210         "Shouldn't collect exceptions when throw-all is guaranteed.");
211  ComputedEST = EST_Dynamic;
212  // Record the exceptions in this function's exception specification.
213  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
214                                          EEnd = Proto->exception_end();
215       E != EEnd; ++E)
216    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
217      Exceptions.push_back(*E);
218}
219
220void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
221  if (!E || ComputedEST == EST_MSAny)
222    return;
223
224  // FIXME:
225  //
226  // C++0x [except.spec]p14:
227  //   [An] implicit exception-specification specifies the type-id T if and
228  // only if T is allowed by the exception-specification of a function directly
229  // invoked by f's implicit definition; f shall allow all exceptions if any
230  // function it directly invokes allows all exceptions, and f shall allow no
231  // exceptions if every function it directly invokes allows no exceptions.
232  //
233  // Note in particular that if an implicit exception-specification is generated
234  // for a function containing a throw-expression, that specification can still
235  // be noexcept(true).
236  //
237  // Note also that 'directly invoked' is not defined in the standard, and there
238  // is no indication that we should only consider potentially-evaluated calls.
239  //
240  // Ultimately we should implement the intent of the standard: the exception
241  // specification should be the set of exceptions which can be thrown by the
242  // implicit definition. For now, we assume that any non-nothrow expression can
243  // throw any exception.
244
245  if (Self->canThrow(E))
246    ComputedEST = EST_None;
247}
248
249bool
250Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
251                              SourceLocation EqualLoc) {
252  if (RequireCompleteType(Param->getLocation(), Param->getType(),
253                          diag::err_typecheck_decl_incomplete_type)) {
254    Param->setInvalidDecl();
255    return true;
256  }
257
258  // C++ [dcl.fct.default]p5
259  //   A default argument expression is implicitly converted (clause
260  //   4) to the parameter type. The default argument expression has
261  //   the same semantic constraints as the initializer expression in
262  //   a declaration of a variable of the parameter type, using the
263  //   copy-initialization semantics (8.5).
264  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
265                                                                    Param);
266  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
267                                                           EqualLoc);
268  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
269  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
270  if (Result.isInvalid())
271    return true;
272  Arg = Result.takeAs<Expr>();
273
274  CheckCompletedExpr(Arg, EqualLoc);
275  Arg = MaybeCreateExprWithCleanups(Arg);
276
277  // Okay: add the default argument to the parameter
278  Param->setDefaultArg(Arg);
279
280  // We have already instantiated this parameter; provide each of the
281  // instantiations with the uninstantiated default argument.
282  UnparsedDefaultArgInstantiationsMap::iterator InstPos
283    = UnparsedDefaultArgInstantiations.find(Param);
284  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
285    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
286      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
287
288    // We're done tracking this parameter's instantiations.
289    UnparsedDefaultArgInstantiations.erase(InstPos);
290  }
291
292  return false;
293}
294
295/// ActOnParamDefaultArgument - Check whether the default argument
296/// provided for a function parameter is well-formed. If so, attach it
297/// to the parameter declaration.
298void
299Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
300                                Expr *DefaultArg) {
301  if (!param || !DefaultArg)
302    return;
303
304  ParmVarDecl *Param = cast<ParmVarDecl>(param);
305  UnparsedDefaultArgLocs.erase(Param);
306
307  // Default arguments are only permitted in C++
308  if (!getLangOpts().CPlusPlus) {
309    Diag(EqualLoc, diag::err_param_default_argument)
310      << DefaultArg->getSourceRange();
311    Param->setInvalidDecl();
312    return;
313  }
314
315  // Check for unexpanded parameter packs.
316  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
317    Param->setInvalidDecl();
318    return;
319  }
320
321  // Check that the default argument is well-formed
322  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
323  if (DefaultArgChecker.Visit(DefaultArg)) {
324    Param->setInvalidDecl();
325    return;
326  }
327
328  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
329}
330
331/// ActOnParamUnparsedDefaultArgument - We've seen a default
332/// argument for a function parameter, but we can't parse it yet
333/// because we're inside a class definition. Note that this default
334/// argument will be parsed later.
335void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
336                                             SourceLocation EqualLoc,
337                                             SourceLocation ArgLoc) {
338  if (!param)
339    return;
340
341  ParmVarDecl *Param = cast<ParmVarDecl>(param);
342  if (Param)
343    Param->setUnparsedDefaultArg();
344
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355
356  Param->setInvalidDecl();
357
358  UnparsedDefaultArgLocs.erase(Param);
359}
360
361/// CheckExtraCXXDefaultArguments - Check for any extra default
362/// arguments in the declarator, which is not a function declaration
363/// or definition and therefore is not permitted to have default
364/// arguments. This routine should be invoked for every declarator
365/// that is not a function declaration or definition.
366void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
367  // C++ [dcl.fct.default]p3
368  //   A default argument expression shall be specified only in the
369  //   parameter-declaration-clause of a function declaration or in a
370  //   template-parameter (14.1). It shall not be specified for a
371  //   parameter pack. If it is specified in a
372  //   parameter-declaration-clause, it shall not occur within a
373  //   declarator or abstract-declarator of a parameter-declaration.
374  bool MightBeFunction = D.isFunctionDeclarationContext();
375  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
376    DeclaratorChunk &chunk = D.getTypeObject(i);
377    if (chunk.Kind == DeclaratorChunk::Function) {
378      if (MightBeFunction) {
379        // This is a function declaration. It can have default arguments, but
380        // keep looking in case its return type is a function type with default
381        // arguments.
382        MightBeFunction = false;
383        continue;
384      }
385      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
386        ParmVarDecl *Param =
387          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
388        if (Param->hasUnparsedDefaultArg()) {
389          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
390          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
391            << SourceRange((*Toks)[1].getLocation(),
392                           Toks->back().getLocation());
393          delete Toks;
394          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
395        } else if (Param->getDefaultArg()) {
396          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
397            << Param->getDefaultArg()->getSourceRange();
398          Param->setDefaultArg(0);
399        }
400      }
401    } else if (chunk.Kind != DeclaratorChunk::Paren) {
402      MightBeFunction = false;
403    }
404  }
405}
406
407static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
408  for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
409    const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
410    if (!PVD->hasDefaultArg())
411      return false;
412    if (!PVD->hasInheritedDefaultArg())
413      return true;
414  }
415  return false;
416}
417
418/// MergeCXXFunctionDecl - Merge two declarations of the same C++
419/// function, once we already know that they have the same
420/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
421/// error, false otherwise.
422bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
423                                Scope *S) {
424  bool Invalid = false;
425
426  // C++ [dcl.fct.default]p4:
427  //   For non-template functions, default arguments can be added in
428  //   later declarations of a function in the same
429  //   scope. Declarations in different scopes have completely
430  //   distinct sets of default arguments. That is, declarations in
431  //   inner scopes do not acquire default arguments from
432  //   declarations in outer scopes, and vice versa. In a given
433  //   function declaration, all parameters subsequent to a
434  //   parameter with a default argument shall have default
435  //   arguments supplied in this or previous declarations. A
436  //   default argument shall not be redefined by a later
437  //   declaration (not even to the same value).
438  //
439  // C++ [dcl.fct.default]p6:
440  //   Except for member functions of class templates, the default arguments
441  //   in a member function definition that appears outside of the class
442  //   definition are added to the set of default arguments provided by the
443  //   member function declaration in the class definition.
444  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
445    ParmVarDecl *OldParam = Old->getParamDecl(p);
446    ParmVarDecl *NewParam = New->getParamDecl(p);
447
448    bool OldParamHasDfl = OldParam->hasDefaultArg();
449    bool NewParamHasDfl = NewParam->hasDefaultArg();
450
451    NamedDecl *ND = Old;
452    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
453      // Ignore default parameters of old decl if they are not in
454      // the same scope.
455      OldParamHasDfl = false;
456
457    if (OldParamHasDfl && NewParamHasDfl) {
458
459      unsigned DiagDefaultParamID =
460        diag::err_param_default_argument_redefinition;
461
462      // MSVC accepts that default parameters be redefined for member functions
463      // of template class. The new default parameter's value is ignored.
464      Invalid = true;
465      if (getLangOpts().MicrosoftExt) {
466        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
467        if (MD && MD->getParent()->getDescribedClassTemplate()) {
468          // Merge the old default argument into the new parameter.
469          NewParam->setHasInheritedDefaultArg();
470          if (OldParam->hasUninstantiatedDefaultArg())
471            NewParam->setUninstantiatedDefaultArg(
472                                      OldParam->getUninstantiatedDefaultArg());
473          else
474            NewParam->setDefaultArg(OldParam->getInit());
475          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
476          Invalid = false;
477        }
478      }
479
480      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
481      // hint here. Alternatively, we could walk the type-source information
482      // for NewParam to find the last source location in the type... but it
483      // isn't worth the effort right now. This is the kind of test case that
484      // is hard to get right:
485      //   int f(int);
486      //   void g(int (*fp)(int) = f);
487      //   void g(int (*fp)(int) = &f);
488      Diag(NewParam->getLocation(), DiagDefaultParamID)
489        << NewParam->getDefaultArgRange();
490
491      // Look for the function declaration where the default argument was
492      // actually written, which may be a declaration prior to Old.
493      for (FunctionDecl *Older = Old->getPreviousDecl();
494           Older; Older = Older->getPreviousDecl()) {
495        if (!Older->getParamDecl(p)->hasDefaultArg())
496          break;
497
498        OldParam = Older->getParamDecl(p);
499      }
500
501      Diag(OldParam->getLocation(), diag::note_previous_definition)
502        << OldParam->getDefaultArgRange();
503    } else if (OldParamHasDfl) {
504      // Merge the old default argument into the new parameter.
505      // It's important to use getInit() here;  getDefaultArg()
506      // strips off any top-level ExprWithCleanups.
507      NewParam->setHasInheritedDefaultArg();
508      if (OldParam->hasUninstantiatedDefaultArg())
509        NewParam->setUninstantiatedDefaultArg(
510                                      OldParam->getUninstantiatedDefaultArg());
511      else
512        NewParam->setDefaultArg(OldParam->getInit());
513    } else if (NewParamHasDfl) {
514      if (New->getDescribedFunctionTemplate()) {
515        // Paragraph 4, quoted above, only applies to non-template functions.
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_template_redecl)
518          << NewParam->getDefaultArgRange();
519        Diag(Old->getLocation(), diag::note_template_prev_declaration)
520          << false;
521      } else if (New->getTemplateSpecializationKind()
522                   != TSK_ImplicitInstantiation &&
523                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
524        // C++ [temp.expr.spec]p21:
525        //   Default function arguments shall not be specified in a declaration
526        //   or a definition for one of the following explicit specializations:
527        //     - the explicit specialization of a function template;
528        //     - the explicit specialization of a member function template;
529        //     - the explicit specialization of a member function of a class
530        //       template where the class template specialization to which the
531        //       member function specialization belongs is implicitly
532        //       instantiated.
533        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
534          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
535          << New->getDeclName()
536          << NewParam->getDefaultArgRange();
537      } else if (New->getDeclContext()->isDependentContext()) {
538        // C++ [dcl.fct.default]p6 (DR217):
539        //   Default arguments for a member function of a class template shall
540        //   be specified on the initial declaration of the member function
541        //   within the class template.
542        //
543        // Reading the tea leaves a bit in DR217 and its reference to DR205
544        // leads me to the conclusion that one cannot add default function
545        // arguments for an out-of-line definition of a member function of a
546        // dependent type.
547        int WhichKind = 2;
548        if (CXXRecordDecl *Record
549              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
550          if (Record->getDescribedClassTemplate())
551            WhichKind = 0;
552          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
553            WhichKind = 1;
554          else
555            WhichKind = 2;
556        }
557
558        Diag(NewParam->getLocation(),
559             diag::err_param_default_argument_member_template_redecl)
560          << WhichKind
561          << NewParam->getDefaultArgRange();
562      }
563    }
564  }
565
566  // DR1344: If a default argument is added outside a class definition and that
567  // default argument makes the function a special member function, the program
568  // is ill-formed. This can only happen for constructors.
569  if (isa<CXXConstructorDecl>(New) &&
570      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
571    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
572                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
573    if (NewSM != OldSM) {
574      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
575      assert(NewParam->hasDefaultArg());
576      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
577        << NewParam->getDefaultArgRange() << NewSM;
578      Diag(Old->getLocation(), diag::note_previous_declaration);
579    }
580  }
581
582  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
583  // template has a constexpr specifier then all its declarations shall
584  // contain the constexpr specifier.
585  if (New->isConstexpr() != Old->isConstexpr()) {
586    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
587      << New << New->isConstexpr();
588    Diag(Old->getLocation(), diag::note_previous_declaration);
589    Invalid = true;
590  }
591
592  // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
593  // argument expression, that declaration shall be a definition and shall be
594  // the only declaration of the function or function template in the
595  // translation unit.
596  if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
597      functionDeclHasDefaultArgument(Old)) {
598    Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
599    Diag(Old->getLocation(), diag::note_previous_declaration);
600    Invalid = true;
601  }
602
603  if (CheckEquivalentExceptionSpec(Old, New))
604    Invalid = true;
605
606  return Invalid;
607}
608
609/// \brief Merge the exception specifications of two variable declarations.
610///
611/// This is called when there's a redeclaration of a VarDecl. The function
612/// checks if the redeclaration might have an exception specification and
613/// validates compatibility and merges the specs if necessary.
614void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
615  // Shortcut if exceptions are disabled.
616  if (!getLangOpts().CXXExceptions)
617    return;
618
619  assert(Context.hasSameType(New->getType(), Old->getType()) &&
620         "Should only be called if types are otherwise the same.");
621
622  QualType NewType = New->getType();
623  QualType OldType = Old->getType();
624
625  // We're only interested in pointers and references to functions, as well
626  // as pointers to member functions.
627  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
628    NewType = R->getPointeeType();
629    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
630  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
631    NewType = P->getPointeeType();
632    OldType = OldType->getAs<PointerType>()->getPointeeType();
633  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
634    NewType = M->getPointeeType();
635    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
636  }
637
638  if (!NewType->isFunctionProtoType())
639    return;
640
641  // There's lots of special cases for functions. For function pointers, system
642  // libraries are hopefully not as broken so that we don't need these
643  // workarounds.
644  if (CheckEquivalentExceptionSpec(
645        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
646        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
647    New->setInvalidDecl();
648  }
649}
650
651/// CheckCXXDefaultArguments - Verify that the default arguments for a
652/// function declaration are well-formed according to C++
653/// [dcl.fct.default].
654void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
655  unsigned NumParams = FD->getNumParams();
656  unsigned p;
657
658  // Find first parameter with a default argument
659  for (p = 0; p < NumParams; ++p) {
660    ParmVarDecl *Param = FD->getParamDecl(p);
661    if (Param->hasDefaultArg())
662      break;
663  }
664
665  // C++ [dcl.fct.default]p4:
666  //   In a given function declaration, all parameters
667  //   subsequent to a parameter with a default argument shall
668  //   have default arguments supplied in this or previous
669  //   declarations. A default argument shall not be redefined
670  //   by a later declaration (not even to the same value).
671  unsigned LastMissingDefaultArg = 0;
672  for (; p < NumParams; ++p) {
673    ParmVarDecl *Param = FD->getParamDecl(p);
674    if (!Param->hasDefaultArg()) {
675      if (Param->isInvalidDecl())
676        /* We already complained about this parameter. */;
677      else if (Param->getIdentifier())
678        Diag(Param->getLocation(),
679             diag::err_param_default_argument_missing_name)
680          << Param->getIdentifier();
681      else
682        Diag(Param->getLocation(),
683             diag::err_param_default_argument_missing);
684
685      LastMissingDefaultArg = p;
686    }
687  }
688
689  if (LastMissingDefaultArg > 0) {
690    // Some default arguments were missing. Clear out all of the
691    // default arguments up to (and including) the last missing
692    // default argument, so that we leave the function parameters
693    // in a semantically valid state.
694    for (p = 0; p <= LastMissingDefaultArg; ++p) {
695      ParmVarDecl *Param = FD->getParamDecl(p);
696      if (Param->hasDefaultArg()) {
697        Param->setDefaultArg(0);
698      }
699    }
700  }
701}
702
703// CheckConstexprParameterTypes - Check whether a function's parameter types
704// are all literal types. If so, return true. If not, produce a suitable
705// diagnostic and return false.
706static bool CheckConstexprParameterTypes(Sema &SemaRef,
707                                         const FunctionDecl *FD) {
708  unsigned ArgIndex = 0;
709  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
710  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
711       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
712    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
713    SourceLocation ParamLoc = PD->getLocation();
714    if (!(*i)->isDependentType() &&
715        SemaRef.RequireLiteralType(ParamLoc, *i,
716                                   diag::err_constexpr_non_literal_param,
717                                   ArgIndex+1, PD->getSourceRange(),
718                                   isa<CXXConstructorDecl>(FD)))
719      return false;
720  }
721  return true;
722}
723
724/// \brief Get diagnostic %select index for tag kind for
725/// record diagnostic message.
726/// WARNING: Indexes apply to particular diagnostics only!
727///
728/// \returns diagnostic %select index.
729static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
730  switch (Tag) {
731  case TTK_Struct: return 0;
732  case TTK_Interface: return 1;
733  case TTK_Class:  return 2;
734  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
735  }
736}
737
738// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
739// the requirements of a constexpr function definition or a constexpr
740// constructor definition. If so, return true. If not, produce appropriate
741// diagnostics and return false.
742//
743// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
744bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
745  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
746  if (MD && MD->isInstance()) {
747    // C++11 [dcl.constexpr]p4:
748    //  The definition of a constexpr constructor shall satisfy the following
749    //  constraints:
750    //  - the class shall not have any virtual base classes;
751    const CXXRecordDecl *RD = MD->getParent();
752    if (RD->getNumVBases()) {
753      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
754        << isa<CXXConstructorDecl>(NewFD)
755        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
756      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
757             E = RD->vbases_end(); I != E; ++I)
758        Diag(I->getLocStart(),
759             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
760      return false;
761    }
762  }
763
764  if (!isa<CXXConstructorDecl>(NewFD)) {
765    // C++11 [dcl.constexpr]p3:
766    //  The definition of a constexpr function shall satisfy the following
767    //  constraints:
768    // - it shall not be virtual;
769    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
770    if (Method && Method->isVirtual()) {
771      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
772
773      // If it's not obvious why this function is virtual, find an overridden
774      // function which uses the 'virtual' keyword.
775      const CXXMethodDecl *WrittenVirtual = Method;
776      while (!WrittenVirtual->isVirtualAsWritten())
777        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
778      if (WrittenVirtual != Method)
779        Diag(WrittenVirtual->getLocation(),
780             diag::note_overridden_virtual_function);
781      return false;
782    }
783
784    // - its return type shall be a literal type;
785    QualType RT = NewFD->getResultType();
786    if (!RT->isDependentType() &&
787        RequireLiteralType(NewFD->getLocation(), RT,
788                           diag::err_constexpr_non_literal_return))
789      return false;
790  }
791
792  // - each of its parameter types shall be a literal type;
793  if (!CheckConstexprParameterTypes(*this, NewFD))
794    return false;
795
796  return true;
797}
798
799/// Check the given declaration statement is legal within a constexpr function
800/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
801///
802/// \return true if the body is OK (maybe only as an extension), false if we
803///         have diagnosed a problem.
804static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
805                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
806  // C++11 [dcl.constexpr]p3 and p4:
807  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
808  //  contain only
809  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
810         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
811    switch ((*DclIt)->getKind()) {
812    case Decl::StaticAssert:
813    case Decl::Using:
814    case Decl::UsingShadow:
815    case Decl::UsingDirective:
816    case Decl::UnresolvedUsingTypename:
817    case Decl::UnresolvedUsingValue:
818      //   - static_assert-declarations
819      //   - using-declarations,
820      //   - using-directives,
821      continue;
822
823    case Decl::Typedef:
824    case Decl::TypeAlias: {
825      //   - typedef declarations and alias-declarations that do not define
826      //     classes or enumerations,
827      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
828      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
829        // Don't allow variably-modified types in constexpr functions.
830        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
831        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
832          << TL.getSourceRange() << TL.getType()
833          << isa<CXXConstructorDecl>(Dcl);
834        return false;
835      }
836      continue;
837    }
838
839    case Decl::Enum:
840    case Decl::CXXRecord:
841      // C++1y allows types to be defined, not just declared.
842      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
843        SemaRef.Diag(DS->getLocStart(),
844                     SemaRef.getLangOpts().CPlusPlus1y
845                       ? diag::warn_cxx11_compat_constexpr_type_definition
846                       : diag::ext_constexpr_type_definition)
847          << isa<CXXConstructorDecl>(Dcl);
848      continue;
849
850    case Decl::EnumConstant:
851    case Decl::IndirectField:
852    case Decl::ParmVar:
853      // These can only appear with other declarations which are banned in
854      // C++11 and permitted in C++1y, so ignore them.
855      continue;
856
857    case Decl::Var: {
858      // C++1y [dcl.constexpr]p3 allows anything except:
859      //   a definition of a variable of non-literal type or of static or
860      //   thread storage duration or for which no initialization is performed.
861      VarDecl *VD = cast<VarDecl>(*DclIt);
862      if (VD->isThisDeclarationADefinition()) {
863        if (VD->isStaticLocal()) {
864          SemaRef.Diag(VD->getLocation(),
865                       diag::err_constexpr_local_var_static)
866            << isa<CXXConstructorDecl>(Dcl)
867            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
868          return false;
869        }
870        if (!VD->getType()->isDependentType() &&
871            SemaRef.RequireLiteralType(
872              VD->getLocation(), VD->getType(),
873              diag::err_constexpr_local_var_non_literal_type,
874              isa<CXXConstructorDecl>(Dcl)))
875          return false;
876        if (!VD->hasInit()) {
877          SemaRef.Diag(VD->getLocation(),
878                       diag::err_constexpr_local_var_no_init)
879            << isa<CXXConstructorDecl>(Dcl);
880          return false;
881        }
882      }
883      SemaRef.Diag(VD->getLocation(),
884                   SemaRef.getLangOpts().CPlusPlus1y
885                    ? diag::warn_cxx11_compat_constexpr_local_var
886                    : diag::ext_constexpr_local_var)
887        << isa<CXXConstructorDecl>(Dcl);
888      continue;
889    }
890
891    case Decl::NamespaceAlias:
892    case Decl::Function:
893      // These are disallowed in C++11 and permitted in C++1y. Allow them
894      // everywhere as an extension.
895      if (!Cxx1yLoc.isValid())
896        Cxx1yLoc = DS->getLocStart();
897      continue;
898
899    default:
900      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
901        << isa<CXXConstructorDecl>(Dcl);
902      return false;
903    }
904  }
905
906  return true;
907}
908
909/// Check that the given field is initialized within a constexpr constructor.
910///
911/// \param Dcl The constexpr constructor being checked.
912/// \param Field The field being checked. This may be a member of an anonymous
913///        struct or union nested within the class being checked.
914/// \param Inits All declarations, including anonymous struct/union members and
915///        indirect members, for which any initialization was provided.
916/// \param Diagnosed Set to true if an error is produced.
917static void CheckConstexprCtorInitializer(Sema &SemaRef,
918                                          const FunctionDecl *Dcl,
919                                          FieldDecl *Field,
920                                          llvm::SmallSet<Decl*, 16> &Inits,
921                                          bool &Diagnosed) {
922  if (Field->isUnnamedBitfield())
923    return;
924
925  if (Field->isAnonymousStructOrUnion() &&
926      Field->getType()->getAsCXXRecordDecl()->isEmpty())
927    return;
928
929  if (!Inits.count(Field)) {
930    if (!Diagnosed) {
931      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
932      Diagnosed = true;
933    }
934    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
935  } else if (Field->isAnonymousStructOrUnion()) {
936    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
937    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
938         I != E; ++I)
939      // If an anonymous union contains an anonymous struct of which any member
940      // is initialized, all members must be initialized.
941      if (!RD->isUnion() || Inits.count(*I))
942        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
943  }
944}
945
946/// Check the provided statement is allowed in a constexpr function
947/// definition.
948static bool
949CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
950                           llvm::SmallVectorImpl<SourceLocation> &ReturnStmts,
951                           SourceLocation &Cxx1yLoc) {
952  // - its function-body shall be [...] a compound-statement that contains only
953  switch (S->getStmtClass()) {
954  case Stmt::NullStmtClass:
955    //   - null statements,
956    return true;
957
958  case Stmt::DeclStmtClass:
959    //   - static_assert-declarations
960    //   - using-declarations,
961    //   - using-directives,
962    //   - typedef declarations and alias-declarations that do not define
963    //     classes or enumerations,
964    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
965      return false;
966    return true;
967
968  case Stmt::ReturnStmtClass:
969    //   - and exactly one return statement;
970    if (isa<CXXConstructorDecl>(Dcl)) {
971      // C++1y allows return statements in constexpr constructors.
972      if (!Cxx1yLoc.isValid())
973        Cxx1yLoc = S->getLocStart();
974      return true;
975    }
976
977    ReturnStmts.push_back(S->getLocStart());
978    return true;
979
980  case Stmt::CompoundStmtClass: {
981    // C++1y allows compound-statements.
982    if (!Cxx1yLoc.isValid())
983      Cxx1yLoc = S->getLocStart();
984
985    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
986    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
987           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
988      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
989                                      Cxx1yLoc))
990        return false;
991    }
992    return true;
993  }
994
995  case Stmt::AttributedStmtClass:
996    if (!Cxx1yLoc.isValid())
997      Cxx1yLoc = S->getLocStart();
998    return true;
999
1000  case Stmt::IfStmtClass: {
1001    // C++1y allows if-statements.
1002    if (!Cxx1yLoc.isValid())
1003      Cxx1yLoc = S->getLocStart();
1004
1005    IfStmt *If = cast<IfStmt>(S);
1006    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1007                                    Cxx1yLoc))
1008      return false;
1009    if (If->getElse() &&
1010        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1011                                    Cxx1yLoc))
1012      return false;
1013    return true;
1014  }
1015
1016  case Stmt::WhileStmtClass:
1017  case Stmt::DoStmtClass:
1018  case Stmt::ForStmtClass:
1019  case Stmt::CXXForRangeStmtClass:
1020  case Stmt::ContinueStmtClass:
1021    // C++1y allows all of these. We don't allow them as extensions in C++11,
1022    // because they don't make sense without variable mutation.
1023    if (!SemaRef.getLangOpts().CPlusPlus1y)
1024      break;
1025    if (!Cxx1yLoc.isValid())
1026      Cxx1yLoc = S->getLocStart();
1027    for (Stmt::child_range Children = S->children(); Children; ++Children)
1028      if (*Children &&
1029          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1030                                      Cxx1yLoc))
1031        return false;
1032    return true;
1033
1034  case Stmt::SwitchStmtClass:
1035  case Stmt::CaseStmtClass:
1036  case Stmt::DefaultStmtClass:
1037  case Stmt::BreakStmtClass:
1038    // C++1y allows switch-statements, and since they don't need variable
1039    // mutation, we can reasonably allow them in C++11 as an extension.
1040    if (!Cxx1yLoc.isValid())
1041      Cxx1yLoc = S->getLocStart();
1042    for (Stmt::child_range Children = S->children(); Children; ++Children)
1043      if (*Children &&
1044          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1045                                      Cxx1yLoc))
1046        return false;
1047    return true;
1048
1049  default:
1050    if (!isa<Expr>(S))
1051      break;
1052
1053    // C++1y allows expression-statements.
1054    if (!Cxx1yLoc.isValid())
1055      Cxx1yLoc = S->getLocStart();
1056    return true;
1057  }
1058
1059  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1060    << isa<CXXConstructorDecl>(Dcl);
1061  return false;
1062}
1063
1064/// Check the body for the given constexpr function declaration only contains
1065/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1066///
1067/// \return true if the body is OK, false if we have diagnosed a problem.
1068bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1069  if (isa<CXXTryStmt>(Body)) {
1070    // C++11 [dcl.constexpr]p3:
1071    //  The definition of a constexpr function shall satisfy the following
1072    //  constraints: [...]
1073    // - its function-body shall be = delete, = default, or a
1074    //   compound-statement
1075    //
1076    // C++11 [dcl.constexpr]p4:
1077    //  In the definition of a constexpr constructor, [...]
1078    // - its function-body shall not be a function-try-block;
1079    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1080      << isa<CXXConstructorDecl>(Dcl);
1081    return false;
1082  }
1083
1084  SmallVector<SourceLocation, 4> ReturnStmts;
1085
1086  // - its function-body shall be [...] a compound-statement that contains only
1087  //   [... list of cases ...]
1088  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1089  SourceLocation Cxx1yLoc;
1090  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1091         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1092    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1093      return false;
1094  }
1095
1096  if (Cxx1yLoc.isValid())
1097    Diag(Cxx1yLoc,
1098         getLangOpts().CPlusPlus1y
1099           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1100           : diag::ext_constexpr_body_invalid_stmt)
1101      << isa<CXXConstructorDecl>(Dcl);
1102
1103  if (const CXXConstructorDecl *Constructor
1104        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1105    const CXXRecordDecl *RD = Constructor->getParent();
1106    // DR1359:
1107    // - every non-variant non-static data member and base class sub-object
1108    //   shall be initialized;
1109    // - if the class is a non-empty union, or for each non-empty anonymous
1110    //   union member of a non-union class, exactly one non-static data member
1111    //   shall be initialized;
1112    if (RD->isUnion()) {
1113      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1114        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1115        return false;
1116      }
1117    } else if (!Constructor->isDependentContext() &&
1118               !Constructor->isDelegatingConstructor()) {
1119      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1120
1121      // Skip detailed checking if we have enough initializers, and we would
1122      // allow at most one initializer per member.
1123      bool AnyAnonStructUnionMembers = false;
1124      unsigned Fields = 0;
1125      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1126           E = RD->field_end(); I != E; ++I, ++Fields) {
1127        if (I->isAnonymousStructOrUnion()) {
1128          AnyAnonStructUnionMembers = true;
1129          break;
1130        }
1131      }
1132      if (AnyAnonStructUnionMembers ||
1133          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1134        // Check initialization of non-static data members. Base classes are
1135        // always initialized so do not need to be checked. Dependent bases
1136        // might not have initializers in the member initializer list.
1137        llvm::SmallSet<Decl*, 16> Inits;
1138        for (CXXConstructorDecl::init_const_iterator
1139               I = Constructor->init_begin(), E = Constructor->init_end();
1140             I != E; ++I) {
1141          if (FieldDecl *FD = (*I)->getMember())
1142            Inits.insert(FD);
1143          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1144            Inits.insert(ID->chain_begin(), ID->chain_end());
1145        }
1146
1147        bool Diagnosed = false;
1148        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1149             E = RD->field_end(); I != E; ++I)
1150          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1151        if (Diagnosed)
1152          return false;
1153      }
1154    }
1155  } else {
1156    if (ReturnStmts.empty()) {
1157      // C++1y doesn't require constexpr functions to contain a 'return'
1158      // statement. We still do, unless the return type is void, because
1159      // otherwise if there's no return statement, the function cannot
1160      // be used in a core constant expression.
1161      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1162      Diag(Dcl->getLocation(),
1163           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1164              : diag::err_constexpr_body_no_return);
1165      return OK;
1166    }
1167    if (ReturnStmts.size() > 1) {
1168      Diag(ReturnStmts.back(),
1169           getLangOpts().CPlusPlus1y
1170             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1171             : diag::ext_constexpr_body_multiple_return);
1172      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1173        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1174    }
1175  }
1176
1177  // C++11 [dcl.constexpr]p5:
1178  //   if no function argument values exist such that the function invocation
1179  //   substitution would produce a constant expression, the program is
1180  //   ill-formed; no diagnostic required.
1181  // C++11 [dcl.constexpr]p3:
1182  //   - every constructor call and implicit conversion used in initializing the
1183  //     return value shall be one of those allowed in a constant expression.
1184  // C++11 [dcl.constexpr]p4:
1185  //   - every constructor involved in initializing non-static data members and
1186  //     base class sub-objects shall be a constexpr constructor.
1187  SmallVector<PartialDiagnosticAt, 8> Diags;
1188  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1189    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1190      << isa<CXXConstructorDecl>(Dcl);
1191    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1192      Diag(Diags[I].first, Diags[I].second);
1193    // Don't return false here: we allow this for compatibility in
1194    // system headers.
1195  }
1196
1197  return true;
1198}
1199
1200/// isCurrentClassName - Determine whether the identifier II is the
1201/// name of the class type currently being defined. In the case of
1202/// nested classes, this will only return true if II is the name of
1203/// the innermost class.
1204bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1205                              const CXXScopeSpec *SS) {
1206  assert(getLangOpts().CPlusPlus && "No class names in C!");
1207
1208  CXXRecordDecl *CurDecl;
1209  if (SS && SS->isSet() && !SS->isInvalid()) {
1210    DeclContext *DC = computeDeclContext(*SS, true);
1211    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1212  } else
1213    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1214
1215  if (CurDecl && CurDecl->getIdentifier())
1216    return &II == CurDecl->getIdentifier();
1217  else
1218    return false;
1219}
1220
1221/// \brief Determine whether the given class is a base class of the given
1222/// class, including looking at dependent bases.
1223static bool findCircularInheritance(const CXXRecordDecl *Class,
1224                                    const CXXRecordDecl *Current) {
1225  SmallVector<const CXXRecordDecl*, 8> Queue;
1226
1227  Class = Class->getCanonicalDecl();
1228  while (true) {
1229    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1230                                                  E = Current->bases_end();
1231         I != E; ++I) {
1232      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1233      if (!Base)
1234        continue;
1235
1236      Base = Base->getDefinition();
1237      if (!Base)
1238        continue;
1239
1240      if (Base->getCanonicalDecl() == Class)
1241        return true;
1242
1243      Queue.push_back(Base);
1244    }
1245
1246    if (Queue.empty())
1247      return false;
1248
1249    Current = Queue.back();
1250    Queue.pop_back();
1251  }
1252
1253  return false;
1254}
1255
1256/// \brief Check the validity of a C++ base class specifier.
1257///
1258/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1259/// and returns NULL otherwise.
1260CXXBaseSpecifier *
1261Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1262                         SourceRange SpecifierRange,
1263                         bool Virtual, AccessSpecifier Access,
1264                         TypeSourceInfo *TInfo,
1265                         SourceLocation EllipsisLoc) {
1266  QualType BaseType = TInfo->getType();
1267
1268  // C++ [class.union]p1:
1269  //   A union shall not have base classes.
1270  if (Class->isUnion()) {
1271    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1272      << SpecifierRange;
1273    return 0;
1274  }
1275
1276  if (EllipsisLoc.isValid() &&
1277      !TInfo->getType()->containsUnexpandedParameterPack()) {
1278    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1279      << TInfo->getTypeLoc().getSourceRange();
1280    EllipsisLoc = SourceLocation();
1281  }
1282
1283  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1284
1285  if (BaseType->isDependentType()) {
1286    // Make sure that we don't have circular inheritance among our dependent
1287    // bases. For non-dependent bases, the check for completeness below handles
1288    // this.
1289    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1290      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1291          ((BaseDecl = BaseDecl->getDefinition()) &&
1292           findCircularInheritance(Class, BaseDecl))) {
1293        Diag(BaseLoc, diag::err_circular_inheritance)
1294          << BaseType << Context.getTypeDeclType(Class);
1295
1296        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1297          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1298            << BaseType;
1299
1300        return 0;
1301      }
1302    }
1303
1304    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1305                                          Class->getTagKind() == TTK_Class,
1306                                          Access, TInfo, EllipsisLoc);
1307  }
1308
1309  // Base specifiers must be record types.
1310  if (!BaseType->isRecordType()) {
1311    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1312    return 0;
1313  }
1314
1315  // C++ [class.union]p1:
1316  //   A union shall not be used as a base class.
1317  if (BaseType->isUnionType()) {
1318    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1319    return 0;
1320  }
1321
1322  // C++ [class.derived]p2:
1323  //   The class-name in a base-specifier shall not be an incompletely
1324  //   defined class.
1325  if (RequireCompleteType(BaseLoc, BaseType,
1326                          diag::err_incomplete_base_class, SpecifierRange)) {
1327    Class->setInvalidDecl();
1328    return 0;
1329  }
1330
1331  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1332  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1333  assert(BaseDecl && "Record type has no declaration");
1334  BaseDecl = BaseDecl->getDefinition();
1335  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1336  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1337  assert(CXXBaseDecl && "Base type is not a C++ type");
1338
1339  // C++ [class]p3:
1340  //   If a class is marked final and it appears as a base-type-specifier in
1341  //   base-clause, the program is ill-formed.
1342  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1343    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1344      << CXXBaseDecl->getDeclName();
1345    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1346      << CXXBaseDecl->getDeclName();
1347    return 0;
1348  }
1349
1350  if (BaseDecl->isInvalidDecl())
1351    Class->setInvalidDecl();
1352
1353  // Create the base specifier.
1354  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1355                                        Class->getTagKind() == TTK_Class,
1356                                        Access, TInfo, EllipsisLoc);
1357}
1358
1359/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1360/// one entry in the base class list of a class specifier, for
1361/// example:
1362///    class foo : public bar, virtual private baz {
1363/// 'public bar' and 'virtual private baz' are each base-specifiers.
1364BaseResult
1365Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1366                         ParsedAttributes &Attributes,
1367                         bool Virtual, AccessSpecifier Access,
1368                         ParsedType basetype, SourceLocation BaseLoc,
1369                         SourceLocation EllipsisLoc) {
1370  if (!classdecl)
1371    return true;
1372
1373  AdjustDeclIfTemplate(classdecl);
1374  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1375  if (!Class)
1376    return true;
1377
1378  // We do not support any C++11 attributes on base-specifiers yet.
1379  // Diagnose any attributes we see.
1380  if (!Attributes.empty()) {
1381    for (AttributeList *Attr = Attributes.getList(); Attr;
1382         Attr = Attr->getNext()) {
1383      if (Attr->isInvalid() ||
1384          Attr->getKind() == AttributeList::IgnoredAttribute)
1385        continue;
1386      Diag(Attr->getLoc(),
1387           Attr->getKind() == AttributeList::UnknownAttribute
1388             ? diag::warn_unknown_attribute_ignored
1389             : diag::err_base_specifier_attribute)
1390        << Attr->getName();
1391    }
1392  }
1393
1394  TypeSourceInfo *TInfo = 0;
1395  GetTypeFromParser(basetype, &TInfo);
1396
1397  if (EllipsisLoc.isInvalid() &&
1398      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1399                                      UPPC_BaseType))
1400    return true;
1401
1402  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1403                                                      Virtual, Access, TInfo,
1404                                                      EllipsisLoc))
1405    return BaseSpec;
1406  else
1407    Class->setInvalidDecl();
1408
1409  return true;
1410}
1411
1412/// \brief Performs the actual work of attaching the given base class
1413/// specifiers to a C++ class.
1414bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1415                                unsigned NumBases) {
1416 if (NumBases == 0)
1417    return false;
1418
1419  // Used to keep track of which base types we have already seen, so
1420  // that we can properly diagnose redundant direct base types. Note
1421  // that the key is always the unqualified canonical type of the base
1422  // class.
1423  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1424
1425  // Copy non-redundant base specifiers into permanent storage.
1426  unsigned NumGoodBases = 0;
1427  bool Invalid = false;
1428  for (unsigned idx = 0; idx < NumBases; ++idx) {
1429    QualType NewBaseType
1430      = Context.getCanonicalType(Bases[idx]->getType());
1431    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1432
1433    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1434    if (KnownBase) {
1435      // C++ [class.mi]p3:
1436      //   A class shall not be specified as a direct base class of a
1437      //   derived class more than once.
1438      Diag(Bases[idx]->getLocStart(),
1439           diag::err_duplicate_base_class)
1440        << KnownBase->getType()
1441        << Bases[idx]->getSourceRange();
1442
1443      // Delete the duplicate base class specifier; we're going to
1444      // overwrite its pointer later.
1445      Context.Deallocate(Bases[idx]);
1446
1447      Invalid = true;
1448    } else {
1449      // Okay, add this new base class.
1450      KnownBase = Bases[idx];
1451      Bases[NumGoodBases++] = Bases[idx];
1452      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1453        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1454        if (Class->isInterface() &&
1455              (!RD->isInterface() ||
1456               KnownBase->getAccessSpecifier() != AS_public)) {
1457          // The Microsoft extension __interface does not permit bases that
1458          // are not themselves public interfaces.
1459          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1460            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1461            << RD->getSourceRange();
1462          Invalid = true;
1463        }
1464        if (RD->hasAttr<WeakAttr>())
1465          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1466      }
1467    }
1468  }
1469
1470  // Attach the remaining base class specifiers to the derived class.
1471  Class->setBases(Bases, NumGoodBases);
1472
1473  // Delete the remaining (good) base class specifiers, since their
1474  // data has been copied into the CXXRecordDecl.
1475  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1476    Context.Deallocate(Bases[idx]);
1477
1478  return Invalid;
1479}
1480
1481/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1482/// class, after checking whether there are any duplicate base
1483/// classes.
1484void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1485                               unsigned NumBases) {
1486  if (!ClassDecl || !Bases || !NumBases)
1487    return;
1488
1489  AdjustDeclIfTemplate(ClassDecl);
1490  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1491                       (CXXBaseSpecifier**)(Bases), NumBases);
1492}
1493
1494/// \brief Determine whether the type \p Derived is a C++ class that is
1495/// derived from the type \p Base.
1496bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1497  if (!getLangOpts().CPlusPlus)
1498    return false;
1499
1500  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1501  if (!DerivedRD)
1502    return false;
1503
1504  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1505  if (!BaseRD)
1506    return false;
1507
1508  // If either the base or the derived type is invalid, don't try to
1509  // check whether one is derived from the other.
1510  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1511    return false;
1512
1513  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1514  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1515}
1516
1517/// \brief Determine whether the type \p Derived is a C++ class that is
1518/// derived from the type \p Base.
1519bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1520  if (!getLangOpts().CPlusPlus)
1521    return false;
1522
1523  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1524  if (!DerivedRD)
1525    return false;
1526
1527  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1528  if (!BaseRD)
1529    return false;
1530
1531  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1532}
1533
1534void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1535                              CXXCastPath &BasePathArray) {
1536  assert(BasePathArray.empty() && "Base path array must be empty!");
1537  assert(Paths.isRecordingPaths() && "Must record paths!");
1538
1539  const CXXBasePath &Path = Paths.front();
1540
1541  // We first go backward and check if we have a virtual base.
1542  // FIXME: It would be better if CXXBasePath had the base specifier for
1543  // the nearest virtual base.
1544  unsigned Start = 0;
1545  for (unsigned I = Path.size(); I != 0; --I) {
1546    if (Path[I - 1].Base->isVirtual()) {
1547      Start = I - 1;
1548      break;
1549    }
1550  }
1551
1552  // Now add all bases.
1553  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1554    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1555}
1556
1557/// \brief Determine whether the given base path includes a virtual
1558/// base class.
1559bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1560  for (CXXCastPath::const_iterator B = BasePath.begin(),
1561                                BEnd = BasePath.end();
1562       B != BEnd; ++B)
1563    if ((*B)->isVirtual())
1564      return true;
1565
1566  return false;
1567}
1568
1569/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1570/// conversion (where Derived and Base are class types) is
1571/// well-formed, meaning that the conversion is unambiguous (and
1572/// that all of the base classes are accessible). Returns true
1573/// and emits a diagnostic if the code is ill-formed, returns false
1574/// otherwise. Loc is the location where this routine should point to
1575/// if there is an error, and Range is the source range to highlight
1576/// if there is an error.
1577bool
1578Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1579                                   unsigned InaccessibleBaseID,
1580                                   unsigned AmbigiousBaseConvID,
1581                                   SourceLocation Loc, SourceRange Range,
1582                                   DeclarationName Name,
1583                                   CXXCastPath *BasePath) {
1584  // First, determine whether the path from Derived to Base is
1585  // ambiguous. This is slightly more expensive than checking whether
1586  // the Derived to Base conversion exists, because here we need to
1587  // explore multiple paths to determine if there is an ambiguity.
1588  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1589                     /*DetectVirtual=*/false);
1590  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1591  assert(DerivationOkay &&
1592         "Can only be used with a derived-to-base conversion");
1593  (void)DerivationOkay;
1594
1595  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1596    if (InaccessibleBaseID) {
1597      // Check that the base class can be accessed.
1598      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1599                                   InaccessibleBaseID)) {
1600        case AR_inaccessible:
1601          return true;
1602        case AR_accessible:
1603        case AR_dependent:
1604        case AR_delayed:
1605          break;
1606      }
1607    }
1608
1609    // Build a base path if necessary.
1610    if (BasePath)
1611      BuildBasePathArray(Paths, *BasePath);
1612    return false;
1613  }
1614
1615  if (AmbigiousBaseConvID) {
1616    // We know that the derived-to-base conversion is ambiguous, and
1617    // we're going to produce a diagnostic. Perform the derived-to-base
1618    // search just one more time to compute all of the possible paths so
1619    // that we can print them out. This is more expensive than any of
1620    // the previous derived-to-base checks we've done, but at this point
1621    // performance isn't as much of an issue.
1622    Paths.clear();
1623    Paths.setRecordingPaths(true);
1624    bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1625    assert(StillOkay && "Can only be used with a derived-to-base conversion");
1626    (void)StillOkay;
1627
1628    // Build up a textual representation of the ambiguous paths, e.g.,
1629    // D -> B -> A, that will be used to illustrate the ambiguous
1630    // conversions in the diagnostic. We only print one of the paths
1631    // to each base class subobject.
1632    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1633
1634    Diag(Loc, AmbigiousBaseConvID)
1635    << Derived << Base << PathDisplayStr << Range << Name;
1636  }
1637  return true;
1638}
1639
1640bool
1641Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1642                                   SourceLocation Loc, SourceRange Range,
1643                                   CXXCastPath *BasePath,
1644                                   bool IgnoreAccess) {
1645  return CheckDerivedToBaseConversion(Derived, Base,
1646                                      IgnoreAccess ? 0
1647                                       : diag::err_upcast_to_inaccessible_base,
1648                                      diag::err_ambiguous_derived_to_base_conv,
1649                                      Loc, Range, DeclarationName(),
1650                                      BasePath);
1651}
1652
1653
1654/// @brief Builds a string representing ambiguous paths from a
1655/// specific derived class to different subobjects of the same base
1656/// class.
1657///
1658/// This function builds a string that can be used in error messages
1659/// to show the different paths that one can take through the
1660/// inheritance hierarchy to go from the derived class to different
1661/// subobjects of a base class. The result looks something like this:
1662/// @code
1663/// struct D -> struct B -> struct A
1664/// struct D -> struct C -> struct A
1665/// @endcode
1666std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1667  std::string PathDisplayStr;
1668  std::set<unsigned> DisplayedPaths;
1669  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1670       Path != Paths.end(); ++Path) {
1671    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1672      // We haven't displayed a path to this particular base
1673      // class subobject yet.
1674      PathDisplayStr += "\n    ";
1675      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1676      for (CXXBasePath::const_iterator Element = Path->begin();
1677           Element != Path->end(); ++Element)
1678        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1679    }
1680  }
1681
1682  return PathDisplayStr;
1683}
1684
1685//===----------------------------------------------------------------------===//
1686// C++ class member Handling
1687//===----------------------------------------------------------------------===//
1688
1689/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1690bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1691                                SourceLocation ASLoc,
1692                                SourceLocation ColonLoc,
1693                                AttributeList *Attrs) {
1694  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1695  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1696                                                  ASLoc, ColonLoc);
1697  CurContext->addHiddenDecl(ASDecl);
1698  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1699}
1700
1701/// CheckOverrideControl - Check C++11 override control semantics.
1702void Sema::CheckOverrideControl(Decl *D) {
1703  if (D->isInvalidDecl())
1704    return;
1705
1706  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1707
1708  // Do we know which functions this declaration might be overriding?
1709  bool OverridesAreKnown = !MD ||
1710      (!MD->getParent()->hasAnyDependentBases() &&
1711       !MD->getType()->isDependentType());
1712
1713  if (!MD || !MD->isVirtual()) {
1714    if (OverridesAreKnown) {
1715      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1716        Diag(OA->getLocation(),
1717             diag::override_keyword_only_allowed_on_virtual_member_functions)
1718          << "override" << FixItHint::CreateRemoval(OA->getLocation());
1719        D->dropAttr<OverrideAttr>();
1720      }
1721      if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1722        Diag(FA->getLocation(),
1723             diag::override_keyword_only_allowed_on_virtual_member_functions)
1724          << "final" << FixItHint::CreateRemoval(FA->getLocation());
1725        D->dropAttr<FinalAttr>();
1726      }
1727    }
1728    return;
1729  }
1730
1731  if (!OverridesAreKnown)
1732    return;
1733
1734  // C++11 [class.virtual]p5:
1735  //   If a virtual function is marked with the virt-specifier override and
1736  //   does not override a member function of a base class, the program is
1737  //   ill-formed.
1738  bool HasOverriddenMethods =
1739    MD->begin_overridden_methods() != MD->end_overridden_methods();
1740  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1741    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1742      << MD->getDeclName();
1743}
1744
1745/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1746/// function overrides a virtual member function marked 'final', according to
1747/// C++11 [class.virtual]p4.
1748bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1749                                                  const CXXMethodDecl *Old) {
1750  if (!Old->hasAttr<FinalAttr>())
1751    return false;
1752
1753  Diag(New->getLocation(), diag::err_final_function_overridden)
1754    << New->getDeclName();
1755  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1756  return true;
1757}
1758
1759static bool InitializationHasSideEffects(const FieldDecl &FD) {
1760  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1761  // FIXME: Destruction of ObjC lifetime types has side-effects.
1762  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1763    return !RD->isCompleteDefinition() ||
1764           !RD->hasTrivialDefaultConstructor() ||
1765           !RD->hasTrivialDestructor();
1766  return false;
1767}
1768
1769static AttributeList *getMSPropertyAttr(AttributeList *list) {
1770  for (AttributeList* it = list; it != 0; it = it->getNext())
1771    if (it->isDeclspecPropertyAttribute())
1772      return it;
1773  return 0;
1774}
1775
1776/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1777/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1778/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1779/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1780/// present (but parsing it has been deferred).
1781NamedDecl *
1782Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1783                               MultiTemplateParamsArg TemplateParameterLists,
1784                               Expr *BW, const VirtSpecifiers &VS,
1785                               InClassInitStyle InitStyle) {
1786  const DeclSpec &DS = D.getDeclSpec();
1787  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1788  DeclarationName Name = NameInfo.getName();
1789  SourceLocation Loc = NameInfo.getLoc();
1790
1791  // For anonymous bitfields, the location should point to the type.
1792  if (Loc.isInvalid())
1793    Loc = D.getLocStart();
1794
1795  Expr *BitWidth = static_cast<Expr*>(BW);
1796
1797  assert(isa<CXXRecordDecl>(CurContext));
1798  assert(!DS.isFriendSpecified());
1799
1800  bool isFunc = D.isDeclarationOfFunction();
1801
1802  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1803    // The Microsoft extension __interface only permits public member functions
1804    // and prohibits constructors, destructors, operators, non-public member
1805    // functions, static methods and data members.
1806    unsigned InvalidDecl;
1807    bool ShowDeclName = true;
1808    if (!isFunc)
1809      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1810    else if (AS != AS_public)
1811      InvalidDecl = 2;
1812    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1813      InvalidDecl = 3;
1814    else switch (Name.getNameKind()) {
1815      case DeclarationName::CXXConstructorName:
1816        InvalidDecl = 4;
1817        ShowDeclName = false;
1818        break;
1819
1820      case DeclarationName::CXXDestructorName:
1821        InvalidDecl = 5;
1822        ShowDeclName = false;
1823        break;
1824
1825      case DeclarationName::CXXOperatorName:
1826      case DeclarationName::CXXConversionFunctionName:
1827        InvalidDecl = 6;
1828        break;
1829
1830      default:
1831        InvalidDecl = 0;
1832        break;
1833    }
1834
1835    if (InvalidDecl) {
1836      if (ShowDeclName)
1837        Diag(Loc, diag::err_invalid_member_in_interface)
1838          << (InvalidDecl-1) << Name;
1839      else
1840        Diag(Loc, diag::err_invalid_member_in_interface)
1841          << (InvalidDecl-1) << "";
1842      return 0;
1843    }
1844  }
1845
1846  // C++ 9.2p6: A member shall not be declared to have automatic storage
1847  // duration (auto, register) or with the extern storage-class-specifier.
1848  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1849  // data members and cannot be applied to names declared const or static,
1850  // and cannot be applied to reference members.
1851  switch (DS.getStorageClassSpec()) {
1852  case DeclSpec::SCS_unspecified:
1853  case DeclSpec::SCS_typedef:
1854  case DeclSpec::SCS_static:
1855    break;
1856  case DeclSpec::SCS_mutable:
1857    if (isFunc) {
1858      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1859
1860      // FIXME: It would be nicer if the keyword was ignored only for this
1861      // declarator. Otherwise we could get follow-up errors.
1862      D.getMutableDeclSpec().ClearStorageClassSpecs();
1863    }
1864    break;
1865  default:
1866    Diag(DS.getStorageClassSpecLoc(),
1867         diag::err_storageclass_invalid_for_member);
1868    D.getMutableDeclSpec().ClearStorageClassSpecs();
1869    break;
1870  }
1871
1872  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1873                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1874                      !isFunc);
1875
1876  if (DS.isConstexprSpecified() && isInstField) {
1877    SemaDiagnosticBuilder B =
1878        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1879    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1880    if (InitStyle == ICIS_NoInit) {
1881      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1882      D.getMutableDeclSpec().ClearConstexprSpec();
1883      const char *PrevSpec;
1884      unsigned DiagID;
1885      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1886                                         PrevSpec, DiagID, getLangOpts());
1887      (void)Failed;
1888      assert(!Failed && "Making a constexpr member const shouldn't fail");
1889    } else {
1890      B << 1;
1891      const char *PrevSpec;
1892      unsigned DiagID;
1893      if (D.getMutableDeclSpec().SetStorageClassSpec(
1894          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1895        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1896               "This is the only DeclSpec that should fail to be applied");
1897        B << 1;
1898      } else {
1899        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1900        isInstField = false;
1901      }
1902    }
1903  }
1904
1905  NamedDecl *Member;
1906  if (isInstField) {
1907    CXXScopeSpec &SS = D.getCXXScopeSpec();
1908
1909    // Data members must have identifiers for names.
1910    if (!Name.isIdentifier()) {
1911      Diag(Loc, diag::err_bad_variable_name)
1912        << Name;
1913      return 0;
1914    }
1915
1916    IdentifierInfo *II = Name.getAsIdentifierInfo();
1917
1918    // Member field could not be with "template" keyword.
1919    // So TemplateParameterLists should be empty in this case.
1920    if (TemplateParameterLists.size()) {
1921      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1922      if (TemplateParams->size()) {
1923        // There is no such thing as a member field template.
1924        Diag(D.getIdentifierLoc(), diag::err_template_member)
1925            << II
1926            << SourceRange(TemplateParams->getTemplateLoc(),
1927                TemplateParams->getRAngleLoc());
1928      } else {
1929        // There is an extraneous 'template<>' for this member.
1930        Diag(TemplateParams->getTemplateLoc(),
1931            diag::err_template_member_noparams)
1932            << II
1933            << SourceRange(TemplateParams->getTemplateLoc(),
1934                TemplateParams->getRAngleLoc());
1935      }
1936      return 0;
1937    }
1938
1939    if (SS.isSet() && !SS.isInvalid()) {
1940      // The user provided a superfluous scope specifier inside a class
1941      // definition:
1942      //
1943      // class X {
1944      //   int X::member;
1945      // };
1946      if (DeclContext *DC = computeDeclContext(SS, false))
1947        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1948      else
1949        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1950          << Name << SS.getRange();
1951
1952      SS.clear();
1953    }
1954
1955    AttributeList *MSPropertyAttr =
1956      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1957    if (MSPropertyAttr) {
1958      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1959                                BitWidth, InitStyle, AS, MSPropertyAttr);
1960      isInstField = false;
1961    } else {
1962      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1963                                BitWidth, InitStyle, AS);
1964    }
1965    assert(Member && "HandleField never returns null");
1966  } else {
1967    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
1968
1969    Member = HandleDeclarator(S, D, TemplateParameterLists);
1970    if (!Member) {
1971      return 0;
1972    }
1973
1974    // Non-instance-fields can't have a bitfield.
1975    if (BitWidth) {
1976      if (Member->isInvalidDecl()) {
1977        // don't emit another diagnostic.
1978      } else if (isa<VarDecl>(Member)) {
1979        // C++ 9.6p3: A bit-field shall not be a static member.
1980        // "static member 'A' cannot be a bit-field"
1981        Diag(Loc, diag::err_static_not_bitfield)
1982          << Name << BitWidth->getSourceRange();
1983      } else if (isa<TypedefDecl>(Member)) {
1984        // "typedef member 'x' cannot be a bit-field"
1985        Diag(Loc, diag::err_typedef_not_bitfield)
1986          << Name << BitWidth->getSourceRange();
1987      } else {
1988        // A function typedef ("typedef int f(); f a;").
1989        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1990        Diag(Loc, diag::err_not_integral_type_bitfield)
1991          << Name << cast<ValueDecl>(Member)->getType()
1992          << BitWidth->getSourceRange();
1993      }
1994
1995      BitWidth = 0;
1996      Member->setInvalidDecl();
1997    }
1998
1999    Member->setAccess(AS);
2000
2001    // If we have declared a member function template, set the access of the
2002    // templated declaration as well.
2003    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2004      FunTmpl->getTemplatedDecl()->setAccess(AS);
2005  }
2006
2007  if (VS.isOverrideSpecified())
2008    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
2009  if (VS.isFinalSpecified())
2010    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
2011
2012  if (VS.getLastLocation().isValid()) {
2013    // Update the end location of a method that has a virt-specifiers.
2014    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2015      MD->setRangeEnd(VS.getLastLocation());
2016  }
2017
2018  CheckOverrideControl(Member);
2019
2020  assert((Name || isInstField) && "No identifier for non-field ?");
2021
2022  if (isInstField) {
2023    FieldDecl *FD = cast<FieldDecl>(Member);
2024    FieldCollector->Add(FD);
2025
2026    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2027                                 FD->getLocation())
2028          != DiagnosticsEngine::Ignored) {
2029      // Remember all explicit private FieldDecls that have a name, no side
2030      // effects and are not part of a dependent type declaration.
2031      if (!FD->isImplicit() && FD->getDeclName() &&
2032          FD->getAccess() == AS_private &&
2033          !FD->hasAttr<UnusedAttr>() &&
2034          !FD->getParent()->isDependentContext() &&
2035          !InitializationHasSideEffects(*FD))
2036        UnusedPrivateFields.insert(FD);
2037    }
2038  }
2039
2040  return Member;
2041}
2042
2043namespace {
2044  class UninitializedFieldVisitor
2045      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2046    Sema &S;
2047    ValueDecl *VD;
2048  public:
2049    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2050    UninitializedFieldVisitor(Sema &S, ValueDecl *VD) : Inherited(S.Context),
2051                                                        S(S) {
2052      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2053        this->VD = IFD->getAnonField();
2054      else
2055        this->VD = VD;
2056    }
2057
2058    void HandleExpr(Expr *E) {
2059      if (!E) return;
2060
2061      // Expressions like x(x) sometimes lack the surrounding expressions
2062      // but need to be checked anyways.
2063      HandleValue(E);
2064      Visit(E);
2065    }
2066
2067    void HandleValue(Expr *E) {
2068      E = E->IgnoreParens();
2069
2070      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2071        if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2072          return;
2073
2074        // FieldME is the inner-most MemberExpr that is not an anonymous struct
2075        // or union.
2076        MemberExpr *FieldME = ME;
2077
2078        Expr *Base = E;
2079        while (isa<MemberExpr>(Base)) {
2080          ME = cast<MemberExpr>(Base);
2081
2082          if (isa<VarDecl>(ME->getMemberDecl()))
2083            return;
2084
2085          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2086            if (!FD->isAnonymousStructOrUnion())
2087              FieldME = ME;
2088
2089          Base = ME->getBase();
2090        }
2091
2092        if (VD == FieldME->getMemberDecl() && isa<CXXThisExpr>(Base)) {
2093          unsigned diag = VD->getType()->isReferenceType()
2094              ? diag::warn_reference_field_is_uninit
2095              : diag::warn_field_is_uninit;
2096          S.Diag(FieldME->getExprLoc(), diag) << VD;
2097        }
2098        return;
2099      }
2100
2101      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2102        HandleValue(CO->getTrueExpr());
2103        HandleValue(CO->getFalseExpr());
2104        return;
2105      }
2106
2107      if (BinaryConditionalOperator *BCO =
2108              dyn_cast<BinaryConditionalOperator>(E)) {
2109        HandleValue(BCO->getCommon());
2110        HandleValue(BCO->getFalseExpr());
2111        return;
2112      }
2113
2114      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2115        switch (BO->getOpcode()) {
2116        default:
2117          return;
2118        case(BO_PtrMemD):
2119        case(BO_PtrMemI):
2120          HandleValue(BO->getLHS());
2121          return;
2122        case(BO_Comma):
2123          HandleValue(BO->getRHS());
2124          return;
2125        }
2126      }
2127    }
2128
2129    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2130      if (E->getCastKind() == CK_LValueToRValue)
2131        HandleValue(E->getSubExpr());
2132
2133      Inherited::VisitImplicitCastExpr(E);
2134    }
2135
2136    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2137      Expr *Callee = E->getCallee();
2138      if (isa<MemberExpr>(Callee))
2139        HandleValue(Callee);
2140
2141      Inherited::VisitCXXMemberCallExpr(E);
2142    }
2143  };
2144  static void CheckInitExprContainsUninitializedFields(Sema &S, Expr *E,
2145                                                       ValueDecl *VD) {
2146    UninitializedFieldVisitor(S, VD).HandleExpr(E);
2147  }
2148} // namespace
2149
2150/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2151/// in-class initializer for a non-static C++ class member, and after
2152/// instantiating an in-class initializer in a class template. Such actions
2153/// are deferred until the class is complete.
2154void
2155Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2156                                       Expr *InitExpr) {
2157  FieldDecl *FD = cast<FieldDecl>(D);
2158  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2159         "must set init style when field is created");
2160
2161  if (!InitExpr) {
2162    FD->setInvalidDecl();
2163    FD->removeInClassInitializer();
2164    return;
2165  }
2166
2167  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2168    FD->setInvalidDecl();
2169    FD->removeInClassInitializer();
2170    return;
2171  }
2172
2173  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, InitLoc)
2174      != DiagnosticsEngine::Ignored) {
2175    CheckInitExprContainsUninitializedFields(*this, InitExpr, FD);
2176  }
2177
2178  ExprResult Init = InitExpr;
2179  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2180    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2181    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2182        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2183        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2184    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2185    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2186    if (Init.isInvalid()) {
2187      FD->setInvalidDecl();
2188      return;
2189    }
2190  }
2191
2192  // C++11 [class.base.init]p7:
2193  //   The initialization of each base and member constitutes a
2194  //   full-expression.
2195  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2196  if (Init.isInvalid()) {
2197    FD->setInvalidDecl();
2198    return;
2199  }
2200
2201  InitExpr = Init.release();
2202
2203  FD->setInClassInitializer(InitExpr);
2204}
2205
2206/// \brief Find the direct and/or virtual base specifiers that
2207/// correspond to the given base type, for use in base initialization
2208/// within a constructor.
2209static bool FindBaseInitializer(Sema &SemaRef,
2210                                CXXRecordDecl *ClassDecl,
2211                                QualType BaseType,
2212                                const CXXBaseSpecifier *&DirectBaseSpec,
2213                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2214  // First, check for a direct base class.
2215  DirectBaseSpec = 0;
2216  for (CXXRecordDecl::base_class_const_iterator Base
2217         = ClassDecl->bases_begin();
2218       Base != ClassDecl->bases_end(); ++Base) {
2219    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2220      // We found a direct base of this type. That's what we're
2221      // initializing.
2222      DirectBaseSpec = &*Base;
2223      break;
2224    }
2225  }
2226
2227  // Check for a virtual base class.
2228  // FIXME: We might be able to short-circuit this if we know in advance that
2229  // there are no virtual bases.
2230  VirtualBaseSpec = 0;
2231  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2232    // We haven't found a base yet; search the class hierarchy for a
2233    // virtual base class.
2234    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2235                       /*DetectVirtual=*/false);
2236    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2237                              BaseType, Paths)) {
2238      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2239           Path != Paths.end(); ++Path) {
2240        if (Path->back().Base->isVirtual()) {
2241          VirtualBaseSpec = Path->back().Base;
2242          break;
2243        }
2244      }
2245    }
2246  }
2247
2248  return DirectBaseSpec || VirtualBaseSpec;
2249}
2250
2251/// \brief Handle a C++ member initializer using braced-init-list syntax.
2252MemInitResult
2253Sema::ActOnMemInitializer(Decl *ConstructorD,
2254                          Scope *S,
2255                          CXXScopeSpec &SS,
2256                          IdentifierInfo *MemberOrBase,
2257                          ParsedType TemplateTypeTy,
2258                          const DeclSpec &DS,
2259                          SourceLocation IdLoc,
2260                          Expr *InitList,
2261                          SourceLocation EllipsisLoc) {
2262  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2263                             DS, IdLoc, InitList,
2264                             EllipsisLoc);
2265}
2266
2267/// \brief Handle a C++ member initializer using parentheses syntax.
2268MemInitResult
2269Sema::ActOnMemInitializer(Decl *ConstructorD,
2270                          Scope *S,
2271                          CXXScopeSpec &SS,
2272                          IdentifierInfo *MemberOrBase,
2273                          ParsedType TemplateTypeTy,
2274                          const DeclSpec &DS,
2275                          SourceLocation IdLoc,
2276                          SourceLocation LParenLoc,
2277                          ArrayRef<Expr *> Args,
2278                          SourceLocation RParenLoc,
2279                          SourceLocation EllipsisLoc) {
2280  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2281                                           Args, RParenLoc);
2282  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2283                             DS, IdLoc, List, EllipsisLoc);
2284}
2285
2286namespace {
2287
2288// Callback to only accept typo corrections that can be a valid C++ member
2289// intializer: either a non-static field member or a base class.
2290class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2291 public:
2292  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2293      : ClassDecl(ClassDecl) {}
2294
2295  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
2296    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2297      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2298        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2299      else
2300        return isa<TypeDecl>(ND);
2301    }
2302    return false;
2303  }
2304
2305 private:
2306  CXXRecordDecl *ClassDecl;
2307};
2308
2309}
2310
2311/// \brief Handle a C++ member initializer.
2312MemInitResult
2313Sema::BuildMemInitializer(Decl *ConstructorD,
2314                          Scope *S,
2315                          CXXScopeSpec &SS,
2316                          IdentifierInfo *MemberOrBase,
2317                          ParsedType TemplateTypeTy,
2318                          const DeclSpec &DS,
2319                          SourceLocation IdLoc,
2320                          Expr *Init,
2321                          SourceLocation EllipsisLoc) {
2322  if (!ConstructorD)
2323    return true;
2324
2325  AdjustDeclIfTemplate(ConstructorD);
2326
2327  CXXConstructorDecl *Constructor
2328    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2329  if (!Constructor) {
2330    // The user wrote a constructor initializer on a function that is
2331    // not a C++ constructor. Ignore the error for now, because we may
2332    // have more member initializers coming; we'll diagnose it just
2333    // once in ActOnMemInitializers.
2334    return true;
2335  }
2336
2337  CXXRecordDecl *ClassDecl = Constructor->getParent();
2338
2339  // C++ [class.base.init]p2:
2340  //   Names in a mem-initializer-id are looked up in the scope of the
2341  //   constructor's class and, if not found in that scope, are looked
2342  //   up in the scope containing the constructor's definition.
2343  //   [Note: if the constructor's class contains a member with the
2344  //   same name as a direct or virtual base class of the class, a
2345  //   mem-initializer-id naming the member or base class and composed
2346  //   of a single identifier refers to the class member. A
2347  //   mem-initializer-id for the hidden base class may be specified
2348  //   using a qualified name. ]
2349  if (!SS.getScopeRep() && !TemplateTypeTy) {
2350    // Look for a member, first.
2351    DeclContext::lookup_result Result
2352      = ClassDecl->lookup(MemberOrBase);
2353    if (!Result.empty()) {
2354      ValueDecl *Member;
2355      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2356          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2357        if (EllipsisLoc.isValid())
2358          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2359            << MemberOrBase
2360            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2361
2362        return BuildMemberInitializer(Member, Init, IdLoc);
2363      }
2364    }
2365  }
2366  // It didn't name a member, so see if it names a class.
2367  QualType BaseType;
2368  TypeSourceInfo *TInfo = 0;
2369
2370  if (TemplateTypeTy) {
2371    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2372  } else if (DS.getTypeSpecType() == TST_decltype) {
2373    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2374  } else {
2375    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2376    LookupParsedName(R, S, &SS);
2377
2378    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2379    if (!TyD) {
2380      if (R.isAmbiguous()) return true;
2381
2382      // We don't want access-control diagnostics here.
2383      R.suppressDiagnostics();
2384
2385      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2386        bool NotUnknownSpecialization = false;
2387        DeclContext *DC = computeDeclContext(SS, false);
2388        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2389          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2390
2391        if (!NotUnknownSpecialization) {
2392          // When the scope specifier can refer to a member of an unknown
2393          // specialization, we take it as a type name.
2394          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2395                                       SS.getWithLocInContext(Context),
2396                                       *MemberOrBase, IdLoc);
2397          if (BaseType.isNull())
2398            return true;
2399
2400          R.clear();
2401          R.setLookupName(MemberOrBase);
2402        }
2403      }
2404
2405      // If no results were found, try to correct typos.
2406      TypoCorrection Corr;
2407      MemInitializerValidatorCCC Validator(ClassDecl);
2408      if (R.empty() && BaseType.isNull() &&
2409          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2410                              Validator, ClassDecl))) {
2411        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
2412        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
2413        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2414          // We have found a non-static data member with a similar
2415          // name to what was typed; complain and initialize that
2416          // member.
2417          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2418            << MemberOrBase << true << CorrectedQuotedStr
2419            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2420          Diag(Member->getLocation(), diag::note_previous_decl)
2421            << CorrectedQuotedStr;
2422
2423          return BuildMemberInitializer(Member, Init, IdLoc);
2424        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2425          const CXXBaseSpecifier *DirectBaseSpec;
2426          const CXXBaseSpecifier *VirtualBaseSpec;
2427          if (FindBaseInitializer(*this, ClassDecl,
2428                                  Context.getTypeDeclType(Type),
2429                                  DirectBaseSpec, VirtualBaseSpec)) {
2430            // We have found a direct or virtual base class with a
2431            // similar name to what was typed; complain and initialize
2432            // that base class.
2433            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
2434              << MemberOrBase << false << CorrectedQuotedStr
2435              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
2436
2437            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
2438                                                             : VirtualBaseSpec;
2439            Diag(BaseSpec->getLocStart(),
2440                 diag::note_base_class_specified_here)
2441              << BaseSpec->getType()
2442              << BaseSpec->getSourceRange();
2443
2444            TyD = Type;
2445          }
2446        }
2447      }
2448
2449      if (!TyD && BaseType.isNull()) {
2450        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2451          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2452        return true;
2453      }
2454    }
2455
2456    if (BaseType.isNull()) {
2457      BaseType = Context.getTypeDeclType(TyD);
2458      if (SS.isSet()) {
2459        NestedNameSpecifier *Qualifier =
2460          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2461
2462        // FIXME: preserve source range information
2463        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2464      }
2465    }
2466  }
2467
2468  if (!TInfo)
2469    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2470
2471  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2472}
2473
2474/// Checks a member initializer expression for cases where reference (or
2475/// pointer) members are bound to by-value parameters (or their addresses).
2476static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2477                                               Expr *Init,
2478                                               SourceLocation IdLoc) {
2479  QualType MemberTy = Member->getType();
2480
2481  // We only handle pointers and references currently.
2482  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2483  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2484    return;
2485
2486  const bool IsPointer = MemberTy->isPointerType();
2487  if (IsPointer) {
2488    if (const UnaryOperator *Op
2489          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2490      // The only case we're worried about with pointers requires taking the
2491      // address.
2492      if (Op->getOpcode() != UO_AddrOf)
2493        return;
2494
2495      Init = Op->getSubExpr();
2496    } else {
2497      // We only handle address-of expression initializers for pointers.
2498      return;
2499    }
2500  }
2501
2502  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2503    // We only warn when referring to a non-reference parameter declaration.
2504    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2505    if (!Parameter || Parameter->getType()->isReferenceType())
2506      return;
2507
2508    S.Diag(Init->getExprLoc(),
2509           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2510                     : diag::warn_bind_ref_member_to_parameter)
2511      << Member << Parameter << Init->getSourceRange();
2512  } else {
2513    // Other initializers are fine.
2514    return;
2515  }
2516
2517  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2518    << (unsigned)IsPointer;
2519}
2520
2521MemInitResult
2522Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2523                             SourceLocation IdLoc) {
2524  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2525  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2526  assert((DirectMember || IndirectMember) &&
2527         "Member must be a FieldDecl or IndirectFieldDecl");
2528
2529  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2530    return true;
2531
2532  if (Member->isInvalidDecl())
2533    return true;
2534
2535  // Diagnose value-uses of fields to initialize themselves, e.g.
2536  //   foo(foo)
2537  // where foo is not also a parameter to the constructor.
2538  // TODO: implement -Wuninitialized and fold this into that framework.
2539  MultiExprArg Args;
2540  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2541    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2542  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2543    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2544  } else {
2545    // Template instantiation doesn't reconstruct ParenListExprs for us.
2546    Args = Init;
2547  }
2548
2549  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit, IdLoc)
2550        != DiagnosticsEngine::Ignored)
2551    for (unsigned i = 0, e = Args.size(); i != e; ++i)
2552      // FIXME: Warn about the case when other fields are used before being
2553      // initialized. For example, let this field be the i'th field. When
2554      // initializing the i'th field, throw a warning if any of the >= i'th
2555      // fields are used, as they are not yet initialized.
2556      // Right now we are only handling the case where the i'th field uses
2557      // itself in its initializer.
2558      // Also need to take into account that some fields may be initialized by
2559      // in-class initializers, see C++11 [class.base.init]p9.
2560      CheckInitExprContainsUninitializedFields(*this, Args[i], Member);
2561
2562  SourceRange InitRange = Init->getSourceRange();
2563
2564  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2565    // Can't check initialization for a member of dependent type or when
2566    // any of the arguments are type-dependent expressions.
2567    DiscardCleanupsInEvaluationContext();
2568  } else {
2569    bool InitList = false;
2570    if (isa<InitListExpr>(Init)) {
2571      InitList = true;
2572      Args = Init;
2573    }
2574
2575    // Initialize the member.
2576    InitializedEntity MemberEntity =
2577      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2578                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2579    InitializationKind Kind =
2580      InitList ? InitializationKind::CreateDirectList(IdLoc)
2581               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2582                                                  InitRange.getEnd());
2583
2584    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2585    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2586    if (MemberInit.isInvalid())
2587      return true;
2588
2589    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2590
2591    // C++11 [class.base.init]p7:
2592    //   The initialization of each base and member constitutes a
2593    //   full-expression.
2594    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2595    if (MemberInit.isInvalid())
2596      return true;
2597
2598    Init = MemberInit.get();
2599  }
2600
2601  if (DirectMember) {
2602    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2603                                            InitRange.getBegin(), Init,
2604                                            InitRange.getEnd());
2605  } else {
2606    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2607                                            InitRange.getBegin(), Init,
2608                                            InitRange.getEnd());
2609  }
2610}
2611
2612MemInitResult
2613Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2614                                 CXXRecordDecl *ClassDecl) {
2615  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2616  if (!LangOpts.CPlusPlus11)
2617    return Diag(NameLoc, diag::err_delegating_ctor)
2618      << TInfo->getTypeLoc().getLocalSourceRange();
2619  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2620
2621  bool InitList = true;
2622  MultiExprArg Args = Init;
2623  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2624    InitList = false;
2625    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2626  }
2627
2628  SourceRange InitRange = Init->getSourceRange();
2629  // Initialize the object.
2630  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2631                                     QualType(ClassDecl->getTypeForDecl(), 0));
2632  InitializationKind Kind =
2633    InitList ? InitializationKind::CreateDirectList(NameLoc)
2634             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2635                                                InitRange.getEnd());
2636  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2637  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2638                                              Args, 0);
2639  if (DelegationInit.isInvalid())
2640    return true;
2641
2642  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2643         "Delegating constructor with no target?");
2644
2645  // C++11 [class.base.init]p7:
2646  //   The initialization of each base and member constitutes a
2647  //   full-expression.
2648  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2649                                       InitRange.getBegin());
2650  if (DelegationInit.isInvalid())
2651    return true;
2652
2653  // If we are in a dependent context, template instantiation will
2654  // perform this type-checking again. Just save the arguments that we
2655  // received in a ParenListExpr.
2656  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2657  // of the information that we have about the base
2658  // initializer. However, deconstructing the ASTs is a dicey process,
2659  // and this approach is far more likely to get the corner cases right.
2660  if (CurContext->isDependentContext())
2661    DelegationInit = Owned(Init);
2662
2663  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2664                                          DelegationInit.takeAs<Expr>(),
2665                                          InitRange.getEnd());
2666}
2667
2668MemInitResult
2669Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2670                           Expr *Init, CXXRecordDecl *ClassDecl,
2671                           SourceLocation EllipsisLoc) {
2672  SourceLocation BaseLoc
2673    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2674
2675  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2676    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2677             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2678
2679  // C++ [class.base.init]p2:
2680  //   [...] Unless the mem-initializer-id names a nonstatic data
2681  //   member of the constructor's class or a direct or virtual base
2682  //   of that class, the mem-initializer is ill-formed. A
2683  //   mem-initializer-list can initialize a base class using any
2684  //   name that denotes that base class type.
2685  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2686
2687  SourceRange InitRange = Init->getSourceRange();
2688  if (EllipsisLoc.isValid()) {
2689    // This is a pack expansion.
2690    if (!BaseType->containsUnexpandedParameterPack())  {
2691      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2692        << SourceRange(BaseLoc, InitRange.getEnd());
2693
2694      EllipsisLoc = SourceLocation();
2695    }
2696  } else {
2697    // Check for any unexpanded parameter packs.
2698    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2699      return true;
2700
2701    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2702      return true;
2703  }
2704
2705  // Check for direct and virtual base classes.
2706  const CXXBaseSpecifier *DirectBaseSpec = 0;
2707  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2708  if (!Dependent) {
2709    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2710                                       BaseType))
2711      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2712
2713    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2714                        VirtualBaseSpec);
2715
2716    // C++ [base.class.init]p2:
2717    // Unless the mem-initializer-id names a nonstatic data member of the
2718    // constructor's class or a direct or virtual base of that class, the
2719    // mem-initializer is ill-formed.
2720    if (!DirectBaseSpec && !VirtualBaseSpec) {
2721      // If the class has any dependent bases, then it's possible that
2722      // one of those types will resolve to the same type as
2723      // BaseType. Therefore, just treat this as a dependent base
2724      // class initialization.  FIXME: Should we try to check the
2725      // initialization anyway? It seems odd.
2726      if (ClassDecl->hasAnyDependentBases())
2727        Dependent = true;
2728      else
2729        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2730          << BaseType << Context.getTypeDeclType(ClassDecl)
2731          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2732    }
2733  }
2734
2735  if (Dependent) {
2736    DiscardCleanupsInEvaluationContext();
2737
2738    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2739                                            /*IsVirtual=*/false,
2740                                            InitRange.getBegin(), Init,
2741                                            InitRange.getEnd(), EllipsisLoc);
2742  }
2743
2744  // C++ [base.class.init]p2:
2745  //   If a mem-initializer-id is ambiguous because it designates both
2746  //   a direct non-virtual base class and an inherited virtual base
2747  //   class, the mem-initializer is ill-formed.
2748  if (DirectBaseSpec && VirtualBaseSpec)
2749    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2750      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2751
2752  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2753  if (!BaseSpec)
2754    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2755
2756  // Initialize the base.
2757  bool InitList = true;
2758  MultiExprArg Args = Init;
2759  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2760    InitList = false;
2761    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2762  }
2763
2764  InitializedEntity BaseEntity =
2765    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2766  InitializationKind Kind =
2767    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2768             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2769                                                InitRange.getEnd());
2770  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2771  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2772  if (BaseInit.isInvalid())
2773    return true;
2774
2775  // C++11 [class.base.init]p7:
2776  //   The initialization of each base and member constitutes a
2777  //   full-expression.
2778  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2779  if (BaseInit.isInvalid())
2780    return true;
2781
2782  // If we are in a dependent context, template instantiation will
2783  // perform this type-checking again. Just save the arguments that we
2784  // received in a ParenListExpr.
2785  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2786  // of the information that we have about the base
2787  // initializer. However, deconstructing the ASTs is a dicey process,
2788  // and this approach is far more likely to get the corner cases right.
2789  if (CurContext->isDependentContext())
2790    BaseInit = Owned(Init);
2791
2792  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2793                                          BaseSpec->isVirtual(),
2794                                          InitRange.getBegin(),
2795                                          BaseInit.takeAs<Expr>(),
2796                                          InitRange.getEnd(), EllipsisLoc);
2797}
2798
2799// Create a static_cast\<T&&>(expr).
2800static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2801  if (T.isNull()) T = E->getType();
2802  QualType TargetType = SemaRef.BuildReferenceType(
2803      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2804  SourceLocation ExprLoc = E->getLocStart();
2805  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2806      TargetType, ExprLoc);
2807
2808  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2809                                   SourceRange(ExprLoc, ExprLoc),
2810                                   E->getSourceRange()).take();
2811}
2812
2813/// ImplicitInitializerKind - How an implicit base or member initializer should
2814/// initialize its base or member.
2815enum ImplicitInitializerKind {
2816  IIK_Default,
2817  IIK_Copy,
2818  IIK_Move,
2819  IIK_Inherit
2820};
2821
2822static bool
2823BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2824                             ImplicitInitializerKind ImplicitInitKind,
2825                             CXXBaseSpecifier *BaseSpec,
2826                             bool IsInheritedVirtualBase,
2827                             CXXCtorInitializer *&CXXBaseInit) {
2828  InitializedEntity InitEntity
2829    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2830                                        IsInheritedVirtualBase);
2831
2832  ExprResult BaseInit;
2833
2834  switch (ImplicitInitKind) {
2835  case IIK_Inherit: {
2836    const CXXRecordDecl *Inherited =
2837        Constructor->getInheritedConstructor()->getParent();
2838    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2839    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2840      // C++11 [class.inhctor]p8:
2841      //   Each expression in the expression-list is of the form
2842      //   static_cast<T&&>(p), where p is the name of the corresponding
2843      //   constructor parameter and T is the declared type of p.
2844      SmallVector<Expr*, 16> Args;
2845      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2846        ParmVarDecl *PD = Constructor->getParamDecl(I);
2847        ExprResult ArgExpr =
2848            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2849                                     VK_LValue, SourceLocation());
2850        if (ArgExpr.isInvalid())
2851          return true;
2852        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2853      }
2854
2855      InitializationKind InitKind = InitializationKind::CreateDirect(
2856          Constructor->getLocation(), SourceLocation(), SourceLocation());
2857      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2858      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2859      break;
2860    }
2861  }
2862  // Fall through.
2863  case IIK_Default: {
2864    InitializationKind InitKind
2865      = InitializationKind::CreateDefault(Constructor->getLocation());
2866    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2867    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2868    break;
2869  }
2870
2871  case IIK_Move:
2872  case IIK_Copy: {
2873    bool Moving = ImplicitInitKind == IIK_Move;
2874    ParmVarDecl *Param = Constructor->getParamDecl(0);
2875    QualType ParamType = Param->getType().getNonReferenceType();
2876
2877    Expr *CopyCtorArg =
2878      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2879                          SourceLocation(), Param, false,
2880                          Constructor->getLocation(), ParamType,
2881                          VK_LValue, 0);
2882
2883    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2884
2885    // Cast to the base class to avoid ambiguities.
2886    QualType ArgTy =
2887      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2888                                       ParamType.getQualifiers());
2889
2890    if (Moving) {
2891      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2892    }
2893
2894    CXXCastPath BasePath;
2895    BasePath.push_back(BaseSpec);
2896    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2897                                            CK_UncheckedDerivedToBase,
2898                                            Moving ? VK_XValue : VK_LValue,
2899                                            &BasePath).take();
2900
2901    InitializationKind InitKind
2902      = InitializationKind::CreateDirect(Constructor->getLocation(),
2903                                         SourceLocation(), SourceLocation());
2904    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
2905    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
2906    break;
2907  }
2908  }
2909
2910  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2911  if (BaseInit.isInvalid())
2912    return true;
2913
2914  CXXBaseInit =
2915    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2916               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2917                                                        SourceLocation()),
2918                                             BaseSpec->isVirtual(),
2919                                             SourceLocation(),
2920                                             BaseInit.takeAs<Expr>(),
2921                                             SourceLocation(),
2922                                             SourceLocation());
2923
2924  return false;
2925}
2926
2927static bool RefersToRValueRef(Expr *MemRef) {
2928  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2929  return Referenced->getType()->isRValueReferenceType();
2930}
2931
2932static bool
2933BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2934                               ImplicitInitializerKind ImplicitInitKind,
2935                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2936                               CXXCtorInitializer *&CXXMemberInit) {
2937  if (Field->isInvalidDecl())
2938    return true;
2939
2940  SourceLocation Loc = Constructor->getLocation();
2941
2942  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2943    bool Moving = ImplicitInitKind == IIK_Move;
2944    ParmVarDecl *Param = Constructor->getParamDecl(0);
2945    QualType ParamType = Param->getType().getNonReferenceType();
2946
2947    // Suppress copying zero-width bitfields.
2948    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2949      return false;
2950
2951    Expr *MemberExprBase =
2952      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2953                          SourceLocation(), Param, false,
2954                          Loc, ParamType, VK_LValue, 0);
2955
2956    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2957
2958    if (Moving) {
2959      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2960    }
2961
2962    // Build a reference to this field within the parameter.
2963    CXXScopeSpec SS;
2964    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2965                              Sema::LookupMemberName);
2966    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2967                                  : cast<ValueDecl>(Field), AS_public);
2968    MemberLookup.resolveKind();
2969    ExprResult CtorArg
2970      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2971                                         ParamType, Loc,
2972                                         /*IsArrow=*/false,
2973                                         SS,
2974                                         /*TemplateKWLoc=*/SourceLocation(),
2975                                         /*FirstQualifierInScope=*/0,
2976                                         MemberLookup,
2977                                         /*TemplateArgs=*/0);
2978    if (CtorArg.isInvalid())
2979      return true;
2980
2981    // C++11 [class.copy]p15:
2982    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2983    //     with static_cast<T&&>(x.m);
2984    if (RefersToRValueRef(CtorArg.get())) {
2985      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2986    }
2987
2988    // When the field we are copying is an array, create index variables for
2989    // each dimension of the array. We use these index variables to subscript
2990    // the source array, and other clients (e.g., CodeGen) will perform the
2991    // necessary iteration with these index variables.
2992    SmallVector<VarDecl *, 4> IndexVariables;
2993    QualType BaseType = Field->getType();
2994    QualType SizeType = SemaRef.Context.getSizeType();
2995    bool InitializingArray = false;
2996    while (const ConstantArrayType *Array
2997                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2998      InitializingArray = true;
2999      // Create the iteration variable for this array index.
3000      IdentifierInfo *IterationVarName = 0;
3001      {
3002        SmallString<8> Str;
3003        llvm::raw_svector_ostream OS(Str);
3004        OS << "__i" << IndexVariables.size();
3005        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3006      }
3007      VarDecl *IterationVar
3008        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3009                          IterationVarName, SizeType,
3010                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3011                          SC_None);
3012      IndexVariables.push_back(IterationVar);
3013
3014      // Create a reference to the iteration variable.
3015      ExprResult IterationVarRef
3016        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3017      assert(!IterationVarRef.isInvalid() &&
3018             "Reference to invented variable cannot fail!");
3019      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3020      assert(!IterationVarRef.isInvalid() &&
3021             "Conversion of invented variable cannot fail!");
3022
3023      // Subscript the array with this iteration variable.
3024      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3025                                                        IterationVarRef.take(),
3026                                                        Loc);
3027      if (CtorArg.isInvalid())
3028        return true;
3029
3030      BaseType = Array->getElementType();
3031    }
3032
3033    // The array subscript expression is an lvalue, which is wrong for moving.
3034    if (Moving && InitializingArray)
3035      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3036
3037    // Construct the entity that we will be initializing. For an array, this
3038    // will be first element in the array, which may require several levels
3039    // of array-subscript entities.
3040    SmallVector<InitializedEntity, 4> Entities;
3041    Entities.reserve(1 + IndexVariables.size());
3042    if (Indirect)
3043      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3044    else
3045      Entities.push_back(InitializedEntity::InitializeMember(Field));
3046    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3047      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3048                                                              0,
3049                                                              Entities.back()));
3050
3051    // Direct-initialize to use the copy constructor.
3052    InitializationKind InitKind =
3053      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3054
3055    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3056    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3057
3058    ExprResult MemberInit
3059      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3060                        MultiExprArg(&CtorArgE, 1));
3061    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3062    if (MemberInit.isInvalid())
3063      return true;
3064
3065    if (Indirect) {
3066      assert(IndexVariables.size() == 0 &&
3067             "Indirect field improperly initialized");
3068      CXXMemberInit
3069        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3070                                                   Loc, Loc,
3071                                                   MemberInit.takeAs<Expr>(),
3072                                                   Loc);
3073    } else
3074      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3075                                                 Loc, MemberInit.takeAs<Expr>(),
3076                                                 Loc,
3077                                                 IndexVariables.data(),
3078                                                 IndexVariables.size());
3079    return false;
3080  }
3081
3082  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3083         "Unhandled implicit init kind!");
3084
3085  QualType FieldBaseElementType =
3086    SemaRef.Context.getBaseElementType(Field->getType());
3087
3088  if (FieldBaseElementType->isRecordType()) {
3089    InitializedEntity InitEntity
3090      = Indirect? InitializedEntity::InitializeMember(Indirect)
3091                : InitializedEntity::InitializeMember(Field);
3092    InitializationKind InitKind =
3093      InitializationKind::CreateDefault(Loc);
3094
3095    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3096    ExprResult MemberInit =
3097      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3098
3099    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3100    if (MemberInit.isInvalid())
3101      return true;
3102
3103    if (Indirect)
3104      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3105                                                               Indirect, Loc,
3106                                                               Loc,
3107                                                               MemberInit.get(),
3108                                                               Loc);
3109    else
3110      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3111                                                               Field, Loc, Loc,
3112                                                               MemberInit.get(),
3113                                                               Loc);
3114    return false;
3115  }
3116
3117  if (!Field->getParent()->isUnion()) {
3118    if (FieldBaseElementType->isReferenceType()) {
3119      SemaRef.Diag(Constructor->getLocation(),
3120                   diag::err_uninitialized_member_in_ctor)
3121      << (int)Constructor->isImplicit()
3122      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3123      << 0 << Field->getDeclName();
3124      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3125      return true;
3126    }
3127
3128    if (FieldBaseElementType.isConstQualified()) {
3129      SemaRef.Diag(Constructor->getLocation(),
3130                   diag::err_uninitialized_member_in_ctor)
3131      << (int)Constructor->isImplicit()
3132      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3133      << 1 << Field->getDeclName();
3134      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3135      return true;
3136    }
3137  }
3138
3139  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3140      FieldBaseElementType->isObjCRetainableType() &&
3141      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3142      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3143    // ARC:
3144    //   Default-initialize Objective-C pointers to NULL.
3145    CXXMemberInit
3146      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3147                                                 Loc, Loc,
3148                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3149                                                 Loc);
3150    return false;
3151  }
3152
3153  // Nothing to initialize.
3154  CXXMemberInit = 0;
3155  return false;
3156}
3157
3158namespace {
3159struct BaseAndFieldInfo {
3160  Sema &S;
3161  CXXConstructorDecl *Ctor;
3162  bool AnyErrorsInInits;
3163  ImplicitInitializerKind IIK;
3164  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3165  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3166
3167  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3168    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3169    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3170    if (Generated && Ctor->isCopyConstructor())
3171      IIK = IIK_Copy;
3172    else if (Generated && Ctor->isMoveConstructor())
3173      IIK = IIK_Move;
3174    else if (Ctor->getInheritedConstructor())
3175      IIK = IIK_Inherit;
3176    else
3177      IIK = IIK_Default;
3178  }
3179
3180  bool isImplicitCopyOrMove() const {
3181    switch (IIK) {
3182    case IIK_Copy:
3183    case IIK_Move:
3184      return true;
3185
3186    case IIK_Default:
3187    case IIK_Inherit:
3188      return false;
3189    }
3190
3191    llvm_unreachable("Invalid ImplicitInitializerKind!");
3192  }
3193
3194  bool addFieldInitializer(CXXCtorInitializer *Init) {
3195    AllToInit.push_back(Init);
3196
3197    // Check whether this initializer makes the field "used".
3198    if (Init->getInit()->HasSideEffects(S.Context))
3199      S.UnusedPrivateFields.remove(Init->getAnyMember());
3200
3201    return false;
3202  }
3203};
3204}
3205
3206/// \brief Determine whether the given indirect field declaration is somewhere
3207/// within an anonymous union.
3208static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3209  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3210                                      CEnd = F->chain_end();
3211       C != CEnd; ++C)
3212    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3213      if (Record->isUnion())
3214        return true;
3215
3216  return false;
3217}
3218
3219/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3220/// array type.
3221static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3222  if (T->isIncompleteArrayType())
3223    return true;
3224
3225  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3226    if (!ArrayT->getSize())
3227      return true;
3228
3229    T = ArrayT->getElementType();
3230  }
3231
3232  return false;
3233}
3234
3235static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3236                                    FieldDecl *Field,
3237                                    IndirectFieldDecl *Indirect = 0) {
3238
3239  // Overwhelmingly common case: we have a direct initializer for this field.
3240  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3241    return Info.addFieldInitializer(Init);
3242
3243  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3244  // has a brace-or-equal-initializer, the entity is initialized as specified
3245  // in [dcl.init].
3246  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3247    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3248                                           Info.Ctor->getLocation(), Field);
3249    CXXCtorInitializer *Init;
3250    if (Indirect)
3251      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3252                                                      SourceLocation(),
3253                                                      SourceLocation(), DIE,
3254                                                      SourceLocation());
3255    else
3256      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3257                                                      SourceLocation(),
3258                                                      SourceLocation(), DIE,
3259                                                      SourceLocation());
3260    return Info.addFieldInitializer(Init);
3261  }
3262
3263  // Don't build an implicit initializer for union members if none was
3264  // explicitly specified.
3265  if (Field->getParent()->isUnion() ||
3266      (Indirect && isWithinAnonymousUnion(Indirect)))
3267    return false;
3268
3269  // Don't initialize incomplete or zero-length arrays.
3270  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3271    return false;
3272
3273  // Don't try to build an implicit initializer if there were semantic
3274  // errors in any of the initializers (and therefore we might be
3275  // missing some that the user actually wrote).
3276  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
3277    return false;
3278
3279  CXXCtorInitializer *Init = 0;
3280  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3281                                     Indirect, Init))
3282    return true;
3283
3284  if (!Init)
3285    return false;
3286
3287  return Info.addFieldInitializer(Init);
3288}
3289
3290bool
3291Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3292                               CXXCtorInitializer *Initializer) {
3293  assert(Initializer->isDelegatingInitializer());
3294  Constructor->setNumCtorInitializers(1);
3295  CXXCtorInitializer **initializer =
3296    new (Context) CXXCtorInitializer*[1];
3297  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3298  Constructor->setCtorInitializers(initializer);
3299
3300  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3301    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3302    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3303  }
3304
3305  DelegatingCtorDecls.push_back(Constructor);
3306
3307  return false;
3308}
3309
3310bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3311                               ArrayRef<CXXCtorInitializer *> Initializers) {
3312  if (Constructor->isDependentContext()) {
3313    // Just store the initializers as written, they will be checked during
3314    // instantiation.
3315    if (!Initializers.empty()) {
3316      Constructor->setNumCtorInitializers(Initializers.size());
3317      CXXCtorInitializer **baseOrMemberInitializers =
3318        new (Context) CXXCtorInitializer*[Initializers.size()];
3319      memcpy(baseOrMemberInitializers, Initializers.data(),
3320             Initializers.size() * sizeof(CXXCtorInitializer*));
3321      Constructor->setCtorInitializers(baseOrMemberInitializers);
3322    }
3323
3324    // Let template instantiation know whether we had errors.
3325    if (AnyErrors)
3326      Constructor->setInvalidDecl();
3327
3328    return false;
3329  }
3330
3331  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3332
3333  // We need to build the initializer AST according to order of construction
3334  // and not what user specified in the Initializers list.
3335  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3336  if (!ClassDecl)
3337    return true;
3338
3339  bool HadError = false;
3340
3341  for (unsigned i = 0; i < Initializers.size(); i++) {
3342    CXXCtorInitializer *Member = Initializers[i];
3343
3344    if (Member->isBaseInitializer())
3345      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3346    else
3347      Info.AllBaseFields[Member->getAnyMember()] = Member;
3348  }
3349
3350  // Keep track of the direct virtual bases.
3351  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3352  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3353       E = ClassDecl->bases_end(); I != E; ++I) {
3354    if (I->isVirtual())
3355      DirectVBases.insert(I);
3356  }
3357
3358  // Push virtual bases before others.
3359  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3360       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3361
3362    if (CXXCtorInitializer *Value
3363        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3364      Info.AllToInit.push_back(Value);
3365    } else if (!AnyErrors) {
3366      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3367      CXXCtorInitializer *CXXBaseInit;
3368      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3369                                       VBase, IsInheritedVirtualBase,
3370                                       CXXBaseInit)) {
3371        HadError = true;
3372        continue;
3373      }
3374
3375      Info.AllToInit.push_back(CXXBaseInit);
3376    }
3377  }
3378
3379  // Non-virtual bases.
3380  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3381       E = ClassDecl->bases_end(); Base != E; ++Base) {
3382    // Virtuals are in the virtual base list and already constructed.
3383    if (Base->isVirtual())
3384      continue;
3385
3386    if (CXXCtorInitializer *Value
3387          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3388      Info.AllToInit.push_back(Value);
3389    } else if (!AnyErrors) {
3390      CXXCtorInitializer *CXXBaseInit;
3391      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3392                                       Base, /*IsInheritedVirtualBase=*/false,
3393                                       CXXBaseInit)) {
3394        HadError = true;
3395        continue;
3396      }
3397
3398      Info.AllToInit.push_back(CXXBaseInit);
3399    }
3400  }
3401
3402  // Fields.
3403  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3404                               MemEnd = ClassDecl->decls_end();
3405       Mem != MemEnd; ++Mem) {
3406    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3407      // C++ [class.bit]p2:
3408      //   A declaration for a bit-field that omits the identifier declares an
3409      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3410      //   initialized.
3411      if (F->isUnnamedBitfield())
3412        continue;
3413
3414      // If we're not generating the implicit copy/move constructor, then we'll
3415      // handle anonymous struct/union fields based on their individual
3416      // indirect fields.
3417      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3418        continue;
3419
3420      if (CollectFieldInitializer(*this, Info, F))
3421        HadError = true;
3422      continue;
3423    }
3424
3425    // Beyond this point, we only consider default initialization.
3426    if (Info.isImplicitCopyOrMove())
3427      continue;
3428
3429    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3430      if (F->getType()->isIncompleteArrayType()) {
3431        assert(ClassDecl->hasFlexibleArrayMember() &&
3432               "Incomplete array type is not valid");
3433        continue;
3434      }
3435
3436      // Initialize each field of an anonymous struct individually.
3437      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3438        HadError = true;
3439
3440      continue;
3441    }
3442  }
3443
3444  unsigned NumInitializers = Info.AllToInit.size();
3445  if (NumInitializers > 0) {
3446    Constructor->setNumCtorInitializers(NumInitializers);
3447    CXXCtorInitializer **baseOrMemberInitializers =
3448      new (Context) CXXCtorInitializer*[NumInitializers];
3449    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3450           NumInitializers * sizeof(CXXCtorInitializer*));
3451    Constructor->setCtorInitializers(baseOrMemberInitializers);
3452
3453    // Constructors implicitly reference the base and member
3454    // destructors.
3455    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3456                                           Constructor->getParent());
3457  }
3458
3459  return HadError;
3460}
3461
3462static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3463  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3464    const RecordDecl *RD = RT->getDecl();
3465    if (RD->isAnonymousStructOrUnion()) {
3466      for (RecordDecl::field_iterator Field = RD->field_begin(),
3467          E = RD->field_end(); Field != E; ++Field)
3468        PopulateKeysForFields(*Field, IdealInits);
3469      return;
3470    }
3471  }
3472  IdealInits.push_back(Field);
3473}
3474
3475static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3476  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3477}
3478
3479static void *GetKeyForMember(ASTContext &Context,
3480                             CXXCtorInitializer *Member) {
3481  if (!Member->isAnyMemberInitializer())
3482    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3483
3484  return Member->getAnyMember();
3485}
3486
3487static void DiagnoseBaseOrMemInitializerOrder(
3488    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3489    ArrayRef<CXXCtorInitializer *> Inits) {
3490  if (Constructor->getDeclContext()->isDependentContext())
3491    return;
3492
3493  // Don't check initializers order unless the warning is enabled at the
3494  // location of at least one initializer.
3495  bool ShouldCheckOrder = false;
3496  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3497    CXXCtorInitializer *Init = Inits[InitIndex];
3498    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3499                                         Init->getSourceLocation())
3500          != DiagnosticsEngine::Ignored) {
3501      ShouldCheckOrder = true;
3502      break;
3503    }
3504  }
3505  if (!ShouldCheckOrder)
3506    return;
3507
3508  // Build the list of bases and members in the order that they'll
3509  // actually be initialized.  The explicit initializers should be in
3510  // this same order but may be missing things.
3511  SmallVector<const void*, 32> IdealInitKeys;
3512
3513  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3514
3515  // 1. Virtual bases.
3516  for (CXXRecordDecl::base_class_const_iterator VBase =
3517       ClassDecl->vbases_begin(),
3518       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3519    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3520
3521  // 2. Non-virtual bases.
3522  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3523       E = ClassDecl->bases_end(); Base != E; ++Base) {
3524    if (Base->isVirtual())
3525      continue;
3526    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3527  }
3528
3529  // 3. Direct fields.
3530  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3531       E = ClassDecl->field_end(); Field != E; ++Field) {
3532    if (Field->isUnnamedBitfield())
3533      continue;
3534
3535    PopulateKeysForFields(*Field, IdealInitKeys);
3536  }
3537
3538  unsigned NumIdealInits = IdealInitKeys.size();
3539  unsigned IdealIndex = 0;
3540
3541  CXXCtorInitializer *PrevInit = 0;
3542  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3543    CXXCtorInitializer *Init = Inits[InitIndex];
3544    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3545
3546    // Scan forward to try to find this initializer in the idealized
3547    // initializers list.
3548    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3549      if (InitKey == IdealInitKeys[IdealIndex])
3550        break;
3551
3552    // If we didn't find this initializer, it must be because we
3553    // scanned past it on a previous iteration.  That can only
3554    // happen if we're out of order;  emit a warning.
3555    if (IdealIndex == NumIdealInits && PrevInit) {
3556      Sema::SemaDiagnosticBuilder D =
3557        SemaRef.Diag(PrevInit->getSourceLocation(),
3558                     diag::warn_initializer_out_of_order);
3559
3560      if (PrevInit->isAnyMemberInitializer())
3561        D << 0 << PrevInit->getAnyMember()->getDeclName();
3562      else
3563        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3564
3565      if (Init->isAnyMemberInitializer())
3566        D << 0 << Init->getAnyMember()->getDeclName();
3567      else
3568        D << 1 << Init->getTypeSourceInfo()->getType();
3569
3570      // Move back to the initializer's location in the ideal list.
3571      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3572        if (InitKey == IdealInitKeys[IdealIndex])
3573          break;
3574
3575      assert(IdealIndex != NumIdealInits &&
3576             "initializer not found in initializer list");
3577    }
3578
3579    PrevInit = Init;
3580  }
3581}
3582
3583namespace {
3584bool CheckRedundantInit(Sema &S,
3585                        CXXCtorInitializer *Init,
3586                        CXXCtorInitializer *&PrevInit) {
3587  if (!PrevInit) {
3588    PrevInit = Init;
3589    return false;
3590  }
3591
3592  if (FieldDecl *Field = Init->getAnyMember())
3593    S.Diag(Init->getSourceLocation(),
3594           diag::err_multiple_mem_initialization)
3595      << Field->getDeclName()
3596      << Init->getSourceRange();
3597  else {
3598    const Type *BaseClass = Init->getBaseClass();
3599    assert(BaseClass && "neither field nor base");
3600    S.Diag(Init->getSourceLocation(),
3601           diag::err_multiple_base_initialization)
3602      << QualType(BaseClass, 0)
3603      << Init->getSourceRange();
3604  }
3605  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3606    << 0 << PrevInit->getSourceRange();
3607
3608  return true;
3609}
3610
3611typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3612typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3613
3614bool CheckRedundantUnionInit(Sema &S,
3615                             CXXCtorInitializer *Init,
3616                             RedundantUnionMap &Unions) {
3617  FieldDecl *Field = Init->getAnyMember();
3618  RecordDecl *Parent = Field->getParent();
3619  NamedDecl *Child = Field;
3620
3621  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3622    if (Parent->isUnion()) {
3623      UnionEntry &En = Unions[Parent];
3624      if (En.first && En.first != Child) {
3625        S.Diag(Init->getSourceLocation(),
3626               diag::err_multiple_mem_union_initialization)
3627          << Field->getDeclName()
3628          << Init->getSourceRange();
3629        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3630          << 0 << En.second->getSourceRange();
3631        return true;
3632      }
3633      if (!En.first) {
3634        En.first = Child;
3635        En.second = Init;
3636      }
3637      if (!Parent->isAnonymousStructOrUnion())
3638        return false;
3639    }
3640
3641    Child = Parent;
3642    Parent = cast<RecordDecl>(Parent->getDeclContext());
3643  }
3644
3645  return false;
3646}
3647}
3648
3649/// ActOnMemInitializers - Handle the member initializers for a constructor.
3650void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3651                                SourceLocation ColonLoc,
3652                                ArrayRef<CXXCtorInitializer*> MemInits,
3653                                bool AnyErrors) {
3654  if (!ConstructorDecl)
3655    return;
3656
3657  AdjustDeclIfTemplate(ConstructorDecl);
3658
3659  CXXConstructorDecl *Constructor
3660    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3661
3662  if (!Constructor) {
3663    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3664    return;
3665  }
3666
3667  // Mapping for the duplicate initializers check.
3668  // For member initializers, this is keyed with a FieldDecl*.
3669  // For base initializers, this is keyed with a Type*.
3670  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3671
3672  // Mapping for the inconsistent anonymous-union initializers check.
3673  RedundantUnionMap MemberUnions;
3674
3675  bool HadError = false;
3676  for (unsigned i = 0; i < MemInits.size(); i++) {
3677    CXXCtorInitializer *Init = MemInits[i];
3678
3679    // Set the source order index.
3680    Init->setSourceOrder(i);
3681
3682    if (Init->isAnyMemberInitializer()) {
3683      FieldDecl *Field = Init->getAnyMember();
3684      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3685          CheckRedundantUnionInit(*this, Init, MemberUnions))
3686        HadError = true;
3687    } else if (Init->isBaseInitializer()) {
3688      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3689      if (CheckRedundantInit(*this, Init, Members[Key]))
3690        HadError = true;
3691    } else {
3692      assert(Init->isDelegatingInitializer());
3693      // This must be the only initializer
3694      if (MemInits.size() != 1) {
3695        Diag(Init->getSourceLocation(),
3696             diag::err_delegating_initializer_alone)
3697          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3698        // We will treat this as being the only initializer.
3699      }
3700      SetDelegatingInitializer(Constructor, MemInits[i]);
3701      // Return immediately as the initializer is set.
3702      return;
3703    }
3704  }
3705
3706  if (HadError)
3707    return;
3708
3709  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3710
3711  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3712}
3713
3714void
3715Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3716                                             CXXRecordDecl *ClassDecl) {
3717  // Ignore dependent contexts. Also ignore unions, since their members never
3718  // have destructors implicitly called.
3719  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3720    return;
3721
3722  // FIXME: all the access-control diagnostics are positioned on the
3723  // field/base declaration.  That's probably good; that said, the
3724  // user might reasonably want to know why the destructor is being
3725  // emitted, and we currently don't say.
3726
3727  // Non-static data members.
3728  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3729       E = ClassDecl->field_end(); I != E; ++I) {
3730    FieldDecl *Field = *I;
3731    if (Field->isInvalidDecl())
3732      continue;
3733
3734    // Don't destroy incomplete or zero-length arrays.
3735    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3736      continue;
3737
3738    QualType FieldType = Context.getBaseElementType(Field->getType());
3739
3740    const RecordType* RT = FieldType->getAs<RecordType>();
3741    if (!RT)
3742      continue;
3743
3744    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3745    if (FieldClassDecl->isInvalidDecl())
3746      continue;
3747    if (FieldClassDecl->hasIrrelevantDestructor())
3748      continue;
3749    // The destructor for an implicit anonymous union member is never invoked.
3750    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3751      continue;
3752
3753    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3754    assert(Dtor && "No dtor found for FieldClassDecl!");
3755    CheckDestructorAccess(Field->getLocation(), Dtor,
3756                          PDiag(diag::err_access_dtor_field)
3757                            << Field->getDeclName()
3758                            << FieldType);
3759
3760    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3761    DiagnoseUseOfDecl(Dtor, Location);
3762  }
3763
3764  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3765
3766  // Bases.
3767  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3768       E = ClassDecl->bases_end(); Base != E; ++Base) {
3769    // Bases are always records in a well-formed non-dependent class.
3770    const RecordType *RT = Base->getType()->getAs<RecordType>();
3771
3772    // Remember direct virtual bases.
3773    if (Base->isVirtual())
3774      DirectVirtualBases.insert(RT);
3775
3776    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3777    // If our base class is invalid, we probably can't get its dtor anyway.
3778    if (BaseClassDecl->isInvalidDecl())
3779      continue;
3780    if (BaseClassDecl->hasIrrelevantDestructor())
3781      continue;
3782
3783    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3784    assert(Dtor && "No dtor found for BaseClassDecl!");
3785
3786    // FIXME: caret should be on the start of the class name
3787    CheckDestructorAccess(Base->getLocStart(), Dtor,
3788                          PDiag(diag::err_access_dtor_base)
3789                            << Base->getType()
3790                            << Base->getSourceRange(),
3791                          Context.getTypeDeclType(ClassDecl));
3792
3793    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3794    DiagnoseUseOfDecl(Dtor, Location);
3795  }
3796
3797  // Virtual bases.
3798  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3799       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3800
3801    // Bases are always records in a well-formed non-dependent class.
3802    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3803
3804    // Ignore direct virtual bases.
3805    if (DirectVirtualBases.count(RT))
3806      continue;
3807
3808    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3809    // If our base class is invalid, we probably can't get its dtor anyway.
3810    if (BaseClassDecl->isInvalidDecl())
3811      continue;
3812    if (BaseClassDecl->hasIrrelevantDestructor())
3813      continue;
3814
3815    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3816    assert(Dtor && "No dtor found for BaseClassDecl!");
3817    if (CheckDestructorAccess(
3818            ClassDecl->getLocation(), Dtor,
3819            PDiag(diag::err_access_dtor_vbase)
3820                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
3821            Context.getTypeDeclType(ClassDecl)) ==
3822        AR_accessible) {
3823      CheckDerivedToBaseConversion(
3824          Context.getTypeDeclType(ClassDecl), VBase->getType(),
3825          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
3826          SourceRange(), DeclarationName(), 0);
3827    }
3828
3829    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3830    DiagnoseUseOfDecl(Dtor, Location);
3831  }
3832}
3833
3834void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3835  if (!CDtorDecl)
3836    return;
3837
3838  if (CXXConstructorDecl *Constructor
3839      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3840    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
3841}
3842
3843bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3844                                  unsigned DiagID, AbstractDiagSelID SelID) {
3845  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3846    unsigned DiagID;
3847    AbstractDiagSelID SelID;
3848
3849  public:
3850    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3851      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3852
3853    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3854      if (Suppressed) return;
3855      if (SelID == -1)
3856        S.Diag(Loc, DiagID) << T;
3857      else
3858        S.Diag(Loc, DiagID) << SelID << T;
3859    }
3860  } Diagnoser(DiagID, SelID);
3861
3862  return RequireNonAbstractType(Loc, T, Diagnoser);
3863}
3864
3865bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3866                                  TypeDiagnoser &Diagnoser) {
3867  if (!getLangOpts().CPlusPlus)
3868    return false;
3869
3870  if (const ArrayType *AT = Context.getAsArrayType(T))
3871    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3872
3873  if (const PointerType *PT = T->getAs<PointerType>()) {
3874    // Find the innermost pointer type.
3875    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3876      PT = T;
3877
3878    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3879      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3880  }
3881
3882  const RecordType *RT = T->getAs<RecordType>();
3883  if (!RT)
3884    return false;
3885
3886  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3887
3888  // We can't answer whether something is abstract until it has a
3889  // definition.  If it's currently being defined, we'll walk back
3890  // over all the declarations when we have a full definition.
3891  const CXXRecordDecl *Def = RD->getDefinition();
3892  if (!Def || Def->isBeingDefined())
3893    return false;
3894
3895  if (!RD->isAbstract())
3896    return false;
3897
3898  Diagnoser.diagnose(*this, Loc, T);
3899  DiagnoseAbstractType(RD);
3900
3901  return true;
3902}
3903
3904void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3905  // Check if we've already emitted the list of pure virtual functions
3906  // for this class.
3907  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3908    return;
3909
3910  CXXFinalOverriderMap FinalOverriders;
3911  RD->getFinalOverriders(FinalOverriders);
3912
3913  // Keep a set of seen pure methods so we won't diagnose the same method
3914  // more than once.
3915  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3916
3917  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3918                                   MEnd = FinalOverriders.end();
3919       M != MEnd;
3920       ++M) {
3921    for (OverridingMethods::iterator SO = M->second.begin(),
3922                                  SOEnd = M->second.end();
3923         SO != SOEnd; ++SO) {
3924      // C++ [class.abstract]p4:
3925      //   A class is abstract if it contains or inherits at least one
3926      //   pure virtual function for which the final overrider is pure
3927      //   virtual.
3928
3929      //
3930      if (SO->second.size() != 1)
3931        continue;
3932
3933      if (!SO->second.front().Method->isPure())
3934        continue;
3935
3936      if (!SeenPureMethods.insert(SO->second.front().Method))
3937        continue;
3938
3939      Diag(SO->second.front().Method->getLocation(),
3940           diag::note_pure_virtual_function)
3941        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3942    }
3943  }
3944
3945  if (!PureVirtualClassDiagSet)
3946    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3947  PureVirtualClassDiagSet->insert(RD);
3948}
3949
3950namespace {
3951struct AbstractUsageInfo {
3952  Sema &S;
3953  CXXRecordDecl *Record;
3954  CanQualType AbstractType;
3955  bool Invalid;
3956
3957  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3958    : S(S), Record(Record),
3959      AbstractType(S.Context.getCanonicalType(
3960                   S.Context.getTypeDeclType(Record))),
3961      Invalid(false) {}
3962
3963  void DiagnoseAbstractType() {
3964    if (Invalid) return;
3965    S.DiagnoseAbstractType(Record);
3966    Invalid = true;
3967  }
3968
3969  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3970};
3971
3972struct CheckAbstractUsage {
3973  AbstractUsageInfo &Info;
3974  const NamedDecl *Ctx;
3975
3976  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3977    : Info(Info), Ctx(Ctx) {}
3978
3979  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3980    switch (TL.getTypeLocClass()) {
3981#define ABSTRACT_TYPELOC(CLASS, PARENT)
3982#define TYPELOC(CLASS, PARENT) \
3983    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
3984#include "clang/AST/TypeLocNodes.def"
3985    }
3986  }
3987
3988  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3989    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3990    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3991      if (!TL.getArg(I))
3992        continue;
3993
3994      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3995      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3996    }
3997  }
3998
3999  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4000    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4001  }
4002
4003  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4004    // Visit the type parameters from a permissive context.
4005    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4006      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4007      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4008        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4009          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4010      // TODO: other template argument types?
4011    }
4012  }
4013
4014  // Visit pointee types from a permissive context.
4015#define CheckPolymorphic(Type) \
4016  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4017    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4018  }
4019  CheckPolymorphic(PointerTypeLoc)
4020  CheckPolymorphic(ReferenceTypeLoc)
4021  CheckPolymorphic(MemberPointerTypeLoc)
4022  CheckPolymorphic(BlockPointerTypeLoc)
4023  CheckPolymorphic(AtomicTypeLoc)
4024
4025  /// Handle all the types we haven't given a more specific
4026  /// implementation for above.
4027  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4028    // Every other kind of type that we haven't called out already
4029    // that has an inner type is either (1) sugar or (2) contains that
4030    // inner type in some way as a subobject.
4031    if (TypeLoc Next = TL.getNextTypeLoc())
4032      return Visit(Next, Sel);
4033
4034    // If there's no inner type and we're in a permissive context,
4035    // don't diagnose.
4036    if (Sel == Sema::AbstractNone) return;
4037
4038    // Check whether the type matches the abstract type.
4039    QualType T = TL.getType();
4040    if (T->isArrayType()) {
4041      Sel = Sema::AbstractArrayType;
4042      T = Info.S.Context.getBaseElementType(T);
4043    }
4044    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4045    if (CT != Info.AbstractType) return;
4046
4047    // It matched; do some magic.
4048    if (Sel == Sema::AbstractArrayType) {
4049      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4050        << T << TL.getSourceRange();
4051    } else {
4052      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4053        << Sel << T << TL.getSourceRange();
4054    }
4055    Info.DiagnoseAbstractType();
4056  }
4057};
4058
4059void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4060                                  Sema::AbstractDiagSelID Sel) {
4061  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4062}
4063
4064}
4065
4066/// Check for invalid uses of an abstract type in a method declaration.
4067static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4068                                    CXXMethodDecl *MD) {
4069  // No need to do the check on definitions, which require that
4070  // the return/param types be complete.
4071  if (MD->doesThisDeclarationHaveABody())
4072    return;
4073
4074  // For safety's sake, just ignore it if we don't have type source
4075  // information.  This should never happen for non-implicit methods,
4076  // but...
4077  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4078    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4079}
4080
4081/// Check for invalid uses of an abstract type within a class definition.
4082static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4083                                    CXXRecordDecl *RD) {
4084  for (CXXRecordDecl::decl_iterator
4085         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4086    Decl *D = *I;
4087    if (D->isImplicit()) continue;
4088
4089    // Methods and method templates.
4090    if (isa<CXXMethodDecl>(D)) {
4091      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4092    } else if (isa<FunctionTemplateDecl>(D)) {
4093      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4094      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4095
4096    // Fields and static variables.
4097    } else if (isa<FieldDecl>(D)) {
4098      FieldDecl *FD = cast<FieldDecl>(D);
4099      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4100        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4101    } else if (isa<VarDecl>(D)) {
4102      VarDecl *VD = cast<VarDecl>(D);
4103      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4104        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4105
4106    // Nested classes and class templates.
4107    } else if (isa<CXXRecordDecl>(D)) {
4108      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4109    } else if (isa<ClassTemplateDecl>(D)) {
4110      CheckAbstractClassUsage(Info,
4111                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4112    }
4113  }
4114}
4115
4116/// \brief Perform semantic checks on a class definition that has been
4117/// completing, introducing implicitly-declared members, checking for
4118/// abstract types, etc.
4119void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4120  if (!Record)
4121    return;
4122
4123  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4124    AbstractUsageInfo Info(*this, Record);
4125    CheckAbstractClassUsage(Info, Record);
4126  }
4127
4128  // If this is not an aggregate type and has no user-declared constructor,
4129  // complain about any non-static data members of reference or const scalar
4130  // type, since they will never get initializers.
4131  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4132      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4133      !Record->isLambda()) {
4134    bool Complained = false;
4135    for (RecordDecl::field_iterator F = Record->field_begin(),
4136                                 FEnd = Record->field_end();
4137         F != FEnd; ++F) {
4138      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4139        continue;
4140
4141      if (F->getType()->isReferenceType() ||
4142          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4143        if (!Complained) {
4144          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4145            << Record->getTagKind() << Record;
4146          Complained = true;
4147        }
4148
4149        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4150          << F->getType()->isReferenceType()
4151          << F->getDeclName();
4152      }
4153    }
4154  }
4155
4156  if (Record->isDynamicClass() && !Record->isDependentType())
4157    DynamicClasses.push_back(Record);
4158
4159  if (Record->getIdentifier()) {
4160    // C++ [class.mem]p13:
4161    //   If T is the name of a class, then each of the following shall have a
4162    //   name different from T:
4163    //     - every member of every anonymous union that is a member of class T.
4164    //
4165    // C++ [class.mem]p14:
4166    //   In addition, if class T has a user-declared constructor (12.1), every
4167    //   non-static data member of class T shall have a name different from T.
4168    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4169    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4170         ++I) {
4171      NamedDecl *D = *I;
4172      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4173          isa<IndirectFieldDecl>(D)) {
4174        Diag(D->getLocation(), diag::err_member_name_of_class)
4175          << D->getDeclName();
4176        break;
4177      }
4178    }
4179  }
4180
4181  // Warn if the class has virtual methods but non-virtual public destructor.
4182  if (Record->isPolymorphic() && !Record->isDependentType()) {
4183    CXXDestructorDecl *dtor = Record->getDestructor();
4184    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4185      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4186           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4187  }
4188
4189  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4190    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4191    DiagnoseAbstractType(Record);
4192  }
4193
4194  if (!Record->isDependentType()) {
4195    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4196                                     MEnd = Record->method_end();
4197         M != MEnd; ++M) {
4198      // See if a method overloads virtual methods in a base
4199      // class without overriding any.
4200      if (!M->isStatic())
4201        DiagnoseHiddenVirtualMethods(Record, *M);
4202
4203      // Check whether the explicitly-defaulted special members are valid.
4204      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4205        CheckExplicitlyDefaultedSpecialMember(*M);
4206
4207      // For an explicitly defaulted or deleted special member, we defer
4208      // determining triviality until the class is complete. That time is now!
4209      if (!M->isImplicit() && !M->isUserProvided()) {
4210        CXXSpecialMember CSM = getSpecialMember(*M);
4211        if (CSM != CXXInvalid) {
4212          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4213
4214          // Inform the class that we've finished declaring this member.
4215          Record->finishedDefaultedOrDeletedMember(*M);
4216        }
4217      }
4218    }
4219  }
4220
4221  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4222  // function that is not a constructor declares that member function to be
4223  // const. [...] The class of which that function is a member shall be
4224  // a literal type.
4225  //
4226  // If the class has virtual bases, any constexpr members will already have
4227  // been diagnosed by the checks performed on the member declaration, so
4228  // suppress this (less useful) diagnostic.
4229  //
4230  // We delay this until we know whether an explicitly-defaulted (or deleted)
4231  // destructor for the class is trivial.
4232  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4233      !Record->isLiteral() && !Record->getNumVBases()) {
4234    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4235                                     MEnd = Record->method_end();
4236         M != MEnd; ++M) {
4237      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4238        switch (Record->getTemplateSpecializationKind()) {
4239        case TSK_ImplicitInstantiation:
4240        case TSK_ExplicitInstantiationDeclaration:
4241        case TSK_ExplicitInstantiationDefinition:
4242          // If a template instantiates to a non-literal type, but its members
4243          // instantiate to constexpr functions, the template is technically
4244          // ill-formed, but we allow it for sanity.
4245          continue;
4246
4247        case TSK_Undeclared:
4248        case TSK_ExplicitSpecialization:
4249          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4250                             diag::err_constexpr_method_non_literal);
4251          break;
4252        }
4253
4254        // Only produce one error per class.
4255        break;
4256      }
4257    }
4258  }
4259
4260  // Declare inheriting constructors. We do this eagerly here because:
4261  // - The standard requires an eager diagnostic for conflicting inheriting
4262  //   constructors from different classes.
4263  // - The lazy declaration of the other implicit constructors is so as to not
4264  //   waste space and performance on classes that are not meant to be
4265  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4266  //   have inheriting constructors.
4267  DeclareInheritingConstructors(Record);
4268}
4269
4270/// Is the special member function which would be selected to perform the
4271/// specified operation on the specified class type a constexpr constructor?
4272static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4273                                     Sema::CXXSpecialMember CSM,
4274                                     bool ConstArg) {
4275  Sema::SpecialMemberOverloadResult *SMOR =
4276      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4277                            false, false, false, false);
4278  if (!SMOR || !SMOR->getMethod())
4279    // A constructor we wouldn't select can't be "involved in initializing"
4280    // anything.
4281    return true;
4282  return SMOR->getMethod()->isConstexpr();
4283}
4284
4285/// Determine whether the specified special member function would be constexpr
4286/// if it were implicitly defined.
4287static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4288                                              Sema::CXXSpecialMember CSM,
4289                                              bool ConstArg) {
4290  if (!S.getLangOpts().CPlusPlus11)
4291    return false;
4292
4293  // C++11 [dcl.constexpr]p4:
4294  // In the definition of a constexpr constructor [...]
4295  bool Ctor = true;
4296  switch (CSM) {
4297  case Sema::CXXDefaultConstructor:
4298    // Since default constructor lookup is essentially trivial (and cannot
4299    // involve, for instance, template instantiation), we compute whether a
4300    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4301    //
4302    // This is important for performance; we need to know whether the default
4303    // constructor is constexpr to determine whether the type is a literal type.
4304    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4305
4306  case Sema::CXXCopyConstructor:
4307  case Sema::CXXMoveConstructor:
4308    // For copy or move constructors, we need to perform overload resolution.
4309    break;
4310
4311  case Sema::CXXCopyAssignment:
4312  case Sema::CXXMoveAssignment:
4313    if (!S.getLangOpts().CPlusPlus1y)
4314      return false;
4315    // In C++1y, we need to perform overload resolution.
4316    Ctor = false;
4317    break;
4318
4319  case Sema::CXXDestructor:
4320  case Sema::CXXInvalid:
4321    return false;
4322  }
4323
4324  //   -- if the class is a non-empty union, or for each non-empty anonymous
4325  //      union member of a non-union class, exactly one non-static data member
4326  //      shall be initialized; [DR1359]
4327  //
4328  // If we squint, this is guaranteed, since exactly one non-static data member
4329  // will be initialized (if the constructor isn't deleted), we just don't know
4330  // which one.
4331  if (Ctor && ClassDecl->isUnion())
4332    return true;
4333
4334  //   -- the class shall not have any virtual base classes;
4335  if (Ctor && ClassDecl->getNumVBases())
4336    return false;
4337
4338  // C++1y [class.copy]p26:
4339  //   -- [the class] is a literal type, and
4340  if (!Ctor && !ClassDecl->isLiteral())
4341    return false;
4342
4343  //   -- every constructor involved in initializing [...] base class
4344  //      sub-objects shall be a constexpr constructor;
4345  //   -- the assignment operator selected to copy/move each direct base
4346  //      class is a constexpr function, and
4347  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4348                                       BEnd = ClassDecl->bases_end();
4349       B != BEnd; ++B) {
4350    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4351    if (!BaseType) continue;
4352
4353    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4354    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4355      return false;
4356  }
4357
4358  //   -- every constructor involved in initializing non-static data members
4359  //      [...] shall be a constexpr constructor;
4360  //   -- every non-static data member and base class sub-object shall be
4361  //      initialized
4362  //   -- for each non-stastic data member of X that is of class type (or array
4363  //      thereof), the assignment operator selected to copy/move that member is
4364  //      a constexpr function
4365  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4366                               FEnd = ClassDecl->field_end();
4367       F != FEnd; ++F) {
4368    if (F->isInvalidDecl())
4369      continue;
4370    if (const RecordType *RecordTy =
4371            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4372      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4373      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4374        return false;
4375    }
4376  }
4377
4378  // All OK, it's constexpr!
4379  return true;
4380}
4381
4382static Sema::ImplicitExceptionSpecification
4383computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4384  switch (S.getSpecialMember(MD)) {
4385  case Sema::CXXDefaultConstructor:
4386    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4387  case Sema::CXXCopyConstructor:
4388    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4389  case Sema::CXXCopyAssignment:
4390    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4391  case Sema::CXXMoveConstructor:
4392    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4393  case Sema::CXXMoveAssignment:
4394    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4395  case Sema::CXXDestructor:
4396    return S.ComputeDefaultedDtorExceptionSpec(MD);
4397  case Sema::CXXInvalid:
4398    break;
4399  }
4400  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4401         "only special members have implicit exception specs");
4402  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4403}
4404
4405static void
4406updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4407                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4408  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4409  ExceptSpec.getEPI(EPI);
4410  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4411                                        FPT->getArgTypes(), EPI));
4412}
4413
4414void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4415  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4416  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4417    return;
4418
4419  // Evaluate the exception specification.
4420  ImplicitExceptionSpecification ExceptSpec =
4421      computeImplicitExceptionSpec(*this, Loc, MD);
4422
4423  // Update the type of the special member to use it.
4424  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4425
4426  // A user-provided destructor can be defined outside the class. When that
4427  // happens, be sure to update the exception specification on both
4428  // declarations.
4429  const FunctionProtoType *CanonicalFPT =
4430    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4431  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4432    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4433                        CanonicalFPT, ExceptSpec);
4434}
4435
4436void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4437  CXXRecordDecl *RD = MD->getParent();
4438  CXXSpecialMember CSM = getSpecialMember(MD);
4439
4440  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4441         "not an explicitly-defaulted special member");
4442
4443  // Whether this was the first-declared instance of the constructor.
4444  // This affects whether we implicitly add an exception spec and constexpr.
4445  bool First = MD == MD->getCanonicalDecl();
4446
4447  bool HadError = false;
4448
4449  // C++11 [dcl.fct.def.default]p1:
4450  //   A function that is explicitly defaulted shall
4451  //     -- be a special member function (checked elsewhere),
4452  //     -- have the same type (except for ref-qualifiers, and except that a
4453  //        copy operation can take a non-const reference) as an implicit
4454  //        declaration, and
4455  //     -- not have default arguments.
4456  unsigned ExpectedParams = 1;
4457  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4458    ExpectedParams = 0;
4459  if (MD->getNumParams() != ExpectedParams) {
4460    // This also checks for default arguments: a copy or move constructor with a
4461    // default argument is classified as a default constructor, and assignment
4462    // operations and destructors can't have default arguments.
4463    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4464      << CSM << MD->getSourceRange();
4465    HadError = true;
4466  } else if (MD->isVariadic()) {
4467    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4468      << CSM << MD->getSourceRange();
4469    HadError = true;
4470  }
4471
4472  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4473
4474  bool CanHaveConstParam = false;
4475  if (CSM == CXXCopyConstructor)
4476    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4477  else if (CSM == CXXCopyAssignment)
4478    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4479
4480  QualType ReturnType = Context.VoidTy;
4481  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4482    // Check for return type matching.
4483    ReturnType = Type->getResultType();
4484    QualType ExpectedReturnType =
4485        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4486    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4487      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4488        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4489      HadError = true;
4490    }
4491
4492    // A defaulted special member cannot have cv-qualifiers.
4493    if (Type->getTypeQuals()) {
4494      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4495        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4496      HadError = true;
4497    }
4498  }
4499
4500  // Check for parameter type matching.
4501  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4502  bool HasConstParam = false;
4503  if (ExpectedParams && ArgType->isReferenceType()) {
4504    // Argument must be reference to possibly-const T.
4505    QualType ReferentType = ArgType->getPointeeType();
4506    HasConstParam = ReferentType.isConstQualified();
4507
4508    if (ReferentType.isVolatileQualified()) {
4509      Diag(MD->getLocation(),
4510           diag::err_defaulted_special_member_volatile_param) << CSM;
4511      HadError = true;
4512    }
4513
4514    if (HasConstParam && !CanHaveConstParam) {
4515      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4516        Diag(MD->getLocation(),
4517             diag::err_defaulted_special_member_copy_const_param)
4518          << (CSM == CXXCopyAssignment);
4519        // FIXME: Explain why this special member can't be const.
4520      } else {
4521        Diag(MD->getLocation(),
4522             diag::err_defaulted_special_member_move_const_param)
4523          << (CSM == CXXMoveAssignment);
4524      }
4525      HadError = true;
4526    }
4527  } else if (ExpectedParams) {
4528    // A copy assignment operator can take its argument by value, but a
4529    // defaulted one cannot.
4530    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4531    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4532    HadError = true;
4533  }
4534
4535  // C++11 [dcl.fct.def.default]p2:
4536  //   An explicitly-defaulted function may be declared constexpr only if it
4537  //   would have been implicitly declared as constexpr,
4538  // Do not apply this rule to members of class templates, since core issue 1358
4539  // makes such functions always instantiate to constexpr functions. For
4540  // functions which cannot be constexpr (for non-constructors in C++11 and for
4541  // destructors in C++1y), this is checked elsewhere.
4542  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4543                                                     HasConstParam);
4544  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4545                                 : isa<CXXConstructorDecl>(MD)) &&
4546      MD->isConstexpr() && !Constexpr &&
4547      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4548    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4549    // FIXME: Explain why the special member can't be constexpr.
4550    HadError = true;
4551  }
4552
4553  //   and may have an explicit exception-specification only if it is compatible
4554  //   with the exception-specification on the implicit declaration.
4555  if (Type->hasExceptionSpec()) {
4556    // Delay the check if this is the first declaration of the special member,
4557    // since we may not have parsed some necessary in-class initializers yet.
4558    if (First) {
4559      // If the exception specification needs to be instantiated, do so now,
4560      // before we clobber it with an EST_Unevaluated specification below.
4561      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4562        InstantiateExceptionSpec(MD->getLocStart(), MD);
4563        Type = MD->getType()->getAs<FunctionProtoType>();
4564      }
4565      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4566    } else
4567      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4568  }
4569
4570  //   If a function is explicitly defaulted on its first declaration,
4571  if (First) {
4572    //  -- it is implicitly considered to be constexpr if the implicit
4573    //     definition would be,
4574    MD->setConstexpr(Constexpr);
4575
4576    //  -- it is implicitly considered to have the same exception-specification
4577    //     as if it had been implicitly declared,
4578    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4579    EPI.ExceptionSpecType = EST_Unevaluated;
4580    EPI.ExceptionSpecDecl = MD;
4581    MD->setType(Context.getFunctionType(ReturnType,
4582                                        ArrayRef<QualType>(&ArgType,
4583                                                           ExpectedParams),
4584                                        EPI));
4585  }
4586
4587  if (ShouldDeleteSpecialMember(MD, CSM)) {
4588    if (First) {
4589      SetDeclDeleted(MD, MD->getLocation());
4590    } else {
4591      // C++11 [dcl.fct.def.default]p4:
4592      //   [For a] user-provided explicitly-defaulted function [...] if such a
4593      //   function is implicitly defined as deleted, the program is ill-formed.
4594      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4595      HadError = true;
4596    }
4597  }
4598
4599  if (HadError)
4600    MD->setInvalidDecl();
4601}
4602
4603/// Check whether the exception specification provided for an
4604/// explicitly-defaulted special member matches the exception specification
4605/// that would have been generated for an implicit special member, per
4606/// C++11 [dcl.fct.def.default]p2.
4607void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4608    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4609  // Compute the implicit exception specification.
4610  FunctionProtoType::ExtProtoInfo EPI;
4611  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4612  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4613    Context.getFunctionType(Context.VoidTy, None, EPI));
4614
4615  // Ensure that it matches.
4616  CheckEquivalentExceptionSpec(
4617    PDiag(diag::err_incorrect_defaulted_exception_spec)
4618      << getSpecialMember(MD), PDiag(),
4619    ImplicitType, SourceLocation(),
4620    SpecifiedType, MD->getLocation());
4621}
4622
4623void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4624  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4625       I != N; ++I)
4626    CheckExplicitlyDefaultedMemberExceptionSpec(
4627      DelayedDefaultedMemberExceptionSpecs[I].first,
4628      DelayedDefaultedMemberExceptionSpecs[I].second);
4629
4630  DelayedDefaultedMemberExceptionSpecs.clear();
4631}
4632
4633namespace {
4634struct SpecialMemberDeletionInfo {
4635  Sema &S;
4636  CXXMethodDecl *MD;
4637  Sema::CXXSpecialMember CSM;
4638  bool Diagnose;
4639
4640  // Properties of the special member, computed for convenience.
4641  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4642  SourceLocation Loc;
4643
4644  bool AllFieldsAreConst;
4645
4646  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4647                            Sema::CXXSpecialMember CSM, bool Diagnose)
4648    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4649      IsConstructor(false), IsAssignment(false), IsMove(false),
4650      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4651      AllFieldsAreConst(true) {
4652    switch (CSM) {
4653      case Sema::CXXDefaultConstructor:
4654      case Sema::CXXCopyConstructor:
4655        IsConstructor = true;
4656        break;
4657      case Sema::CXXMoveConstructor:
4658        IsConstructor = true;
4659        IsMove = true;
4660        break;
4661      case Sema::CXXCopyAssignment:
4662        IsAssignment = true;
4663        break;
4664      case Sema::CXXMoveAssignment:
4665        IsAssignment = true;
4666        IsMove = true;
4667        break;
4668      case Sema::CXXDestructor:
4669        break;
4670      case Sema::CXXInvalid:
4671        llvm_unreachable("invalid special member kind");
4672    }
4673
4674    if (MD->getNumParams()) {
4675      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4676      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4677    }
4678  }
4679
4680  bool inUnion() const { return MD->getParent()->isUnion(); }
4681
4682  /// Look up the corresponding special member in the given class.
4683  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4684                                              unsigned Quals) {
4685    unsigned TQ = MD->getTypeQualifiers();
4686    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4687    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4688      Quals = 0;
4689    return S.LookupSpecialMember(Class, CSM,
4690                                 ConstArg || (Quals & Qualifiers::Const),
4691                                 VolatileArg || (Quals & Qualifiers::Volatile),
4692                                 MD->getRefQualifier() == RQ_RValue,
4693                                 TQ & Qualifiers::Const,
4694                                 TQ & Qualifiers::Volatile);
4695  }
4696
4697  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4698
4699  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4700  bool shouldDeleteForField(FieldDecl *FD);
4701  bool shouldDeleteForAllConstMembers();
4702
4703  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4704                                     unsigned Quals);
4705  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4706                                    Sema::SpecialMemberOverloadResult *SMOR,
4707                                    bool IsDtorCallInCtor);
4708
4709  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4710};
4711}
4712
4713/// Is the given special member inaccessible when used on the given
4714/// sub-object.
4715bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4716                                             CXXMethodDecl *target) {
4717  /// If we're operating on a base class, the object type is the
4718  /// type of this special member.
4719  QualType objectTy;
4720  AccessSpecifier access = target->getAccess();
4721  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4722    objectTy = S.Context.getTypeDeclType(MD->getParent());
4723    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4724
4725  // If we're operating on a field, the object type is the type of the field.
4726  } else {
4727    objectTy = S.Context.getTypeDeclType(target->getParent());
4728  }
4729
4730  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4731}
4732
4733/// Check whether we should delete a special member due to the implicit
4734/// definition containing a call to a special member of a subobject.
4735bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4736    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4737    bool IsDtorCallInCtor) {
4738  CXXMethodDecl *Decl = SMOR->getMethod();
4739  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4740
4741  int DiagKind = -1;
4742
4743  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4744    DiagKind = !Decl ? 0 : 1;
4745  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4746    DiagKind = 2;
4747  else if (!isAccessible(Subobj, Decl))
4748    DiagKind = 3;
4749  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4750           !Decl->isTrivial()) {
4751    // A member of a union must have a trivial corresponding special member.
4752    // As a weird special case, a destructor call from a union's constructor
4753    // must be accessible and non-deleted, but need not be trivial. Such a
4754    // destructor is never actually called, but is semantically checked as
4755    // if it were.
4756    DiagKind = 4;
4757  }
4758
4759  if (DiagKind == -1)
4760    return false;
4761
4762  if (Diagnose) {
4763    if (Field) {
4764      S.Diag(Field->getLocation(),
4765             diag::note_deleted_special_member_class_subobject)
4766        << CSM << MD->getParent() << /*IsField*/true
4767        << Field << DiagKind << IsDtorCallInCtor;
4768    } else {
4769      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4770      S.Diag(Base->getLocStart(),
4771             diag::note_deleted_special_member_class_subobject)
4772        << CSM << MD->getParent() << /*IsField*/false
4773        << Base->getType() << DiagKind << IsDtorCallInCtor;
4774    }
4775
4776    if (DiagKind == 1)
4777      S.NoteDeletedFunction(Decl);
4778    // FIXME: Explain inaccessibility if DiagKind == 3.
4779  }
4780
4781  return true;
4782}
4783
4784/// Check whether we should delete a special member function due to having a
4785/// direct or virtual base class or non-static data member of class type M.
4786bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4787    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4788  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4789
4790  // C++11 [class.ctor]p5:
4791  // -- any direct or virtual base class, or non-static data member with no
4792  //    brace-or-equal-initializer, has class type M (or array thereof) and
4793  //    either M has no default constructor or overload resolution as applied
4794  //    to M's default constructor results in an ambiguity or in a function
4795  //    that is deleted or inaccessible
4796  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4797  // -- a direct or virtual base class B that cannot be copied/moved because
4798  //    overload resolution, as applied to B's corresponding special member,
4799  //    results in an ambiguity or a function that is deleted or inaccessible
4800  //    from the defaulted special member
4801  // C++11 [class.dtor]p5:
4802  // -- any direct or virtual base class [...] has a type with a destructor
4803  //    that is deleted or inaccessible
4804  if (!(CSM == Sema::CXXDefaultConstructor &&
4805        Field && Field->hasInClassInitializer()) &&
4806      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
4807    return true;
4808
4809  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4810  // -- any direct or virtual base class or non-static data member has a
4811  //    type with a destructor that is deleted or inaccessible
4812  if (IsConstructor) {
4813    Sema::SpecialMemberOverloadResult *SMOR =
4814        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4815                              false, false, false, false, false);
4816    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4817      return true;
4818  }
4819
4820  return false;
4821}
4822
4823/// Check whether we should delete a special member function due to the class
4824/// having a particular direct or virtual base class.
4825bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4826  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4827  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
4828}
4829
4830/// Check whether we should delete a special member function due to the class
4831/// having a particular non-static data member.
4832bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4833  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4834  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4835
4836  if (CSM == Sema::CXXDefaultConstructor) {
4837    // For a default constructor, all references must be initialized in-class
4838    // and, if a union, it must have a non-const member.
4839    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4840      if (Diagnose)
4841        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4842          << MD->getParent() << FD << FieldType << /*Reference*/0;
4843      return true;
4844    }
4845    // C++11 [class.ctor]p5: any non-variant non-static data member of
4846    // const-qualified type (or array thereof) with no
4847    // brace-or-equal-initializer does not have a user-provided default
4848    // constructor.
4849    if (!inUnion() && FieldType.isConstQualified() &&
4850        !FD->hasInClassInitializer() &&
4851        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4852      if (Diagnose)
4853        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4854          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4855      return true;
4856    }
4857
4858    if (inUnion() && !FieldType.isConstQualified())
4859      AllFieldsAreConst = false;
4860  } else if (CSM == Sema::CXXCopyConstructor) {
4861    // For a copy constructor, data members must not be of rvalue reference
4862    // type.
4863    if (FieldType->isRValueReferenceType()) {
4864      if (Diagnose)
4865        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4866          << MD->getParent() << FD << FieldType;
4867      return true;
4868    }
4869  } else if (IsAssignment) {
4870    // For an assignment operator, data members must not be of reference type.
4871    if (FieldType->isReferenceType()) {
4872      if (Diagnose)
4873        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4874          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4875      return true;
4876    }
4877    if (!FieldRecord && FieldType.isConstQualified()) {
4878      // C++11 [class.copy]p23:
4879      // -- a non-static data member of const non-class type (or array thereof)
4880      if (Diagnose)
4881        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4882          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4883      return true;
4884    }
4885  }
4886
4887  if (FieldRecord) {
4888    // Some additional restrictions exist on the variant members.
4889    if (!inUnion() && FieldRecord->isUnion() &&
4890        FieldRecord->isAnonymousStructOrUnion()) {
4891      bool AllVariantFieldsAreConst = true;
4892
4893      // FIXME: Handle anonymous unions declared within anonymous unions.
4894      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4895                                         UE = FieldRecord->field_end();
4896           UI != UE; ++UI) {
4897        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4898
4899        if (!UnionFieldType.isConstQualified())
4900          AllVariantFieldsAreConst = false;
4901
4902        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4903        if (UnionFieldRecord &&
4904            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
4905                                          UnionFieldType.getCVRQualifiers()))
4906          return true;
4907      }
4908
4909      // At least one member in each anonymous union must be non-const
4910      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4911          FieldRecord->field_begin() != FieldRecord->field_end()) {
4912        if (Diagnose)
4913          S.Diag(FieldRecord->getLocation(),
4914                 diag::note_deleted_default_ctor_all_const)
4915            << MD->getParent() << /*anonymous union*/1;
4916        return true;
4917      }
4918
4919      // Don't check the implicit member of the anonymous union type.
4920      // This is technically non-conformant, but sanity demands it.
4921      return false;
4922    }
4923
4924    if (shouldDeleteForClassSubobject(FieldRecord, FD,
4925                                      FieldType.getCVRQualifiers()))
4926      return true;
4927  }
4928
4929  return false;
4930}
4931
4932/// C++11 [class.ctor] p5:
4933///   A defaulted default constructor for a class X is defined as deleted if
4934/// X is a union and all of its variant members are of const-qualified type.
4935bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4936  // This is a silly definition, because it gives an empty union a deleted
4937  // default constructor. Don't do that.
4938  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4939      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4940    if (Diagnose)
4941      S.Diag(MD->getParent()->getLocation(),
4942             diag::note_deleted_default_ctor_all_const)
4943        << MD->getParent() << /*not anonymous union*/0;
4944    return true;
4945  }
4946  return false;
4947}
4948
4949/// Determine whether a defaulted special member function should be defined as
4950/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4951/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4952bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4953                                     bool Diagnose) {
4954  if (MD->isInvalidDecl())
4955    return false;
4956  CXXRecordDecl *RD = MD->getParent();
4957  assert(!RD->isDependentType() && "do deletion after instantiation");
4958  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
4959    return false;
4960
4961  // C++11 [expr.lambda.prim]p19:
4962  //   The closure type associated with a lambda-expression has a
4963  //   deleted (8.4.3) default constructor and a deleted copy
4964  //   assignment operator.
4965  if (RD->isLambda() &&
4966      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4967    if (Diagnose)
4968      Diag(RD->getLocation(), diag::note_lambda_decl);
4969    return true;
4970  }
4971
4972  // For an anonymous struct or union, the copy and assignment special members
4973  // will never be used, so skip the check. For an anonymous union declared at
4974  // namespace scope, the constructor and destructor are used.
4975  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4976      RD->isAnonymousStructOrUnion())
4977    return false;
4978
4979  // C++11 [class.copy]p7, p18:
4980  //   If the class definition declares a move constructor or move assignment
4981  //   operator, an implicitly declared copy constructor or copy assignment
4982  //   operator is defined as deleted.
4983  if (MD->isImplicit() &&
4984      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4985    CXXMethodDecl *UserDeclaredMove = 0;
4986
4987    // In Microsoft mode, a user-declared move only causes the deletion of the
4988    // corresponding copy operation, not both copy operations.
4989    if (RD->hasUserDeclaredMoveConstructor() &&
4990        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4991      if (!Diagnose) return true;
4992
4993      // Find any user-declared move constructor.
4994      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
4995                                        E = RD->ctor_end(); I != E; ++I) {
4996        if (I->isMoveConstructor()) {
4997          UserDeclaredMove = *I;
4998          break;
4999        }
5000      }
5001      assert(UserDeclaredMove);
5002    } else if (RD->hasUserDeclaredMoveAssignment() &&
5003               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
5004      if (!Diagnose) return true;
5005
5006      // Find any user-declared move assignment operator.
5007      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5008                                          E = RD->method_end(); I != E; ++I) {
5009        if (I->isMoveAssignmentOperator()) {
5010          UserDeclaredMove = *I;
5011          break;
5012        }
5013      }
5014      assert(UserDeclaredMove);
5015    }
5016
5017    if (UserDeclaredMove) {
5018      Diag(UserDeclaredMove->getLocation(),
5019           diag::note_deleted_copy_user_declared_move)
5020        << (CSM == CXXCopyAssignment) << RD
5021        << UserDeclaredMove->isMoveAssignmentOperator();
5022      return true;
5023    }
5024  }
5025
5026  // Do access control from the special member function
5027  ContextRAII MethodContext(*this, MD);
5028
5029  // C++11 [class.dtor]p5:
5030  // -- for a virtual destructor, lookup of the non-array deallocation function
5031  //    results in an ambiguity or in a function that is deleted or inaccessible
5032  if (CSM == CXXDestructor && MD->isVirtual()) {
5033    FunctionDecl *OperatorDelete = 0;
5034    DeclarationName Name =
5035      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5036    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5037                                 OperatorDelete, false)) {
5038      if (Diagnose)
5039        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5040      return true;
5041    }
5042  }
5043
5044  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5045
5046  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5047                                          BE = RD->bases_end(); BI != BE; ++BI)
5048    if (!BI->isVirtual() &&
5049        SMI.shouldDeleteForBase(BI))
5050      return true;
5051
5052  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5053                                          BE = RD->vbases_end(); BI != BE; ++BI)
5054    if (SMI.shouldDeleteForBase(BI))
5055      return true;
5056
5057  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5058                                     FE = RD->field_end(); FI != FE; ++FI)
5059    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5060        SMI.shouldDeleteForField(*FI))
5061      return true;
5062
5063  if (SMI.shouldDeleteForAllConstMembers())
5064    return true;
5065
5066  return false;
5067}
5068
5069/// Perform lookup for a special member of the specified kind, and determine
5070/// whether it is trivial. If the triviality can be determined without the
5071/// lookup, skip it. This is intended for use when determining whether a
5072/// special member of a containing object is trivial, and thus does not ever
5073/// perform overload resolution for default constructors.
5074///
5075/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5076/// member that was most likely to be intended to be trivial, if any.
5077static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5078                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5079                                     CXXMethodDecl **Selected) {
5080  if (Selected)
5081    *Selected = 0;
5082
5083  switch (CSM) {
5084  case Sema::CXXInvalid:
5085    llvm_unreachable("not a special member");
5086
5087  case Sema::CXXDefaultConstructor:
5088    // C++11 [class.ctor]p5:
5089    //   A default constructor is trivial if:
5090    //    - all the [direct subobjects] have trivial default constructors
5091    //
5092    // Note, no overload resolution is performed in this case.
5093    if (RD->hasTrivialDefaultConstructor())
5094      return true;
5095
5096    if (Selected) {
5097      // If there's a default constructor which could have been trivial, dig it
5098      // out. Otherwise, if there's any user-provided default constructor, point
5099      // to that as an example of why there's not a trivial one.
5100      CXXConstructorDecl *DefCtor = 0;
5101      if (RD->needsImplicitDefaultConstructor())
5102        S.DeclareImplicitDefaultConstructor(RD);
5103      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5104                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5105        if (!CI->isDefaultConstructor())
5106          continue;
5107        DefCtor = *CI;
5108        if (!DefCtor->isUserProvided())
5109          break;
5110      }
5111
5112      *Selected = DefCtor;
5113    }
5114
5115    return false;
5116
5117  case Sema::CXXDestructor:
5118    // C++11 [class.dtor]p5:
5119    //   A destructor is trivial if:
5120    //    - all the direct [subobjects] have trivial destructors
5121    if (RD->hasTrivialDestructor())
5122      return true;
5123
5124    if (Selected) {
5125      if (RD->needsImplicitDestructor())
5126        S.DeclareImplicitDestructor(RD);
5127      *Selected = RD->getDestructor();
5128    }
5129
5130    return false;
5131
5132  case Sema::CXXCopyConstructor:
5133    // C++11 [class.copy]p12:
5134    //   A copy constructor is trivial if:
5135    //    - the constructor selected to copy each direct [subobject] is trivial
5136    if (RD->hasTrivialCopyConstructor()) {
5137      if (Quals == Qualifiers::Const)
5138        // We must either select the trivial copy constructor or reach an
5139        // ambiguity; no need to actually perform overload resolution.
5140        return true;
5141    } else if (!Selected) {
5142      return false;
5143    }
5144    // In C++98, we are not supposed to perform overload resolution here, but we
5145    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5146    // cases like B as having a non-trivial copy constructor:
5147    //   struct A { template<typename T> A(T&); };
5148    //   struct B { mutable A a; };
5149    goto NeedOverloadResolution;
5150
5151  case Sema::CXXCopyAssignment:
5152    // C++11 [class.copy]p25:
5153    //   A copy assignment operator is trivial if:
5154    //    - the assignment operator selected to copy each direct [subobject] is
5155    //      trivial
5156    if (RD->hasTrivialCopyAssignment()) {
5157      if (Quals == Qualifiers::Const)
5158        return true;
5159    } else if (!Selected) {
5160      return false;
5161    }
5162    // In C++98, we are not supposed to perform overload resolution here, but we
5163    // treat that as a language defect.
5164    goto NeedOverloadResolution;
5165
5166  case Sema::CXXMoveConstructor:
5167  case Sema::CXXMoveAssignment:
5168  NeedOverloadResolution:
5169    Sema::SpecialMemberOverloadResult *SMOR =
5170      S.LookupSpecialMember(RD, CSM,
5171                            Quals & Qualifiers::Const,
5172                            Quals & Qualifiers::Volatile,
5173                            /*RValueThis*/false, /*ConstThis*/false,
5174                            /*VolatileThis*/false);
5175
5176    // The standard doesn't describe how to behave if the lookup is ambiguous.
5177    // We treat it as not making the member non-trivial, just like the standard
5178    // mandates for the default constructor. This should rarely matter, because
5179    // the member will also be deleted.
5180    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5181      return true;
5182
5183    if (!SMOR->getMethod()) {
5184      assert(SMOR->getKind() ==
5185             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5186      return false;
5187    }
5188
5189    // We deliberately don't check if we found a deleted special member. We're
5190    // not supposed to!
5191    if (Selected)
5192      *Selected = SMOR->getMethod();
5193    return SMOR->getMethod()->isTrivial();
5194  }
5195
5196  llvm_unreachable("unknown special method kind");
5197}
5198
5199static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5200  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5201       CI != CE; ++CI)
5202    if (!CI->isImplicit())
5203      return *CI;
5204
5205  // Look for constructor templates.
5206  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5207  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5208    if (CXXConstructorDecl *CD =
5209          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5210      return CD;
5211  }
5212
5213  return 0;
5214}
5215
5216/// The kind of subobject we are checking for triviality. The values of this
5217/// enumeration are used in diagnostics.
5218enum TrivialSubobjectKind {
5219  /// The subobject is a base class.
5220  TSK_BaseClass,
5221  /// The subobject is a non-static data member.
5222  TSK_Field,
5223  /// The object is actually the complete object.
5224  TSK_CompleteObject
5225};
5226
5227/// Check whether the special member selected for a given type would be trivial.
5228static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5229                                      QualType SubType,
5230                                      Sema::CXXSpecialMember CSM,
5231                                      TrivialSubobjectKind Kind,
5232                                      bool Diagnose) {
5233  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5234  if (!SubRD)
5235    return true;
5236
5237  CXXMethodDecl *Selected;
5238  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5239                               Diagnose ? &Selected : 0))
5240    return true;
5241
5242  if (Diagnose) {
5243    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5244      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5245        << Kind << SubType.getUnqualifiedType();
5246      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5247        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5248    } else if (!Selected)
5249      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5250        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5251    else if (Selected->isUserProvided()) {
5252      if (Kind == TSK_CompleteObject)
5253        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5254          << Kind << SubType.getUnqualifiedType() << CSM;
5255      else {
5256        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5257          << Kind << SubType.getUnqualifiedType() << CSM;
5258        S.Diag(Selected->getLocation(), diag::note_declared_at);
5259      }
5260    } else {
5261      if (Kind != TSK_CompleteObject)
5262        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5263          << Kind << SubType.getUnqualifiedType() << CSM;
5264
5265      // Explain why the defaulted or deleted special member isn't trivial.
5266      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5267    }
5268  }
5269
5270  return false;
5271}
5272
5273/// Check whether the members of a class type allow a special member to be
5274/// trivial.
5275static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5276                                     Sema::CXXSpecialMember CSM,
5277                                     bool ConstArg, bool Diagnose) {
5278  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5279                                     FE = RD->field_end(); FI != FE; ++FI) {
5280    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5281      continue;
5282
5283    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5284
5285    // Pretend anonymous struct or union members are members of this class.
5286    if (FI->isAnonymousStructOrUnion()) {
5287      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5288                                    CSM, ConstArg, Diagnose))
5289        return false;
5290      continue;
5291    }
5292
5293    // C++11 [class.ctor]p5:
5294    //   A default constructor is trivial if [...]
5295    //    -- no non-static data member of its class has a
5296    //       brace-or-equal-initializer
5297    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5298      if (Diagnose)
5299        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5300      return false;
5301    }
5302
5303    // Objective C ARC 4.3.5:
5304    //   [...] nontrivally ownership-qualified types are [...] not trivially
5305    //   default constructible, copy constructible, move constructible, copy
5306    //   assignable, move assignable, or destructible [...]
5307    if (S.getLangOpts().ObjCAutoRefCount &&
5308        FieldType.hasNonTrivialObjCLifetime()) {
5309      if (Diagnose)
5310        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5311          << RD << FieldType.getObjCLifetime();
5312      return false;
5313    }
5314
5315    if (ConstArg && !FI->isMutable())
5316      FieldType.addConst();
5317    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5318                                   TSK_Field, Diagnose))
5319      return false;
5320  }
5321
5322  return true;
5323}
5324
5325/// Diagnose why the specified class does not have a trivial special member of
5326/// the given kind.
5327void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5328  QualType Ty = Context.getRecordType(RD);
5329  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5330    Ty.addConst();
5331
5332  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5333                            TSK_CompleteObject, /*Diagnose*/true);
5334}
5335
5336/// Determine whether a defaulted or deleted special member function is trivial,
5337/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5338/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5339bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5340                                  bool Diagnose) {
5341  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5342
5343  CXXRecordDecl *RD = MD->getParent();
5344
5345  bool ConstArg = false;
5346
5347  // C++11 [class.copy]p12, p25:
5348  //   A [special member] is trivial if its declared parameter type is the same
5349  //   as if it had been implicitly declared [...]
5350  switch (CSM) {
5351  case CXXDefaultConstructor:
5352  case CXXDestructor:
5353    // Trivial default constructors and destructors cannot have parameters.
5354    break;
5355
5356  case CXXCopyConstructor:
5357  case CXXCopyAssignment: {
5358    // Trivial copy operations always have const, non-volatile parameter types.
5359    ConstArg = true;
5360    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5361    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5362    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5363      if (Diagnose)
5364        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5365          << Param0->getSourceRange() << Param0->getType()
5366          << Context.getLValueReferenceType(
5367               Context.getRecordType(RD).withConst());
5368      return false;
5369    }
5370    break;
5371  }
5372
5373  case CXXMoveConstructor:
5374  case CXXMoveAssignment: {
5375    // Trivial move operations always have non-cv-qualified parameters.
5376    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5377    const RValueReferenceType *RT =
5378      Param0->getType()->getAs<RValueReferenceType>();
5379    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5380      if (Diagnose)
5381        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5382          << Param0->getSourceRange() << Param0->getType()
5383          << Context.getRValueReferenceType(Context.getRecordType(RD));
5384      return false;
5385    }
5386    break;
5387  }
5388
5389  case CXXInvalid:
5390    llvm_unreachable("not a special member");
5391  }
5392
5393  // FIXME: We require that the parameter-declaration-clause is equivalent to
5394  // that of an implicit declaration, not just that the declared parameter type
5395  // matches, in order to prevent absuridities like a function simultaneously
5396  // being a trivial copy constructor and a non-trivial default constructor.
5397  // This issue has not yet been assigned a core issue number.
5398  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5399    if (Diagnose)
5400      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5401           diag::note_nontrivial_default_arg)
5402        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5403    return false;
5404  }
5405  if (MD->isVariadic()) {
5406    if (Diagnose)
5407      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5408    return false;
5409  }
5410
5411  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5412  //   A copy/move [constructor or assignment operator] is trivial if
5413  //    -- the [member] selected to copy/move each direct base class subobject
5414  //       is trivial
5415  //
5416  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5417  //   A [default constructor or destructor] is trivial if
5418  //    -- all the direct base classes have trivial [default constructors or
5419  //       destructors]
5420  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5421                                          BE = RD->bases_end(); BI != BE; ++BI)
5422    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5423                                   ConstArg ? BI->getType().withConst()
5424                                            : BI->getType(),
5425                                   CSM, TSK_BaseClass, Diagnose))
5426      return false;
5427
5428  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5429  //   A copy/move [constructor or assignment operator] for a class X is
5430  //   trivial if
5431  //    -- for each non-static data member of X that is of class type (or array
5432  //       thereof), the constructor selected to copy/move that member is
5433  //       trivial
5434  //
5435  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5436  //   A [default constructor or destructor] is trivial if
5437  //    -- for all of the non-static data members of its class that are of class
5438  //       type (or array thereof), each such class has a trivial [default
5439  //       constructor or destructor]
5440  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5441    return false;
5442
5443  // C++11 [class.dtor]p5:
5444  //   A destructor is trivial if [...]
5445  //    -- the destructor is not virtual
5446  if (CSM == CXXDestructor && MD->isVirtual()) {
5447    if (Diagnose)
5448      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5449    return false;
5450  }
5451
5452  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5453  //   A [special member] for class X is trivial if [...]
5454  //    -- class X has no virtual functions and no virtual base classes
5455  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5456    if (!Diagnose)
5457      return false;
5458
5459    if (RD->getNumVBases()) {
5460      // Check for virtual bases. We already know that the corresponding
5461      // member in all bases is trivial, so vbases must all be direct.
5462      CXXBaseSpecifier &BS = *RD->vbases_begin();
5463      assert(BS.isVirtual());
5464      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5465      return false;
5466    }
5467
5468    // Must have a virtual method.
5469    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5470                                        ME = RD->method_end(); MI != ME; ++MI) {
5471      if (MI->isVirtual()) {
5472        SourceLocation MLoc = MI->getLocStart();
5473        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5474        return false;
5475      }
5476    }
5477
5478    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5479  }
5480
5481  // Looks like it's trivial!
5482  return true;
5483}
5484
5485/// \brief Data used with FindHiddenVirtualMethod
5486namespace {
5487  struct FindHiddenVirtualMethodData {
5488    Sema *S;
5489    CXXMethodDecl *Method;
5490    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5491    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5492  };
5493}
5494
5495/// \brief Check whether any most overriden method from MD in Methods
5496static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5497                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5498  if (MD->size_overridden_methods() == 0)
5499    return Methods.count(MD->getCanonicalDecl());
5500  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5501                                      E = MD->end_overridden_methods();
5502       I != E; ++I)
5503    if (CheckMostOverridenMethods(*I, Methods))
5504      return true;
5505  return false;
5506}
5507
5508/// \brief Member lookup function that determines whether a given C++
5509/// method overloads virtual methods in a base class without overriding any,
5510/// to be used with CXXRecordDecl::lookupInBases().
5511static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5512                                    CXXBasePath &Path,
5513                                    void *UserData) {
5514  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5515
5516  FindHiddenVirtualMethodData &Data
5517    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5518
5519  DeclarationName Name = Data.Method->getDeclName();
5520  assert(Name.getNameKind() == DeclarationName::Identifier);
5521
5522  bool foundSameNameMethod = false;
5523  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5524  for (Path.Decls = BaseRecord->lookup(Name);
5525       !Path.Decls.empty();
5526       Path.Decls = Path.Decls.slice(1)) {
5527    NamedDecl *D = Path.Decls.front();
5528    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5529      MD = MD->getCanonicalDecl();
5530      foundSameNameMethod = true;
5531      // Interested only in hidden virtual methods.
5532      if (!MD->isVirtual())
5533        continue;
5534      // If the method we are checking overrides a method from its base
5535      // don't warn about the other overloaded methods.
5536      if (!Data.S->IsOverload(Data.Method, MD, false))
5537        return true;
5538      // Collect the overload only if its hidden.
5539      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5540        overloadedMethods.push_back(MD);
5541    }
5542  }
5543
5544  if (foundSameNameMethod)
5545    Data.OverloadedMethods.append(overloadedMethods.begin(),
5546                                   overloadedMethods.end());
5547  return foundSameNameMethod;
5548}
5549
5550/// \brief Add the most overriden methods from MD to Methods
5551static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5552                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5553  if (MD->size_overridden_methods() == 0)
5554    Methods.insert(MD->getCanonicalDecl());
5555  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5556                                      E = MD->end_overridden_methods();
5557       I != E; ++I)
5558    AddMostOverridenMethods(*I, Methods);
5559}
5560
5561/// \brief See if a method overloads virtual methods in a base class without
5562/// overriding any.
5563void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5564  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5565                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5566    return;
5567  if (!MD->getDeclName().isIdentifier())
5568    return;
5569
5570  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5571                     /*bool RecordPaths=*/false,
5572                     /*bool DetectVirtual=*/false);
5573  FindHiddenVirtualMethodData Data;
5574  Data.Method = MD;
5575  Data.S = this;
5576
5577  // Keep the base methods that were overriden or introduced in the subclass
5578  // by 'using' in a set. A base method not in this set is hidden.
5579  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5580  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5581    NamedDecl *ND = *I;
5582    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5583      ND = shad->getTargetDecl();
5584    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5585      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5586  }
5587
5588  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
5589      !Data.OverloadedMethods.empty()) {
5590    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5591      << MD << (Data.OverloadedMethods.size() > 1);
5592
5593    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
5594      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
5595      PartialDiagnostic PD = PDiag(
5596           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5597      HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5598      Diag(overloadedMD->getLocation(), PD);
5599    }
5600  }
5601}
5602
5603void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5604                                             Decl *TagDecl,
5605                                             SourceLocation LBrac,
5606                                             SourceLocation RBrac,
5607                                             AttributeList *AttrList) {
5608  if (!TagDecl)
5609    return;
5610
5611  AdjustDeclIfTemplate(TagDecl);
5612
5613  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5614    if (l->getKind() != AttributeList::AT_Visibility)
5615      continue;
5616    l->setInvalid();
5617    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5618      l->getName();
5619  }
5620
5621  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5622              // strict aliasing violation!
5623              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5624              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5625
5626  CheckCompletedCXXClass(
5627                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5628}
5629
5630/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5631/// special functions, such as the default constructor, copy
5632/// constructor, or destructor, to the given C++ class (C++
5633/// [special]p1).  This routine can only be executed just before the
5634/// definition of the class is complete.
5635void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5636  if (!ClassDecl->hasUserDeclaredConstructor())
5637    ++ASTContext::NumImplicitDefaultConstructors;
5638
5639  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5640    ++ASTContext::NumImplicitCopyConstructors;
5641
5642    // If the properties or semantics of the copy constructor couldn't be
5643    // determined while the class was being declared, force a declaration
5644    // of it now.
5645    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5646      DeclareImplicitCopyConstructor(ClassDecl);
5647  }
5648
5649  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5650    ++ASTContext::NumImplicitMoveConstructors;
5651
5652    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5653      DeclareImplicitMoveConstructor(ClassDecl);
5654  }
5655
5656  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5657    ++ASTContext::NumImplicitCopyAssignmentOperators;
5658
5659    // If we have a dynamic class, then the copy assignment operator may be
5660    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5661    // it shows up in the right place in the vtable and that we diagnose
5662    // problems with the implicit exception specification.
5663    if (ClassDecl->isDynamicClass() ||
5664        ClassDecl->needsOverloadResolutionForCopyAssignment())
5665      DeclareImplicitCopyAssignment(ClassDecl);
5666  }
5667
5668  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5669    ++ASTContext::NumImplicitMoveAssignmentOperators;
5670
5671    // Likewise for the move assignment operator.
5672    if (ClassDecl->isDynamicClass() ||
5673        ClassDecl->needsOverloadResolutionForMoveAssignment())
5674      DeclareImplicitMoveAssignment(ClassDecl);
5675  }
5676
5677  if (!ClassDecl->hasUserDeclaredDestructor()) {
5678    ++ASTContext::NumImplicitDestructors;
5679
5680    // If we have a dynamic class, then the destructor may be virtual, so we
5681    // have to declare the destructor immediately. This ensures that, e.g., it
5682    // shows up in the right place in the vtable and that we diagnose problems
5683    // with the implicit exception specification.
5684    if (ClassDecl->isDynamicClass() ||
5685        ClassDecl->needsOverloadResolutionForDestructor())
5686      DeclareImplicitDestructor(ClassDecl);
5687  }
5688}
5689
5690void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5691  if (!D)
5692    return;
5693
5694  int NumParamList = D->getNumTemplateParameterLists();
5695  for (int i = 0; i < NumParamList; i++) {
5696    TemplateParameterList* Params = D->getTemplateParameterList(i);
5697    for (TemplateParameterList::iterator Param = Params->begin(),
5698                                      ParamEnd = Params->end();
5699          Param != ParamEnd; ++Param) {
5700      NamedDecl *Named = cast<NamedDecl>(*Param);
5701      if (Named->getDeclName()) {
5702        S->AddDecl(Named);
5703        IdResolver.AddDecl(Named);
5704      }
5705    }
5706  }
5707}
5708
5709void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5710  if (!D)
5711    return;
5712
5713  TemplateParameterList *Params = 0;
5714  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5715    Params = Template->getTemplateParameters();
5716  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5717           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5718    Params = PartialSpec->getTemplateParameters();
5719  else
5720    return;
5721
5722  for (TemplateParameterList::iterator Param = Params->begin(),
5723                                    ParamEnd = Params->end();
5724       Param != ParamEnd; ++Param) {
5725    NamedDecl *Named = cast<NamedDecl>(*Param);
5726    if (Named->getDeclName()) {
5727      S->AddDecl(Named);
5728      IdResolver.AddDecl(Named);
5729    }
5730  }
5731}
5732
5733void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5734  if (!RecordD) return;
5735  AdjustDeclIfTemplate(RecordD);
5736  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5737  PushDeclContext(S, Record);
5738}
5739
5740void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5741  if (!RecordD) return;
5742  PopDeclContext();
5743}
5744
5745/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5746/// parsing a top-level (non-nested) C++ class, and we are now
5747/// parsing those parts of the given Method declaration that could
5748/// not be parsed earlier (C++ [class.mem]p2), such as default
5749/// arguments. This action should enter the scope of the given
5750/// Method declaration as if we had just parsed the qualified method
5751/// name. However, it should not bring the parameters into scope;
5752/// that will be performed by ActOnDelayedCXXMethodParameter.
5753void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5754}
5755
5756/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5757/// C++ method declaration. We're (re-)introducing the given
5758/// function parameter into scope for use in parsing later parts of
5759/// the method declaration. For example, we could see an
5760/// ActOnParamDefaultArgument event for this parameter.
5761void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5762  if (!ParamD)
5763    return;
5764
5765  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
5766
5767  // If this parameter has an unparsed default argument, clear it out
5768  // to make way for the parsed default argument.
5769  if (Param->hasUnparsedDefaultArg())
5770    Param->setDefaultArg(0);
5771
5772  S->AddDecl(Param);
5773  if (Param->getDeclName())
5774    IdResolver.AddDecl(Param);
5775}
5776
5777/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
5778/// processing the delayed method declaration for Method. The method
5779/// declaration is now considered finished. There may be a separate
5780/// ActOnStartOfFunctionDef action later (not necessarily
5781/// immediately!) for this method, if it was also defined inside the
5782/// class body.
5783void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5784  if (!MethodD)
5785    return;
5786
5787  AdjustDeclIfTemplate(MethodD);
5788
5789  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
5790
5791  // Now that we have our default arguments, check the constructor
5792  // again. It could produce additional diagnostics or affect whether
5793  // the class has implicitly-declared destructors, among other
5794  // things.
5795  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
5796    CheckConstructor(Constructor);
5797
5798  // Check the default arguments, which we may have added.
5799  if (!Method->isInvalidDecl())
5800    CheckCXXDefaultArguments(Method);
5801}
5802
5803/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
5804/// the well-formedness of the constructor declarator @p D with type @p
5805/// R. If there are any errors in the declarator, this routine will
5806/// emit diagnostics and set the invalid bit to true.  In any case, the type
5807/// will be updated to reflect a well-formed type for the constructor and
5808/// returned.
5809QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
5810                                          StorageClass &SC) {
5811  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5812
5813  // C++ [class.ctor]p3:
5814  //   A constructor shall not be virtual (10.3) or static (9.4). A
5815  //   constructor can be invoked for a const, volatile or const
5816  //   volatile object. A constructor shall not be declared const,
5817  //   volatile, or const volatile (9.3.2).
5818  if (isVirtual) {
5819    if (!D.isInvalidType())
5820      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5821        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
5822        << SourceRange(D.getIdentifierLoc());
5823    D.setInvalidType();
5824  }
5825  if (SC == SC_Static) {
5826    if (!D.isInvalidType())
5827      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
5828        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5829        << SourceRange(D.getIdentifierLoc());
5830    D.setInvalidType();
5831    SC = SC_None;
5832  }
5833
5834  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5835  if (FTI.TypeQuals != 0) {
5836    if (FTI.TypeQuals & Qualifiers::Const)
5837      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5838        << "const" << SourceRange(D.getIdentifierLoc());
5839    if (FTI.TypeQuals & Qualifiers::Volatile)
5840      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5841        << "volatile" << SourceRange(D.getIdentifierLoc());
5842    if (FTI.TypeQuals & Qualifiers::Restrict)
5843      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
5844        << "restrict" << SourceRange(D.getIdentifierLoc());
5845    D.setInvalidType();
5846  }
5847
5848  // C++0x [class.ctor]p4:
5849  //   A constructor shall not be declared with a ref-qualifier.
5850  if (FTI.hasRefQualifier()) {
5851    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
5852      << FTI.RefQualifierIsLValueRef
5853      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
5854    D.setInvalidType();
5855  }
5856
5857  // Rebuild the function type "R" without any type qualifiers (in
5858  // case any of the errors above fired) and with "void" as the
5859  // return type, since constructors don't have return types.
5860  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5861  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
5862    return R;
5863
5864  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
5865  EPI.TypeQuals = 0;
5866  EPI.RefQualifier = RQ_None;
5867
5868  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
5869}
5870
5871/// CheckConstructor - Checks a fully-formed constructor for
5872/// well-formedness, issuing any diagnostics required. Returns true if
5873/// the constructor declarator is invalid.
5874void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
5875  CXXRecordDecl *ClassDecl
5876    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
5877  if (!ClassDecl)
5878    return Constructor->setInvalidDecl();
5879
5880  // C++ [class.copy]p3:
5881  //   A declaration of a constructor for a class X is ill-formed if
5882  //   its first parameter is of type (optionally cv-qualified) X and
5883  //   either there are no other parameters or else all other
5884  //   parameters have default arguments.
5885  if (!Constructor->isInvalidDecl() &&
5886      ((Constructor->getNumParams() == 1) ||
5887       (Constructor->getNumParams() > 1 &&
5888        Constructor->getParamDecl(1)->hasDefaultArg())) &&
5889      Constructor->getTemplateSpecializationKind()
5890                                              != TSK_ImplicitInstantiation) {
5891    QualType ParamType = Constructor->getParamDecl(0)->getType();
5892    QualType ClassTy = Context.getTagDeclType(ClassDecl);
5893    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
5894      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
5895      const char *ConstRef
5896        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
5897                                                        : " const &";
5898      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
5899        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
5900
5901      // FIXME: Rather that making the constructor invalid, we should endeavor
5902      // to fix the type.
5903      Constructor->setInvalidDecl();
5904    }
5905  }
5906}
5907
5908/// CheckDestructor - Checks a fully-formed destructor definition for
5909/// well-formedness, issuing any diagnostics required.  Returns true
5910/// on error.
5911bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
5912  CXXRecordDecl *RD = Destructor->getParent();
5913
5914  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
5915    SourceLocation Loc;
5916
5917    if (!Destructor->isImplicit())
5918      Loc = Destructor->getLocation();
5919    else
5920      Loc = RD->getLocation();
5921
5922    // If we have a virtual destructor, look up the deallocation function
5923    FunctionDecl *OperatorDelete = 0;
5924    DeclarationName Name =
5925    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5926    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
5927      return true;
5928
5929    MarkFunctionReferenced(Loc, OperatorDelete);
5930
5931    Destructor->setOperatorDelete(OperatorDelete);
5932  }
5933
5934  return false;
5935}
5936
5937static inline bool
5938FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
5939  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5940          FTI.ArgInfo[0].Param &&
5941          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
5942}
5943
5944/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
5945/// the well-formednes of the destructor declarator @p D with type @p
5946/// R. If there are any errors in the declarator, this routine will
5947/// emit diagnostics and set the declarator to invalid.  Even if this happens,
5948/// will be updated to reflect a well-formed type for the destructor and
5949/// returned.
5950QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
5951                                         StorageClass& SC) {
5952  // C++ [class.dtor]p1:
5953  //   [...] A typedef-name that names a class is a class-name
5954  //   (7.1.3); however, a typedef-name that names a class shall not
5955  //   be used as the identifier in the declarator for a destructor
5956  //   declaration.
5957  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
5958  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
5959    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5960      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
5961  else if (const TemplateSpecializationType *TST =
5962             DeclaratorType->getAs<TemplateSpecializationType>())
5963    if (TST->isTypeAlias())
5964      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
5965        << DeclaratorType << 1;
5966
5967  // C++ [class.dtor]p2:
5968  //   A destructor is used to destroy objects of its class type. A
5969  //   destructor takes no parameters, and no return type can be
5970  //   specified for it (not even void). The address of a destructor
5971  //   shall not be taken. A destructor shall not be static. A
5972  //   destructor can be invoked for a const, volatile or const
5973  //   volatile object. A destructor shall not be declared const,
5974  //   volatile or const volatile (9.3.2).
5975  if (SC == SC_Static) {
5976    if (!D.isInvalidType())
5977      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
5978        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5979        << SourceRange(D.getIdentifierLoc())
5980        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5981
5982    SC = SC_None;
5983  }
5984  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5985    // Destructors don't have return types, but the parser will
5986    // happily parse something like:
5987    //
5988    //   class X {
5989    //     float ~X();
5990    //   };
5991    //
5992    // The return type will be eliminated later.
5993    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
5994      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5995      << SourceRange(D.getIdentifierLoc());
5996  }
5997
5998  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5999  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6000    if (FTI.TypeQuals & Qualifiers::Const)
6001      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6002        << "const" << SourceRange(D.getIdentifierLoc());
6003    if (FTI.TypeQuals & Qualifiers::Volatile)
6004      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6005        << "volatile" << SourceRange(D.getIdentifierLoc());
6006    if (FTI.TypeQuals & Qualifiers::Restrict)
6007      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6008        << "restrict" << SourceRange(D.getIdentifierLoc());
6009    D.setInvalidType();
6010  }
6011
6012  // C++0x [class.dtor]p2:
6013  //   A destructor shall not be declared with a ref-qualifier.
6014  if (FTI.hasRefQualifier()) {
6015    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6016      << FTI.RefQualifierIsLValueRef
6017      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6018    D.setInvalidType();
6019  }
6020
6021  // Make sure we don't have any parameters.
6022  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6023    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6024
6025    // Delete the parameters.
6026    FTI.freeArgs();
6027    D.setInvalidType();
6028  }
6029
6030  // Make sure the destructor isn't variadic.
6031  if (FTI.isVariadic) {
6032    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6033    D.setInvalidType();
6034  }
6035
6036  // Rebuild the function type "R" without any type qualifiers or
6037  // parameters (in case any of the errors above fired) and with
6038  // "void" as the return type, since destructors don't have return
6039  // types.
6040  if (!D.isInvalidType())
6041    return R;
6042
6043  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6044  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6045  EPI.Variadic = false;
6046  EPI.TypeQuals = 0;
6047  EPI.RefQualifier = RQ_None;
6048  return Context.getFunctionType(Context.VoidTy, None, EPI);
6049}
6050
6051/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6052/// well-formednes of the conversion function declarator @p D with
6053/// type @p R. If there are any errors in the declarator, this routine
6054/// will emit diagnostics and return true. Otherwise, it will return
6055/// false. Either way, the type @p R will be updated to reflect a
6056/// well-formed type for the conversion operator.
6057void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6058                                     StorageClass& SC) {
6059  // C++ [class.conv.fct]p1:
6060  //   Neither parameter types nor return type can be specified. The
6061  //   type of a conversion function (8.3.5) is "function taking no
6062  //   parameter returning conversion-type-id."
6063  if (SC == SC_Static) {
6064    if (!D.isInvalidType())
6065      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6066        << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6067        << D.getName().getSourceRange();
6068    D.setInvalidType();
6069    SC = SC_None;
6070  }
6071
6072  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6073
6074  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6075    // Conversion functions don't have return types, but the parser will
6076    // happily parse something like:
6077    //
6078    //   class X {
6079    //     float operator bool();
6080    //   };
6081    //
6082    // The return type will be changed later anyway.
6083    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6084      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6085      << SourceRange(D.getIdentifierLoc());
6086    D.setInvalidType();
6087  }
6088
6089  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6090
6091  // Make sure we don't have any parameters.
6092  if (Proto->getNumArgs() > 0) {
6093    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6094
6095    // Delete the parameters.
6096    D.getFunctionTypeInfo().freeArgs();
6097    D.setInvalidType();
6098  } else if (Proto->isVariadic()) {
6099    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6100    D.setInvalidType();
6101  }
6102
6103  // Diagnose "&operator bool()" and other such nonsense.  This
6104  // is actually a gcc extension which we don't support.
6105  if (Proto->getResultType() != ConvType) {
6106    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6107      << Proto->getResultType();
6108    D.setInvalidType();
6109    ConvType = Proto->getResultType();
6110  }
6111
6112  // C++ [class.conv.fct]p4:
6113  //   The conversion-type-id shall not represent a function type nor
6114  //   an array type.
6115  if (ConvType->isArrayType()) {
6116    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6117    ConvType = Context.getPointerType(ConvType);
6118    D.setInvalidType();
6119  } else if (ConvType->isFunctionType()) {
6120    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6121    ConvType = Context.getPointerType(ConvType);
6122    D.setInvalidType();
6123  }
6124
6125  // Rebuild the function type "R" without any parameters (in case any
6126  // of the errors above fired) and with the conversion type as the
6127  // return type.
6128  if (D.isInvalidType())
6129    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6130
6131  // C++0x explicit conversion operators.
6132  if (D.getDeclSpec().isExplicitSpecified())
6133    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6134         getLangOpts().CPlusPlus11 ?
6135           diag::warn_cxx98_compat_explicit_conversion_functions :
6136           diag::ext_explicit_conversion_functions)
6137      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6138}
6139
6140/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6141/// the declaration of the given C++ conversion function. This routine
6142/// is responsible for recording the conversion function in the C++
6143/// class, if possible.
6144Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6145  assert(Conversion && "Expected to receive a conversion function declaration");
6146
6147  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6148
6149  // Make sure we aren't redeclaring the conversion function.
6150  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6151
6152  // C++ [class.conv.fct]p1:
6153  //   [...] A conversion function is never used to convert a
6154  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6155  //   same object type (or a reference to it), to a (possibly
6156  //   cv-qualified) base class of that type (or a reference to it),
6157  //   or to (possibly cv-qualified) void.
6158  // FIXME: Suppress this warning if the conversion function ends up being a
6159  // virtual function that overrides a virtual function in a base class.
6160  QualType ClassType
6161    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6162  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6163    ConvType = ConvTypeRef->getPointeeType();
6164  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6165      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6166    /* Suppress diagnostics for instantiations. */;
6167  else if (ConvType->isRecordType()) {
6168    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6169    if (ConvType == ClassType)
6170      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6171        << ClassType;
6172    else if (IsDerivedFrom(ClassType, ConvType))
6173      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6174        <<  ClassType << ConvType;
6175  } else if (ConvType->isVoidType()) {
6176    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6177      << ClassType << ConvType;
6178  }
6179
6180  if (FunctionTemplateDecl *ConversionTemplate
6181                                = Conversion->getDescribedFunctionTemplate())
6182    return ConversionTemplate;
6183
6184  return Conversion;
6185}
6186
6187//===----------------------------------------------------------------------===//
6188// Namespace Handling
6189//===----------------------------------------------------------------------===//
6190
6191/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6192/// reopened.
6193static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6194                                            SourceLocation Loc,
6195                                            IdentifierInfo *II, bool *IsInline,
6196                                            NamespaceDecl *PrevNS) {
6197  assert(*IsInline != PrevNS->isInline());
6198
6199  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6200  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6201  // inline namespaces, with the intention of bringing names into namespace std.
6202  //
6203  // We support this just well enough to get that case working; this is not
6204  // sufficient to support reopening namespaces as inline in general.
6205  if (*IsInline && II && II->getName().startswith("__atomic") &&
6206      S.getSourceManager().isInSystemHeader(Loc)) {
6207    // Mark all prior declarations of the namespace as inline.
6208    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6209         NS = NS->getPreviousDecl())
6210      NS->setInline(*IsInline);
6211    // Patch up the lookup table for the containing namespace. This isn't really
6212    // correct, but it's good enough for this particular case.
6213    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6214                                    E = PrevNS->decls_end(); I != E; ++I)
6215      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6216        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6217    return;
6218  }
6219
6220  if (PrevNS->isInline())
6221    // The user probably just forgot the 'inline', so suggest that it
6222    // be added back.
6223    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6224      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6225  else
6226    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6227      << IsInline;
6228
6229  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6230  *IsInline = PrevNS->isInline();
6231}
6232
6233/// ActOnStartNamespaceDef - This is called at the start of a namespace
6234/// definition.
6235Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6236                                   SourceLocation InlineLoc,
6237                                   SourceLocation NamespaceLoc,
6238                                   SourceLocation IdentLoc,
6239                                   IdentifierInfo *II,
6240                                   SourceLocation LBrace,
6241                                   AttributeList *AttrList) {
6242  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6243  // For anonymous namespace, take the location of the left brace.
6244  SourceLocation Loc = II ? IdentLoc : LBrace;
6245  bool IsInline = InlineLoc.isValid();
6246  bool IsInvalid = false;
6247  bool IsStd = false;
6248  bool AddToKnown = false;
6249  Scope *DeclRegionScope = NamespcScope->getParent();
6250
6251  NamespaceDecl *PrevNS = 0;
6252  if (II) {
6253    // C++ [namespace.def]p2:
6254    //   The identifier in an original-namespace-definition shall not
6255    //   have been previously defined in the declarative region in
6256    //   which the original-namespace-definition appears. The
6257    //   identifier in an original-namespace-definition is the name of
6258    //   the namespace. Subsequently in that declarative region, it is
6259    //   treated as an original-namespace-name.
6260    //
6261    // Since namespace names are unique in their scope, and we don't
6262    // look through using directives, just look for any ordinary names.
6263
6264    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6265    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6266    Decl::IDNS_Namespace;
6267    NamedDecl *PrevDecl = 0;
6268    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6269    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6270         ++I) {
6271      if ((*I)->getIdentifierNamespace() & IDNS) {
6272        PrevDecl = *I;
6273        break;
6274      }
6275    }
6276
6277    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6278
6279    if (PrevNS) {
6280      // This is an extended namespace definition.
6281      if (IsInline != PrevNS->isInline())
6282        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6283                                        &IsInline, PrevNS);
6284    } else if (PrevDecl) {
6285      // This is an invalid name redefinition.
6286      Diag(Loc, diag::err_redefinition_different_kind)
6287        << II;
6288      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6289      IsInvalid = true;
6290      // Continue on to push Namespc as current DeclContext and return it.
6291    } else if (II->isStr("std") &&
6292               CurContext->getRedeclContext()->isTranslationUnit()) {
6293      // This is the first "real" definition of the namespace "std", so update
6294      // our cache of the "std" namespace to point at this definition.
6295      PrevNS = getStdNamespace();
6296      IsStd = true;
6297      AddToKnown = !IsInline;
6298    } else {
6299      // We've seen this namespace for the first time.
6300      AddToKnown = !IsInline;
6301    }
6302  } else {
6303    // Anonymous namespaces.
6304
6305    // Determine whether the parent already has an anonymous namespace.
6306    DeclContext *Parent = CurContext->getRedeclContext();
6307    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6308      PrevNS = TU->getAnonymousNamespace();
6309    } else {
6310      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6311      PrevNS = ND->getAnonymousNamespace();
6312    }
6313
6314    if (PrevNS && IsInline != PrevNS->isInline())
6315      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6316                                      &IsInline, PrevNS);
6317  }
6318
6319  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6320                                                 StartLoc, Loc, II, PrevNS);
6321  if (IsInvalid)
6322    Namespc->setInvalidDecl();
6323
6324  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6325
6326  // FIXME: Should we be merging attributes?
6327  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6328    PushNamespaceVisibilityAttr(Attr, Loc);
6329
6330  if (IsStd)
6331    StdNamespace = Namespc;
6332  if (AddToKnown)
6333    KnownNamespaces[Namespc] = false;
6334
6335  if (II) {
6336    PushOnScopeChains(Namespc, DeclRegionScope);
6337  } else {
6338    // Link the anonymous namespace into its parent.
6339    DeclContext *Parent = CurContext->getRedeclContext();
6340    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6341      TU->setAnonymousNamespace(Namespc);
6342    } else {
6343      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6344    }
6345
6346    CurContext->addDecl(Namespc);
6347
6348    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6349    //   behaves as if it were replaced by
6350    //     namespace unique { /* empty body */ }
6351    //     using namespace unique;
6352    //     namespace unique { namespace-body }
6353    //   where all occurrences of 'unique' in a translation unit are
6354    //   replaced by the same identifier and this identifier differs
6355    //   from all other identifiers in the entire program.
6356
6357    // We just create the namespace with an empty name and then add an
6358    // implicit using declaration, just like the standard suggests.
6359    //
6360    // CodeGen enforces the "universally unique" aspect by giving all
6361    // declarations semantically contained within an anonymous
6362    // namespace internal linkage.
6363
6364    if (!PrevNS) {
6365      UsingDirectiveDecl* UD
6366        = UsingDirectiveDecl::Create(Context, Parent,
6367                                     /* 'using' */ LBrace,
6368                                     /* 'namespace' */ SourceLocation(),
6369                                     /* qualifier */ NestedNameSpecifierLoc(),
6370                                     /* identifier */ SourceLocation(),
6371                                     Namespc,
6372                                     /* Ancestor */ Parent);
6373      UD->setImplicit();
6374      Parent->addDecl(UD);
6375    }
6376  }
6377
6378  ActOnDocumentableDecl(Namespc);
6379
6380  // Although we could have an invalid decl (i.e. the namespace name is a
6381  // redefinition), push it as current DeclContext and try to continue parsing.
6382  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6383  // for the namespace has the declarations that showed up in that particular
6384  // namespace definition.
6385  PushDeclContext(NamespcScope, Namespc);
6386  return Namespc;
6387}
6388
6389/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6390/// is a namespace alias, returns the namespace it points to.
6391static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6392  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6393    return AD->getNamespace();
6394  return dyn_cast_or_null<NamespaceDecl>(D);
6395}
6396
6397/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6398/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6399void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6400  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6401  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6402  Namespc->setRBraceLoc(RBrace);
6403  PopDeclContext();
6404  if (Namespc->hasAttr<VisibilityAttr>())
6405    PopPragmaVisibility(true, RBrace);
6406}
6407
6408CXXRecordDecl *Sema::getStdBadAlloc() const {
6409  return cast_or_null<CXXRecordDecl>(
6410                                  StdBadAlloc.get(Context.getExternalSource()));
6411}
6412
6413NamespaceDecl *Sema::getStdNamespace() const {
6414  return cast_or_null<NamespaceDecl>(
6415                                 StdNamespace.get(Context.getExternalSource()));
6416}
6417
6418/// \brief Retrieve the special "std" namespace, which may require us to
6419/// implicitly define the namespace.
6420NamespaceDecl *Sema::getOrCreateStdNamespace() {
6421  if (!StdNamespace) {
6422    // The "std" namespace has not yet been defined, so build one implicitly.
6423    StdNamespace = NamespaceDecl::Create(Context,
6424                                         Context.getTranslationUnitDecl(),
6425                                         /*Inline=*/false,
6426                                         SourceLocation(), SourceLocation(),
6427                                         &PP.getIdentifierTable().get("std"),
6428                                         /*PrevDecl=*/0);
6429    getStdNamespace()->setImplicit(true);
6430  }
6431
6432  return getStdNamespace();
6433}
6434
6435bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6436  assert(getLangOpts().CPlusPlus &&
6437         "Looking for std::initializer_list outside of C++.");
6438
6439  // We're looking for implicit instantiations of
6440  // template <typename E> class std::initializer_list.
6441
6442  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6443    return false;
6444
6445  ClassTemplateDecl *Template = 0;
6446  const TemplateArgument *Arguments = 0;
6447
6448  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6449
6450    ClassTemplateSpecializationDecl *Specialization =
6451        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6452    if (!Specialization)
6453      return false;
6454
6455    Template = Specialization->getSpecializedTemplate();
6456    Arguments = Specialization->getTemplateArgs().data();
6457  } else if (const TemplateSpecializationType *TST =
6458                 Ty->getAs<TemplateSpecializationType>()) {
6459    Template = dyn_cast_or_null<ClassTemplateDecl>(
6460        TST->getTemplateName().getAsTemplateDecl());
6461    Arguments = TST->getArgs();
6462  }
6463  if (!Template)
6464    return false;
6465
6466  if (!StdInitializerList) {
6467    // Haven't recognized std::initializer_list yet, maybe this is it.
6468    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6469    if (TemplateClass->getIdentifier() !=
6470            &PP.getIdentifierTable().get("initializer_list") ||
6471        !getStdNamespace()->InEnclosingNamespaceSetOf(
6472            TemplateClass->getDeclContext()))
6473      return false;
6474    // This is a template called std::initializer_list, but is it the right
6475    // template?
6476    TemplateParameterList *Params = Template->getTemplateParameters();
6477    if (Params->getMinRequiredArguments() != 1)
6478      return false;
6479    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6480      return false;
6481
6482    // It's the right template.
6483    StdInitializerList = Template;
6484  }
6485
6486  if (Template != StdInitializerList)
6487    return false;
6488
6489  // This is an instance of std::initializer_list. Find the argument type.
6490  if (Element)
6491    *Element = Arguments[0].getAsType();
6492  return true;
6493}
6494
6495static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6496  NamespaceDecl *Std = S.getStdNamespace();
6497  if (!Std) {
6498    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6499    return 0;
6500  }
6501
6502  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6503                      Loc, Sema::LookupOrdinaryName);
6504  if (!S.LookupQualifiedName(Result, Std)) {
6505    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6506    return 0;
6507  }
6508  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6509  if (!Template) {
6510    Result.suppressDiagnostics();
6511    // We found something weird. Complain about the first thing we found.
6512    NamedDecl *Found = *Result.begin();
6513    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6514    return 0;
6515  }
6516
6517  // We found some template called std::initializer_list. Now verify that it's
6518  // correct.
6519  TemplateParameterList *Params = Template->getTemplateParameters();
6520  if (Params->getMinRequiredArguments() != 1 ||
6521      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6522    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6523    return 0;
6524  }
6525
6526  return Template;
6527}
6528
6529QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6530  if (!StdInitializerList) {
6531    StdInitializerList = LookupStdInitializerList(*this, Loc);
6532    if (!StdInitializerList)
6533      return QualType();
6534  }
6535
6536  TemplateArgumentListInfo Args(Loc, Loc);
6537  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6538                                       Context.getTrivialTypeSourceInfo(Element,
6539                                                                        Loc)));
6540  return Context.getCanonicalType(
6541      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6542}
6543
6544bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6545  // C++ [dcl.init.list]p2:
6546  //   A constructor is an initializer-list constructor if its first parameter
6547  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6548  //   std::initializer_list<E> for some type E, and either there are no other
6549  //   parameters or else all other parameters have default arguments.
6550  if (Ctor->getNumParams() < 1 ||
6551      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6552    return false;
6553
6554  QualType ArgType = Ctor->getParamDecl(0)->getType();
6555  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6556    ArgType = RT->getPointeeType().getUnqualifiedType();
6557
6558  return isStdInitializerList(ArgType, 0);
6559}
6560
6561/// \brief Determine whether a using statement is in a context where it will be
6562/// apply in all contexts.
6563static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6564  switch (CurContext->getDeclKind()) {
6565    case Decl::TranslationUnit:
6566      return true;
6567    case Decl::LinkageSpec:
6568      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6569    default:
6570      return false;
6571  }
6572}
6573
6574namespace {
6575
6576// Callback to only accept typo corrections that are namespaces.
6577class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6578 public:
6579  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
6580    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
6581      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6582    }
6583    return false;
6584  }
6585};
6586
6587}
6588
6589static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6590                                       CXXScopeSpec &SS,
6591                                       SourceLocation IdentLoc,
6592                                       IdentifierInfo *Ident) {
6593  NamespaceValidatorCCC Validator;
6594  R.clear();
6595  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6596                                               R.getLookupKind(), Sc, &SS,
6597                                               Validator)) {
6598    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6599    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
6600    if (DeclContext *DC = S.computeDeclContext(SS, false))
6601      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
6602        << Ident << DC << CorrectedQuotedStr << SS.getRange()
6603        << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
6604                                        CorrectedStr);
6605    else
6606      S.Diag(IdentLoc, diag::err_using_directive_suggest)
6607        << Ident << CorrectedQuotedStr
6608        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
6609
6610    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
6611         diag::note_namespace_defined_here) << CorrectedQuotedStr;
6612
6613    R.addDecl(Corrected.getCorrectionDecl());
6614    return true;
6615  }
6616  return false;
6617}
6618
6619Decl *Sema::ActOnUsingDirective(Scope *S,
6620                                          SourceLocation UsingLoc,
6621                                          SourceLocation NamespcLoc,
6622                                          CXXScopeSpec &SS,
6623                                          SourceLocation IdentLoc,
6624                                          IdentifierInfo *NamespcName,
6625                                          AttributeList *AttrList) {
6626  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6627  assert(NamespcName && "Invalid NamespcName.");
6628  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6629
6630  // This can only happen along a recovery path.
6631  while (S->getFlags() & Scope::TemplateParamScope)
6632    S = S->getParent();
6633  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6634
6635  UsingDirectiveDecl *UDir = 0;
6636  NestedNameSpecifier *Qualifier = 0;
6637  if (SS.isSet())
6638    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6639
6640  // Lookup namespace name.
6641  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6642  LookupParsedName(R, S, &SS);
6643  if (R.isAmbiguous())
6644    return 0;
6645
6646  if (R.empty()) {
6647    R.clear();
6648    // Allow "using namespace std;" or "using namespace ::std;" even if
6649    // "std" hasn't been defined yet, for GCC compatibility.
6650    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6651        NamespcName->isStr("std")) {
6652      Diag(IdentLoc, diag::ext_using_undefined_std);
6653      R.addDecl(getOrCreateStdNamespace());
6654      R.resolveKind();
6655    }
6656    // Otherwise, attempt typo correction.
6657    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6658  }
6659
6660  if (!R.empty()) {
6661    NamedDecl *Named = R.getFoundDecl();
6662    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6663        && "expected namespace decl");
6664    // C++ [namespace.udir]p1:
6665    //   A using-directive specifies that the names in the nominated
6666    //   namespace can be used in the scope in which the
6667    //   using-directive appears after the using-directive. During
6668    //   unqualified name lookup (3.4.1), the names appear as if they
6669    //   were declared in the nearest enclosing namespace which
6670    //   contains both the using-directive and the nominated
6671    //   namespace. [Note: in this context, "contains" means "contains
6672    //   directly or indirectly". ]
6673
6674    // Find enclosing context containing both using-directive and
6675    // nominated namespace.
6676    NamespaceDecl *NS = getNamespaceDecl(Named);
6677    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6678    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6679      CommonAncestor = CommonAncestor->getParent();
6680
6681    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6682                                      SS.getWithLocInContext(Context),
6683                                      IdentLoc, Named, CommonAncestor);
6684
6685    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6686        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6687      Diag(IdentLoc, diag::warn_using_directive_in_header);
6688    }
6689
6690    PushUsingDirective(S, UDir);
6691  } else {
6692    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6693  }
6694
6695  if (UDir)
6696    ProcessDeclAttributeList(S, UDir, AttrList);
6697
6698  return UDir;
6699}
6700
6701void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6702  // If the scope has an associated entity and the using directive is at
6703  // namespace or translation unit scope, add the UsingDirectiveDecl into
6704  // its lookup structure so qualified name lookup can find it.
6705  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6706  if (Ctx && !Ctx->isFunctionOrMethod())
6707    Ctx->addDecl(UDir);
6708  else
6709    // Otherwise, it is at block sope. The using-directives will affect lookup
6710    // only to the end of the scope.
6711    S->PushUsingDirective(UDir);
6712}
6713
6714
6715Decl *Sema::ActOnUsingDeclaration(Scope *S,
6716                                  AccessSpecifier AS,
6717                                  bool HasUsingKeyword,
6718                                  SourceLocation UsingLoc,
6719                                  CXXScopeSpec &SS,
6720                                  UnqualifiedId &Name,
6721                                  AttributeList *AttrList,
6722                                  bool IsTypeName,
6723                                  SourceLocation TypenameLoc) {
6724  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6725
6726  switch (Name.getKind()) {
6727  case UnqualifiedId::IK_ImplicitSelfParam:
6728  case UnqualifiedId::IK_Identifier:
6729  case UnqualifiedId::IK_OperatorFunctionId:
6730  case UnqualifiedId::IK_LiteralOperatorId:
6731  case UnqualifiedId::IK_ConversionFunctionId:
6732    break;
6733
6734  case UnqualifiedId::IK_ConstructorName:
6735  case UnqualifiedId::IK_ConstructorTemplateId:
6736    // C++11 inheriting constructors.
6737    Diag(Name.getLocStart(),
6738         getLangOpts().CPlusPlus11 ?
6739           diag::warn_cxx98_compat_using_decl_constructor :
6740           diag::err_using_decl_constructor)
6741      << SS.getRange();
6742
6743    if (getLangOpts().CPlusPlus11) break;
6744
6745    return 0;
6746
6747  case UnqualifiedId::IK_DestructorName:
6748    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6749      << SS.getRange();
6750    return 0;
6751
6752  case UnqualifiedId::IK_TemplateId:
6753    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6754      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6755    return 0;
6756  }
6757
6758  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6759  DeclarationName TargetName = TargetNameInfo.getName();
6760  if (!TargetName)
6761    return 0;
6762
6763  // Warn about access declarations.
6764  // TODO: store that the declaration was written without 'using' and
6765  // talk about access decls instead of using decls in the
6766  // diagnostics.
6767  if (!HasUsingKeyword) {
6768    UsingLoc = Name.getLocStart();
6769
6770    Diag(UsingLoc,
6771         getLangOpts().CPlusPlus11 ? diag::err_access_decl
6772                                   : diag::warn_access_decl_deprecated)
6773      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
6774  }
6775
6776  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
6777      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
6778    return 0;
6779
6780  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
6781                                        TargetNameInfo, AttrList,
6782                                        /* IsInstantiation */ false,
6783                                        IsTypeName, TypenameLoc);
6784  if (UD)
6785    PushOnScopeChains(UD, S, /*AddToContext*/ false);
6786
6787  return UD;
6788}
6789
6790/// \brief Determine whether a using declaration considers the given
6791/// declarations as "equivalent", e.g., if they are redeclarations of
6792/// the same entity or are both typedefs of the same type.
6793static bool
6794IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
6795                         bool &SuppressRedeclaration) {
6796  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
6797    SuppressRedeclaration = false;
6798    return true;
6799  }
6800
6801  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
6802    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
6803      SuppressRedeclaration = true;
6804      return Context.hasSameType(TD1->getUnderlyingType(),
6805                                 TD2->getUnderlyingType());
6806    }
6807
6808  return false;
6809}
6810
6811
6812/// Determines whether to create a using shadow decl for a particular
6813/// decl, given the set of decls existing prior to this using lookup.
6814bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
6815                                const LookupResult &Previous) {
6816  // Diagnose finding a decl which is not from a base class of the
6817  // current class.  We do this now because there are cases where this
6818  // function will silently decide not to build a shadow decl, which
6819  // will pre-empt further diagnostics.
6820  //
6821  // We don't need to do this in C++0x because we do the check once on
6822  // the qualifier.
6823  //
6824  // FIXME: diagnose the following if we care enough:
6825  //   struct A { int foo; };
6826  //   struct B : A { using A::foo; };
6827  //   template <class T> struct C : A {};
6828  //   template <class T> struct D : C<T> { using B::foo; } // <---
6829  // This is invalid (during instantiation) in C++03 because B::foo
6830  // resolves to the using decl in B, which is not a base class of D<T>.
6831  // We can't diagnose it immediately because C<T> is an unknown
6832  // specialization.  The UsingShadowDecl in D<T> then points directly
6833  // to A::foo, which will look well-formed when we instantiate.
6834  // The right solution is to not collapse the shadow-decl chain.
6835  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
6836    DeclContext *OrigDC = Orig->getDeclContext();
6837
6838    // Handle enums and anonymous structs.
6839    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
6840    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
6841    while (OrigRec->isAnonymousStructOrUnion())
6842      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
6843
6844    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
6845      if (OrigDC == CurContext) {
6846        Diag(Using->getLocation(),
6847             diag::err_using_decl_nested_name_specifier_is_current_class)
6848          << Using->getQualifierLoc().getSourceRange();
6849        Diag(Orig->getLocation(), diag::note_using_decl_target);
6850        return true;
6851      }
6852
6853      Diag(Using->getQualifierLoc().getBeginLoc(),
6854           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6855        << Using->getQualifier()
6856        << cast<CXXRecordDecl>(CurContext)
6857        << Using->getQualifierLoc().getSourceRange();
6858      Diag(Orig->getLocation(), diag::note_using_decl_target);
6859      return true;
6860    }
6861  }
6862
6863  if (Previous.empty()) return false;
6864
6865  NamedDecl *Target = Orig;
6866  if (isa<UsingShadowDecl>(Target))
6867    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6868
6869  // If the target happens to be one of the previous declarations, we
6870  // don't have a conflict.
6871  //
6872  // FIXME: but we might be increasing its access, in which case we
6873  // should redeclare it.
6874  NamedDecl *NonTag = 0, *Tag = 0;
6875  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6876         I != E; ++I) {
6877    NamedDecl *D = (*I)->getUnderlyingDecl();
6878    bool Result;
6879    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
6880      return Result;
6881
6882    (isa<TagDecl>(D) ? Tag : NonTag) = D;
6883  }
6884
6885  if (Target->isFunctionOrFunctionTemplate()) {
6886    FunctionDecl *FD;
6887    if (isa<FunctionTemplateDecl>(Target))
6888      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
6889    else
6890      FD = cast<FunctionDecl>(Target);
6891
6892    NamedDecl *OldDecl = 0;
6893    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
6894    case Ovl_Overload:
6895      return false;
6896
6897    case Ovl_NonFunction:
6898      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6899      break;
6900
6901    // We found a decl with the exact signature.
6902    case Ovl_Match:
6903      // If we're in a record, we want to hide the target, so we
6904      // return true (without a diagnostic) to tell the caller not to
6905      // build a shadow decl.
6906      if (CurContext->isRecord())
6907        return true;
6908
6909      // If we're not in a record, this is an error.
6910      Diag(Using->getLocation(), diag::err_using_decl_conflict);
6911      break;
6912    }
6913
6914    Diag(Target->getLocation(), diag::note_using_decl_target);
6915    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
6916    return true;
6917  }
6918
6919  // Target is not a function.
6920
6921  if (isa<TagDecl>(Target)) {
6922    // No conflict between a tag and a non-tag.
6923    if (!Tag) return false;
6924
6925    Diag(Using->getLocation(), diag::err_using_decl_conflict);
6926    Diag(Target->getLocation(), diag::note_using_decl_target);
6927    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
6928    return true;
6929  }
6930
6931  // No conflict between a tag and a non-tag.
6932  if (!NonTag) return false;
6933
6934  Diag(Using->getLocation(), diag::err_using_decl_conflict);
6935  Diag(Target->getLocation(), diag::note_using_decl_target);
6936  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
6937  return true;
6938}
6939
6940/// Builds a shadow declaration corresponding to a 'using' declaration.
6941UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
6942                                            UsingDecl *UD,
6943                                            NamedDecl *Orig) {
6944
6945  // If we resolved to another shadow declaration, just coalesce them.
6946  NamedDecl *Target = Orig;
6947  if (isa<UsingShadowDecl>(Target)) {
6948    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
6949    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
6950  }
6951
6952  UsingShadowDecl *Shadow
6953    = UsingShadowDecl::Create(Context, CurContext,
6954                              UD->getLocation(), UD, Target);
6955  UD->addShadowDecl(Shadow);
6956
6957  Shadow->setAccess(UD->getAccess());
6958  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
6959    Shadow->setInvalidDecl();
6960
6961  if (S)
6962    PushOnScopeChains(Shadow, S);
6963  else
6964    CurContext->addDecl(Shadow);
6965
6966
6967  return Shadow;
6968}
6969
6970/// Hides a using shadow declaration.  This is required by the current
6971/// using-decl implementation when a resolvable using declaration in a
6972/// class is followed by a declaration which would hide or override
6973/// one or more of the using decl's targets; for example:
6974///
6975///   struct Base { void foo(int); };
6976///   struct Derived : Base {
6977///     using Base::foo;
6978///     void foo(int);
6979///   };
6980///
6981/// The governing language is C++03 [namespace.udecl]p12:
6982///
6983///   When a using-declaration brings names from a base class into a
6984///   derived class scope, member functions in the derived class
6985///   override and/or hide member functions with the same name and
6986///   parameter types in a base class (rather than conflicting).
6987///
6988/// There are two ways to implement this:
6989///   (1) optimistically create shadow decls when they're not hidden
6990///       by existing declarations, or
6991///   (2) don't create any shadow decls (or at least don't make them
6992///       visible) until we've fully parsed/instantiated the class.
6993/// The problem with (1) is that we might have to retroactively remove
6994/// a shadow decl, which requires several O(n) operations because the
6995/// decl structures are (very reasonably) not designed for removal.
6996/// (2) avoids this but is very fiddly and phase-dependent.
6997void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
6998  if (Shadow->getDeclName().getNameKind() ==
6999        DeclarationName::CXXConversionFunctionName)
7000    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7001
7002  // Remove it from the DeclContext...
7003  Shadow->getDeclContext()->removeDecl(Shadow);
7004
7005  // ...and the scope, if applicable...
7006  if (S) {
7007    S->RemoveDecl(Shadow);
7008    IdResolver.RemoveDecl(Shadow);
7009  }
7010
7011  // ...and the using decl.
7012  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7013
7014  // TODO: complain somehow if Shadow was used.  It shouldn't
7015  // be possible for this to happen, because...?
7016}
7017
7018/// Builds a using declaration.
7019///
7020/// \param IsInstantiation - Whether this call arises from an
7021///   instantiation of an unresolved using declaration.  We treat
7022///   the lookup differently for these declarations.
7023NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7024                                       SourceLocation UsingLoc,
7025                                       CXXScopeSpec &SS,
7026                                       const DeclarationNameInfo &NameInfo,
7027                                       AttributeList *AttrList,
7028                                       bool IsInstantiation,
7029                                       bool IsTypeName,
7030                                       SourceLocation TypenameLoc) {
7031  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7032  SourceLocation IdentLoc = NameInfo.getLoc();
7033  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7034
7035  // FIXME: We ignore attributes for now.
7036
7037  if (SS.isEmpty()) {
7038    Diag(IdentLoc, diag::err_using_requires_qualname);
7039    return 0;
7040  }
7041
7042  // Do the redeclaration lookup in the current scope.
7043  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7044                        ForRedeclaration);
7045  Previous.setHideTags(false);
7046  if (S) {
7047    LookupName(Previous, S);
7048
7049    // It is really dumb that we have to do this.
7050    LookupResult::Filter F = Previous.makeFilter();
7051    while (F.hasNext()) {
7052      NamedDecl *D = F.next();
7053      if (!isDeclInScope(D, CurContext, S))
7054        F.erase();
7055    }
7056    F.done();
7057  } else {
7058    assert(IsInstantiation && "no scope in non-instantiation");
7059    assert(CurContext->isRecord() && "scope not record in instantiation");
7060    LookupQualifiedName(Previous, CurContext);
7061  }
7062
7063  // Check for invalid redeclarations.
7064  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
7065    return 0;
7066
7067  // Check for bad qualifiers.
7068  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7069    return 0;
7070
7071  DeclContext *LookupContext = computeDeclContext(SS);
7072  NamedDecl *D;
7073  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7074  if (!LookupContext) {
7075    if (IsTypeName) {
7076      // FIXME: not all declaration name kinds are legal here
7077      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7078                                              UsingLoc, TypenameLoc,
7079                                              QualifierLoc,
7080                                              IdentLoc, NameInfo.getName());
7081    } else {
7082      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7083                                           QualifierLoc, NameInfo);
7084    }
7085  } else {
7086    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7087                          NameInfo, IsTypeName);
7088  }
7089  D->setAccess(AS);
7090  CurContext->addDecl(D);
7091
7092  if (!LookupContext) return D;
7093  UsingDecl *UD = cast<UsingDecl>(D);
7094
7095  if (RequireCompleteDeclContext(SS, LookupContext)) {
7096    UD->setInvalidDecl();
7097    return UD;
7098  }
7099
7100  // The normal rules do not apply to inheriting constructor declarations.
7101  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7102    if (CheckInheritingConstructorUsingDecl(UD))
7103      UD->setInvalidDecl();
7104    return UD;
7105  }
7106
7107  // Otherwise, look up the target name.
7108
7109  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7110
7111  // Unlike most lookups, we don't always want to hide tag
7112  // declarations: tag names are visible through the using declaration
7113  // even if hidden by ordinary names, *except* in a dependent context
7114  // where it's important for the sanity of two-phase lookup.
7115  if (!IsInstantiation)
7116    R.setHideTags(false);
7117
7118  // For the purposes of this lookup, we have a base object type
7119  // equal to that of the current context.
7120  if (CurContext->isRecord()) {
7121    R.setBaseObjectType(
7122                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7123  }
7124
7125  LookupQualifiedName(R, LookupContext);
7126
7127  if (R.empty()) {
7128    Diag(IdentLoc, diag::err_no_member)
7129      << NameInfo.getName() << LookupContext << SS.getRange();
7130    UD->setInvalidDecl();
7131    return UD;
7132  }
7133
7134  if (R.isAmbiguous()) {
7135    UD->setInvalidDecl();
7136    return UD;
7137  }
7138
7139  if (IsTypeName) {
7140    // If we asked for a typename and got a non-type decl, error out.
7141    if (!R.getAsSingle<TypeDecl>()) {
7142      Diag(IdentLoc, diag::err_using_typename_non_type);
7143      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7144        Diag((*I)->getUnderlyingDecl()->getLocation(),
7145             diag::note_using_decl_target);
7146      UD->setInvalidDecl();
7147      return UD;
7148    }
7149  } else {
7150    // If we asked for a non-typename and we got a type, error out,
7151    // but only if this is an instantiation of an unresolved using
7152    // decl.  Otherwise just silently find the type name.
7153    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7154      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7155      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7156      UD->setInvalidDecl();
7157      return UD;
7158    }
7159  }
7160
7161  // C++0x N2914 [namespace.udecl]p6:
7162  // A using-declaration shall not name a namespace.
7163  if (R.getAsSingle<NamespaceDecl>()) {
7164    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7165      << SS.getRange();
7166    UD->setInvalidDecl();
7167    return UD;
7168  }
7169
7170  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7171    if (!CheckUsingShadowDecl(UD, *I, Previous))
7172      BuildUsingShadowDecl(S, UD, *I);
7173  }
7174
7175  return UD;
7176}
7177
7178/// Additional checks for a using declaration referring to a constructor name.
7179bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7180  assert(!UD->isTypeName() && "expecting a constructor name");
7181
7182  const Type *SourceType = UD->getQualifier()->getAsType();
7183  assert(SourceType &&
7184         "Using decl naming constructor doesn't have type in scope spec.");
7185  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7186
7187  // Check whether the named type is a direct base class.
7188  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7189  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7190  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7191       BaseIt != BaseE; ++BaseIt) {
7192    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7193    if (CanonicalSourceType == BaseType)
7194      break;
7195    if (BaseIt->getType()->isDependentType())
7196      break;
7197  }
7198
7199  if (BaseIt == BaseE) {
7200    // Did not find SourceType in the bases.
7201    Diag(UD->getUsingLocation(),
7202         diag::err_using_decl_constructor_not_in_direct_base)
7203      << UD->getNameInfo().getSourceRange()
7204      << QualType(SourceType, 0) << TargetClass;
7205    return true;
7206  }
7207
7208  if (!CurContext->isDependentContext())
7209    BaseIt->setInheritConstructors();
7210
7211  return false;
7212}
7213
7214/// Checks that the given using declaration is not an invalid
7215/// redeclaration.  Note that this is checking only for the using decl
7216/// itself, not for any ill-formedness among the UsingShadowDecls.
7217bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7218                                       bool isTypeName,
7219                                       const CXXScopeSpec &SS,
7220                                       SourceLocation NameLoc,
7221                                       const LookupResult &Prev) {
7222  // C++03 [namespace.udecl]p8:
7223  // C++0x [namespace.udecl]p10:
7224  //   A using-declaration is a declaration and can therefore be used
7225  //   repeatedly where (and only where) multiple declarations are
7226  //   allowed.
7227  //
7228  // That's in non-member contexts.
7229  if (!CurContext->getRedeclContext()->isRecord())
7230    return false;
7231
7232  NestedNameSpecifier *Qual
7233    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7234
7235  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7236    NamedDecl *D = *I;
7237
7238    bool DTypename;
7239    NestedNameSpecifier *DQual;
7240    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7241      DTypename = UD->isTypeName();
7242      DQual = UD->getQualifier();
7243    } else if (UnresolvedUsingValueDecl *UD
7244                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7245      DTypename = false;
7246      DQual = UD->getQualifier();
7247    } else if (UnresolvedUsingTypenameDecl *UD
7248                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7249      DTypename = true;
7250      DQual = UD->getQualifier();
7251    } else continue;
7252
7253    // using decls differ if one says 'typename' and the other doesn't.
7254    // FIXME: non-dependent using decls?
7255    if (isTypeName != DTypename) continue;
7256
7257    // using decls differ if they name different scopes (but note that
7258    // template instantiation can cause this check to trigger when it
7259    // didn't before instantiation).
7260    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7261        Context.getCanonicalNestedNameSpecifier(DQual))
7262      continue;
7263
7264    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7265    Diag(D->getLocation(), diag::note_using_decl) << 1;
7266    return true;
7267  }
7268
7269  return false;
7270}
7271
7272
7273/// Checks that the given nested-name qualifier used in a using decl
7274/// in the current context is appropriately related to the current
7275/// scope.  If an error is found, diagnoses it and returns true.
7276bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7277                                   const CXXScopeSpec &SS,
7278                                   SourceLocation NameLoc) {
7279  DeclContext *NamedContext = computeDeclContext(SS);
7280
7281  if (!CurContext->isRecord()) {
7282    // C++03 [namespace.udecl]p3:
7283    // C++0x [namespace.udecl]p8:
7284    //   A using-declaration for a class member shall be a member-declaration.
7285
7286    // If we weren't able to compute a valid scope, it must be a
7287    // dependent class scope.
7288    if (!NamedContext || NamedContext->isRecord()) {
7289      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7290        << SS.getRange();
7291      return true;
7292    }
7293
7294    // Otherwise, everything is known to be fine.
7295    return false;
7296  }
7297
7298  // The current scope is a record.
7299
7300  // If the named context is dependent, we can't decide much.
7301  if (!NamedContext) {
7302    // FIXME: in C++0x, we can diagnose if we can prove that the
7303    // nested-name-specifier does not refer to a base class, which is
7304    // still possible in some cases.
7305
7306    // Otherwise we have to conservatively report that things might be
7307    // okay.
7308    return false;
7309  }
7310
7311  if (!NamedContext->isRecord()) {
7312    // Ideally this would point at the last name in the specifier,
7313    // but we don't have that level of source info.
7314    Diag(SS.getRange().getBegin(),
7315         diag::err_using_decl_nested_name_specifier_is_not_class)
7316      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7317    return true;
7318  }
7319
7320  if (!NamedContext->isDependentContext() &&
7321      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7322    return true;
7323
7324  if (getLangOpts().CPlusPlus11) {
7325    // C++0x [namespace.udecl]p3:
7326    //   In a using-declaration used as a member-declaration, the
7327    //   nested-name-specifier shall name a base class of the class
7328    //   being defined.
7329
7330    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7331                                 cast<CXXRecordDecl>(NamedContext))) {
7332      if (CurContext == NamedContext) {
7333        Diag(NameLoc,
7334             diag::err_using_decl_nested_name_specifier_is_current_class)
7335          << SS.getRange();
7336        return true;
7337      }
7338
7339      Diag(SS.getRange().getBegin(),
7340           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7341        << (NestedNameSpecifier*) SS.getScopeRep()
7342        << cast<CXXRecordDecl>(CurContext)
7343        << SS.getRange();
7344      return true;
7345    }
7346
7347    return false;
7348  }
7349
7350  // C++03 [namespace.udecl]p4:
7351  //   A using-declaration used as a member-declaration shall refer
7352  //   to a member of a base class of the class being defined [etc.].
7353
7354  // Salient point: SS doesn't have to name a base class as long as
7355  // lookup only finds members from base classes.  Therefore we can
7356  // diagnose here only if we can prove that that can't happen,
7357  // i.e. if the class hierarchies provably don't intersect.
7358
7359  // TODO: it would be nice if "definitely valid" results were cached
7360  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7361  // need to be repeated.
7362
7363  struct UserData {
7364    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7365
7366    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7367      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7368      Data->Bases.insert(Base);
7369      return true;
7370    }
7371
7372    bool hasDependentBases(const CXXRecordDecl *Class) {
7373      return !Class->forallBases(collect, this);
7374    }
7375
7376    /// Returns true if the base is dependent or is one of the
7377    /// accumulated base classes.
7378    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7379      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7380      return !Data->Bases.count(Base);
7381    }
7382
7383    bool mightShareBases(const CXXRecordDecl *Class) {
7384      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7385    }
7386  };
7387
7388  UserData Data;
7389
7390  // Returns false if we find a dependent base.
7391  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7392    return false;
7393
7394  // Returns false if the class has a dependent base or if it or one
7395  // of its bases is present in the base set of the current context.
7396  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7397    return false;
7398
7399  Diag(SS.getRange().getBegin(),
7400       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7401    << (NestedNameSpecifier*) SS.getScopeRep()
7402    << cast<CXXRecordDecl>(CurContext)
7403    << SS.getRange();
7404
7405  return true;
7406}
7407
7408Decl *Sema::ActOnAliasDeclaration(Scope *S,
7409                                  AccessSpecifier AS,
7410                                  MultiTemplateParamsArg TemplateParamLists,
7411                                  SourceLocation UsingLoc,
7412                                  UnqualifiedId &Name,
7413                                  AttributeList *AttrList,
7414                                  TypeResult Type) {
7415  // Skip up to the relevant declaration scope.
7416  while (S->getFlags() & Scope::TemplateParamScope)
7417    S = S->getParent();
7418  assert((S->getFlags() & Scope::DeclScope) &&
7419         "got alias-declaration outside of declaration scope");
7420
7421  if (Type.isInvalid())
7422    return 0;
7423
7424  bool Invalid = false;
7425  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7426  TypeSourceInfo *TInfo = 0;
7427  GetTypeFromParser(Type.get(), &TInfo);
7428
7429  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7430    return 0;
7431
7432  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7433                                      UPPC_DeclarationType)) {
7434    Invalid = true;
7435    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7436                                             TInfo->getTypeLoc().getBeginLoc());
7437  }
7438
7439  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7440  LookupName(Previous, S);
7441
7442  // Warn about shadowing the name of a template parameter.
7443  if (Previous.isSingleResult() &&
7444      Previous.getFoundDecl()->isTemplateParameter()) {
7445    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7446    Previous.clear();
7447  }
7448
7449  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7450         "name in alias declaration must be an identifier");
7451  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7452                                               Name.StartLocation,
7453                                               Name.Identifier, TInfo);
7454
7455  NewTD->setAccess(AS);
7456
7457  if (Invalid)
7458    NewTD->setInvalidDecl();
7459
7460  ProcessDeclAttributeList(S, NewTD, AttrList);
7461
7462  CheckTypedefForVariablyModifiedType(S, NewTD);
7463  Invalid |= NewTD->isInvalidDecl();
7464
7465  bool Redeclaration = false;
7466
7467  NamedDecl *NewND;
7468  if (TemplateParamLists.size()) {
7469    TypeAliasTemplateDecl *OldDecl = 0;
7470    TemplateParameterList *OldTemplateParams = 0;
7471
7472    if (TemplateParamLists.size() != 1) {
7473      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7474        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7475         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7476    }
7477    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7478
7479    // Only consider previous declarations in the same scope.
7480    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7481                         /*ExplicitInstantiationOrSpecialization*/false);
7482    if (!Previous.empty()) {
7483      Redeclaration = true;
7484
7485      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7486      if (!OldDecl && !Invalid) {
7487        Diag(UsingLoc, diag::err_redefinition_different_kind)
7488          << Name.Identifier;
7489
7490        NamedDecl *OldD = Previous.getRepresentativeDecl();
7491        if (OldD->getLocation().isValid())
7492          Diag(OldD->getLocation(), diag::note_previous_definition);
7493
7494        Invalid = true;
7495      }
7496
7497      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7498        if (TemplateParameterListsAreEqual(TemplateParams,
7499                                           OldDecl->getTemplateParameters(),
7500                                           /*Complain=*/true,
7501                                           TPL_TemplateMatch))
7502          OldTemplateParams = OldDecl->getTemplateParameters();
7503        else
7504          Invalid = true;
7505
7506        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7507        if (!Invalid &&
7508            !Context.hasSameType(OldTD->getUnderlyingType(),
7509                                 NewTD->getUnderlyingType())) {
7510          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7511          // but we can't reasonably accept it.
7512          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7513            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7514          if (OldTD->getLocation().isValid())
7515            Diag(OldTD->getLocation(), diag::note_previous_definition);
7516          Invalid = true;
7517        }
7518      }
7519    }
7520
7521    // Merge any previous default template arguments into our parameters,
7522    // and check the parameter list.
7523    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7524                                   TPC_TypeAliasTemplate))
7525      return 0;
7526
7527    TypeAliasTemplateDecl *NewDecl =
7528      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7529                                    Name.Identifier, TemplateParams,
7530                                    NewTD);
7531
7532    NewDecl->setAccess(AS);
7533
7534    if (Invalid)
7535      NewDecl->setInvalidDecl();
7536    else if (OldDecl)
7537      NewDecl->setPreviousDeclaration(OldDecl);
7538
7539    NewND = NewDecl;
7540  } else {
7541    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7542    NewND = NewTD;
7543  }
7544
7545  if (!Redeclaration)
7546    PushOnScopeChains(NewND, S);
7547
7548  ActOnDocumentableDecl(NewND);
7549  return NewND;
7550}
7551
7552Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7553                                             SourceLocation NamespaceLoc,
7554                                             SourceLocation AliasLoc,
7555                                             IdentifierInfo *Alias,
7556                                             CXXScopeSpec &SS,
7557                                             SourceLocation IdentLoc,
7558                                             IdentifierInfo *Ident) {
7559
7560  // Lookup the namespace name.
7561  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7562  LookupParsedName(R, S, &SS);
7563
7564  // Check if we have a previous declaration with the same name.
7565  NamedDecl *PrevDecl
7566    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7567                       ForRedeclaration);
7568  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7569    PrevDecl = 0;
7570
7571  if (PrevDecl) {
7572    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7573      // We already have an alias with the same name that points to the same
7574      // namespace, so don't create a new one.
7575      // FIXME: At some point, we'll want to create the (redundant)
7576      // declaration to maintain better source information.
7577      if (!R.isAmbiguous() && !R.empty() &&
7578          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7579        return 0;
7580    }
7581
7582    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7583      diag::err_redefinition_different_kind;
7584    Diag(AliasLoc, DiagID) << Alias;
7585    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7586    return 0;
7587  }
7588
7589  if (R.isAmbiguous())
7590    return 0;
7591
7592  if (R.empty()) {
7593    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7594      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7595      return 0;
7596    }
7597  }
7598
7599  NamespaceAliasDecl *AliasDecl =
7600    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7601                               Alias, SS.getWithLocInContext(Context),
7602                               IdentLoc, R.getFoundDecl());
7603
7604  PushOnScopeChains(AliasDecl, S);
7605  return AliasDecl;
7606}
7607
7608Sema::ImplicitExceptionSpecification
7609Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7610                                               CXXMethodDecl *MD) {
7611  CXXRecordDecl *ClassDecl = MD->getParent();
7612
7613  // C++ [except.spec]p14:
7614  //   An implicitly declared special member function (Clause 12) shall have an
7615  //   exception-specification. [...]
7616  ImplicitExceptionSpecification ExceptSpec(*this);
7617  if (ClassDecl->isInvalidDecl())
7618    return ExceptSpec;
7619
7620  // Direct base-class constructors.
7621  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7622                                       BEnd = ClassDecl->bases_end();
7623       B != BEnd; ++B) {
7624    if (B->isVirtual()) // Handled below.
7625      continue;
7626
7627    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7628      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7629      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7630      // If this is a deleted function, add it anyway. This might be conformant
7631      // with the standard. This might not. I'm not sure. It might not matter.
7632      if (Constructor)
7633        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7634    }
7635  }
7636
7637  // Virtual base-class constructors.
7638  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7639                                       BEnd = ClassDecl->vbases_end();
7640       B != BEnd; ++B) {
7641    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7642      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7643      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7644      // If this is a deleted function, add it anyway. This might be conformant
7645      // with the standard. This might not. I'm not sure. It might not matter.
7646      if (Constructor)
7647        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7648    }
7649  }
7650
7651  // Field constructors.
7652  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7653                               FEnd = ClassDecl->field_end();
7654       F != FEnd; ++F) {
7655    if (F->hasInClassInitializer()) {
7656      if (Expr *E = F->getInClassInitializer())
7657        ExceptSpec.CalledExpr(E);
7658      else if (!F->isInvalidDecl())
7659        // DR1351:
7660        //   If the brace-or-equal-initializer of a non-static data member
7661        //   invokes a defaulted default constructor of its class or of an
7662        //   enclosing class in a potentially evaluated subexpression, the
7663        //   program is ill-formed.
7664        //
7665        // This resolution is unworkable: the exception specification of the
7666        // default constructor can be needed in an unevaluated context, in
7667        // particular, in the operand of a noexcept-expression, and we can be
7668        // unable to compute an exception specification for an enclosed class.
7669        //
7670        // We do not allow an in-class initializer to require the evaluation
7671        // of the exception specification for any in-class initializer whose
7672        // definition is not lexically complete.
7673        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7674    } else if (const RecordType *RecordTy
7675              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7676      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7677      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7678      // If this is a deleted function, add it anyway. This might be conformant
7679      // with the standard. This might not. I'm not sure. It might not matter.
7680      // In particular, the problem is that this function never gets called. It
7681      // might just be ill-formed because this function attempts to refer to
7682      // a deleted function here.
7683      if (Constructor)
7684        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7685    }
7686  }
7687
7688  return ExceptSpec;
7689}
7690
7691Sema::ImplicitExceptionSpecification
7692Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7693  CXXRecordDecl *ClassDecl = CD->getParent();
7694
7695  // C++ [except.spec]p14:
7696  //   An inheriting constructor [...] shall have an exception-specification. [...]
7697  ImplicitExceptionSpecification ExceptSpec(*this);
7698  if (ClassDecl->isInvalidDecl())
7699    return ExceptSpec;
7700
7701  // Inherited constructor.
7702  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7703  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7704  // FIXME: Copying or moving the parameters could add extra exceptions to the
7705  // set, as could the default arguments for the inherited constructor. This
7706  // will be addressed when we implement the resolution of core issue 1351.
7707  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7708
7709  // Direct base-class constructors.
7710  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7711                                       BEnd = ClassDecl->bases_end();
7712       B != BEnd; ++B) {
7713    if (B->isVirtual()) // Handled below.
7714      continue;
7715
7716    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7717      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7718      if (BaseClassDecl == InheritedDecl)
7719        continue;
7720      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7721      if (Constructor)
7722        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7723    }
7724  }
7725
7726  // Virtual base-class constructors.
7727  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7728                                       BEnd = ClassDecl->vbases_end();
7729       B != BEnd; ++B) {
7730    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7731      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7732      if (BaseClassDecl == InheritedDecl)
7733        continue;
7734      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7735      if (Constructor)
7736        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7737    }
7738  }
7739
7740  // Field constructors.
7741  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7742                               FEnd = ClassDecl->field_end();
7743       F != FEnd; ++F) {
7744    if (F->hasInClassInitializer()) {
7745      if (Expr *E = F->getInClassInitializer())
7746        ExceptSpec.CalledExpr(E);
7747      else if (!F->isInvalidDecl())
7748        Diag(CD->getLocation(),
7749             diag::err_in_class_initializer_references_def_ctor) << CD;
7750    } else if (const RecordType *RecordTy
7751              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7752      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7753      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7754      if (Constructor)
7755        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7756    }
7757  }
7758
7759  return ExceptSpec;
7760}
7761
7762namespace {
7763/// RAII object to register a special member as being currently declared.
7764struct DeclaringSpecialMember {
7765  Sema &S;
7766  Sema::SpecialMemberDecl D;
7767  bool WasAlreadyBeingDeclared;
7768
7769  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
7770    : S(S), D(RD, CSM) {
7771    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
7772    if (WasAlreadyBeingDeclared)
7773      // This almost never happens, but if it does, ensure that our cache
7774      // doesn't contain a stale result.
7775      S.SpecialMemberCache.clear();
7776
7777    // FIXME: Register a note to be produced if we encounter an error while
7778    // declaring the special member.
7779  }
7780  ~DeclaringSpecialMember() {
7781    if (!WasAlreadyBeingDeclared)
7782      S.SpecialMembersBeingDeclared.erase(D);
7783  }
7784
7785  /// \brief Are we already trying to declare this special member?
7786  bool isAlreadyBeingDeclared() const {
7787    return WasAlreadyBeingDeclared;
7788  }
7789};
7790}
7791
7792CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
7793                                                     CXXRecordDecl *ClassDecl) {
7794  // C++ [class.ctor]p5:
7795  //   A default constructor for a class X is a constructor of class X
7796  //   that can be called without an argument. If there is no
7797  //   user-declared constructor for class X, a default constructor is
7798  //   implicitly declared. An implicitly-declared default constructor
7799  //   is an inline public member of its class.
7800  assert(ClassDecl->needsImplicitDefaultConstructor() &&
7801         "Should not build implicit default constructor!");
7802
7803  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
7804  if (DSM.isAlreadyBeingDeclared())
7805    return 0;
7806
7807  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
7808                                                     CXXDefaultConstructor,
7809                                                     false);
7810
7811  // Create the actual constructor declaration.
7812  CanQualType ClassType
7813    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
7814  SourceLocation ClassLoc = ClassDecl->getLocation();
7815  DeclarationName Name
7816    = Context.DeclarationNames.getCXXConstructorName(ClassType);
7817  DeclarationNameInfo NameInfo(Name, ClassLoc);
7818  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
7819      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
7820      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
7821      Constexpr);
7822  DefaultCon->setAccess(AS_public);
7823  DefaultCon->setDefaulted();
7824  DefaultCon->setImplicit();
7825
7826  // Build an exception specification pointing back at this constructor.
7827  FunctionProtoType::ExtProtoInfo EPI;
7828  EPI.ExceptionSpecType = EST_Unevaluated;
7829  EPI.ExceptionSpecDecl = DefaultCon;
7830  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
7831
7832  // We don't need to use SpecialMemberIsTrivial here; triviality for default
7833  // constructors is easy to compute.
7834  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
7835
7836  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
7837    SetDeclDeleted(DefaultCon, ClassLoc);
7838
7839  // Note that we have declared this constructor.
7840  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
7841
7842  if (Scope *S = getScopeForContext(ClassDecl))
7843    PushOnScopeChains(DefaultCon, S, false);
7844  ClassDecl->addDecl(DefaultCon);
7845
7846  return DefaultCon;
7847}
7848
7849void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
7850                                            CXXConstructorDecl *Constructor) {
7851  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
7852          !Constructor->doesThisDeclarationHaveABody() &&
7853          !Constructor->isDeleted()) &&
7854    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
7855
7856  CXXRecordDecl *ClassDecl = Constructor->getParent();
7857  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
7858
7859  SynthesizedFunctionScope Scope(*this, Constructor);
7860  DiagnosticErrorTrap Trap(Diags);
7861  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
7862      Trap.hasErrorOccurred()) {
7863    Diag(CurrentLocation, diag::note_member_synthesized_at)
7864      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
7865    Constructor->setInvalidDecl();
7866    return;
7867  }
7868
7869  SourceLocation Loc = Constructor->getLocation();
7870  Constructor->setBody(new (Context) CompoundStmt(Loc));
7871
7872  Constructor->setUsed();
7873  MarkVTableUsed(CurrentLocation, ClassDecl);
7874
7875  if (ASTMutationListener *L = getASTMutationListener()) {
7876    L->CompletedImplicitDefinition(Constructor);
7877  }
7878}
7879
7880void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
7881  // Check that any explicitly-defaulted methods have exception specifications
7882  // compatible with their implicit exception specifications.
7883  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
7884}
7885
7886namespace {
7887/// Information on inheriting constructors to declare.
7888class InheritingConstructorInfo {
7889public:
7890  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
7891      : SemaRef(SemaRef), Derived(Derived) {
7892    // Mark the constructors that we already have in the derived class.
7893    //
7894    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
7895    //   unless there is a user-declared constructor with the same signature in
7896    //   the class where the using-declaration appears.
7897    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
7898  }
7899
7900  void inheritAll(CXXRecordDecl *RD) {
7901    visitAll(RD, &InheritingConstructorInfo::inherit);
7902  }
7903
7904private:
7905  /// Information about an inheriting constructor.
7906  struct InheritingConstructor {
7907    InheritingConstructor()
7908      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
7909
7910    /// If \c true, a constructor with this signature is already declared
7911    /// in the derived class.
7912    bool DeclaredInDerived;
7913
7914    /// The constructor which is inherited.
7915    const CXXConstructorDecl *BaseCtor;
7916
7917    /// The derived constructor we declared.
7918    CXXConstructorDecl *DerivedCtor;
7919  };
7920
7921  /// Inheriting constructors with a given canonical type. There can be at
7922  /// most one such non-template constructor, and any number of templated
7923  /// constructors.
7924  struct InheritingConstructorsForType {
7925    InheritingConstructor NonTemplate;
7926    llvm::SmallVector<
7927      std::pair<TemplateParameterList*, InheritingConstructor>, 4> Templates;
7928
7929    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
7930      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
7931        TemplateParameterList *ParamList = FTD->getTemplateParameters();
7932        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
7933          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
7934                                               false, S.TPL_TemplateMatch))
7935            return Templates[I].second;
7936        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
7937        return Templates.back().second;
7938      }
7939
7940      return NonTemplate;
7941    }
7942  };
7943
7944  /// Get or create the inheriting constructor record for a constructor.
7945  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
7946                                  QualType CtorType) {
7947    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
7948        .getEntry(SemaRef, Ctor);
7949  }
7950
7951  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
7952
7953  /// Process all constructors for a class.
7954  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
7955    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
7956                                      CtorE = RD->ctor_end();
7957         CtorIt != CtorE; ++CtorIt)
7958      (this->*Callback)(*CtorIt);
7959    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
7960             I(RD->decls_begin()), E(RD->decls_end());
7961         I != E; ++I) {
7962      const FunctionDecl *FD = (*I)->getTemplatedDecl();
7963      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
7964        (this->*Callback)(CD);
7965    }
7966  }
7967
7968  /// Note that a constructor (or constructor template) was declared in Derived.
7969  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
7970    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
7971  }
7972
7973  /// Inherit a single constructor.
7974  void inherit(const CXXConstructorDecl *Ctor) {
7975    const FunctionProtoType *CtorType =
7976        Ctor->getType()->castAs<FunctionProtoType>();
7977    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
7978    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
7979
7980    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
7981
7982    // Core issue (no number yet): the ellipsis is always discarded.
7983    if (EPI.Variadic) {
7984      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
7985      SemaRef.Diag(Ctor->getLocation(),
7986                   diag::note_using_decl_constructor_ellipsis);
7987      EPI.Variadic = false;
7988    }
7989
7990    // Declare a constructor for each number of parameters.
7991    //
7992    // C++11 [class.inhctor]p1:
7993    //   The candidate set of inherited constructors from the class X named in
7994    //   the using-declaration consists of [... modulo defects ...] for each
7995    //   constructor or constructor template of X, the set of constructors or
7996    //   constructor templates that results from omitting any ellipsis parameter
7997    //   specification and successively omitting parameters with a default
7998    //   argument from the end of the parameter-type-list
7999    unsigned MinParams = minParamsToInherit(Ctor);
8000    unsigned Params = Ctor->getNumParams();
8001    if (Params >= MinParams) {
8002      do
8003        declareCtor(UsingLoc, Ctor,
8004                    SemaRef.Context.getFunctionType(
8005                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
8006      while (Params > MinParams &&
8007             Ctor->getParamDecl(--Params)->hasDefaultArg());
8008    }
8009  }
8010
8011  /// Find the using-declaration which specified that we should inherit the
8012  /// constructors of \p Base.
8013  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8014    // No fancy lookup required; just look for the base constructor name
8015    // directly within the derived class.
8016    ASTContext &Context = SemaRef.Context;
8017    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8018        Context.getCanonicalType(Context.getRecordType(Base)));
8019    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8020    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8021  }
8022
8023  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8024    // C++11 [class.inhctor]p3:
8025    //   [F]or each constructor template in the candidate set of inherited
8026    //   constructors, a constructor template is implicitly declared
8027    if (Ctor->getDescribedFunctionTemplate())
8028      return 0;
8029
8030    //   For each non-template constructor in the candidate set of inherited
8031    //   constructors other than a constructor having no parameters or a
8032    //   copy/move constructor having a single parameter, a constructor is
8033    //   implicitly declared [...]
8034    if (Ctor->getNumParams() == 0)
8035      return 1;
8036    if (Ctor->isCopyOrMoveConstructor())
8037      return 2;
8038
8039    // Per discussion on core reflector, never inherit a constructor which
8040    // would become a default, copy, or move constructor of Derived either.
8041    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8042    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8043    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8044  }
8045
8046  /// Declare a single inheriting constructor, inheriting the specified
8047  /// constructor, with the given type.
8048  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8049                   QualType DerivedType) {
8050    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8051
8052    // C++11 [class.inhctor]p3:
8053    //   ... a constructor is implicitly declared with the same constructor
8054    //   characteristics unless there is a user-declared constructor with
8055    //   the same signature in the class where the using-declaration appears
8056    if (Entry.DeclaredInDerived)
8057      return;
8058
8059    // C++11 [class.inhctor]p7:
8060    //   If two using-declarations declare inheriting constructors with the
8061    //   same signature, the program is ill-formed
8062    if (Entry.DerivedCtor) {
8063      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8064        // Only diagnose this once per constructor.
8065        if (Entry.DerivedCtor->isInvalidDecl())
8066          return;
8067        Entry.DerivedCtor->setInvalidDecl();
8068
8069        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8070        SemaRef.Diag(BaseCtor->getLocation(),
8071                     diag::note_using_decl_constructor_conflict_current_ctor);
8072        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8073                     diag::note_using_decl_constructor_conflict_previous_ctor);
8074        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8075                     diag::note_using_decl_constructor_conflict_previous_using);
8076      } else {
8077        // Core issue (no number): if the same inheriting constructor is
8078        // produced by multiple base class constructors from the same base
8079        // class, the inheriting constructor is defined as deleted.
8080        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8081      }
8082
8083      return;
8084    }
8085
8086    ASTContext &Context = SemaRef.Context;
8087    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8088        Context.getCanonicalType(Context.getRecordType(Derived)));
8089    DeclarationNameInfo NameInfo(Name, UsingLoc);
8090
8091    TemplateParameterList *TemplateParams = 0;
8092    if (const FunctionTemplateDecl *FTD =
8093            BaseCtor->getDescribedFunctionTemplate()) {
8094      TemplateParams = FTD->getTemplateParameters();
8095      // We're reusing template parameters from a different DeclContext. This
8096      // is questionable at best, but works out because the template depth in
8097      // both places is guaranteed to be 0.
8098      // FIXME: Rebuild the template parameters in the new context, and
8099      // transform the function type to refer to them.
8100    }
8101
8102    // Build type source info pointing at the using-declaration. This is
8103    // required by template instantiation.
8104    TypeSourceInfo *TInfo =
8105        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8106    FunctionProtoTypeLoc ProtoLoc =
8107        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8108
8109    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8110        Context, Derived, UsingLoc, NameInfo, DerivedType,
8111        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8112        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8113
8114    // Build an unevaluated exception specification for this constructor.
8115    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8116    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8117    EPI.ExceptionSpecType = EST_Unevaluated;
8118    EPI.ExceptionSpecDecl = DerivedCtor;
8119    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8120                                                 FPT->getArgTypes(), EPI));
8121
8122    // Build the parameter declarations.
8123    SmallVector<ParmVarDecl *, 16> ParamDecls;
8124    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8125      TypeSourceInfo *TInfo =
8126          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8127      ParmVarDecl *PD = ParmVarDecl::Create(
8128          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8129          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8130      PD->setScopeInfo(0, I);
8131      PD->setImplicit();
8132      ParamDecls.push_back(PD);
8133      ProtoLoc.setArg(I, PD);
8134    }
8135
8136    // Set up the new constructor.
8137    DerivedCtor->setAccess(BaseCtor->getAccess());
8138    DerivedCtor->setParams(ParamDecls);
8139    DerivedCtor->setInheritedConstructor(BaseCtor);
8140    if (BaseCtor->isDeleted())
8141      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8142
8143    // If this is a constructor template, build the template declaration.
8144    if (TemplateParams) {
8145      FunctionTemplateDecl *DerivedTemplate =
8146          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8147                                       TemplateParams, DerivedCtor);
8148      DerivedTemplate->setAccess(BaseCtor->getAccess());
8149      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8150      Derived->addDecl(DerivedTemplate);
8151    } else {
8152      Derived->addDecl(DerivedCtor);
8153    }
8154
8155    Entry.BaseCtor = BaseCtor;
8156    Entry.DerivedCtor = DerivedCtor;
8157  }
8158
8159  Sema &SemaRef;
8160  CXXRecordDecl *Derived;
8161  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8162  MapType Map;
8163};
8164}
8165
8166void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8167  // Defer declaring the inheriting constructors until the class is
8168  // instantiated.
8169  if (ClassDecl->isDependentContext())
8170    return;
8171
8172  // Find base classes from which we might inherit constructors.
8173  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8174  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8175                                          BaseE = ClassDecl->bases_end();
8176       BaseIt != BaseE; ++BaseIt)
8177    if (BaseIt->getInheritConstructors())
8178      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8179
8180  // Go no further if we're not inheriting any constructors.
8181  if (InheritedBases.empty())
8182    return;
8183
8184  // Declare the inherited constructors.
8185  InheritingConstructorInfo ICI(*this, ClassDecl);
8186  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8187    ICI.inheritAll(InheritedBases[I]);
8188}
8189
8190void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8191                                       CXXConstructorDecl *Constructor) {
8192  CXXRecordDecl *ClassDecl = Constructor->getParent();
8193  assert(Constructor->getInheritedConstructor() &&
8194         !Constructor->doesThisDeclarationHaveABody() &&
8195         !Constructor->isDeleted());
8196
8197  SynthesizedFunctionScope Scope(*this, Constructor);
8198  DiagnosticErrorTrap Trap(Diags);
8199  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8200      Trap.hasErrorOccurred()) {
8201    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8202      << Context.getTagDeclType(ClassDecl);
8203    Constructor->setInvalidDecl();
8204    return;
8205  }
8206
8207  SourceLocation Loc = Constructor->getLocation();
8208  Constructor->setBody(new (Context) CompoundStmt(Loc));
8209
8210  Constructor->setUsed();
8211  MarkVTableUsed(CurrentLocation, ClassDecl);
8212
8213  if (ASTMutationListener *L = getASTMutationListener()) {
8214    L->CompletedImplicitDefinition(Constructor);
8215  }
8216}
8217
8218
8219Sema::ImplicitExceptionSpecification
8220Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8221  CXXRecordDecl *ClassDecl = MD->getParent();
8222
8223  // C++ [except.spec]p14:
8224  //   An implicitly declared special member function (Clause 12) shall have
8225  //   an exception-specification.
8226  ImplicitExceptionSpecification ExceptSpec(*this);
8227  if (ClassDecl->isInvalidDecl())
8228    return ExceptSpec;
8229
8230  // Direct base-class destructors.
8231  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8232                                       BEnd = ClassDecl->bases_end();
8233       B != BEnd; ++B) {
8234    if (B->isVirtual()) // Handled below.
8235      continue;
8236
8237    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8238      ExceptSpec.CalledDecl(B->getLocStart(),
8239                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8240  }
8241
8242  // Virtual base-class destructors.
8243  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8244                                       BEnd = ClassDecl->vbases_end();
8245       B != BEnd; ++B) {
8246    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8247      ExceptSpec.CalledDecl(B->getLocStart(),
8248                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8249  }
8250
8251  // Field destructors.
8252  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8253                               FEnd = ClassDecl->field_end();
8254       F != FEnd; ++F) {
8255    if (const RecordType *RecordTy
8256        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8257      ExceptSpec.CalledDecl(F->getLocation(),
8258                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8259  }
8260
8261  return ExceptSpec;
8262}
8263
8264CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8265  // C++ [class.dtor]p2:
8266  //   If a class has no user-declared destructor, a destructor is
8267  //   declared implicitly. An implicitly-declared destructor is an
8268  //   inline public member of its class.
8269  assert(ClassDecl->needsImplicitDestructor());
8270
8271  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8272  if (DSM.isAlreadyBeingDeclared())
8273    return 0;
8274
8275  // Create the actual destructor declaration.
8276  CanQualType ClassType
8277    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8278  SourceLocation ClassLoc = ClassDecl->getLocation();
8279  DeclarationName Name
8280    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8281  DeclarationNameInfo NameInfo(Name, ClassLoc);
8282  CXXDestructorDecl *Destructor
8283      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8284                                  QualType(), 0, /*isInline=*/true,
8285                                  /*isImplicitlyDeclared=*/true);
8286  Destructor->setAccess(AS_public);
8287  Destructor->setDefaulted();
8288  Destructor->setImplicit();
8289
8290  // Build an exception specification pointing back at this destructor.
8291  FunctionProtoType::ExtProtoInfo EPI;
8292  EPI.ExceptionSpecType = EST_Unevaluated;
8293  EPI.ExceptionSpecDecl = Destructor;
8294  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8295
8296  AddOverriddenMethods(ClassDecl, Destructor);
8297
8298  // We don't need to use SpecialMemberIsTrivial here; triviality for
8299  // destructors is easy to compute.
8300  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8301
8302  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8303    SetDeclDeleted(Destructor, ClassLoc);
8304
8305  // Note that we have declared this destructor.
8306  ++ASTContext::NumImplicitDestructorsDeclared;
8307
8308  // Introduce this destructor into its scope.
8309  if (Scope *S = getScopeForContext(ClassDecl))
8310    PushOnScopeChains(Destructor, S, false);
8311  ClassDecl->addDecl(Destructor);
8312
8313  return Destructor;
8314}
8315
8316void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8317                                    CXXDestructorDecl *Destructor) {
8318  assert((Destructor->isDefaulted() &&
8319          !Destructor->doesThisDeclarationHaveABody() &&
8320          !Destructor->isDeleted()) &&
8321         "DefineImplicitDestructor - call it for implicit default dtor");
8322  CXXRecordDecl *ClassDecl = Destructor->getParent();
8323  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8324
8325  if (Destructor->isInvalidDecl())
8326    return;
8327
8328  SynthesizedFunctionScope Scope(*this, Destructor);
8329
8330  DiagnosticErrorTrap Trap(Diags);
8331  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8332                                         Destructor->getParent());
8333
8334  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8335    Diag(CurrentLocation, diag::note_member_synthesized_at)
8336      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8337
8338    Destructor->setInvalidDecl();
8339    return;
8340  }
8341
8342  SourceLocation Loc = Destructor->getLocation();
8343  Destructor->setBody(new (Context) CompoundStmt(Loc));
8344  Destructor->setImplicitlyDefined(true);
8345  Destructor->setUsed();
8346  MarkVTableUsed(CurrentLocation, ClassDecl);
8347
8348  if (ASTMutationListener *L = getASTMutationListener()) {
8349    L->CompletedImplicitDefinition(Destructor);
8350  }
8351}
8352
8353/// \brief Perform any semantic analysis which needs to be delayed until all
8354/// pending class member declarations have been parsed.
8355void Sema::ActOnFinishCXXMemberDecls() {
8356  // If the context is an invalid C++ class, just suppress these checks.
8357  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8358    if (Record->isInvalidDecl()) {
8359      DelayedDestructorExceptionSpecChecks.clear();
8360      return;
8361    }
8362  }
8363
8364  // Perform any deferred checking of exception specifications for virtual
8365  // destructors.
8366  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8367       i != e; ++i) {
8368    const CXXDestructorDecl *Dtor =
8369        DelayedDestructorExceptionSpecChecks[i].first;
8370    assert(!Dtor->getParent()->isDependentType() &&
8371           "Should not ever add destructors of templates into the list.");
8372    CheckOverridingFunctionExceptionSpec(Dtor,
8373        DelayedDestructorExceptionSpecChecks[i].second);
8374  }
8375  DelayedDestructorExceptionSpecChecks.clear();
8376}
8377
8378void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8379                                         CXXDestructorDecl *Destructor) {
8380  assert(getLangOpts().CPlusPlus11 &&
8381         "adjusting dtor exception specs was introduced in c++11");
8382
8383  // C++11 [class.dtor]p3:
8384  //   A declaration of a destructor that does not have an exception-
8385  //   specification is implicitly considered to have the same exception-
8386  //   specification as an implicit declaration.
8387  const FunctionProtoType *DtorType = Destructor->getType()->
8388                                        getAs<FunctionProtoType>();
8389  if (DtorType->hasExceptionSpec())
8390    return;
8391
8392  // Replace the destructor's type, building off the existing one. Fortunately,
8393  // the only thing of interest in the destructor type is its extended info.
8394  // The return and arguments are fixed.
8395  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8396  EPI.ExceptionSpecType = EST_Unevaluated;
8397  EPI.ExceptionSpecDecl = Destructor;
8398  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8399
8400  // FIXME: If the destructor has a body that could throw, and the newly created
8401  // spec doesn't allow exceptions, we should emit a warning, because this
8402  // change in behavior can break conforming C++03 programs at runtime.
8403  // However, we don't have a body or an exception specification yet, so it
8404  // needs to be done somewhere else.
8405}
8406
8407/// When generating a defaulted copy or move assignment operator, if a field
8408/// should be copied with __builtin_memcpy rather than via explicit assignments,
8409/// do so. This optimization only applies for arrays of scalars, and for arrays
8410/// of class type where the selected copy/move-assignment operator is trivial.
8411static StmtResult
8412buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8413                           Expr *To, Expr *From) {
8414  // Compute the size of the memory buffer to be copied.
8415  QualType SizeType = S.Context.getSizeType();
8416  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8417                   S.Context.getTypeSizeInChars(T).getQuantity());
8418
8419  // Take the address of the field references for "from" and "to". We
8420  // directly construct UnaryOperators here because semantic analysis
8421  // does not permit us to take the address of an xvalue.
8422  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8423                         S.Context.getPointerType(From->getType()),
8424                         VK_RValue, OK_Ordinary, Loc);
8425  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8426                       S.Context.getPointerType(To->getType()),
8427                       VK_RValue, OK_Ordinary, Loc);
8428
8429  const Type *E = T->getBaseElementTypeUnsafe();
8430  bool NeedsCollectableMemCpy =
8431    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8432
8433  // Create a reference to the __builtin_objc_memmove_collectable function
8434  StringRef MemCpyName = NeedsCollectableMemCpy ?
8435    "__builtin_objc_memmove_collectable" :
8436    "__builtin_memcpy";
8437  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8438                 Sema::LookupOrdinaryName);
8439  S.LookupName(R, S.TUScope, true);
8440
8441  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8442  if (!MemCpy)
8443    // Something went horribly wrong earlier, and we will have complained
8444    // about it.
8445    return StmtError();
8446
8447  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8448                                            VK_RValue, Loc, 0);
8449  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8450
8451  Expr *CallArgs[] = {
8452    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8453  };
8454  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8455                                    Loc, CallArgs, Loc);
8456
8457  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8458  return S.Owned(Call.takeAs<Stmt>());
8459}
8460
8461/// \brief Builds a statement that copies/moves the given entity from \p From to
8462/// \c To.
8463///
8464/// This routine is used to copy/move the members of a class with an
8465/// implicitly-declared copy/move assignment operator. When the entities being
8466/// copied are arrays, this routine builds for loops to copy them.
8467///
8468/// \param S The Sema object used for type-checking.
8469///
8470/// \param Loc The location where the implicit copy/move is being generated.
8471///
8472/// \param T The type of the expressions being copied/moved. Both expressions
8473/// must have this type.
8474///
8475/// \param To The expression we are copying/moving to.
8476///
8477/// \param From The expression we are copying/moving from.
8478///
8479/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8480/// Otherwise, it's a non-static member subobject.
8481///
8482/// \param Copying Whether we're copying or moving.
8483///
8484/// \param Depth Internal parameter recording the depth of the recursion.
8485///
8486/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8487/// if a memcpy should be used instead.
8488static StmtResult
8489buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8490                                 Expr *To, Expr *From,
8491                                 bool CopyingBaseSubobject, bool Copying,
8492                                 unsigned Depth = 0) {
8493  // C++11 [class.copy]p28:
8494  //   Each subobject is assigned in the manner appropriate to its type:
8495  //
8496  //     - if the subobject is of class type, as if by a call to operator= with
8497  //       the subobject as the object expression and the corresponding
8498  //       subobject of x as a single function argument (as if by explicit
8499  //       qualification; that is, ignoring any possible virtual overriding
8500  //       functions in more derived classes);
8501  //
8502  // C++03 [class.copy]p13:
8503  //     - if the subobject is of class type, the copy assignment operator for
8504  //       the class is used (as if by explicit qualification; that is,
8505  //       ignoring any possible virtual overriding functions in more derived
8506  //       classes);
8507  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8508    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8509
8510    // Look for operator=.
8511    DeclarationName Name
8512      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8513    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8514    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8515
8516    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8517    // operator.
8518    if (!S.getLangOpts().CPlusPlus11) {
8519      LookupResult::Filter F = OpLookup.makeFilter();
8520      while (F.hasNext()) {
8521        NamedDecl *D = F.next();
8522        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8523          if (Method->isCopyAssignmentOperator() ||
8524              (!Copying && Method->isMoveAssignmentOperator()))
8525            continue;
8526
8527        F.erase();
8528      }
8529      F.done();
8530    }
8531
8532    // Suppress the protected check (C++ [class.protected]) for each of the
8533    // assignment operators we found. This strange dance is required when
8534    // we're assigning via a base classes's copy-assignment operator. To
8535    // ensure that we're getting the right base class subobject (without
8536    // ambiguities), we need to cast "this" to that subobject type; to
8537    // ensure that we don't go through the virtual call mechanism, we need
8538    // to qualify the operator= name with the base class (see below). However,
8539    // this means that if the base class has a protected copy assignment
8540    // operator, the protected member access check will fail. So, we
8541    // rewrite "protected" access to "public" access in this case, since we
8542    // know by construction that we're calling from a derived class.
8543    if (CopyingBaseSubobject) {
8544      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8545           L != LEnd; ++L) {
8546        if (L.getAccess() == AS_protected)
8547          L.setAccess(AS_public);
8548      }
8549    }
8550
8551    // Create the nested-name-specifier that will be used to qualify the
8552    // reference to operator=; this is required to suppress the virtual
8553    // call mechanism.
8554    CXXScopeSpec SS;
8555    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
8556    SS.MakeTrivial(S.Context,
8557                   NestedNameSpecifier::Create(S.Context, 0, false,
8558                                               CanonicalT),
8559                   Loc);
8560
8561    // Create the reference to operator=.
8562    ExprResult OpEqualRef
8563      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
8564                                   /*TemplateKWLoc=*/SourceLocation(),
8565                                   /*FirstQualifierInScope=*/0,
8566                                   OpLookup,
8567                                   /*TemplateArgs=*/0,
8568                                   /*SuppressQualifierCheck=*/true);
8569    if (OpEqualRef.isInvalid())
8570      return StmtError();
8571
8572    // Build the call to the assignment operator.
8573
8574    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
8575                                                  OpEqualRef.takeAs<Expr>(),
8576                                                  Loc, From, Loc);
8577    if (Call.isInvalid())
8578      return StmtError();
8579
8580    // If we built a call to a trivial 'operator=' while copying an array,
8581    // bail out. We'll replace the whole shebang with a memcpy.
8582    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
8583    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
8584      return StmtResult((Stmt*)0);
8585
8586    // Convert to an expression-statement, and clean up any produced
8587    // temporaries.
8588    return S.ActOnExprStmt(Call);
8589  }
8590
8591  //     - if the subobject is of scalar type, the built-in assignment
8592  //       operator is used.
8593  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
8594  if (!ArrayTy) {
8595    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
8596    if (Assignment.isInvalid())
8597      return StmtError();
8598    return S.ActOnExprStmt(Assignment);
8599  }
8600
8601  //     - if the subobject is an array, each element is assigned, in the
8602  //       manner appropriate to the element type;
8603
8604  // Construct a loop over the array bounds, e.g.,
8605  //
8606  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
8607  //
8608  // that will copy each of the array elements.
8609  QualType SizeType = S.Context.getSizeType();
8610
8611  // Create the iteration variable.
8612  IdentifierInfo *IterationVarName = 0;
8613  {
8614    SmallString<8> Str;
8615    llvm::raw_svector_ostream OS(Str);
8616    OS << "__i" << Depth;
8617    IterationVarName = &S.Context.Idents.get(OS.str());
8618  }
8619  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
8620                                          IterationVarName, SizeType,
8621                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
8622                                          SC_None);
8623
8624  // Initialize the iteration variable to zero.
8625  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
8626  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
8627
8628  // Create a reference to the iteration variable; we'll use this several
8629  // times throughout.
8630  Expr *IterationVarRef
8631    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
8632  assert(IterationVarRef && "Reference to invented variable cannot fail!");
8633  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
8634  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
8635
8636  // Create the DeclStmt that holds the iteration variable.
8637  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
8638
8639  // Subscript the "from" and "to" expressions with the iteration variable.
8640  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
8641                                                         IterationVarRefRVal,
8642                                                         Loc));
8643  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
8644                                                       IterationVarRefRVal,
8645                                                       Loc));
8646  if (!Copying) // Cast to rvalue
8647    From = CastForMoving(S, From);
8648
8649  // Build the copy/move for an individual element of the array.
8650  StmtResult Copy =
8651    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
8652                                     To, From, CopyingBaseSubobject,
8653                                     Copying, Depth + 1);
8654  // Bail out if copying fails or if we determined that we should use memcpy.
8655  if (Copy.isInvalid() || !Copy.get())
8656    return Copy;
8657
8658  // Create the comparison against the array bound.
8659  llvm::APInt Upper
8660    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
8661  Expr *Comparison
8662    = new (S.Context) BinaryOperator(IterationVarRefRVal,
8663                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
8664                                     BO_NE, S.Context.BoolTy,
8665                                     VK_RValue, OK_Ordinary, Loc, false);
8666
8667  // Create the pre-increment of the iteration variable.
8668  Expr *Increment
8669    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
8670                                    VK_LValue, OK_Ordinary, Loc);
8671
8672  // Construct the loop that copies all elements of this array.
8673  return S.ActOnForStmt(Loc, Loc, InitStmt,
8674                        S.MakeFullExpr(Comparison),
8675                        0, S.MakeFullDiscardedValueExpr(Increment),
8676                        Loc, Copy.take());
8677}
8678
8679static StmtResult
8680buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
8681                      Expr *To, Expr *From,
8682                      bool CopyingBaseSubobject, bool Copying) {
8683  // Maybe we should use a memcpy?
8684  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
8685      T.isTriviallyCopyableType(S.Context))
8686    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8687
8688  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
8689                                                     CopyingBaseSubobject,
8690                                                     Copying, 0));
8691
8692  // If we ended up picking a trivial assignment operator for an array of a
8693  // non-trivially-copyable class type, just emit a memcpy.
8694  if (!Result.isInvalid() && !Result.get())
8695    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
8696
8697  return Result;
8698}
8699
8700Sema::ImplicitExceptionSpecification
8701Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
8702  CXXRecordDecl *ClassDecl = MD->getParent();
8703
8704  ImplicitExceptionSpecification ExceptSpec(*this);
8705  if (ClassDecl->isInvalidDecl())
8706    return ExceptSpec;
8707
8708  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
8709  assert(T->getNumArgs() == 1 && "not a copy assignment op");
8710  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
8711
8712  // C++ [except.spec]p14:
8713  //   An implicitly declared special member function (Clause 12) shall have an
8714  //   exception-specification. [...]
8715
8716  // It is unspecified whether or not an implicit copy assignment operator
8717  // attempts to deduplicate calls to assignment operators of virtual bases are
8718  // made. As such, this exception specification is effectively unspecified.
8719  // Based on a similar decision made for constness in C++0x, we're erring on
8720  // the side of assuming such calls to be made regardless of whether they
8721  // actually happen.
8722  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8723                                       BaseEnd = ClassDecl->bases_end();
8724       Base != BaseEnd; ++Base) {
8725    if (Base->isVirtual())
8726      continue;
8727
8728    CXXRecordDecl *BaseClassDecl
8729      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8730    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8731                                                            ArgQuals, false, 0))
8732      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8733  }
8734
8735  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8736                                       BaseEnd = ClassDecl->vbases_end();
8737       Base != BaseEnd; ++Base) {
8738    CXXRecordDecl *BaseClassDecl
8739      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8740    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
8741                                                            ArgQuals, false, 0))
8742      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
8743  }
8744
8745  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8746                                  FieldEnd = ClassDecl->field_end();
8747       Field != FieldEnd;
8748       ++Field) {
8749    QualType FieldType = Context.getBaseElementType(Field->getType());
8750    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8751      if (CXXMethodDecl *CopyAssign =
8752          LookupCopyingAssignment(FieldClassDecl,
8753                                  ArgQuals | FieldType.getCVRQualifiers(),
8754                                  false, 0))
8755        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
8756    }
8757  }
8758
8759  return ExceptSpec;
8760}
8761
8762CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
8763  // Note: The following rules are largely analoguous to the copy
8764  // constructor rules. Note that virtual bases are not taken into account
8765  // for determining the argument type of the operator. Note also that
8766  // operators taking an object instead of a reference are allowed.
8767  assert(ClassDecl->needsImplicitCopyAssignment());
8768
8769  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
8770  if (DSM.isAlreadyBeingDeclared())
8771    return 0;
8772
8773  QualType ArgType = Context.getTypeDeclType(ClassDecl);
8774  QualType RetType = Context.getLValueReferenceType(ArgType);
8775  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
8776  if (Const)
8777    ArgType = ArgType.withConst();
8778  ArgType = Context.getLValueReferenceType(ArgType);
8779
8780  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8781                                                     CXXCopyAssignment,
8782                                                     Const);
8783
8784  //   An implicitly-declared copy assignment operator is an inline public
8785  //   member of its class.
8786  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8787  SourceLocation ClassLoc = ClassDecl->getLocation();
8788  DeclarationNameInfo NameInfo(Name, ClassLoc);
8789  CXXMethodDecl *CopyAssignment =
8790      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
8791                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
8792                            /*isInline=*/ true, Constexpr, SourceLocation());
8793  CopyAssignment->setAccess(AS_public);
8794  CopyAssignment->setDefaulted();
8795  CopyAssignment->setImplicit();
8796
8797  // Build an exception specification pointing back at this member.
8798  FunctionProtoType::ExtProtoInfo EPI;
8799  EPI.ExceptionSpecType = EST_Unevaluated;
8800  EPI.ExceptionSpecDecl = CopyAssignment;
8801  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
8802
8803  // Add the parameter to the operator.
8804  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
8805                                               ClassLoc, ClassLoc, /*Id=*/0,
8806                                               ArgType, /*TInfo=*/0,
8807                                               SC_None, 0);
8808  CopyAssignment->setParams(FromParam);
8809
8810  AddOverriddenMethods(ClassDecl, CopyAssignment);
8811
8812  CopyAssignment->setTrivial(
8813    ClassDecl->needsOverloadResolutionForCopyAssignment()
8814      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
8815      : ClassDecl->hasTrivialCopyAssignment());
8816
8817  // C++11 [class.copy]p19:
8818  //   ....  If the class definition does not explicitly declare a copy
8819  //   assignment operator, there is no user-declared move constructor, and
8820  //   there is no user-declared move assignment operator, a copy assignment
8821  //   operator is implicitly declared as defaulted.
8822  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
8823    SetDeclDeleted(CopyAssignment, ClassLoc);
8824
8825  // Note that we have added this copy-assignment operator.
8826  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
8827
8828  if (Scope *S = getScopeForContext(ClassDecl))
8829    PushOnScopeChains(CopyAssignment, S, false);
8830  ClassDecl->addDecl(CopyAssignment);
8831
8832  return CopyAssignment;
8833}
8834
8835/// Diagnose an implicit copy operation for a class which is odr-used, but
8836/// which is deprecated because the class has a user-declared copy constructor,
8837/// copy assignment operator, or destructor.
8838static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
8839                                            SourceLocation UseLoc) {
8840  assert(CopyOp->isImplicit());
8841
8842  CXXRecordDecl *RD = CopyOp->getParent();
8843  CXXMethodDecl *UserDeclaredOperation = 0;
8844
8845  // In Microsoft mode, assignment operations don't affect constructors and
8846  // vice versa.
8847  if (RD->hasUserDeclaredDestructor()) {
8848    UserDeclaredOperation = RD->getDestructor();
8849  } else if (!isa<CXXConstructorDecl>(CopyOp) &&
8850             RD->hasUserDeclaredCopyConstructor() &&
8851             !S.getLangOpts().MicrosoftMode) {
8852    // Find any user-declared copy constructor.
8853    for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
8854                                      E = RD->ctor_end(); I != E; ++I) {
8855      if (I->isCopyConstructor()) {
8856        UserDeclaredOperation = *I;
8857        break;
8858      }
8859    }
8860    assert(UserDeclaredOperation);
8861  } else if (isa<CXXConstructorDecl>(CopyOp) &&
8862             RD->hasUserDeclaredCopyAssignment() &&
8863             !S.getLangOpts().MicrosoftMode) {
8864    // Find any user-declared move assignment operator.
8865    for (CXXRecordDecl::method_iterator I = RD->method_begin(),
8866                                        E = RD->method_end(); I != E; ++I) {
8867      if (I->isCopyAssignmentOperator()) {
8868        UserDeclaredOperation = *I;
8869        break;
8870      }
8871    }
8872    assert(UserDeclaredOperation);
8873  }
8874
8875  if (UserDeclaredOperation) {
8876    S.Diag(UserDeclaredOperation->getLocation(),
8877         diag::warn_deprecated_copy_operation)
8878      << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
8879      << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
8880    S.Diag(UseLoc, diag::note_member_synthesized_at)
8881      << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
8882                                          : Sema::CXXCopyAssignment)
8883      << RD;
8884  }
8885}
8886
8887void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
8888                                        CXXMethodDecl *CopyAssignOperator) {
8889  assert((CopyAssignOperator->isDefaulted() &&
8890          CopyAssignOperator->isOverloadedOperator() &&
8891          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
8892          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
8893          !CopyAssignOperator->isDeleted()) &&
8894         "DefineImplicitCopyAssignment called for wrong function");
8895
8896  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
8897
8898  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
8899    CopyAssignOperator->setInvalidDecl();
8900    return;
8901  }
8902
8903  // C++11 [class.copy]p18:
8904  //   The [definition of an implicitly declared copy assignment operator] is
8905  //   deprecated if the class has a user-declared copy constructor or a
8906  //   user-declared destructor.
8907  if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
8908    diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
8909
8910  CopyAssignOperator->setUsed();
8911
8912  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
8913  DiagnosticErrorTrap Trap(Diags);
8914
8915  // C++0x [class.copy]p30:
8916  //   The implicitly-defined or explicitly-defaulted copy assignment operator
8917  //   for a non-union class X performs memberwise copy assignment of its
8918  //   subobjects. The direct base classes of X are assigned first, in the
8919  //   order of their declaration in the base-specifier-list, and then the
8920  //   immediate non-static data members of X are assigned, in the order in
8921  //   which they were declared in the class definition.
8922
8923  // The statements that form the synthesized function body.
8924  SmallVector<Stmt*, 8> Statements;
8925
8926  // The parameter for the "other" object, which we are copying from.
8927  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
8928  Qualifiers OtherQuals = Other->getType().getQualifiers();
8929  QualType OtherRefType = Other->getType();
8930  if (const LValueReferenceType *OtherRef
8931                                = OtherRefType->getAs<LValueReferenceType>()) {
8932    OtherRefType = OtherRef->getPointeeType();
8933    OtherQuals = OtherRefType.getQualifiers();
8934  }
8935
8936  // Our location for everything implicitly-generated.
8937  SourceLocation Loc = CopyAssignOperator->getLocation();
8938
8939  // Construct a reference to the "other" object. We'll be using this
8940  // throughout the generated ASTs.
8941  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8942  assert(OtherRef && "Reference to parameter cannot fail!");
8943
8944  // Construct the "this" pointer. We'll be using this throughout the generated
8945  // ASTs.
8946  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8947  assert(This && "Reference to this cannot fail!");
8948
8949  // Assign base classes.
8950  bool Invalid = false;
8951  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8952       E = ClassDecl->bases_end(); Base != E; ++Base) {
8953    // Form the assignment:
8954    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
8955    QualType BaseType = Base->getType().getUnqualifiedType();
8956    if (!BaseType->isRecordType()) {
8957      Invalid = true;
8958      continue;
8959    }
8960
8961    CXXCastPath BasePath;
8962    BasePath.push_back(Base);
8963
8964    // Construct the "from" expression, which is an implicit cast to the
8965    // appropriately-qualified base type.
8966    Expr *From = OtherRef;
8967    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
8968                             CK_UncheckedDerivedToBase,
8969                             VK_LValue, &BasePath).take();
8970
8971    // Dereference "this".
8972    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8973
8974    // Implicitly cast "this" to the appropriately-qualified base type.
8975    To = ImpCastExprToType(To.take(),
8976                           Context.getCVRQualifiedType(BaseType,
8977                                     CopyAssignOperator->getTypeQualifiers()),
8978                           CK_UncheckedDerivedToBase,
8979                           VK_LValue, &BasePath);
8980
8981    // Build the copy.
8982    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
8983                                            To.get(), From,
8984                                            /*CopyingBaseSubobject=*/true,
8985                                            /*Copying=*/true);
8986    if (Copy.isInvalid()) {
8987      Diag(CurrentLocation, diag::note_member_synthesized_at)
8988        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
8989      CopyAssignOperator->setInvalidDecl();
8990      return;
8991    }
8992
8993    // Success! Record the copy.
8994    Statements.push_back(Copy.takeAs<Expr>());
8995  }
8996
8997  // Assign non-static members.
8998  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8999                                  FieldEnd = ClassDecl->field_end();
9000       Field != FieldEnd; ++Field) {
9001    if (Field->isUnnamedBitfield())
9002      continue;
9003
9004    if (Field->isInvalidDecl()) {
9005      Invalid = true;
9006      continue;
9007    }
9008
9009    // Check for members of reference type; we can't copy those.
9010    if (Field->getType()->isReferenceType()) {
9011      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9012        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9013      Diag(Field->getLocation(), diag::note_declared_at);
9014      Diag(CurrentLocation, diag::note_member_synthesized_at)
9015        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9016      Invalid = true;
9017      continue;
9018    }
9019
9020    // Check for members of const-qualified, non-class type.
9021    QualType BaseType = Context.getBaseElementType(Field->getType());
9022    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9023      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9024        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9025      Diag(Field->getLocation(), diag::note_declared_at);
9026      Diag(CurrentLocation, diag::note_member_synthesized_at)
9027        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9028      Invalid = true;
9029      continue;
9030    }
9031
9032    // Suppress assigning zero-width bitfields.
9033    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9034      continue;
9035
9036    QualType FieldType = Field->getType().getNonReferenceType();
9037    if (FieldType->isIncompleteArrayType()) {
9038      assert(ClassDecl->hasFlexibleArrayMember() &&
9039             "Incomplete array type is not valid");
9040      continue;
9041    }
9042
9043    // Build references to the field in the object we're copying from and to.
9044    CXXScopeSpec SS; // Intentionally empty
9045    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9046                              LookupMemberName);
9047    MemberLookup.addDecl(*Field);
9048    MemberLookup.resolveKind();
9049    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9050                                               Loc, /*IsArrow=*/false,
9051                                               SS, SourceLocation(), 0,
9052                                               MemberLookup, 0);
9053    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9054                                             Loc, /*IsArrow=*/true,
9055                                             SS, SourceLocation(), 0,
9056                                             MemberLookup, 0);
9057    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9058    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9059
9060    // Build the copy of this field.
9061    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9062                                            To.get(), From.get(),
9063                                            /*CopyingBaseSubobject=*/false,
9064                                            /*Copying=*/true);
9065    if (Copy.isInvalid()) {
9066      Diag(CurrentLocation, diag::note_member_synthesized_at)
9067        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9068      CopyAssignOperator->setInvalidDecl();
9069      return;
9070    }
9071
9072    // Success! Record the copy.
9073    Statements.push_back(Copy.takeAs<Stmt>());
9074  }
9075
9076  if (!Invalid) {
9077    // Add a "return *this;"
9078    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9079
9080    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9081    if (Return.isInvalid())
9082      Invalid = true;
9083    else {
9084      Statements.push_back(Return.takeAs<Stmt>());
9085
9086      if (Trap.hasErrorOccurred()) {
9087        Diag(CurrentLocation, diag::note_member_synthesized_at)
9088          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9089        Invalid = true;
9090      }
9091    }
9092  }
9093
9094  if (Invalid) {
9095    CopyAssignOperator->setInvalidDecl();
9096    return;
9097  }
9098
9099  StmtResult Body;
9100  {
9101    CompoundScopeRAII CompoundScope(*this);
9102    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9103                             /*isStmtExpr=*/false);
9104    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9105  }
9106  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9107
9108  if (ASTMutationListener *L = getASTMutationListener()) {
9109    L->CompletedImplicitDefinition(CopyAssignOperator);
9110  }
9111}
9112
9113Sema::ImplicitExceptionSpecification
9114Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9115  CXXRecordDecl *ClassDecl = MD->getParent();
9116
9117  ImplicitExceptionSpecification ExceptSpec(*this);
9118  if (ClassDecl->isInvalidDecl())
9119    return ExceptSpec;
9120
9121  // C++0x [except.spec]p14:
9122  //   An implicitly declared special member function (Clause 12) shall have an
9123  //   exception-specification. [...]
9124
9125  // It is unspecified whether or not an implicit move assignment operator
9126  // attempts to deduplicate calls to assignment operators of virtual bases are
9127  // made. As such, this exception specification is effectively unspecified.
9128  // Based on a similar decision made for constness in C++0x, we're erring on
9129  // the side of assuming such calls to be made regardless of whether they
9130  // actually happen.
9131  // Note that a move constructor is not implicitly declared when there are
9132  // virtual bases, but it can still be user-declared and explicitly defaulted.
9133  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9134                                       BaseEnd = ClassDecl->bases_end();
9135       Base != BaseEnd; ++Base) {
9136    if (Base->isVirtual())
9137      continue;
9138
9139    CXXRecordDecl *BaseClassDecl
9140      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9141    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9142                                                           0, false, 0))
9143      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9144  }
9145
9146  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9147                                       BaseEnd = ClassDecl->vbases_end();
9148       Base != BaseEnd; ++Base) {
9149    CXXRecordDecl *BaseClassDecl
9150      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9151    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9152                                                           0, false, 0))
9153      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9154  }
9155
9156  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9157                                  FieldEnd = ClassDecl->field_end();
9158       Field != FieldEnd;
9159       ++Field) {
9160    QualType FieldType = Context.getBaseElementType(Field->getType());
9161    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9162      if (CXXMethodDecl *MoveAssign =
9163              LookupMovingAssignment(FieldClassDecl,
9164                                     FieldType.getCVRQualifiers(),
9165                                     false, 0))
9166        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9167    }
9168  }
9169
9170  return ExceptSpec;
9171}
9172
9173/// Determine whether the class type has any direct or indirect virtual base
9174/// classes which have a non-trivial move assignment operator.
9175static bool
9176hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9177  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9178                                          BaseEnd = ClassDecl->vbases_end();
9179       Base != BaseEnd; ++Base) {
9180    CXXRecordDecl *BaseClass =
9181        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9182
9183    // Try to declare the move assignment. If it would be deleted, then the
9184    // class does not have a non-trivial move assignment.
9185    if (BaseClass->needsImplicitMoveAssignment())
9186      S.DeclareImplicitMoveAssignment(BaseClass);
9187
9188    if (BaseClass->hasNonTrivialMoveAssignment())
9189      return true;
9190  }
9191
9192  return false;
9193}
9194
9195/// Determine whether the given type either has a move constructor or is
9196/// trivially copyable.
9197static bool
9198hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9199  Type = S.Context.getBaseElementType(Type);
9200
9201  // FIXME: Technically, non-trivially-copyable non-class types, such as
9202  // reference types, are supposed to return false here, but that appears
9203  // to be a standard defect.
9204  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9205  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9206    return true;
9207
9208  if (Type.isTriviallyCopyableType(S.Context))
9209    return true;
9210
9211  if (IsConstructor) {
9212    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9213    // give the right answer.
9214    if (ClassDecl->needsImplicitMoveConstructor())
9215      S.DeclareImplicitMoveConstructor(ClassDecl);
9216    return ClassDecl->hasMoveConstructor();
9217  }
9218
9219  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9220  // give the right answer.
9221  if (ClassDecl->needsImplicitMoveAssignment())
9222    S.DeclareImplicitMoveAssignment(ClassDecl);
9223  return ClassDecl->hasMoveAssignment();
9224}
9225
9226/// Determine whether all non-static data members and direct or virtual bases
9227/// of class \p ClassDecl have either a move operation, or are trivially
9228/// copyable.
9229static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9230                                            bool IsConstructor) {
9231  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9232                                          BaseEnd = ClassDecl->bases_end();
9233       Base != BaseEnd; ++Base) {
9234    if (Base->isVirtual())
9235      continue;
9236
9237    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9238      return false;
9239  }
9240
9241  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9242                                          BaseEnd = ClassDecl->vbases_end();
9243       Base != BaseEnd; ++Base) {
9244    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9245      return false;
9246  }
9247
9248  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9249                                     FieldEnd = ClassDecl->field_end();
9250       Field != FieldEnd; ++Field) {
9251    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9252      return false;
9253  }
9254
9255  return true;
9256}
9257
9258CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9259  // C++11 [class.copy]p20:
9260  //   If the definition of a class X does not explicitly declare a move
9261  //   assignment operator, one will be implicitly declared as defaulted
9262  //   if and only if:
9263  //
9264  //   - [first 4 bullets]
9265  assert(ClassDecl->needsImplicitMoveAssignment());
9266
9267  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9268  if (DSM.isAlreadyBeingDeclared())
9269    return 0;
9270
9271  // [Checked after we build the declaration]
9272  //   - the move assignment operator would not be implicitly defined as
9273  //     deleted,
9274
9275  // [DR1402]:
9276  //   - X has no direct or indirect virtual base class with a non-trivial
9277  //     move assignment operator, and
9278  //   - each of X's non-static data members and direct or virtual base classes
9279  //     has a type that either has a move assignment operator or is trivially
9280  //     copyable.
9281  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9282      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9283    ClassDecl->setFailedImplicitMoveAssignment();
9284    return 0;
9285  }
9286
9287  // Note: The following rules are largely analoguous to the move
9288  // constructor rules.
9289
9290  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9291  QualType RetType = Context.getLValueReferenceType(ArgType);
9292  ArgType = Context.getRValueReferenceType(ArgType);
9293
9294  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9295                                                     CXXMoveAssignment,
9296                                                     false);
9297
9298  //   An implicitly-declared move assignment operator is an inline public
9299  //   member of its class.
9300  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9301  SourceLocation ClassLoc = ClassDecl->getLocation();
9302  DeclarationNameInfo NameInfo(Name, ClassLoc);
9303  CXXMethodDecl *MoveAssignment =
9304      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9305                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9306                            /*isInline=*/true, Constexpr, SourceLocation());
9307  MoveAssignment->setAccess(AS_public);
9308  MoveAssignment->setDefaulted();
9309  MoveAssignment->setImplicit();
9310
9311  // Build an exception specification pointing back at this member.
9312  FunctionProtoType::ExtProtoInfo EPI;
9313  EPI.ExceptionSpecType = EST_Unevaluated;
9314  EPI.ExceptionSpecDecl = MoveAssignment;
9315  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9316
9317  // Add the parameter to the operator.
9318  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9319                                               ClassLoc, ClassLoc, /*Id=*/0,
9320                                               ArgType, /*TInfo=*/0,
9321                                               SC_None, 0);
9322  MoveAssignment->setParams(FromParam);
9323
9324  AddOverriddenMethods(ClassDecl, MoveAssignment);
9325
9326  MoveAssignment->setTrivial(
9327    ClassDecl->needsOverloadResolutionForMoveAssignment()
9328      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9329      : ClassDecl->hasTrivialMoveAssignment());
9330
9331  // C++0x [class.copy]p9:
9332  //   If the definition of a class X does not explicitly declare a move
9333  //   assignment operator, one will be implicitly declared as defaulted if and
9334  //   only if:
9335  //   [...]
9336  //   - the move assignment operator would not be implicitly defined as
9337  //     deleted.
9338  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9339    // Cache this result so that we don't try to generate this over and over
9340    // on every lookup, leaking memory and wasting time.
9341    ClassDecl->setFailedImplicitMoveAssignment();
9342    return 0;
9343  }
9344
9345  // Note that we have added this copy-assignment operator.
9346  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9347
9348  if (Scope *S = getScopeForContext(ClassDecl))
9349    PushOnScopeChains(MoveAssignment, S, false);
9350  ClassDecl->addDecl(MoveAssignment);
9351
9352  return MoveAssignment;
9353}
9354
9355void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9356                                        CXXMethodDecl *MoveAssignOperator) {
9357  assert((MoveAssignOperator->isDefaulted() &&
9358          MoveAssignOperator->isOverloadedOperator() &&
9359          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9360          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9361          !MoveAssignOperator->isDeleted()) &&
9362         "DefineImplicitMoveAssignment called for wrong function");
9363
9364  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9365
9366  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9367    MoveAssignOperator->setInvalidDecl();
9368    return;
9369  }
9370
9371  MoveAssignOperator->setUsed();
9372
9373  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9374  DiagnosticErrorTrap Trap(Diags);
9375
9376  // C++0x [class.copy]p28:
9377  //   The implicitly-defined or move assignment operator for a non-union class
9378  //   X performs memberwise move assignment of its subobjects. The direct base
9379  //   classes of X are assigned first, in the order of their declaration in the
9380  //   base-specifier-list, and then the immediate non-static data members of X
9381  //   are assigned, in the order in which they were declared in the class
9382  //   definition.
9383
9384  // The statements that form the synthesized function body.
9385  SmallVector<Stmt*, 8> Statements;
9386
9387  // The parameter for the "other" object, which we are move from.
9388  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9389  QualType OtherRefType = Other->getType()->
9390      getAs<RValueReferenceType>()->getPointeeType();
9391  assert(!OtherRefType.getQualifiers() &&
9392         "Bad argument type of defaulted move assignment");
9393
9394  // Our location for everything implicitly-generated.
9395  SourceLocation Loc = MoveAssignOperator->getLocation();
9396
9397  // Construct a reference to the "other" object. We'll be using this
9398  // throughout the generated ASTs.
9399  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
9400  assert(OtherRef && "Reference to parameter cannot fail!");
9401  // Cast to rvalue.
9402  OtherRef = CastForMoving(*this, OtherRef);
9403
9404  // Construct the "this" pointer. We'll be using this throughout the generated
9405  // ASTs.
9406  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
9407  assert(This && "Reference to this cannot fail!");
9408
9409  // Assign base classes.
9410  bool Invalid = false;
9411  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9412       E = ClassDecl->bases_end(); Base != E; ++Base) {
9413    // Form the assignment:
9414    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9415    QualType BaseType = Base->getType().getUnqualifiedType();
9416    if (!BaseType->isRecordType()) {
9417      Invalid = true;
9418      continue;
9419    }
9420
9421    CXXCastPath BasePath;
9422    BasePath.push_back(Base);
9423
9424    // Construct the "from" expression, which is an implicit cast to the
9425    // appropriately-qualified base type.
9426    Expr *From = OtherRef;
9427    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
9428                             VK_XValue, &BasePath).take();
9429
9430    // Dereference "this".
9431    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9432
9433    // Implicitly cast "this" to the appropriately-qualified base type.
9434    To = ImpCastExprToType(To.take(),
9435                           Context.getCVRQualifiedType(BaseType,
9436                                     MoveAssignOperator->getTypeQualifiers()),
9437                           CK_UncheckedDerivedToBase,
9438                           VK_LValue, &BasePath);
9439
9440    // Build the move.
9441    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9442                                            To.get(), From,
9443                                            /*CopyingBaseSubobject=*/true,
9444                                            /*Copying=*/false);
9445    if (Move.isInvalid()) {
9446      Diag(CurrentLocation, diag::note_member_synthesized_at)
9447        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9448      MoveAssignOperator->setInvalidDecl();
9449      return;
9450    }
9451
9452    // Success! Record the move.
9453    Statements.push_back(Move.takeAs<Expr>());
9454  }
9455
9456  // Assign non-static members.
9457  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9458                                  FieldEnd = ClassDecl->field_end();
9459       Field != FieldEnd; ++Field) {
9460    if (Field->isUnnamedBitfield())
9461      continue;
9462
9463    if (Field->isInvalidDecl()) {
9464      Invalid = true;
9465      continue;
9466    }
9467
9468    // Check for members of reference type; we can't move those.
9469    if (Field->getType()->isReferenceType()) {
9470      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9471        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9472      Diag(Field->getLocation(), diag::note_declared_at);
9473      Diag(CurrentLocation, diag::note_member_synthesized_at)
9474        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9475      Invalid = true;
9476      continue;
9477    }
9478
9479    // Check for members of const-qualified, non-class type.
9480    QualType BaseType = Context.getBaseElementType(Field->getType());
9481    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9482      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9483        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9484      Diag(Field->getLocation(), diag::note_declared_at);
9485      Diag(CurrentLocation, diag::note_member_synthesized_at)
9486        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9487      Invalid = true;
9488      continue;
9489    }
9490
9491    // Suppress assigning zero-width bitfields.
9492    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9493      continue;
9494
9495    QualType FieldType = Field->getType().getNonReferenceType();
9496    if (FieldType->isIncompleteArrayType()) {
9497      assert(ClassDecl->hasFlexibleArrayMember() &&
9498             "Incomplete array type is not valid");
9499      continue;
9500    }
9501
9502    // Build references to the field in the object we're copying from and to.
9503    CXXScopeSpec SS; // Intentionally empty
9504    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9505                              LookupMemberName);
9506    MemberLookup.addDecl(*Field);
9507    MemberLookup.resolveKind();
9508    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
9509                                               Loc, /*IsArrow=*/false,
9510                                               SS, SourceLocation(), 0,
9511                                               MemberLookup, 0);
9512    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
9513                                             Loc, /*IsArrow=*/true,
9514                                             SS, SourceLocation(), 0,
9515                                             MemberLookup, 0);
9516    assert(!From.isInvalid() && "Implicit field reference cannot fail");
9517    assert(!To.isInvalid() && "Implicit field reference cannot fail");
9518
9519    assert(!From.get()->isLValue() && // could be xvalue or prvalue
9520        "Member reference with rvalue base must be rvalue except for reference "
9521        "members, which aren't allowed for move assignment.");
9522
9523    // Build the move of this field.
9524    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9525                                            To.get(), From.get(),
9526                                            /*CopyingBaseSubobject=*/false,
9527                                            /*Copying=*/false);
9528    if (Move.isInvalid()) {
9529      Diag(CurrentLocation, diag::note_member_synthesized_at)
9530        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9531      MoveAssignOperator->setInvalidDecl();
9532      return;
9533    }
9534
9535    // Success! Record the copy.
9536    Statements.push_back(Move.takeAs<Stmt>());
9537  }
9538
9539  if (!Invalid) {
9540    // Add a "return *this;"
9541    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
9542
9543    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9544    if (Return.isInvalid())
9545      Invalid = true;
9546    else {
9547      Statements.push_back(Return.takeAs<Stmt>());
9548
9549      if (Trap.hasErrorOccurred()) {
9550        Diag(CurrentLocation, diag::note_member_synthesized_at)
9551          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9552        Invalid = true;
9553      }
9554    }
9555  }
9556
9557  if (Invalid) {
9558    MoveAssignOperator->setInvalidDecl();
9559    return;
9560  }
9561
9562  StmtResult Body;
9563  {
9564    CompoundScopeRAII CompoundScope(*this);
9565    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9566                             /*isStmtExpr=*/false);
9567    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9568  }
9569  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9570
9571  if (ASTMutationListener *L = getASTMutationListener()) {
9572    L->CompletedImplicitDefinition(MoveAssignOperator);
9573  }
9574}
9575
9576Sema::ImplicitExceptionSpecification
9577Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9578  CXXRecordDecl *ClassDecl = MD->getParent();
9579
9580  ImplicitExceptionSpecification ExceptSpec(*this);
9581  if (ClassDecl->isInvalidDecl())
9582    return ExceptSpec;
9583
9584  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9585  assert(T->getNumArgs() >= 1 && "not a copy ctor");
9586  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9587
9588  // C++ [except.spec]p14:
9589  //   An implicitly declared special member function (Clause 12) shall have an
9590  //   exception-specification. [...]
9591  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9592                                       BaseEnd = ClassDecl->bases_end();
9593       Base != BaseEnd;
9594       ++Base) {
9595    // Virtual bases are handled below.
9596    if (Base->isVirtual())
9597      continue;
9598
9599    CXXRecordDecl *BaseClassDecl
9600      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9601    if (CXXConstructorDecl *CopyConstructor =
9602          LookupCopyingConstructor(BaseClassDecl, Quals))
9603      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9604  }
9605  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9606                                       BaseEnd = ClassDecl->vbases_end();
9607       Base != BaseEnd;
9608       ++Base) {
9609    CXXRecordDecl *BaseClassDecl
9610      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9611    if (CXXConstructorDecl *CopyConstructor =
9612          LookupCopyingConstructor(BaseClassDecl, Quals))
9613      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
9614  }
9615  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9616                                  FieldEnd = ClassDecl->field_end();
9617       Field != FieldEnd;
9618       ++Field) {
9619    QualType FieldType = Context.getBaseElementType(Field->getType());
9620    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9621      if (CXXConstructorDecl *CopyConstructor =
9622              LookupCopyingConstructor(FieldClassDecl,
9623                                       Quals | FieldType.getCVRQualifiers()))
9624      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
9625    }
9626  }
9627
9628  return ExceptSpec;
9629}
9630
9631CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
9632                                                    CXXRecordDecl *ClassDecl) {
9633  // C++ [class.copy]p4:
9634  //   If the class definition does not explicitly declare a copy
9635  //   constructor, one is declared implicitly.
9636  assert(ClassDecl->needsImplicitCopyConstructor());
9637
9638  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
9639  if (DSM.isAlreadyBeingDeclared())
9640    return 0;
9641
9642  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9643  QualType ArgType = ClassType;
9644  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
9645  if (Const)
9646    ArgType = ArgType.withConst();
9647  ArgType = Context.getLValueReferenceType(ArgType);
9648
9649  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9650                                                     CXXCopyConstructor,
9651                                                     Const);
9652
9653  DeclarationName Name
9654    = Context.DeclarationNames.getCXXConstructorName(
9655                                           Context.getCanonicalType(ClassType));
9656  SourceLocation ClassLoc = ClassDecl->getLocation();
9657  DeclarationNameInfo NameInfo(Name, ClassLoc);
9658
9659  //   An implicitly-declared copy constructor is an inline public
9660  //   member of its class.
9661  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
9662      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9663      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9664      Constexpr);
9665  CopyConstructor->setAccess(AS_public);
9666  CopyConstructor->setDefaulted();
9667
9668  // Build an exception specification pointing back at this member.
9669  FunctionProtoType::ExtProtoInfo EPI;
9670  EPI.ExceptionSpecType = EST_Unevaluated;
9671  EPI.ExceptionSpecDecl = CopyConstructor;
9672  CopyConstructor->setType(
9673      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9674
9675  // Add the parameter to the constructor.
9676  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
9677                                               ClassLoc, ClassLoc,
9678                                               /*IdentifierInfo=*/0,
9679                                               ArgType, /*TInfo=*/0,
9680                                               SC_None, 0);
9681  CopyConstructor->setParams(FromParam);
9682
9683  CopyConstructor->setTrivial(
9684    ClassDecl->needsOverloadResolutionForCopyConstructor()
9685      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
9686      : ClassDecl->hasTrivialCopyConstructor());
9687
9688  // C++11 [class.copy]p8:
9689  //   ... If the class definition does not explicitly declare a copy
9690  //   constructor, there is no user-declared move constructor, and there is no
9691  //   user-declared move assignment operator, a copy constructor is implicitly
9692  //   declared as defaulted.
9693  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
9694    SetDeclDeleted(CopyConstructor, ClassLoc);
9695
9696  // Note that we have declared this constructor.
9697  ++ASTContext::NumImplicitCopyConstructorsDeclared;
9698
9699  if (Scope *S = getScopeForContext(ClassDecl))
9700    PushOnScopeChains(CopyConstructor, S, false);
9701  ClassDecl->addDecl(CopyConstructor);
9702
9703  return CopyConstructor;
9704}
9705
9706void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
9707                                   CXXConstructorDecl *CopyConstructor) {
9708  assert((CopyConstructor->isDefaulted() &&
9709          CopyConstructor->isCopyConstructor() &&
9710          !CopyConstructor->doesThisDeclarationHaveABody() &&
9711          !CopyConstructor->isDeleted()) &&
9712         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
9713
9714  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
9715  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
9716
9717  // C++11 [class.copy]p7:
9718  //   The [definition of an implicitly declared copy constructro] is
9719  //   deprecated if the class has a user-declared copy assignment operator
9720  //   or a user-declared destructor.
9721  if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
9722    diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
9723
9724  SynthesizedFunctionScope Scope(*this, CopyConstructor);
9725  DiagnosticErrorTrap Trap(Diags);
9726
9727  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
9728      Trap.hasErrorOccurred()) {
9729    Diag(CurrentLocation, diag::note_member_synthesized_at)
9730      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
9731    CopyConstructor->setInvalidDecl();
9732  }  else {
9733    Sema::CompoundScopeRAII CompoundScope(*this);
9734    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
9735                                               CopyConstructor->getLocation(),
9736                                               MultiStmtArg(),
9737                                               /*isStmtExpr=*/false)
9738                                                              .takeAs<Stmt>());
9739    CopyConstructor->setImplicitlyDefined(true);
9740  }
9741
9742  CopyConstructor->setUsed();
9743  if (ASTMutationListener *L = getASTMutationListener()) {
9744    L->CompletedImplicitDefinition(CopyConstructor);
9745  }
9746}
9747
9748Sema::ImplicitExceptionSpecification
9749Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
9750  CXXRecordDecl *ClassDecl = MD->getParent();
9751
9752  // C++ [except.spec]p14:
9753  //   An implicitly declared special member function (Clause 12) shall have an
9754  //   exception-specification. [...]
9755  ImplicitExceptionSpecification ExceptSpec(*this);
9756  if (ClassDecl->isInvalidDecl())
9757    return ExceptSpec;
9758
9759  // Direct base-class constructors.
9760  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
9761                                       BEnd = ClassDecl->bases_end();
9762       B != BEnd; ++B) {
9763    if (B->isVirtual()) // Handled below.
9764      continue;
9765
9766    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9767      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9768      CXXConstructorDecl *Constructor =
9769          LookupMovingConstructor(BaseClassDecl, 0);
9770      // If this is a deleted function, add it anyway. This might be conformant
9771      // with the standard. This might not. I'm not sure. It might not matter.
9772      if (Constructor)
9773        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9774    }
9775  }
9776
9777  // Virtual base-class constructors.
9778  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
9779                                       BEnd = ClassDecl->vbases_end();
9780       B != BEnd; ++B) {
9781    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
9782      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
9783      CXXConstructorDecl *Constructor =
9784          LookupMovingConstructor(BaseClassDecl, 0);
9785      // If this is a deleted function, add it anyway. This might be conformant
9786      // with the standard. This might not. I'm not sure. It might not matter.
9787      if (Constructor)
9788        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
9789    }
9790  }
9791
9792  // Field constructors.
9793  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
9794                               FEnd = ClassDecl->field_end();
9795       F != FEnd; ++F) {
9796    QualType FieldType = Context.getBaseElementType(F->getType());
9797    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
9798      CXXConstructorDecl *Constructor =
9799          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
9800      // If this is a deleted function, add it anyway. This might be conformant
9801      // with the standard. This might not. I'm not sure. It might not matter.
9802      // In particular, the problem is that this function never gets called. It
9803      // might just be ill-formed because this function attempts to refer to
9804      // a deleted function here.
9805      if (Constructor)
9806        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
9807    }
9808  }
9809
9810  return ExceptSpec;
9811}
9812
9813CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
9814                                                    CXXRecordDecl *ClassDecl) {
9815  // C++11 [class.copy]p9:
9816  //   If the definition of a class X does not explicitly declare a move
9817  //   constructor, one will be implicitly declared as defaulted if and only if:
9818  //
9819  //   - [first 4 bullets]
9820  assert(ClassDecl->needsImplicitMoveConstructor());
9821
9822  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
9823  if (DSM.isAlreadyBeingDeclared())
9824    return 0;
9825
9826  // [Checked after we build the declaration]
9827  //   - the move assignment operator would not be implicitly defined as
9828  //     deleted,
9829
9830  // [DR1402]:
9831  //   - each of X's non-static data members and direct or virtual base classes
9832  //     has a type that either has a move constructor or is trivially copyable.
9833  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
9834    ClassDecl->setFailedImplicitMoveConstructor();
9835    return 0;
9836  }
9837
9838  QualType ClassType = Context.getTypeDeclType(ClassDecl);
9839  QualType ArgType = Context.getRValueReferenceType(ClassType);
9840
9841  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9842                                                     CXXMoveConstructor,
9843                                                     false);
9844
9845  DeclarationName Name
9846    = Context.DeclarationNames.getCXXConstructorName(
9847                                           Context.getCanonicalType(ClassType));
9848  SourceLocation ClassLoc = ClassDecl->getLocation();
9849  DeclarationNameInfo NameInfo(Name, ClassLoc);
9850
9851  // C++11 [class.copy]p11:
9852  //   An implicitly-declared copy/move constructor is an inline public
9853  //   member of its class.
9854  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
9855      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
9856      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
9857      Constexpr);
9858  MoveConstructor->setAccess(AS_public);
9859  MoveConstructor->setDefaulted();
9860
9861  // Build an exception specification pointing back at this member.
9862  FunctionProtoType::ExtProtoInfo EPI;
9863  EPI.ExceptionSpecType = EST_Unevaluated;
9864  EPI.ExceptionSpecDecl = MoveConstructor;
9865  MoveConstructor->setType(
9866      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
9867
9868  // Add the parameter to the constructor.
9869  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
9870                                               ClassLoc, ClassLoc,
9871                                               /*IdentifierInfo=*/0,
9872                                               ArgType, /*TInfo=*/0,
9873                                               SC_None, 0);
9874  MoveConstructor->setParams(FromParam);
9875
9876  MoveConstructor->setTrivial(
9877    ClassDecl->needsOverloadResolutionForMoveConstructor()
9878      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
9879      : ClassDecl->hasTrivialMoveConstructor());
9880
9881  // C++0x [class.copy]p9:
9882  //   If the definition of a class X does not explicitly declare a move
9883  //   constructor, one will be implicitly declared as defaulted if and only if:
9884  //   [...]
9885  //   - the move constructor would not be implicitly defined as deleted.
9886  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
9887    // Cache this result so that we don't try to generate this over and over
9888    // on every lookup, leaking memory and wasting time.
9889    ClassDecl->setFailedImplicitMoveConstructor();
9890    return 0;
9891  }
9892
9893  // Note that we have declared this constructor.
9894  ++ASTContext::NumImplicitMoveConstructorsDeclared;
9895
9896  if (Scope *S = getScopeForContext(ClassDecl))
9897    PushOnScopeChains(MoveConstructor, S, false);
9898  ClassDecl->addDecl(MoveConstructor);
9899
9900  return MoveConstructor;
9901}
9902
9903void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
9904                                   CXXConstructorDecl *MoveConstructor) {
9905  assert((MoveConstructor->isDefaulted() &&
9906          MoveConstructor->isMoveConstructor() &&
9907          !MoveConstructor->doesThisDeclarationHaveABody() &&
9908          !MoveConstructor->isDeleted()) &&
9909         "DefineImplicitMoveConstructor - call it for implicit move ctor");
9910
9911  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
9912  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
9913
9914  SynthesizedFunctionScope Scope(*this, MoveConstructor);
9915  DiagnosticErrorTrap Trap(Diags);
9916
9917  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
9918      Trap.hasErrorOccurred()) {
9919    Diag(CurrentLocation, diag::note_member_synthesized_at)
9920      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
9921    MoveConstructor->setInvalidDecl();
9922  }  else {
9923    Sema::CompoundScopeRAII CompoundScope(*this);
9924    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
9925                                               MoveConstructor->getLocation(),
9926                                               MultiStmtArg(),
9927                                               /*isStmtExpr=*/false)
9928                                                              .takeAs<Stmt>());
9929    MoveConstructor->setImplicitlyDefined(true);
9930  }
9931
9932  MoveConstructor->setUsed();
9933
9934  if (ASTMutationListener *L = getASTMutationListener()) {
9935    L->CompletedImplicitDefinition(MoveConstructor);
9936  }
9937}
9938
9939bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
9940  return FD->isDeleted() &&
9941         (FD->isDefaulted() || FD->isImplicit()) &&
9942         isa<CXXMethodDecl>(FD);
9943}
9944
9945/// \brief Mark the call operator of the given lambda closure type as "used".
9946static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
9947  CXXMethodDecl *CallOperator
9948    = cast<CXXMethodDecl>(
9949        Lambda->lookup(
9950          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
9951  CallOperator->setReferenced();
9952  CallOperator->setUsed();
9953}
9954
9955void Sema::DefineImplicitLambdaToFunctionPointerConversion(
9956       SourceLocation CurrentLocation,
9957       CXXConversionDecl *Conv)
9958{
9959  CXXRecordDecl *Lambda = Conv->getParent();
9960
9961  // Make sure that the lambda call operator is marked used.
9962  markLambdaCallOperatorUsed(*this, Lambda);
9963
9964  Conv->setUsed();
9965
9966  SynthesizedFunctionScope Scope(*this, Conv);
9967  DiagnosticErrorTrap Trap(Diags);
9968
9969  // Return the address of the __invoke function.
9970  DeclarationName InvokeName = &Context.Idents.get("__invoke");
9971  CXXMethodDecl *Invoke
9972    = cast<CXXMethodDecl>(Lambda->lookup(InvokeName).front());
9973  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
9974                                       VK_LValue, Conv->getLocation()).take();
9975  assert(FunctionRef && "Can't refer to __invoke function?");
9976  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
9977  Conv->setBody(new (Context) CompoundStmt(Context, Return,
9978                                           Conv->getLocation(),
9979                                           Conv->getLocation()));
9980
9981  // Fill in the __invoke function with a dummy implementation. IR generation
9982  // will fill in the actual details.
9983  Invoke->setUsed();
9984  Invoke->setReferenced();
9985  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
9986
9987  if (ASTMutationListener *L = getASTMutationListener()) {
9988    L->CompletedImplicitDefinition(Conv);
9989    L->CompletedImplicitDefinition(Invoke);
9990  }
9991}
9992
9993void Sema::DefineImplicitLambdaToBlockPointerConversion(
9994       SourceLocation CurrentLocation,
9995       CXXConversionDecl *Conv)
9996{
9997  Conv->setUsed();
9998
9999  SynthesizedFunctionScope Scope(*this, Conv);
10000  DiagnosticErrorTrap Trap(Diags);
10001
10002  // Copy-initialize the lambda object as needed to capture it.
10003  Expr *This = ActOnCXXThis(CurrentLocation).take();
10004  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
10005
10006  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10007                                                        Conv->getLocation(),
10008                                                        Conv, DerefThis);
10009
10010  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10011  // behavior.  Note that only the general conversion function does this
10012  // (since it's unusable otherwise); in the case where we inline the
10013  // block literal, it has block literal lifetime semantics.
10014  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10015    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10016                                          CK_CopyAndAutoreleaseBlockObject,
10017                                          BuildBlock.get(), 0, VK_RValue);
10018
10019  if (BuildBlock.isInvalid()) {
10020    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10021    Conv->setInvalidDecl();
10022    return;
10023  }
10024
10025  // Create the return statement that returns the block from the conversion
10026  // function.
10027  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
10028  if (Return.isInvalid()) {
10029    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10030    Conv->setInvalidDecl();
10031    return;
10032  }
10033
10034  // Set the body of the conversion function.
10035  Stmt *ReturnS = Return.take();
10036  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10037                                           Conv->getLocation(),
10038                                           Conv->getLocation()));
10039
10040  // We're done; notify the mutation listener, if any.
10041  if (ASTMutationListener *L = getASTMutationListener()) {
10042    L->CompletedImplicitDefinition(Conv);
10043  }
10044}
10045
10046/// \brief Determine whether the given list arguments contains exactly one
10047/// "real" (non-default) argument.
10048static bool hasOneRealArgument(MultiExprArg Args) {
10049  switch (Args.size()) {
10050  case 0:
10051    return false;
10052
10053  default:
10054    if (!Args[1]->isDefaultArgument())
10055      return false;
10056
10057    // fall through
10058  case 1:
10059    return !Args[0]->isDefaultArgument();
10060  }
10061
10062  return false;
10063}
10064
10065ExprResult
10066Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10067                            CXXConstructorDecl *Constructor,
10068                            MultiExprArg ExprArgs,
10069                            bool HadMultipleCandidates,
10070                            bool IsListInitialization,
10071                            bool RequiresZeroInit,
10072                            unsigned ConstructKind,
10073                            SourceRange ParenRange) {
10074  bool Elidable = false;
10075
10076  // C++0x [class.copy]p34:
10077  //   When certain criteria are met, an implementation is allowed to
10078  //   omit the copy/move construction of a class object, even if the
10079  //   copy/move constructor and/or destructor for the object have
10080  //   side effects. [...]
10081  //     - when a temporary class object that has not been bound to a
10082  //       reference (12.2) would be copied/moved to a class object
10083  //       with the same cv-unqualified type, the copy/move operation
10084  //       can be omitted by constructing the temporary object
10085  //       directly into the target of the omitted copy/move
10086  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10087      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10088    Expr *SubExpr = ExprArgs[0];
10089    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10090  }
10091
10092  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10093                               Elidable, ExprArgs, HadMultipleCandidates,
10094                               IsListInitialization, RequiresZeroInit,
10095                               ConstructKind, ParenRange);
10096}
10097
10098/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10099/// including handling of its default argument expressions.
10100ExprResult
10101Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10102                            CXXConstructorDecl *Constructor, bool Elidable,
10103                            MultiExprArg ExprArgs,
10104                            bool HadMultipleCandidates,
10105                            bool IsListInitialization,
10106                            bool RequiresZeroInit,
10107                            unsigned ConstructKind,
10108                            SourceRange ParenRange) {
10109  MarkFunctionReferenced(ConstructLoc, Constructor);
10110  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10111                                        Constructor, Elidable, ExprArgs,
10112                                        HadMultipleCandidates,
10113                                        IsListInitialization, RequiresZeroInit,
10114              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10115                                        ParenRange));
10116}
10117
10118void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10119  if (VD->isInvalidDecl()) return;
10120
10121  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10122  if (ClassDecl->isInvalidDecl()) return;
10123  if (ClassDecl->hasIrrelevantDestructor()) return;
10124  if (ClassDecl->isDependentContext()) return;
10125
10126  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10127  MarkFunctionReferenced(VD->getLocation(), Destructor);
10128  CheckDestructorAccess(VD->getLocation(), Destructor,
10129                        PDiag(diag::err_access_dtor_var)
10130                        << VD->getDeclName()
10131                        << VD->getType());
10132  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10133
10134  if (!VD->hasGlobalStorage()) return;
10135
10136  // Emit warning for non-trivial dtor in global scope (a real global,
10137  // class-static, function-static).
10138  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10139
10140  // TODO: this should be re-enabled for static locals by !CXAAtExit
10141  if (!VD->isStaticLocal())
10142    Diag(VD->getLocation(), diag::warn_global_destructor);
10143}
10144
10145/// \brief Given a constructor and the set of arguments provided for the
10146/// constructor, convert the arguments and add any required default arguments
10147/// to form a proper call to this constructor.
10148///
10149/// \returns true if an error occurred, false otherwise.
10150bool
10151Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10152                              MultiExprArg ArgsPtr,
10153                              SourceLocation Loc,
10154                              SmallVectorImpl<Expr*> &ConvertedArgs,
10155                              bool AllowExplicit,
10156                              bool IsListInitialization) {
10157  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10158  unsigned NumArgs = ArgsPtr.size();
10159  Expr **Args = ArgsPtr.data();
10160
10161  const FunctionProtoType *Proto
10162    = Constructor->getType()->getAs<FunctionProtoType>();
10163  assert(Proto && "Constructor without a prototype?");
10164  unsigned NumArgsInProto = Proto->getNumArgs();
10165
10166  // If too few arguments are available, we'll fill in the rest with defaults.
10167  if (NumArgs < NumArgsInProto)
10168    ConvertedArgs.reserve(NumArgsInProto);
10169  else
10170    ConvertedArgs.reserve(NumArgs);
10171
10172  VariadicCallType CallType =
10173    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10174  SmallVector<Expr *, 8> AllArgs;
10175  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10176                                        Proto, 0,
10177                                        llvm::makeArrayRef(Args, NumArgs),
10178                                        AllArgs,
10179                                        CallType, AllowExplicit,
10180                                        IsListInitialization);
10181  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10182
10183  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10184
10185  CheckConstructorCall(Constructor,
10186                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10187                                                        AllArgs.size()),
10188                       Proto, Loc);
10189
10190  return Invalid;
10191}
10192
10193static inline bool
10194CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10195                                       const FunctionDecl *FnDecl) {
10196  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10197  if (isa<NamespaceDecl>(DC)) {
10198    return SemaRef.Diag(FnDecl->getLocation(),
10199                        diag::err_operator_new_delete_declared_in_namespace)
10200      << FnDecl->getDeclName();
10201  }
10202
10203  if (isa<TranslationUnitDecl>(DC) &&
10204      FnDecl->getStorageClass() == SC_Static) {
10205    return SemaRef.Diag(FnDecl->getLocation(),
10206                        diag::err_operator_new_delete_declared_static)
10207      << FnDecl->getDeclName();
10208  }
10209
10210  return false;
10211}
10212
10213static inline bool
10214CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10215                            CanQualType ExpectedResultType,
10216                            CanQualType ExpectedFirstParamType,
10217                            unsigned DependentParamTypeDiag,
10218                            unsigned InvalidParamTypeDiag) {
10219  QualType ResultType =
10220    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10221
10222  // Check that the result type is not dependent.
10223  if (ResultType->isDependentType())
10224    return SemaRef.Diag(FnDecl->getLocation(),
10225                        diag::err_operator_new_delete_dependent_result_type)
10226    << FnDecl->getDeclName() << ExpectedResultType;
10227
10228  // Check that the result type is what we expect.
10229  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10230    return SemaRef.Diag(FnDecl->getLocation(),
10231                        diag::err_operator_new_delete_invalid_result_type)
10232    << FnDecl->getDeclName() << ExpectedResultType;
10233
10234  // A function template must have at least 2 parameters.
10235  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10236    return SemaRef.Diag(FnDecl->getLocation(),
10237                      diag::err_operator_new_delete_template_too_few_parameters)
10238        << FnDecl->getDeclName();
10239
10240  // The function decl must have at least 1 parameter.
10241  if (FnDecl->getNumParams() == 0)
10242    return SemaRef.Diag(FnDecl->getLocation(),
10243                        diag::err_operator_new_delete_too_few_parameters)
10244      << FnDecl->getDeclName();
10245
10246  // Check the first parameter type is not dependent.
10247  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10248  if (FirstParamType->isDependentType())
10249    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10250      << FnDecl->getDeclName() << ExpectedFirstParamType;
10251
10252  // Check that the first parameter type is what we expect.
10253  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10254      ExpectedFirstParamType)
10255    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10256    << FnDecl->getDeclName() << ExpectedFirstParamType;
10257
10258  return false;
10259}
10260
10261static bool
10262CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10263  // C++ [basic.stc.dynamic.allocation]p1:
10264  //   A program is ill-formed if an allocation function is declared in a
10265  //   namespace scope other than global scope or declared static in global
10266  //   scope.
10267  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10268    return true;
10269
10270  CanQualType SizeTy =
10271    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10272
10273  // C++ [basic.stc.dynamic.allocation]p1:
10274  //  The return type shall be void*. The first parameter shall have type
10275  //  std::size_t.
10276  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10277                                  SizeTy,
10278                                  diag::err_operator_new_dependent_param_type,
10279                                  diag::err_operator_new_param_type))
10280    return true;
10281
10282  // C++ [basic.stc.dynamic.allocation]p1:
10283  //  The first parameter shall not have an associated default argument.
10284  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10285    return SemaRef.Diag(FnDecl->getLocation(),
10286                        diag::err_operator_new_default_arg)
10287      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10288
10289  return false;
10290}
10291
10292static bool
10293CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10294  // C++ [basic.stc.dynamic.deallocation]p1:
10295  //   A program is ill-formed if deallocation functions are declared in a
10296  //   namespace scope other than global scope or declared static in global
10297  //   scope.
10298  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10299    return true;
10300
10301  // C++ [basic.stc.dynamic.deallocation]p2:
10302  //   Each deallocation function shall return void and its first parameter
10303  //   shall be void*.
10304  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10305                                  SemaRef.Context.VoidPtrTy,
10306                                 diag::err_operator_delete_dependent_param_type,
10307                                 diag::err_operator_delete_param_type))
10308    return true;
10309
10310  return false;
10311}
10312
10313/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10314/// of this overloaded operator is well-formed. If so, returns false;
10315/// otherwise, emits appropriate diagnostics and returns true.
10316bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10317  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10318         "Expected an overloaded operator declaration");
10319
10320  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10321
10322  // C++ [over.oper]p5:
10323  //   The allocation and deallocation functions, operator new,
10324  //   operator new[], operator delete and operator delete[], are
10325  //   described completely in 3.7.3. The attributes and restrictions
10326  //   found in the rest of this subclause do not apply to them unless
10327  //   explicitly stated in 3.7.3.
10328  if (Op == OO_Delete || Op == OO_Array_Delete)
10329    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10330
10331  if (Op == OO_New || Op == OO_Array_New)
10332    return CheckOperatorNewDeclaration(*this, FnDecl);
10333
10334  // C++ [over.oper]p6:
10335  //   An operator function shall either be a non-static member
10336  //   function or be a non-member function and have at least one
10337  //   parameter whose type is a class, a reference to a class, an
10338  //   enumeration, or a reference to an enumeration.
10339  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10340    if (MethodDecl->isStatic())
10341      return Diag(FnDecl->getLocation(),
10342                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10343  } else {
10344    bool ClassOrEnumParam = false;
10345    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10346                                   ParamEnd = FnDecl->param_end();
10347         Param != ParamEnd; ++Param) {
10348      QualType ParamType = (*Param)->getType().getNonReferenceType();
10349      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10350          ParamType->isEnumeralType()) {
10351        ClassOrEnumParam = true;
10352        break;
10353      }
10354    }
10355
10356    if (!ClassOrEnumParam)
10357      return Diag(FnDecl->getLocation(),
10358                  diag::err_operator_overload_needs_class_or_enum)
10359        << FnDecl->getDeclName();
10360  }
10361
10362  // C++ [over.oper]p8:
10363  //   An operator function cannot have default arguments (8.3.6),
10364  //   except where explicitly stated below.
10365  //
10366  // Only the function-call operator allows default arguments
10367  // (C++ [over.call]p1).
10368  if (Op != OO_Call) {
10369    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10370         Param != FnDecl->param_end(); ++Param) {
10371      if ((*Param)->hasDefaultArg())
10372        return Diag((*Param)->getLocation(),
10373                    diag::err_operator_overload_default_arg)
10374          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10375    }
10376  }
10377
10378  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10379    { false, false, false }
10380#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10381    , { Unary, Binary, MemberOnly }
10382#include "clang/Basic/OperatorKinds.def"
10383  };
10384
10385  bool CanBeUnaryOperator = OperatorUses[Op][0];
10386  bool CanBeBinaryOperator = OperatorUses[Op][1];
10387  bool MustBeMemberOperator = OperatorUses[Op][2];
10388
10389  // C++ [over.oper]p8:
10390  //   [...] Operator functions cannot have more or fewer parameters
10391  //   than the number required for the corresponding operator, as
10392  //   described in the rest of this subclause.
10393  unsigned NumParams = FnDecl->getNumParams()
10394                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10395  if (Op != OO_Call &&
10396      ((NumParams == 1 && !CanBeUnaryOperator) ||
10397       (NumParams == 2 && !CanBeBinaryOperator) ||
10398       (NumParams < 1) || (NumParams > 2))) {
10399    // We have the wrong number of parameters.
10400    unsigned ErrorKind;
10401    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10402      ErrorKind = 2;  // 2 -> unary or binary.
10403    } else if (CanBeUnaryOperator) {
10404      ErrorKind = 0;  // 0 -> unary
10405    } else {
10406      assert(CanBeBinaryOperator &&
10407             "All non-call overloaded operators are unary or binary!");
10408      ErrorKind = 1;  // 1 -> binary
10409    }
10410
10411    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10412      << FnDecl->getDeclName() << NumParams << ErrorKind;
10413  }
10414
10415  // Overloaded operators other than operator() cannot be variadic.
10416  if (Op != OO_Call &&
10417      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10418    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10419      << FnDecl->getDeclName();
10420  }
10421
10422  // Some operators must be non-static member functions.
10423  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10424    return Diag(FnDecl->getLocation(),
10425                diag::err_operator_overload_must_be_member)
10426      << FnDecl->getDeclName();
10427  }
10428
10429  // C++ [over.inc]p1:
10430  //   The user-defined function called operator++ implements the
10431  //   prefix and postfix ++ operator. If this function is a member
10432  //   function with no parameters, or a non-member function with one
10433  //   parameter of class or enumeration type, it defines the prefix
10434  //   increment operator ++ for objects of that type. If the function
10435  //   is a member function with one parameter (which shall be of type
10436  //   int) or a non-member function with two parameters (the second
10437  //   of which shall be of type int), it defines the postfix
10438  //   increment operator ++ for objects of that type.
10439  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10440    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10441    bool ParamIsInt = false;
10442    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10443      ParamIsInt = BT->getKind() == BuiltinType::Int;
10444
10445    if (!ParamIsInt)
10446      return Diag(LastParam->getLocation(),
10447                  diag::err_operator_overload_post_incdec_must_be_int)
10448        << LastParam->getType() << (Op == OO_MinusMinus);
10449  }
10450
10451  return false;
10452}
10453
10454/// CheckLiteralOperatorDeclaration - Check whether the declaration
10455/// of this literal operator function is well-formed. If so, returns
10456/// false; otherwise, emits appropriate diagnostics and returns true.
10457bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10458  if (isa<CXXMethodDecl>(FnDecl)) {
10459    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10460      << FnDecl->getDeclName();
10461    return true;
10462  }
10463
10464  if (FnDecl->isExternC()) {
10465    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10466    return true;
10467  }
10468
10469  bool Valid = false;
10470
10471  // This might be the definition of a literal operator template.
10472  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10473  // This might be a specialization of a literal operator template.
10474  if (!TpDecl)
10475    TpDecl = FnDecl->getPrimaryTemplate();
10476
10477  // template <char...> type operator "" name() is the only valid template
10478  // signature, and the only valid signature with no parameters.
10479  if (TpDecl) {
10480    if (FnDecl->param_size() == 0) {
10481      // Must have only one template parameter
10482      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10483      if (Params->size() == 1) {
10484        NonTypeTemplateParmDecl *PmDecl =
10485          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10486
10487        // The template parameter must be a char parameter pack.
10488        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10489            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10490          Valid = true;
10491      }
10492    }
10493  } else if (FnDecl->param_size()) {
10494    // Check the first parameter
10495    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10496
10497    QualType T = (*Param)->getType().getUnqualifiedType();
10498
10499    // unsigned long long int, long double, and any character type are allowed
10500    // as the only parameters.
10501    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10502        Context.hasSameType(T, Context.LongDoubleTy) ||
10503        Context.hasSameType(T, Context.CharTy) ||
10504        Context.hasSameType(T, Context.WideCharTy) ||
10505        Context.hasSameType(T, Context.Char16Ty) ||
10506        Context.hasSameType(T, Context.Char32Ty)) {
10507      if (++Param == FnDecl->param_end())
10508        Valid = true;
10509      goto FinishedParams;
10510    }
10511
10512    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10513    const PointerType *PT = T->getAs<PointerType>();
10514    if (!PT)
10515      goto FinishedParams;
10516    T = PT->getPointeeType();
10517    if (!T.isConstQualified() || T.isVolatileQualified())
10518      goto FinishedParams;
10519    T = T.getUnqualifiedType();
10520
10521    // Move on to the second parameter;
10522    ++Param;
10523
10524    // If there is no second parameter, the first must be a const char *
10525    if (Param == FnDecl->param_end()) {
10526      if (Context.hasSameType(T, Context.CharTy))
10527        Valid = true;
10528      goto FinishedParams;
10529    }
10530
10531    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10532    // are allowed as the first parameter to a two-parameter function
10533    if (!(Context.hasSameType(T, Context.CharTy) ||
10534          Context.hasSameType(T, Context.WideCharTy) ||
10535          Context.hasSameType(T, Context.Char16Ty) ||
10536          Context.hasSameType(T, Context.Char32Ty)))
10537      goto FinishedParams;
10538
10539    // The second and final parameter must be an std::size_t
10540    T = (*Param)->getType().getUnqualifiedType();
10541    if (Context.hasSameType(T, Context.getSizeType()) &&
10542        ++Param == FnDecl->param_end())
10543      Valid = true;
10544  }
10545
10546  // FIXME: This diagnostic is absolutely terrible.
10547FinishedParams:
10548  if (!Valid) {
10549    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10550      << FnDecl->getDeclName();
10551    return true;
10552  }
10553
10554  // A parameter-declaration-clause containing a default argument is not
10555  // equivalent to any of the permitted forms.
10556  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10557                                    ParamEnd = FnDecl->param_end();
10558       Param != ParamEnd; ++Param) {
10559    if ((*Param)->hasDefaultArg()) {
10560      Diag((*Param)->getDefaultArgRange().getBegin(),
10561           diag::err_literal_operator_default_argument)
10562        << (*Param)->getDefaultArgRange();
10563      break;
10564    }
10565  }
10566
10567  StringRef LiteralName
10568    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10569  if (LiteralName[0] != '_') {
10570    // C++11 [usrlit.suffix]p1:
10571    //   Literal suffix identifiers that do not start with an underscore
10572    //   are reserved for future standardization.
10573    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
10574  }
10575
10576  return false;
10577}
10578
10579/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10580/// linkage specification, including the language and (if present)
10581/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10582/// the location of the language string literal, which is provided
10583/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10584/// the '{' brace. Otherwise, this linkage specification does not
10585/// have any braces.
10586Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10587                                           SourceLocation LangLoc,
10588                                           StringRef Lang,
10589                                           SourceLocation LBraceLoc) {
10590  LinkageSpecDecl::LanguageIDs Language;
10591  if (Lang == "\"C\"")
10592    Language = LinkageSpecDecl::lang_c;
10593  else if (Lang == "\"C++\"")
10594    Language = LinkageSpecDecl::lang_cxx;
10595  else {
10596    Diag(LangLoc, diag::err_bad_language);
10597    return 0;
10598  }
10599
10600  // FIXME: Add all the various semantics of linkage specifications
10601
10602  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
10603                                               ExternLoc, LangLoc, Language,
10604                                               LBraceLoc.isValid());
10605  CurContext->addDecl(D);
10606  PushDeclContext(S, D);
10607  return D;
10608}
10609
10610/// ActOnFinishLinkageSpecification - Complete the definition of
10611/// the C++ linkage specification LinkageSpec. If RBraceLoc is
10612/// valid, it's the position of the closing '}' brace in a linkage
10613/// specification that uses braces.
10614Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
10615                                            Decl *LinkageSpec,
10616                                            SourceLocation RBraceLoc) {
10617  if (LinkageSpec) {
10618    if (RBraceLoc.isValid()) {
10619      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
10620      LSDecl->setRBraceLoc(RBraceLoc);
10621    }
10622    PopDeclContext();
10623  }
10624  return LinkageSpec;
10625}
10626
10627Decl *Sema::ActOnEmptyDeclaration(Scope *S,
10628                                  AttributeList *AttrList,
10629                                  SourceLocation SemiLoc) {
10630  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
10631  // Attribute declarations appertain to empty declaration so we handle
10632  // them here.
10633  if (AttrList)
10634    ProcessDeclAttributeList(S, ED, AttrList);
10635
10636  CurContext->addDecl(ED);
10637  return ED;
10638}
10639
10640/// \brief Perform semantic analysis for the variable declaration that
10641/// occurs within a C++ catch clause, returning the newly-created
10642/// variable.
10643VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
10644                                         TypeSourceInfo *TInfo,
10645                                         SourceLocation StartLoc,
10646                                         SourceLocation Loc,
10647                                         IdentifierInfo *Name) {
10648  bool Invalid = false;
10649  QualType ExDeclType = TInfo->getType();
10650
10651  // Arrays and functions decay.
10652  if (ExDeclType->isArrayType())
10653    ExDeclType = Context.getArrayDecayedType(ExDeclType);
10654  else if (ExDeclType->isFunctionType())
10655    ExDeclType = Context.getPointerType(ExDeclType);
10656
10657  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
10658  // The exception-declaration shall not denote a pointer or reference to an
10659  // incomplete type, other than [cv] void*.
10660  // N2844 forbids rvalue references.
10661  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
10662    Diag(Loc, diag::err_catch_rvalue_ref);
10663    Invalid = true;
10664  }
10665
10666  QualType BaseType = ExDeclType;
10667  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
10668  unsigned DK = diag::err_catch_incomplete;
10669  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
10670    BaseType = Ptr->getPointeeType();
10671    Mode = 1;
10672    DK = diag::err_catch_incomplete_ptr;
10673  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
10674    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
10675    BaseType = Ref->getPointeeType();
10676    Mode = 2;
10677    DK = diag::err_catch_incomplete_ref;
10678  }
10679  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
10680      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
10681    Invalid = true;
10682
10683  if (!Invalid && !ExDeclType->isDependentType() &&
10684      RequireNonAbstractType(Loc, ExDeclType,
10685                             diag::err_abstract_type_in_decl,
10686                             AbstractVariableType))
10687    Invalid = true;
10688
10689  // Only the non-fragile NeXT runtime currently supports C++ catches
10690  // of ObjC types, and no runtime supports catching ObjC types by value.
10691  if (!Invalid && getLangOpts().ObjC1) {
10692    QualType T = ExDeclType;
10693    if (const ReferenceType *RT = T->getAs<ReferenceType>())
10694      T = RT->getPointeeType();
10695
10696    if (T->isObjCObjectType()) {
10697      Diag(Loc, diag::err_objc_object_catch);
10698      Invalid = true;
10699    } else if (T->isObjCObjectPointerType()) {
10700      // FIXME: should this be a test for macosx-fragile specifically?
10701      if (getLangOpts().ObjCRuntime.isFragile())
10702        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
10703    }
10704  }
10705
10706  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
10707                                    ExDeclType, TInfo, SC_None);
10708  ExDecl->setExceptionVariable(true);
10709
10710  // In ARC, infer 'retaining' for variables of retainable type.
10711  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
10712    Invalid = true;
10713
10714  if (!Invalid && !ExDeclType->isDependentType()) {
10715    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
10716      // Insulate this from anything else we might currently be parsing.
10717      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
10718
10719      // C++ [except.handle]p16:
10720      //   The object declared in an exception-declaration or, if the
10721      //   exception-declaration does not specify a name, a temporary (12.2) is
10722      //   copy-initialized (8.5) from the exception object. [...]
10723      //   The object is destroyed when the handler exits, after the destruction
10724      //   of any automatic objects initialized within the handler.
10725      //
10726      // We just pretend to initialize the object with itself, then make sure
10727      // it can be destroyed later.
10728      QualType initType = ExDeclType;
10729
10730      InitializedEntity entity =
10731        InitializedEntity::InitializeVariable(ExDecl);
10732      InitializationKind initKind =
10733        InitializationKind::CreateCopy(Loc, SourceLocation());
10734
10735      Expr *opaqueValue =
10736        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
10737      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
10738      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
10739      if (result.isInvalid())
10740        Invalid = true;
10741      else {
10742        // If the constructor used was non-trivial, set this as the
10743        // "initializer".
10744        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
10745        if (!construct->getConstructor()->isTrivial()) {
10746          Expr *init = MaybeCreateExprWithCleanups(construct);
10747          ExDecl->setInit(init);
10748        }
10749
10750        // And make sure it's destructable.
10751        FinalizeVarWithDestructor(ExDecl, recordType);
10752      }
10753    }
10754  }
10755
10756  if (Invalid)
10757    ExDecl->setInvalidDecl();
10758
10759  return ExDecl;
10760}
10761
10762/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
10763/// handler.
10764Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
10765  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10766  bool Invalid = D.isInvalidType();
10767
10768  // Check for unexpanded parameter packs.
10769  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10770                                      UPPC_ExceptionType)) {
10771    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
10772                                             D.getIdentifierLoc());
10773    Invalid = true;
10774  }
10775
10776  IdentifierInfo *II = D.getIdentifier();
10777  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
10778                                             LookupOrdinaryName,
10779                                             ForRedeclaration)) {
10780    // The scope should be freshly made just for us. There is just no way
10781    // it contains any previous declaration.
10782    assert(!S->isDeclScope(PrevDecl));
10783    if (PrevDecl->isTemplateParameter()) {
10784      // Maybe we will complain about the shadowed template parameter.
10785      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10786      PrevDecl = 0;
10787    }
10788  }
10789
10790  if (D.getCXXScopeSpec().isSet() && !Invalid) {
10791    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
10792      << D.getCXXScopeSpec().getRange();
10793    Invalid = true;
10794  }
10795
10796  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
10797                                              D.getLocStart(),
10798                                              D.getIdentifierLoc(),
10799                                              D.getIdentifier());
10800  if (Invalid)
10801    ExDecl->setInvalidDecl();
10802
10803  // Add the exception declaration into this scope.
10804  if (II)
10805    PushOnScopeChains(ExDecl, S);
10806  else
10807    CurContext->addDecl(ExDecl);
10808
10809  ProcessDeclAttributes(S, ExDecl, D);
10810  return ExDecl;
10811}
10812
10813Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10814                                         Expr *AssertExpr,
10815                                         Expr *AssertMessageExpr,
10816                                         SourceLocation RParenLoc) {
10817  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
10818
10819  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
10820    return 0;
10821
10822  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
10823                                      AssertMessage, RParenLoc, false);
10824}
10825
10826Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
10827                                         Expr *AssertExpr,
10828                                         StringLiteral *AssertMessage,
10829                                         SourceLocation RParenLoc,
10830                                         bool Failed) {
10831  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
10832      !Failed) {
10833    // In a static_assert-declaration, the constant-expression shall be a
10834    // constant expression that can be contextually converted to bool.
10835    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
10836    if (Converted.isInvalid())
10837      Failed = true;
10838
10839    llvm::APSInt Cond;
10840    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
10841          diag::err_static_assert_expression_is_not_constant,
10842          /*AllowFold=*/false).isInvalid())
10843      Failed = true;
10844
10845    if (!Failed && !Cond) {
10846      SmallString<256> MsgBuffer;
10847      llvm::raw_svector_ostream Msg(MsgBuffer);
10848      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
10849      Diag(StaticAssertLoc, diag::err_static_assert_failed)
10850        << Msg.str() << AssertExpr->getSourceRange();
10851      Failed = true;
10852    }
10853  }
10854
10855  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
10856                                        AssertExpr, AssertMessage, RParenLoc,
10857                                        Failed);
10858
10859  CurContext->addDecl(Decl);
10860  return Decl;
10861}
10862
10863/// \brief Perform semantic analysis of the given friend type declaration.
10864///
10865/// \returns A friend declaration that.
10866FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
10867                                      SourceLocation FriendLoc,
10868                                      TypeSourceInfo *TSInfo) {
10869  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
10870
10871  QualType T = TSInfo->getType();
10872  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
10873
10874  // C++03 [class.friend]p2:
10875  //   An elaborated-type-specifier shall be used in a friend declaration
10876  //   for a class.*
10877  //
10878  //   * The class-key of the elaborated-type-specifier is required.
10879  if (!ActiveTemplateInstantiations.empty()) {
10880    // Do not complain about the form of friend template types during
10881    // template instantiation; we will already have complained when the
10882    // template was declared.
10883  } else {
10884    if (!T->isElaboratedTypeSpecifier()) {
10885      // If we evaluated the type to a record type, suggest putting
10886      // a tag in front.
10887      if (const RecordType *RT = T->getAs<RecordType>()) {
10888        RecordDecl *RD = RT->getDecl();
10889
10890        std::string InsertionText = std::string(" ") + RD->getKindName();
10891
10892        Diag(TypeRange.getBegin(),
10893             getLangOpts().CPlusPlus11 ?
10894               diag::warn_cxx98_compat_unelaborated_friend_type :
10895               diag::ext_unelaborated_friend_type)
10896          << (unsigned) RD->getTagKind()
10897          << T
10898          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
10899                                        InsertionText);
10900      } else {
10901        Diag(FriendLoc,
10902             getLangOpts().CPlusPlus11 ?
10903               diag::warn_cxx98_compat_nonclass_type_friend :
10904               diag::ext_nonclass_type_friend)
10905          << T
10906          << TypeRange;
10907      }
10908    } else if (T->getAs<EnumType>()) {
10909      Diag(FriendLoc,
10910           getLangOpts().CPlusPlus11 ?
10911             diag::warn_cxx98_compat_enum_friend :
10912             diag::ext_enum_friend)
10913        << T
10914        << TypeRange;
10915    }
10916
10917    // C++11 [class.friend]p3:
10918    //   A friend declaration that does not declare a function shall have one
10919    //   of the following forms:
10920    //     friend elaborated-type-specifier ;
10921    //     friend simple-type-specifier ;
10922    //     friend typename-specifier ;
10923    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
10924      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
10925  }
10926
10927  //   If the type specifier in a friend declaration designates a (possibly
10928  //   cv-qualified) class type, that class is declared as a friend; otherwise,
10929  //   the friend declaration is ignored.
10930  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
10931}
10932
10933/// Handle a friend tag declaration where the scope specifier was
10934/// templated.
10935Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
10936                                    unsigned TagSpec, SourceLocation TagLoc,
10937                                    CXXScopeSpec &SS,
10938                                    IdentifierInfo *Name,
10939                                    SourceLocation NameLoc,
10940                                    AttributeList *Attr,
10941                                    MultiTemplateParamsArg TempParamLists) {
10942  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10943
10944  bool isExplicitSpecialization = false;
10945  bool Invalid = false;
10946
10947  if (TemplateParameterList *TemplateParams
10948        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
10949                                                  TempParamLists.data(),
10950                                                  TempParamLists.size(),
10951                                                  /*friend*/ true,
10952                                                  isExplicitSpecialization,
10953                                                  Invalid)) {
10954    if (TemplateParams->size() > 0) {
10955      // This is a declaration of a class template.
10956      if (Invalid)
10957        return 0;
10958
10959      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
10960                                SS, Name, NameLoc, Attr,
10961                                TemplateParams, AS_public,
10962                                /*ModulePrivateLoc=*/SourceLocation(),
10963                                TempParamLists.size() - 1,
10964                                TempParamLists.data()).take();
10965    } else {
10966      // The "template<>" header is extraneous.
10967      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10968        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10969      isExplicitSpecialization = true;
10970    }
10971  }
10972
10973  if (Invalid) return 0;
10974
10975  bool isAllExplicitSpecializations = true;
10976  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
10977    if (TempParamLists[I]->size()) {
10978      isAllExplicitSpecializations = false;
10979      break;
10980    }
10981  }
10982
10983  // FIXME: don't ignore attributes.
10984
10985  // If it's explicit specializations all the way down, just forget
10986  // about the template header and build an appropriate non-templated
10987  // friend.  TODO: for source fidelity, remember the headers.
10988  if (isAllExplicitSpecializations) {
10989    if (SS.isEmpty()) {
10990      bool Owned = false;
10991      bool IsDependent = false;
10992      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
10993                      Attr, AS_public,
10994                      /*ModulePrivateLoc=*/SourceLocation(),
10995                      MultiTemplateParamsArg(), Owned, IsDependent,
10996                      /*ScopedEnumKWLoc=*/SourceLocation(),
10997                      /*ScopedEnumUsesClassTag=*/false,
10998                      /*UnderlyingType=*/TypeResult());
10999    }
11000
11001    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11002    ElaboratedTypeKeyword Keyword
11003      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11004    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11005                                   *Name, NameLoc);
11006    if (T.isNull())
11007      return 0;
11008
11009    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11010    if (isa<DependentNameType>(T)) {
11011      DependentNameTypeLoc TL =
11012          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11013      TL.setElaboratedKeywordLoc(TagLoc);
11014      TL.setQualifierLoc(QualifierLoc);
11015      TL.setNameLoc(NameLoc);
11016    } else {
11017      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11018      TL.setElaboratedKeywordLoc(TagLoc);
11019      TL.setQualifierLoc(QualifierLoc);
11020      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11021    }
11022
11023    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11024                                            TSI, FriendLoc, TempParamLists);
11025    Friend->setAccess(AS_public);
11026    CurContext->addDecl(Friend);
11027    return Friend;
11028  }
11029
11030  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11031
11032
11033
11034  // Handle the case of a templated-scope friend class.  e.g.
11035  //   template <class T> class A<T>::B;
11036  // FIXME: we don't support these right now.
11037  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11038  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11039  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11040  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11041  TL.setElaboratedKeywordLoc(TagLoc);
11042  TL.setQualifierLoc(SS.getWithLocInContext(Context));
11043  TL.setNameLoc(NameLoc);
11044
11045  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11046                                          TSI, FriendLoc, TempParamLists);
11047  Friend->setAccess(AS_public);
11048  Friend->setUnsupportedFriend(true);
11049  CurContext->addDecl(Friend);
11050  return Friend;
11051}
11052
11053
11054/// Handle a friend type declaration.  This works in tandem with
11055/// ActOnTag.
11056///
11057/// Notes on friend class templates:
11058///
11059/// We generally treat friend class declarations as if they were
11060/// declaring a class.  So, for example, the elaborated type specifier
11061/// in a friend declaration is required to obey the restrictions of a
11062/// class-head (i.e. no typedefs in the scope chain), template
11063/// parameters are required to match up with simple template-ids, &c.
11064/// However, unlike when declaring a template specialization, it's
11065/// okay to refer to a template specialization without an empty
11066/// template parameter declaration, e.g.
11067///   friend class A<T>::B<unsigned>;
11068/// We permit this as a special case; if there are any template
11069/// parameters present at all, require proper matching, i.e.
11070///   template <> template \<class T> friend class A<int>::B;
11071Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11072                                MultiTemplateParamsArg TempParams) {
11073  SourceLocation Loc = DS.getLocStart();
11074
11075  assert(DS.isFriendSpecified());
11076  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11077
11078  // Try to convert the decl specifier to a type.  This works for
11079  // friend templates because ActOnTag never produces a ClassTemplateDecl
11080  // for a TUK_Friend.
11081  Declarator TheDeclarator(DS, Declarator::MemberContext);
11082  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11083  QualType T = TSI->getType();
11084  if (TheDeclarator.isInvalidType())
11085    return 0;
11086
11087  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11088    return 0;
11089
11090  // This is definitely an error in C++98.  It's probably meant to
11091  // be forbidden in C++0x, too, but the specification is just
11092  // poorly written.
11093  //
11094  // The problem is with declarations like the following:
11095  //   template <T> friend A<T>::foo;
11096  // where deciding whether a class C is a friend or not now hinges
11097  // on whether there exists an instantiation of A that causes
11098  // 'foo' to equal C.  There are restrictions on class-heads
11099  // (which we declare (by fiat) elaborated friend declarations to
11100  // be) that makes this tractable.
11101  //
11102  // FIXME: handle "template <> friend class A<T>;", which
11103  // is possibly well-formed?  Who even knows?
11104  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11105    Diag(Loc, diag::err_tagless_friend_type_template)
11106      << DS.getSourceRange();
11107    return 0;
11108  }
11109
11110  // C++98 [class.friend]p1: A friend of a class is a function
11111  //   or class that is not a member of the class . . .
11112  // This is fixed in DR77, which just barely didn't make the C++03
11113  // deadline.  It's also a very silly restriction that seriously
11114  // affects inner classes and which nobody else seems to implement;
11115  // thus we never diagnose it, not even in -pedantic.
11116  //
11117  // But note that we could warn about it: it's always useless to
11118  // friend one of your own members (it's not, however, worthless to
11119  // friend a member of an arbitrary specialization of your template).
11120
11121  Decl *D;
11122  if (unsigned NumTempParamLists = TempParams.size())
11123    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11124                                   NumTempParamLists,
11125                                   TempParams.data(),
11126                                   TSI,
11127                                   DS.getFriendSpecLoc());
11128  else
11129    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11130
11131  if (!D)
11132    return 0;
11133
11134  D->setAccess(AS_public);
11135  CurContext->addDecl(D);
11136
11137  return D;
11138}
11139
11140NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11141                                        MultiTemplateParamsArg TemplateParams) {
11142  const DeclSpec &DS = D.getDeclSpec();
11143
11144  assert(DS.isFriendSpecified());
11145  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11146
11147  SourceLocation Loc = D.getIdentifierLoc();
11148  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11149
11150  // C++ [class.friend]p1
11151  //   A friend of a class is a function or class....
11152  // Note that this sees through typedefs, which is intended.
11153  // It *doesn't* see through dependent types, which is correct
11154  // according to [temp.arg.type]p3:
11155  //   If a declaration acquires a function type through a
11156  //   type dependent on a template-parameter and this causes
11157  //   a declaration that does not use the syntactic form of a
11158  //   function declarator to have a function type, the program
11159  //   is ill-formed.
11160  if (!TInfo->getType()->isFunctionType()) {
11161    Diag(Loc, diag::err_unexpected_friend);
11162
11163    // It might be worthwhile to try to recover by creating an
11164    // appropriate declaration.
11165    return 0;
11166  }
11167
11168  // C++ [namespace.memdef]p3
11169  //  - If a friend declaration in a non-local class first declares a
11170  //    class or function, the friend class or function is a member
11171  //    of the innermost enclosing namespace.
11172  //  - The name of the friend is not found by simple name lookup
11173  //    until a matching declaration is provided in that namespace
11174  //    scope (either before or after the class declaration granting
11175  //    friendship).
11176  //  - If a friend function is called, its name may be found by the
11177  //    name lookup that considers functions from namespaces and
11178  //    classes associated with the types of the function arguments.
11179  //  - When looking for a prior declaration of a class or a function
11180  //    declared as a friend, scopes outside the innermost enclosing
11181  //    namespace scope are not considered.
11182
11183  CXXScopeSpec &SS = D.getCXXScopeSpec();
11184  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11185  DeclarationName Name = NameInfo.getName();
11186  assert(Name);
11187
11188  // Check for unexpanded parameter packs.
11189  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11190      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11191      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11192    return 0;
11193
11194  // The context we found the declaration in, or in which we should
11195  // create the declaration.
11196  DeclContext *DC;
11197  Scope *DCScope = S;
11198  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11199                        ForRedeclaration);
11200
11201  // FIXME: there are different rules in local classes
11202
11203  // There are four cases here.
11204  //   - There's no scope specifier, in which case we just go to the
11205  //     appropriate scope and look for a function or function template
11206  //     there as appropriate.
11207  // Recover from invalid scope qualifiers as if they just weren't there.
11208  if (SS.isInvalid() || !SS.isSet()) {
11209    // C++0x [namespace.memdef]p3:
11210    //   If the name in a friend declaration is neither qualified nor
11211    //   a template-id and the declaration is a function or an
11212    //   elaborated-type-specifier, the lookup to determine whether
11213    //   the entity has been previously declared shall not consider
11214    //   any scopes outside the innermost enclosing namespace.
11215    // C++0x [class.friend]p11:
11216    //   If a friend declaration appears in a local class and the name
11217    //   specified is an unqualified name, a prior declaration is
11218    //   looked up without considering scopes that are outside the
11219    //   innermost enclosing non-class scope. For a friend function
11220    //   declaration, if there is no prior declaration, the program is
11221    //   ill-formed.
11222    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
11223    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11224
11225    // Find the appropriate context according to the above.
11226    DC = CurContext;
11227
11228    // Skip class contexts.  If someone can cite chapter and verse
11229    // for this behavior, that would be nice --- it's what GCC and
11230    // EDG do, and it seems like a reasonable intent, but the spec
11231    // really only says that checks for unqualified existing
11232    // declarations should stop at the nearest enclosing namespace,
11233    // not that they should only consider the nearest enclosing
11234    // namespace.
11235    while (DC->isRecord())
11236      DC = DC->getParent();
11237
11238    DeclContext *LookupDC = DC;
11239    while (LookupDC->isTransparentContext())
11240      LookupDC = LookupDC->getParent();
11241
11242    while (true) {
11243      LookupQualifiedName(Previous, LookupDC);
11244
11245      // TODO: decide what we think about using declarations.
11246      if (isLocal)
11247        break;
11248
11249      if (!Previous.empty()) {
11250        DC = LookupDC;
11251        break;
11252      }
11253
11254      if (isTemplateId) {
11255        if (isa<TranslationUnitDecl>(LookupDC)) break;
11256      } else {
11257        if (LookupDC->isFileContext()) break;
11258      }
11259      LookupDC = LookupDC->getParent();
11260    }
11261
11262    DCScope = getScopeForDeclContext(S, DC);
11263
11264    // C++ [class.friend]p6:
11265    //   A function can be defined in a friend declaration of a class if and
11266    //   only if the class is a non-local class (9.8), the function name is
11267    //   unqualified, and the function has namespace scope.
11268    if (isLocal && D.isFunctionDefinition()) {
11269      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11270    }
11271
11272  //   - There's a non-dependent scope specifier, in which case we
11273  //     compute it and do a previous lookup there for a function
11274  //     or function template.
11275  } else if (!SS.getScopeRep()->isDependent()) {
11276    DC = computeDeclContext(SS);
11277    if (!DC) return 0;
11278
11279    if (RequireCompleteDeclContext(SS, DC)) return 0;
11280
11281    LookupQualifiedName(Previous, DC);
11282
11283    // Ignore things found implicitly in the wrong scope.
11284    // TODO: better diagnostics for this case.  Suggesting the right
11285    // qualified scope would be nice...
11286    LookupResult::Filter F = Previous.makeFilter();
11287    while (F.hasNext()) {
11288      NamedDecl *D = F.next();
11289      if (!DC->InEnclosingNamespaceSetOf(
11290              D->getDeclContext()->getRedeclContext()))
11291        F.erase();
11292    }
11293    F.done();
11294
11295    if (Previous.empty()) {
11296      D.setInvalidType();
11297      Diag(Loc, diag::err_qualified_friend_not_found)
11298          << Name << TInfo->getType();
11299      return 0;
11300    }
11301
11302    // C++ [class.friend]p1: A friend of a class is a function or
11303    //   class that is not a member of the class . . .
11304    if (DC->Equals(CurContext))
11305      Diag(DS.getFriendSpecLoc(),
11306           getLangOpts().CPlusPlus11 ?
11307             diag::warn_cxx98_compat_friend_is_member :
11308             diag::err_friend_is_member);
11309
11310    if (D.isFunctionDefinition()) {
11311      // C++ [class.friend]p6:
11312      //   A function can be defined in a friend declaration of a class if and
11313      //   only if the class is a non-local class (9.8), the function name is
11314      //   unqualified, and the function has namespace scope.
11315      SemaDiagnosticBuilder DB
11316        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11317
11318      DB << SS.getScopeRep();
11319      if (DC->isFileContext())
11320        DB << FixItHint::CreateRemoval(SS.getRange());
11321      SS.clear();
11322    }
11323
11324  //   - There's a scope specifier that does not match any template
11325  //     parameter lists, in which case we use some arbitrary context,
11326  //     create a method or method template, and wait for instantiation.
11327  //   - There's a scope specifier that does match some template
11328  //     parameter lists, which we don't handle right now.
11329  } else {
11330    if (D.isFunctionDefinition()) {
11331      // C++ [class.friend]p6:
11332      //   A function can be defined in a friend declaration of a class if and
11333      //   only if the class is a non-local class (9.8), the function name is
11334      //   unqualified, and the function has namespace scope.
11335      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11336        << SS.getScopeRep();
11337    }
11338
11339    DC = CurContext;
11340    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11341  }
11342
11343  if (!DC->isRecord()) {
11344    // This implies that it has to be an operator or function.
11345    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11346        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11347        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11348      Diag(Loc, diag::err_introducing_special_friend) <<
11349        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11350         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11351      return 0;
11352    }
11353  }
11354
11355  // FIXME: This is an egregious hack to cope with cases where the scope stack
11356  // does not contain the declaration context, i.e., in an out-of-line
11357  // definition of a class.
11358  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11359  if (!DCScope) {
11360    FakeDCScope.setEntity(DC);
11361    DCScope = &FakeDCScope;
11362  }
11363
11364  bool AddToScope = true;
11365  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11366                                          TemplateParams, AddToScope);
11367  if (!ND) return 0;
11368
11369  assert(ND->getDeclContext() == DC);
11370  assert(ND->getLexicalDeclContext() == CurContext);
11371
11372  // Add the function declaration to the appropriate lookup tables,
11373  // adjusting the redeclarations list as necessary.  We don't
11374  // want to do this yet if the friending class is dependent.
11375  //
11376  // Also update the scope-based lookup if the target context's
11377  // lookup context is in lexical scope.
11378  if (!CurContext->isDependentContext()) {
11379    DC = DC->getRedeclContext();
11380    DC->makeDeclVisibleInContext(ND);
11381    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11382      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11383  }
11384
11385  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11386                                       D.getIdentifierLoc(), ND,
11387                                       DS.getFriendSpecLoc());
11388  FrD->setAccess(AS_public);
11389  CurContext->addDecl(FrD);
11390
11391  if (ND->isInvalidDecl()) {
11392    FrD->setInvalidDecl();
11393  } else {
11394    if (DC->isRecord()) CheckFriendAccess(ND);
11395
11396    FunctionDecl *FD;
11397    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11398      FD = FTD->getTemplatedDecl();
11399    else
11400      FD = cast<FunctionDecl>(ND);
11401
11402    // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
11403    // default argument expression, that declaration shall be a definition
11404    // and shall be the only declaration of the function or function
11405    // template in the translation unit.
11406    if (functionDeclHasDefaultArgument(FD)) {
11407      if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
11408        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
11409        Diag(OldFD->getLocation(), diag::note_previous_declaration);
11410      } else if (!D.isFunctionDefinition())
11411        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
11412    }
11413
11414    // Mark templated-scope function declarations as unsupported.
11415    if (FD->getNumTemplateParameterLists())
11416      FrD->setUnsupportedFriend(true);
11417  }
11418
11419  return ND;
11420}
11421
11422void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11423  AdjustDeclIfTemplate(Dcl);
11424
11425  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11426  if (!Fn) {
11427    Diag(DelLoc, diag::err_deleted_non_function);
11428    return;
11429  }
11430
11431  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11432    // Don't consider the implicit declaration we generate for explicit
11433    // specializations. FIXME: Do not generate these implicit declarations.
11434    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11435        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11436      Diag(DelLoc, diag::err_deleted_decl_not_first);
11437      Diag(Prev->getLocation(), diag::note_previous_declaration);
11438    }
11439    // If the declaration wasn't the first, we delete the function anyway for
11440    // recovery.
11441    Fn = Fn->getCanonicalDecl();
11442  }
11443
11444  if (Fn->isDeleted())
11445    return;
11446
11447  // See if we're deleting a function which is already known to override a
11448  // non-deleted virtual function.
11449  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11450    bool IssuedDiagnostic = false;
11451    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11452                                        E = MD->end_overridden_methods();
11453         I != E; ++I) {
11454      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11455        if (!IssuedDiagnostic) {
11456          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11457          IssuedDiagnostic = true;
11458        }
11459        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11460      }
11461    }
11462  }
11463
11464  Fn->setDeletedAsWritten();
11465}
11466
11467void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11468  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11469
11470  if (MD) {
11471    if (MD->getParent()->isDependentType()) {
11472      MD->setDefaulted();
11473      MD->setExplicitlyDefaulted();
11474      return;
11475    }
11476
11477    CXXSpecialMember Member = getSpecialMember(MD);
11478    if (Member == CXXInvalid) {
11479      Diag(DefaultLoc, diag::err_default_special_members);
11480      return;
11481    }
11482
11483    MD->setDefaulted();
11484    MD->setExplicitlyDefaulted();
11485
11486    // If this definition appears within the record, do the checking when
11487    // the record is complete.
11488    const FunctionDecl *Primary = MD;
11489    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11490      // Find the uninstantiated declaration that actually had the '= default'
11491      // on it.
11492      Pattern->isDefined(Primary);
11493
11494    // If the method was defaulted on its first declaration, we will have
11495    // already performed the checking in CheckCompletedCXXClass. Such a
11496    // declaration doesn't trigger an implicit definition.
11497    if (Primary == Primary->getCanonicalDecl())
11498      return;
11499
11500    CheckExplicitlyDefaultedSpecialMember(MD);
11501
11502    // The exception specification is needed because we are defining the
11503    // function.
11504    ResolveExceptionSpec(DefaultLoc,
11505                         MD->getType()->castAs<FunctionProtoType>());
11506
11507    switch (Member) {
11508    case CXXDefaultConstructor: {
11509      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11510      if (!CD->isInvalidDecl())
11511        DefineImplicitDefaultConstructor(DefaultLoc, CD);
11512      break;
11513    }
11514
11515    case CXXCopyConstructor: {
11516      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11517      if (!CD->isInvalidDecl())
11518        DefineImplicitCopyConstructor(DefaultLoc, CD);
11519      break;
11520    }
11521
11522    case CXXCopyAssignment: {
11523      if (!MD->isInvalidDecl())
11524        DefineImplicitCopyAssignment(DefaultLoc, MD);
11525      break;
11526    }
11527
11528    case CXXDestructor: {
11529      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
11530      if (!DD->isInvalidDecl())
11531        DefineImplicitDestructor(DefaultLoc, DD);
11532      break;
11533    }
11534
11535    case CXXMoveConstructor: {
11536      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
11537      if (!CD->isInvalidDecl())
11538        DefineImplicitMoveConstructor(DefaultLoc, CD);
11539      break;
11540    }
11541
11542    case CXXMoveAssignment: {
11543      if (!MD->isInvalidDecl())
11544        DefineImplicitMoveAssignment(DefaultLoc, MD);
11545      break;
11546    }
11547
11548    case CXXInvalid:
11549      llvm_unreachable("Invalid special member.");
11550    }
11551  } else {
11552    Diag(DefaultLoc, diag::err_default_special_members);
11553  }
11554}
11555
11556static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11557  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11558    Stmt *SubStmt = *CI;
11559    if (!SubStmt)
11560      continue;
11561    if (isa<ReturnStmt>(SubStmt))
11562      Self.Diag(SubStmt->getLocStart(),
11563           diag::err_return_in_constructor_handler);
11564    if (!isa<Expr>(SubStmt))
11565      SearchForReturnInStmt(Self, SubStmt);
11566  }
11567}
11568
11569void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11570  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11571    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11572    SearchForReturnInStmt(*this, Handler);
11573  }
11574}
11575
11576bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11577                                             const CXXMethodDecl *Old) {
11578  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11579  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11580
11581  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11582
11583  // If the calling conventions match, everything is fine
11584  if (NewCC == OldCC)
11585    return false;
11586
11587  // If either of the calling conventions are set to "default", we need to pick
11588  // something more sensible based on the target. This supports code where the
11589  // one method explicitly sets thiscall, and another has no explicit calling
11590  // convention.
11591  CallingConv Default =
11592    Context.getTargetInfo().getDefaultCallingConv(TargetInfo::CCMT_Member);
11593  if (NewCC == CC_Default)
11594    NewCC = Default;
11595  if (OldCC == CC_Default)
11596    OldCC = Default;
11597
11598  // If the calling conventions still don't match, then report the error
11599  if (NewCC != OldCC) {
11600    Diag(New->getLocation(),
11601         diag::err_conflicting_overriding_cc_attributes)
11602      << New->getDeclName() << New->getType() << Old->getType();
11603    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11604    return true;
11605  }
11606
11607  return false;
11608}
11609
11610bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
11611                                             const CXXMethodDecl *Old) {
11612  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
11613  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
11614
11615  if (Context.hasSameType(NewTy, OldTy) ||
11616      NewTy->isDependentType() || OldTy->isDependentType())
11617    return false;
11618
11619  // Check if the return types are covariant
11620  QualType NewClassTy, OldClassTy;
11621
11622  /// Both types must be pointers or references to classes.
11623  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
11624    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
11625      NewClassTy = NewPT->getPointeeType();
11626      OldClassTy = OldPT->getPointeeType();
11627    }
11628  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
11629    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
11630      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
11631        NewClassTy = NewRT->getPointeeType();
11632        OldClassTy = OldRT->getPointeeType();
11633      }
11634    }
11635  }
11636
11637  // The return types aren't either both pointers or references to a class type.
11638  if (NewClassTy.isNull()) {
11639    Diag(New->getLocation(),
11640         diag::err_different_return_type_for_overriding_virtual_function)
11641      << New->getDeclName() << NewTy << OldTy;
11642    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11643
11644    return true;
11645  }
11646
11647  // C++ [class.virtual]p6:
11648  //   If the return type of D::f differs from the return type of B::f, the
11649  //   class type in the return type of D::f shall be complete at the point of
11650  //   declaration of D::f or shall be the class type D.
11651  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
11652    if (!RT->isBeingDefined() &&
11653        RequireCompleteType(New->getLocation(), NewClassTy,
11654                            diag::err_covariant_return_incomplete,
11655                            New->getDeclName()))
11656    return true;
11657  }
11658
11659  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
11660    // Check if the new class derives from the old class.
11661    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
11662      Diag(New->getLocation(),
11663           diag::err_covariant_return_not_derived)
11664      << New->getDeclName() << NewTy << OldTy;
11665      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11666      return true;
11667    }
11668
11669    // Check if we the conversion from derived to base is valid.
11670    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
11671                    diag::err_covariant_return_inaccessible_base,
11672                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
11673                    // FIXME: Should this point to the return type?
11674                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
11675      // FIXME: this note won't trigger for delayed access control
11676      // diagnostics, and it's impossible to get an undelayed error
11677      // here from access control during the original parse because
11678      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
11679      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11680      return true;
11681    }
11682  }
11683
11684  // The qualifiers of the return types must be the same.
11685  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
11686    Diag(New->getLocation(),
11687         diag::err_covariant_return_type_different_qualifications)
11688    << New->getDeclName() << NewTy << OldTy;
11689    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11690    return true;
11691  };
11692
11693
11694  // The new class type must have the same or less qualifiers as the old type.
11695  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
11696    Diag(New->getLocation(),
11697         diag::err_covariant_return_type_class_type_more_qualified)
11698    << New->getDeclName() << NewTy << OldTy;
11699    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
11700    return true;
11701  };
11702
11703  return false;
11704}
11705
11706/// \brief Mark the given method pure.
11707///
11708/// \param Method the method to be marked pure.
11709///
11710/// \param InitRange the source range that covers the "0" initializer.
11711bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
11712  SourceLocation EndLoc = InitRange.getEnd();
11713  if (EndLoc.isValid())
11714    Method->setRangeEnd(EndLoc);
11715
11716  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
11717    Method->setPure();
11718    return false;
11719  }
11720
11721  if (!Method->isInvalidDecl())
11722    Diag(Method->getLocation(), diag::err_non_virtual_pure)
11723      << Method->getDeclName() << InitRange;
11724  return true;
11725}
11726
11727/// \brief Determine whether the given declaration is a static data member.
11728static bool isStaticDataMember(Decl *D) {
11729  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
11730  if (!Var)
11731    return false;
11732
11733  return Var->isStaticDataMember();
11734}
11735/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
11736/// an initializer for the out-of-line declaration 'Dcl'.  The scope
11737/// is a fresh scope pushed for just this purpose.
11738///
11739/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
11740/// static data member of class X, names should be looked up in the scope of
11741/// class X.
11742void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
11743  // If there is no declaration, there was an error parsing it.
11744  if (D == 0 || D->isInvalidDecl()) return;
11745
11746  // We should only get called for declarations with scope specifiers, like:
11747  //   int foo::bar;
11748  assert(D->isOutOfLine());
11749  EnterDeclaratorContext(S, D->getDeclContext());
11750
11751  // If we are parsing the initializer for a static data member, push a
11752  // new expression evaluation context that is associated with this static
11753  // data member.
11754  if (isStaticDataMember(D))
11755    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
11756}
11757
11758/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
11759/// initializer for the out-of-line declaration 'D'.
11760void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
11761  // If there is no declaration, there was an error parsing it.
11762  if (D == 0 || D->isInvalidDecl()) return;
11763
11764  if (isStaticDataMember(D))
11765    PopExpressionEvaluationContext();
11766
11767  assert(D->isOutOfLine());
11768  ExitDeclaratorContext(S);
11769}
11770
11771/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
11772/// C++ if/switch/while/for statement.
11773/// e.g: "if (int x = f()) {...}"
11774DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
11775  // C++ 6.4p2:
11776  // The declarator shall not specify a function or an array.
11777  // The type-specifier-seq shall not contain typedef and shall not declare a
11778  // new class or enumeration.
11779  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
11780         "Parser allowed 'typedef' as storage class of condition decl.");
11781
11782  Decl *Dcl = ActOnDeclarator(S, D);
11783  if (!Dcl)
11784    return true;
11785
11786  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
11787    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
11788      << D.getSourceRange();
11789    return true;
11790  }
11791
11792  return Dcl;
11793}
11794
11795void Sema::LoadExternalVTableUses() {
11796  if (!ExternalSource)
11797    return;
11798
11799  SmallVector<ExternalVTableUse, 4> VTables;
11800  ExternalSource->ReadUsedVTables(VTables);
11801  SmallVector<VTableUse, 4> NewUses;
11802  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
11803    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
11804      = VTablesUsed.find(VTables[I].Record);
11805    // Even if a definition wasn't required before, it may be required now.
11806    if (Pos != VTablesUsed.end()) {
11807      if (!Pos->second && VTables[I].DefinitionRequired)
11808        Pos->second = true;
11809      continue;
11810    }
11811
11812    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
11813    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
11814  }
11815
11816  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
11817}
11818
11819void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
11820                          bool DefinitionRequired) {
11821  // Ignore any vtable uses in unevaluated operands or for classes that do
11822  // not have a vtable.
11823  if (!Class->isDynamicClass() || Class->isDependentContext() ||
11824      CurContext->isDependentContext() || isUnevaluatedContext())
11825    return;
11826
11827  // Try to insert this class into the map.
11828  LoadExternalVTableUses();
11829  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11830  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
11831    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
11832  if (!Pos.second) {
11833    // If we already had an entry, check to see if we are promoting this vtable
11834    // to required a definition. If so, we need to reappend to the VTableUses
11835    // list, since we may have already processed the first entry.
11836    if (DefinitionRequired && !Pos.first->second) {
11837      Pos.first->second = true;
11838    } else {
11839      // Otherwise, we can early exit.
11840      return;
11841    }
11842  }
11843
11844  // Local classes need to have their virtual members marked
11845  // immediately. For all other classes, we mark their virtual members
11846  // at the end of the translation unit.
11847  if (Class->isLocalClass())
11848    MarkVirtualMembersReferenced(Loc, Class);
11849  else
11850    VTableUses.push_back(std::make_pair(Class, Loc));
11851}
11852
11853bool Sema::DefineUsedVTables() {
11854  LoadExternalVTableUses();
11855  if (VTableUses.empty())
11856    return false;
11857
11858  // Note: The VTableUses vector could grow as a result of marking
11859  // the members of a class as "used", so we check the size each
11860  // time through the loop and prefer indices (which are stable) to
11861  // iterators (which are not).
11862  bool DefinedAnything = false;
11863  for (unsigned I = 0; I != VTableUses.size(); ++I) {
11864    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
11865    if (!Class)
11866      continue;
11867
11868    SourceLocation Loc = VTableUses[I].second;
11869
11870    bool DefineVTable = true;
11871
11872    // If this class has a key function, but that key function is
11873    // defined in another translation unit, we don't need to emit the
11874    // vtable even though we're using it.
11875    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
11876    if (KeyFunction && !KeyFunction->hasBody()) {
11877      switch (KeyFunction->getTemplateSpecializationKind()) {
11878      case TSK_Undeclared:
11879      case TSK_ExplicitSpecialization:
11880      case TSK_ExplicitInstantiationDeclaration:
11881        // The key function is in another translation unit.
11882        DefineVTable = false;
11883        break;
11884
11885      case TSK_ExplicitInstantiationDefinition:
11886      case TSK_ImplicitInstantiation:
11887        // We will be instantiating the key function.
11888        break;
11889      }
11890    } else if (!KeyFunction) {
11891      // If we have a class with no key function that is the subject
11892      // of an explicit instantiation declaration, suppress the
11893      // vtable; it will live with the explicit instantiation
11894      // definition.
11895      bool IsExplicitInstantiationDeclaration
11896        = Class->getTemplateSpecializationKind()
11897                                      == TSK_ExplicitInstantiationDeclaration;
11898      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
11899                                 REnd = Class->redecls_end();
11900           R != REnd; ++R) {
11901        TemplateSpecializationKind TSK
11902          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
11903        if (TSK == TSK_ExplicitInstantiationDeclaration)
11904          IsExplicitInstantiationDeclaration = true;
11905        else if (TSK == TSK_ExplicitInstantiationDefinition) {
11906          IsExplicitInstantiationDeclaration = false;
11907          break;
11908        }
11909      }
11910
11911      if (IsExplicitInstantiationDeclaration)
11912        DefineVTable = false;
11913    }
11914
11915    // The exception specifications for all virtual members may be needed even
11916    // if we are not providing an authoritative form of the vtable in this TU.
11917    // We may choose to emit it available_externally anyway.
11918    if (!DefineVTable) {
11919      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
11920      continue;
11921    }
11922
11923    // Mark all of the virtual members of this class as referenced, so
11924    // that we can build a vtable. Then, tell the AST consumer that a
11925    // vtable for this class is required.
11926    DefinedAnything = true;
11927    MarkVirtualMembersReferenced(Loc, Class);
11928    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
11929    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
11930
11931    // Optionally warn if we're emitting a weak vtable.
11932    if (Class->isExternallyVisible() &&
11933        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
11934      const FunctionDecl *KeyFunctionDef = 0;
11935      if (!KeyFunction ||
11936          (KeyFunction->hasBody(KeyFunctionDef) &&
11937           KeyFunctionDef->isInlined()))
11938        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
11939             TSK_ExplicitInstantiationDefinition
11940             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
11941          << Class;
11942    }
11943  }
11944  VTableUses.clear();
11945
11946  return DefinedAnything;
11947}
11948
11949void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
11950                                                 const CXXRecordDecl *RD) {
11951  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
11952                                      E = RD->method_end(); I != E; ++I)
11953    if ((*I)->isVirtual() && !(*I)->isPure())
11954      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
11955}
11956
11957void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
11958                                        const CXXRecordDecl *RD) {
11959  // Mark all functions which will appear in RD's vtable as used.
11960  CXXFinalOverriderMap FinalOverriders;
11961  RD->getFinalOverriders(FinalOverriders);
11962  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
11963                                            E = FinalOverriders.end();
11964       I != E; ++I) {
11965    for (OverridingMethods::const_iterator OI = I->second.begin(),
11966                                           OE = I->second.end();
11967         OI != OE; ++OI) {
11968      assert(OI->second.size() > 0 && "no final overrider");
11969      CXXMethodDecl *Overrider = OI->second.front().Method;
11970
11971      // C++ [basic.def.odr]p2:
11972      //   [...] A virtual member function is used if it is not pure. [...]
11973      if (!Overrider->isPure())
11974        MarkFunctionReferenced(Loc, Overrider);
11975    }
11976  }
11977
11978  // Only classes that have virtual bases need a VTT.
11979  if (RD->getNumVBases() == 0)
11980    return;
11981
11982  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
11983           e = RD->bases_end(); i != e; ++i) {
11984    const CXXRecordDecl *Base =
11985        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
11986    if (Base->getNumVBases() == 0)
11987      continue;
11988    MarkVirtualMembersReferenced(Loc, Base);
11989  }
11990}
11991
11992/// SetIvarInitializers - This routine builds initialization ASTs for the
11993/// Objective-C implementation whose ivars need be initialized.
11994void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
11995  if (!getLangOpts().CPlusPlus)
11996    return;
11997  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
11998    SmallVector<ObjCIvarDecl*, 8> ivars;
11999    CollectIvarsToConstructOrDestruct(OID, ivars);
12000    if (ivars.empty())
12001      return;
12002    SmallVector<CXXCtorInitializer*, 32> AllToInit;
12003    for (unsigned i = 0; i < ivars.size(); i++) {
12004      FieldDecl *Field = ivars[i];
12005      if (Field->isInvalidDecl())
12006        continue;
12007
12008      CXXCtorInitializer *Member;
12009      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12010      InitializationKind InitKind =
12011        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12012
12013      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12014      ExprResult MemberInit =
12015        InitSeq.Perform(*this, InitEntity, InitKind, None);
12016      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12017      // Note, MemberInit could actually come back empty if no initialization
12018      // is required (e.g., because it would call a trivial default constructor)
12019      if (!MemberInit.get() || MemberInit.isInvalid())
12020        continue;
12021
12022      Member =
12023        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12024                                         SourceLocation(),
12025                                         MemberInit.takeAs<Expr>(),
12026                                         SourceLocation());
12027      AllToInit.push_back(Member);
12028
12029      // Be sure that the destructor is accessible and is marked as referenced.
12030      if (const RecordType *RecordTy
12031                  = Context.getBaseElementType(Field->getType())
12032                                                        ->getAs<RecordType>()) {
12033                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12034        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12035          MarkFunctionReferenced(Field->getLocation(), Destructor);
12036          CheckDestructorAccess(Field->getLocation(), Destructor,
12037                            PDiag(diag::err_access_dtor_ivar)
12038                              << Context.getBaseElementType(Field->getType()));
12039        }
12040      }
12041    }
12042    ObjCImplementation->setIvarInitializers(Context,
12043                                            AllToInit.data(), AllToInit.size());
12044  }
12045}
12046
12047static
12048void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12049                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12050                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12051                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12052                           Sema &S) {
12053  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
12054                                                   CE = Current.end();
12055  if (Ctor->isInvalidDecl())
12056    return;
12057
12058  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12059
12060  // Target may not be determinable yet, for instance if this is a dependent
12061  // call in an uninstantiated template.
12062  if (Target) {
12063    const FunctionDecl *FNTarget = 0;
12064    (void)Target->hasBody(FNTarget);
12065    Target = const_cast<CXXConstructorDecl*>(
12066      cast_or_null<CXXConstructorDecl>(FNTarget));
12067  }
12068
12069  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12070                     // Avoid dereferencing a null pointer here.
12071                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
12072
12073  if (!Current.insert(Canonical))
12074    return;
12075
12076  // We know that beyond here, we aren't chaining into a cycle.
12077  if (!Target || !Target->isDelegatingConstructor() ||
12078      Target->isInvalidDecl() || Valid.count(TCanonical)) {
12079    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
12080      Valid.insert(*CI);
12081    Current.clear();
12082  // We've hit a cycle.
12083  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12084             Current.count(TCanonical)) {
12085    // If we haven't diagnosed this cycle yet, do so now.
12086    if (!Invalid.count(TCanonical)) {
12087      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12088             diag::warn_delegating_ctor_cycle)
12089        << Ctor;
12090
12091      // Don't add a note for a function delegating directly to itself.
12092      if (TCanonical != Canonical)
12093        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12094
12095      CXXConstructorDecl *C = Target;
12096      while (C->getCanonicalDecl() != Canonical) {
12097        const FunctionDecl *FNTarget = 0;
12098        (void)C->getTargetConstructor()->hasBody(FNTarget);
12099        assert(FNTarget && "Ctor cycle through bodiless function");
12100
12101        C = const_cast<CXXConstructorDecl*>(
12102          cast<CXXConstructorDecl>(FNTarget));
12103        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12104      }
12105    }
12106
12107    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
12108      Invalid.insert(*CI);
12109    Current.clear();
12110  } else {
12111    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12112  }
12113}
12114
12115
12116void Sema::CheckDelegatingCtorCycles() {
12117  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12118
12119  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
12120                                                   CE = Current.end();
12121
12122  for (DelegatingCtorDeclsType::iterator
12123         I = DelegatingCtorDecls.begin(ExternalSource),
12124         E = DelegatingCtorDecls.end();
12125       I != E; ++I)
12126    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12127
12128  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
12129    (*CI)->setInvalidDecl();
12130}
12131
12132namespace {
12133  /// \brief AST visitor that finds references to the 'this' expression.
12134  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12135    Sema &S;
12136
12137  public:
12138    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12139
12140    bool VisitCXXThisExpr(CXXThisExpr *E) {
12141      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12142        << E->isImplicit();
12143      return false;
12144    }
12145  };
12146}
12147
12148bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12149  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12150  if (!TSInfo)
12151    return false;
12152
12153  TypeLoc TL = TSInfo->getTypeLoc();
12154  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12155  if (!ProtoTL)
12156    return false;
12157
12158  // C++11 [expr.prim.general]p3:
12159  //   [The expression this] shall not appear before the optional
12160  //   cv-qualifier-seq and it shall not appear within the declaration of a
12161  //   static member function (although its type and value category are defined
12162  //   within a static member function as they are within a non-static member
12163  //   function). [ Note: this is because declaration matching does not occur
12164  //  until the complete declarator is known. - end note ]
12165  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12166  FindCXXThisExpr Finder(*this);
12167
12168  // If the return type came after the cv-qualifier-seq, check it now.
12169  if (Proto->hasTrailingReturn() &&
12170      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12171    return true;
12172
12173  // Check the exception specification.
12174  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12175    return true;
12176
12177  return checkThisInStaticMemberFunctionAttributes(Method);
12178}
12179
12180bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12181  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12182  if (!TSInfo)
12183    return false;
12184
12185  TypeLoc TL = TSInfo->getTypeLoc();
12186  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12187  if (!ProtoTL)
12188    return false;
12189
12190  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12191  FindCXXThisExpr Finder(*this);
12192
12193  switch (Proto->getExceptionSpecType()) {
12194  case EST_Uninstantiated:
12195  case EST_Unevaluated:
12196  case EST_BasicNoexcept:
12197  case EST_DynamicNone:
12198  case EST_MSAny:
12199  case EST_None:
12200    break;
12201
12202  case EST_ComputedNoexcept:
12203    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12204      return true;
12205
12206  case EST_Dynamic:
12207    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12208         EEnd = Proto->exception_end();
12209         E != EEnd; ++E) {
12210      if (!Finder.TraverseType(*E))
12211        return true;
12212    }
12213    break;
12214  }
12215
12216  return false;
12217}
12218
12219bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12220  FindCXXThisExpr Finder(*this);
12221
12222  // Check attributes.
12223  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12224       A != AEnd; ++A) {
12225    // FIXME: This should be emitted by tblgen.
12226    Expr *Arg = 0;
12227    ArrayRef<Expr *> Args;
12228    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12229      Arg = G->getArg();
12230    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12231      Arg = G->getArg();
12232    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12233      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12234    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12235      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12236    else if (ExclusiveLockFunctionAttr *ELF
12237               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12238      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12239    else if (SharedLockFunctionAttr *SLF
12240               = dyn_cast<SharedLockFunctionAttr>(*A))
12241      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12242    else if (ExclusiveTrylockFunctionAttr *ETLF
12243               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12244      Arg = ETLF->getSuccessValue();
12245      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12246    } else if (SharedTrylockFunctionAttr *STLF
12247                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12248      Arg = STLF->getSuccessValue();
12249      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12250    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12251      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12252    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12253      Arg = LR->getArg();
12254    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12255      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12256    else if (ExclusiveLocksRequiredAttr *ELR
12257               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12258      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12259    else if (SharedLocksRequiredAttr *SLR
12260               = dyn_cast<SharedLocksRequiredAttr>(*A))
12261      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12262
12263    if (Arg && !Finder.TraverseStmt(Arg))
12264      return true;
12265
12266    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12267      if (!Finder.TraverseStmt(Args[I]))
12268        return true;
12269    }
12270  }
12271
12272  return false;
12273}
12274
12275void
12276Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12277                                  ArrayRef<ParsedType> DynamicExceptions,
12278                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12279                                  Expr *NoexceptExpr,
12280                                  SmallVectorImpl<QualType> &Exceptions,
12281                                  FunctionProtoType::ExtProtoInfo &EPI) {
12282  Exceptions.clear();
12283  EPI.ExceptionSpecType = EST;
12284  if (EST == EST_Dynamic) {
12285    Exceptions.reserve(DynamicExceptions.size());
12286    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12287      // FIXME: Preserve type source info.
12288      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12289
12290      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12291      collectUnexpandedParameterPacks(ET, Unexpanded);
12292      if (!Unexpanded.empty()) {
12293        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12294                                         UPPC_ExceptionType,
12295                                         Unexpanded);
12296        continue;
12297      }
12298
12299      // Check that the type is valid for an exception spec, and
12300      // drop it if not.
12301      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12302        Exceptions.push_back(ET);
12303    }
12304    EPI.NumExceptions = Exceptions.size();
12305    EPI.Exceptions = Exceptions.data();
12306    return;
12307  }
12308
12309  if (EST == EST_ComputedNoexcept) {
12310    // If an error occurred, there's no expression here.
12311    if (NoexceptExpr) {
12312      assert((NoexceptExpr->isTypeDependent() ||
12313              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12314              Context.BoolTy) &&
12315             "Parser should have made sure that the expression is boolean");
12316      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12317        EPI.ExceptionSpecType = EST_BasicNoexcept;
12318        return;
12319      }
12320
12321      if (!NoexceptExpr->isValueDependent())
12322        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12323                         diag::err_noexcept_needs_constant_expression,
12324                         /*AllowFold*/ false).take();
12325      EPI.NoexceptExpr = NoexceptExpr;
12326    }
12327    return;
12328  }
12329}
12330
12331/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12332Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12333  // Implicitly declared functions (e.g. copy constructors) are
12334  // __host__ __device__
12335  if (D->isImplicit())
12336    return CFT_HostDevice;
12337
12338  if (D->hasAttr<CUDAGlobalAttr>())
12339    return CFT_Global;
12340
12341  if (D->hasAttr<CUDADeviceAttr>()) {
12342    if (D->hasAttr<CUDAHostAttr>())
12343      return CFT_HostDevice;
12344    else
12345      return CFT_Device;
12346  }
12347
12348  return CFT_Host;
12349}
12350
12351bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12352                           CUDAFunctionTarget CalleeTarget) {
12353  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12354  // Callable from the device only."
12355  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12356    return true;
12357
12358  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12359  // Callable from the host only."
12360  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12361  // Callable from the host only."
12362  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12363      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12364    return true;
12365
12366  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12367    return true;
12368
12369  return false;
12370}
12371
12372/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12373///
12374MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12375                                       SourceLocation DeclStart,
12376                                       Declarator &D, Expr *BitWidth,
12377                                       InClassInitStyle InitStyle,
12378                                       AccessSpecifier AS,
12379                                       AttributeList *MSPropertyAttr) {
12380  IdentifierInfo *II = D.getIdentifier();
12381  if (!II) {
12382    Diag(DeclStart, diag::err_anonymous_property);
12383    return NULL;
12384  }
12385  SourceLocation Loc = D.getIdentifierLoc();
12386
12387  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12388  QualType T = TInfo->getType();
12389  if (getLangOpts().CPlusPlus) {
12390    CheckExtraCXXDefaultArguments(D);
12391
12392    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12393                                        UPPC_DataMemberType)) {
12394      D.setInvalidType();
12395      T = Context.IntTy;
12396      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12397    }
12398  }
12399
12400  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12401
12402  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12403    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12404         diag::err_invalid_thread)
12405      << DeclSpec::getSpecifierName(TSCS);
12406
12407  // Check to see if this name was declared as a member previously
12408  NamedDecl *PrevDecl = 0;
12409  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12410  LookupName(Previous, S);
12411  switch (Previous.getResultKind()) {
12412  case LookupResult::Found:
12413  case LookupResult::FoundUnresolvedValue:
12414    PrevDecl = Previous.getAsSingle<NamedDecl>();
12415    break;
12416
12417  case LookupResult::FoundOverloaded:
12418    PrevDecl = Previous.getRepresentativeDecl();
12419    break;
12420
12421  case LookupResult::NotFound:
12422  case LookupResult::NotFoundInCurrentInstantiation:
12423  case LookupResult::Ambiguous:
12424    break;
12425  }
12426
12427  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12428    // Maybe we will complain about the shadowed template parameter.
12429    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12430    // Just pretend that we didn't see the previous declaration.
12431    PrevDecl = 0;
12432  }
12433
12434  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12435    PrevDecl = 0;
12436
12437  SourceLocation TSSL = D.getLocStart();
12438  MSPropertyDecl *NewPD;
12439  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12440  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12441                                       II, T, TInfo, TSSL,
12442                                       Data.GetterId, Data.SetterId);
12443  ProcessDeclAttributes(TUScope, NewPD, D);
12444  NewPD->setAccess(AS);
12445
12446  if (NewPD->isInvalidDecl())
12447    Record->setInvalidDecl();
12448
12449  if (D.getDeclSpec().isModulePrivateSpecified())
12450    NewPD->setModulePrivate();
12451
12452  if (NewPD->isInvalidDecl() && PrevDecl) {
12453    // Don't introduce NewFD into scope; there's already something
12454    // with the same name in the same scope.
12455  } else if (II) {
12456    PushOnScopeChains(NewPD, S);
12457  } else
12458    Record->addDecl(NewPD);
12459
12460  return NewPD;
12461}
12462