SemaDeclCXX.cpp revision f70bdb9463a6e3ea2c6307b2c7a5f3e2c6b7e489
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/TypeOrdering.h"
18#include "clang/AST/StmtVisitor.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Basic/Diagnostic.h"
21#include "clang/Parse/DeclSpec.h"
22#include "llvm/Support/Compiler.h"
23#include <algorithm> // for std::equal
24#include <map>
25
26using namespace clang;
27
28//===----------------------------------------------------------------------===//
29// CheckDefaultArgumentVisitor
30//===----------------------------------------------------------------------===//
31
32namespace {
33  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
34  /// the default argument of a parameter to determine whether it
35  /// contains any ill-formed subexpressions. For example, this will
36  /// diagnose the use of local variables or parameters within the
37  /// default argument expression.
38  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
39    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
40    Expr *DefaultArg;
41    Sema *S;
42
43  public:
44    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
45      : DefaultArg(defarg), S(s) {}
46
47    bool VisitExpr(Expr *Node);
48    bool VisitDeclRefExpr(DeclRefExpr *DRE);
49  };
50
51  /// VisitExpr - Visit all of the children of this expression.
52  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
53    bool IsInvalid = false;
54    for (Stmt::child_iterator I = Node->child_begin(),
55         E = Node->child_end(); I != E; ++I)
56      IsInvalid |= Visit(*I);
57    return IsInvalid;
58  }
59
60  /// VisitDeclRefExpr - Visit a reference to a declaration, to
61  /// determine whether this declaration can be used in the default
62  /// argument expression.
63  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
64    NamedDecl *Decl = DRE->getDecl();
65    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
66      // C++ [dcl.fct.default]p9
67      //   Default arguments are evaluated each time the function is
68      //   called. The order of evaluation of function arguments is
69      //   unspecified. Consequently, parameters of a function shall not
70      //   be used in default argument expressions, even if they are not
71      //   evaluated. Parameters of a function declared before a default
72      //   argument expression are in scope and can hide namespace and
73      //   class member names.
74      return S->Diag(DRE->getSourceRange().getBegin(),
75                     diag::err_param_default_argument_references_param,
76                     Param->getName(), DefaultArg->getSourceRange());
77    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
78      // C++ [dcl.fct.default]p7
79      //   Local variables shall not be used in default argument
80      //   expressions.
81      if (VDecl->isBlockVarDecl())
82        return S->Diag(DRE->getSourceRange().getBegin(),
83                       diag::err_param_default_argument_references_local,
84                       VDecl->getName(), DefaultArg->getSourceRange());
85    }
86
87    // FIXME: when Clang has support for member functions, "this"
88    // will also need to be diagnosed.
89
90    return false;
91  }
92}
93
94/// ActOnParamDefaultArgument - Check whether the default argument
95/// provided for a function parameter is well-formed. If so, attach it
96/// to the parameter declaration.
97void
98Sema::ActOnParamDefaultArgument(DeclTy *param, SourceLocation EqualLoc,
99                                ExprTy *defarg) {
100  ParmVarDecl *Param = (ParmVarDecl *)param;
101  llvm::OwningPtr<Expr> DefaultArg((Expr *)defarg);
102  QualType ParamType = Param->getType();
103
104  // Default arguments are only permitted in C++
105  if (!getLangOptions().CPlusPlus) {
106    Diag(EqualLoc, diag::err_param_default_argument,
107         DefaultArg->getSourceRange());
108    return;
109  }
110
111  // C++ [dcl.fct.default]p5
112  //   A default argument expression is implicitly converted (clause
113  //   4) to the parameter type. The default argument expression has
114  //   the same semantic constraints as the initializer expression in
115  //   a declaration of a variable of the parameter type, using the
116  //   copy-initialization semantics (8.5).
117  //
118  // FIXME: CheckSingleAssignmentConstraints has the wrong semantics
119  // for C++ (since we want copy-initialization, not copy-assignment),
120  // but we don't have the right semantics implemented yet. Because of
121  // this, our error message is also very poor.
122  QualType DefaultArgType = DefaultArg->getType();
123  Expr *DefaultArgPtr = DefaultArg.get();
124  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(ParamType,
125                                                              DefaultArgPtr);
126  if (DefaultArgPtr != DefaultArg.get()) {
127    DefaultArg.take();
128    DefaultArg.reset(DefaultArgPtr);
129  }
130  if (DiagnoseAssignmentResult(ConvTy, DefaultArg->getLocStart(),
131                               ParamType, DefaultArgType, DefaultArg.get(),
132                               "in default argument")) {
133    return;
134  }
135
136  // Check that the default argument is well-formed
137  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
138  if (DefaultArgChecker.Visit(DefaultArg.get()))
139    return;
140
141  // Okay: add the default argument to the parameter
142  Param->setDefaultArg(DefaultArg.take());
143}
144
145/// CheckExtraCXXDefaultArguments - Check for any extra default
146/// arguments in the declarator, which is not a function declaration
147/// or definition and therefore is not permitted to have default
148/// arguments. This routine should be invoked for every declarator
149/// that is not a function declaration or definition.
150void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
151  // C++ [dcl.fct.default]p3
152  //   A default argument expression shall be specified only in the
153  //   parameter-declaration-clause of a function declaration or in a
154  //   template-parameter (14.1). It shall not be specified for a
155  //   parameter pack. If it is specified in a
156  //   parameter-declaration-clause, it shall not occur within a
157  //   declarator or abstract-declarator of a parameter-declaration.
158  for (unsigned i = 0; i < D.getNumTypeObjects(); ++i) {
159    DeclaratorChunk &chunk = D.getTypeObject(i);
160    if (chunk.Kind == DeclaratorChunk::Function) {
161      for (unsigned argIdx = 0; argIdx < chunk.Fun.NumArgs; ++argIdx) {
162        ParmVarDecl *Param = (ParmVarDecl *)chunk.Fun.ArgInfo[argIdx].Param;
163        if (Param->getDefaultArg()) {
164          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc,
165               Param->getDefaultArg()->getSourceRange());
166          Param->setDefaultArg(0);
167        }
168      }
169    }
170  }
171}
172
173// MergeCXXFunctionDecl - Merge two declarations of the same C++
174// function, once we already know that they have the same
175// type. Subroutine of MergeFunctionDecl.
176FunctionDecl *
177Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
178  // C++ [dcl.fct.default]p4:
179  //
180  //   For non-template functions, default arguments can be added in
181  //   later declarations of a function in the same
182  //   scope. Declarations in different scopes have completely
183  //   distinct sets of default arguments. That is, declarations in
184  //   inner scopes do not acquire default arguments from
185  //   declarations in outer scopes, and vice versa. In a given
186  //   function declaration, all parameters subsequent to a
187  //   parameter with a default argument shall have default
188  //   arguments supplied in this or previous declarations. A
189  //   default argument shall not be redefined by a later
190  //   declaration (not even to the same value).
191  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
192    ParmVarDecl *OldParam = Old->getParamDecl(p);
193    ParmVarDecl *NewParam = New->getParamDecl(p);
194
195    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
196      Diag(NewParam->getLocation(),
197           diag::err_param_default_argument_redefinition,
198           NewParam->getDefaultArg()->getSourceRange());
199      Diag(OldParam->getLocation(), diag::err_previous_definition);
200    } else if (OldParam->getDefaultArg()) {
201      // Merge the old default argument into the new parameter
202      NewParam->setDefaultArg(OldParam->getDefaultArg());
203    }
204  }
205
206  return New;
207}
208
209/// CheckCXXDefaultArguments - Verify that the default arguments for a
210/// function declaration are well-formed according to C++
211/// [dcl.fct.default].
212void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
213  unsigned NumParams = FD->getNumParams();
214  unsigned p;
215
216  // Find first parameter with a default argument
217  for (p = 0; p < NumParams; ++p) {
218    ParmVarDecl *Param = FD->getParamDecl(p);
219    if (Param->getDefaultArg())
220      break;
221  }
222
223  // C++ [dcl.fct.default]p4:
224  //   In a given function declaration, all parameters
225  //   subsequent to a parameter with a default argument shall
226  //   have default arguments supplied in this or previous
227  //   declarations. A default argument shall not be redefined
228  //   by a later declaration (not even to the same value).
229  unsigned LastMissingDefaultArg = 0;
230  for(; p < NumParams; ++p) {
231    ParmVarDecl *Param = FD->getParamDecl(p);
232    if (!Param->getDefaultArg()) {
233      if (Param->getIdentifier())
234        Diag(Param->getLocation(),
235             diag::err_param_default_argument_missing_name,
236             Param->getIdentifier()->getName());
237      else
238        Diag(Param->getLocation(),
239             diag::err_param_default_argument_missing);
240
241      LastMissingDefaultArg = p;
242    }
243  }
244
245  if (LastMissingDefaultArg > 0) {
246    // Some default arguments were missing. Clear out all of the
247    // default arguments up to (and including) the last missing
248    // default argument, so that we leave the function parameters
249    // in a semantically valid state.
250    for (p = 0; p <= LastMissingDefaultArg; ++p) {
251      ParmVarDecl *Param = FD->getParamDecl(p);
252      if (Param->getDefaultArg()) {
253        delete Param->getDefaultArg();
254        Param->setDefaultArg(0);
255      }
256    }
257  }
258}
259
260/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
261/// one entry in the base class list of a class specifier, for
262/// example:
263///    class foo : public bar, virtual private baz {
264/// 'public bar' and 'virtual private baz' are each base-specifiers.
265Sema::BaseResult
266Sema::ActOnBaseSpecifier(DeclTy *classdecl, SourceRange SpecifierRange,
267                         bool Virtual, AccessSpecifier Access,
268                         TypeTy *basetype, SourceLocation BaseLoc) {
269  RecordDecl *Decl = (RecordDecl*)classdecl;
270  QualType BaseType = Context.getTypeDeclType((TypeDecl*)basetype);
271
272  // Base specifiers must be record types.
273  if (!BaseType->isRecordType()) {
274    Diag(BaseLoc, diag::err_base_must_be_class, SpecifierRange);
275    return true;
276  }
277
278  // C++ [class.union]p1:
279  //   A union shall not be used as a base class.
280  if (BaseType->isUnionType()) {
281    Diag(BaseLoc, diag::err_union_as_base_class, SpecifierRange);
282    return true;
283  }
284
285  // C++ [class.union]p1:
286  //   A union shall not have base classes.
287  if (Decl->isUnion()) {
288    Diag(Decl->getLocation(), diag::err_base_clause_on_union,
289         SpecifierRange);
290    return true;
291  }
292
293  // C++ [class.derived]p2:
294  //   The class-name in a base-specifier shall not be an incompletely
295  //   defined class.
296  if (BaseType->isIncompleteType()) {
297    Diag(BaseLoc, diag::err_incomplete_base_class, SpecifierRange);
298    return true;
299  }
300
301  // Create the base specifier.
302  return new CXXBaseSpecifier(SpecifierRange, Virtual,
303                              BaseType->isClassType(), Access, BaseType);
304}
305
306/// ActOnBaseSpecifiers - Attach the given base specifiers to the
307/// class, after checking whether there are any duplicate base
308/// classes.
309void Sema::ActOnBaseSpecifiers(DeclTy *ClassDecl, BaseTy **Bases,
310                               unsigned NumBases) {
311  if (NumBases == 0)
312    return;
313
314  // Used to keep track of which base types we have already seen, so
315  // that we can properly diagnose redundant direct base types. Note
316  // that the key is always the unqualified canonical type of the base
317  // class.
318  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
319
320  // Copy non-redundant base specifiers into permanent storage.
321  CXXBaseSpecifier **BaseSpecs = (CXXBaseSpecifier **)Bases;
322  unsigned NumGoodBases = 0;
323  for (unsigned idx = 0; idx < NumBases; ++idx) {
324    QualType NewBaseType
325      = Context.getCanonicalType(BaseSpecs[idx]->getType());
326    NewBaseType = NewBaseType.getUnqualifiedType();
327
328    if (KnownBaseTypes[NewBaseType]) {
329      // C++ [class.mi]p3:
330      //   A class shall not be specified as a direct base class of a
331      //   derived class more than once.
332      Diag(BaseSpecs[idx]->getSourceRange().getBegin(),
333           diag::err_duplicate_base_class,
334           KnownBaseTypes[NewBaseType]->getType().getAsString(),
335           BaseSpecs[idx]->getSourceRange());
336
337      // Delete the duplicate base class specifier; we're going to
338      // overwrite its pointer later.
339      delete BaseSpecs[idx];
340    } else {
341      // Okay, add this new base class.
342      KnownBaseTypes[NewBaseType] = BaseSpecs[idx];
343      BaseSpecs[NumGoodBases++] = BaseSpecs[idx];
344    }
345  }
346
347  // Attach the remaining base class specifiers to the derived class.
348  CXXRecordDecl *Decl = (CXXRecordDecl*)ClassDecl;
349  Decl->setBases(BaseSpecs, NumGoodBases);
350
351  // Delete the remaining (good) base class specifiers, since their
352  // data has been copied into the CXXRecordDecl.
353  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
354    delete BaseSpecs[idx];
355}
356
357//===----------------------------------------------------------------------===//
358// C++ class member Handling
359//===----------------------------------------------------------------------===//
360
361/// ActOnStartCXXClassDef - This is called at the start of a class/struct/union
362/// definition, when on C++.
363void Sema::ActOnStartCXXClassDef(Scope *S, DeclTy *D, SourceLocation LBrace) {
364  Decl *Dcl = static_cast<Decl *>(D);
365  PushDeclContext(cast<CXXRecordDecl>(Dcl));
366  FieldCollector->StartClass();
367}
368
369/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
370/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
371/// bitfield width if there is one and 'InitExpr' specifies the initializer if
372/// any. 'LastInGroup' is non-null for cases where one declspec has multiple
373/// declarators on it.
374///
375/// NOTE: Because of CXXFieldDecl's inability to be chained like ScopedDecls, if
376/// an instance field is declared, a new CXXFieldDecl is created but the method
377/// does *not* return it; it returns LastInGroup instead. The other C++ members
378/// (which are all ScopedDecls) are returned after appending them to
379/// LastInGroup.
380Sema::DeclTy *
381Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
382                               ExprTy *BW, ExprTy *InitExpr,
383                               DeclTy *LastInGroup) {
384  const DeclSpec &DS = D.getDeclSpec();
385  IdentifierInfo *II = D.getIdentifier();
386  Expr *BitWidth = static_cast<Expr*>(BW);
387  Expr *Init = static_cast<Expr*>(InitExpr);
388  SourceLocation Loc = D.getIdentifierLoc();
389
390  // C++ 9.2p6: A member shall not be declared to have automatic storage
391  // duration (auto, register) or with the extern storage-class-specifier.
392  switch (DS.getStorageClassSpec()) {
393    case DeclSpec::SCS_unspecified:
394    case DeclSpec::SCS_typedef:
395    case DeclSpec::SCS_static:
396      // FALL THROUGH.
397      break;
398    default:
399      if (DS.getStorageClassSpecLoc().isValid())
400        Diag(DS.getStorageClassSpecLoc(),
401             diag::err_storageclass_invalid_for_member);
402      else
403        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
404      D.getMutableDeclSpec().ClearStorageClassSpecs();
405  }
406
407  bool isFunc = D.isFunctionDeclarator();
408  if (!isFunc &&
409      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typedef &&
410      D.getNumTypeObjects() == 0) {
411    // Check also for this case:
412    //
413    // typedef int f();
414    // f a;
415    //
416    Decl *TD = static_cast<Decl *>(DS.getTypeRep());
417    isFunc = Context.getTypeDeclType(cast<TypeDecl>(TD))->isFunctionType();
418  }
419
420  bool isInstField = (DS.getStorageClassSpec() == DeclSpec::SCS_unspecified &&
421                      !isFunc);
422
423  Decl *Member;
424  bool InvalidDecl = false;
425
426  if (isInstField)
427    Member = static_cast<Decl*>(ActOnField(S, Loc, D, BitWidth));
428  else
429    Member = static_cast<Decl*>(ActOnDeclarator(S, D, LastInGroup));
430
431  if (!Member) return LastInGroup;
432
433  assert(II || isInstField && "No identifier for non-field ?");
434
435  // set/getAccess is not part of Decl's interface to avoid bloating it with C++
436  // specific methods. Use a wrapper class that can be used with all C++ class
437  // member decls.
438  CXXClassMemberWrapper(Member).setAccess(AS);
439
440  if (BitWidth) {
441    // C++ 9.6p2: Only when declaring an unnamed bit-field may the
442    // constant-expression be a value equal to zero.
443    // FIXME: Check this.
444
445    if (D.isFunctionDeclarator()) {
446      // FIXME: Emit diagnostic about only constructors taking base initializers
447      // or something similar, when constructor support is in place.
448      Diag(Loc, diag::err_not_bitfield_type,
449           II->getName(), BitWidth->getSourceRange());
450      InvalidDecl = true;
451
452    } else if (isInstField) {
453      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
454      if (!cast<FieldDecl>(Member)->getType()->isIntegralType()) {
455        Diag(Loc, diag::err_not_integral_type_bitfield,
456             II->getName(), BitWidth->getSourceRange());
457        InvalidDecl = true;
458      }
459
460    } else if (isa<FunctionDecl>(Member)) {
461      // A function typedef ("typedef int f(); f a;").
462      // C++ 9.6p3: A bit-field shall have integral or enumeration type.
463      Diag(Loc, diag::err_not_integral_type_bitfield,
464           II->getName(), BitWidth->getSourceRange());
465      InvalidDecl = true;
466
467    } else if (isa<TypedefDecl>(Member)) {
468      // "cannot declare 'A' to be a bit-field type"
469      Diag(Loc, diag::err_not_bitfield_type, II->getName(),
470           BitWidth->getSourceRange());
471      InvalidDecl = true;
472
473    } else {
474      assert(isa<CXXClassVarDecl>(Member) &&
475             "Didn't we cover all member kinds?");
476      // C++ 9.6p3: A bit-field shall not be a static member.
477      // "static member 'A' cannot be a bit-field"
478      Diag(Loc, diag::err_static_not_bitfield, II->getName(),
479           BitWidth->getSourceRange());
480      InvalidDecl = true;
481    }
482  }
483
484  if (Init) {
485    // C++ 9.2p4: A member-declarator can contain a constant-initializer only
486    // if it declares a static member of const integral or const enumeration
487    // type.
488    if (CXXClassVarDecl *CVD = dyn_cast<CXXClassVarDecl>(Member)) {
489      // ...static member of...
490      CVD->setInit(Init);
491      // ...const integral or const enumeration type.
492      if (Context.getCanonicalType(CVD->getType()).isConstQualified() &&
493          CVD->getType()->isIntegralType()) {
494        // constant-initializer
495        if (CheckForConstantInitializer(Init, CVD->getType()))
496          InvalidDecl = true;
497
498      } else {
499        // not const integral.
500        Diag(Loc, diag::err_member_initialization,
501             II->getName(), Init->getSourceRange());
502        InvalidDecl = true;
503      }
504
505    } else {
506      // not static member.
507      Diag(Loc, diag::err_member_initialization,
508           II->getName(), Init->getSourceRange());
509      InvalidDecl = true;
510    }
511  }
512
513  if (InvalidDecl)
514    Member->setInvalidDecl();
515
516  if (isInstField) {
517    FieldCollector->Add(cast<CXXFieldDecl>(Member));
518    return LastInGroup;
519  }
520  return Member;
521}
522
523void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
524                                             DeclTy *TagDecl,
525                                             SourceLocation LBrac,
526                                             SourceLocation RBrac) {
527  ActOnFields(S, RLoc, TagDecl,
528              (DeclTy**)FieldCollector->getCurFields(),
529              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
530}
531
532void Sema::ActOnFinishCXXClassDef(DeclTy *D) {
533  CXXRecordDecl *Rec = cast<CXXRecordDecl>(static_cast<Decl *>(D));
534  FieldCollector->FinishClass();
535  PopDeclContext();
536
537  // Everything, including inline method definitions, have been parsed.
538  // Let the consumer know of the new TagDecl definition.
539  Consumer.HandleTagDeclDefinition(Rec);
540}
541
542//===----------------------------------------------------------------------===//
543// Namespace Handling
544//===----------------------------------------------------------------------===//
545
546/// ActOnStartNamespaceDef - This is called at the start of a namespace
547/// definition.
548Sema::DeclTy *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
549                                           SourceLocation IdentLoc,
550                                           IdentifierInfo *II,
551                                           SourceLocation LBrace) {
552  NamespaceDecl *Namespc =
553      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
554  Namespc->setLBracLoc(LBrace);
555
556  Scope *DeclRegionScope = NamespcScope->getParent();
557
558  if (II) {
559    // C++ [namespace.def]p2:
560    // The identifier in an original-namespace-definition shall not have been
561    // previously defined in the declarative region in which the
562    // original-namespace-definition appears. The identifier in an
563    // original-namespace-definition is the name of the namespace. Subsequently
564    // in that declarative region, it is treated as an original-namespace-name.
565
566    Decl *PrevDecl =
567        LookupDecl(II, Decl::IDNS_Tag | Decl::IDNS_Ordinary, DeclRegionScope,
568                   /*enableLazyBuiltinCreation=*/false);
569
570    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, DeclRegionScope)) {
571      if (NamespaceDecl *OrigNS = dyn_cast<NamespaceDecl>(PrevDecl)) {
572        // This is an extended namespace definition.
573        // Attach this namespace decl to the chain of extended namespace
574        // definitions.
575        NamespaceDecl *NextNS = OrigNS;
576        while (NextNS->getNextNamespace())
577          NextNS = NextNS->getNextNamespace();
578
579        NextNS->setNextNamespace(Namespc);
580        Namespc->setOriginalNamespace(OrigNS);
581
582        // We won't add this decl to the current scope. We want the namespace
583        // name to return the original namespace decl during a name lookup.
584      } else {
585        // This is an invalid name redefinition.
586        Diag(Namespc->getLocation(), diag::err_redefinition_different_kind,
587          Namespc->getName());
588        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
589        Namespc->setInvalidDecl();
590        // Continue on to push Namespc as current DeclContext and return it.
591      }
592    } else {
593      // This namespace name is declared for the first time.
594      PushOnScopeChains(Namespc, DeclRegionScope);
595    }
596  }
597  else {
598    // FIXME: Handle anonymous namespaces
599  }
600
601  // Although we could have an invalid decl (i.e. the namespace name is a
602  // redefinition), push it as current DeclContext and try to continue parsing.
603  PushDeclContext(Namespc->getOriginalNamespace());
604  return Namespc;
605}
606
607/// ActOnFinishNamespaceDef - This callback is called after a namespace is
608/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
609void Sema::ActOnFinishNamespaceDef(DeclTy *D, SourceLocation RBrace) {
610  Decl *Dcl = static_cast<Decl *>(D);
611  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
612  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
613  Namespc->setRBracLoc(RBrace);
614  PopDeclContext();
615}
616
617
618/// AddCXXDirectInitializerToDecl - This action is called immediately after
619/// ActOnDeclarator, when a C++ direct initializer is present.
620/// e.g: "int x(1);"
621void Sema::AddCXXDirectInitializerToDecl(DeclTy *Dcl, SourceLocation LParenLoc,
622                                         ExprTy **ExprTys, unsigned NumExprs,
623                                         SourceLocation *CommaLocs,
624                                         SourceLocation RParenLoc) {
625  assert(NumExprs != 0 && ExprTys && "missing expressions");
626  Decl *RealDecl = static_cast<Decl *>(Dcl);
627
628  // If there is no declaration, there was an error parsing it.  Just ignore
629  // the initializer.
630  if (RealDecl == 0) {
631    for (unsigned i = 0; i != NumExprs; ++i)
632      delete static_cast<Expr *>(ExprTys[i]);
633    return;
634  }
635
636  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
637  if (!VDecl) {
638    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
639    RealDecl->setInvalidDecl();
640    return;
641  }
642
643  // We will treat direct-initialization as a copy-initialization:
644  //    int x(1);  -as-> int x = 1;
645  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
646  //
647  // Clients that want to distinguish between the two forms, can check for
648  // direct initializer using VarDecl::hasCXXDirectInitializer().
649  // A major benefit is that clients that don't particularly care about which
650  // exactly form was it (like the CodeGen) can handle both cases without
651  // special case code.
652
653  // C++ 8.5p11:
654  // The form of initialization (using parentheses or '=') is generally
655  // insignificant, but does matter when the entity being initialized has a
656  // class type.
657
658  if (VDecl->getType()->isRecordType()) {
659    // FIXME: When constructors for class types are supported, determine how
660    // exactly semantic checking will be done for direct initializers.
661    unsigned DiagID = PP.getDiagnostics().getCustomDiagID(Diagnostic::Error,
662                           "initialization for class types is not handled yet");
663    Diag(VDecl->getLocation(), DiagID);
664    RealDecl->setInvalidDecl();
665    return;
666  }
667
668  if (NumExprs > 1) {
669    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg,
670         SourceRange(VDecl->getLocation(), RParenLoc));
671    RealDecl->setInvalidDecl();
672    return;
673  }
674
675  // Let clients know that initialization was done with a direct initializer.
676  VDecl->setCXXDirectInitializer(true);
677
678  assert(NumExprs == 1 && "Expected 1 expression");
679  // Set the init expression, handles conversions.
680  AddInitializerToDecl(Dcl, ExprTys[0]);
681}
682
683/// CompareReferenceRelationship - Compare the two types T1 and T2 to
684/// determine whether they are reference-related,
685/// reference-compatible, reference-compatible with added
686/// qualification, or incompatible, for use in C++ initialization by
687/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
688/// type, and the first type (T1) is the pointee type of the reference
689/// type being initialized.
690Sema::ReferenceCompareResult
691Sema::CompareReferenceRelationship(QualType T1, QualType T2,
692                                   bool& DerivedToBase) {
693  assert(!T1->isReferenceType() && "T1 must be the pointee type of the reference type");
694  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
695
696  T1 = Context.getCanonicalType(T1);
697  T2 = Context.getCanonicalType(T2);
698  QualType UnqualT1 = T1.getUnqualifiedType();
699  QualType UnqualT2 = T2.getUnqualifiedType();
700
701  // C++ [dcl.init.ref]p4:
702  //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is
703  //   reference-related to “cv2 T2” if T1 is the same type as T2, or
704  //   T1 is a base class of T2.
705  if (UnqualT1 == UnqualT2)
706    DerivedToBase = false;
707  else if (IsDerivedFrom(UnqualT2, UnqualT1))
708    DerivedToBase = true;
709  else
710    return Ref_Incompatible;
711
712  // At this point, we know that T1 and T2 are reference-related (at
713  // least).
714
715  // C++ [dcl.init.ref]p4:
716  //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is
717  //   reference-related to T2 and cv1 is the same cv-qualification
718  //   as, or greater cv-qualification than, cv2. For purposes of
719  //   overload resolution, cases for which cv1 is greater
720  //   cv-qualification than cv2 are identified as
721  //   reference-compatible with added qualification (see 13.3.3.2).
722  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
723    return Ref_Compatible;
724  else if (T1.isMoreQualifiedThan(T2))
725    return Ref_Compatible_With_Added_Qualification;
726  else
727    return Ref_Related;
728}
729
730/// CheckReferenceInit - Check the initialization of a reference
731/// variable with the given initializer (C++ [dcl.init.ref]). Init is
732/// the initializer (either a simple initializer or an initializer
733/// list), and DeclType is the type of the declaration. When Complain
734/// is true, this routine will produce diagnostics (and return true)
735/// when the declaration cannot be initialized with the given
736/// initializer. When ICS is non-null, this routine will compute the
737/// implicit conversion sequence according to C++ [over.ics.ref] and
738/// will not produce any diagnostics; when ICS is null, it will emit
739/// diagnostics when any errors are found.
740bool
741Sema::CheckReferenceInit(Expr *&Init, QualType &DeclType,
742                         ImplicitConversionSequence *ICS) {
743  assert(DeclType->isReferenceType() && "Reference init needs a reference");
744
745  QualType T1 = DeclType->getAsReferenceType()->getPointeeType();
746  QualType T2 = Init->getType();
747
748  // Compute some basic properties of the types and the initializer.
749  bool DerivedToBase = false;
750  Expr::isLvalueResult InitLvalue = Init->isLvalue(Context);
751  ReferenceCompareResult RefRelationship
752    = CompareReferenceRelationship(T1, T2, DerivedToBase);
753
754  // Most paths end in a failed conversion.
755  if (ICS)
756    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
757
758  // C++ [dcl.init.ref]p5:
759  //   A reference to type “cv1 T1” is initialized by an expression
760  //   of type “cv2 T2” as follows:
761
762  //     -- If the initializer expression
763
764  bool BindsDirectly = false;
765  //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is
766  //          reference-compatible with “cv2 T2,” or
767  //
768  // Note that the bit-field check is skipped if we are just computing
769  // the implicit conversion sequence (C++ [over.best.ics]p2).
770  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->isBitField()) &&
771      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
772    BindsDirectly = true;
773
774    if (ICS) {
775      // C++ [over.ics.ref]p1:
776      //   When a parameter of reference type binds directly (8.5.3)
777      //   to an argument expression, the implicit conversion sequence
778      //   is the identity conversion, unless the argument expression
779      //   has a type that is a derived class of the parameter type,
780      //   in which case the implicit conversion sequence is a
781      //   derived-to-base Conversion (13.3.3.1).
782      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
783      ICS->Standard.First = ICK_Identity;
784      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
785      ICS->Standard.Third = ICK_Identity;
786      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
787      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
788      ICS->Standard.ReferenceBinding = true;
789      ICS->Standard.DirectBinding = true;
790
791      // Nothing more to do: the inaccessibility/ambiguity check for
792      // derived-to-base conversions is suppressed when we're
793      // computing the implicit conversion sequence (C++
794      // [over.best.ics]p2).
795      return false;
796    } else {
797      // Perform the conversion.
798      // FIXME: Binding to a subobject of the lvalue is going to require
799      // more AST annotation than this.
800      ImpCastExprToType(Init, T1);
801    }
802  }
803
804  //       -- has a class type (i.e., T2 is a class type) and can be
805  //          implicitly converted to an lvalue of type “cv3 T3,”
806  //          where “cv1 T1” is reference-compatible with “cv3 T3”
807  //          92) (this conversion is selected by enumerating the
808  //          applicable conversion functions (13.3.1.6) and choosing
809  //          the best one through overload resolution (13.3)),
810  // FIXME: Implement this second bullet, once we have conversion
811  //        functions. Also remember C++ [over.ics.ref]p1, second part.
812
813  if (BindsDirectly) {
814    // C++ [dcl.init.ref]p4:
815    //   [...] In all cases where the reference-related or
816    //   reference-compatible relationship of two types is used to
817    //   establish the validity of a reference binding, and T1 is a
818    //   base class of T2, a program that necessitates such a binding
819    //   is ill-formed if T1 is an inaccessible (clause 11) or
820    //   ambiguous (10.2) base class of T2.
821    //
822    // Note that we only check this condition when we're allowed to
823    // complain about errors, because we should not be checking for
824    // ambiguity (or inaccessibility) unless the reference binding
825    // actually happens.
826    if (DerivedToBase)
827      return CheckDerivedToBaseConversion(T2, T1,
828                                          Init->getSourceRange().getBegin(),
829                                          Init->getSourceRange());
830    else
831      return false;
832  }
833
834  //     -- Otherwise, the reference shall be to a non-volatile const
835  //        type (i.e., cv1 shall be const).
836  if (T1.getCVRQualifiers() != QualType::Const) {
837    if (!ICS)
838      Diag(Init->getSourceRange().getBegin(),
839           diag::err_not_reference_to_const_init,
840           T1.getAsString(),
841           InitLvalue != Expr::LV_Valid? "temporary" : "value",
842           T2.getAsString(), Init->getSourceRange());
843    return true;
844  }
845
846  //       -- If the initializer expression is an rvalue, with T2 a
847  //          class type, and “cv1 T1” is reference-compatible with
848  //          “cv2 T2,” the reference is bound in one of the
849  //          following ways (the choice is implementation-defined):
850  //
851  //          -- The reference is bound to the object represented by
852  //             the rvalue (see 3.10) or to a sub-object within that
853  //             object.
854  //
855  //          -- A temporary of type “cv1 T2” [sic] is created, and
856  //             a constructor is called to copy the entire rvalue
857  //             object into the temporary. The reference is bound to
858  //             the temporary or to a sub-object within the
859  //             temporary.
860  //
861  //
862  //          The constructor that would be used to make the copy
863  //          shall be callable whether or not the copy is actually
864  //          done.
865  //
866  // Note that C++0x [dcl.ref.init]p5 takes away this implementation
867  // freedom, so we will always take the first option and never build
868  // a temporary in this case. FIXME: We will, however, have to check
869  // for the presence of a copy constructor in C++98/03 mode.
870  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
871      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
872    if (ICS) {
873      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
874      ICS->Standard.First = ICK_Identity;
875      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
876      ICS->Standard.Third = ICK_Identity;
877      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
878      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
879      ICS->Standard.ReferenceBinding = true;
880      ICS->Standard.DirectBinding = false;
881    } else {
882      // FIXME: Binding to a subobject of the rvalue is going to require
883      // more AST annotation than this.
884      ImpCastExprToType(Init, T1);
885    }
886    return false;
887  }
888
889  //       -- Otherwise, a temporary of type “cv1 T1” is created and
890  //          initialized from the initializer expression using the
891  //          rules for a non-reference copy initialization (8.5). The
892  //          reference is then bound to the temporary. If T1 is
893  //          reference-related to T2, cv1 must be the same
894  //          cv-qualification as, or greater cv-qualification than,
895  //          cv2; otherwise, the program is ill-formed.
896  if (RefRelationship == Ref_Related) {
897    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
898    // we would be reference-compatible or reference-compatible with
899    // added qualification. But that wasn't the case, so the reference
900    // initialization fails.
901    if (!ICS)
902      Diag(Init->getSourceRange().getBegin(),
903           diag::err_reference_init_drops_quals,
904           T1.getAsString(),
905           InitLvalue != Expr::LV_Valid? "temporary" : "value",
906           T2.getAsString(), Init->getSourceRange());
907    return true;
908  }
909
910  // Actually try to convert the initializer to T1.
911  if (ICS) {
912    /// C++ [over.ics.ref]p2:
913    ///
914    ///   When a parameter of reference type is not bound directly to
915    ///   an argument expression, the conversion sequence is the one
916    ///   required to convert the argument expression to the
917    ///   underlying type of the reference according to
918    ///   13.3.3.1. Conceptually, this conversion sequence corresponds
919    ///   to copy-initializing a temporary of the underlying type with
920    ///   the argument expression. Any difference in top-level
921    ///   cv-qualification is subsumed by the initialization itself
922    ///   and does not constitute a conversion.
923    *ICS = TryImplicitConversion(Init, T1);
924    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
925  } else {
926    return PerformImplicitConversion(Init, T1);
927  }
928}
929