SemaDeclCXX.cpp revision f8cc02e50553b5c3bc6570bff0c47ac7db85fe8d
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/CXXFieldCollector.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/Initialization.h"
18#include "clang/Sema/Lookup.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/ASTConsumer.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/ASTMutationListener.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/RecordLayout.h"
28#include "clang/AST/RecursiveASTVisitor.h"
29#include "clang/AST/StmtVisitor.h"
30#include "clang/AST/TypeLoc.h"
31#include "clang/AST/TypeOrdering.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Lex/Preprocessor.h"
36#include "llvm/ADT/SmallString.h"
37#include "llvm/ADT/STLExtras.h"
38#include <map>
39#include <set>
40
41using namespace clang;
42
43//===----------------------------------------------------------------------===//
44// CheckDefaultArgumentVisitor
45//===----------------------------------------------------------------------===//
46
47namespace {
48  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
49  /// the default argument of a parameter to determine whether it
50  /// contains any ill-formed subexpressions. For example, this will
51  /// diagnose the use of local variables or parameters within the
52  /// default argument expression.
53  class CheckDefaultArgumentVisitor
54    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
55    Expr *DefaultArg;
56    Sema *S;
57
58  public:
59    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
60      : DefaultArg(defarg), S(s) {}
61
62    bool VisitExpr(Expr *Node);
63    bool VisitDeclRefExpr(DeclRefExpr *DRE);
64    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
65    bool VisitLambdaExpr(LambdaExpr *Lambda);
66  };
67
68  /// VisitExpr - Visit all of the children of this expression.
69  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
70    bool IsInvalid = false;
71    for (Stmt::child_range I = Node->children(); I; ++I)
72      IsInvalid |= Visit(*I);
73    return IsInvalid;
74  }
75
76  /// VisitDeclRefExpr - Visit a reference to a declaration, to
77  /// determine whether this declaration can be used in the default
78  /// argument expression.
79  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
80    NamedDecl *Decl = DRE->getDecl();
81    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p9
83      //   Default arguments are evaluated each time the function is
84      //   called. The order of evaluation of function arguments is
85      //   unspecified. Consequently, parameters of a function shall not
86      //   be used in default argument expressions, even if they are not
87      //   evaluated. Parameters of a function declared before a default
88      //   argument expression are in scope and can hide namespace and
89      //   class member names.
90      return S->Diag(DRE->getLocStart(),
91                     diag::err_param_default_argument_references_param)
92         << Param->getDeclName() << DefaultArg->getSourceRange();
93    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
94      // C++ [dcl.fct.default]p7
95      //   Local variables shall not be used in default argument
96      //   expressions.
97      if (VDecl->isLocalVarDecl())
98        return S->Diag(DRE->getLocStart(),
99                       diag::err_param_default_argument_references_local)
100          << VDecl->getDeclName() << DefaultArg->getSourceRange();
101    }
102
103    return false;
104  }
105
106  /// VisitCXXThisExpr - Visit a C++ "this" expression.
107  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
108    // C++ [dcl.fct.default]p8:
109    //   The keyword this shall not be used in a default argument of a
110    //   member function.
111    return S->Diag(ThisE->getLocStart(),
112                   diag::err_param_default_argument_references_this)
113               << ThisE->getSourceRange();
114  }
115
116  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
117    // C++11 [expr.lambda.prim]p13:
118    //   A lambda-expression appearing in a default argument shall not
119    //   implicitly or explicitly capture any entity.
120    if (Lambda->capture_begin() == Lambda->capture_end())
121      return false;
122
123    return S->Diag(Lambda->getLocStart(),
124                   diag::err_lambda_capture_default_arg);
125  }
126}
127
128void Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
129                                                      CXXMethodDecl *Method) {
130  // If we have an MSAny or unknown spec already, don't bother.
131  if (!Method || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
132    return;
133
134  const FunctionProtoType *Proto
135    = Method->getType()->getAs<FunctionProtoType>();
136  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
137  if (!Proto)
138    return;
139
140  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
141
142  // If this function can throw any exceptions, make a note of that.
143  if (EST == EST_Delayed || EST == EST_MSAny || EST == EST_None) {
144    ClearExceptions();
145    ComputedEST = EST;
146    return;
147  }
148
149  // FIXME: If the call to this decl is using any of its default arguments, we
150  // need to search them for potentially-throwing calls.
151
152  // If this function has a basic noexcept, it doesn't affect the outcome.
153  if (EST == EST_BasicNoexcept)
154    return;
155
156  // If we have a throw-all spec at this point, ignore the function.
157  if (ComputedEST == EST_None)
158    return;
159
160  // If we're still at noexcept(true) and there's a nothrow() callee,
161  // change to that specification.
162  if (EST == EST_DynamicNone) {
163    if (ComputedEST == EST_BasicNoexcept)
164      ComputedEST = EST_DynamicNone;
165    return;
166  }
167
168  // Check out noexcept specs.
169  if (EST == EST_ComputedNoexcept) {
170    FunctionProtoType::NoexceptResult NR =
171        Proto->getNoexceptSpec(Self->Context);
172    assert(NR != FunctionProtoType::NR_NoNoexcept &&
173           "Must have noexcept result for EST_ComputedNoexcept.");
174    assert(NR != FunctionProtoType::NR_Dependent &&
175           "Should not generate implicit declarations for dependent cases, "
176           "and don't know how to handle them anyway.");
177
178    // noexcept(false) -> no spec on the new function
179    if (NR == FunctionProtoType::NR_Throw) {
180      ClearExceptions();
181      ComputedEST = EST_None;
182    }
183    // noexcept(true) won't change anything either.
184    return;
185  }
186
187  assert(EST == EST_Dynamic && "EST case not considered earlier.");
188  assert(ComputedEST != EST_None &&
189         "Shouldn't collect exceptions when throw-all is guaranteed.");
190  ComputedEST = EST_Dynamic;
191  // Record the exceptions in this function's exception specification.
192  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
193                                          EEnd = Proto->exception_end();
194       E != EEnd; ++E)
195    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
196      Exceptions.push_back(*E);
197}
198
199void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
200  if (!E || ComputedEST == EST_MSAny || ComputedEST == EST_Delayed)
201    return;
202
203  // FIXME:
204  //
205  // C++0x [except.spec]p14:
206  //   [An] implicit exception-specification specifies the type-id T if and
207  // only if T is allowed by the exception-specification of a function directly
208  // invoked by f's implicit definition; f shall allow all exceptions if any
209  // function it directly invokes allows all exceptions, and f shall allow no
210  // exceptions if every function it directly invokes allows no exceptions.
211  //
212  // Note in particular that if an implicit exception-specification is generated
213  // for a function containing a throw-expression, that specification can still
214  // be noexcept(true).
215  //
216  // Note also that 'directly invoked' is not defined in the standard, and there
217  // is no indication that we should only consider potentially-evaluated calls.
218  //
219  // Ultimately we should implement the intent of the standard: the exception
220  // specification should be the set of exceptions which can be thrown by the
221  // implicit definition. For now, we assume that any non-nothrow expression can
222  // throw any exception.
223
224  if (Self->canThrow(E))
225    ComputedEST = EST_None;
226}
227
228bool
229Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
230                              SourceLocation EqualLoc) {
231  if (RequireCompleteType(Param->getLocation(), Param->getType(),
232                          diag::err_typecheck_decl_incomplete_type)) {
233    Param->setInvalidDecl();
234    return true;
235  }
236
237  // C++ [dcl.fct.default]p5
238  //   A default argument expression is implicitly converted (clause
239  //   4) to the parameter type. The default argument expression has
240  //   the same semantic constraints as the initializer expression in
241  //   a declaration of a variable of the parameter type, using the
242  //   copy-initialization semantics (8.5).
243  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
244                                                                    Param);
245  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
246                                                           EqualLoc);
247  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
248  ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
249                                      MultiExprArg(*this, &Arg, 1));
250  if (Result.isInvalid())
251    return true;
252  Arg = Result.takeAs<Expr>();
253
254  CheckImplicitConversions(Arg, EqualLoc);
255  Arg = MaybeCreateExprWithCleanups(Arg);
256
257  // Okay: add the default argument to the parameter
258  Param->setDefaultArg(Arg);
259
260  // We have already instantiated this parameter; provide each of the
261  // instantiations with the uninstantiated default argument.
262  UnparsedDefaultArgInstantiationsMap::iterator InstPos
263    = UnparsedDefaultArgInstantiations.find(Param);
264  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
265    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
266      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
267
268    // We're done tracking this parameter's instantiations.
269    UnparsedDefaultArgInstantiations.erase(InstPos);
270  }
271
272  return false;
273}
274
275/// ActOnParamDefaultArgument - Check whether the default argument
276/// provided for a function parameter is well-formed. If so, attach it
277/// to the parameter declaration.
278void
279Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
280                                Expr *DefaultArg) {
281  if (!param || !DefaultArg)
282    return;
283
284  ParmVarDecl *Param = cast<ParmVarDecl>(param);
285  UnparsedDefaultArgLocs.erase(Param);
286
287  // Default arguments are only permitted in C++
288  if (!getLangOpts().CPlusPlus) {
289    Diag(EqualLoc, diag::err_param_default_argument)
290      << DefaultArg->getSourceRange();
291    Param->setInvalidDecl();
292    return;
293  }
294
295  // Check for unexpanded parameter packs.
296  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
297    Param->setInvalidDecl();
298    return;
299  }
300
301  // Check that the default argument is well-formed
302  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
303  if (DefaultArgChecker.Visit(DefaultArg)) {
304    Param->setInvalidDecl();
305    return;
306  }
307
308  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
309}
310
311/// ActOnParamUnparsedDefaultArgument - We've seen a default
312/// argument for a function parameter, but we can't parse it yet
313/// because we're inside a class definition. Note that this default
314/// argument will be parsed later.
315void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
316                                             SourceLocation EqualLoc,
317                                             SourceLocation ArgLoc) {
318  if (!param)
319    return;
320
321  ParmVarDecl *Param = cast<ParmVarDecl>(param);
322  if (Param)
323    Param->setUnparsedDefaultArg();
324
325  UnparsedDefaultArgLocs[Param] = ArgLoc;
326}
327
328/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
329/// the default argument for the parameter param failed.
330void Sema::ActOnParamDefaultArgumentError(Decl *param) {
331  if (!param)
332    return;
333
334  ParmVarDecl *Param = cast<ParmVarDecl>(param);
335
336  Param->setInvalidDecl();
337
338  UnparsedDefaultArgLocs.erase(Param);
339}
340
341/// CheckExtraCXXDefaultArguments - Check for any extra default
342/// arguments in the declarator, which is not a function declaration
343/// or definition and therefore is not permitted to have default
344/// arguments. This routine should be invoked for every declarator
345/// that is not a function declaration or definition.
346void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
347  // C++ [dcl.fct.default]p3
348  //   A default argument expression shall be specified only in the
349  //   parameter-declaration-clause of a function declaration or in a
350  //   template-parameter (14.1). It shall not be specified for a
351  //   parameter pack. If it is specified in a
352  //   parameter-declaration-clause, it shall not occur within a
353  //   declarator or abstract-declarator of a parameter-declaration.
354  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
355    DeclaratorChunk &chunk = D.getTypeObject(i);
356    if (chunk.Kind == DeclaratorChunk::Function) {
357      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
358        ParmVarDecl *Param =
359          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
360        if (Param->hasUnparsedDefaultArg()) {
361          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
362          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
363            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
364          delete Toks;
365          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
366        } else if (Param->getDefaultArg()) {
367          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
368            << Param->getDefaultArg()->getSourceRange();
369          Param->setDefaultArg(0);
370        }
371      }
372    }
373  }
374}
375
376// MergeCXXFunctionDecl - Merge two declarations of the same C++
377// function, once we already know that they have the same
378// type. Subroutine of MergeFunctionDecl. Returns true if there was an
379// error, false otherwise.
380bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
381                                Scope *S) {
382  bool Invalid = false;
383
384  // C++ [dcl.fct.default]p4:
385  //   For non-template functions, default arguments can be added in
386  //   later declarations of a function in the same
387  //   scope. Declarations in different scopes have completely
388  //   distinct sets of default arguments. That is, declarations in
389  //   inner scopes do not acquire default arguments from
390  //   declarations in outer scopes, and vice versa. In a given
391  //   function declaration, all parameters subsequent to a
392  //   parameter with a default argument shall have default
393  //   arguments supplied in this or previous declarations. A
394  //   default argument shall not be redefined by a later
395  //   declaration (not even to the same value).
396  //
397  // C++ [dcl.fct.default]p6:
398  //   Except for member functions of class templates, the default arguments
399  //   in a member function definition that appears outside of the class
400  //   definition are added to the set of default arguments provided by the
401  //   member function declaration in the class definition.
402  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
403    ParmVarDecl *OldParam = Old->getParamDecl(p);
404    ParmVarDecl *NewParam = New->getParamDecl(p);
405
406    bool OldParamHasDfl = OldParam->hasDefaultArg();
407    bool NewParamHasDfl = NewParam->hasDefaultArg();
408
409    NamedDecl *ND = Old;
410    if (S && !isDeclInScope(ND, New->getDeclContext(), S))
411      // Ignore default parameters of old decl if they are not in
412      // the same scope.
413      OldParamHasDfl = false;
414
415    if (OldParamHasDfl && NewParamHasDfl) {
416
417      unsigned DiagDefaultParamID =
418        diag::err_param_default_argument_redefinition;
419
420      // MSVC accepts that default parameters be redefined for member functions
421      // of template class. The new default parameter's value is ignored.
422      Invalid = true;
423      if (getLangOpts().MicrosoftExt) {
424        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
425        if (MD && MD->getParent()->getDescribedClassTemplate()) {
426          // Merge the old default argument into the new parameter.
427          NewParam->setHasInheritedDefaultArg();
428          if (OldParam->hasUninstantiatedDefaultArg())
429            NewParam->setUninstantiatedDefaultArg(
430                                      OldParam->getUninstantiatedDefaultArg());
431          else
432            NewParam->setDefaultArg(OldParam->getInit());
433          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
434          Invalid = false;
435        }
436      }
437
438      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
439      // hint here. Alternatively, we could walk the type-source information
440      // for NewParam to find the last source location in the type... but it
441      // isn't worth the effort right now. This is the kind of test case that
442      // is hard to get right:
443      //   int f(int);
444      //   void g(int (*fp)(int) = f);
445      //   void g(int (*fp)(int) = &f);
446      Diag(NewParam->getLocation(), DiagDefaultParamID)
447        << NewParam->getDefaultArgRange();
448
449      // Look for the function declaration where the default argument was
450      // actually written, which may be a declaration prior to Old.
451      for (FunctionDecl *Older = Old->getPreviousDecl();
452           Older; Older = Older->getPreviousDecl()) {
453        if (!Older->getParamDecl(p)->hasDefaultArg())
454          break;
455
456        OldParam = Older->getParamDecl(p);
457      }
458
459      Diag(OldParam->getLocation(), diag::note_previous_definition)
460        << OldParam->getDefaultArgRange();
461    } else if (OldParamHasDfl) {
462      // Merge the old default argument into the new parameter.
463      // It's important to use getInit() here;  getDefaultArg()
464      // strips off any top-level ExprWithCleanups.
465      NewParam->setHasInheritedDefaultArg();
466      if (OldParam->hasUninstantiatedDefaultArg())
467        NewParam->setUninstantiatedDefaultArg(
468                                      OldParam->getUninstantiatedDefaultArg());
469      else
470        NewParam->setDefaultArg(OldParam->getInit());
471    } else if (NewParamHasDfl) {
472      if (New->getDescribedFunctionTemplate()) {
473        // Paragraph 4, quoted above, only applies to non-template functions.
474        Diag(NewParam->getLocation(),
475             diag::err_param_default_argument_template_redecl)
476          << NewParam->getDefaultArgRange();
477        Diag(Old->getLocation(), diag::note_template_prev_declaration)
478          << false;
479      } else if (New->getTemplateSpecializationKind()
480                   != TSK_ImplicitInstantiation &&
481                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
482        // C++ [temp.expr.spec]p21:
483        //   Default function arguments shall not be specified in a declaration
484        //   or a definition for one of the following explicit specializations:
485        //     - the explicit specialization of a function template;
486        //     - the explicit specialization of a member function template;
487        //     - the explicit specialization of a member function of a class
488        //       template where the class template specialization to which the
489        //       member function specialization belongs is implicitly
490        //       instantiated.
491        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
492          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
493          << New->getDeclName()
494          << NewParam->getDefaultArgRange();
495      } else if (New->getDeclContext()->isDependentContext()) {
496        // C++ [dcl.fct.default]p6 (DR217):
497        //   Default arguments for a member function of a class template shall
498        //   be specified on the initial declaration of the member function
499        //   within the class template.
500        //
501        // Reading the tea leaves a bit in DR217 and its reference to DR205
502        // leads me to the conclusion that one cannot add default function
503        // arguments for an out-of-line definition of a member function of a
504        // dependent type.
505        int WhichKind = 2;
506        if (CXXRecordDecl *Record
507              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
508          if (Record->getDescribedClassTemplate())
509            WhichKind = 0;
510          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
511            WhichKind = 1;
512          else
513            WhichKind = 2;
514        }
515
516        Diag(NewParam->getLocation(),
517             diag::err_param_default_argument_member_template_redecl)
518          << WhichKind
519          << NewParam->getDefaultArgRange();
520      } else if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(New)) {
521        CXXSpecialMember NewSM = getSpecialMember(Ctor),
522                         OldSM = getSpecialMember(cast<CXXConstructorDecl>(Old));
523        if (NewSM != OldSM) {
524          Diag(NewParam->getLocation(),diag::warn_default_arg_makes_ctor_special)
525            << NewParam->getDefaultArgRange() << NewSM;
526          Diag(Old->getLocation(), diag::note_previous_declaration_special)
527            << OldSM;
528        }
529      }
530    }
531  }
532
533  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
534  // template has a constexpr specifier then all its declarations shall
535  // contain the constexpr specifier.
536  if (New->isConstexpr() != Old->isConstexpr()) {
537    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
538      << New << New->isConstexpr();
539    Diag(Old->getLocation(), diag::note_previous_declaration);
540    Invalid = true;
541  }
542
543  if (CheckEquivalentExceptionSpec(Old, New))
544    Invalid = true;
545
546  return Invalid;
547}
548
549/// \brief Merge the exception specifications of two variable declarations.
550///
551/// This is called when there's a redeclaration of a VarDecl. The function
552/// checks if the redeclaration might have an exception specification and
553/// validates compatibility and merges the specs if necessary.
554void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
555  // Shortcut if exceptions are disabled.
556  if (!getLangOpts().CXXExceptions)
557    return;
558
559  assert(Context.hasSameType(New->getType(), Old->getType()) &&
560         "Should only be called if types are otherwise the same.");
561
562  QualType NewType = New->getType();
563  QualType OldType = Old->getType();
564
565  // We're only interested in pointers and references to functions, as well
566  // as pointers to member functions.
567  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
568    NewType = R->getPointeeType();
569    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
570  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
571    NewType = P->getPointeeType();
572    OldType = OldType->getAs<PointerType>()->getPointeeType();
573  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
574    NewType = M->getPointeeType();
575    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
576  }
577
578  if (!NewType->isFunctionProtoType())
579    return;
580
581  // There's lots of special cases for functions. For function pointers, system
582  // libraries are hopefully not as broken so that we don't need these
583  // workarounds.
584  if (CheckEquivalentExceptionSpec(
585        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
586        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
587    New->setInvalidDecl();
588  }
589}
590
591/// CheckCXXDefaultArguments - Verify that the default arguments for a
592/// function declaration are well-formed according to C++
593/// [dcl.fct.default].
594void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
595  unsigned NumParams = FD->getNumParams();
596  unsigned p;
597
598  bool IsLambda = FD->getOverloadedOperator() == OO_Call &&
599                  isa<CXXMethodDecl>(FD) &&
600                  cast<CXXMethodDecl>(FD)->getParent()->isLambda();
601
602  // Find first parameter with a default argument
603  for (p = 0; p < NumParams; ++p) {
604    ParmVarDecl *Param = FD->getParamDecl(p);
605    if (Param->hasDefaultArg()) {
606      // C++11 [expr.prim.lambda]p5:
607      //   [...] Default arguments (8.3.6) shall not be specified in the
608      //   parameter-declaration-clause of a lambda-declarator.
609      //
610      // FIXME: Core issue 974 strikes this sentence, we only provide an
611      // extension warning.
612      if (IsLambda)
613        Diag(Param->getLocation(), diag::ext_lambda_default_arguments)
614          << Param->getDefaultArgRange();
615      break;
616    }
617  }
618
619  // C++ [dcl.fct.default]p4:
620  //   In a given function declaration, all parameters
621  //   subsequent to a parameter with a default argument shall
622  //   have default arguments supplied in this or previous
623  //   declarations. A default argument shall not be redefined
624  //   by a later declaration (not even to the same value).
625  unsigned LastMissingDefaultArg = 0;
626  for (; p < NumParams; ++p) {
627    ParmVarDecl *Param = FD->getParamDecl(p);
628    if (!Param->hasDefaultArg()) {
629      if (Param->isInvalidDecl())
630        /* We already complained about this parameter. */;
631      else if (Param->getIdentifier())
632        Diag(Param->getLocation(),
633             diag::err_param_default_argument_missing_name)
634          << Param->getIdentifier();
635      else
636        Diag(Param->getLocation(),
637             diag::err_param_default_argument_missing);
638
639      LastMissingDefaultArg = p;
640    }
641  }
642
643  if (LastMissingDefaultArg > 0) {
644    // Some default arguments were missing. Clear out all of the
645    // default arguments up to (and including) the last missing
646    // default argument, so that we leave the function parameters
647    // in a semantically valid state.
648    for (p = 0; p <= LastMissingDefaultArg; ++p) {
649      ParmVarDecl *Param = FD->getParamDecl(p);
650      if (Param->hasDefaultArg()) {
651        Param->setDefaultArg(0);
652      }
653    }
654  }
655}
656
657// CheckConstexprParameterTypes - Check whether a function's parameter types
658// are all literal types. If so, return true. If not, produce a suitable
659// diagnostic and return false.
660static bool CheckConstexprParameterTypes(Sema &SemaRef,
661                                         const FunctionDecl *FD) {
662  unsigned ArgIndex = 0;
663  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
664  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
665       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
666    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
667    SourceLocation ParamLoc = PD->getLocation();
668    if (!(*i)->isDependentType() &&
669        SemaRef.RequireLiteralType(ParamLoc, *i,
670                                   diag::err_constexpr_non_literal_param,
671                                   ArgIndex+1, PD->getSourceRange(),
672                                   isa<CXXConstructorDecl>(FD)))
673      return false;
674  }
675  return true;
676}
677
678// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
679// the requirements of a constexpr function definition or a constexpr
680// constructor definition. If so, return true. If not, produce appropriate
681// diagnostics and return false.
682//
683// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
684bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
685  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
686  if (MD && MD->isInstance()) {
687    // C++11 [dcl.constexpr]p4:
688    //  The definition of a constexpr constructor shall satisfy the following
689    //  constraints:
690    //  - the class shall not have any virtual base classes;
691    const CXXRecordDecl *RD = MD->getParent();
692    if (RD->getNumVBases()) {
693      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
694        << isa<CXXConstructorDecl>(NewFD) << RD->isStruct()
695        << RD->getNumVBases();
696      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
697             E = RD->vbases_end(); I != E; ++I)
698        Diag(I->getLocStart(),
699             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
700      return false;
701    }
702  }
703
704  if (!isa<CXXConstructorDecl>(NewFD)) {
705    // C++11 [dcl.constexpr]p3:
706    //  The definition of a constexpr function shall satisfy the following
707    //  constraints:
708    // - it shall not be virtual;
709    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
710    if (Method && Method->isVirtual()) {
711      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
712
713      // If it's not obvious why this function is virtual, find an overridden
714      // function which uses the 'virtual' keyword.
715      const CXXMethodDecl *WrittenVirtual = Method;
716      while (!WrittenVirtual->isVirtualAsWritten())
717        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
718      if (WrittenVirtual != Method)
719        Diag(WrittenVirtual->getLocation(),
720             diag::note_overridden_virtual_function);
721      return false;
722    }
723
724    // - its return type shall be a literal type;
725    QualType RT = NewFD->getResultType();
726    if (!RT->isDependentType() &&
727        RequireLiteralType(NewFD->getLocation(), RT,
728                           diag::err_constexpr_non_literal_return))
729      return false;
730  }
731
732  // - each of its parameter types shall be a literal type;
733  if (!CheckConstexprParameterTypes(*this, NewFD))
734    return false;
735
736  return true;
737}
738
739/// Check the given declaration statement is legal within a constexpr function
740/// body. C++0x [dcl.constexpr]p3,p4.
741///
742/// \return true if the body is OK, false if we have diagnosed a problem.
743static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
744                                   DeclStmt *DS) {
745  // C++0x [dcl.constexpr]p3 and p4:
746  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
747  //  contain only
748  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
749         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
750    switch ((*DclIt)->getKind()) {
751    case Decl::StaticAssert:
752    case Decl::Using:
753    case Decl::UsingShadow:
754    case Decl::UsingDirective:
755    case Decl::UnresolvedUsingTypename:
756      //   - static_assert-declarations
757      //   - using-declarations,
758      //   - using-directives,
759      continue;
760
761    case Decl::Typedef:
762    case Decl::TypeAlias: {
763      //   - typedef declarations and alias-declarations that do not define
764      //     classes or enumerations,
765      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
766      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
767        // Don't allow variably-modified types in constexpr functions.
768        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
769        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
770          << TL.getSourceRange() << TL.getType()
771          << isa<CXXConstructorDecl>(Dcl);
772        return false;
773      }
774      continue;
775    }
776
777    case Decl::Enum:
778    case Decl::CXXRecord:
779      // As an extension, we allow the declaration (but not the definition) of
780      // classes and enumerations in all declarations, not just in typedef and
781      // alias declarations.
782      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition()) {
783        SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_type_definition)
784          << isa<CXXConstructorDecl>(Dcl);
785        return false;
786      }
787      continue;
788
789    case Decl::Var:
790      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_var_declaration)
791        << isa<CXXConstructorDecl>(Dcl);
792      return false;
793
794    default:
795      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
796        << isa<CXXConstructorDecl>(Dcl);
797      return false;
798    }
799  }
800
801  return true;
802}
803
804/// Check that the given field is initialized within a constexpr constructor.
805///
806/// \param Dcl The constexpr constructor being checked.
807/// \param Field The field being checked. This may be a member of an anonymous
808///        struct or union nested within the class being checked.
809/// \param Inits All declarations, including anonymous struct/union members and
810///        indirect members, for which any initialization was provided.
811/// \param Diagnosed Set to true if an error is produced.
812static void CheckConstexprCtorInitializer(Sema &SemaRef,
813                                          const FunctionDecl *Dcl,
814                                          FieldDecl *Field,
815                                          llvm::SmallSet<Decl*, 16> &Inits,
816                                          bool &Diagnosed) {
817  if (Field->isUnnamedBitfield())
818    return;
819
820  if (Field->isAnonymousStructOrUnion() &&
821      Field->getType()->getAsCXXRecordDecl()->isEmpty())
822    return;
823
824  if (!Inits.count(Field)) {
825    if (!Diagnosed) {
826      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
827      Diagnosed = true;
828    }
829    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
830  } else if (Field->isAnonymousStructOrUnion()) {
831    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
832    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
833         I != E; ++I)
834      // If an anonymous union contains an anonymous struct of which any member
835      // is initialized, all members must be initialized.
836      if (!RD->isUnion() || Inits.count(&*I))
837        CheckConstexprCtorInitializer(SemaRef, Dcl, &*I, Inits, Diagnosed);
838  }
839}
840
841/// Check the body for the given constexpr function declaration only contains
842/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
843///
844/// \return true if the body is OK, false if we have diagnosed a problem.
845bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
846  if (isa<CXXTryStmt>(Body)) {
847    // C++11 [dcl.constexpr]p3:
848    //  The definition of a constexpr function shall satisfy the following
849    //  constraints: [...]
850    // - its function-body shall be = delete, = default, or a
851    //   compound-statement
852    //
853    // C++11 [dcl.constexpr]p4:
854    //  In the definition of a constexpr constructor, [...]
855    // - its function-body shall not be a function-try-block;
856    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
857      << isa<CXXConstructorDecl>(Dcl);
858    return false;
859  }
860
861  // - its function-body shall be [...] a compound-statement that contains only
862  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
863
864  llvm::SmallVector<SourceLocation, 4> ReturnStmts;
865  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
866         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
867    switch ((*BodyIt)->getStmtClass()) {
868    case Stmt::NullStmtClass:
869      //   - null statements,
870      continue;
871
872    case Stmt::DeclStmtClass:
873      //   - static_assert-declarations
874      //   - using-declarations,
875      //   - using-directives,
876      //   - typedef declarations and alias-declarations that do not define
877      //     classes or enumerations,
878      if (!CheckConstexprDeclStmt(*this, Dcl, cast<DeclStmt>(*BodyIt)))
879        return false;
880      continue;
881
882    case Stmt::ReturnStmtClass:
883      //   - and exactly one return statement;
884      if (isa<CXXConstructorDecl>(Dcl))
885        break;
886
887      ReturnStmts.push_back((*BodyIt)->getLocStart());
888      continue;
889
890    default:
891      break;
892    }
893
894    Diag((*BodyIt)->getLocStart(), diag::err_constexpr_body_invalid_stmt)
895      << isa<CXXConstructorDecl>(Dcl);
896    return false;
897  }
898
899  if (const CXXConstructorDecl *Constructor
900        = dyn_cast<CXXConstructorDecl>(Dcl)) {
901    const CXXRecordDecl *RD = Constructor->getParent();
902    // DR1359:
903    // - every non-variant non-static data member and base class sub-object
904    //   shall be initialized;
905    // - if the class is a non-empty union, or for each non-empty anonymous
906    //   union member of a non-union class, exactly one non-static data member
907    //   shall be initialized;
908    if (RD->isUnion()) {
909      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
910        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
911        return false;
912      }
913    } else if (!Constructor->isDependentContext() &&
914               !Constructor->isDelegatingConstructor()) {
915      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
916
917      // Skip detailed checking if we have enough initializers, and we would
918      // allow at most one initializer per member.
919      bool AnyAnonStructUnionMembers = false;
920      unsigned Fields = 0;
921      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
922           E = RD->field_end(); I != E; ++I, ++Fields) {
923        if (I->isAnonymousStructOrUnion()) {
924          AnyAnonStructUnionMembers = true;
925          break;
926        }
927      }
928      if (AnyAnonStructUnionMembers ||
929          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
930        // Check initialization of non-static data members. Base classes are
931        // always initialized so do not need to be checked. Dependent bases
932        // might not have initializers in the member initializer list.
933        llvm::SmallSet<Decl*, 16> Inits;
934        for (CXXConstructorDecl::init_const_iterator
935               I = Constructor->init_begin(), E = Constructor->init_end();
936             I != E; ++I) {
937          if (FieldDecl *FD = (*I)->getMember())
938            Inits.insert(FD);
939          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
940            Inits.insert(ID->chain_begin(), ID->chain_end());
941        }
942
943        bool Diagnosed = false;
944        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
945             E = RD->field_end(); I != E; ++I)
946          CheckConstexprCtorInitializer(*this, Dcl, &*I, Inits, Diagnosed);
947        if (Diagnosed)
948          return false;
949      }
950    }
951  } else {
952    if (ReturnStmts.empty()) {
953      Diag(Dcl->getLocation(), diag::err_constexpr_body_no_return);
954      return false;
955    }
956    if (ReturnStmts.size() > 1) {
957      Diag(ReturnStmts.back(), diag::err_constexpr_body_multiple_return);
958      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
959        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
960      return false;
961    }
962  }
963
964  // C++11 [dcl.constexpr]p5:
965  //   if no function argument values exist such that the function invocation
966  //   substitution would produce a constant expression, the program is
967  //   ill-formed; no diagnostic required.
968  // C++11 [dcl.constexpr]p3:
969  //   - every constructor call and implicit conversion used in initializing the
970  //     return value shall be one of those allowed in a constant expression.
971  // C++11 [dcl.constexpr]p4:
972  //   - every constructor involved in initializing non-static data members and
973  //     base class sub-objects shall be a constexpr constructor.
974  llvm::SmallVector<PartialDiagnosticAt, 8> Diags;
975  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
976    Diag(Dcl->getLocation(), diag::err_constexpr_function_never_constant_expr)
977      << isa<CXXConstructorDecl>(Dcl);
978    for (size_t I = 0, N = Diags.size(); I != N; ++I)
979      Diag(Diags[I].first, Diags[I].second);
980    return false;
981  }
982
983  return true;
984}
985
986/// isCurrentClassName - Determine whether the identifier II is the
987/// name of the class type currently being defined. In the case of
988/// nested classes, this will only return true if II is the name of
989/// the innermost class.
990bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
991                              const CXXScopeSpec *SS) {
992  assert(getLangOpts().CPlusPlus && "No class names in C!");
993
994  CXXRecordDecl *CurDecl;
995  if (SS && SS->isSet() && !SS->isInvalid()) {
996    DeclContext *DC = computeDeclContext(*SS, true);
997    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
998  } else
999    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1000
1001  if (CurDecl && CurDecl->getIdentifier())
1002    return &II == CurDecl->getIdentifier();
1003  else
1004    return false;
1005}
1006
1007/// \brief Check the validity of a C++ base class specifier.
1008///
1009/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1010/// and returns NULL otherwise.
1011CXXBaseSpecifier *
1012Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1013                         SourceRange SpecifierRange,
1014                         bool Virtual, AccessSpecifier Access,
1015                         TypeSourceInfo *TInfo,
1016                         SourceLocation EllipsisLoc) {
1017  QualType BaseType = TInfo->getType();
1018
1019  // C++ [class.union]p1:
1020  //   A union shall not have base classes.
1021  if (Class->isUnion()) {
1022    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1023      << SpecifierRange;
1024    return 0;
1025  }
1026
1027  if (EllipsisLoc.isValid() &&
1028      !TInfo->getType()->containsUnexpandedParameterPack()) {
1029    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1030      << TInfo->getTypeLoc().getSourceRange();
1031    EllipsisLoc = SourceLocation();
1032  }
1033
1034  if (BaseType->isDependentType())
1035    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1036                                          Class->getTagKind() == TTK_Class,
1037                                          Access, TInfo, EllipsisLoc);
1038
1039  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1040
1041  // Base specifiers must be record types.
1042  if (!BaseType->isRecordType()) {
1043    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1044    return 0;
1045  }
1046
1047  // C++ [class.union]p1:
1048  //   A union shall not be used as a base class.
1049  if (BaseType->isUnionType()) {
1050    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1051    return 0;
1052  }
1053
1054  // C++ [class.derived]p2:
1055  //   The class-name in a base-specifier shall not be an incompletely
1056  //   defined class.
1057  if (RequireCompleteType(BaseLoc, BaseType,
1058                          diag::err_incomplete_base_class, SpecifierRange)) {
1059    Class->setInvalidDecl();
1060    return 0;
1061  }
1062
1063  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1064  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1065  assert(BaseDecl && "Record type has no declaration");
1066  BaseDecl = BaseDecl->getDefinition();
1067  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1068  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1069  assert(CXXBaseDecl && "Base type is not a C++ type");
1070
1071  // C++ [class]p3:
1072  //   If a class is marked final and it appears as a base-type-specifier in
1073  //   base-clause, the program is ill-formed.
1074  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1075    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1076      << CXXBaseDecl->getDeclName();
1077    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1078      << CXXBaseDecl->getDeclName();
1079    return 0;
1080  }
1081
1082  if (BaseDecl->isInvalidDecl())
1083    Class->setInvalidDecl();
1084
1085  // Create the base specifier.
1086  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1087                                        Class->getTagKind() == TTK_Class,
1088                                        Access, TInfo, EllipsisLoc);
1089}
1090
1091/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1092/// one entry in the base class list of a class specifier, for
1093/// example:
1094///    class foo : public bar, virtual private baz {
1095/// 'public bar' and 'virtual private baz' are each base-specifiers.
1096BaseResult
1097Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1098                         bool Virtual, AccessSpecifier Access,
1099                         ParsedType basetype, SourceLocation BaseLoc,
1100                         SourceLocation EllipsisLoc) {
1101  if (!classdecl)
1102    return true;
1103
1104  AdjustDeclIfTemplate(classdecl);
1105  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1106  if (!Class)
1107    return true;
1108
1109  TypeSourceInfo *TInfo = 0;
1110  GetTypeFromParser(basetype, &TInfo);
1111
1112  if (EllipsisLoc.isInvalid() &&
1113      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1114                                      UPPC_BaseType))
1115    return true;
1116
1117  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1118                                                      Virtual, Access, TInfo,
1119                                                      EllipsisLoc))
1120    return BaseSpec;
1121
1122  return true;
1123}
1124
1125/// \brief Performs the actual work of attaching the given base class
1126/// specifiers to a C++ class.
1127bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1128                                unsigned NumBases) {
1129 if (NumBases == 0)
1130    return false;
1131
1132  // Used to keep track of which base types we have already seen, so
1133  // that we can properly diagnose redundant direct base types. Note
1134  // that the key is always the unqualified canonical type of the base
1135  // class.
1136  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1137
1138  // Copy non-redundant base specifiers into permanent storage.
1139  unsigned NumGoodBases = 0;
1140  bool Invalid = false;
1141  for (unsigned idx = 0; idx < NumBases; ++idx) {
1142    QualType NewBaseType
1143      = Context.getCanonicalType(Bases[idx]->getType());
1144    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1145
1146    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1147    if (KnownBase) {
1148      // C++ [class.mi]p3:
1149      //   A class shall not be specified as a direct base class of a
1150      //   derived class more than once.
1151      Diag(Bases[idx]->getLocStart(),
1152           diag::err_duplicate_base_class)
1153        << KnownBase->getType()
1154        << Bases[idx]->getSourceRange();
1155
1156      // Delete the duplicate base class specifier; we're going to
1157      // overwrite its pointer later.
1158      Context.Deallocate(Bases[idx]);
1159
1160      Invalid = true;
1161    } else {
1162      // Okay, add this new base class.
1163      KnownBase = Bases[idx];
1164      Bases[NumGoodBases++] = Bases[idx];
1165      if (const RecordType *Record = NewBaseType->getAs<RecordType>())
1166        if (const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()))
1167          if (RD->hasAttr<WeakAttr>())
1168            Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1169    }
1170  }
1171
1172  // Attach the remaining base class specifiers to the derived class.
1173  Class->setBases(Bases, NumGoodBases);
1174
1175  // Delete the remaining (good) base class specifiers, since their
1176  // data has been copied into the CXXRecordDecl.
1177  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1178    Context.Deallocate(Bases[idx]);
1179
1180  return Invalid;
1181}
1182
1183/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1184/// class, after checking whether there are any duplicate base
1185/// classes.
1186void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1187                               unsigned NumBases) {
1188  if (!ClassDecl || !Bases || !NumBases)
1189    return;
1190
1191  AdjustDeclIfTemplate(ClassDecl);
1192  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl),
1193                       (CXXBaseSpecifier**)(Bases), NumBases);
1194}
1195
1196static CXXRecordDecl *GetClassForType(QualType T) {
1197  if (const RecordType *RT = T->getAs<RecordType>())
1198    return cast<CXXRecordDecl>(RT->getDecl());
1199  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
1200    return ICT->getDecl();
1201  else
1202    return 0;
1203}
1204
1205/// \brief Determine whether the type \p Derived is a C++ class that is
1206/// derived from the type \p Base.
1207bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1208  if (!getLangOpts().CPlusPlus)
1209    return false;
1210
1211  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1212  if (!DerivedRD)
1213    return false;
1214
1215  CXXRecordDecl *BaseRD = GetClassForType(Base);
1216  if (!BaseRD)
1217    return false;
1218
1219  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1220  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1221}
1222
1223/// \brief Determine whether the type \p Derived is a C++ class that is
1224/// derived from the type \p Base.
1225bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1226  if (!getLangOpts().CPlusPlus)
1227    return false;
1228
1229  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
1230  if (!DerivedRD)
1231    return false;
1232
1233  CXXRecordDecl *BaseRD = GetClassForType(Base);
1234  if (!BaseRD)
1235    return false;
1236
1237  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1238}
1239
1240void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1241                              CXXCastPath &BasePathArray) {
1242  assert(BasePathArray.empty() && "Base path array must be empty!");
1243  assert(Paths.isRecordingPaths() && "Must record paths!");
1244
1245  const CXXBasePath &Path = Paths.front();
1246
1247  // We first go backward and check if we have a virtual base.
1248  // FIXME: It would be better if CXXBasePath had the base specifier for
1249  // the nearest virtual base.
1250  unsigned Start = 0;
1251  for (unsigned I = Path.size(); I != 0; --I) {
1252    if (Path[I - 1].Base->isVirtual()) {
1253      Start = I - 1;
1254      break;
1255    }
1256  }
1257
1258  // Now add all bases.
1259  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1260    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1261}
1262
1263/// \brief Determine whether the given base path includes a virtual
1264/// base class.
1265bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1266  for (CXXCastPath::const_iterator B = BasePath.begin(),
1267                                BEnd = BasePath.end();
1268       B != BEnd; ++B)
1269    if ((*B)->isVirtual())
1270      return true;
1271
1272  return false;
1273}
1274
1275/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1276/// conversion (where Derived and Base are class types) is
1277/// well-formed, meaning that the conversion is unambiguous (and
1278/// that all of the base classes are accessible). Returns true
1279/// and emits a diagnostic if the code is ill-formed, returns false
1280/// otherwise. Loc is the location where this routine should point to
1281/// if there is an error, and Range is the source range to highlight
1282/// if there is an error.
1283bool
1284Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1285                                   unsigned InaccessibleBaseID,
1286                                   unsigned AmbigiousBaseConvID,
1287                                   SourceLocation Loc, SourceRange Range,
1288                                   DeclarationName Name,
1289                                   CXXCastPath *BasePath) {
1290  // First, determine whether the path from Derived to Base is
1291  // ambiguous. This is slightly more expensive than checking whether
1292  // the Derived to Base conversion exists, because here we need to
1293  // explore multiple paths to determine if there is an ambiguity.
1294  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1295                     /*DetectVirtual=*/false);
1296  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1297  assert(DerivationOkay &&
1298         "Can only be used with a derived-to-base conversion");
1299  (void)DerivationOkay;
1300
1301  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1302    if (InaccessibleBaseID) {
1303      // Check that the base class can be accessed.
1304      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1305                                   InaccessibleBaseID)) {
1306        case AR_inaccessible:
1307          return true;
1308        case AR_accessible:
1309        case AR_dependent:
1310        case AR_delayed:
1311          break;
1312      }
1313    }
1314
1315    // Build a base path if necessary.
1316    if (BasePath)
1317      BuildBasePathArray(Paths, *BasePath);
1318    return false;
1319  }
1320
1321  // We know that the derived-to-base conversion is ambiguous, and
1322  // we're going to produce a diagnostic. Perform the derived-to-base
1323  // search just one more time to compute all of the possible paths so
1324  // that we can print them out. This is more expensive than any of
1325  // the previous derived-to-base checks we've done, but at this point
1326  // performance isn't as much of an issue.
1327  Paths.clear();
1328  Paths.setRecordingPaths(true);
1329  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1330  assert(StillOkay && "Can only be used with a derived-to-base conversion");
1331  (void)StillOkay;
1332
1333  // Build up a textual representation of the ambiguous paths, e.g.,
1334  // D -> B -> A, that will be used to illustrate the ambiguous
1335  // conversions in the diagnostic. We only print one of the paths
1336  // to each base class subobject.
1337  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1338
1339  Diag(Loc, AmbigiousBaseConvID)
1340  << Derived << Base << PathDisplayStr << Range << Name;
1341  return true;
1342}
1343
1344bool
1345Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1346                                   SourceLocation Loc, SourceRange Range,
1347                                   CXXCastPath *BasePath,
1348                                   bool IgnoreAccess) {
1349  return CheckDerivedToBaseConversion(Derived, Base,
1350                                      IgnoreAccess ? 0
1351                                       : diag::err_upcast_to_inaccessible_base,
1352                                      diag::err_ambiguous_derived_to_base_conv,
1353                                      Loc, Range, DeclarationName(),
1354                                      BasePath);
1355}
1356
1357
1358/// @brief Builds a string representing ambiguous paths from a
1359/// specific derived class to different subobjects of the same base
1360/// class.
1361///
1362/// This function builds a string that can be used in error messages
1363/// to show the different paths that one can take through the
1364/// inheritance hierarchy to go from the derived class to different
1365/// subobjects of a base class. The result looks something like this:
1366/// @code
1367/// struct D -> struct B -> struct A
1368/// struct D -> struct C -> struct A
1369/// @endcode
1370std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1371  std::string PathDisplayStr;
1372  std::set<unsigned> DisplayedPaths;
1373  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1374       Path != Paths.end(); ++Path) {
1375    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1376      // We haven't displayed a path to this particular base
1377      // class subobject yet.
1378      PathDisplayStr += "\n    ";
1379      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1380      for (CXXBasePath::const_iterator Element = Path->begin();
1381           Element != Path->end(); ++Element)
1382        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1383    }
1384  }
1385
1386  return PathDisplayStr;
1387}
1388
1389//===----------------------------------------------------------------------===//
1390// C++ class member Handling
1391//===----------------------------------------------------------------------===//
1392
1393/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1394bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1395                                SourceLocation ASLoc,
1396                                SourceLocation ColonLoc,
1397                                AttributeList *Attrs) {
1398  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1399  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1400                                                  ASLoc, ColonLoc);
1401  CurContext->addHiddenDecl(ASDecl);
1402  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1403}
1404
1405/// CheckOverrideControl - Check C++0x override control semantics.
1406void Sema::CheckOverrideControl(const Decl *D) {
1407  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1408  if (!MD || !MD->isVirtual())
1409    return;
1410
1411  if (MD->isDependentContext())
1412    return;
1413
1414  // C++0x [class.virtual]p3:
1415  //   If a virtual function is marked with the virt-specifier override and does
1416  //   not override a member function of a base class,
1417  //   the program is ill-formed.
1418  bool HasOverriddenMethods =
1419    MD->begin_overridden_methods() != MD->end_overridden_methods();
1420  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods) {
1421    Diag(MD->getLocation(),
1422                 diag::err_function_marked_override_not_overriding)
1423      << MD->getDeclName();
1424    return;
1425  }
1426}
1427
1428/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1429/// function overrides a virtual member function marked 'final', according to
1430/// C++0x [class.virtual]p3.
1431bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1432                                                  const CXXMethodDecl *Old) {
1433  if (!Old->hasAttr<FinalAttr>())
1434    return false;
1435
1436  Diag(New->getLocation(), diag::err_final_function_overridden)
1437    << New->getDeclName();
1438  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1439  return true;
1440}
1441
1442static bool InitializationHasSideEffects(const FieldDecl &FD) {
1443  if (!FD.getType().isNull()) {
1444    if (const CXXRecordDecl *RD = FD.getType()->getAsCXXRecordDecl()) {
1445      return !RD->isCompleteDefinition() ||
1446             !RD->hasTrivialDefaultConstructor() ||
1447             !RD->hasTrivialDestructor();
1448    }
1449  }
1450  return false;
1451}
1452
1453/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1454/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1455/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1456/// one has been parsed, and 'HasDeferredInit' is true if an initializer is
1457/// present but parsing it has been deferred.
1458Decl *
1459Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1460                               MultiTemplateParamsArg TemplateParameterLists,
1461                               Expr *BW, const VirtSpecifiers &VS,
1462                               bool HasDeferredInit) {
1463  const DeclSpec &DS = D.getDeclSpec();
1464  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1465  DeclarationName Name = NameInfo.getName();
1466  SourceLocation Loc = NameInfo.getLoc();
1467
1468  // For anonymous bitfields, the location should point to the type.
1469  if (Loc.isInvalid())
1470    Loc = D.getLocStart();
1471
1472  Expr *BitWidth = static_cast<Expr*>(BW);
1473
1474  assert(isa<CXXRecordDecl>(CurContext));
1475  assert(!DS.isFriendSpecified());
1476
1477  bool isFunc = D.isDeclarationOfFunction();
1478
1479  // C++ 9.2p6: A member shall not be declared to have automatic storage
1480  // duration (auto, register) or with the extern storage-class-specifier.
1481  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1482  // data members and cannot be applied to names declared const or static,
1483  // and cannot be applied to reference members.
1484  switch (DS.getStorageClassSpec()) {
1485    case DeclSpec::SCS_unspecified:
1486    case DeclSpec::SCS_typedef:
1487    case DeclSpec::SCS_static:
1488      // FALL THROUGH.
1489      break;
1490    case DeclSpec::SCS_mutable:
1491      if (isFunc) {
1492        if (DS.getStorageClassSpecLoc().isValid())
1493          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1494        else
1495          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
1496
1497        // FIXME: It would be nicer if the keyword was ignored only for this
1498        // declarator. Otherwise we could get follow-up errors.
1499        D.getMutableDeclSpec().ClearStorageClassSpecs();
1500      }
1501      break;
1502    default:
1503      if (DS.getStorageClassSpecLoc().isValid())
1504        Diag(DS.getStorageClassSpecLoc(),
1505             diag::err_storageclass_invalid_for_member);
1506      else
1507        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
1508      D.getMutableDeclSpec().ClearStorageClassSpecs();
1509  }
1510
1511  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1512                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1513                      !isFunc);
1514
1515  Decl *Member;
1516  if (isInstField) {
1517    CXXScopeSpec &SS = D.getCXXScopeSpec();
1518
1519    // Data members must have identifiers for names.
1520    if (!Name.isIdentifier()) {
1521      Diag(Loc, diag::err_bad_variable_name)
1522        << Name;
1523      return 0;
1524    }
1525
1526    IdentifierInfo *II = Name.getAsIdentifierInfo();
1527
1528    // Member field could not be with "template" keyword.
1529    // So TemplateParameterLists should be empty in this case.
1530    if (TemplateParameterLists.size()) {
1531      TemplateParameterList* TemplateParams = TemplateParameterLists.get()[0];
1532      if (TemplateParams->size()) {
1533        // There is no such thing as a member field template.
1534        Diag(D.getIdentifierLoc(), diag::err_template_member)
1535            << II
1536            << SourceRange(TemplateParams->getTemplateLoc(),
1537                TemplateParams->getRAngleLoc());
1538      } else {
1539        // There is an extraneous 'template<>' for this member.
1540        Diag(TemplateParams->getTemplateLoc(),
1541            diag::err_template_member_noparams)
1542            << II
1543            << SourceRange(TemplateParams->getTemplateLoc(),
1544                TemplateParams->getRAngleLoc());
1545      }
1546      return 0;
1547    }
1548
1549    if (SS.isSet() && !SS.isInvalid()) {
1550      // The user provided a superfluous scope specifier inside a class
1551      // definition:
1552      //
1553      // class X {
1554      //   int X::member;
1555      // };
1556      if (DeclContext *DC = computeDeclContext(SS, false))
1557        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1558      else
1559        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1560          << Name << SS.getRange();
1561
1562      SS.clear();
1563    }
1564
1565    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
1566                         HasDeferredInit, AS);
1567    assert(Member && "HandleField never returns null");
1568  } else {
1569    assert(!HasDeferredInit);
1570
1571    Member = HandleDeclarator(S, D, move(TemplateParameterLists));
1572    if (!Member) {
1573      return 0;
1574    }
1575
1576    // Non-instance-fields can't have a bitfield.
1577    if (BitWidth) {
1578      if (Member->isInvalidDecl()) {
1579        // don't emit another diagnostic.
1580      } else if (isa<VarDecl>(Member)) {
1581        // C++ 9.6p3: A bit-field shall not be a static member.
1582        // "static member 'A' cannot be a bit-field"
1583        Diag(Loc, diag::err_static_not_bitfield)
1584          << Name << BitWidth->getSourceRange();
1585      } else if (isa<TypedefDecl>(Member)) {
1586        // "typedef member 'x' cannot be a bit-field"
1587        Diag(Loc, diag::err_typedef_not_bitfield)
1588          << Name << BitWidth->getSourceRange();
1589      } else {
1590        // A function typedef ("typedef int f(); f a;").
1591        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
1592        Diag(Loc, diag::err_not_integral_type_bitfield)
1593          << Name << cast<ValueDecl>(Member)->getType()
1594          << BitWidth->getSourceRange();
1595      }
1596
1597      BitWidth = 0;
1598      Member->setInvalidDecl();
1599    }
1600
1601    Member->setAccess(AS);
1602
1603    // If we have declared a member function template, set the access of the
1604    // templated declaration as well.
1605    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1606      FunTmpl->getTemplatedDecl()->setAccess(AS);
1607  }
1608
1609  if (VS.isOverrideSpecified()) {
1610    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1611    if (!MD || !MD->isVirtual()) {
1612      Diag(Member->getLocStart(),
1613           diag::override_keyword_only_allowed_on_virtual_member_functions)
1614        << "override" << FixItHint::CreateRemoval(VS.getOverrideLoc());
1615    } else
1616      MD->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
1617  }
1618  if (VS.isFinalSpecified()) {
1619    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
1620    if (!MD || !MD->isVirtual()) {
1621      Diag(Member->getLocStart(),
1622           diag::override_keyword_only_allowed_on_virtual_member_functions)
1623      << "final" << FixItHint::CreateRemoval(VS.getFinalLoc());
1624    } else
1625      MD->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
1626  }
1627
1628  if (VS.getLastLocation().isValid()) {
1629    // Update the end location of a method that has a virt-specifiers.
1630    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
1631      MD->setRangeEnd(VS.getLastLocation());
1632  }
1633
1634  CheckOverrideControl(Member);
1635
1636  assert((Name || isInstField) && "No identifier for non-field ?");
1637
1638  if (isInstField) {
1639    FieldDecl *FD = cast<FieldDecl>(Member);
1640    FieldCollector->Add(FD);
1641
1642    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
1643                                 FD->getLocation())
1644          != DiagnosticsEngine::Ignored) {
1645      // Remember all explicit private FieldDecls that have a name, no side
1646      // effects and are not part of a dependent type declaration.
1647      if (!FD->isImplicit() && FD->getDeclName() &&
1648          FD->getAccess() == AS_private &&
1649          !FD->getParent()->getTypeForDecl()->isDependentType() &&
1650          !InitializationHasSideEffects(*FD))
1651        UnusedPrivateFields.insert(FD);
1652    }
1653  }
1654
1655  return Member;
1656}
1657
1658/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
1659/// in-class initializer for a non-static C++ class member, and after
1660/// instantiating an in-class initializer in a class template. Such actions
1661/// are deferred until the class is complete.
1662void
1663Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation EqualLoc,
1664                                       Expr *InitExpr) {
1665  FieldDecl *FD = cast<FieldDecl>(D);
1666
1667  if (!InitExpr) {
1668    FD->setInvalidDecl();
1669    FD->removeInClassInitializer();
1670    return;
1671  }
1672
1673  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
1674    FD->setInvalidDecl();
1675    FD->removeInClassInitializer();
1676    return;
1677  }
1678
1679  ExprResult Init = InitExpr;
1680  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
1681    if (isa<InitListExpr>(InitExpr) && isStdInitializerList(FD->getType(), 0)) {
1682      Diag(FD->getLocation(), diag::warn_dangling_std_initializer_list)
1683        << /*at end of ctor*/1 << InitExpr->getSourceRange();
1684    }
1685    Expr **Inits = &InitExpr;
1686    unsigned NumInits = 1;
1687    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
1688    InitializationKind Kind = EqualLoc.isInvalid()
1689        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
1690        : InitializationKind::CreateCopy(InitExpr->getLocStart(), EqualLoc);
1691    InitializationSequence Seq(*this, Entity, Kind, Inits, NumInits);
1692    Init = Seq.Perform(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1693    if (Init.isInvalid()) {
1694      FD->setInvalidDecl();
1695      return;
1696    }
1697
1698    CheckImplicitConversions(Init.get(), EqualLoc);
1699  }
1700
1701  // C++0x [class.base.init]p7:
1702  //   The initialization of each base and member constitutes a
1703  //   full-expression.
1704  Init = MaybeCreateExprWithCleanups(Init);
1705  if (Init.isInvalid()) {
1706    FD->setInvalidDecl();
1707    return;
1708  }
1709
1710  InitExpr = Init.release();
1711
1712  FD->setInClassInitializer(InitExpr);
1713}
1714
1715/// \brief Find the direct and/or virtual base specifiers that
1716/// correspond to the given base type, for use in base initialization
1717/// within a constructor.
1718static bool FindBaseInitializer(Sema &SemaRef,
1719                                CXXRecordDecl *ClassDecl,
1720                                QualType BaseType,
1721                                const CXXBaseSpecifier *&DirectBaseSpec,
1722                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1723  // First, check for a direct base class.
1724  DirectBaseSpec = 0;
1725  for (CXXRecordDecl::base_class_const_iterator Base
1726         = ClassDecl->bases_begin();
1727       Base != ClassDecl->bases_end(); ++Base) {
1728    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1729      // We found a direct base of this type. That's what we're
1730      // initializing.
1731      DirectBaseSpec = &*Base;
1732      break;
1733    }
1734  }
1735
1736  // Check for a virtual base class.
1737  // FIXME: We might be able to short-circuit this if we know in advance that
1738  // there are no virtual bases.
1739  VirtualBaseSpec = 0;
1740  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1741    // We haven't found a base yet; search the class hierarchy for a
1742    // virtual base class.
1743    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1744                       /*DetectVirtual=*/false);
1745    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1746                              BaseType, Paths)) {
1747      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1748           Path != Paths.end(); ++Path) {
1749        if (Path->back().Base->isVirtual()) {
1750          VirtualBaseSpec = Path->back().Base;
1751          break;
1752        }
1753      }
1754    }
1755  }
1756
1757  return DirectBaseSpec || VirtualBaseSpec;
1758}
1759
1760/// \brief Handle a C++ member initializer using braced-init-list syntax.
1761MemInitResult
1762Sema::ActOnMemInitializer(Decl *ConstructorD,
1763                          Scope *S,
1764                          CXXScopeSpec &SS,
1765                          IdentifierInfo *MemberOrBase,
1766                          ParsedType TemplateTypeTy,
1767                          const DeclSpec &DS,
1768                          SourceLocation IdLoc,
1769                          Expr *InitList,
1770                          SourceLocation EllipsisLoc) {
1771  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1772                             DS, IdLoc, InitList,
1773                             EllipsisLoc);
1774}
1775
1776/// \brief Handle a C++ member initializer using parentheses syntax.
1777MemInitResult
1778Sema::ActOnMemInitializer(Decl *ConstructorD,
1779                          Scope *S,
1780                          CXXScopeSpec &SS,
1781                          IdentifierInfo *MemberOrBase,
1782                          ParsedType TemplateTypeTy,
1783                          const DeclSpec &DS,
1784                          SourceLocation IdLoc,
1785                          SourceLocation LParenLoc,
1786                          Expr **Args, unsigned NumArgs,
1787                          SourceLocation RParenLoc,
1788                          SourceLocation EllipsisLoc) {
1789  Expr *List = new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1790                                           RParenLoc);
1791  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
1792                             DS, IdLoc, List, EllipsisLoc);
1793}
1794
1795namespace {
1796
1797// Callback to only accept typo corrections that can be a valid C++ member
1798// intializer: either a non-static field member or a base class.
1799class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
1800 public:
1801  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
1802      : ClassDecl(ClassDecl) {}
1803
1804  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
1805    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
1806      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
1807        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
1808      else
1809        return isa<TypeDecl>(ND);
1810    }
1811    return false;
1812  }
1813
1814 private:
1815  CXXRecordDecl *ClassDecl;
1816};
1817
1818}
1819
1820/// \brief Handle a C++ member initializer.
1821MemInitResult
1822Sema::BuildMemInitializer(Decl *ConstructorD,
1823                          Scope *S,
1824                          CXXScopeSpec &SS,
1825                          IdentifierInfo *MemberOrBase,
1826                          ParsedType TemplateTypeTy,
1827                          const DeclSpec &DS,
1828                          SourceLocation IdLoc,
1829                          Expr *Init,
1830                          SourceLocation EllipsisLoc) {
1831  if (!ConstructorD)
1832    return true;
1833
1834  AdjustDeclIfTemplate(ConstructorD);
1835
1836  CXXConstructorDecl *Constructor
1837    = dyn_cast<CXXConstructorDecl>(ConstructorD);
1838  if (!Constructor) {
1839    // The user wrote a constructor initializer on a function that is
1840    // not a C++ constructor. Ignore the error for now, because we may
1841    // have more member initializers coming; we'll diagnose it just
1842    // once in ActOnMemInitializers.
1843    return true;
1844  }
1845
1846  CXXRecordDecl *ClassDecl = Constructor->getParent();
1847
1848  // C++ [class.base.init]p2:
1849  //   Names in a mem-initializer-id are looked up in the scope of the
1850  //   constructor's class and, if not found in that scope, are looked
1851  //   up in the scope containing the constructor's definition.
1852  //   [Note: if the constructor's class contains a member with the
1853  //   same name as a direct or virtual base class of the class, a
1854  //   mem-initializer-id naming the member or base class and composed
1855  //   of a single identifier refers to the class member. A
1856  //   mem-initializer-id for the hidden base class may be specified
1857  //   using a qualified name. ]
1858  if (!SS.getScopeRep() && !TemplateTypeTy) {
1859    // Look for a member, first.
1860    DeclContext::lookup_result Result
1861      = ClassDecl->lookup(MemberOrBase);
1862    if (Result.first != Result.second) {
1863      ValueDecl *Member;
1864      if ((Member = dyn_cast<FieldDecl>(*Result.first)) ||
1865          (Member = dyn_cast<IndirectFieldDecl>(*Result.first))) {
1866        if (EllipsisLoc.isValid())
1867          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
1868            << MemberOrBase
1869            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
1870
1871        return BuildMemberInitializer(Member, Init, IdLoc);
1872      }
1873    }
1874  }
1875  // It didn't name a member, so see if it names a class.
1876  QualType BaseType;
1877  TypeSourceInfo *TInfo = 0;
1878
1879  if (TemplateTypeTy) {
1880    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1881  } else if (DS.getTypeSpecType() == TST_decltype) {
1882    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
1883  } else {
1884    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1885    LookupParsedName(R, S, &SS);
1886
1887    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1888    if (!TyD) {
1889      if (R.isAmbiguous()) return true;
1890
1891      // We don't want access-control diagnostics here.
1892      R.suppressDiagnostics();
1893
1894      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1895        bool NotUnknownSpecialization = false;
1896        DeclContext *DC = computeDeclContext(SS, false);
1897        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1898          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1899
1900        if (!NotUnknownSpecialization) {
1901          // When the scope specifier can refer to a member of an unknown
1902          // specialization, we take it as a type name.
1903          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
1904                                       SS.getWithLocInContext(Context),
1905                                       *MemberOrBase, IdLoc);
1906          if (BaseType.isNull())
1907            return true;
1908
1909          R.clear();
1910          R.setLookupName(MemberOrBase);
1911        }
1912      }
1913
1914      // If no results were found, try to correct typos.
1915      TypoCorrection Corr;
1916      MemInitializerValidatorCCC Validator(ClassDecl);
1917      if (R.empty() && BaseType.isNull() &&
1918          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
1919                              Validator, ClassDecl))) {
1920        std::string CorrectedStr(Corr.getAsString(getLangOpts()));
1921        std::string CorrectedQuotedStr(Corr.getQuoted(getLangOpts()));
1922        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
1923          // We have found a non-static data member with a similar
1924          // name to what was typed; complain and initialize that
1925          // member.
1926          Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1927            << MemberOrBase << true << CorrectedQuotedStr
1928            << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1929          Diag(Member->getLocation(), diag::note_previous_decl)
1930            << CorrectedQuotedStr;
1931
1932          return BuildMemberInitializer(Member, Init, IdLoc);
1933        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
1934          const CXXBaseSpecifier *DirectBaseSpec;
1935          const CXXBaseSpecifier *VirtualBaseSpec;
1936          if (FindBaseInitializer(*this, ClassDecl,
1937                                  Context.getTypeDeclType(Type),
1938                                  DirectBaseSpec, VirtualBaseSpec)) {
1939            // We have found a direct or virtual base class with a
1940            // similar name to what was typed; complain and initialize
1941            // that base class.
1942            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1943              << MemberOrBase << false << CorrectedQuotedStr
1944              << FixItHint::CreateReplacement(R.getNameLoc(), CorrectedStr);
1945
1946            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1947                                                             : VirtualBaseSpec;
1948            Diag(BaseSpec->getLocStart(),
1949                 diag::note_base_class_specified_here)
1950              << BaseSpec->getType()
1951              << BaseSpec->getSourceRange();
1952
1953            TyD = Type;
1954          }
1955        }
1956      }
1957
1958      if (!TyD && BaseType.isNull()) {
1959        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1960          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
1961        return true;
1962      }
1963    }
1964
1965    if (BaseType.isNull()) {
1966      BaseType = Context.getTypeDeclType(TyD);
1967      if (SS.isSet()) {
1968        NestedNameSpecifier *Qualifier =
1969          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1970
1971        // FIXME: preserve source range information
1972        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1973      }
1974    }
1975  }
1976
1977  if (!TInfo)
1978    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1979
1980  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
1981}
1982
1983/// Checks a member initializer expression for cases where reference (or
1984/// pointer) members are bound to by-value parameters (or their addresses).
1985static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
1986                                               Expr *Init,
1987                                               SourceLocation IdLoc) {
1988  QualType MemberTy = Member->getType();
1989
1990  // We only handle pointers and references currently.
1991  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
1992  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
1993    return;
1994
1995  const bool IsPointer = MemberTy->isPointerType();
1996  if (IsPointer) {
1997    if (const UnaryOperator *Op
1998          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
1999      // The only case we're worried about with pointers requires taking the
2000      // address.
2001      if (Op->getOpcode() != UO_AddrOf)
2002        return;
2003
2004      Init = Op->getSubExpr();
2005    } else {
2006      // We only handle address-of expression initializers for pointers.
2007      return;
2008    }
2009  }
2010
2011  if (isa<MaterializeTemporaryExpr>(Init->IgnoreParens())) {
2012    // Taking the address of a temporary will be diagnosed as a hard error.
2013    if (IsPointer)
2014      return;
2015
2016    S.Diag(Init->getExprLoc(), diag::warn_bind_ref_member_to_temporary)
2017      << Member << Init->getSourceRange();
2018  } else if (const DeclRefExpr *DRE
2019               = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2020    // We only warn when referring to a non-reference parameter declaration.
2021    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2022    if (!Parameter || Parameter->getType()->isReferenceType())
2023      return;
2024
2025    S.Diag(Init->getExprLoc(),
2026           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2027                     : diag::warn_bind_ref_member_to_parameter)
2028      << Member << Parameter << Init->getSourceRange();
2029  } else {
2030    // Other initializers are fine.
2031    return;
2032  }
2033
2034  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2035    << (unsigned)IsPointer;
2036}
2037
2038/// Checks an initializer expression for use of uninitialized fields, such as
2039/// containing the field that is being initialized. Returns true if there is an
2040/// uninitialized field was used an updates the SourceLocation parameter; false
2041/// otherwise.
2042static bool InitExprContainsUninitializedFields(const Stmt *S,
2043                                                const ValueDecl *LhsField,
2044                                                SourceLocation *L) {
2045  assert(isa<FieldDecl>(LhsField) || isa<IndirectFieldDecl>(LhsField));
2046
2047  if (isa<CallExpr>(S)) {
2048    // Do not descend into function calls or constructors, as the use
2049    // of an uninitialized field may be valid. One would have to inspect
2050    // the contents of the function/ctor to determine if it is safe or not.
2051    // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
2052    // may be safe, depending on what the function/ctor does.
2053    return false;
2054  }
2055  if (const MemberExpr *ME = dyn_cast<MemberExpr>(S)) {
2056    const NamedDecl *RhsField = ME->getMemberDecl();
2057
2058    if (const VarDecl *VD = dyn_cast<VarDecl>(RhsField)) {
2059      // The member expression points to a static data member.
2060      assert(VD->isStaticDataMember() &&
2061             "Member points to non-static data member!");
2062      (void)VD;
2063      return false;
2064    }
2065
2066    if (isa<EnumConstantDecl>(RhsField)) {
2067      // The member expression points to an enum.
2068      return false;
2069    }
2070
2071    if (RhsField == LhsField) {
2072      // Initializing a field with itself. Throw a warning.
2073      // But wait; there are exceptions!
2074      // Exception #1:  The field may not belong to this record.
2075      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
2076      const Expr *base = ME->getBase();
2077      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
2078        // Even though the field matches, it does not belong to this record.
2079        return false;
2080      }
2081      // None of the exceptions triggered; return true to indicate an
2082      // uninitialized field was used.
2083      *L = ME->getMemberLoc();
2084      return true;
2085    }
2086  } else if (isa<UnaryExprOrTypeTraitExpr>(S)) {
2087    // sizeof/alignof doesn't reference contents, do not warn.
2088    return false;
2089  } else if (const UnaryOperator *UOE = dyn_cast<UnaryOperator>(S)) {
2090    // address-of doesn't reference contents (the pointer may be dereferenced
2091    // in the same expression but it would be rare; and weird).
2092    if (UOE->getOpcode() == UO_AddrOf)
2093      return false;
2094  }
2095  for (Stmt::const_child_range it = S->children(); it; ++it) {
2096    if (!*it) {
2097      // An expression such as 'member(arg ?: "")' may trigger this.
2098      continue;
2099    }
2100    if (InitExprContainsUninitializedFields(*it, LhsField, L))
2101      return true;
2102  }
2103  return false;
2104}
2105
2106MemInitResult
2107Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2108                             SourceLocation IdLoc) {
2109  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2110  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2111  assert((DirectMember || IndirectMember) &&
2112         "Member must be a FieldDecl or IndirectFieldDecl");
2113
2114  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2115    return true;
2116
2117  if (Member->isInvalidDecl())
2118    return true;
2119
2120  // Diagnose value-uses of fields to initialize themselves, e.g.
2121  //   foo(foo)
2122  // where foo is not also a parameter to the constructor.
2123  // TODO: implement -Wuninitialized and fold this into that framework.
2124  Expr **Args;
2125  unsigned NumArgs;
2126  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2127    Args = ParenList->getExprs();
2128    NumArgs = ParenList->getNumExprs();
2129  } else {
2130    InitListExpr *InitList = cast<InitListExpr>(Init);
2131    Args = InitList->getInits();
2132    NumArgs = InitList->getNumInits();
2133  }
2134
2135  // Mark FieldDecl as being used if it is a non-primitive type and the
2136  // initializer does not call the default constructor (which is trivial
2137  // for all entries in UnusedPrivateFields).
2138  // FIXME: Make this smarter once more side effect-free types can be
2139  // determined.
2140  if (NumArgs > 0) {
2141    if (Member->getType()->isRecordType()) {
2142      UnusedPrivateFields.remove(Member);
2143    } else {
2144      for (unsigned i = 0; i < NumArgs; ++i) {
2145        if (Args[i]->HasSideEffects(Context)) {
2146          UnusedPrivateFields.remove(Member);
2147          break;
2148        }
2149      }
2150    }
2151  }
2152
2153  for (unsigned i = 0; i < NumArgs; ++i) {
2154    SourceLocation L;
2155    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
2156      // FIXME: Return true in the case when other fields are used before being
2157      // uninitialized. For example, let this field be the i'th field. When
2158      // initializing the i'th field, throw a warning if any of the >= i'th
2159      // fields are used, as they are not yet initialized.
2160      // Right now we are only handling the case where the i'th field uses
2161      // itself in its initializer.
2162      Diag(L, diag::warn_field_is_uninit);
2163    }
2164  }
2165
2166  SourceRange InitRange = Init->getSourceRange();
2167
2168  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2169    // Can't check initialization for a member of dependent type or when
2170    // any of the arguments are type-dependent expressions.
2171    DiscardCleanupsInEvaluationContext();
2172  } else {
2173    bool InitList = false;
2174    if (isa<InitListExpr>(Init)) {
2175      InitList = true;
2176      Args = &Init;
2177      NumArgs = 1;
2178
2179      if (isStdInitializerList(Member->getType(), 0)) {
2180        Diag(IdLoc, diag::warn_dangling_std_initializer_list)
2181            << /*at end of ctor*/1 << InitRange;
2182      }
2183    }
2184
2185    // Initialize the member.
2186    InitializedEntity MemberEntity =
2187      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2188                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2189    InitializationKind Kind =
2190      InitList ? InitializationKind::CreateDirectList(IdLoc)
2191               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2192                                                  InitRange.getEnd());
2193
2194    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
2195    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind,
2196                                            MultiExprArg(*this, Args, NumArgs),
2197                                            0);
2198    if (MemberInit.isInvalid())
2199      return true;
2200
2201    CheckImplicitConversions(MemberInit.get(),
2202                             InitRange.getBegin());
2203
2204    // C++0x [class.base.init]p7:
2205    //   The initialization of each base and member constitutes a
2206    //   full-expression.
2207    MemberInit = MaybeCreateExprWithCleanups(MemberInit);
2208    if (MemberInit.isInvalid())
2209      return true;
2210
2211    // If we are in a dependent context, template instantiation will
2212    // perform this type-checking again. Just save the arguments that we
2213    // received.
2214    // FIXME: This isn't quite ideal, since our ASTs don't capture all
2215    // of the information that we have about the member
2216    // initializer. However, deconstructing the ASTs is a dicey process,
2217    // and this approach is far more likely to get the corner cases right.
2218    if (CurContext->isDependentContext()) {
2219      // The existing Init will do fine.
2220    } else {
2221      Init = MemberInit.get();
2222      CheckForDanglingReferenceOrPointer(*this, Member, Init, IdLoc);
2223    }
2224  }
2225
2226  if (DirectMember) {
2227    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2228                                            InitRange.getBegin(), Init,
2229                                            InitRange.getEnd());
2230  } else {
2231    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2232                                            InitRange.getBegin(), Init,
2233                                            InitRange.getEnd());
2234  }
2235}
2236
2237MemInitResult
2238Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2239                                 CXXRecordDecl *ClassDecl) {
2240  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2241  if (!LangOpts.CPlusPlus0x)
2242    return Diag(NameLoc, diag::err_delegating_ctor)
2243      << TInfo->getTypeLoc().getLocalSourceRange();
2244  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2245
2246  bool InitList = true;
2247  Expr **Args = &Init;
2248  unsigned NumArgs = 1;
2249  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2250    InitList = false;
2251    Args = ParenList->getExprs();
2252    NumArgs = ParenList->getNumExprs();
2253  }
2254
2255  SourceRange InitRange = Init->getSourceRange();
2256  // Initialize the object.
2257  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2258                                     QualType(ClassDecl->getTypeForDecl(), 0));
2259  InitializationKind Kind =
2260    InitList ? InitializationKind::CreateDirectList(NameLoc)
2261             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2262                                                InitRange.getEnd());
2263  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args, NumArgs);
2264  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2265                                              MultiExprArg(*this, Args,NumArgs),
2266                                              0);
2267  if (DelegationInit.isInvalid())
2268    return true;
2269
2270  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2271         "Delegating constructor with no target?");
2272
2273  CheckImplicitConversions(DelegationInit.get(), InitRange.getBegin());
2274
2275  // C++0x [class.base.init]p7:
2276  //   The initialization of each base and member constitutes a
2277  //   full-expression.
2278  DelegationInit = MaybeCreateExprWithCleanups(DelegationInit);
2279  if (DelegationInit.isInvalid())
2280    return true;
2281
2282  // If we are in a dependent context, template instantiation will
2283  // perform this type-checking again. Just save the arguments that we
2284  // received in a ParenListExpr.
2285  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2286  // of the information that we have about the base
2287  // initializer. However, deconstructing the ASTs is a dicey process,
2288  // and this approach is far more likely to get the corner cases right.
2289  if (CurContext->isDependentContext())
2290    DelegationInit = Owned(Init);
2291
2292  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2293                                          DelegationInit.takeAs<Expr>(),
2294                                          InitRange.getEnd());
2295}
2296
2297MemInitResult
2298Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2299                           Expr *Init, CXXRecordDecl *ClassDecl,
2300                           SourceLocation EllipsisLoc) {
2301  SourceLocation BaseLoc
2302    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2303
2304  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2305    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2306             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2307
2308  // C++ [class.base.init]p2:
2309  //   [...] Unless the mem-initializer-id names a nonstatic data
2310  //   member of the constructor's class or a direct or virtual base
2311  //   of that class, the mem-initializer is ill-formed. A
2312  //   mem-initializer-list can initialize a base class using any
2313  //   name that denotes that base class type.
2314  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2315
2316  SourceRange InitRange = Init->getSourceRange();
2317  if (EllipsisLoc.isValid()) {
2318    // This is a pack expansion.
2319    if (!BaseType->containsUnexpandedParameterPack())  {
2320      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2321        << SourceRange(BaseLoc, InitRange.getEnd());
2322
2323      EllipsisLoc = SourceLocation();
2324    }
2325  } else {
2326    // Check for any unexpanded parameter packs.
2327    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2328      return true;
2329
2330    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2331      return true;
2332  }
2333
2334  // Check for direct and virtual base classes.
2335  const CXXBaseSpecifier *DirectBaseSpec = 0;
2336  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2337  if (!Dependent) {
2338    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2339                                       BaseType))
2340      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2341
2342    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2343                        VirtualBaseSpec);
2344
2345    // C++ [base.class.init]p2:
2346    // Unless the mem-initializer-id names a nonstatic data member of the
2347    // constructor's class or a direct or virtual base of that class, the
2348    // mem-initializer is ill-formed.
2349    if (!DirectBaseSpec && !VirtualBaseSpec) {
2350      // If the class has any dependent bases, then it's possible that
2351      // one of those types will resolve to the same type as
2352      // BaseType. Therefore, just treat this as a dependent base
2353      // class initialization.  FIXME: Should we try to check the
2354      // initialization anyway? It seems odd.
2355      if (ClassDecl->hasAnyDependentBases())
2356        Dependent = true;
2357      else
2358        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2359          << BaseType << Context.getTypeDeclType(ClassDecl)
2360          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2361    }
2362  }
2363
2364  if (Dependent) {
2365    DiscardCleanupsInEvaluationContext();
2366
2367    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2368                                            /*IsVirtual=*/false,
2369                                            InitRange.getBegin(), Init,
2370                                            InitRange.getEnd(), EllipsisLoc);
2371  }
2372
2373  // C++ [base.class.init]p2:
2374  //   If a mem-initializer-id is ambiguous because it designates both
2375  //   a direct non-virtual base class and an inherited virtual base
2376  //   class, the mem-initializer is ill-formed.
2377  if (DirectBaseSpec && VirtualBaseSpec)
2378    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2379      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2380
2381  CXXBaseSpecifier *BaseSpec = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
2382  if (!BaseSpec)
2383    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
2384
2385  // Initialize the base.
2386  bool InitList = true;
2387  Expr **Args = &Init;
2388  unsigned NumArgs = 1;
2389  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2390    InitList = false;
2391    Args = ParenList->getExprs();
2392    NumArgs = ParenList->getNumExprs();
2393  }
2394
2395  InitializedEntity BaseEntity =
2396    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2397  InitializationKind Kind =
2398    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2399             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2400                                                InitRange.getEnd());
2401  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
2402  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind,
2403                                          MultiExprArg(*this, Args, NumArgs),
2404                                          0);
2405  if (BaseInit.isInvalid())
2406    return true;
2407
2408  CheckImplicitConversions(BaseInit.get(), InitRange.getBegin());
2409
2410  // C++0x [class.base.init]p7:
2411  //   The initialization of each base and member constitutes a
2412  //   full-expression.
2413  BaseInit = MaybeCreateExprWithCleanups(BaseInit);
2414  if (BaseInit.isInvalid())
2415    return true;
2416
2417  // If we are in a dependent context, template instantiation will
2418  // perform this type-checking again. Just save the arguments that we
2419  // received in a ParenListExpr.
2420  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2421  // of the information that we have about the base
2422  // initializer. However, deconstructing the ASTs is a dicey process,
2423  // and this approach is far more likely to get the corner cases right.
2424  if (CurContext->isDependentContext())
2425    BaseInit = Owned(Init);
2426
2427  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2428                                          BaseSpec->isVirtual(),
2429                                          InitRange.getBegin(),
2430                                          BaseInit.takeAs<Expr>(),
2431                                          InitRange.getEnd(), EllipsisLoc);
2432}
2433
2434// Create a static_cast\<T&&>(expr).
2435static Expr *CastForMoving(Sema &SemaRef, Expr *E) {
2436  QualType ExprType = E->getType();
2437  QualType TargetType = SemaRef.Context.getRValueReferenceType(ExprType);
2438  SourceLocation ExprLoc = E->getLocStart();
2439  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2440      TargetType, ExprLoc);
2441
2442  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2443                                   SourceRange(ExprLoc, ExprLoc),
2444                                   E->getSourceRange()).take();
2445}
2446
2447/// ImplicitInitializerKind - How an implicit base or member initializer should
2448/// initialize its base or member.
2449enum ImplicitInitializerKind {
2450  IIK_Default,
2451  IIK_Copy,
2452  IIK_Move
2453};
2454
2455static bool
2456BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2457                             ImplicitInitializerKind ImplicitInitKind,
2458                             CXXBaseSpecifier *BaseSpec,
2459                             bool IsInheritedVirtualBase,
2460                             CXXCtorInitializer *&CXXBaseInit) {
2461  InitializedEntity InitEntity
2462    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2463                                        IsInheritedVirtualBase);
2464
2465  ExprResult BaseInit;
2466
2467  switch (ImplicitInitKind) {
2468  case IIK_Default: {
2469    InitializationKind InitKind
2470      = InitializationKind::CreateDefault(Constructor->getLocation());
2471    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2472    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2473                               MultiExprArg(SemaRef, 0, 0));
2474    break;
2475  }
2476
2477  case IIK_Move:
2478  case IIK_Copy: {
2479    bool Moving = ImplicitInitKind == IIK_Move;
2480    ParmVarDecl *Param = Constructor->getParamDecl(0);
2481    QualType ParamType = Param->getType().getNonReferenceType();
2482
2483    Expr *CopyCtorArg =
2484      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2485                          SourceLocation(), Param, false,
2486                          Constructor->getLocation(), ParamType,
2487                          VK_LValue, 0);
2488
2489    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2490
2491    // Cast to the base class to avoid ambiguities.
2492    QualType ArgTy =
2493      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2494                                       ParamType.getQualifiers());
2495
2496    if (Moving) {
2497      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2498    }
2499
2500    CXXCastPath BasePath;
2501    BasePath.push_back(BaseSpec);
2502    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2503                                            CK_UncheckedDerivedToBase,
2504                                            Moving ? VK_XValue : VK_LValue,
2505                                            &BasePath).take();
2506
2507    InitializationKind InitKind
2508      = InitializationKind::CreateDirect(Constructor->getLocation(),
2509                                         SourceLocation(), SourceLocation());
2510    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
2511                                   &CopyCtorArg, 1);
2512    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
2513                               MultiExprArg(&CopyCtorArg, 1));
2514    break;
2515  }
2516  }
2517
2518  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2519  if (BaseInit.isInvalid())
2520    return true;
2521
2522  CXXBaseInit =
2523    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2524               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
2525                                                        SourceLocation()),
2526                                             BaseSpec->isVirtual(),
2527                                             SourceLocation(),
2528                                             BaseInit.takeAs<Expr>(),
2529                                             SourceLocation(),
2530                                             SourceLocation());
2531
2532  return false;
2533}
2534
2535static bool RefersToRValueRef(Expr *MemRef) {
2536  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
2537  return Referenced->getType()->isRValueReferenceType();
2538}
2539
2540static bool
2541BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2542                               ImplicitInitializerKind ImplicitInitKind,
2543                               FieldDecl *Field, IndirectFieldDecl *Indirect,
2544                               CXXCtorInitializer *&CXXMemberInit) {
2545  if (Field->isInvalidDecl())
2546    return true;
2547
2548  SourceLocation Loc = Constructor->getLocation();
2549
2550  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
2551    bool Moving = ImplicitInitKind == IIK_Move;
2552    ParmVarDecl *Param = Constructor->getParamDecl(0);
2553    QualType ParamType = Param->getType().getNonReferenceType();
2554
2555    // Suppress copying zero-width bitfields.
2556    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
2557      return false;
2558
2559    Expr *MemberExprBase =
2560      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2561                          SourceLocation(), Param, false,
2562                          Loc, ParamType, VK_LValue, 0);
2563
2564    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
2565
2566    if (Moving) {
2567      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
2568    }
2569
2570    // Build a reference to this field within the parameter.
2571    CXXScopeSpec SS;
2572    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
2573                              Sema::LookupMemberName);
2574    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
2575                                  : cast<ValueDecl>(Field), AS_public);
2576    MemberLookup.resolveKind();
2577    ExprResult CtorArg
2578      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
2579                                         ParamType, Loc,
2580                                         /*IsArrow=*/false,
2581                                         SS,
2582                                         /*TemplateKWLoc=*/SourceLocation(),
2583                                         /*FirstQualifierInScope=*/0,
2584                                         MemberLookup,
2585                                         /*TemplateArgs=*/0);
2586    if (CtorArg.isInvalid())
2587      return true;
2588
2589    // C++11 [class.copy]p15:
2590    //   - if a member m has rvalue reference type T&&, it is direct-initialized
2591    //     with static_cast<T&&>(x.m);
2592    if (RefersToRValueRef(CtorArg.get())) {
2593      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2594    }
2595
2596    // When the field we are copying is an array, create index variables for
2597    // each dimension of the array. We use these index variables to subscript
2598    // the source array, and other clients (e.g., CodeGen) will perform the
2599    // necessary iteration with these index variables.
2600    SmallVector<VarDecl *, 4> IndexVariables;
2601    QualType BaseType = Field->getType();
2602    QualType SizeType = SemaRef.Context.getSizeType();
2603    bool InitializingArray = false;
2604    while (const ConstantArrayType *Array
2605                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
2606      InitializingArray = true;
2607      // Create the iteration variable for this array index.
2608      IdentifierInfo *IterationVarName = 0;
2609      {
2610        SmallString<8> Str;
2611        llvm::raw_svector_ostream OS(Str);
2612        OS << "__i" << IndexVariables.size();
2613        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
2614      }
2615      VarDecl *IterationVar
2616        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
2617                          IterationVarName, SizeType,
2618                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
2619                          SC_None, SC_None);
2620      IndexVariables.push_back(IterationVar);
2621
2622      // Create a reference to the iteration variable.
2623      ExprResult IterationVarRef
2624        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
2625      assert(!IterationVarRef.isInvalid() &&
2626             "Reference to invented variable cannot fail!");
2627      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
2628      assert(!IterationVarRef.isInvalid() &&
2629             "Conversion of invented variable cannot fail!");
2630
2631      // Subscript the array with this iteration variable.
2632      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
2633                                                        IterationVarRef.take(),
2634                                                        Loc);
2635      if (CtorArg.isInvalid())
2636        return true;
2637
2638      BaseType = Array->getElementType();
2639    }
2640
2641    // The array subscript expression is an lvalue, which is wrong for moving.
2642    if (Moving && InitializingArray)
2643      CtorArg = CastForMoving(SemaRef, CtorArg.take());
2644
2645    // Construct the entity that we will be initializing. For an array, this
2646    // will be first element in the array, which may require several levels
2647    // of array-subscript entities.
2648    SmallVector<InitializedEntity, 4> Entities;
2649    Entities.reserve(1 + IndexVariables.size());
2650    if (Indirect)
2651      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
2652    else
2653      Entities.push_back(InitializedEntity::InitializeMember(Field));
2654    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
2655      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
2656                                                              0,
2657                                                              Entities.back()));
2658
2659    // Direct-initialize to use the copy constructor.
2660    InitializationKind InitKind =
2661      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
2662
2663    Expr *CtorArgE = CtorArg.takeAs<Expr>();
2664    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
2665                                   &CtorArgE, 1);
2666
2667    ExprResult MemberInit
2668      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
2669                        MultiExprArg(&CtorArgE, 1));
2670    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2671    if (MemberInit.isInvalid())
2672      return true;
2673
2674    if (Indirect) {
2675      assert(IndexVariables.size() == 0 &&
2676             "Indirect field improperly initialized");
2677      CXXMemberInit
2678        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2679                                                   Loc, Loc,
2680                                                   MemberInit.takeAs<Expr>(),
2681                                                   Loc);
2682    } else
2683      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
2684                                                 Loc, MemberInit.takeAs<Expr>(),
2685                                                 Loc,
2686                                                 IndexVariables.data(),
2687                                                 IndexVariables.size());
2688    return false;
2689  }
2690
2691  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
2692
2693  QualType FieldBaseElementType =
2694    SemaRef.Context.getBaseElementType(Field->getType());
2695
2696  if (FieldBaseElementType->isRecordType()) {
2697    InitializedEntity InitEntity
2698      = Indirect? InitializedEntity::InitializeMember(Indirect)
2699                : InitializedEntity::InitializeMember(Field);
2700    InitializationKind InitKind =
2701      InitializationKind::CreateDefault(Loc);
2702
2703    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
2704    ExprResult MemberInit =
2705      InitSeq.Perform(SemaRef, InitEntity, InitKind, MultiExprArg());
2706
2707    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
2708    if (MemberInit.isInvalid())
2709      return true;
2710
2711    if (Indirect)
2712      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2713                                                               Indirect, Loc,
2714                                                               Loc,
2715                                                               MemberInit.get(),
2716                                                               Loc);
2717    else
2718      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2719                                                               Field, Loc, Loc,
2720                                                               MemberInit.get(),
2721                                                               Loc);
2722    return false;
2723  }
2724
2725  if (!Field->getParent()->isUnion()) {
2726    if (FieldBaseElementType->isReferenceType()) {
2727      SemaRef.Diag(Constructor->getLocation(),
2728                   diag::err_uninitialized_member_in_ctor)
2729      << (int)Constructor->isImplicit()
2730      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2731      << 0 << Field->getDeclName();
2732      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2733      return true;
2734    }
2735
2736    if (FieldBaseElementType.isConstQualified()) {
2737      SemaRef.Diag(Constructor->getLocation(),
2738                   diag::err_uninitialized_member_in_ctor)
2739      << (int)Constructor->isImplicit()
2740      << SemaRef.Context.getTagDeclType(Constructor->getParent())
2741      << 1 << Field->getDeclName();
2742      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
2743      return true;
2744    }
2745  }
2746
2747  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
2748      FieldBaseElementType->isObjCRetainableType() &&
2749      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
2750      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
2751    // Instant objects:
2752    //   Default-initialize Objective-C pointers to NULL.
2753    CXXMemberInit
2754      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2755                                                 Loc, Loc,
2756                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
2757                                                 Loc);
2758    return false;
2759  }
2760
2761  // Nothing to initialize.
2762  CXXMemberInit = 0;
2763  return false;
2764}
2765
2766namespace {
2767struct BaseAndFieldInfo {
2768  Sema &S;
2769  CXXConstructorDecl *Ctor;
2770  bool AnyErrorsInInits;
2771  ImplicitInitializerKind IIK;
2772  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
2773  SmallVector<CXXCtorInitializer*, 8> AllToInit;
2774
2775  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
2776    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
2777    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
2778    if (Generated && Ctor->isCopyConstructor())
2779      IIK = IIK_Copy;
2780    else if (Generated && Ctor->isMoveConstructor())
2781      IIK = IIK_Move;
2782    else
2783      IIK = IIK_Default;
2784  }
2785
2786  bool isImplicitCopyOrMove() const {
2787    switch (IIK) {
2788    case IIK_Copy:
2789    case IIK_Move:
2790      return true;
2791
2792    case IIK_Default:
2793      return false;
2794    }
2795
2796    llvm_unreachable("Invalid ImplicitInitializerKind!");
2797  }
2798};
2799}
2800
2801/// \brief Determine whether the given indirect field declaration is somewhere
2802/// within an anonymous union.
2803static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
2804  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
2805                                      CEnd = F->chain_end();
2806       C != CEnd; ++C)
2807    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
2808      if (Record->isUnion())
2809        return true;
2810
2811  return false;
2812}
2813
2814/// \brief Determine whether the given type is an incomplete or zero-lenfgth
2815/// array type.
2816static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
2817  if (T->isIncompleteArrayType())
2818    return true;
2819
2820  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
2821    if (!ArrayT->getSize())
2822      return true;
2823
2824    T = ArrayT->getElementType();
2825  }
2826
2827  return false;
2828}
2829
2830static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
2831                                    FieldDecl *Field,
2832                                    IndirectFieldDecl *Indirect = 0) {
2833
2834  // Overwhelmingly common case: we have a direct initializer for this field.
2835  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field)) {
2836    Info.AllToInit.push_back(Init);
2837    return false;
2838  }
2839
2840  // C++0x [class.base.init]p8: if the entity is a non-static data member that
2841  // has a brace-or-equal-initializer, the entity is initialized as specified
2842  // in [dcl.init].
2843  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
2844    CXXCtorInitializer *Init;
2845    if (Indirect)
2846      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
2847                                                      SourceLocation(),
2848                                                      SourceLocation(), 0,
2849                                                      SourceLocation());
2850    else
2851      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
2852                                                      SourceLocation(),
2853                                                      SourceLocation(), 0,
2854                                                      SourceLocation());
2855    Info.AllToInit.push_back(Init);
2856
2857    // Check whether this initializer makes the field "used".
2858    Expr *InitExpr = Field->getInClassInitializer();
2859    if (Field->getType()->isRecordType() ||
2860        (InitExpr && InitExpr->HasSideEffects(SemaRef.Context)))
2861      SemaRef.UnusedPrivateFields.remove(Field);
2862
2863    return false;
2864  }
2865
2866  // Don't build an implicit initializer for union members if none was
2867  // explicitly specified.
2868  if (Field->getParent()->isUnion() ||
2869      (Indirect && isWithinAnonymousUnion(Indirect)))
2870    return false;
2871
2872  // Don't initialize incomplete or zero-length arrays.
2873  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
2874    return false;
2875
2876  // Don't try to build an implicit initializer if there were semantic
2877  // errors in any of the initializers (and therefore we might be
2878  // missing some that the user actually wrote).
2879  if (Info.AnyErrorsInInits || Field->isInvalidDecl())
2880    return false;
2881
2882  CXXCtorInitializer *Init = 0;
2883  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
2884                                     Indirect, Init))
2885    return true;
2886
2887  if (Init)
2888    Info.AllToInit.push_back(Init);
2889
2890  return false;
2891}
2892
2893bool
2894Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
2895                               CXXCtorInitializer *Initializer) {
2896  assert(Initializer->isDelegatingInitializer());
2897  Constructor->setNumCtorInitializers(1);
2898  CXXCtorInitializer **initializer =
2899    new (Context) CXXCtorInitializer*[1];
2900  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
2901  Constructor->setCtorInitializers(initializer);
2902
2903  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
2904    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
2905    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
2906  }
2907
2908  DelegatingCtorDecls.push_back(Constructor);
2909
2910  return false;
2911}
2912
2913bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor,
2914                               CXXCtorInitializer **Initializers,
2915                               unsigned NumInitializers,
2916                               bool AnyErrors) {
2917  if (Constructor->isDependentContext()) {
2918    // Just store the initializers as written, they will be checked during
2919    // instantiation.
2920    if (NumInitializers > 0) {
2921      Constructor->setNumCtorInitializers(NumInitializers);
2922      CXXCtorInitializer **baseOrMemberInitializers =
2923        new (Context) CXXCtorInitializer*[NumInitializers];
2924      memcpy(baseOrMemberInitializers, Initializers,
2925             NumInitializers * sizeof(CXXCtorInitializer*));
2926      Constructor->setCtorInitializers(baseOrMemberInitializers);
2927    }
2928
2929    return false;
2930  }
2931
2932  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
2933
2934  // We need to build the initializer AST according to order of construction
2935  // and not what user specified in the Initializers list.
2936  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
2937  if (!ClassDecl)
2938    return true;
2939
2940  bool HadError = false;
2941
2942  for (unsigned i = 0; i < NumInitializers; i++) {
2943    CXXCtorInitializer *Member = Initializers[i];
2944
2945    if (Member->isBaseInitializer())
2946      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
2947    else
2948      Info.AllBaseFields[Member->getAnyMember()] = Member;
2949  }
2950
2951  // Keep track of the direct virtual bases.
2952  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
2953  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
2954       E = ClassDecl->bases_end(); I != E; ++I) {
2955    if (I->isVirtual())
2956      DirectVBases.insert(I);
2957  }
2958
2959  // Push virtual bases before others.
2960  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2961       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2962
2963    if (CXXCtorInitializer *Value
2964        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
2965      Info.AllToInit.push_back(Value);
2966    } else if (!AnyErrors) {
2967      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
2968      CXXCtorInitializer *CXXBaseInit;
2969      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2970                                       VBase, IsInheritedVirtualBase,
2971                                       CXXBaseInit)) {
2972        HadError = true;
2973        continue;
2974      }
2975
2976      Info.AllToInit.push_back(CXXBaseInit);
2977    }
2978  }
2979
2980  // Non-virtual bases.
2981  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2982       E = ClassDecl->bases_end(); Base != E; ++Base) {
2983    // Virtuals are in the virtual base list and already constructed.
2984    if (Base->isVirtual())
2985      continue;
2986
2987    if (CXXCtorInitializer *Value
2988          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
2989      Info.AllToInit.push_back(Value);
2990    } else if (!AnyErrors) {
2991      CXXCtorInitializer *CXXBaseInit;
2992      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
2993                                       Base, /*IsInheritedVirtualBase=*/false,
2994                                       CXXBaseInit)) {
2995        HadError = true;
2996        continue;
2997      }
2998
2999      Info.AllToInit.push_back(CXXBaseInit);
3000    }
3001  }
3002
3003  // Fields.
3004  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3005                               MemEnd = ClassDecl->decls_end();
3006       Mem != MemEnd; ++Mem) {
3007    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3008      // C++ [class.bit]p2:
3009      //   A declaration for a bit-field that omits the identifier declares an
3010      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3011      //   initialized.
3012      if (F->isUnnamedBitfield())
3013        continue;
3014
3015      // If we're not generating the implicit copy/move constructor, then we'll
3016      // handle anonymous struct/union fields based on their individual
3017      // indirect fields.
3018      if (F->isAnonymousStructOrUnion() && Info.IIK == IIK_Default)
3019        continue;
3020
3021      if (CollectFieldInitializer(*this, Info, F))
3022        HadError = true;
3023      continue;
3024    }
3025
3026    // Beyond this point, we only consider default initialization.
3027    if (Info.IIK != IIK_Default)
3028      continue;
3029
3030    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3031      if (F->getType()->isIncompleteArrayType()) {
3032        assert(ClassDecl->hasFlexibleArrayMember() &&
3033               "Incomplete array type is not valid");
3034        continue;
3035      }
3036
3037      // Initialize each field of an anonymous struct individually.
3038      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3039        HadError = true;
3040
3041      continue;
3042    }
3043  }
3044
3045  NumInitializers = Info.AllToInit.size();
3046  if (NumInitializers > 0) {
3047    Constructor->setNumCtorInitializers(NumInitializers);
3048    CXXCtorInitializer **baseOrMemberInitializers =
3049      new (Context) CXXCtorInitializer*[NumInitializers];
3050    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3051           NumInitializers * sizeof(CXXCtorInitializer*));
3052    Constructor->setCtorInitializers(baseOrMemberInitializers);
3053
3054    // Constructors implicitly reference the base and member
3055    // destructors.
3056    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3057                                           Constructor->getParent());
3058  }
3059
3060  return HadError;
3061}
3062
3063static void *GetKeyForTopLevelField(FieldDecl *Field) {
3064  // For anonymous unions, use the class declaration as the key.
3065  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3066    if (RT->getDecl()->isAnonymousStructOrUnion())
3067      return static_cast<void *>(RT->getDecl());
3068  }
3069  return static_cast<void *>(Field);
3070}
3071
3072static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3073  return const_cast<Type*>(Context.getCanonicalType(BaseType).getTypePtr());
3074}
3075
3076static void *GetKeyForMember(ASTContext &Context,
3077                             CXXCtorInitializer *Member) {
3078  if (!Member->isAnyMemberInitializer())
3079    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3080
3081  // For fields injected into the class via declaration of an anonymous union,
3082  // use its anonymous union class declaration as the unique key.
3083  FieldDecl *Field = Member->getAnyMember();
3084
3085  // If the field is a member of an anonymous struct or union, our key
3086  // is the anonymous record decl that's a direct child of the class.
3087  RecordDecl *RD = Field->getParent();
3088  if (RD->isAnonymousStructOrUnion()) {
3089    while (true) {
3090      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
3091      if (Parent->isAnonymousStructOrUnion())
3092        RD = Parent;
3093      else
3094        break;
3095    }
3096
3097    return static_cast<void *>(RD);
3098  }
3099
3100  return static_cast<void *>(Field);
3101}
3102
3103static void
3104DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
3105                                  const CXXConstructorDecl *Constructor,
3106                                  CXXCtorInitializer **Inits,
3107                                  unsigned NumInits) {
3108  if (Constructor->getDeclContext()->isDependentContext())
3109    return;
3110
3111  // Don't check initializers order unless the warning is enabled at the
3112  // location of at least one initializer.
3113  bool ShouldCheckOrder = false;
3114  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3115    CXXCtorInitializer *Init = Inits[InitIndex];
3116    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3117                                         Init->getSourceLocation())
3118          != DiagnosticsEngine::Ignored) {
3119      ShouldCheckOrder = true;
3120      break;
3121    }
3122  }
3123  if (!ShouldCheckOrder)
3124    return;
3125
3126  // Build the list of bases and members in the order that they'll
3127  // actually be initialized.  The explicit initializers should be in
3128  // this same order but may be missing things.
3129  SmallVector<const void*, 32> IdealInitKeys;
3130
3131  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3132
3133  // 1. Virtual bases.
3134  for (CXXRecordDecl::base_class_const_iterator VBase =
3135       ClassDecl->vbases_begin(),
3136       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3137    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3138
3139  // 2. Non-virtual bases.
3140  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3141       E = ClassDecl->bases_end(); Base != E; ++Base) {
3142    if (Base->isVirtual())
3143      continue;
3144    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3145  }
3146
3147  // 3. Direct fields.
3148  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3149       E = ClassDecl->field_end(); Field != E; ++Field) {
3150    if (Field->isUnnamedBitfield())
3151      continue;
3152
3153    IdealInitKeys.push_back(GetKeyForTopLevelField(&*Field));
3154  }
3155
3156  unsigned NumIdealInits = IdealInitKeys.size();
3157  unsigned IdealIndex = 0;
3158
3159  CXXCtorInitializer *PrevInit = 0;
3160  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
3161    CXXCtorInitializer *Init = Inits[InitIndex];
3162    void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3163
3164    // Scan forward to try to find this initializer in the idealized
3165    // initializers list.
3166    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3167      if (InitKey == IdealInitKeys[IdealIndex])
3168        break;
3169
3170    // If we didn't find this initializer, it must be because we
3171    // scanned past it on a previous iteration.  That can only
3172    // happen if we're out of order;  emit a warning.
3173    if (IdealIndex == NumIdealInits && PrevInit) {
3174      Sema::SemaDiagnosticBuilder D =
3175        SemaRef.Diag(PrevInit->getSourceLocation(),
3176                     diag::warn_initializer_out_of_order);
3177
3178      if (PrevInit->isAnyMemberInitializer())
3179        D << 0 << PrevInit->getAnyMember()->getDeclName();
3180      else
3181        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3182
3183      if (Init->isAnyMemberInitializer())
3184        D << 0 << Init->getAnyMember()->getDeclName();
3185      else
3186        D << 1 << Init->getTypeSourceInfo()->getType();
3187
3188      // Move back to the initializer's location in the ideal list.
3189      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3190        if (InitKey == IdealInitKeys[IdealIndex])
3191          break;
3192
3193      assert(IdealIndex != NumIdealInits &&
3194             "initializer not found in initializer list");
3195    }
3196
3197    PrevInit = Init;
3198  }
3199}
3200
3201namespace {
3202bool CheckRedundantInit(Sema &S,
3203                        CXXCtorInitializer *Init,
3204                        CXXCtorInitializer *&PrevInit) {
3205  if (!PrevInit) {
3206    PrevInit = Init;
3207    return false;
3208  }
3209
3210  if (FieldDecl *Field = Init->getMember())
3211    S.Diag(Init->getSourceLocation(),
3212           diag::err_multiple_mem_initialization)
3213      << Field->getDeclName()
3214      << Init->getSourceRange();
3215  else {
3216    const Type *BaseClass = Init->getBaseClass();
3217    assert(BaseClass && "neither field nor base");
3218    S.Diag(Init->getSourceLocation(),
3219           diag::err_multiple_base_initialization)
3220      << QualType(BaseClass, 0)
3221      << Init->getSourceRange();
3222  }
3223  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3224    << 0 << PrevInit->getSourceRange();
3225
3226  return true;
3227}
3228
3229typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3230typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3231
3232bool CheckRedundantUnionInit(Sema &S,
3233                             CXXCtorInitializer *Init,
3234                             RedundantUnionMap &Unions) {
3235  FieldDecl *Field = Init->getAnyMember();
3236  RecordDecl *Parent = Field->getParent();
3237  NamedDecl *Child = Field;
3238
3239  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3240    if (Parent->isUnion()) {
3241      UnionEntry &En = Unions[Parent];
3242      if (En.first && En.first != Child) {
3243        S.Diag(Init->getSourceLocation(),
3244               diag::err_multiple_mem_union_initialization)
3245          << Field->getDeclName()
3246          << Init->getSourceRange();
3247        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3248          << 0 << En.second->getSourceRange();
3249        return true;
3250      }
3251      if (!En.first) {
3252        En.first = Child;
3253        En.second = Init;
3254      }
3255      if (!Parent->isAnonymousStructOrUnion())
3256        return false;
3257    }
3258
3259    Child = Parent;
3260    Parent = cast<RecordDecl>(Parent->getDeclContext());
3261  }
3262
3263  return false;
3264}
3265}
3266
3267/// ActOnMemInitializers - Handle the member initializers for a constructor.
3268void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3269                                SourceLocation ColonLoc,
3270                                CXXCtorInitializer **meminits,
3271                                unsigned NumMemInits,
3272                                bool AnyErrors) {
3273  if (!ConstructorDecl)
3274    return;
3275
3276  AdjustDeclIfTemplate(ConstructorDecl);
3277
3278  CXXConstructorDecl *Constructor
3279    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3280
3281  if (!Constructor) {
3282    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3283    return;
3284  }
3285
3286  CXXCtorInitializer **MemInits =
3287    reinterpret_cast<CXXCtorInitializer **>(meminits);
3288
3289  // Mapping for the duplicate initializers check.
3290  // For member initializers, this is keyed with a FieldDecl*.
3291  // For base initializers, this is keyed with a Type*.
3292  llvm::DenseMap<void*, CXXCtorInitializer *> Members;
3293
3294  // Mapping for the inconsistent anonymous-union initializers check.
3295  RedundantUnionMap MemberUnions;
3296
3297  bool HadError = false;
3298  for (unsigned i = 0; i < NumMemInits; i++) {
3299    CXXCtorInitializer *Init = MemInits[i];
3300
3301    // Set the source order index.
3302    Init->setSourceOrder(i);
3303
3304    if (Init->isAnyMemberInitializer()) {
3305      FieldDecl *Field = Init->getAnyMember();
3306      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3307          CheckRedundantUnionInit(*this, Init, MemberUnions))
3308        HadError = true;
3309    } else if (Init->isBaseInitializer()) {
3310      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3311      if (CheckRedundantInit(*this, Init, Members[Key]))
3312        HadError = true;
3313    } else {
3314      assert(Init->isDelegatingInitializer());
3315      // This must be the only initializer
3316      if (i != 0 || NumMemInits > 1) {
3317        Diag(MemInits[0]->getSourceLocation(),
3318             diag::err_delegating_initializer_alone)
3319          << MemInits[0]->getSourceRange();
3320        HadError = true;
3321        // We will treat this as being the only initializer.
3322      }
3323      SetDelegatingInitializer(Constructor, MemInits[i]);
3324      // Return immediately as the initializer is set.
3325      return;
3326    }
3327  }
3328
3329  if (HadError)
3330    return;
3331
3332  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
3333
3334  SetCtorInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
3335}
3336
3337void
3338Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3339                                             CXXRecordDecl *ClassDecl) {
3340  // Ignore dependent contexts. Also ignore unions, since their members never
3341  // have destructors implicitly called.
3342  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3343    return;
3344
3345  // FIXME: all the access-control diagnostics are positioned on the
3346  // field/base declaration.  That's probably good; that said, the
3347  // user might reasonably want to know why the destructor is being
3348  // emitted, and we currently don't say.
3349
3350  // Non-static data members.
3351  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3352       E = ClassDecl->field_end(); I != E; ++I) {
3353    FieldDecl *Field = &*I;
3354    if (Field->isInvalidDecl())
3355      continue;
3356
3357    // Don't destroy incomplete or zero-length arrays.
3358    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3359      continue;
3360
3361    QualType FieldType = Context.getBaseElementType(Field->getType());
3362
3363    const RecordType* RT = FieldType->getAs<RecordType>();
3364    if (!RT)
3365      continue;
3366
3367    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3368    if (FieldClassDecl->isInvalidDecl())
3369      continue;
3370    if (FieldClassDecl->hasIrrelevantDestructor())
3371      continue;
3372    // The destructor for an implicit anonymous union member is never invoked.
3373    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3374      continue;
3375
3376    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3377    assert(Dtor && "No dtor found for FieldClassDecl!");
3378    CheckDestructorAccess(Field->getLocation(), Dtor,
3379                          PDiag(diag::err_access_dtor_field)
3380                            << Field->getDeclName()
3381                            << FieldType);
3382
3383    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3384    DiagnoseUseOfDecl(Dtor, Location);
3385  }
3386
3387  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3388
3389  // Bases.
3390  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3391       E = ClassDecl->bases_end(); Base != E; ++Base) {
3392    // Bases are always records in a well-formed non-dependent class.
3393    const RecordType *RT = Base->getType()->getAs<RecordType>();
3394
3395    // Remember direct virtual bases.
3396    if (Base->isVirtual())
3397      DirectVirtualBases.insert(RT);
3398
3399    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3400    // If our base class is invalid, we probably can't get its dtor anyway.
3401    if (BaseClassDecl->isInvalidDecl())
3402      continue;
3403    if (BaseClassDecl->hasIrrelevantDestructor())
3404      continue;
3405
3406    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3407    assert(Dtor && "No dtor found for BaseClassDecl!");
3408
3409    // FIXME: caret should be on the start of the class name
3410    CheckDestructorAccess(Base->getLocStart(), Dtor,
3411                          PDiag(diag::err_access_dtor_base)
3412                            << Base->getType()
3413                            << Base->getSourceRange(),
3414                          Context.getTypeDeclType(ClassDecl));
3415
3416    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3417    DiagnoseUseOfDecl(Dtor, Location);
3418  }
3419
3420  // Virtual bases.
3421  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3422       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3423
3424    // Bases are always records in a well-formed non-dependent class.
3425    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3426
3427    // Ignore direct virtual bases.
3428    if (DirectVirtualBases.count(RT))
3429      continue;
3430
3431    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3432    // If our base class is invalid, we probably can't get its dtor anyway.
3433    if (BaseClassDecl->isInvalidDecl())
3434      continue;
3435    if (BaseClassDecl->hasIrrelevantDestructor())
3436      continue;
3437
3438    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3439    assert(Dtor && "No dtor found for BaseClassDecl!");
3440    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
3441                          PDiag(diag::err_access_dtor_vbase)
3442                            << VBase->getType(),
3443                          Context.getTypeDeclType(ClassDecl));
3444
3445    MarkFunctionReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
3446    DiagnoseUseOfDecl(Dtor, Location);
3447  }
3448}
3449
3450void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
3451  if (!CDtorDecl)
3452    return;
3453
3454  if (CXXConstructorDecl *Constructor
3455      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
3456    SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
3457}
3458
3459bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3460                                  unsigned DiagID, AbstractDiagSelID SelID) {
3461  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
3462    unsigned DiagID;
3463    AbstractDiagSelID SelID;
3464
3465  public:
3466    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
3467      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
3468
3469    virtual void diagnose(Sema &S, SourceLocation Loc, QualType T) {
3470      if (SelID == -1)
3471        S.Diag(Loc, DiagID) << T;
3472      else
3473        S.Diag(Loc, DiagID) << SelID << T;
3474    }
3475  } Diagnoser(DiagID, SelID);
3476
3477  return RequireNonAbstractType(Loc, T, Diagnoser);
3478}
3479
3480bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
3481                                  TypeDiagnoser &Diagnoser) {
3482  if (!getLangOpts().CPlusPlus)
3483    return false;
3484
3485  if (const ArrayType *AT = Context.getAsArrayType(T))
3486    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3487
3488  if (const PointerType *PT = T->getAs<PointerType>()) {
3489    // Find the innermost pointer type.
3490    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
3491      PT = T;
3492
3493    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
3494      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
3495  }
3496
3497  const RecordType *RT = T->getAs<RecordType>();
3498  if (!RT)
3499    return false;
3500
3501  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3502
3503  // We can't answer whether something is abstract until it has a
3504  // definition.  If it's currently being defined, we'll walk back
3505  // over all the declarations when we have a full definition.
3506  const CXXRecordDecl *Def = RD->getDefinition();
3507  if (!Def || Def->isBeingDefined())
3508    return false;
3509
3510  if (!RD->isAbstract())
3511    return false;
3512
3513  Diagnoser.diagnose(*this, Loc, T);
3514  DiagnoseAbstractType(RD);
3515
3516  return true;
3517}
3518
3519void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
3520  // Check if we've already emitted the list of pure virtual functions
3521  // for this class.
3522  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
3523    return;
3524
3525  CXXFinalOverriderMap FinalOverriders;
3526  RD->getFinalOverriders(FinalOverriders);
3527
3528  // Keep a set of seen pure methods so we won't diagnose the same method
3529  // more than once.
3530  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
3531
3532  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
3533                                   MEnd = FinalOverriders.end();
3534       M != MEnd;
3535       ++M) {
3536    for (OverridingMethods::iterator SO = M->second.begin(),
3537                                  SOEnd = M->second.end();
3538         SO != SOEnd; ++SO) {
3539      // C++ [class.abstract]p4:
3540      //   A class is abstract if it contains or inherits at least one
3541      //   pure virtual function for which the final overrider is pure
3542      //   virtual.
3543
3544      //
3545      if (SO->second.size() != 1)
3546        continue;
3547
3548      if (!SO->second.front().Method->isPure())
3549        continue;
3550
3551      if (!SeenPureMethods.insert(SO->second.front().Method))
3552        continue;
3553
3554      Diag(SO->second.front().Method->getLocation(),
3555           diag::note_pure_virtual_function)
3556        << SO->second.front().Method->getDeclName() << RD->getDeclName();
3557    }
3558  }
3559
3560  if (!PureVirtualClassDiagSet)
3561    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
3562  PureVirtualClassDiagSet->insert(RD);
3563}
3564
3565namespace {
3566struct AbstractUsageInfo {
3567  Sema &S;
3568  CXXRecordDecl *Record;
3569  CanQualType AbstractType;
3570  bool Invalid;
3571
3572  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
3573    : S(S), Record(Record),
3574      AbstractType(S.Context.getCanonicalType(
3575                   S.Context.getTypeDeclType(Record))),
3576      Invalid(false) {}
3577
3578  void DiagnoseAbstractType() {
3579    if (Invalid) return;
3580    S.DiagnoseAbstractType(Record);
3581    Invalid = true;
3582  }
3583
3584  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
3585};
3586
3587struct CheckAbstractUsage {
3588  AbstractUsageInfo &Info;
3589  const NamedDecl *Ctx;
3590
3591  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
3592    : Info(Info), Ctx(Ctx) {}
3593
3594  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3595    switch (TL.getTypeLocClass()) {
3596#define ABSTRACT_TYPELOC(CLASS, PARENT)
3597#define TYPELOC(CLASS, PARENT) \
3598    case TypeLoc::CLASS: Check(cast<CLASS##TypeLoc>(TL), Sel); break;
3599#include "clang/AST/TypeLocNodes.def"
3600    }
3601  }
3602
3603  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3604    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
3605    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3606      if (!TL.getArg(I))
3607        continue;
3608
3609      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
3610      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
3611    }
3612  }
3613
3614  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3615    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
3616  }
3617
3618  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
3619    // Visit the type parameters from a permissive context.
3620    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
3621      TemplateArgumentLoc TAL = TL.getArgLoc(I);
3622      if (TAL.getArgument().getKind() == TemplateArgument::Type)
3623        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
3624          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
3625      // TODO: other template argument types?
3626    }
3627  }
3628
3629  // Visit pointee types from a permissive context.
3630#define CheckPolymorphic(Type) \
3631  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
3632    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
3633  }
3634  CheckPolymorphic(PointerTypeLoc)
3635  CheckPolymorphic(ReferenceTypeLoc)
3636  CheckPolymorphic(MemberPointerTypeLoc)
3637  CheckPolymorphic(BlockPointerTypeLoc)
3638  CheckPolymorphic(AtomicTypeLoc)
3639
3640  /// Handle all the types we haven't given a more specific
3641  /// implementation for above.
3642  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
3643    // Every other kind of type that we haven't called out already
3644    // that has an inner type is either (1) sugar or (2) contains that
3645    // inner type in some way as a subobject.
3646    if (TypeLoc Next = TL.getNextTypeLoc())
3647      return Visit(Next, Sel);
3648
3649    // If there's no inner type and we're in a permissive context,
3650    // don't diagnose.
3651    if (Sel == Sema::AbstractNone) return;
3652
3653    // Check whether the type matches the abstract type.
3654    QualType T = TL.getType();
3655    if (T->isArrayType()) {
3656      Sel = Sema::AbstractArrayType;
3657      T = Info.S.Context.getBaseElementType(T);
3658    }
3659    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
3660    if (CT != Info.AbstractType) return;
3661
3662    // It matched; do some magic.
3663    if (Sel == Sema::AbstractArrayType) {
3664      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
3665        << T << TL.getSourceRange();
3666    } else {
3667      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
3668        << Sel << T << TL.getSourceRange();
3669    }
3670    Info.DiagnoseAbstractType();
3671  }
3672};
3673
3674void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
3675                                  Sema::AbstractDiagSelID Sel) {
3676  CheckAbstractUsage(*this, D).Visit(TL, Sel);
3677}
3678
3679}
3680
3681/// Check for invalid uses of an abstract type in a method declaration.
3682static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3683                                    CXXMethodDecl *MD) {
3684  // No need to do the check on definitions, which require that
3685  // the return/param types be complete.
3686  if (MD->doesThisDeclarationHaveABody())
3687    return;
3688
3689  // For safety's sake, just ignore it if we don't have type source
3690  // information.  This should never happen for non-implicit methods,
3691  // but...
3692  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
3693    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
3694}
3695
3696/// Check for invalid uses of an abstract type within a class definition.
3697static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
3698                                    CXXRecordDecl *RD) {
3699  for (CXXRecordDecl::decl_iterator
3700         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
3701    Decl *D = *I;
3702    if (D->isImplicit()) continue;
3703
3704    // Methods and method templates.
3705    if (isa<CXXMethodDecl>(D)) {
3706      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
3707    } else if (isa<FunctionTemplateDecl>(D)) {
3708      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
3709      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
3710
3711    // Fields and static variables.
3712    } else if (isa<FieldDecl>(D)) {
3713      FieldDecl *FD = cast<FieldDecl>(D);
3714      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
3715        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
3716    } else if (isa<VarDecl>(D)) {
3717      VarDecl *VD = cast<VarDecl>(D);
3718      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
3719        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
3720
3721    // Nested classes and class templates.
3722    } else if (isa<CXXRecordDecl>(D)) {
3723      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
3724    } else if (isa<ClassTemplateDecl>(D)) {
3725      CheckAbstractClassUsage(Info,
3726                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
3727    }
3728  }
3729}
3730
3731/// \brief Perform semantic checks on a class definition that has been
3732/// completing, introducing implicitly-declared members, checking for
3733/// abstract types, etc.
3734void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
3735  if (!Record)
3736    return;
3737
3738  if (Record->isAbstract() && !Record->isInvalidDecl()) {
3739    AbstractUsageInfo Info(*this, Record);
3740    CheckAbstractClassUsage(Info, Record);
3741  }
3742
3743  // If this is not an aggregate type and has no user-declared constructor,
3744  // complain about any non-static data members of reference or const scalar
3745  // type, since they will never get initializers.
3746  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
3747      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
3748      !Record->isLambda()) {
3749    bool Complained = false;
3750    for (RecordDecl::field_iterator F = Record->field_begin(),
3751                                 FEnd = Record->field_end();
3752         F != FEnd; ++F) {
3753      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
3754        continue;
3755
3756      if (F->getType()->isReferenceType() ||
3757          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
3758        if (!Complained) {
3759          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
3760            << Record->getTagKind() << Record;
3761          Complained = true;
3762        }
3763
3764        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
3765          << F->getType()->isReferenceType()
3766          << F->getDeclName();
3767      }
3768    }
3769  }
3770
3771  if (Record->isDynamicClass() && !Record->isDependentType())
3772    DynamicClasses.push_back(Record);
3773
3774  if (Record->getIdentifier()) {
3775    // C++ [class.mem]p13:
3776    //   If T is the name of a class, then each of the following shall have a
3777    //   name different from T:
3778    //     - every member of every anonymous union that is a member of class T.
3779    //
3780    // C++ [class.mem]p14:
3781    //   In addition, if class T has a user-declared constructor (12.1), every
3782    //   non-static data member of class T shall have a name different from T.
3783    for (DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
3784         R.first != R.second; ++R.first) {
3785      NamedDecl *D = *R.first;
3786      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
3787          isa<IndirectFieldDecl>(D)) {
3788        Diag(D->getLocation(), diag::err_member_name_of_class)
3789          << D->getDeclName();
3790        break;
3791      }
3792    }
3793  }
3794
3795  // Warn if the class has virtual methods but non-virtual public destructor.
3796  if (Record->isPolymorphic() && !Record->isDependentType()) {
3797    CXXDestructorDecl *dtor = Record->getDestructor();
3798    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
3799      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
3800           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
3801  }
3802
3803  // See if a method overloads virtual methods in a base
3804  /// class without overriding any.
3805  if (!Record->isDependentType()) {
3806    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3807                                     MEnd = Record->method_end();
3808         M != MEnd; ++M) {
3809      if (!M->isStatic())
3810        DiagnoseHiddenVirtualMethods(Record, &*M);
3811    }
3812  }
3813
3814  // C++0x [dcl.constexpr]p8: A constexpr specifier for a non-static member
3815  // function that is not a constructor declares that member function to be
3816  // const. [...] The class of which that function is a member shall be
3817  // a literal type.
3818  //
3819  // If the class has virtual bases, any constexpr members will already have
3820  // been diagnosed by the checks performed on the member declaration, so
3821  // suppress this (less useful) diagnostic.
3822  if (LangOpts.CPlusPlus0x && !Record->isDependentType() &&
3823      !Record->isLiteral() && !Record->getNumVBases()) {
3824    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
3825                                     MEnd = Record->method_end();
3826         M != MEnd; ++M) {
3827      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
3828        switch (Record->getTemplateSpecializationKind()) {
3829        case TSK_ImplicitInstantiation:
3830        case TSK_ExplicitInstantiationDeclaration:
3831        case TSK_ExplicitInstantiationDefinition:
3832          // If a template instantiates to a non-literal type, but its members
3833          // instantiate to constexpr functions, the template is technically
3834          // ill-formed, but we allow it for sanity.
3835          continue;
3836
3837        case TSK_Undeclared:
3838        case TSK_ExplicitSpecialization:
3839          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
3840                             diag::err_constexpr_method_non_literal);
3841          break;
3842        }
3843
3844        // Only produce one error per class.
3845        break;
3846      }
3847    }
3848  }
3849
3850  // Declare inherited constructors. We do this eagerly here because:
3851  // - The standard requires an eager diagnostic for conflicting inherited
3852  //   constructors from different classes.
3853  // - The lazy declaration of the other implicit constructors is so as to not
3854  //   waste space and performance on classes that are not meant to be
3855  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
3856  //   have inherited constructors.
3857  DeclareInheritedConstructors(Record);
3858
3859  if (!Record->isDependentType())
3860    CheckExplicitlyDefaultedMethods(Record);
3861}
3862
3863void Sema::CheckExplicitlyDefaultedMethods(CXXRecordDecl *Record) {
3864  for (CXXRecordDecl::method_iterator MI = Record->method_begin(),
3865                                      ME = Record->method_end();
3866       MI != ME; ++MI)
3867    if (!MI->isInvalidDecl() && MI->isExplicitlyDefaulted())
3868      CheckExplicitlyDefaultedSpecialMember(&*MI);
3869}
3870
3871void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
3872  CXXRecordDecl *RD = MD->getParent();
3873  CXXSpecialMember CSM = getSpecialMember(MD);
3874
3875  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
3876         "not an explicitly-defaulted special member");
3877
3878  // Whether this was the first-declared instance of the constructor.
3879  // This affects whether we implicitly add an exception spec and constexpr.
3880  bool First = MD == MD->getCanonicalDecl();
3881
3882  bool HadError = false;
3883
3884  // C++11 [dcl.fct.def.default]p1:
3885  //   A function that is explicitly defaulted shall
3886  //     -- be a special member function (checked elsewhere),
3887  //     -- have the same type (except for ref-qualifiers, and except that a
3888  //        copy operation can take a non-const reference) as an implicit
3889  //        declaration, and
3890  //     -- not have default arguments.
3891  unsigned ExpectedParams = 1;
3892  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
3893    ExpectedParams = 0;
3894  if (MD->getNumParams() != ExpectedParams) {
3895    // This also checks for default arguments: a copy or move constructor with a
3896    // default argument is classified as a default constructor, and assignment
3897    // operations and destructors can't have default arguments.
3898    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
3899      << CSM << MD->getSourceRange();
3900    HadError = true;
3901  }
3902
3903  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
3904
3905  // Compute implicit exception specification, argument constness, constexpr
3906  // and triviality.
3907  ImplicitExceptionSpecification Spec(*this);
3908  bool Const = false;
3909  bool Constexpr = false;
3910  bool Trivial;
3911  switch (CSM) {
3912  case CXXDefaultConstructor:
3913    Spec = ComputeDefaultedDefaultCtorExceptionSpec(RD);
3914    if (Spec.isDelayed())
3915      // Exception specification depends on some deferred part of the class.
3916      // We'll try again when the class's definition has been fully processed.
3917      return;
3918    Constexpr = RD->defaultedDefaultConstructorIsConstexpr();
3919    Trivial = RD->hasTrivialDefaultConstructor();
3920    break;
3921  case CXXCopyConstructor:
3922    llvm::tie(Spec, Const) =
3923      ComputeDefaultedCopyCtorExceptionSpecAndConst(RD);
3924    Constexpr = RD->defaultedCopyConstructorIsConstexpr();
3925    Trivial = RD->hasTrivialCopyConstructor();
3926    break;
3927  case CXXCopyAssignment:
3928    llvm::tie(Spec, Const) =
3929      ComputeDefaultedCopyAssignmentExceptionSpecAndConst(RD);
3930    Trivial = RD->hasTrivialCopyAssignment();
3931    break;
3932  case CXXMoveConstructor:
3933    Spec = ComputeDefaultedMoveCtorExceptionSpec(RD);
3934    Constexpr = RD->defaultedMoveConstructorIsConstexpr();
3935    Trivial = RD->hasTrivialMoveConstructor();
3936    break;
3937  case CXXMoveAssignment:
3938    Spec = ComputeDefaultedMoveAssignmentExceptionSpec(RD);
3939    Trivial = RD->hasTrivialMoveAssignment();
3940    break;
3941  case CXXDestructor:
3942    Spec = ComputeDefaultedDtorExceptionSpec(RD);
3943    Trivial = RD->hasTrivialDestructor();
3944    break;
3945  case CXXInvalid:
3946    llvm_unreachable("non-special member explicitly defaulted!");
3947  }
3948
3949  QualType ReturnType = Context.VoidTy;
3950  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
3951    // Check for return type matching.
3952    ReturnType = Type->getResultType();
3953    QualType ExpectedReturnType =
3954        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
3955    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
3956      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
3957        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
3958      HadError = true;
3959    }
3960
3961    // A defaulted special member cannot have cv-qualifiers.
3962    if (Type->getTypeQuals()) {
3963      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
3964        << (CSM == CXXMoveAssignment);
3965      HadError = true;
3966    }
3967  }
3968
3969  // Check for parameter type matching.
3970  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
3971  if (ExpectedParams && ArgType->isReferenceType()) {
3972    // Argument must be reference to possibly-const T.
3973    QualType ReferentType = ArgType->getPointeeType();
3974
3975    if (ReferentType.isVolatileQualified()) {
3976      Diag(MD->getLocation(),
3977           diag::err_defaulted_special_member_volatile_param) << CSM;
3978      HadError = true;
3979    }
3980
3981    if (ReferentType.isConstQualified() && !Const) {
3982      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
3983        Diag(MD->getLocation(),
3984             diag::err_defaulted_special_member_copy_const_param)
3985          << (CSM == CXXCopyAssignment);
3986        // FIXME: Explain why this special member can't be const.
3987      } else {
3988        Diag(MD->getLocation(),
3989             diag::err_defaulted_special_member_move_const_param)
3990          << (CSM == CXXMoveAssignment);
3991      }
3992      HadError = true;
3993    }
3994
3995    // If a function is explicitly defaulted on its first declaration, it shall
3996    // have the same parameter type as if it had been implicitly declared.
3997    // (Presumably this is to prevent it from being trivial?)
3998    if (!ReferentType.isConstQualified() && Const && First)
3999      Diag(MD->getLocation(),
4000           diag::err_defaulted_special_member_copy_non_const_param)
4001        << (CSM == CXXCopyAssignment);
4002  } else if (ExpectedParams) {
4003    // A copy assignment operator can take its argument by value, but a
4004    // defaulted one cannot.
4005    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4006    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4007    HadError = true;
4008  }
4009
4010  // Rebuild the type with the implicit exception specification added.
4011  FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4012  Spec.getEPI(EPI);
4013  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4014    Context.getFunctionType(ReturnType, &ArgType, ExpectedParams, EPI));
4015
4016  // C++11 [dcl.fct.def.default]p2:
4017  //   An explicitly-defaulted function may be declared constexpr only if it
4018  //   would have been implicitly declared as constexpr,
4019  // Do not apply this rule to members of class templates, since core issue 1358
4020  // makes such functions always instantiate to constexpr functions. For
4021  // non-constructors, this is checked elsewhere.
4022  if (isa<CXXConstructorDecl>(MD) && MD->isConstexpr() && !Constexpr &&
4023      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4024    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4025    HadError = true;
4026  }
4027  //   and may have an explicit exception-specification only if it is compatible
4028  //   with the exception-specification on the implicit declaration.
4029  if (Type->hasExceptionSpec() &&
4030      CheckEquivalentExceptionSpec(
4031        PDiag(diag::err_incorrect_defaulted_exception_spec) << CSM,
4032        PDiag(), ImplicitType, SourceLocation(), Type, MD->getLocation()))
4033    HadError = true;
4034
4035  //   If a function is explicitly defaulted on its first declaration,
4036  if (First) {
4037    //  -- it is implicitly considered to be constexpr if the implicit
4038    //     definition would be,
4039    MD->setConstexpr(Constexpr);
4040
4041    //  -- it is implicitly considered to have the same exception-specification
4042    //     as if it had been implicitly declared,
4043    MD->setType(QualType(ImplicitType, 0));
4044
4045    // Such a function is also trivial if the implicitly-declared function
4046    // would have been.
4047    MD->setTrivial(Trivial);
4048  }
4049
4050  if (ShouldDeleteSpecialMember(MD, CSM)) {
4051    if (First) {
4052      MD->setDeletedAsWritten();
4053    } else {
4054      // C++11 [dcl.fct.def.default]p4:
4055      //   [For a] user-provided explicitly-defaulted function [...] if such a
4056      //   function is implicitly defined as deleted, the program is ill-formed.
4057      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4058      HadError = true;
4059    }
4060  }
4061
4062  if (HadError)
4063    MD->setInvalidDecl();
4064}
4065
4066namespace {
4067struct SpecialMemberDeletionInfo {
4068  Sema &S;
4069  CXXMethodDecl *MD;
4070  Sema::CXXSpecialMember CSM;
4071  bool Diagnose;
4072
4073  // Properties of the special member, computed for convenience.
4074  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4075  SourceLocation Loc;
4076
4077  bool AllFieldsAreConst;
4078
4079  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4080                            Sema::CXXSpecialMember CSM, bool Diagnose)
4081    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4082      IsConstructor(false), IsAssignment(false), IsMove(false),
4083      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4084      AllFieldsAreConst(true) {
4085    switch (CSM) {
4086      case Sema::CXXDefaultConstructor:
4087      case Sema::CXXCopyConstructor:
4088        IsConstructor = true;
4089        break;
4090      case Sema::CXXMoveConstructor:
4091        IsConstructor = true;
4092        IsMove = true;
4093        break;
4094      case Sema::CXXCopyAssignment:
4095        IsAssignment = true;
4096        break;
4097      case Sema::CXXMoveAssignment:
4098        IsAssignment = true;
4099        IsMove = true;
4100        break;
4101      case Sema::CXXDestructor:
4102        break;
4103      case Sema::CXXInvalid:
4104        llvm_unreachable("invalid special member kind");
4105    }
4106
4107    if (MD->getNumParams()) {
4108      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4109      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4110    }
4111  }
4112
4113  bool inUnion() const { return MD->getParent()->isUnion(); }
4114
4115  /// Look up the corresponding special member in the given class.
4116  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class) {
4117    unsigned TQ = MD->getTypeQualifiers();
4118    return S.LookupSpecialMember(Class, CSM, ConstArg, VolatileArg,
4119                                 MD->getRefQualifier() == RQ_RValue,
4120                                 TQ & Qualifiers::Const,
4121                                 TQ & Qualifiers::Volatile);
4122  }
4123
4124  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4125
4126  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4127  bool shouldDeleteForField(FieldDecl *FD);
4128  bool shouldDeleteForAllConstMembers();
4129
4130  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj);
4131  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4132                                    Sema::SpecialMemberOverloadResult *SMOR,
4133                                    bool IsDtorCallInCtor);
4134
4135  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4136};
4137}
4138
4139/// Is the given special member inaccessible when used on the given
4140/// sub-object.
4141bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4142                                             CXXMethodDecl *target) {
4143  /// If we're operating on a base class, the object type is the
4144  /// type of this special member.
4145  QualType objectTy;
4146  AccessSpecifier access = target->getAccess();;
4147  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4148    objectTy = S.Context.getTypeDeclType(MD->getParent());
4149    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4150
4151  // If we're operating on a field, the object type is the type of the field.
4152  } else {
4153    objectTy = S.Context.getTypeDeclType(target->getParent());
4154  }
4155
4156  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4157}
4158
4159/// Check whether we should delete a special member due to the implicit
4160/// definition containing a call to a special member of a subobject.
4161bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4162    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4163    bool IsDtorCallInCtor) {
4164  CXXMethodDecl *Decl = SMOR->getMethod();
4165  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4166
4167  int DiagKind = -1;
4168
4169  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4170    DiagKind = !Decl ? 0 : 1;
4171  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4172    DiagKind = 2;
4173  else if (!isAccessible(Subobj, Decl))
4174    DiagKind = 3;
4175  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4176           !Decl->isTrivial()) {
4177    // A member of a union must have a trivial corresponding special member.
4178    // As a weird special case, a destructor call from a union's constructor
4179    // must be accessible and non-deleted, but need not be trivial. Such a
4180    // destructor is never actually called, but is semantically checked as
4181    // if it were.
4182    DiagKind = 4;
4183  }
4184
4185  if (DiagKind == -1)
4186    return false;
4187
4188  if (Diagnose) {
4189    if (Field) {
4190      S.Diag(Field->getLocation(),
4191             diag::note_deleted_special_member_class_subobject)
4192        << CSM << MD->getParent() << /*IsField*/true
4193        << Field << DiagKind << IsDtorCallInCtor;
4194    } else {
4195      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4196      S.Diag(Base->getLocStart(),
4197             diag::note_deleted_special_member_class_subobject)
4198        << CSM << MD->getParent() << /*IsField*/false
4199        << Base->getType() << DiagKind << IsDtorCallInCtor;
4200    }
4201
4202    if (DiagKind == 1)
4203      S.NoteDeletedFunction(Decl);
4204    // FIXME: Explain inaccessibility if DiagKind == 3.
4205  }
4206
4207  return true;
4208}
4209
4210/// Check whether we should delete a special member function due to having a
4211/// direct or virtual base class or static data member of class type M.
4212bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4213    CXXRecordDecl *Class, Subobject Subobj) {
4214  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4215
4216  // C++11 [class.ctor]p5:
4217  // -- any direct or virtual base class, or non-static data member with no
4218  //    brace-or-equal-initializer, has class type M (or array thereof) and
4219  //    either M has no default constructor or overload resolution as applied
4220  //    to M's default constructor results in an ambiguity or in a function
4221  //    that is deleted or inaccessible
4222  // C++11 [class.copy]p11, C++11 [class.copy]p23:
4223  // -- a direct or virtual base class B that cannot be copied/moved because
4224  //    overload resolution, as applied to B's corresponding special member,
4225  //    results in an ambiguity or a function that is deleted or inaccessible
4226  //    from the defaulted special member
4227  // C++11 [class.dtor]p5:
4228  // -- any direct or virtual base class [...] has a type with a destructor
4229  //    that is deleted or inaccessible
4230  if (!(CSM == Sema::CXXDefaultConstructor &&
4231        Field && Field->hasInClassInitializer()) &&
4232      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class), false))
4233    return true;
4234
4235  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
4236  // -- any direct or virtual base class or non-static data member has a
4237  //    type with a destructor that is deleted or inaccessible
4238  if (IsConstructor) {
4239    Sema::SpecialMemberOverloadResult *SMOR =
4240        S.LookupSpecialMember(Class, Sema::CXXDestructor,
4241                              false, false, false, false, false);
4242    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
4243      return true;
4244  }
4245
4246  return false;
4247}
4248
4249/// Check whether we should delete a special member function due to the class
4250/// having a particular direct or virtual base class.
4251bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
4252  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
4253  return shouldDeleteForClassSubobject(BaseClass, Base);
4254}
4255
4256/// Check whether we should delete a special member function due to the class
4257/// having a particular non-static data member.
4258bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
4259  QualType FieldType = S.Context.getBaseElementType(FD->getType());
4260  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
4261
4262  if (CSM == Sema::CXXDefaultConstructor) {
4263    // For a default constructor, all references must be initialized in-class
4264    // and, if a union, it must have a non-const member.
4265    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
4266      if (Diagnose)
4267        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4268          << MD->getParent() << FD << FieldType << /*Reference*/0;
4269      return true;
4270    }
4271    // C++11 [class.ctor]p5: any non-variant non-static data member of
4272    // const-qualified type (or array thereof) with no
4273    // brace-or-equal-initializer does not have a user-provided default
4274    // constructor.
4275    if (!inUnion() && FieldType.isConstQualified() &&
4276        !FD->hasInClassInitializer() &&
4277        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
4278      if (Diagnose)
4279        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
4280          << MD->getParent() << FD << FD->getType() << /*Const*/1;
4281      return true;
4282    }
4283
4284    if (inUnion() && !FieldType.isConstQualified())
4285      AllFieldsAreConst = false;
4286  } else if (CSM == Sema::CXXCopyConstructor) {
4287    // For a copy constructor, data members must not be of rvalue reference
4288    // type.
4289    if (FieldType->isRValueReferenceType()) {
4290      if (Diagnose)
4291        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
4292          << MD->getParent() << FD << FieldType;
4293      return true;
4294    }
4295  } else if (IsAssignment) {
4296    // For an assignment operator, data members must not be of reference type.
4297    if (FieldType->isReferenceType()) {
4298      if (Diagnose)
4299        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4300          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
4301      return true;
4302    }
4303    if (!FieldRecord && FieldType.isConstQualified()) {
4304      // C++11 [class.copy]p23:
4305      // -- a non-static data member of const non-class type (or array thereof)
4306      if (Diagnose)
4307        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
4308          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
4309      return true;
4310    }
4311  }
4312
4313  if (FieldRecord) {
4314    // Some additional restrictions exist on the variant members.
4315    if (!inUnion() && FieldRecord->isUnion() &&
4316        FieldRecord->isAnonymousStructOrUnion()) {
4317      bool AllVariantFieldsAreConst = true;
4318
4319      // FIXME: Handle anonymous unions declared within anonymous unions.
4320      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
4321                                         UE = FieldRecord->field_end();
4322           UI != UE; ++UI) {
4323        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
4324
4325        if (!UnionFieldType.isConstQualified())
4326          AllVariantFieldsAreConst = false;
4327
4328        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
4329        if (UnionFieldRecord &&
4330            shouldDeleteForClassSubobject(UnionFieldRecord, &*UI))
4331          return true;
4332      }
4333
4334      // At least one member in each anonymous union must be non-const
4335      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
4336          FieldRecord->field_begin() != FieldRecord->field_end()) {
4337        if (Diagnose)
4338          S.Diag(FieldRecord->getLocation(),
4339                 diag::note_deleted_default_ctor_all_const)
4340            << MD->getParent() << /*anonymous union*/1;
4341        return true;
4342      }
4343
4344      // Don't check the implicit member of the anonymous union type.
4345      // This is technically non-conformant, but sanity demands it.
4346      return false;
4347    }
4348
4349    if (shouldDeleteForClassSubobject(FieldRecord, FD))
4350      return true;
4351  }
4352
4353  return false;
4354}
4355
4356/// C++11 [class.ctor] p5:
4357///   A defaulted default constructor for a class X is defined as deleted if
4358/// X is a union and all of its variant members are of const-qualified type.
4359bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
4360  // This is a silly definition, because it gives an empty union a deleted
4361  // default constructor. Don't do that.
4362  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
4363      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
4364    if (Diagnose)
4365      S.Diag(MD->getParent()->getLocation(),
4366             diag::note_deleted_default_ctor_all_const)
4367        << MD->getParent() << /*not anonymous union*/0;
4368    return true;
4369  }
4370  return false;
4371}
4372
4373/// Determine whether a defaulted special member function should be defined as
4374/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
4375/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
4376bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
4377                                     bool Diagnose) {
4378  assert(!MD->isInvalidDecl());
4379  CXXRecordDecl *RD = MD->getParent();
4380  assert(!RD->isDependentType() && "do deletion after instantiation");
4381  if (!LangOpts.CPlusPlus0x || RD->isInvalidDecl())
4382    return false;
4383
4384  // C++11 [expr.lambda.prim]p19:
4385  //   The closure type associated with a lambda-expression has a
4386  //   deleted (8.4.3) default constructor and a deleted copy
4387  //   assignment operator.
4388  if (RD->isLambda() &&
4389      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
4390    if (Diagnose)
4391      Diag(RD->getLocation(), diag::note_lambda_decl);
4392    return true;
4393  }
4394
4395  // For an anonymous struct or union, the copy and assignment special members
4396  // will never be used, so skip the check. For an anonymous union declared at
4397  // namespace scope, the constructor and destructor are used.
4398  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
4399      RD->isAnonymousStructOrUnion())
4400    return false;
4401
4402  // C++11 [class.copy]p7, p18:
4403  //   If the class definition declares a move constructor or move assignment
4404  //   operator, an implicitly declared copy constructor or copy assignment
4405  //   operator is defined as deleted.
4406  if (MD->isImplicit() &&
4407      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
4408    CXXMethodDecl *UserDeclaredMove = 0;
4409
4410    // In Microsoft mode, a user-declared move only causes the deletion of the
4411    // corresponding copy operation, not both copy operations.
4412    if (RD->hasUserDeclaredMoveConstructor() &&
4413        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
4414      if (!Diagnose) return true;
4415      UserDeclaredMove = RD->getMoveConstructor();
4416      assert(UserDeclaredMove);
4417    } else if (RD->hasUserDeclaredMoveAssignment() &&
4418               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
4419      if (!Diagnose) return true;
4420      UserDeclaredMove = RD->getMoveAssignmentOperator();
4421      assert(UserDeclaredMove);
4422    }
4423
4424    if (UserDeclaredMove) {
4425      Diag(UserDeclaredMove->getLocation(),
4426           diag::note_deleted_copy_user_declared_move)
4427        << (CSM == CXXCopyAssignment) << RD
4428        << UserDeclaredMove->isMoveAssignmentOperator();
4429      return true;
4430    }
4431  }
4432
4433  // Do access control from the special member function
4434  ContextRAII MethodContext(*this, MD);
4435
4436  // C++11 [class.dtor]p5:
4437  // -- for a virtual destructor, lookup of the non-array deallocation function
4438  //    results in an ambiguity or in a function that is deleted or inaccessible
4439  if (CSM == CXXDestructor && MD->isVirtual()) {
4440    FunctionDecl *OperatorDelete = 0;
4441    DeclarationName Name =
4442      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4443    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
4444                                 OperatorDelete, false)) {
4445      if (Diagnose)
4446        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
4447      return true;
4448    }
4449  }
4450
4451  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
4452
4453  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
4454                                          BE = RD->bases_end(); BI != BE; ++BI)
4455    if (!BI->isVirtual() &&
4456        SMI.shouldDeleteForBase(BI))
4457      return true;
4458
4459  for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
4460                                          BE = RD->vbases_end(); BI != BE; ++BI)
4461    if (SMI.shouldDeleteForBase(BI))
4462      return true;
4463
4464  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
4465                                     FE = RD->field_end(); FI != FE; ++FI)
4466    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
4467        SMI.shouldDeleteForField(&*FI))
4468      return true;
4469
4470  if (SMI.shouldDeleteForAllConstMembers())
4471    return true;
4472
4473  return false;
4474}
4475
4476/// \brief Data used with FindHiddenVirtualMethod
4477namespace {
4478  struct FindHiddenVirtualMethodData {
4479    Sema *S;
4480    CXXMethodDecl *Method;
4481    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
4482    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
4483  };
4484}
4485
4486/// \brief Member lookup function that determines whether a given C++
4487/// method overloads virtual methods in a base class without overriding any,
4488/// to be used with CXXRecordDecl::lookupInBases().
4489static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
4490                                    CXXBasePath &Path,
4491                                    void *UserData) {
4492  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4493
4494  FindHiddenVirtualMethodData &Data
4495    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
4496
4497  DeclarationName Name = Data.Method->getDeclName();
4498  assert(Name.getNameKind() == DeclarationName::Identifier);
4499
4500  bool foundSameNameMethod = false;
4501  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
4502  for (Path.Decls = BaseRecord->lookup(Name);
4503       Path.Decls.first != Path.Decls.second;
4504       ++Path.Decls.first) {
4505    NamedDecl *D = *Path.Decls.first;
4506    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4507      MD = MD->getCanonicalDecl();
4508      foundSameNameMethod = true;
4509      // Interested only in hidden virtual methods.
4510      if (!MD->isVirtual())
4511        continue;
4512      // If the method we are checking overrides a method from its base
4513      // don't warn about the other overloaded methods.
4514      if (!Data.S->IsOverload(Data.Method, MD, false))
4515        return true;
4516      // Collect the overload only if its hidden.
4517      if (!Data.OverridenAndUsingBaseMethods.count(MD))
4518        overloadedMethods.push_back(MD);
4519    }
4520  }
4521
4522  if (foundSameNameMethod)
4523    Data.OverloadedMethods.append(overloadedMethods.begin(),
4524                                   overloadedMethods.end());
4525  return foundSameNameMethod;
4526}
4527
4528/// \brief See if a method overloads virtual methods in a base class without
4529/// overriding any.
4530void Sema::DiagnoseHiddenVirtualMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4531  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
4532                               MD->getLocation()) == DiagnosticsEngine::Ignored)
4533    return;
4534  if (!MD->getDeclName().isIdentifier())
4535    return;
4536
4537  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
4538                     /*bool RecordPaths=*/false,
4539                     /*bool DetectVirtual=*/false);
4540  FindHiddenVirtualMethodData Data;
4541  Data.Method = MD;
4542  Data.S = this;
4543
4544  // Keep the base methods that were overriden or introduced in the subclass
4545  // by 'using' in a set. A base method not in this set is hidden.
4546  for (DeclContext::lookup_result res = DC->lookup(MD->getDeclName());
4547       res.first != res.second; ++res.first) {
4548    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*res.first))
4549      for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
4550                                          E = MD->end_overridden_methods();
4551           I != E; ++I)
4552        Data.OverridenAndUsingBaseMethods.insert((*I)->getCanonicalDecl());
4553    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*res.first))
4554      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(shad->getTargetDecl()))
4555        Data.OverridenAndUsingBaseMethods.insert(MD->getCanonicalDecl());
4556  }
4557
4558  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths) &&
4559      !Data.OverloadedMethods.empty()) {
4560    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
4561      << MD << (Data.OverloadedMethods.size() > 1);
4562
4563    for (unsigned i = 0, e = Data.OverloadedMethods.size(); i != e; ++i) {
4564      CXXMethodDecl *overloadedMD = Data.OverloadedMethods[i];
4565      Diag(overloadedMD->getLocation(),
4566           diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
4567    }
4568  }
4569}
4570
4571void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
4572                                             Decl *TagDecl,
4573                                             SourceLocation LBrac,
4574                                             SourceLocation RBrac,
4575                                             AttributeList *AttrList) {
4576  if (!TagDecl)
4577    return;
4578
4579  AdjustDeclIfTemplate(TagDecl);
4580
4581  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
4582              // strict aliasing violation!
4583              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
4584              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
4585
4586  CheckCompletedCXXClass(
4587                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
4588}
4589
4590/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
4591/// special functions, such as the default constructor, copy
4592/// constructor, or destructor, to the given C++ class (C++
4593/// [special]p1).  This routine can only be executed just before the
4594/// definition of the class is complete.
4595void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
4596  if (!ClassDecl->hasUserDeclaredConstructor())
4597    ++ASTContext::NumImplicitDefaultConstructors;
4598
4599  if (!ClassDecl->hasUserDeclaredCopyConstructor())
4600    ++ASTContext::NumImplicitCopyConstructors;
4601
4602  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveConstructor())
4603    ++ASTContext::NumImplicitMoveConstructors;
4604
4605  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
4606    ++ASTContext::NumImplicitCopyAssignmentOperators;
4607
4608    // If we have a dynamic class, then the copy assignment operator may be
4609    // virtual, so we have to declare it immediately. This ensures that, e.g.,
4610    // it shows up in the right place in the vtable and that we diagnose
4611    // problems with the implicit exception specification.
4612    if (ClassDecl->isDynamicClass())
4613      DeclareImplicitCopyAssignment(ClassDecl);
4614  }
4615
4616  if (getLangOpts().CPlusPlus0x && ClassDecl->needsImplicitMoveAssignment()) {
4617    ++ASTContext::NumImplicitMoveAssignmentOperators;
4618
4619    // Likewise for the move assignment operator.
4620    if (ClassDecl->isDynamicClass())
4621      DeclareImplicitMoveAssignment(ClassDecl);
4622  }
4623
4624  if (!ClassDecl->hasUserDeclaredDestructor()) {
4625    ++ASTContext::NumImplicitDestructors;
4626
4627    // If we have a dynamic class, then the destructor may be virtual, so we
4628    // have to declare the destructor immediately. This ensures that, e.g., it
4629    // shows up in the right place in the vtable and that we diagnose problems
4630    // with the implicit exception specification.
4631    if (ClassDecl->isDynamicClass())
4632      DeclareImplicitDestructor(ClassDecl);
4633  }
4634}
4635
4636void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
4637  if (!D)
4638    return;
4639
4640  int NumParamList = D->getNumTemplateParameterLists();
4641  for (int i = 0; i < NumParamList; i++) {
4642    TemplateParameterList* Params = D->getTemplateParameterList(i);
4643    for (TemplateParameterList::iterator Param = Params->begin(),
4644                                      ParamEnd = Params->end();
4645          Param != ParamEnd; ++Param) {
4646      NamedDecl *Named = cast<NamedDecl>(*Param);
4647      if (Named->getDeclName()) {
4648        S->AddDecl(Named);
4649        IdResolver.AddDecl(Named);
4650      }
4651    }
4652  }
4653}
4654
4655void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
4656  if (!D)
4657    return;
4658
4659  TemplateParameterList *Params = 0;
4660  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
4661    Params = Template->getTemplateParameters();
4662  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
4663           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
4664    Params = PartialSpec->getTemplateParameters();
4665  else
4666    return;
4667
4668  for (TemplateParameterList::iterator Param = Params->begin(),
4669                                    ParamEnd = Params->end();
4670       Param != ParamEnd; ++Param) {
4671    NamedDecl *Named = cast<NamedDecl>(*Param);
4672    if (Named->getDeclName()) {
4673      S->AddDecl(Named);
4674      IdResolver.AddDecl(Named);
4675    }
4676  }
4677}
4678
4679void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4680  if (!RecordD) return;
4681  AdjustDeclIfTemplate(RecordD);
4682  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
4683  PushDeclContext(S, Record);
4684}
4685
4686void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
4687  if (!RecordD) return;
4688  PopDeclContext();
4689}
4690
4691/// ActOnStartDelayedCXXMethodDeclaration - We have completed
4692/// parsing a top-level (non-nested) C++ class, and we are now
4693/// parsing those parts of the given Method declaration that could
4694/// not be parsed earlier (C++ [class.mem]p2), such as default
4695/// arguments. This action should enter the scope of the given
4696/// Method declaration as if we had just parsed the qualified method
4697/// name. However, it should not bring the parameters into scope;
4698/// that will be performed by ActOnDelayedCXXMethodParameter.
4699void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4700}
4701
4702/// ActOnDelayedCXXMethodParameter - We've already started a delayed
4703/// C++ method declaration. We're (re-)introducing the given
4704/// function parameter into scope for use in parsing later parts of
4705/// the method declaration. For example, we could see an
4706/// ActOnParamDefaultArgument event for this parameter.
4707void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
4708  if (!ParamD)
4709    return;
4710
4711  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
4712
4713  // If this parameter has an unparsed default argument, clear it out
4714  // to make way for the parsed default argument.
4715  if (Param->hasUnparsedDefaultArg())
4716    Param->setDefaultArg(0);
4717
4718  S->AddDecl(Param);
4719  if (Param->getDeclName())
4720    IdResolver.AddDecl(Param);
4721}
4722
4723/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
4724/// processing the delayed method declaration for Method. The method
4725/// declaration is now considered finished. There may be a separate
4726/// ActOnStartOfFunctionDef action later (not necessarily
4727/// immediately!) for this method, if it was also defined inside the
4728/// class body.
4729void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
4730  if (!MethodD)
4731    return;
4732
4733  AdjustDeclIfTemplate(MethodD);
4734
4735  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
4736
4737  // Now that we have our default arguments, check the constructor
4738  // again. It could produce additional diagnostics or affect whether
4739  // the class has implicitly-declared destructors, among other
4740  // things.
4741  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
4742    CheckConstructor(Constructor);
4743
4744  // Check the default arguments, which we may have added.
4745  if (!Method->isInvalidDecl())
4746    CheckCXXDefaultArguments(Method);
4747}
4748
4749/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
4750/// the well-formedness of the constructor declarator @p D with type @p
4751/// R. If there are any errors in the declarator, this routine will
4752/// emit diagnostics and set the invalid bit to true.  In any case, the type
4753/// will be updated to reflect a well-formed type for the constructor and
4754/// returned.
4755QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
4756                                          StorageClass &SC) {
4757  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4758
4759  // C++ [class.ctor]p3:
4760  //   A constructor shall not be virtual (10.3) or static (9.4). A
4761  //   constructor can be invoked for a const, volatile or const
4762  //   volatile object. A constructor shall not be declared const,
4763  //   volatile, or const volatile (9.3.2).
4764  if (isVirtual) {
4765    if (!D.isInvalidType())
4766      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4767        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
4768        << SourceRange(D.getIdentifierLoc());
4769    D.setInvalidType();
4770  }
4771  if (SC == SC_Static) {
4772    if (!D.isInvalidType())
4773      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
4774        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4775        << SourceRange(D.getIdentifierLoc());
4776    D.setInvalidType();
4777    SC = SC_None;
4778  }
4779
4780  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4781  if (FTI.TypeQuals != 0) {
4782    if (FTI.TypeQuals & Qualifiers::Const)
4783      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4784        << "const" << SourceRange(D.getIdentifierLoc());
4785    if (FTI.TypeQuals & Qualifiers::Volatile)
4786      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4787        << "volatile" << SourceRange(D.getIdentifierLoc());
4788    if (FTI.TypeQuals & Qualifiers::Restrict)
4789      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
4790        << "restrict" << SourceRange(D.getIdentifierLoc());
4791    D.setInvalidType();
4792  }
4793
4794  // C++0x [class.ctor]p4:
4795  //   A constructor shall not be declared with a ref-qualifier.
4796  if (FTI.hasRefQualifier()) {
4797    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
4798      << FTI.RefQualifierIsLValueRef
4799      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4800    D.setInvalidType();
4801  }
4802
4803  // Rebuild the function type "R" without any type qualifiers (in
4804  // case any of the errors above fired) and with "void" as the
4805  // return type, since constructors don't have return types.
4806  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4807  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
4808    return R;
4809
4810  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4811  EPI.TypeQuals = 0;
4812  EPI.RefQualifier = RQ_None;
4813
4814  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
4815                                 Proto->getNumArgs(), EPI);
4816}
4817
4818/// CheckConstructor - Checks a fully-formed constructor for
4819/// well-formedness, issuing any diagnostics required. Returns true if
4820/// the constructor declarator is invalid.
4821void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
4822  CXXRecordDecl *ClassDecl
4823    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
4824  if (!ClassDecl)
4825    return Constructor->setInvalidDecl();
4826
4827  // C++ [class.copy]p3:
4828  //   A declaration of a constructor for a class X is ill-formed if
4829  //   its first parameter is of type (optionally cv-qualified) X and
4830  //   either there are no other parameters or else all other
4831  //   parameters have default arguments.
4832  if (!Constructor->isInvalidDecl() &&
4833      ((Constructor->getNumParams() == 1) ||
4834       (Constructor->getNumParams() > 1 &&
4835        Constructor->getParamDecl(1)->hasDefaultArg())) &&
4836      Constructor->getTemplateSpecializationKind()
4837                                              != TSK_ImplicitInstantiation) {
4838    QualType ParamType = Constructor->getParamDecl(0)->getType();
4839    QualType ClassTy = Context.getTagDeclType(ClassDecl);
4840    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
4841      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
4842      const char *ConstRef
4843        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
4844                                                        : " const &";
4845      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
4846        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
4847
4848      // FIXME: Rather that making the constructor invalid, we should endeavor
4849      // to fix the type.
4850      Constructor->setInvalidDecl();
4851    }
4852  }
4853}
4854
4855/// CheckDestructor - Checks a fully-formed destructor definition for
4856/// well-formedness, issuing any diagnostics required.  Returns true
4857/// on error.
4858bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
4859  CXXRecordDecl *RD = Destructor->getParent();
4860
4861  if (Destructor->isVirtual()) {
4862    SourceLocation Loc;
4863
4864    if (!Destructor->isImplicit())
4865      Loc = Destructor->getLocation();
4866    else
4867      Loc = RD->getLocation();
4868
4869    // If we have a virtual destructor, look up the deallocation function
4870    FunctionDecl *OperatorDelete = 0;
4871    DeclarationName Name =
4872    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
4873    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
4874      return true;
4875
4876    MarkFunctionReferenced(Loc, OperatorDelete);
4877
4878    Destructor->setOperatorDelete(OperatorDelete);
4879  }
4880
4881  return false;
4882}
4883
4884static inline bool
4885FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
4886  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4887          FTI.ArgInfo[0].Param &&
4888          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
4889}
4890
4891/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
4892/// the well-formednes of the destructor declarator @p D with type @p
4893/// R. If there are any errors in the declarator, this routine will
4894/// emit diagnostics and set the declarator to invalid.  Even if this happens,
4895/// will be updated to reflect a well-formed type for the destructor and
4896/// returned.
4897QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
4898                                         StorageClass& SC) {
4899  // C++ [class.dtor]p1:
4900  //   [...] A typedef-name that names a class is a class-name
4901  //   (7.1.3); however, a typedef-name that names a class shall not
4902  //   be used as the identifier in the declarator for a destructor
4903  //   declaration.
4904  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
4905  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
4906    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4907      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
4908  else if (const TemplateSpecializationType *TST =
4909             DeclaratorType->getAs<TemplateSpecializationType>())
4910    if (TST->isTypeAlias())
4911      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
4912        << DeclaratorType << 1;
4913
4914  // C++ [class.dtor]p2:
4915  //   A destructor is used to destroy objects of its class type. A
4916  //   destructor takes no parameters, and no return type can be
4917  //   specified for it (not even void). The address of a destructor
4918  //   shall not be taken. A destructor shall not be static. A
4919  //   destructor can be invoked for a const, volatile or const
4920  //   volatile object. A destructor shall not be declared const,
4921  //   volatile or const volatile (9.3.2).
4922  if (SC == SC_Static) {
4923    if (!D.isInvalidType())
4924      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
4925        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
4926        << SourceRange(D.getIdentifierLoc())
4927        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4928
4929    SC = SC_None;
4930  }
4931  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
4932    // Destructors don't have return types, but the parser will
4933    // happily parse something like:
4934    //
4935    //   class X {
4936    //     float ~X();
4937    //   };
4938    //
4939    // The return type will be eliminated later.
4940    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
4941      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4942      << SourceRange(D.getIdentifierLoc());
4943  }
4944
4945  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4946  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
4947    if (FTI.TypeQuals & Qualifiers::Const)
4948      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4949        << "const" << SourceRange(D.getIdentifierLoc());
4950    if (FTI.TypeQuals & Qualifiers::Volatile)
4951      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4952        << "volatile" << SourceRange(D.getIdentifierLoc());
4953    if (FTI.TypeQuals & Qualifiers::Restrict)
4954      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
4955        << "restrict" << SourceRange(D.getIdentifierLoc());
4956    D.setInvalidType();
4957  }
4958
4959  // C++0x [class.dtor]p2:
4960  //   A destructor shall not be declared with a ref-qualifier.
4961  if (FTI.hasRefQualifier()) {
4962    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
4963      << FTI.RefQualifierIsLValueRef
4964      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
4965    D.setInvalidType();
4966  }
4967
4968  // Make sure we don't have any parameters.
4969  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
4970    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
4971
4972    // Delete the parameters.
4973    FTI.freeArgs();
4974    D.setInvalidType();
4975  }
4976
4977  // Make sure the destructor isn't variadic.
4978  if (FTI.isVariadic) {
4979    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
4980    D.setInvalidType();
4981  }
4982
4983  // Rebuild the function type "R" without any type qualifiers or
4984  // parameters (in case any of the errors above fired) and with
4985  // "void" as the return type, since destructors don't have return
4986  // types.
4987  if (!D.isInvalidType())
4988    return R;
4989
4990  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
4991  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
4992  EPI.Variadic = false;
4993  EPI.TypeQuals = 0;
4994  EPI.RefQualifier = RQ_None;
4995  return Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
4996}
4997
4998/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
4999/// well-formednes of the conversion function declarator @p D with
5000/// type @p R. If there are any errors in the declarator, this routine
5001/// will emit diagnostics and return true. Otherwise, it will return
5002/// false. Either way, the type @p R will be updated to reflect a
5003/// well-formed type for the conversion operator.
5004void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
5005                                     StorageClass& SC) {
5006  // C++ [class.conv.fct]p1:
5007  //   Neither parameter types nor return type can be specified. The
5008  //   type of a conversion function (8.3.5) is "function taking no
5009  //   parameter returning conversion-type-id."
5010  if (SC == SC_Static) {
5011    if (!D.isInvalidType())
5012      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
5013        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
5014        << SourceRange(D.getIdentifierLoc());
5015    D.setInvalidType();
5016    SC = SC_None;
5017  }
5018
5019  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
5020
5021  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
5022    // Conversion functions don't have return types, but the parser will
5023    // happily parse something like:
5024    //
5025    //   class X {
5026    //     float operator bool();
5027    //   };
5028    //
5029    // The return type will be changed later anyway.
5030    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
5031      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5032      << SourceRange(D.getIdentifierLoc());
5033    D.setInvalidType();
5034  }
5035
5036  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
5037
5038  // Make sure we don't have any parameters.
5039  if (Proto->getNumArgs() > 0) {
5040    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
5041
5042    // Delete the parameters.
5043    D.getFunctionTypeInfo().freeArgs();
5044    D.setInvalidType();
5045  } else if (Proto->isVariadic()) {
5046    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
5047    D.setInvalidType();
5048  }
5049
5050  // Diagnose "&operator bool()" and other such nonsense.  This
5051  // is actually a gcc extension which we don't support.
5052  if (Proto->getResultType() != ConvType) {
5053    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
5054      << Proto->getResultType();
5055    D.setInvalidType();
5056    ConvType = Proto->getResultType();
5057  }
5058
5059  // C++ [class.conv.fct]p4:
5060  //   The conversion-type-id shall not represent a function type nor
5061  //   an array type.
5062  if (ConvType->isArrayType()) {
5063    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
5064    ConvType = Context.getPointerType(ConvType);
5065    D.setInvalidType();
5066  } else if (ConvType->isFunctionType()) {
5067    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
5068    ConvType = Context.getPointerType(ConvType);
5069    D.setInvalidType();
5070  }
5071
5072  // Rebuild the function type "R" without any parameters (in case any
5073  // of the errors above fired) and with the conversion type as the
5074  // return type.
5075  if (D.isInvalidType())
5076    R = Context.getFunctionType(ConvType, 0, 0, Proto->getExtProtoInfo());
5077
5078  // C++0x explicit conversion operators.
5079  if (D.getDeclSpec().isExplicitSpecified())
5080    Diag(D.getDeclSpec().getExplicitSpecLoc(),
5081         getLangOpts().CPlusPlus0x ?
5082           diag::warn_cxx98_compat_explicit_conversion_functions :
5083           diag::ext_explicit_conversion_functions)
5084      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
5085}
5086
5087/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
5088/// the declaration of the given C++ conversion function. This routine
5089/// is responsible for recording the conversion function in the C++
5090/// class, if possible.
5091Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
5092  assert(Conversion && "Expected to receive a conversion function declaration");
5093
5094  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
5095
5096  // Make sure we aren't redeclaring the conversion function.
5097  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
5098
5099  // C++ [class.conv.fct]p1:
5100  //   [...] A conversion function is never used to convert a
5101  //   (possibly cv-qualified) object to the (possibly cv-qualified)
5102  //   same object type (or a reference to it), to a (possibly
5103  //   cv-qualified) base class of that type (or a reference to it),
5104  //   or to (possibly cv-qualified) void.
5105  // FIXME: Suppress this warning if the conversion function ends up being a
5106  // virtual function that overrides a virtual function in a base class.
5107  QualType ClassType
5108    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
5109  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
5110    ConvType = ConvTypeRef->getPointeeType();
5111  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
5112      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
5113    /* Suppress diagnostics for instantiations. */;
5114  else if (ConvType->isRecordType()) {
5115    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
5116    if (ConvType == ClassType)
5117      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
5118        << ClassType;
5119    else if (IsDerivedFrom(ClassType, ConvType))
5120      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
5121        <<  ClassType << ConvType;
5122  } else if (ConvType->isVoidType()) {
5123    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
5124      << ClassType << ConvType;
5125  }
5126
5127  if (FunctionTemplateDecl *ConversionTemplate
5128                                = Conversion->getDescribedFunctionTemplate())
5129    return ConversionTemplate;
5130
5131  return Conversion;
5132}
5133
5134//===----------------------------------------------------------------------===//
5135// Namespace Handling
5136//===----------------------------------------------------------------------===//
5137
5138
5139
5140/// ActOnStartNamespaceDef - This is called at the start of a namespace
5141/// definition.
5142Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
5143                                   SourceLocation InlineLoc,
5144                                   SourceLocation NamespaceLoc,
5145                                   SourceLocation IdentLoc,
5146                                   IdentifierInfo *II,
5147                                   SourceLocation LBrace,
5148                                   AttributeList *AttrList) {
5149  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
5150  // For anonymous namespace, take the location of the left brace.
5151  SourceLocation Loc = II ? IdentLoc : LBrace;
5152  bool IsInline = InlineLoc.isValid();
5153  bool IsInvalid = false;
5154  bool IsStd = false;
5155  bool AddToKnown = false;
5156  Scope *DeclRegionScope = NamespcScope->getParent();
5157
5158  NamespaceDecl *PrevNS = 0;
5159  if (II) {
5160    // C++ [namespace.def]p2:
5161    //   The identifier in an original-namespace-definition shall not
5162    //   have been previously defined in the declarative region in
5163    //   which the original-namespace-definition appears. The
5164    //   identifier in an original-namespace-definition is the name of
5165    //   the namespace. Subsequently in that declarative region, it is
5166    //   treated as an original-namespace-name.
5167    //
5168    // Since namespace names are unique in their scope, and we don't
5169    // look through using directives, just look for any ordinary names.
5170
5171    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
5172    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
5173    Decl::IDNS_Namespace;
5174    NamedDecl *PrevDecl = 0;
5175    for (DeclContext::lookup_result R
5176         = CurContext->getRedeclContext()->lookup(II);
5177         R.first != R.second; ++R.first) {
5178      if ((*R.first)->getIdentifierNamespace() & IDNS) {
5179        PrevDecl = *R.first;
5180        break;
5181      }
5182    }
5183
5184    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
5185
5186    if (PrevNS) {
5187      // This is an extended namespace definition.
5188      if (IsInline != PrevNS->isInline()) {
5189        // inline-ness must match
5190        if (PrevNS->isInline()) {
5191          // The user probably just forgot the 'inline', so suggest that it
5192          // be added back.
5193          Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
5194            << FixItHint::CreateInsertion(NamespaceLoc, "inline ");
5195        } else {
5196          Diag(Loc, diag::err_inline_namespace_mismatch)
5197            << IsInline;
5198        }
5199        Diag(PrevNS->getLocation(), diag::note_previous_definition);
5200
5201        IsInline = PrevNS->isInline();
5202      }
5203    } else if (PrevDecl) {
5204      // This is an invalid name redefinition.
5205      Diag(Loc, diag::err_redefinition_different_kind)
5206        << II;
5207      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5208      IsInvalid = true;
5209      // Continue on to push Namespc as current DeclContext and return it.
5210    } else if (II->isStr("std") &&
5211               CurContext->getRedeclContext()->isTranslationUnit()) {
5212      // This is the first "real" definition of the namespace "std", so update
5213      // our cache of the "std" namespace to point at this definition.
5214      PrevNS = getStdNamespace();
5215      IsStd = true;
5216      AddToKnown = !IsInline;
5217    } else {
5218      // We've seen this namespace for the first time.
5219      AddToKnown = !IsInline;
5220    }
5221  } else {
5222    // Anonymous namespaces.
5223
5224    // Determine whether the parent already has an anonymous namespace.
5225    DeclContext *Parent = CurContext->getRedeclContext();
5226    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5227      PrevNS = TU->getAnonymousNamespace();
5228    } else {
5229      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
5230      PrevNS = ND->getAnonymousNamespace();
5231    }
5232
5233    if (PrevNS && IsInline != PrevNS->isInline()) {
5234      // inline-ness must match
5235      Diag(Loc, diag::err_inline_namespace_mismatch)
5236        << IsInline;
5237      Diag(PrevNS->getLocation(), diag::note_previous_definition);
5238
5239      // Recover by ignoring the new namespace's inline status.
5240      IsInline = PrevNS->isInline();
5241    }
5242  }
5243
5244  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
5245                                                 StartLoc, Loc, II, PrevNS);
5246  if (IsInvalid)
5247    Namespc->setInvalidDecl();
5248
5249  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
5250
5251  // FIXME: Should we be merging attributes?
5252  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
5253    PushNamespaceVisibilityAttr(Attr, Loc);
5254
5255  if (IsStd)
5256    StdNamespace = Namespc;
5257  if (AddToKnown)
5258    KnownNamespaces[Namespc] = false;
5259
5260  if (II) {
5261    PushOnScopeChains(Namespc, DeclRegionScope);
5262  } else {
5263    // Link the anonymous namespace into its parent.
5264    DeclContext *Parent = CurContext->getRedeclContext();
5265    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
5266      TU->setAnonymousNamespace(Namespc);
5267    } else {
5268      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
5269    }
5270
5271    CurContext->addDecl(Namespc);
5272
5273    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
5274    //   behaves as if it were replaced by
5275    //     namespace unique { /* empty body */ }
5276    //     using namespace unique;
5277    //     namespace unique { namespace-body }
5278    //   where all occurrences of 'unique' in a translation unit are
5279    //   replaced by the same identifier and this identifier differs
5280    //   from all other identifiers in the entire program.
5281
5282    // We just create the namespace with an empty name and then add an
5283    // implicit using declaration, just like the standard suggests.
5284    //
5285    // CodeGen enforces the "universally unique" aspect by giving all
5286    // declarations semantically contained within an anonymous
5287    // namespace internal linkage.
5288
5289    if (!PrevNS) {
5290      UsingDirectiveDecl* UD
5291        = UsingDirectiveDecl::Create(Context, CurContext,
5292                                     /* 'using' */ LBrace,
5293                                     /* 'namespace' */ SourceLocation(),
5294                                     /* qualifier */ NestedNameSpecifierLoc(),
5295                                     /* identifier */ SourceLocation(),
5296                                     Namespc,
5297                                     /* Ancestor */ CurContext);
5298      UD->setImplicit();
5299      CurContext->addDecl(UD);
5300    }
5301  }
5302
5303  // Although we could have an invalid decl (i.e. the namespace name is a
5304  // redefinition), push it as current DeclContext and try to continue parsing.
5305  // FIXME: We should be able to push Namespc here, so that the each DeclContext
5306  // for the namespace has the declarations that showed up in that particular
5307  // namespace definition.
5308  PushDeclContext(NamespcScope, Namespc);
5309  return Namespc;
5310}
5311
5312/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
5313/// is a namespace alias, returns the namespace it points to.
5314static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
5315  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
5316    return AD->getNamespace();
5317  return dyn_cast_or_null<NamespaceDecl>(D);
5318}
5319
5320/// ActOnFinishNamespaceDef - This callback is called after a namespace is
5321/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
5322void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
5323  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
5324  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
5325  Namespc->setRBraceLoc(RBrace);
5326  PopDeclContext();
5327  if (Namespc->hasAttr<VisibilityAttr>())
5328    PopPragmaVisibility(true, RBrace);
5329}
5330
5331CXXRecordDecl *Sema::getStdBadAlloc() const {
5332  return cast_or_null<CXXRecordDecl>(
5333                                  StdBadAlloc.get(Context.getExternalSource()));
5334}
5335
5336NamespaceDecl *Sema::getStdNamespace() const {
5337  return cast_or_null<NamespaceDecl>(
5338                                 StdNamespace.get(Context.getExternalSource()));
5339}
5340
5341/// \brief Retrieve the special "std" namespace, which may require us to
5342/// implicitly define the namespace.
5343NamespaceDecl *Sema::getOrCreateStdNamespace() {
5344  if (!StdNamespace) {
5345    // The "std" namespace has not yet been defined, so build one implicitly.
5346    StdNamespace = NamespaceDecl::Create(Context,
5347                                         Context.getTranslationUnitDecl(),
5348                                         /*Inline=*/false,
5349                                         SourceLocation(), SourceLocation(),
5350                                         &PP.getIdentifierTable().get("std"),
5351                                         /*PrevDecl=*/0);
5352    getStdNamespace()->setImplicit(true);
5353  }
5354
5355  return getStdNamespace();
5356}
5357
5358bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
5359  assert(getLangOpts().CPlusPlus &&
5360         "Looking for std::initializer_list outside of C++.");
5361
5362  // We're looking for implicit instantiations of
5363  // template <typename E> class std::initializer_list.
5364
5365  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
5366    return false;
5367
5368  ClassTemplateDecl *Template = 0;
5369  const TemplateArgument *Arguments = 0;
5370
5371  if (const RecordType *RT = Ty->getAs<RecordType>()) {
5372
5373    ClassTemplateSpecializationDecl *Specialization =
5374        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
5375    if (!Specialization)
5376      return false;
5377
5378    Template = Specialization->getSpecializedTemplate();
5379    Arguments = Specialization->getTemplateArgs().data();
5380  } else if (const TemplateSpecializationType *TST =
5381                 Ty->getAs<TemplateSpecializationType>()) {
5382    Template = dyn_cast_or_null<ClassTemplateDecl>(
5383        TST->getTemplateName().getAsTemplateDecl());
5384    Arguments = TST->getArgs();
5385  }
5386  if (!Template)
5387    return false;
5388
5389  if (!StdInitializerList) {
5390    // Haven't recognized std::initializer_list yet, maybe this is it.
5391    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
5392    if (TemplateClass->getIdentifier() !=
5393            &PP.getIdentifierTable().get("initializer_list") ||
5394        !getStdNamespace()->InEnclosingNamespaceSetOf(
5395            TemplateClass->getDeclContext()))
5396      return false;
5397    // This is a template called std::initializer_list, but is it the right
5398    // template?
5399    TemplateParameterList *Params = Template->getTemplateParameters();
5400    if (Params->getMinRequiredArguments() != 1)
5401      return false;
5402    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
5403      return false;
5404
5405    // It's the right template.
5406    StdInitializerList = Template;
5407  }
5408
5409  if (Template != StdInitializerList)
5410    return false;
5411
5412  // This is an instance of std::initializer_list. Find the argument type.
5413  if (Element)
5414    *Element = Arguments[0].getAsType();
5415  return true;
5416}
5417
5418static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
5419  NamespaceDecl *Std = S.getStdNamespace();
5420  if (!Std) {
5421    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5422    return 0;
5423  }
5424
5425  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
5426                      Loc, Sema::LookupOrdinaryName);
5427  if (!S.LookupQualifiedName(Result, Std)) {
5428    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
5429    return 0;
5430  }
5431  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
5432  if (!Template) {
5433    Result.suppressDiagnostics();
5434    // We found something weird. Complain about the first thing we found.
5435    NamedDecl *Found = *Result.begin();
5436    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
5437    return 0;
5438  }
5439
5440  // We found some template called std::initializer_list. Now verify that it's
5441  // correct.
5442  TemplateParameterList *Params = Template->getTemplateParameters();
5443  if (Params->getMinRequiredArguments() != 1 ||
5444      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
5445    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
5446    return 0;
5447  }
5448
5449  return Template;
5450}
5451
5452QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
5453  if (!StdInitializerList) {
5454    StdInitializerList = LookupStdInitializerList(*this, Loc);
5455    if (!StdInitializerList)
5456      return QualType();
5457  }
5458
5459  TemplateArgumentListInfo Args(Loc, Loc);
5460  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
5461                                       Context.getTrivialTypeSourceInfo(Element,
5462                                                                        Loc)));
5463  return Context.getCanonicalType(
5464      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
5465}
5466
5467bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
5468  // C++ [dcl.init.list]p2:
5469  //   A constructor is an initializer-list constructor if its first parameter
5470  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
5471  //   std::initializer_list<E> for some type E, and either there are no other
5472  //   parameters or else all other parameters have default arguments.
5473  if (Ctor->getNumParams() < 1 ||
5474      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
5475    return false;
5476
5477  QualType ArgType = Ctor->getParamDecl(0)->getType();
5478  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
5479    ArgType = RT->getPointeeType().getUnqualifiedType();
5480
5481  return isStdInitializerList(ArgType, 0);
5482}
5483
5484/// \brief Determine whether a using statement is in a context where it will be
5485/// apply in all contexts.
5486static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
5487  switch (CurContext->getDeclKind()) {
5488    case Decl::TranslationUnit:
5489      return true;
5490    case Decl::LinkageSpec:
5491      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
5492    default:
5493      return false;
5494  }
5495}
5496
5497namespace {
5498
5499// Callback to only accept typo corrections that are namespaces.
5500class NamespaceValidatorCCC : public CorrectionCandidateCallback {
5501 public:
5502  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5503    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
5504      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
5505    }
5506    return false;
5507  }
5508};
5509
5510}
5511
5512static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
5513                                       CXXScopeSpec &SS,
5514                                       SourceLocation IdentLoc,
5515                                       IdentifierInfo *Ident) {
5516  NamespaceValidatorCCC Validator;
5517  R.clear();
5518  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
5519                                               R.getLookupKind(), Sc, &SS,
5520                                               Validator)) {
5521    std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
5522    std::string CorrectedQuotedStr(Corrected.getQuoted(S.getLangOpts()));
5523    if (DeclContext *DC = S.computeDeclContext(SS, false))
5524      S.Diag(IdentLoc, diag::err_using_directive_member_suggest)
5525        << Ident << DC << CorrectedQuotedStr << SS.getRange()
5526        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5527    else
5528      S.Diag(IdentLoc, diag::err_using_directive_suggest)
5529        << Ident << CorrectedQuotedStr
5530        << FixItHint::CreateReplacement(IdentLoc, CorrectedStr);
5531
5532    S.Diag(Corrected.getCorrectionDecl()->getLocation(),
5533         diag::note_namespace_defined_here) << CorrectedQuotedStr;
5534
5535    R.addDecl(Corrected.getCorrectionDecl());
5536    return true;
5537  }
5538  return false;
5539}
5540
5541Decl *Sema::ActOnUsingDirective(Scope *S,
5542                                          SourceLocation UsingLoc,
5543                                          SourceLocation NamespcLoc,
5544                                          CXXScopeSpec &SS,
5545                                          SourceLocation IdentLoc,
5546                                          IdentifierInfo *NamespcName,
5547                                          AttributeList *AttrList) {
5548  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5549  assert(NamespcName && "Invalid NamespcName.");
5550  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
5551
5552  // This can only happen along a recovery path.
5553  while (S->getFlags() & Scope::TemplateParamScope)
5554    S = S->getParent();
5555  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5556
5557  UsingDirectiveDecl *UDir = 0;
5558  NestedNameSpecifier *Qualifier = 0;
5559  if (SS.isSet())
5560    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
5561
5562  // Lookup namespace name.
5563  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
5564  LookupParsedName(R, S, &SS);
5565  if (R.isAmbiguous())
5566    return 0;
5567
5568  if (R.empty()) {
5569    R.clear();
5570    // Allow "using namespace std;" or "using namespace ::std;" even if
5571    // "std" hasn't been defined yet, for GCC compatibility.
5572    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
5573        NamespcName->isStr("std")) {
5574      Diag(IdentLoc, diag::ext_using_undefined_std);
5575      R.addDecl(getOrCreateStdNamespace());
5576      R.resolveKind();
5577    }
5578    // Otherwise, attempt typo correction.
5579    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
5580  }
5581
5582  if (!R.empty()) {
5583    NamedDecl *Named = R.getFoundDecl();
5584    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
5585        && "expected namespace decl");
5586    // C++ [namespace.udir]p1:
5587    //   A using-directive specifies that the names in the nominated
5588    //   namespace can be used in the scope in which the
5589    //   using-directive appears after the using-directive. During
5590    //   unqualified name lookup (3.4.1), the names appear as if they
5591    //   were declared in the nearest enclosing namespace which
5592    //   contains both the using-directive and the nominated
5593    //   namespace. [Note: in this context, "contains" means "contains
5594    //   directly or indirectly". ]
5595
5596    // Find enclosing context containing both using-directive and
5597    // nominated namespace.
5598    NamespaceDecl *NS = getNamespaceDecl(Named);
5599    DeclContext *CommonAncestor = cast<DeclContext>(NS);
5600    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
5601      CommonAncestor = CommonAncestor->getParent();
5602
5603    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
5604                                      SS.getWithLocInContext(Context),
5605                                      IdentLoc, Named, CommonAncestor);
5606
5607    if (IsUsingDirectiveInToplevelContext(CurContext) &&
5608        !SourceMgr.isFromMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
5609      Diag(IdentLoc, diag::warn_using_directive_in_header);
5610    }
5611
5612    PushUsingDirective(S, UDir);
5613  } else {
5614    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
5615  }
5616
5617  // FIXME: We ignore attributes for now.
5618  return UDir;
5619}
5620
5621void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
5622  // If the scope has an associated entity and the using directive is at
5623  // namespace or translation unit scope, add the UsingDirectiveDecl into
5624  // its lookup structure so qualified name lookup can find it.
5625  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
5626  if (Ctx && !Ctx->isFunctionOrMethod())
5627    Ctx->addDecl(UDir);
5628  else
5629    // Otherwise, it is at block sope. The using-directives will affect lookup
5630    // only to the end of the scope.
5631    S->PushUsingDirective(UDir);
5632}
5633
5634
5635Decl *Sema::ActOnUsingDeclaration(Scope *S,
5636                                  AccessSpecifier AS,
5637                                  bool HasUsingKeyword,
5638                                  SourceLocation UsingLoc,
5639                                  CXXScopeSpec &SS,
5640                                  UnqualifiedId &Name,
5641                                  AttributeList *AttrList,
5642                                  bool IsTypeName,
5643                                  SourceLocation TypenameLoc) {
5644  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
5645
5646  switch (Name.getKind()) {
5647  case UnqualifiedId::IK_ImplicitSelfParam:
5648  case UnqualifiedId::IK_Identifier:
5649  case UnqualifiedId::IK_OperatorFunctionId:
5650  case UnqualifiedId::IK_LiteralOperatorId:
5651  case UnqualifiedId::IK_ConversionFunctionId:
5652    break;
5653
5654  case UnqualifiedId::IK_ConstructorName:
5655  case UnqualifiedId::IK_ConstructorTemplateId:
5656    // C++11 inheriting constructors.
5657    Diag(Name.getLocStart(),
5658         getLangOpts().CPlusPlus0x ?
5659           // FIXME: Produce warn_cxx98_compat_using_decl_constructor
5660           //        instead once inheriting constructors work.
5661           diag::err_using_decl_constructor_unsupported :
5662           diag::err_using_decl_constructor)
5663      << SS.getRange();
5664
5665    if (getLangOpts().CPlusPlus0x) break;
5666
5667    return 0;
5668
5669  case UnqualifiedId::IK_DestructorName:
5670    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
5671      << SS.getRange();
5672    return 0;
5673
5674  case UnqualifiedId::IK_TemplateId:
5675    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
5676      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
5677    return 0;
5678  }
5679
5680  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5681  DeclarationName TargetName = TargetNameInfo.getName();
5682  if (!TargetName)
5683    return 0;
5684
5685  // Warn about using declarations.
5686  // TODO: store that the declaration was written without 'using' and
5687  // talk about access decls instead of using decls in the
5688  // diagnostics.
5689  if (!HasUsingKeyword) {
5690    UsingLoc = Name.getLocStart();
5691
5692    Diag(UsingLoc, diag::warn_access_decl_deprecated)
5693      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
5694  }
5695
5696  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
5697      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
5698    return 0;
5699
5700  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
5701                                        TargetNameInfo, AttrList,
5702                                        /* IsInstantiation */ false,
5703                                        IsTypeName, TypenameLoc);
5704  if (UD)
5705    PushOnScopeChains(UD, S, /*AddToContext*/ false);
5706
5707  return UD;
5708}
5709
5710/// \brief Determine whether a using declaration considers the given
5711/// declarations as "equivalent", e.g., if they are redeclarations of
5712/// the same entity or are both typedefs of the same type.
5713static bool
5714IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
5715                         bool &SuppressRedeclaration) {
5716  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
5717    SuppressRedeclaration = false;
5718    return true;
5719  }
5720
5721  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
5722    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
5723      SuppressRedeclaration = true;
5724      return Context.hasSameType(TD1->getUnderlyingType(),
5725                                 TD2->getUnderlyingType());
5726    }
5727
5728  return false;
5729}
5730
5731
5732/// Determines whether to create a using shadow decl for a particular
5733/// decl, given the set of decls existing prior to this using lookup.
5734bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
5735                                const LookupResult &Previous) {
5736  // Diagnose finding a decl which is not from a base class of the
5737  // current class.  We do this now because there are cases where this
5738  // function will silently decide not to build a shadow decl, which
5739  // will pre-empt further diagnostics.
5740  //
5741  // We don't need to do this in C++0x because we do the check once on
5742  // the qualifier.
5743  //
5744  // FIXME: diagnose the following if we care enough:
5745  //   struct A { int foo; };
5746  //   struct B : A { using A::foo; };
5747  //   template <class T> struct C : A {};
5748  //   template <class T> struct D : C<T> { using B::foo; } // <---
5749  // This is invalid (during instantiation) in C++03 because B::foo
5750  // resolves to the using decl in B, which is not a base class of D<T>.
5751  // We can't diagnose it immediately because C<T> is an unknown
5752  // specialization.  The UsingShadowDecl in D<T> then points directly
5753  // to A::foo, which will look well-formed when we instantiate.
5754  // The right solution is to not collapse the shadow-decl chain.
5755  if (!getLangOpts().CPlusPlus0x && CurContext->isRecord()) {
5756    DeclContext *OrigDC = Orig->getDeclContext();
5757
5758    // Handle enums and anonymous structs.
5759    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
5760    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
5761    while (OrigRec->isAnonymousStructOrUnion())
5762      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
5763
5764    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
5765      if (OrigDC == CurContext) {
5766        Diag(Using->getLocation(),
5767             diag::err_using_decl_nested_name_specifier_is_current_class)
5768          << Using->getQualifierLoc().getSourceRange();
5769        Diag(Orig->getLocation(), diag::note_using_decl_target);
5770        return true;
5771      }
5772
5773      Diag(Using->getQualifierLoc().getBeginLoc(),
5774           diag::err_using_decl_nested_name_specifier_is_not_base_class)
5775        << Using->getQualifier()
5776        << cast<CXXRecordDecl>(CurContext)
5777        << Using->getQualifierLoc().getSourceRange();
5778      Diag(Orig->getLocation(), diag::note_using_decl_target);
5779      return true;
5780    }
5781  }
5782
5783  if (Previous.empty()) return false;
5784
5785  NamedDecl *Target = Orig;
5786  if (isa<UsingShadowDecl>(Target))
5787    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5788
5789  // If the target happens to be one of the previous declarations, we
5790  // don't have a conflict.
5791  //
5792  // FIXME: but we might be increasing its access, in which case we
5793  // should redeclare it.
5794  NamedDecl *NonTag = 0, *Tag = 0;
5795  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5796         I != E; ++I) {
5797    NamedDecl *D = (*I)->getUnderlyingDecl();
5798    bool Result;
5799    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
5800      return Result;
5801
5802    (isa<TagDecl>(D) ? Tag : NonTag) = D;
5803  }
5804
5805  if (Target->isFunctionOrFunctionTemplate()) {
5806    FunctionDecl *FD;
5807    if (isa<FunctionTemplateDecl>(Target))
5808      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
5809    else
5810      FD = cast<FunctionDecl>(Target);
5811
5812    NamedDecl *OldDecl = 0;
5813    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
5814    case Ovl_Overload:
5815      return false;
5816
5817    case Ovl_NonFunction:
5818      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5819      break;
5820
5821    // We found a decl with the exact signature.
5822    case Ovl_Match:
5823      // If we're in a record, we want to hide the target, so we
5824      // return true (without a diagnostic) to tell the caller not to
5825      // build a shadow decl.
5826      if (CurContext->isRecord())
5827        return true;
5828
5829      // If we're not in a record, this is an error.
5830      Diag(Using->getLocation(), diag::err_using_decl_conflict);
5831      break;
5832    }
5833
5834    Diag(Target->getLocation(), diag::note_using_decl_target);
5835    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
5836    return true;
5837  }
5838
5839  // Target is not a function.
5840
5841  if (isa<TagDecl>(Target)) {
5842    // No conflict between a tag and a non-tag.
5843    if (!Tag) return false;
5844
5845    Diag(Using->getLocation(), diag::err_using_decl_conflict);
5846    Diag(Target->getLocation(), diag::note_using_decl_target);
5847    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
5848    return true;
5849  }
5850
5851  // No conflict between a tag and a non-tag.
5852  if (!NonTag) return false;
5853
5854  Diag(Using->getLocation(), diag::err_using_decl_conflict);
5855  Diag(Target->getLocation(), diag::note_using_decl_target);
5856  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
5857  return true;
5858}
5859
5860/// Builds a shadow declaration corresponding to a 'using' declaration.
5861UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
5862                                            UsingDecl *UD,
5863                                            NamedDecl *Orig) {
5864
5865  // If we resolved to another shadow declaration, just coalesce them.
5866  NamedDecl *Target = Orig;
5867  if (isa<UsingShadowDecl>(Target)) {
5868    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
5869    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
5870  }
5871
5872  UsingShadowDecl *Shadow
5873    = UsingShadowDecl::Create(Context, CurContext,
5874                              UD->getLocation(), UD, Target);
5875  UD->addShadowDecl(Shadow);
5876
5877  Shadow->setAccess(UD->getAccess());
5878  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
5879    Shadow->setInvalidDecl();
5880
5881  if (S)
5882    PushOnScopeChains(Shadow, S);
5883  else
5884    CurContext->addDecl(Shadow);
5885
5886
5887  return Shadow;
5888}
5889
5890/// Hides a using shadow declaration.  This is required by the current
5891/// using-decl implementation when a resolvable using declaration in a
5892/// class is followed by a declaration which would hide or override
5893/// one or more of the using decl's targets; for example:
5894///
5895///   struct Base { void foo(int); };
5896///   struct Derived : Base {
5897///     using Base::foo;
5898///     void foo(int);
5899///   };
5900///
5901/// The governing language is C++03 [namespace.udecl]p12:
5902///
5903///   When a using-declaration brings names from a base class into a
5904///   derived class scope, member functions in the derived class
5905///   override and/or hide member functions with the same name and
5906///   parameter types in a base class (rather than conflicting).
5907///
5908/// There are two ways to implement this:
5909///   (1) optimistically create shadow decls when they're not hidden
5910///       by existing declarations, or
5911///   (2) don't create any shadow decls (or at least don't make them
5912///       visible) until we've fully parsed/instantiated the class.
5913/// The problem with (1) is that we might have to retroactively remove
5914/// a shadow decl, which requires several O(n) operations because the
5915/// decl structures are (very reasonably) not designed for removal.
5916/// (2) avoids this but is very fiddly and phase-dependent.
5917void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
5918  if (Shadow->getDeclName().getNameKind() ==
5919        DeclarationName::CXXConversionFunctionName)
5920    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
5921
5922  // Remove it from the DeclContext...
5923  Shadow->getDeclContext()->removeDecl(Shadow);
5924
5925  // ...and the scope, if applicable...
5926  if (S) {
5927    S->RemoveDecl(Shadow);
5928    IdResolver.RemoveDecl(Shadow);
5929  }
5930
5931  // ...and the using decl.
5932  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
5933
5934  // TODO: complain somehow if Shadow was used.  It shouldn't
5935  // be possible for this to happen, because...?
5936}
5937
5938/// Builds a using declaration.
5939///
5940/// \param IsInstantiation - Whether this call arises from an
5941///   instantiation of an unresolved using declaration.  We treat
5942///   the lookup differently for these declarations.
5943NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
5944                                       SourceLocation UsingLoc,
5945                                       CXXScopeSpec &SS,
5946                                       const DeclarationNameInfo &NameInfo,
5947                                       AttributeList *AttrList,
5948                                       bool IsInstantiation,
5949                                       bool IsTypeName,
5950                                       SourceLocation TypenameLoc) {
5951  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
5952  SourceLocation IdentLoc = NameInfo.getLoc();
5953  assert(IdentLoc.isValid() && "Invalid TargetName location.");
5954
5955  // FIXME: We ignore attributes for now.
5956
5957  if (SS.isEmpty()) {
5958    Diag(IdentLoc, diag::err_using_requires_qualname);
5959    return 0;
5960  }
5961
5962  // Do the redeclaration lookup in the current scope.
5963  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
5964                        ForRedeclaration);
5965  Previous.setHideTags(false);
5966  if (S) {
5967    LookupName(Previous, S);
5968
5969    // It is really dumb that we have to do this.
5970    LookupResult::Filter F = Previous.makeFilter();
5971    while (F.hasNext()) {
5972      NamedDecl *D = F.next();
5973      if (!isDeclInScope(D, CurContext, S))
5974        F.erase();
5975    }
5976    F.done();
5977  } else {
5978    assert(IsInstantiation && "no scope in non-instantiation");
5979    assert(CurContext->isRecord() && "scope not record in instantiation");
5980    LookupQualifiedName(Previous, CurContext);
5981  }
5982
5983  // Check for invalid redeclarations.
5984  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
5985    return 0;
5986
5987  // Check for bad qualifiers.
5988  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
5989    return 0;
5990
5991  DeclContext *LookupContext = computeDeclContext(SS);
5992  NamedDecl *D;
5993  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
5994  if (!LookupContext) {
5995    if (IsTypeName) {
5996      // FIXME: not all declaration name kinds are legal here
5997      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
5998                                              UsingLoc, TypenameLoc,
5999                                              QualifierLoc,
6000                                              IdentLoc, NameInfo.getName());
6001    } else {
6002      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
6003                                           QualifierLoc, NameInfo);
6004    }
6005  } else {
6006    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
6007                          NameInfo, IsTypeName);
6008  }
6009  D->setAccess(AS);
6010  CurContext->addDecl(D);
6011
6012  if (!LookupContext) return D;
6013  UsingDecl *UD = cast<UsingDecl>(D);
6014
6015  if (RequireCompleteDeclContext(SS, LookupContext)) {
6016    UD->setInvalidDecl();
6017    return UD;
6018  }
6019
6020  // The normal rules do not apply to inheriting constructor declarations.
6021  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
6022    if (CheckInheritingConstructorUsingDecl(UD))
6023      UD->setInvalidDecl();
6024    return UD;
6025  }
6026
6027  // Otherwise, look up the target name.
6028
6029  LookupResult R(*this, NameInfo, LookupOrdinaryName);
6030
6031  // Unlike most lookups, we don't always want to hide tag
6032  // declarations: tag names are visible through the using declaration
6033  // even if hidden by ordinary names, *except* in a dependent context
6034  // where it's important for the sanity of two-phase lookup.
6035  if (!IsInstantiation)
6036    R.setHideTags(false);
6037
6038  // For the purposes of this lookup, we have a base object type
6039  // equal to that of the current context.
6040  if (CurContext->isRecord()) {
6041    R.setBaseObjectType(
6042                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
6043  }
6044
6045  LookupQualifiedName(R, LookupContext);
6046
6047  if (R.empty()) {
6048    Diag(IdentLoc, diag::err_no_member)
6049      << NameInfo.getName() << LookupContext << SS.getRange();
6050    UD->setInvalidDecl();
6051    return UD;
6052  }
6053
6054  if (R.isAmbiguous()) {
6055    UD->setInvalidDecl();
6056    return UD;
6057  }
6058
6059  if (IsTypeName) {
6060    // If we asked for a typename and got a non-type decl, error out.
6061    if (!R.getAsSingle<TypeDecl>()) {
6062      Diag(IdentLoc, diag::err_using_typename_non_type);
6063      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
6064        Diag((*I)->getUnderlyingDecl()->getLocation(),
6065             diag::note_using_decl_target);
6066      UD->setInvalidDecl();
6067      return UD;
6068    }
6069  } else {
6070    // If we asked for a non-typename and we got a type, error out,
6071    // but only if this is an instantiation of an unresolved using
6072    // decl.  Otherwise just silently find the type name.
6073    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
6074      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
6075      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
6076      UD->setInvalidDecl();
6077      return UD;
6078    }
6079  }
6080
6081  // C++0x N2914 [namespace.udecl]p6:
6082  // A using-declaration shall not name a namespace.
6083  if (R.getAsSingle<NamespaceDecl>()) {
6084    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
6085      << SS.getRange();
6086    UD->setInvalidDecl();
6087    return UD;
6088  }
6089
6090  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
6091    if (!CheckUsingShadowDecl(UD, *I, Previous))
6092      BuildUsingShadowDecl(S, UD, *I);
6093  }
6094
6095  return UD;
6096}
6097
6098/// Additional checks for a using declaration referring to a constructor name.
6099bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
6100  assert(!UD->isTypeName() && "expecting a constructor name");
6101
6102  const Type *SourceType = UD->getQualifier()->getAsType();
6103  assert(SourceType &&
6104         "Using decl naming constructor doesn't have type in scope spec.");
6105  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
6106
6107  // Check whether the named type is a direct base class.
6108  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
6109  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
6110  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
6111       BaseIt != BaseE; ++BaseIt) {
6112    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
6113    if (CanonicalSourceType == BaseType)
6114      break;
6115    if (BaseIt->getType()->isDependentType())
6116      break;
6117  }
6118
6119  if (BaseIt == BaseE) {
6120    // Did not find SourceType in the bases.
6121    Diag(UD->getUsingLocation(),
6122         diag::err_using_decl_constructor_not_in_direct_base)
6123      << UD->getNameInfo().getSourceRange()
6124      << QualType(SourceType, 0) << TargetClass;
6125    return true;
6126  }
6127
6128  if (!CurContext->isDependentContext())
6129    BaseIt->setInheritConstructors();
6130
6131  return false;
6132}
6133
6134/// Checks that the given using declaration is not an invalid
6135/// redeclaration.  Note that this is checking only for the using decl
6136/// itself, not for any ill-formedness among the UsingShadowDecls.
6137bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
6138                                       bool isTypeName,
6139                                       const CXXScopeSpec &SS,
6140                                       SourceLocation NameLoc,
6141                                       const LookupResult &Prev) {
6142  // C++03 [namespace.udecl]p8:
6143  // C++0x [namespace.udecl]p10:
6144  //   A using-declaration is a declaration and can therefore be used
6145  //   repeatedly where (and only where) multiple declarations are
6146  //   allowed.
6147  //
6148  // That's in non-member contexts.
6149  if (!CurContext->getRedeclContext()->isRecord())
6150    return false;
6151
6152  NestedNameSpecifier *Qual
6153    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6154
6155  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
6156    NamedDecl *D = *I;
6157
6158    bool DTypename;
6159    NestedNameSpecifier *DQual;
6160    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
6161      DTypename = UD->isTypeName();
6162      DQual = UD->getQualifier();
6163    } else if (UnresolvedUsingValueDecl *UD
6164                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
6165      DTypename = false;
6166      DQual = UD->getQualifier();
6167    } else if (UnresolvedUsingTypenameDecl *UD
6168                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
6169      DTypename = true;
6170      DQual = UD->getQualifier();
6171    } else continue;
6172
6173    // using decls differ if one says 'typename' and the other doesn't.
6174    // FIXME: non-dependent using decls?
6175    if (isTypeName != DTypename) continue;
6176
6177    // using decls differ if they name different scopes (but note that
6178    // template instantiation can cause this check to trigger when it
6179    // didn't before instantiation).
6180    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
6181        Context.getCanonicalNestedNameSpecifier(DQual))
6182      continue;
6183
6184    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
6185    Diag(D->getLocation(), diag::note_using_decl) << 1;
6186    return true;
6187  }
6188
6189  return false;
6190}
6191
6192
6193/// Checks that the given nested-name qualifier used in a using decl
6194/// in the current context is appropriately related to the current
6195/// scope.  If an error is found, diagnoses it and returns true.
6196bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
6197                                   const CXXScopeSpec &SS,
6198                                   SourceLocation NameLoc) {
6199  DeclContext *NamedContext = computeDeclContext(SS);
6200
6201  if (!CurContext->isRecord()) {
6202    // C++03 [namespace.udecl]p3:
6203    // C++0x [namespace.udecl]p8:
6204    //   A using-declaration for a class member shall be a member-declaration.
6205
6206    // If we weren't able to compute a valid scope, it must be a
6207    // dependent class scope.
6208    if (!NamedContext || NamedContext->isRecord()) {
6209      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
6210        << SS.getRange();
6211      return true;
6212    }
6213
6214    // Otherwise, everything is known to be fine.
6215    return false;
6216  }
6217
6218  // The current scope is a record.
6219
6220  // If the named context is dependent, we can't decide much.
6221  if (!NamedContext) {
6222    // FIXME: in C++0x, we can diagnose if we can prove that the
6223    // nested-name-specifier does not refer to a base class, which is
6224    // still possible in some cases.
6225
6226    // Otherwise we have to conservatively report that things might be
6227    // okay.
6228    return false;
6229  }
6230
6231  if (!NamedContext->isRecord()) {
6232    // Ideally this would point at the last name in the specifier,
6233    // but we don't have that level of source info.
6234    Diag(SS.getRange().getBegin(),
6235         diag::err_using_decl_nested_name_specifier_is_not_class)
6236      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
6237    return true;
6238  }
6239
6240  if (!NamedContext->isDependentContext() &&
6241      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
6242    return true;
6243
6244  if (getLangOpts().CPlusPlus0x) {
6245    // C++0x [namespace.udecl]p3:
6246    //   In a using-declaration used as a member-declaration, the
6247    //   nested-name-specifier shall name a base class of the class
6248    //   being defined.
6249
6250    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
6251                                 cast<CXXRecordDecl>(NamedContext))) {
6252      if (CurContext == NamedContext) {
6253        Diag(NameLoc,
6254             diag::err_using_decl_nested_name_specifier_is_current_class)
6255          << SS.getRange();
6256        return true;
6257      }
6258
6259      Diag(SS.getRange().getBegin(),
6260           diag::err_using_decl_nested_name_specifier_is_not_base_class)
6261        << (NestedNameSpecifier*) SS.getScopeRep()
6262        << cast<CXXRecordDecl>(CurContext)
6263        << SS.getRange();
6264      return true;
6265    }
6266
6267    return false;
6268  }
6269
6270  // C++03 [namespace.udecl]p4:
6271  //   A using-declaration used as a member-declaration shall refer
6272  //   to a member of a base class of the class being defined [etc.].
6273
6274  // Salient point: SS doesn't have to name a base class as long as
6275  // lookup only finds members from base classes.  Therefore we can
6276  // diagnose here only if we can prove that that can't happen,
6277  // i.e. if the class hierarchies provably don't intersect.
6278
6279  // TODO: it would be nice if "definitely valid" results were cached
6280  // in the UsingDecl and UsingShadowDecl so that these checks didn't
6281  // need to be repeated.
6282
6283  struct UserData {
6284    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
6285
6286    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
6287      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6288      Data->Bases.insert(Base);
6289      return true;
6290    }
6291
6292    bool hasDependentBases(const CXXRecordDecl *Class) {
6293      return !Class->forallBases(collect, this);
6294    }
6295
6296    /// Returns true if the base is dependent or is one of the
6297    /// accumulated base classes.
6298    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
6299      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
6300      return !Data->Bases.count(Base);
6301    }
6302
6303    bool mightShareBases(const CXXRecordDecl *Class) {
6304      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
6305    }
6306  };
6307
6308  UserData Data;
6309
6310  // Returns false if we find a dependent base.
6311  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
6312    return false;
6313
6314  // Returns false if the class has a dependent base or if it or one
6315  // of its bases is present in the base set of the current context.
6316  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
6317    return false;
6318
6319  Diag(SS.getRange().getBegin(),
6320       diag::err_using_decl_nested_name_specifier_is_not_base_class)
6321    << (NestedNameSpecifier*) SS.getScopeRep()
6322    << cast<CXXRecordDecl>(CurContext)
6323    << SS.getRange();
6324
6325  return true;
6326}
6327
6328Decl *Sema::ActOnAliasDeclaration(Scope *S,
6329                                  AccessSpecifier AS,
6330                                  MultiTemplateParamsArg TemplateParamLists,
6331                                  SourceLocation UsingLoc,
6332                                  UnqualifiedId &Name,
6333                                  TypeResult Type) {
6334  // Skip up to the relevant declaration scope.
6335  while (S->getFlags() & Scope::TemplateParamScope)
6336    S = S->getParent();
6337  assert((S->getFlags() & Scope::DeclScope) &&
6338         "got alias-declaration outside of declaration scope");
6339
6340  if (Type.isInvalid())
6341    return 0;
6342
6343  bool Invalid = false;
6344  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
6345  TypeSourceInfo *TInfo = 0;
6346  GetTypeFromParser(Type.get(), &TInfo);
6347
6348  if (DiagnoseClassNameShadow(CurContext, NameInfo))
6349    return 0;
6350
6351  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
6352                                      UPPC_DeclarationType)) {
6353    Invalid = true;
6354    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
6355                                             TInfo->getTypeLoc().getBeginLoc());
6356  }
6357
6358  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
6359  LookupName(Previous, S);
6360
6361  // Warn about shadowing the name of a template parameter.
6362  if (Previous.isSingleResult() &&
6363      Previous.getFoundDecl()->isTemplateParameter()) {
6364    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
6365    Previous.clear();
6366  }
6367
6368  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
6369         "name in alias declaration must be an identifier");
6370  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
6371                                               Name.StartLocation,
6372                                               Name.Identifier, TInfo);
6373
6374  NewTD->setAccess(AS);
6375
6376  if (Invalid)
6377    NewTD->setInvalidDecl();
6378
6379  CheckTypedefForVariablyModifiedType(S, NewTD);
6380  Invalid |= NewTD->isInvalidDecl();
6381
6382  bool Redeclaration = false;
6383
6384  NamedDecl *NewND;
6385  if (TemplateParamLists.size()) {
6386    TypeAliasTemplateDecl *OldDecl = 0;
6387    TemplateParameterList *OldTemplateParams = 0;
6388
6389    if (TemplateParamLists.size() != 1) {
6390      Diag(UsingLoc, diag::err_alias_template_extra_headers)
6391        << SourceRange(TemplateParamLists.get()[1]->getTemplateLoc(),
6392         TemplateParamLists.get()[TemplateParamLists.size()-1]->getRAngleLoc());
6393    }
6394    TemplateParameterList *TemplateParams = TemplateParamLists.get()[0];
6395
6396    // Only consider previous declarations in the same scope.
6397    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
6398                         /*ExplicitInstantiationOrSpecialization*/false);
6399    if (!Previous.empty()) {
6400      Redeclaration = true;
6401
6402      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
6403      if (!OldDecl && !Invalid) {
6404        Diag(UsingLoc, diag::err_redefinition_different_kind)
6405          << Name.Identifier;
6406
6407        NamedDecl *OldD = Previous.getRepresentativeDecl();
6408        if (OldD->getLocation().isValid())
6409          Diag(OldD->getLocation(), diag::note_previous_definition);
6410
6411        Invalid = true;
6412      }
6413
6414      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
6415        if (TemplateParameterListsAreEqual(TemplateParams,
6416                                           OldDecl->getTemplateParameters(),
6417                                           /*Complain=*/true,
6418                                           TPL_TemplateMatch))
6419          OldTemplateParams = OldDecl->getTemplateParameters();
6420        else
6421          Invalid = true;
6422
6423        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
6424        if (!Invalid &&
6425            !Context.hasSameType(OldTD->getUnderlyingType(),
6426                                 NewTD->getUnderlyingType())) {
6427          // FIXME: The C++0x standard does not clearly say this is ill-formed,
6428          // but we can't reasonably accept it.
6429          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
6430            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
6431          if (OldTD->getLocation().isValid())
6432            Diag(OldTD->getLocation(), diag::note_previous_definition);
6433          Invalid = true;
6434        }
6435      }
6436    }
6437
6438    // Merge any previous default template arguments into our parameters,
6439    // and check the parameter list.
6440    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
6441                                   TPC_TypeAliasTemplate))
6442      return 0;
6443
6444    TypeAliasTemplateDecl *NewDecl =
6445      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
6446                                    Name.Identifier, TemplateParams,
6447                                    NewTD);
6448
6449    NewDecl->setAccess(AS);
6450
6451    if (Invalid)
6452      NewDecl->setInvalidDecl();
6453    else if (OldDecl)
6454      NewDecl->setPreviousDeclaration(OldDecl);
6455
6456    NewND = NewDecl;
6457  } else {
6458    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
6459    NewND = NewTD;
6460  }
6461
6462  if (!Redeclaration)
6463    PushOnScopeChains(NewND, S);
6464
6465  return NewND;
6466}
6467
6468Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
6469                                             SourceLocation NamespaceLoc,
6470                                             SourceLocation AliasLoc,
6471                                             IdentifierInfo *Alias,
6472                                             CXXScopeSpec &SS,
6473                                             SourceLocation IdentLoc,
6474                                             IdentifierInfo *Ident) {
6475
6476  // Lookup the namespace name.
6477  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
6478  LookupParsedName(R, S, &SS);
6479
6480  // Check if we have a previous declaration with the same name.
6481  NamedDecl *PrevDecl
6482    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
6483                       ForRedeclaration);
6484  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
6485    PrevDecl = 0;
6486
6487  if (PrevDecl) {
6488    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
6489      // We already have an alias with the same name that points to the same
6490      // namespace, so don't create a new one.
6491      // FIXME: At some point, we'll want to create the (redundant)
6492      // declaration to maintain better source information.
6493      if (!R.isAmbiguous() && !R.empty() &&
6494          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
6495        return 0;
6496    }
6497
6498    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
6499      diag::err_redefinition_different_kind;
6500    Diag(AliasLoc, DiagID) << Alias;
6501    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6502    return 0;
6503  }
6504
6505  if (R.isAmbiguous())
6506    return 0;
6507
6508  if (R.empty()) {
6509    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
6510      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6511      return 0;
6512    }
6513  }
6514
6515  NamespaceAliasDecl *AliasDecl =
6516    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
6517                               Alias, SS.getWithLocInContext(Context),
6518                               IdentLoc, R.getFoundDecl());
6519
6520  PushOnScopeChains(AliasDecl, S);
6521  return AliasDecl;
6522}
6523
6524namespace {
6525  /// \brief Scoped object used to handle the state changes required in Sema
6526  /// to implicitly define the body of a C++ member function;
6527  class ImplicitlyDefinedFunctionScope {
6528    Sema &S;
6529    Sema::ContextRAII SavedContext;
6530
6531  public:
6532    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
6533      : S(S), SavedContext(S, Method)
6534    {
6535      S.PushFunctionScope();
6536      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
6537    }
6538
6539    ~ImplicitlyDefinedFunctionScope() {
6540      S.PopExpressionEvaluationContext();
6541      S.PopFunctionScopeInfo();
6542    }
6543  };
6544}
6545
6546Sema::ImplicitExceptionSpecification
6547Sema::ComputeDefaultedDefaultCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6548  // C++ [except.spec]p14:
6549  //   An implicitly declared special member function (Clause 12) shall have an
6550  //   exception-specification. [...]
6551  ImplicitExceptionSpecification ExceptSpec(*this);
6552  if (ClassDecl->isInvalidDecl())
6553    return ExceptSpec;
6554
6555  // Direct base-class constructors.
6556  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6557                                       BEnd = ClassDecl->bases_end();
6558       B != BEnd; ++B) {
6559    if (B->isVirtual()) // Handled below.
6560      continue;
6561
6562    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6563      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6564      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6565      // If this is a deleted function, add it anyway. This might be conformant
6566      // with the standard. This might not. I'm not sure. It might not matter.
6567      if (Constructor)
6568        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6569    }
6570  }
6571
6572  // Virtual base-class constructors.
6573  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6574                                       BEnd = ClassDecl->vbases_end();
6575       B != BEnd; ++B) {
6576    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
6577      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6578      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
6579      // If this is a deleted function, add it anyway. This might be conformant
6580      // with the standard. This might not. I'm not sure. It might not matter.
6581      if (Constructor)
6582        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
6583    }
6584  }
6585
6586  // Field constructors.
6587  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6588                               FEnd = ClassDecl->field_end();
6589       F != FEnd; ++F) {
6590    if (F->hasInClassInitializer()) {
6591      if (Expr *E = F->getInClassInitializer())
6592        ExceptSpec.CalledExpr(E);
6593      else if (!F->isInvalidDecl())
6594        ExceptSpec.SetDelayed();
6595    } else if (const RecordType *RecordTy
6596              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
6597      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6598      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
6599      // If this is a deleted function, add it anyway. This might be conformant
6600      // with the standard. This might not. I'm not sure. It might not matter.
6601      // In particular, the problem is that this function never gets called. It
6602      // might just be ill-formed because this function attempts to refer to
6603      // a deleted function here.
6604      if (Constructor)
6605        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
6606    }
6607  }
6608
6609  return ExceptSpec;
6610}
6611
6612CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
6613                                                     CXXRecordDecl *ClassDecl) {
6614  // C++ [class.ctor]p5:
6615  //   A default constructor for a class X is a constructor of class X
6616  //   that can be called without an argument. If there is no
6617  //   user-declared constructor for class X, a default constructor is
6618  //   implicitly declared. An implicitly-declared default constructor
6619  //   is an inline public member of its class.
6620  assert(!ClassDecl->hasUserDeclaredConstructor() &&
6621         "Should not build implicit default constructor!");
6622
6623  ImplicitExceptionSpecification Spec =
6624    ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6625  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6626
6627  // Create the actual constructor declaration.
6628  CanQualType ClassType
6629    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6630  SourceLocation ClassLoc = ClassDecl->getLocation();
6631  DeclarationName Name
6632    = Context.DeclarationNames.getCXXConstructorName(ClassType);
6633  DeclarationNameInfo NameInfo(Name, ClassLoc);
6634  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
6635      Context, ClassDecl, ClassLoc, NameInfo,
6636      Context.getFunctionType(Context.VoidTy, 0, 0, EPI), /*TInfo=*/0,
6637      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
6638      /*isConstexpr=*/ClassDecl->defaultedDefaultConstructorIsConstexpr() &&
6639        getLangOpts().CPlusPlus0x);
6640  DefaultCon->setAccess(AS_public);
6641  DefaultCon->setDefaulted();
6642  DefaultCon->setImplicit();
6643  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
6644
6645  // Note that we have declared this constructor.
6646  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
6647
6648  if (Scope *S = getScopeForContext(ClassDecl))
6649    PushOnScopeChains(DefaultCon, S, false);
6650  ClassDecl->addDecl(DefaultCon);
6651
6652  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
6653    DefaultCon->setDeletedAsWritten();
6654
6655  return DefaultCon;
6656}
6657
6658void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
6659                                            CXXConstructorDecl *Constructor) {
6660  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
6661          !Constructor->doesThisDeclarationHaveABody() &&
6662          !Constructor->isDeleted()) &&
6663    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
6664
6665  CXXRecordDecl *ClassDecl = Constructor->getParent();
6666  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
6667
6668  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
6669  DiagnosticErrorTrap Trap(Diags);
6670  if (SetCtorInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
6671      Trap.hasErrorOccurred()) {
6672    Diag(CurrentLocation, diag::note_member_synthesized_at)
6673      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
6674    Constructor->setInvalidDecl();
6675    return;
6676  }
6677
6678  SourceLocation Loc = Constructor->getLocation();
6679  Constructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
6680
6681  Constructor->setUsed();
6682  MarkVTableUsed(CurrentLocation, ClassDecl);
6683
6684  if (ASTMutationListener *L = getASTMutationListener()) {
6685    L->CompletedImplicitDefinition(Constructor);
6686  }
6687}
6688
6689/// Get any existing defaulted default constructor for the given class. Do not
6690/// implicitly define one if it does not exist.
6691static CXXConstructorDecl *getDefaultedDefaultConstructorUnsafe(Sema &Self,
6692                                                             CXXRecordDecl *D) {
6693  ASTContext &Context = Self.Context;
6694  QualType ClassType = Context.getTypeDeclType(D);
6695  DeclarationName ConstructorName
6696    = Context.DeclarationNames.getCXXConstructorName(
6697                      Context.getCanonicalType(ClassType.getUnqualifiedType()));
6698
6699  DeclContext::lookup_const_iterator Con, ConEnd;
6700  for (llvm::tie(Con, ConEnd) = D->lookup(ConstructorName);
6701       Con != ConEnd; ++Con) {
6702    // A function template cannot be defaulted.
6703    if (isa<FunctionTemplateDecl>(*Con))
6704      continue;
6705
6706    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
6707    if (Constructor->isDefaultConstructor())
6708      return Constructor->isDefaulted() ? Constructor : 0;
6709  }
6710  return 0;
6711}
6712
6713void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
6714  if (!D) return;
6715  AdjustDeclIfTemplate(D);
6716
6717  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(D);
6718  CXXConstructorDecl *CtorDecl
6719    = getDefaultedDefaultConstructorUnsafe(*this, ClassDecl);
6720
6721  if (!CtorDecl) return;
6722
6723  // Compute the exception specification for the default constructor.
6724  const FunctionProtoType *CtorTy =
6725    CtorDecl->getType()->castAs<FunctionProtoType>();
6726  if (CtorTy->getExceptionSpecType() == EST_Delayed) {
6727    // FIXME: Don't do this unless the exception spec is needed.
6728    ImplicitExceptionSpecification Spec =
6729      ComputeDefaultedDefaultCtorExceptionSpec(ClassDecl);
6730    FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6731    assert(EPI.ExceptionSpecType != EST_Delayed);
6732
6733    CtorDecl->setType(Context.getFunctionType(Context.VoidTy, 0, 0, EPI));
6734  }
6735
6736  // If the default constructor is explicitly defaulted, checking the exception
6737  // specification is deferred until now.
6738  if (!CtorDecl->isInvalidDecl() && CtorDecl->isExplicitlyDefaulted() &&
6739      !ClassDecl->isDependentType())
6740    CheckExplicitlyDefaultedSpecialMember(CtorDecl);
6741}
6742
6743void Sema::DeclareInheritedConstructors(CXXRecordDecl *ClassDecl) {
6744  // We start with an initial pass over the base classes to collect those that
6745  // inherit constructors from. If there are none, we can forgo all further
6746  // processing.
6747  typedef SmallVector<const RecordType *, 4> BasesVector;
6748  BasesVector BasesToInheritFrom;
6749  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
6750                                          BaseE = ClassDecl->bases_end();
6751         BaseIt != BaseE; ++BaseIt) {
6752    if (BaseIt->getInheritConstructors()) {
6753      QualType Base = BaseIt->getType();
6754      if (Base->isDependentType()) {
6755        // If we inherit constructors from anything that is dependent, just
6756        // abort processing altogether. We'll get another chance for the
6757        // instantiations.
6758        return;
6759      }
6760      BasesToInheritFrom.push_back(Base->castAs<RecordType>());
6761    }
6762  }
6763  if (BasesToInheritFrom.empty())
6764    return;
6765
6766  // Now collect the constructors that we already have in the current class.
6767  // Those take precedence over inherited constructors.
6768  // C++0x [class.inhctor]p3: [...] a constructor is implicitly declared [...]
6769  //   unless there is a user-declared constructor with the same signature in
6770  //   the class where the using-declaration appears.
6771  llvm::SmallSet<const Type *, 8> ExistingConstructors;
6772  for (CXXRecordDecl::ctor_iterator CtorIt = ClassDecl->ctor_begin(),
6773                                    CtorE = ClassDecl->ctor_end();
6774       CtorIt != CtorE; ++CtorIt) {
6775    ExistingConstructors.insert(
6776        Context.getCanonicalType(CtorIt->getType()).getTypePtr());
6777  }
6778
6779  DeclarationName CreatedCtorName =
6780      Context.DeclarationNames.getCXXConstructorName(
6781          ClassDecl->getTypeForDecl()->getCanonicalTypeUnqualified());
6782
6783  // Now comes the true work.
6784  // First, we keep a map from constructor types to the base that introduced
6785  // them. Needed for finding conflicting constructors. We also keep the
6786  // actually inserted declarations in there, for pretty diagnostics.
6787  typedef std::pair<CanQualType, CXXConstructorDecl *> ConstructorInfo;
6788  typedef llvm::DenseMap<const Type *, ConstructorInfo> ConstructorToSourceMap;
6789  ConstructorToSourceMap InheritedConstructors;
6790  for (BasesVector::iterator BaseIt = BasesToInheritFrom.begin(),
6791                             BaseE = BasesToInheritFrom.end();
6792       BaseIt != BaseE; ++BaseIt) {
6793    const RecordType *Base = *BaseIt;
6794    CanQualType CanonicalBase = Base->getCanonicalTypeUnqualified();
6795    CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(Base->getDecl());
6796    for (CXXRecordDecl::ctor_iterator CtorIt = BaseDecl->ctor_begin(),
6797                                      CtorE = BaseDecl->ctor_end();
6798         CtorIt != CtorE; ++CtorIt) {
6799      // Find the using declaration for inheriting this base's constructors.
6800      // FIXME: Don't perform name lookup just to obtain a source location!
6801      DeclarationName Name =
6802          Context.DeclarationNames.getCXXConstructorName(CanonicalBase);
6803      LookupResult Result(*this, Name, SourceLocation(), LookupUsingDeclName);
6804      LookupQualifiedName(Result, CurContext);
6805      UsingDecl *UD = Result.getAsSingle<UsingDecl>();
6806      SourceLocation UsingLoc = UD ? UD->getLocation() :
6807                                     ClassDecl->getLocation();
6808
6809      // C++0x [class.inhctor]p1: The candidate set of inherited constructors
6810      //   from the class X named in the using-declaration consists of actual
6811      //   constructors and notional constructors that result from the
6812      //   transformation of defaulted parameters as follows:
6813      //   - all non-template default constructors of X, and
6814      //   - for each non-template constructor of X that has at least one
6815      //     parameter with a default argument, the set of constructors that
6816      //     results from omitting any ellipsis parameter specification and
6817      //     successively omitting parameters with a default argument from the
6818      //     end of the parameter-type-list.
6819      CXXConstructorDecl *BaseCtor = &*CtorIt;
6820      bool CanBeCopyOrMove = BaseCtor->isCopyOrMoveConstructor();
6821      const FunctionProtoType *BaseCtorType =
6822          BaseCtor->getType()->getAs<FunctionProtoType>();
6823
6824      for (unsigned params = BaseCtor->getMinRequiredArguments(),
6825                    maxParams = BaseCtor->getNumParams();
6826           params <= maxParams; ++params) {
6827        // Skip default constructors. They're never inherited.
6828        if (params == 0)
6829          continue;
6830        // Skip copy and move constructors for the same reason.
6831        if (CanBeCopyOrMove && params == 1)
6832          continue;
6833
6834        // Build up a function type for this particular constructor.
6835        // FIXME: The working paper does not consider that the exception spec
6836        // for the inheriting constructor might be larger than that of the
6837        // source. This code doesn't yet, either. When it does, this code will
6838        // need to be delayed until after exception specifications and in-class
6839        // member initializers are attached.
6840        const Type *NewCtorType;
6841        if (params == maxParams)
6842          NewCtorType = BaseCtorType;
6843        else {
6844          SmallVector<QualType, 16> Args;
6845          for (unsigned i = 0; i < params; ++i) {
6846            Args.push_back(BaseCtorType->getArgType(i));
6847          }
6848          FunctionProtoType::ExtProtoInfo ExtInfo =
6849              BaseCtorType->getExtProtoInfo();
6850          ExtInfo.Variadic = false;
6851          NewCtorType = Context.getFunctionType(BaseCtorType->getResultType(),
6852                                                Args.data(), params, ExtInfo)
6853                       .getTypePtr();
6854        }
6855        const Type *CanonicalNewCtorType =
6856            Context.getCanonicalType(NewCtorType);
6857
6858        // Now that we have the type, first check if the class already has a
6859        // constructor with this signature.
6860        if (ExistingConstructors.count(CanonicalNewCtorType))
6861          continue;
6862
6863        // Then we check if we have already declared an inherited constructor
6864        // with this signature.
6865        std::pair<ConstructorToSourceMap::iterator, bool> result =
6866            InheritedConstructors.insert(std::make_pair(
6867                CanonicalNewCtorType,
6868                std::make_pair(CanonicalBase, (CXXConstructorDecl*)0)));
6869        if (!result.second) {
6870          // Already in the map. If it came from a different class, that's an
6871          // error. Not if it's from the same.
6872          CanQualType PreviousBase = result.first->second.first;
6873          if (CanonicalBase != PreviousBase) {
6874            const CXXConstructorDecl *PrevCtor = result.first->second.second;
6875            const CXXConstructorDecl *PrevBaseCtor =
6876                PrevCtor->getInheritedConstructor();
6877            assert(PrevBaseCtor && "Conflicting constructor was not inherited");
6878
6879            Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
6880            Diag(BaseCtor->getLocation(),
6881                 diag::note_using_decl_constructor_conflict_current_ctor);
6882            Diag(PrevBaseCtor->getLocation(),
6883                 diag::note_using_decl_constructor_conflict_previous_ctor);
6884            Diag(PrevCtor->getLocation(),
6885                 diag::note_using_decl_constructor_conflict_previous_using);
6886          }
6887          continue;
6888        }
6889
6890        // OK, we're there, now add the constructor.
6891        // C++0x [class.inhctor]p8: [...] that would be performed by a
6892        //   user-written inline constructor [...]
6893        DeclarationNameInfo DNI(CreatedCtorName, UsingLoc);
6894        CXXConstructorDecl *NewCtor = CXXConstructorDecl::Create(
6895            Context, ClassDecl, UsingLoc, DNI, QualType(NewCtorType, 0),
6896            /*TInfo=*/0, BaseCtor->isExplicit(), /*Inline=*/true,
6897            /*ImplicitlyDeclared=*/true,
6898            // FIXME: Due to a defect in the standard, we treat inherited
6899            // constructors as constexpr even if that makes them ill-formed.
6900            /*Constexpr=*/BaseCtor->isConstexpr());
6901        NewCtor->setAccess(BaseCtor->getAccess());
6902
6903        // Build up the parameter decls and add them.
6904        SmallVector<ParmVarDecl *, 16> ParamDecls;
6905        for (unsigned i = 0; i < params; ++i) {
6906          ParamDecls.push_back(ParmVarDecl::Create(Context, NewCtor,
6907                                                   UsingLoc, UsingLoc,
6908                                                   /*IdentifierInfo=*/0,
6909                                                   BaseCtorType->getArgType(i),
6910                                                   /*TInfo=*/0, SC_None,
6911                                                   SC_None, /*DefaultArg=*/0));
6912        }
6913        NewCtor->setParams(ParamDecls);
6914        NewCtor->setInheritedConstructor(BaseCtor);
6915
6916        ClassDecl->addDecl(NewCtor);
6917        result.first->second.second = NewCtor;
6918      }
6919    }
6920  }
6921}
6922
6923Sema::ImplicitExceptionSpecification
6924Sema::ComputeDefaultedDtorExceptionSpec(CXXRecordDecl *ClassDecl) {
6925  // C++ [except.spec]p14:
6926  //   An implicitly declared special member function (Clause 12) shall have
6927  //   an exception-specification.
6928  ImplicitExceptionSpecification ExceptSpec(*this);
6929  if (ClassDecl->isInvalidDecl())
6930    return ExceptSpec;
6931
6932  // Direct base-class destructors.
6933  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
6934                                       BEnd = ClassDecl->bases_end();
6935       B != BEnd; ++B) {
6936    if (B->isVirtual()) // Handled below.
6937      continue;
6938
6939    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6940      ExceptSpec.CalledDecl(B->getLocStart(),
6941                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6942  }
6943
6944  // Virtual base-class destructors.
6945  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
6946                                       BEnd = ClassDecl->vbases_end();
6947       B != BEnd; ++B) {
6948    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
6949      ExceptSpec.CalledDecl(B->getLocStart(),
6950                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
6951  }
6952
6953  // Field destructors.
6954  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
6955                               FEnd = ClassDecl->field_end();
6956       F != FEnd; ++F) {
6957    if (const RecordType *RecordTy
6958        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
6959      ExceptSpec.CalledDecl(F->getLocation(),
6960                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
6961  }
6962
6963  return ExceptSpec;
6964}
6965
6966CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
6967  // C++ [class.dtor]p2:
6968  //   If a class has no user-declared destructor, a destructor is
6969  //   declared implicitly. An implicitly-declared destructor is an
6970  //   inline public member of its class.
6971
6972  ImplicitExceptionSpecification Spec =
6973      ComputeDefaultedDtorExceptionSpec(ClassDecl);
6974  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
6975
6976  // Create the actual destructor declaration.
6977  QualType Ty = Context.getFunctionType(Context.VoidTy, 0, 0, EPI);
6978
6979  CanQualType ClassType
6980    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6981  SourceLocation ClassLoc = ClassDecl->getLocation();
6982  DeclarationName Name
6983    = Context.DeclarationNames.getCXXDestructorName(ClassType);
6984  DeclarationNameInfo NameInfo(Name, ClassLoc);
6985  CXXDestructorDecl *Destructor
6986      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, Ty, 0,
6987                                  /*isInline=*/true,
6988                                  /*isImplicitlyDeclared=*/true);
6989  Destructor->setAccess(AS_public);
6990  Destructor->setDefaulted();
6991  Destructor->setImplicit();
6992  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
6993
6994  // Note that we have declared this destructor.
6995  ++ASTContext::NumImplicitDestructorsDeclared;
6996
6997  // Introduce this destructor into its scope.
6998  if (Scope *S = getScopeForContext(ClassDecl))
6999    PushOnScopeChains(Destructor, S, false);
7000  ClassDecl->addDecl(Destructor);
7001
7002  // This could be uniqued if it ever proves significant.
7003  Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
7004
7005  AddOverriddenMethods(ClassDecl, Destructor);
7006
7007  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
7008    Destructor->setDeletedAsWritten();
7009
7010  return Destructor;
7011}
7012
7013void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
7014                                    CXXDestructorDecl *Destructor) {
7015  assert((Destructor->isDefaulted() &&
7016          !Destructor->doesThisDeclarationHaveABody() &&
7017          !Destructor->isDeleted()) &&
7018         "DefineImplicitDestructor - call it for implicit default dtor");
7019  CXXRecordDecl *ClassDecl = Destructor->getParent();
7020  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
7021
7022  if (Destructor->isInvalidDecl())
7023    return;
7024
7025  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
7026
7027  DiagnosticErrorTrap Trap(Diags);
7028  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7029                                         Destructor->getParent());
7030
7031  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
7032    Diag(CurrentLocation, diag::note_member_synthesized_at)
7033      << CXXDestructor << Context.getTagDeclType(ClassDecl);
7034
7035    Destructor->setInvalidDecl();
7036    return;
7037  }
7038
7039  SourceLocation Loc = Destructor->getLocation();
7040  Destructor->setBody(new (Context) CompoundStmt(Context, 0, 0, Loc, Loc));
7041  Destructor->setImplicitlyDefined(true);
7042  Destructor->setUsed();
7043  MarkVTableUsed(CurrentLocation, ClassDecl);
7044
7045  if (ASTMutationListener *L = getASTMutationListener()) {
7046    L->CompletedImplicitDefinition(Destructor);
7047  }
7048}
7049
7050/// \brief Perform any semantic analysis which needs to be delayed until all
7051/// pending class member declarations have been parsed.
7052void Sema::ActOnFinishCXXMemberDecls() {
7053  // Now we have parsed all exception specifications, determine the implicit
7054  // exception specifications for destructors.
7055  for (unsigned i = 0, e = DelayedDestructorExceptionSpecs.size();
7056       i != e; ++i) {
7057    CXXDestructorDecl *Dtor = DelayedDestructorExceptionSpecs[i];
7058    AdjustDestructorExceptionSpec(Dtor->getParent(), Dtor, true);
7059  }
7060  DelayedDestructorExceptionSpecs.clear();
7061
7062  // Perform any deferred checking of exception specifications for virtual
7063  // destructors.
7064  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
7065       i != e; ++i) {
7066    const CXXDestructorDecl *Dtor =
7067        DelayedDestructorExceptionSpecChecks[i].first;
7068    assert(!Dtor->getParent()->isDependentType() &&
7069           "Should not ever add destructors of templates into the list.");
7070    CheckOverridingFunctionExceptionSpec(Dtor,
7071        DelayedDestructorExceptionSpecChecks[i].second);
7072  }
7073  DelayedDestructorExceptionSpecChecks.clear();
7074}
7075
7076void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *classDecl,
7077                                         CXXDestructorDecl *destructor,
7078                                         bool WasDelayed) {
7079  // C++11 [class.dtor]p3:
7080  //   A declaration of a destructor that does not have an exception-
7081  //   specification is implicitly considered to have the same exception-
7082  //   specification as an implicit declaration.
7083  const FunctionProtoType *dtorType = destructor->getType()->
7084                                        getAs<FunctionProtoType>();
7085  if (!WasDelayed && dtorType->hasExceptionSpec())
7086    return;
7087
7088  ImplicitExceptionSpecification exceptSpec =
7089      ComputeDefaultedDtorExceptionSpec(classDecl);
7090
7091  // Replace the destructor's type, building off the existing one. Fortunately,
7092  // the only thing of interest in the destructor type is its extended info.
7093  // The return and arguments are fixed.
7094  FunctionProtoType::ExtProtoInfo epi = dtorType->getExtProtoInfo();
7095  epi.ExceptionSpecType = exceptSpec.getExceptionSpecType();
7096  epi.NumExceptions = exceptSpec.size();
7097  epi.Exceptions = exceptSpec.data();
7098  QualType ty = Context.getFunctionType(Context.VoidTy, 0, 0, epi);
7099
7100  destructor->setType(ty);
7101
7102  // If we can't compute the exception specification for this destructor yet
7103  // (because it depends on an exception specification which we have not parsed
7104  // yet), make a note that we need to try again when the class is complete.
7105  if (epi.ExceptionSpecType == EST_Delayed) {
7106    assert(!WasDelayed && "couldn't compute destructor exception spec");
7107    DelayedDestructorExceptionSpecs.push_back(destructor);
7108  }
7109
7110  // FIXME: If the destructor has a body that could throw, and the newly created
7111  // spec doesn't allow exceptions, we should emit a warning, because this
7112  // change in behavior can break conforming C++03 programs at runtime.
7113  // However, we don't have a body yet, so it needs to be done somewhere else.
7114}
7115
7116/// \brief Builds a statement that copies/moves the given entity from \p From to
7117/// \c To.
7118///
7119/// This routine is used to copy/move the members of a class with an
7120/// implicitly-declared copy/move assignment operator. When the entities being
7121/// copied are arrays, this routine builds for loops to copy them.
7122///
7123/// \param S The Sema object used for type-checking.
7124///
7125/// \param Loc The location where the implicit copy/move is being generated.
7126///
7127/// \param T The type of the expressions being copied/moved. Both expressions
7128/// must have this type.
7129///
7130/// \param To The expression we are copying/moving to.
7131///
7132/// \param From The expression we are copying/moving from.
7133///
7134/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
7135/// Otherwise, it's a non-static member subobject.
7136///
7137/// \param Copying Whether we're copying or moving.
7138///
7139/// \param Depth Internal parameter recording the depth of the recursion.
7140///
7141/// \returns A statement or a loop that copies the expressions.
7142static StmtResult
7143BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
7144                      Expr *To, Expr *From,
7145                      bool CopyingBaseSubobject, bool Copying,
7146                      unsigned Depth = 0) {
7147  // C++0x [class.copy]p28:
7148  //   Each subobject is assigned in the manner appropriate to its type:
7149  //
7150  //     - if the subobject is of class type, as if by a call to operator= with
7151  //       the subobject as the object expression and the corresponding
7152  //       subobject of x as a single function argument (as if by explicit
7153  //       qualification; that is, ignoring any possible virtual overriding
7154  //       functions in more derived classes);
7155  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
7156    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7157
7158    // Look for operator=.
7159    DeclarationName Name
7160      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7161    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
7162    S.LookupQualifiedName(OpLookup, ClassDecl, false);
7163
7164    // Filter out any result that isn't a copy/move-assignment operator.
7165    LookupResult::Filter F = OpLookup.makeFilter();
7166    while (F.hasNext()) {
7167      NamedDecl *D = F.next();
7168      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
7169        if (Method->isCopyAssignmentOperator() ||
7170            (!Copying && Method->isMoveAssignmentOperator()))
7171          continue;
7172
7173      F.erase();
7174    }
7175    F.done();
7176
7177    // Suppress the protected check (C++ [class.protected]) for each of the
7178    // assignment operators we found. This strange dance is required when
7179    // we're assigning via a base classes's copy-assignment operator. To
7180    // ensure that we're getting the right base class subobject (without
7181    // ambiguities), we need to cast "this" to that subobject type; to
7182    // ensure that we don't go through the virtual call mechanism, we need
7183    // to qualify the operator= name with the base class (see below). However,
7184    // this means that if the base class has a protected copy assignment
7185    // operator, the protected member access check will fail. So, we
7186    // rewrite "protected" access to "public" access in this case, since we
7187    // know by construction that we're calling from a derived class.
7188    if (CopyingBaseSubobject) {
7189      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
7190           L != LEnd; ++L) {
7191        if (L.getAccess() == AS_protected)
7192          L.setAccess(AS_public);
7193      }
7194    }
7195
7196    // Create the nested-name-specifier that will be used to qualify the
7197    // reference to operator=; this is required to suppress the virtual
7198    // call mechanism.
7199    CXXScopeSpec SS;
7200    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
7201    SS.MakeTrivial(S.Context,
7202                   NestedNameSpecifier::Create(S.Context, 0, false,
7203                                               CanonicalT),
7204                   Loc);
7205
7206    // Create the reference to operator=.
7207    ExprResult OpEqualRef
7208      = S.BuildMemberReferenceExpr(To, T, Loc, /*isArrow=*/false, SS,
7209                                   /*TemplateKWLoc=*/SourceLocation(),
7210                                   /*FirstQualifierInScope=*/0,
7211                                   OpLookup,
7212                                   /*TemplateArgs=*/0,
7213                                   /*SuppressQualifierCheck=*/true);
7214    if (OpEqualRef.isInvalid())
7215      return StmtError();
7216
7217    // Build the call to the assignment operator.
7218
7219    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
7220                                                  OpEqualRef.takeAs<Expr>(),
7221                                                  Loc, &From, 1, Loc);
7222    if (Call.isInvalid())
7223      return StmtError();
7224
7225    return S.Owned(Call.takeAs<Stmt>());
7226  }
7227
7228  //     - if the subobject is of scalar type, the built-in assignment
7229  //       operator is used.
7230  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
7231  if (!ArrayTy) {
7232    ExprResult Assignment = S.CreateBuiltinBinOp(Loc, BO_Assign, To, From);
7233    if (Assignment.isInvalid())
7234      return StmtError();
7235
7236    return S.Owned(Assignment.takeAs<Stmt>());
7237  }
7238
7239  //     - if the subobject is an array, each element is assigned, in the
7240  //       manner appropriate to the element type;
7241
7242  // Construct a loop over the array bounds, e.g.,
7243  //
7244  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
7245  //
7246  // that will copy each of the array elements.
7247  QualType SizeType = S.Context.getSizeType();
7248
7249  // Create the iteration variable.
7250  IdentifierInfo *IterationVarName = 0;
7251  {
7252    SmallString<8> Str;
7253    llvm::raw_svector_ostream OS(Str);
7254    OS << "__i" << Depth;
7255    IterationVarName = &S.Context.Idents.get(OS.str());
7256  }
7257  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
7258                                          IterationVarName, SizeType,
7259                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
7260                                          SC_None, SC_None);
7261
7262  // Initialize the iteration variable to zero.
7263  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
7264  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
7265
7266  // Create a reference to the iteration variable; we'll use this several
7267  // times throughout.
7268  Expr *IterationVarRef
7269    = S.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc).take();
7270  assert(IterationVarRef && "Reference to invented variable cannot fail!");
7271  Expr *IterationVarRefRVal = S.DefaultLvalueConversion(IterationVarRef).take();
7272  assert(IterationVarRefRVal && "Conversion of invented variable cannot fail!");
7273
7274  // Create the DeclStmt that holds the iteration variable.
7275  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
7276
7277  // Create the comparison against the array bound.
7278  llvm::APInt Upper
7279    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
7280  Expr *Comparison
7281    = new (S.Context) BinaryOperator(IterationVarRefRVal,
7282                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
7283                                     BO_NE, S.Context.BoolTy,
7284                                     VK_RValue, OK_Ordinary, Loc);
7285
7286  // Create the pre-increment of the iteration variable.
7287  Expr *Increment
7288    = new (S.Context) UnaryOperator(IterationVarRef, UO_PreInc, SizeType,
7289                                    VK_LValue, OK_Ordinary, Loc);
7290
7291  // Subscript the "from" and "to" expressions with the iteration variable.
7292  From = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(From, Loc,
7293                                                         IterationVarRefRVal,
7294                                                         Loc));
7295  To = AssertSuccess(S.CreateBuiltinArraySubscriptExpr(To, Loc,
7296                                                       IterationVarRefRVal,
7297                                                       Loc));
7298  if (!Copying) // Cast to rvalue
7299    From = CastForMoving(S, From);
7300
7301  // Build the copy/move for an individual element of the array.
7302  StmtResult Copy = BuildSingleCopyAssign(S, Loc, ArrayTy->getElementType(),
7303                                          To, From, CopyingBaseSubobject,
7304                                          Copying, Depth + 1);
7305  if (Copy.isInvalid())
7306    return StmtError();
7307
7308  // Construct the loop that copies all elements of this array.
7309  return S.ActOnForStmt(Loc, Loc, InitStmt,
7310                        S.MakeFullExpr(Comparison),
7311                        0, S.MakeFullExpr(Increment),
7312                        Loc, Copy.take());
7313}
7314
7315std::pair<Sema::ImplicitExceptionSpecification, bool>
7316Sema::ComputeDefaultedCopyAssignmentExceptionSpecAndConst(
7317                                                   CXXRecordDecl *ClassDecl) {
7318  if (ClassDecl->isInvalidDecl())
7319    return std::make_pair(ImplicitExceptionSpecification(*this), true);
7320
7321  // C++ [class.copy]p10:
7322  //   If the class definition does not explicitly declare a copy
7323  //   assignment operator, one is declared implicitly.
7324  //   The implicitly-defined copy assignment operator for a class X
7325  //   will have the form
7326  //
7327  //       X& X::operator=(const X&)
7328  //
7329  //   if
7330  bool HasConstCopyAssignment = true;
7331
7332  //       -- each direct base class B of X has a copy assignment operator
7333  //          whose parameter is of type const B&, const volatile B& or B,
7334  //          and
7335  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7336                                       BaseEnd = ClassDecl->bases_end();
7337       HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7338    // We'll handle this below
7339    if (LangOpts.CPlusPlus0x && Base->isVirtual())
7340      continue;
7341
7342    assert(!Base->getType()->isDependentType() &&
7343           "Cannot generate implicit members for class with dependent bases.");
7344    CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7345    HasConstCopyAssignment &=
7346      (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7347                                    false, 0);
7348  }
7349
7350  // In C++11, the above citation has "or virtual" added
7351  if (LangOpts.CPlusPlus0x) {
7352    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7353                                         BaseEnd = ClassDecl->vbases_end();
7354         HasConstCopyAssignment && Base != BaseEnd; ++Base) {
7355      assert(!Base->getType()->isDependentType() &&
7356             "Cannot generate implicit members for class with dependent bases.");
7357      CXXRecordDecl *BaseClassDecl = Base->getType()->getAsCXXRecordDecl();
7358      HasConstCopyAssignment &=
7359        (bool)LookupCopyingAssignment(BaseClassDecl, Qualifiers::Const,
7360                                      false, 0);
7361    }
7362  }
7363
7364  //       -- for all the nonstatic data members of X that are of a class
7365  //          type M (or array thereof), each such class type has a copy
7366  //          assignment operator whose parameter is of type const M&,
7367  //          const volatile M& or M.
7368  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7369                                  FieldEnd = ClassDecl->field_end();
7370       HasConstCopyAssignment && Field != FieldEnd;
7371       ++Field) {
7372    QualType FieldType = Context.getBaseElementType(Field->getType());
7373    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7374      HasConstCopyAssignment &=
7375        (bool)LookupCopyingAssignment(FieldClassDecl, Qualifiers::Const,
7376                                      false, 0);
7377    }
7378  }
7379
7380  //   Otherwise, the implicitly declared copy assignment operator will
7381  //   have the form
7382  //
7383  //       X& X::operator=(X&)
7384
7385  // C++ [except.spec]p14:
7386  //   An implicitly declared special member function (Clause 12) shall have an
7387  //   exception-specification. [...]
7388
7389  // It is unspecified whether or not an implicit copy assignment operator
7390  // attempts to deduplicate calls to assignment operators of virtual bases are
7391  // made. As such, this exception specification is effectively unspecified.
7392  // Based on a similar decision made for constness in C++0x, we're erring on
7393  // the side of assuming such calls to be made regardless of whether they
7394  // actually happen.
7395  ImplicitExceptionSpecification ExceptSpec(*this);
7396  unsigned ArgQuals = HasConstCopyAssignment ? Qualifiers::Const : 0;
7397  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7398                                       BaseEnd = ClassDecl->bases_end();
7399       Base != BaseEnd; ++Base) {
7400    if (Base->isVirtual())
7401      continue;
7402
7403    CXXRecordDecl *BaseClassDecl
7404      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7405    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7406                                                            ArgQuals, false, 0))
7407      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7408  }
7409
7410  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7411                                       BaseEnd = ClassDecl->vbases_end();
7412       Base != BaseEnd; ++Base) {
7413    CXXRecordDecl *BaseClassDecl
7414      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7415    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
7416                                                            ArgQuals, false, 0))
7417      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
7418  }
7419
7420  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7421                                  FieldEnd = ClassDecl->field_end();
7422       Field != FieldEnd;
7423       ++Field) {
7424    QualType FieldType = Context.getBaseElementType(Field->getType());
7425    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7426      if (CXXMethodDecl *CopyAssign =
7427          LookupCopyingAssignment(FieldClassDecl, ArgQuals, false, 0))
7428        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
7429    }
7430  }
7431
7432  return std::make_pair(ExceptSpec, HasConstCopyAssignment);
7433}
7434
7435CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
7436  // Note: The following rules are largely analoguous to the copy
7437  // constructor rules. Note that virtual bases are not taken into account
7438  // for determining the argument type of the operator. Note also that
7439  // operators taking an object instead of a reference are allowed.
7440
7441  ImplicitExceptionSpecification Spec(*this);
7442  bool Const;
7443  llvm::tie(Spec, Const) =
7444    ComputeDefaultedCopyAssignmentExceptionSpecAndConst(ClassDecl);
7445
7446  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7447  QualType RetType = Context.getLValueReferenceType(ArgType);
7448  if (Const)
7449    ArgType = ArgType.withConst();
7450  ArgType = Context.getLValueReferenceType(ArgType);
7451
7452  //   An implicitly-declared copy assignment operator is an inline public
7453  //   member of its class.
7454  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7455  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7456  SourceLocation ClassLoc = ClassDecl->getLocation();
7457  DeclarationNameInfo NameInfo(Name, ClassLoc);
7458  CXXMethodDecl *CopyAssignment
7459    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7460                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7461                            /*TInfo=*/0, /*isStatic=*/false,
7462                            /*StorageClassAsWritten=*/SC_None,
7463                            /*isInline=*/true, /*isConstexpr=*/false,
7464                            SourceLocation());
7465  CopyAssignment->setAccess(AS_public);
7466  CopyAssignment->setDefaulted();
7467  CopyAssignment->setImplicit();
7468  CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
7469
7470  // Add the parameter to the operator.
7471  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
7472                                               ClassLoc, ClassLoc, /*Id=*/0,
7473                                               ArgType, /*TInfo=*/0,
7474                                               SC_None,
7475                                               SC_None, 0);
7476  CopyAssignment->setParams(FromParam);
7477
7478  // Note that we have added this copy-assignment operator.
7479  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
7480
7481  if (Scope *S = getScopeForContext(ClassDecl))
7482    PushOnScopeChains(CopyAssignment, S, false);
7483  ClassDecl->addDecl(CopyAssignment);
7484
7485  // C++0x [class.copy]p19:
7486  //   ....  If the class definition does not explicitly declare a copy
7487  //   assignment operator, there is no user-declared move constructor, and
7488  //   there is no user-declared move assignment operator, a copy assignment
7489  //   operator is implicitly declared as defaulted.
7490  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
7491    CopyAssignment->setDeletedAsWritten();
7492
7493  AddOverriddenMethods(ClassDecl, CopyAssignment);
7494  return CopyAssignment;
7495}
7496
7497void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
7498                                        CXXMethodDecl *CopyAssignOperator) {
7499  assert((CopyAssignOperator->isDefaulted() &&
7500          CopyAssignOperator->isOverloadedOperator() &&
7501          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
7502          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
7503          !CopyAssignOperator->isDeleted()) &&
7504         "DefineImplicitCopyAssignment called for wrong function");
7505
7506  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
7507
7508  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
7509    CopyAssignOperator->setInvalidDecl();
7510    return;
7511  }
7512
7513  CopyAssignOperator->setUsed();
7514
7515  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
7516  DiagnosticErrorTrap Trap(Diags);
7517
7518  // C++0x [class.copy]p30:
7519  //   The implicitly-defined or explicitly-defaulted copy assignment operator
7520  //   for a non-union class X performs memberwise copy assignment of its
7521  //   subobjects. The direct base classes of X are assigned first, in the
7522  //   order of their declaration in the base-specifier-list, and then the
7523  //   immediate non-static data members of X are assigned, in the order in
7524  //   which they were declared in the class definition.
7525
7526  // The statements that form the synthesized function body.
7527  ASTOwningVector<Stmt*> Statements(*this);
7528
7529  // The parameter for the "other" object, which we are copying from.
7530  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
7531  Qualifiers OtherQuals = Other->getType().getQualifiers();
7532  QualType OtherRefType = Other->getType();
7533  if (const LValueReferenceType *OtherRef
7534                                = OtherRefType->getAs<LValueReferenceType>()) {
7535    OtherRefType = OtherRef->getPointeeType();
7536    OtherQuals = OtherRefType.getQualifiers();
7537  }
7538
7539  // Our location for everything implicitly-generated.
7540  SourceLocation Loc = CopyAssignOperator->getLocation();
7541
7542  // Construct a reference to the "other" object. We'll be using this
7543  // throughout the generated ASTs.
7544  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
7545  assert(OtherRef && "Reference to parameter cannot fail!");
7546
7547  // Construct the "this" pointer. We'll be using this throughout the generated
7548  // ASTs.
7549  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
7550  assert(This && "Reference to this cannot fail!");
7551
7552  // Assign base classes.
7553  bool Invalid = false;
7554  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7555       E = ClassDecl->bases_end(); Base != E; ++Base) {
7556    // Form the assignment:
7557    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
7558    QualType BaseType = Base->getType().getUnqualifiedType();
7559    if (!BaseType->isRecordType()) {
7560      Invalid = true;
7561      continue;
7562    }
7563
7564    CXXCastPath BasePath;
7565    BasePath.push_back(Base);
7566
7567    // Construct the "from" expression, which is an implicit cast to the
7568    // appropriately-qualified base type.
7569    Expr *From = OtherRef;
7570    From = ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
7571                             CK_UncheckedDerivedToBase,
7572                             VK_LValue, &BasePath).take();
7573
7574    // Dereference "this".
7575    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7576
7577    // Implicitly cast "this" to the appropriately-qualified base type.
7578    To = ImpCastExprToType(To.take(),
7579                           Context.getCVRQualifiedType(BaseType,
7580                                     CopyAssignOperator->getTypeQualifiers()),
7581                           CK_UncheckedDerivedToBase,
7582                           VK_LValue, &BasePath);
7583
7584    // Build the copy.
7585    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
7586                                            To.get(), From,
7587                                            /*CopyingBaseSubobject=*/true,
7588                                            /*Copying=*/true);
7589    if (Copy.isInvalid()) {
7590      Diag(CurrentLocation, diag::note_member_synthesized_at)
7591        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7592      CopyAssignOperator->setInvalidDecl();
7593      return;
7594    }
7595
7596    // Success! Record the copy.
7597    Statements.push_back(Copy.takeAs<Expr>());
7598  }
7599
7600  // \brief Reference to the __builtin_memcpy function.
7601  Expr *BuiltinMemCpyRef = 0;
7602  // \brief Reference to the __builtin_objc_memmove_collectable function.
7603  Expr *CollectableMemCpyRef = 0;
7604
7605  // Assign non-static members.
7606  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7607                                  FieldEnd = ClassDecl->field_end();
7608       Field != FieldEnd; ++Field) {
7609    if (Field->isUnnamedBitfield())
7610      continue;
7611
7612    // Check for members of reference type; we can't copy those.
7613    if (Field->getType()->isReferenceType()) {
7614      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7615        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
7616      Diag(Field->getLocation(), diag::note_declared_at);
7617      Diag(CurrentLocation, diag::note_member_synthesized_at)
7618        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7619      Invalid = true;
7620      continue;
7621    }
7622
7623    // Check for members of const-qualified, non-class type.
7624    QualType BaseType = Context.getBaseElementType(Field->getType());
7625    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
7626      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
7627        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
7628      Diag(Field->getLocation(), diag::note_declared_at);
7629      Diag(CurrentLocation, diag::note_member_synthesized_at)
7630        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7631      Invalid = true;
7632      continue;
7633    }
7634
7635    // Suppress assigning zero-width bitfields.
7636    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
7637      continue;
7638
7639    QualType FieldType = Field->getType().getNonReferenceType();
7640    if (FieldType->isIncompleteArrayType()) {
7641      assert(ClassDecl->hasFlexibleArrayMember() &&
7642             "Incomplete array type is not valid");
7643      continue;
7644    }
7645
7646    // Build references to the field in the object we're copying from and to.
7647    CXXScopeSpec SS; // Intentionally empty
7648    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
7649                              LookupMemberName);
7650    MemberLookup.addDecl(&*Field);
7651    MemberLookup.resolveKind();
7652    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
7653                                               Loc, /*IsArrow=*/false,
7654                                               SS, SourceLocation(), 0,
7655                                               MemberLookup, 0);
7656    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
7657                                             Loc, /*IsArrow=*/true,
7658                                             SS, SourceLocation(), 0,
7659                                             MemberLookup, 0);
7660    assert(!From.isInvalid() && "Implicit field reference cannot fail");
7661    assert(!To.isInvalid() && "Implicit field reference cannot fail");
7662
7663    // If the field should be copied with __builtin_memcpy rather than via
7664    // explicit assignments, do so. This optimization only applies for arrays
7665    // of scalars and arrays of class type with trivial copy-assignment
7666    // operators.
7667    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
7668        && BaseType.hasTrivialAssignment(Context, /*Copying=*/true)) {
7669      // Compute the size of the memory buffer to be copied.
7670      QualType SizeType = Context.getSizeType();
7671      llvm::APInt Size(Context.getTypeSize(SizeType),
7672                       Context.getTypeSizeInChars(BaseType).getQuantity());
7673      for (const ConstantArrayType *Array
7674              = Context.getAsConstantArrayType(FieldType);
7675           Array;
7676           Array = Context.getAsConstantArrayType(Array->getElementType())) {
7677        llvm::APInt ArraySize
7678          = Array->getSize().zextOrTrunc(Size.getBitWidth());
7679        Size *= ArraySize;
7680      }
7681
7682      // Take the address of the field references for "from" and "to".
7683      From = CreateBuiltinUnaryOp(Loc, UO_AddrOf, From.get());
7684      To = CreateBuiltinUnaryOp(Loc, UO_AddrOf, To.get());
7685
7686      bool NeedsCollectableMemCpy =
7687          (BaseType->isRecordType() &&
7688           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
7689
7690      if (NeedsCollectableMemCpy) {
7691        if (!CollectableMemCpyRef) {
7692          // Create a reference to the __builtin_objc_memmove_collectable function.
7693          LookupResult R(*this,
7694                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
7695                         Loc, LookupOrdinaryName);
7696          LookupName(R, TUScope, true);
7697
7698          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
7699          if (!CollectableMemCpy) {
7700            // Something went horribly wrong earlier, and we will have
7701            // complained about it.
7702            Invalid = true;
7703            continue;
7704          }
7705
7706          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
7707                                                  CollectableMemCpy->getType(),
7708                                                  VK_LValue, Loc, 0).take();
7709          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
7710        }
7711      }
7712      // Create a reference to the __builtin_memcpy builtin function.
7713      else if (!BuiltinMemCpyRef) {
7714        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
7715                       LookupOrdinaryName);
7716        LookupName(R, TUScope, true);
7717
7718        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
7719        if (!BuiltinMemCpy) {
7720          // Something went horribly wrong earlier, and we will have complained
7721          // about it.
7722          Invalid = true;
7723          continue;
7724        }
7725
7726        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
7727                                            BuiltinMemCpy->getType(),
7728                                            VK_LValue, Loc, 0).take();
7729        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
7730      }
7731
7732      ASTOwningVector<Expr*> CallArgs(*this);
7733      CallArgs.push_back(To.takeAs<Expr>());
7734      CallArgs.push_back(From.takeAs<Expr>());
7735      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
7736      ExprResult Call = ExprError();
7737      if (NeedsCollectableMemCpy)
7738        Call = ActOnCallExpr(/*Scope=*/0,
7739                             CollectableMemCpyRef,
7740                             Loc, move_arg(CallArgs),
7741                             Loc);
7742      else
7743        Call = ActOnCallExpr(/*Scope=*/0,
7744                             BuiltinMemCpyRef,
7745                             Loc, move_arg(CallArgs),
7746                             Loc);
7747
7748      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
7749      Statements.push_back(Call.takeAs<Expr>());
7750      continue;
7751    }
7752
7753    // Build the copy of this field.
7754    StmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
7755                                            To.get(), From.get(),
7756                                            /*CopyingBaseSubobject=*/false,
7757                                            /*Copying=*/true);
7758    if (Copy.isInvalid()) {
7759      Diag(CurrentLocation, diag::note_member_synthesized_at)
7760        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7761      CopyAssignOperator->setInvalidDecl();
7762      return;
7763    }
7764
7765    // Success! Record the copy.
7766    Statements.push_back(Copy.takeAs<Stmt>());
7767  }
7768
7769  if (!Invalid) {
7770    // Add a "return *this;"
7771    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
7772
7773    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
7774    if (Return.isInvalid())
7775      Invalid = true;
7776    else {
7777      Statements.push_back(Return.takeAs<Stmt>());
7778
7779      if (Trap.hasErrorOccurred()) {
7780        Diag(CurrentLocation, diag::note_member_synthesized_at)
7781          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
7782        Invalid = true;
7783      }
7784    }
7785  }
7786
7787  if (Invalid) {
7788    CopyAssignOperator->setInvalidDecl();
7789    return;
7790  }
7791
7792  StmtResult Body;
7793  {
7794    CompoundScopeRAII CompoundScope(*this);
7795    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
7796                             /*isStmtExpr=*/false);
7797    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
7798  }
7799  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
7800
7801  if (ASTMutationListener *L = getASTMutationListener()) {
7802    L->CompletedImplicitDefinition(CopyAssignOperator);
7803  }
7804}
7805
7806Sema::ImplicitExceptionSpecification
7807Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXRecordDecl *ClassDecl) {
7808  ImplicitExceptionSpecification ExceptSpec(*this);
7809
7810  if (ClassDecl->isInvalidDecl())
7811    return ExceptSpec;
7812
7813  // C++0x [except.spec]p14:
7814  //   An implicitly declared special member function (Clause 12) shall have an
7815  //   exception-specification. [...]
7816
7817  // It is unspecified whether or not an implicit move assignment operator
7818  // attempts to deduplicate calls to assignment operators of virtual bases are
7819  // made. As such, this exception specification is effectively unspecified.
7820  // Based on a similar decision made for constness in C++0x, we're erring on
7821  // the side of assuming such calls to be made regardless of whether they
7822  // actually happen.
7823  // Note that a move constructor is not implicitly declared when there are
7824  // virtual bases, but it can still be user-declared and explicitly defaulted.
7825  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7826                                       BaseEnd = ClassDecl->bases_end();
7827       Base != BaseEnd; ++Base) {
7828    if (Base->isVirtual())
7829      continue;
7830
7831    CXXRecordDecl *BaseClassDecl
7832      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7833    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7834                                                           false, 0))
7835      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7836  }
7837
7838  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7839                                       BaseEnd = ClassDecl->vbases_end();
7840       Base != BaseEnd; ++Base) {
7841    CXXRecordDecl *BaseClassDecl
7842      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7843    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
7844                                                           false, 0))
7845      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
7846  }
7847
7848  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7849                                  FieldEnd = ClassDecl->field_end();
7850       Field != FieldEnd;
7851       ++Field) {
7852    QualType FieldType = Context.getBaseElementType(Field->getType());
7853    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
7854      if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(FieldClassDecl,
7855                                                             false, 0))
7856        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
7857    }
7858  }
7859
7860  return ExceptSpec;
7861}
7862
7863/// Determine whether the class type has any direct or indirect virtual base
7864/// classes which have a non-trivial move assignment operator.
7865static bool
7866hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
7867  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7868                                          BaseEnd = ClassDecl->vbases_end();
7869       Base != BaseEnd; ++Base) {
7870    CXXRecordDecl *BaseClass =
7871        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
7872
7873    // Try to declare the move assignment. If it would be deleted, then the
7874    // class does not have a non-trivial move assignment.
7875    if (BaseClass->needsImplicitMoveAssignment())
7876      S.DeclareImplicitMoveAssignment(BaseClass);
7877
7878    // If the class has both a trivial move assignment and a non-trivial move
7879    // assignment, hasTrivialMoveAssignment() is false.
7880    if (BaseClass->hasDeclaredMoveAssignment() &&
7881        !BaseClass->hasTrivialMoveAssignment())
7882      return true;
7883  }
7884
7885  return false;
7886}
7887
7888/// Determine whether the given type either has a move constructor or is
7889/// trivially copyable.
7890static bool
7891hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
7892  Type = S.Context.getBaseElementType(Type);
7893
7894  // FIXME: Technically, non-trivially-copyable non-class types, such as
7895  // reference types, are supposed to return false here, but that appears
7896  // to be a standard defect.
7897  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
7898  if (!ClassDecl || !ClassDecl->getDefinition())
7899    return true;
7900
7901  if (Type.isTriviallyCopyableType(S.Context))
7902    return true;
7903
7904  if (IsConstructor) {
7905    if (ClassDecl->needsImplicitMoveConstructor())
7906      S.DeclareImplicitMoveConstructor(ClassDecl);
7907    return ClassDecl->hasDeclaredMoveConstructor();
7908  }
7909
7910  if (ClassDecl->needsImplicitMoveAssignment())
7911    S.DeclareImplicitMoveAssignment(ClassDecl);
7912  return ClassDecl->hasDeclaredMoveAssignment();
7913}
7914
7915/// Determine whether all non-static data members and direct or virtual bases
7916/// of class \p ClassDecl have either a move operation, or are trivially
7917/// copyable.
7918static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
7919                                            bool IsConstructor) {
7920  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
7921                                          BaseEnd = ClassDecl->bases_end();
7922       Base != BaseEnd; ++Base) {
7923    if (Base->isVirtual())
7924      continue;
7925
7926    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
7927      return false;
7928  }
7929
7930  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
7931                                          BaseEnd = ClassDecl->vbases_end();
7932       Base != BaseEnd; ++Base) {
7933    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
7934      return false;
7935  }
7936
7937  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
7938                                     FieldEnd = ClassDecl->field_end();
7939       Field != FieldEnd; ++Field) {
7940    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
7941      return false;
7942  }
7943
7944  return true;
7945}
7946
7947CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
7948  // C++11 [class.copy]p20:
7949  //   If the definition of a class X does not explicitly declare a move
7950  //   assignment operator, one will be implicitly declared as defaulted
7951  //   if and only if:
7952  //
7953  //   - [first 4 bullets]
7954  assert(ClassDecl->needsImplicitMoveAssignment());
7955
7956  // [Checked after we build the declaration]
7957  //   - the move assignment operator would not be implicitly defined as
7958  //     deleted,
7959
7960  // [DR1402]:
7961  //   - X has no direct or indirect virtual base class with a non-trivial
7962  //     move assignment operator, and
7963  //   - each of X's non-static data members and direct or virtual base classes
7964  //     has a type that either has a move assignment operator or is trivially
7965  //     copyable.
7966  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
7967      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
7968    ClassDecl->setFailedImplicitMoveAssignment();
7969    return 0;
7970  }
7971
7972  // Note: The following rules are largely analoguous to the move
7973  // constructor rules.
7974
7975  ImplicitExceptionSpecification Spec(
7976      ComputeDefaultedMoveAssignmentExceptionSpec(ClassDecl));
7977
7978  QualType ArgType = Context.getTypeDeclType(ClassDecl);
7979  QualType RetType = Context.getLValueReferenceType(ArgType);
7980  ArgType = Context.getRValueReferenceType(ArgType);
7981
7982  //   An implicitly-declared move assignment operator is an inline public
7983  //   member of its class.
7984  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
7985  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
7986  SourceLocation ClassLoc = ClassDecl->getLocation();
7987  DeclarationNameInfo NameInfo(Name, ClassLoc);
7988  CXXMethodDecl *MoveAssignment
7989    = CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
7990                            Context.getFunctionType(RetType, &ArgType, 1, EPI),
7991                            /*TInfo=*/0, /*isStatic=*/false,
7992                            /*StorageClassAsWritten=*/SC_None,
7993                            /*isInline=*/true,
7994                            /*isConstexpr=*/false,
7995                            SourceLocation());
7996  MoveAssignment->setAccess(AS_public);
7997  MoveAssignment->setDefaulted();
7998  MoveAssignment->setImplicit();
7999  MoveAssignment->setTrivial(ClassDecl->hasTrivialMoveAssignment());
8000
8001  // Add the parameter to the operator.
8002  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
8003                                               ClassLoc, ClassLoc, /*Id=*/0,
8004                                               ArgType, /*TInfo=*/0,
8005                                               SC_None,
8006                                               SC_None, 0);
8007  MoveAssignment->setParams(FromParam);
8008
8009  // Note that we have added this copy-assignment operator.
8010  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
8011
8012  // C++0x [class.copy]p9:
8013  //   If the definition of a class X does not explicitly declare a move
8014  //   assignment operator, one will be implicitly declared as defaulted if and
8015  //   only if:
8016  //   [...]
8017  //   - the move assignment operator would not be implicitly defined as
8018  //     deleted.
8019  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
8020    // Cache this result so that we don't try to generate this over and over
8021    // on every lookup, leaking memory and wasting time.
8022    ClassDecl->setFailedImplicitMoveAssignment();
8023    return 0;
8024  }
8025
8026  if (Scope *S = getScopeForContext(ClassDecl))
8027    PushOnScopeChains(MoveAssignment, S, false);
8028  ClassDecl->addDecl(MoveAssignment);
8029
8030  AddOverriddenMethods(ClassDecl, MoveAssignment);
8031  return MoveAssignment;
8032}
8033
8034void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
8035                                        CXXMethodDecl *MoveAssignOperator) {
8036  assert((MoveAssignOperator->isDefaulted() &&
8037          MoveAssignOperator->isOverloadedOperator() &&
8038          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
8039          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
8040          !MoveAssignOperator->isDeleted()) &&
8041         "DefineImplicitMoveAssignment called for wrong function");
8042
8043  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
8044
8045  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
8046    MoveAssignOperator->setInvalidDecl();
8047    return;
8048  }
8049
8050  MoveAssignOperator->setUsed();
8051
8052  ImplicitlyDefinedFunctionScope Scope(*this, MoveAssignOperator);
8053  DiagnosticErrorTrap Trap(Diags);
8054
8055  // C++0x [class.copy]p28:
8056  //   The implicitly-defined or move assignment operator for a non-union class
8057  //   X performs memberwise move assignment of its subobjects. The direct base
8058  //   classes of X are assigned first, in the order of their declaration in the
8059  //   base-specifier-list, and then the immediate non-static data members of X
8060  //   are assigned, in the order in which they were declared in the class
8061  //   definition.
8062
8063  // The statements that form the synthesized function body.
8064  ASTOwningVector<Stmt*> Statements(*this);
8065
8066  // The parameter for the "other" object, which we are move from.
8067  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
8068  QualType OtherRefType = Other->getType()->
8069      getAs<RValueReferenceType>()->getPointeeType();
8070  assert(OtherRefType.getQualifiers() == 0 &&
8071         "Bad argument type of defaulted move assignment");
8072
8073  // Our location for everything implicitly-generated.
8074  SourceLocation Loc = MoveAssignOperator->getLocation();
8075
8076  // Construct a reference to the "other" object. We'll be using this
8077  // throughout the generated ASTs.
8078  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, VK_LValue, Loc).take();
8079  assert(OtherRef && "Reference to parameter cannot fail!");
8080  // Cast to rvalue.
8081  OtherRef = CastForMoving(*this, OtherRef);
8082
8083  // Construct the "this" pointer. We'll be using this throughout the generated
8084  // ASTs.
8085  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
8086  assert(This && "Reference to this cannot fail!");
8087
8088  // Assign base classes.
8089  bool Invalid = false;
8090  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8091       E = ClassDecl->bases_end(); Base != E; ++Base) {
8092    // Form the assignment:
8093    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
8094    QualType BaseType = Base->getType().getUnqualifiedType();
8095    if (!BaseType->isRecordType()) {
8096      Invalid = true;
8097      continue;
8098    }
8099
8100    CXXCastPath BasePath;
8101    BasePath.push_back(Base);
8102
8103    // Construct the "from" expression, which is an implicit cast to the
8104    // appropriately-qualified base type.
8105    Expr *From = OtherRef;
8106    From = ImpCastExprToType(From, BaseType, CK_UncheckedDerivedToBase,
8107                             VK_XValue, &BasePath).take();
8108
8109    // Dereference "this".
8110    ExprResult To = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8111
8112    // Implicitly cast "this" to the appropriately-qualified base type.
8113    To = ImpCastExprToType(To.take(),
8114                           Context.getCVRQualifiedType(BaseType,
8115                                     MoveAssignOperator->getTypeQualifiers()),
8116                           CK_UncheckedDerivedToBase,
8117                           VK_LValue, &BasePath);
8118
8119    // Build the move.
8120    StmtResult Move = BuildSingleCopyAssign(*this, Loc, BaseType,
8121                                            To.get(), From,
8122                                            /*CopyingBaseSubobject=*/true,
8123                                            /*Copying=*/false);
8124    if (Move.isInvalid()) {
8125      Diag(CurrentLocation, diag::note_member_synthesized_at)
8126        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8127      MoveAssignOperator->setInvalidDecl();
8128      return;
8129    }
8130
8131    // Success! Record the move.
8132    Statements.push_back(Move.takeAs<Expr>());
8133  }
8134
8135  // \brief Reference to the __builtin_memcpy function.
8136  Expr *BuiltinMemCpyRef = 0;
8137  // \brief Reference to the __builtin_objc_memmove_collectable function.
8138  Expr *CollectableMemCpyRef = 0;
8139
8140  // Assign non-static members.
8141  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8142                                  FieldEnd = ClassDecl->field_end();
8143       Field != FieldEnd; ++Field) {
8144    if (Field->isUnnamedBitfield())
8145      continue;
8146
8147    // Check for members of reference type; we can't move those.
8148    if (Field->getType()->isReferenceType()) {
8149      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8150        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
8151      Diag(Field->getLocation(), diag::note_declared_at);
8152      Diag(CurrentLocation, diag::note_member_synthesized_at)
8153        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8154      Invalid = true;
8155      continue;
8156    }
8157
8158    // Check for members of const-qualified, non-class type.
8159    QualType BaseType = Context.getBaseElementType(Field->getType());
8160    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
8161      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
8162        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
8163      Diag(Field->getLocation(), diag::note_declared_at);
8164      Diag(CurrentLocation, diag::note_member_synthesized_at)
8165        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8166      Invalid = true;
8167      continue;
8168    }
8169
8170    // Suppress assigning zero-width bitfields.
8171    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
8172      continue;
8173
8174    QualType FieldType = Field->getType().getNonReferenceType();
8175    if (FieldType->isIncompleteArrayType()) {
8176      assert(ClassDecl->hasFlexibleArrayMember() &&
8177             "Incomplete array type is not valid");
8178      continue;
8179    }
8180
8181    // Build references to the field in the object we're copying from and to.
8182    CXXScopeSpec SS; // Intentionally empty
8183    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
8184                              LookupMemberName);
8185    MemberLookup.addDecl(&*Field);
8186    MemberLookup.resolveKind();
8187    ExprResult From = BuildMemberReferenceExpr(OtherRef, OtherRefType,
8188                                               Loc, /*IsArrow=*/false,
8189                                               SS, SourceLocation(), 0,
8190                                               MemberLookup, 0);
8191    ExprResult To = BuildMemberReferenceExpr(This, This->getType(),
8192                                             Loc, /*IsArrow=*/true,
8193                                             SS, SourceLocation(), 0,
8194                                             MemberLookup, 0);
8195    assert(!From.isInvalid() && "Implicit field reference cannot fail");
8196    assert(!To.isInvalid() && "Implicit field reference cannot fail");
8197
8198    assert(!From.get()->isLValue() && // could be xvalue or prvalue
8199        "Member reference with rvalue base must be rvalue except for reference "
8200        "members, which aren't allowed for move assignment.");
8201
8202    // If the field should be copied with __builtin_memcpy rather than via
8203    // explicit assignments, do so. This optimization only applies for arrays
8204    // of scalars and arrays of class type with trivial move-assignment
8205    // operators.
8206    if (FieldType->isArrayType() && !FieldType.isVolatileQualified()
8207        && BaseType.hasTrivialAssignment(Context, /*Copying=*/false)) {
8208      // Compute the size of the memory buffer to be copied.
8209      QualType SizeType = Context.getSizeType();
8210      llvm::APInt Size(Context.getTypeSize(SizeType),
8211                       Context.getTypeSizeInChars(BaseType).getQuantity());
8212      for (const ConstantArrayType *Array
8213              = Context.getAsConstantArrayType(FieldType);
8214           Array;
8215           Array = Context.getAsConstantArrayType(Array->getElementType())) {
8216        llvm::APInt ArraySize
8217          = Array->getSize().zextOrTrunc(Size.getBitWidth());
8218        Size *= ArraySize;
8219      }
8220
8221      // Take the address of the field references for "from" and "to". We
8222      // directly construct UnaryOperators here because semantic analysis
8223      // does not permit us to take the address of an xvalue.
8224      From = new (Context) UnaryOperator(From.get(), UO_AddrOf,
8225                             Context.getPointerType(From.get()->getType()),
8226                             VK_RValue, OK_Ordinary, Loc);
8227      To = new (Context) UnaryOperator(To.get(), UO_AddrOf,
8228                           Context.getPointerType(To.get()->getType()),
8229                           VK_RValue, OK_Ordinary, Loc);
8230
8231      bool NeedsCollectableMemCpy =
8232          (BaseType->isRecordType() &&
8233           BaseType->getAs<RecordType>()->getDecl()->hasObjectMember());
8234
8235      if (NeedsCollectableMemCpy) {
8236        if (!CollectableMemCpyRef) {
8237          // Create a reference to the __builtin_objc_memmove_collectable function.
8238          LookupResult R(*this,
8239                         &Context.Idents.get("__builtin_objc_memmove_collectable"),
8240                         Loc, LookupOrdinaryName);
8241          LookupName(R, TUScope, true);
8242
8243          FunctionDecl *CollectableMemCpy = R.getAsSingle<FunctionDecl>();
8244          if (!CollectableMemCpy) {
8245            // Something went horribly wrong earlier, and we will have
8246            // complained about it.
8247            Invalid = true;
8248            continue;
8249          }
8250
8251          CollectableMemCpyRef = BuildDeclRefExpr(CollectableMemCpy,
8252                                                  CollectableMemCpy->getType(),
8253                                                  VK_LValue, Loc, 0).take();
8254          assert(CollectableMemCpyRef && "Builtin reference cannot fail");
8255        }
8256      }
8257      // Create a reference to the __builtin_memcpy builtin function.
8258      else if (!BuiltinMemCpyRef) {
8259        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
8260                       LookupOrdinaryName);
8261        LookupName(R, TUScope, true);
8262
8263        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
8264        if (!BuiltinMemCpy) {
8265          // Something went horribly wrong earlier, and we will have complained
8266          // about it.
8267          Invalid = true;
8268          continue;
8269        }
8270
8271        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
8272                                            BuiltinMemCpy->getType(),
8273                                            VK_LValue, Loc, 0).take();
8274        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
8275      }
8276
8277      ASTOwningVector<Expr*> CallArgs(*this);
8278      CallArgs.push_back(To.takeAs<Expr>());
8279      CallArgs.push_back(From.takeAs<Expr>());
8280      CallArgs.push_back(IntegerLiteral::Create(Context, Size, SizeType, Loc));
8281      ExprResult Call = ExprError();
8282      if (NeedsCollectableMemCpy)
8283        Call = ActOnCallExpr(/*Scope=*/0,
8284                             CollectableMemCpyRef,
8285                             Loc, move_arg(CallArgs),
8286                             Loc);
8287      else
8288        Call = ActOnCallExpr(/*Scope=*/0,
8289                             BuiltinMemCpyRef,
8290                             Loc, move_arg(CallArgs),
8291                             Loc);
8292
8293      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8294      Statements.push_back(Call.takeAs<Expr>());
8295      continue;
8296    }
8297
8298    // Build the move of this field.
8299    StmtResult Move = BuildSingleCopyAssign(*this, Loc, FieldType,
8300                                            To.get(), From.get(),
8301                                            /*CopyingBaseSubobject=*/false,
8302                                            /*Copying=*/false);
8303    if (Move.isInvalid()) {
8304      Diag(CurrentLocation, diag::note_member_synthesized_at)
8305        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8306      MoveAssignOperator->setInvalidDecl();
8307      return;
8308    }
8309
8310    // Success! Record the copy.
8311    Statements.push_back(Move.takeAs<Stmt>());
8312  }
8313
8314  if (!Invalid) {
8315    // Add a "return *this;"
8316    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This);
8317
8318    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
8319    if (Return.isInvalid())
8320      Invalid = true;
8321    else {
8322      Statements.push_back(Return.takeAs<Stmt>());
8323
8324      if (Trap.hasErrorOccurred()) {
8325        Diag(CurrentLocation, diag::note_member_synthesized_at)
8326          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
8327        Invalid = true;
8328      }
8329    }
8330  }
8331
8332  if (Invalid) {
8333    MoveAssignOperator->setInvalidDecl();
8334    return;
8335  }
8336
8337  StmtResult Body;
8338  {
8339    CompoundScopeRAII CompoundScope(*this);
8340    Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
8341                             /*isStmtExpr=*/false);
8342    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
8343  }
8344  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
8345
8346  if (ASTMutationListener *L = getASTMutationListener()) {
8347    L->CompletedImplicitDefinition(MoveAssignOperator);
8348  }
8349}
8350
8351std::pair<Sema::ImplicitExceptionSpecification, bool>
8352Sema::ComputeDefaultedCopyCtorExceptionSpecAndConst(CXXRecordDecl *ClassDecl) {
8353  if (ClassDecl->isInvalidDecl())
8354    return std::make_pair(ImplicitExceptionSpecification(*this), true);
8355
8356  // C++ [class.copy]p5:
8357  //   The implicitly-declared copy constructor for a class X will
8358  //   have the form
8359  //
8360  //       X::X(const X&)
8361  //
8362  //   if
8363  // FIXME: It ought to be possible to store this on the record.
8364  bool HasConstCopyConstructor = true;
8365
8366  //     -- each direct or virtual base class B of X has a copy
8367  //        constructor whose first parameter is of type const B& or
8368  //        const volatile B&, and
8369  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8370                                       BaseEnd = ClassDecl->bases_end();
8371       HasConstCopyConstructor && Base != BaseEnd;
8372       ++Base) {
8373    // Virtual bases are handled below.
8374    if (Base->isVirtual())
8375      continue;
8376
8377    CXXRecordDecl *BaseClassDecl
8378      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8379    HasConstCopyConstructor &=
8380      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8381  }
8382
8383  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8384                                       BaseEnd = ClassDecl->vbases_end();
8385       HasConstCopyConstructor && Base != BaseEnd;
8386       ++Base) {
8387    CXXRecordDecl *BaseClassDecl
8388      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8389    HasConstCopyConstructor &=
8390      (bool)LookupCopyingConstructor(BaseClassDecl, Qualifiers::Const);
8391  }
8392
8393  //     -- for all the nonstatic data members of X that are of a
8394  //        class type M (or array thereof), each such class type
8395  //        has a copy constructor whose first parameter is of type
8396  //        const M& or const volatile M&.
8397  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8398                                  FieldEnd = ClassDecl->field_end();
8399       HasConstCopyConstructor && Field != FieldEnd;
8400       ++Field) {
8401    QualType FieldType = Context.getBaseElementType(Field->getType());
8402    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8403      HasConstCopyConstructor &=
8404        (bool)LookupCopyingConstructor(FieldClassDecl, Qualifiers::Const);
8405    }
8406  }
8407  //   Otherwise, the implicitly declared copy constructor will have
8408  //   the form
8409  //
8410  //       X::X(X&)
8411
8412  // C++ [except.spec]p14:
8413  //   An implicitly declared special member function (Clause 12) shall have an
8414  //   exception-specification. [...]
8415  ImplicitExceptionSpecification ExceptSpec(*this);
8416  unsigned Quals = HasConstCopyConstructor? Qualifiers::Const : 0;
8417  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
8418                                       BaseEnd = ClassDecl->bases_end();
8419       Base != BaseEnd;
8420       ++Base) {
8421    // Virtual bases are handled below.
8422    if (Base->isVirtual())
8423      continue;
8424
8425    CXXRecordDecl *BaseClassDecl
8426      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8427    if (CXXConstructorDecl *CopyConstructor =
8428          LookupCopyingConstructor(BaseClassDecl, Quals))
8429      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8430  }
8431  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
8432                                       BaseEnd = ClassDecl->vbases_end();
8433       Base != BaseEnd;
8434       ++Base) {
8435    CXXRecordDecl *BaseClassDecl
8436      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
8437    if (CXXConstructorDecl *CopyConstructor =
8438          LookupCopyingConstructor(BaseClassDecl, Quals))
8439      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
8440  }
8441  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
8442                                  FieldEnd = ClassDecl->field_end();
8443       Field != FieldEnd;
8444       ++Field) {
8445    QualType FieldType = Context.getBaseElementType(Field->getType());
8446    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
8447      if (CXXConstructorDecl *CopyConstructor =
8448        LookupCopyingConstructor(FieldClassDecl, Quals))
8449      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
8450    }
8451  }
8452
8453  return std::make_pair(ExceptSpec, HasConstCopyConstructor);
8454}
8455
8456CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
8457                                                    CXXRecordDecl *ClassDecl) {
8458  // C++ [class.copy]p4:
8459  //   If the class definition does not explicitly declare a copy
8460  //   constructor, one is declared implicitly.
8461
8462  ImplicitExceptionSpecification Spec(*this);
8463  bool Const;
8464  llvm::tie(Spec, Const) =
8465    ComputeDefaultedCopyCtorExceptionSpecAndConst(ClassDecl);
8466
8467  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8468  QualType ArgType = ClassType;
8469  if (Const)
8470    ArgType = ArgType.withConst();
8471  ArgType = Context.getLValueReferenceType(ArgType);
8472
8473  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8474
8475  DeclarationName Name
8476    = Context.DeclarationNames.getCXXConstructorName(
8477                                           Context.getCanonicalType(ClassType));
8478  SourceLocation ClassLoc = ClassDecl->getLocation();
8479  DeclarationNameInfo NameInfo(Name, ClassLoc);
8480
8481  //   An implicitly-declared copy constructor is an inline public
8482  //   member of its class.
8483  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
8484      Context, ClassDecl, ClassLoc, NameInfo,
8485      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8486      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8487      /*isConstexpr=*/ClassDecl->defaultedCopyConstructorIsConstexpr() &&
8488        getLangOpts().CPlusPlus0x);
8489  CopyConstructor->setAccess(AS_public);
8490  CopyConstructor->setDefaulted();
8491  CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
8492
8493  // Note that we have declared this constructor.
8494  ++ASTContext::NumImplicitCopyConstructorsDeclared;
8495
8496  // Add the parameter to the constructor.
8497  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
8498                                               ClassLoc, ClassLoc,
8499                                               /*IdentifierInfo=*/0,
8500                                               ArgType, /*TInfo=*/0,
8501                                               SC_None,
8502                                               SC_None, 0);
8503  CopyConstructor->setParams(FromParam);
8504
8505  if (Scope *S = getScopeForContext(ClassDecl))
8506    PushOnScopeChains(CopyConstructor, S, false);
8507  ClassDecl->addDecl(CopyConstructor);
8508
8509  // C++11 [class.copy]p8:
8510  //   ... If the class definition does not explicitly declare a copy
8511  //   constructor, there is no user-declared move constructor, and there is no
8512  //   user-declared move assignment operator, a copy constructor is implicitly
8513  //   declared as defaulted.
8514  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
8515    CopyConstructor->setDeletedAsWritten();
8516
8517  return CopyConstructor;
8518}
8519
8520void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
8521                                   CXXConstructorDecl *CopyConstructor) {
8522  assert((CopyConstructor->isDefaulted() &&
8523          CopyConstructor->isCopyConstructor() &&
8524          !CopyConstructor->doesThisDeclarationHaveABody() &&
8525          !CopyConstructor->isDeleted()) &&
8526         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
8527
8528  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
8529  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
8530
8531  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
8532  DiagnosticErrorTrap Trap(Diags);
8533
8534  if (SetCtorInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
8535      Trap.hasErrorOccurred()) {
8536    Diag(CurrentLocation, diag::note_member_synthesized_at)
8537      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
8538    CopyConstructor->setInvalidDecl();
8539  }  else {
8540    Sema::CompoundScopeRAII CompoundScope(*this);
8541    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
8542                                               CopyConstructor->getLocation(),
8543                                               MultiStmtArg(*this, 0, 0),
8544                                               /*isStmtExpr=*/false)
8545                                                              .takeAs<Stmt>());
8546    CopyConstructor->setImplicitlyDefined(true);
8547  }
8548
8549  CopyConstructor->setUsed();
8550  if (ASTMutationListener *L = getASTMutationListener()) {
8551    L->CompletedImplicitDefinition(CopyConstructor);
8552  }
8553}
8554
8555Sema::ImplicitExceptionSpecification
8556Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXRecordDecl *ClassDecl) {
8557  // C++ [except.spec]p14:
8558  //   An implicitly declared special member function (Clause 12) shall have an
8559  //   exception-specification. [...]
8560  ImplicitExceptionSpecification ExceptSpec(*this);
8561  if (ClassDecl->isInvalidDecl())
8562    return ExceptSpec;
8563
8564  // Direct base-class constructors.
8565  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8566                                       BEnd = ClassDecl->bases_end();
8567       B != BEnd; ++B) {
8568    if (B->isVirtual()) // Handled below.
8569      continue;
8570
8571    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8572      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8573      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8574      // If this is a deleted function, add it anyway. This might be conformant
8575      // with the standard. This might not. I'm not sure. It might not matter.
8576      if (Constructor)
8577        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8578    }
8579  }
8580
8581  // Virtual base-class constructors.
8582  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8583                                       BEnd = ClassDecl->vbases_end();
8584       B != BEnd; ++B) {
8585    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8586      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8587      CXXConstructorDecl *Constructor = LookupMovingConstructor(BaseClassDecl);
8588      // If this is a deleted function, add it anyway. This might be conformant
8589      // with the standard. This might not. I'm not sure. It might not matter.
8590      if (Constructor)
8591        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8592    }
8593  }
8594
8595  // Field constructors.
8596  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8597                               FEnd = ClassDecl->field_end();
8598       F != FEnd; ++F) {
8599    if (const RecordType *RecordTy
8600              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8601      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8602      CXXConstructorDecl *Constructor = LookupMovingConstructor(FieldRecDecl);
8603      // If this is a deleted function, add it anyway. This might be conformant
8604      // with the standard. This might not. I'm not sure. It might not matter.
8605      // In particular, the problem is that this function never gets called. It
8606      // might just be ill-formed because this function attempts to refer to
8607      // a deleted function here.
8608      if (Constructor)
8609        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8610    }
8611  }
8612
8613  return ExceptSpec;
8614}
8615
8616CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
8617                                                    CXXRecordDecl *ClassDecl) {
8618  // C++11 [class.copy]p9:
8619  //   If the definition of a class X does not explicitly declare a move
8620  //   constructor, one will be implicitly declared as defaulted if and only if:
8621  //
8622  //   - [first 4 bullets]
8623  assert(ClassDecl->needsImplicitMoveConstructor());
8624
8625  // [Checked after we build the declaration]
8626  //   - the move assignment operator would not be implicitly defined as
8627  //     deleted,
8628
8629  // [DR1402]:
8630  //   - each of X's non-static data members and direct or virtual base classes
8631  //     has a type that either has a move constructor or is trivially copyable.
8632  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
8633    ClassDecl->setFailedImplicitMoveConstructor();
8634    return 0;
8635  }
8636
8637  ImplicitExceptionSpecification Spec(
8638      ComputeDefaultedMoveCtorExceptionSpec(ClassDecl));
8639
8640  QualType ClassType = Context.getTypeDeclType(ClassDecl);
8641  QualType ArgType = Context.getRValueReferenceType(ClassType);
8642
8643  FunctionProtoType::ExtProtoInfo EPI = Spec.getEPI();
8644
8645  DeclarationName Name
8646    = Context.DeclarationNames.getCXXConstructorName(
8647                                           Context.getCanonicalType(ClassType));
8648  SourceLocation ClassLoc = ClassDecl->getLocation();
8649  DeclarationNameInfo NameInfo(Name, ClassLoc);
8650
8651  // C++0x [class.copy]p11:
8652  //   An implicitly-declared copy/move constructor is an inline public
8653  //   member of its class.
8654  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
8655      Context, ClassDecl, ClassLoc, NameInfo,
8656      Context.getFunctionType(Context.VoidTy, &ArgType, 1, EPI), /*TInfo=*/0,
8657      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8658      /*isConstexpr=*/ClassDecl->defaultedMoveConstructorIsConstexpr() &&
8659        getLangOpts().CPlusPlus0x);
8660  MoveConstructor->setAccess(AS_public);
8661  MoveConstructor->setDefaulted();
8662  MoveConstructor->setTrivial(ClassDecl->hasTrivialMoveConstructor());
8663
8664  // Add the parameter to the constructor.
8665  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
8666                                               ClassLoc, ClassLoc,
8667                                               /*IdentifierInfo=*/0,
8668                                               ArgType, /*TInfo=*/0,
8669                                               SC_None,
8670                                               SC_None, 0);
8671  MoveConstructor->setParams(FromParam);
8672
8673  // C++0x [class.copy]p9:
8674  //   If the definition of a class X does not explicitly declare a move
8675  //   constructor, one will be implicitly declared as defaulted if and only if:
8676  //   [...]
8677  //   - the move constructor would not be implicitly defined as deleted.
8678  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
8679    // Cache this result so that we don't try to generate this over and over
8680    // on every lookup, leaking memory and wasting time.
8681    ClassDecl->setFailedImplicitMoveConstructor();
8682    return 0;
8683  }
8684
8685  // Note that we have declared this constructor.
8686  ++ASTContext::NumImplicitMoveConstructorsDeclared;
8687
8688  if (Scope *S = getScopeForContext(ClassDecl))
8689    PushOnScopeChains(MoveConstructor, S, false);
8690  ClassDecl->addDecl(MoveConstructor);
8691
8692  return MoveConstructor;
8693}
8694
8695void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
8696                                   CXXConstructorDecl *MoveConstructor) {
8697  assert((MoveConstructor->isDefaulted() &&
8698          MoveConstructor->isMoveConstructor() &&
8699          !MoveConstructor->doesThisDeclarationHaveABody() &&
8700          !MoveConstructor->isDeleted()) &&
8701         "DefineImplicitMoveConstructor - call it for implicit move ctor");
8702
8703  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
8704  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
8705
8706  ImplicitlyDefinedFunctionScope Scope(*this, MoveConstructor);
8707  DiagnosticErrorTrap Trap(Diags);
8708
8709  if (SetCtorInitializers(MoveConstructor, 0, 0, /*AnyErrors=*/false) ||
8710      Trap.hasErrorOccurred()) {
8711    Diag(CurrentLocation, diag::note_member_synthesized_at)
8712      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
8713    MoveConstructor->setInvalidDecl();
8714  }  else {
8715    Sema::CompoundScopeRAII CompoundScope(*this);
8716    MoveConstructor->setBody(ActOnCompoundStmt(MoveConstructor->getLocation(),
8717                                               MoveConstructor->getLocation(),
8718                                               MultiStmtArg(*this, 0, 0),
8719                                               /*isStmtExpr=*/false)
8720                                                              .takeAs<Stmt>());
8721    MoveConstructor->setImplicitlyDefined(true);
8722  }
8723
8724  MoveConstructor->setUsed();
8725
8726  if (ASTMutationListener *L = getASTMutationListener()) {
8727    L->CompletedImplicitDefinition(MoveConstructor);
8728  }
8729}
8730
8731bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
8732  return FD->isDeleted() &&
8733         (FD->isDefaulted() || FD->isImplicit()) &&
8734         isa<CXXMethodDecl>(FD);
8735}
8736
8737/// \brief Mark the call operator of the given lambda closure type as "used".
8738static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
8739  CXXMethodDecl *CallOperator
8740    = cast<CXXMethodDecl>(
8741        *Lambda->lookup(
8742          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).first);
8743  CallOperator->setReferenced();
8744  CallOperator->setUsed();
8745}
8746
8747void Sema::DefineImplicitLambdaToFunctionPointerConversion(
8748       SourceLocation CurrentLocation,
8749       CXXConversionDecl *Conv)
8750{
8751  CXXRecordDecl *Lambda = Conv->getParent();
8752
8753  // Make sure that the lambda call operator is marked used.
8754  markLambdaCallOperatorUsed(*this, Lambda);
8755
8756  Conv->setUsed();
8757
8758  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8759  DiagnosticErrorTrap Trap(Diags);
8760
8761  // Return the address of the __invoke function.
8762  DeclarationName InvokeName = &Context.Idents.get("__invoke");
8763  CXXMethodDecl *Invoke
8764    = cast<CXXMethodDecl>(*Lambda->lookup(InvokeName).first);
8765  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
8766                                       VK_LValue, Conv->getLocation()).take();
8767  assert(FunctionRef && "Can't refer to __invoke function?");
8768  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
8769  Conv->setBody(new (Context) CompoundStmt(Context, &Return, 1,
8770                                           Conv->getLocation(),
8771                                           Conv->getLocation()));
8772
8773  // Fill in the __invoke function with a dummy implementation. IR generation
8774  // will fill in the actual details.
8775  Invoke->setUsed();
8776  Invoke->setReferenced();
8777  Invoke->setBody(new (Context) CompoundStmt(Context, 0, 0, Conv->getLocation(),
8778                                             Conv->getLocation()));
8779
8780  if (ASTMutationListener *L = getASTMutationListener()) {
8781    L->CompletedImplicitDefinition(Conv);
8782    L->CompletedImplicitDefinition(Invoke);
8783  }
8784}
8785
8786void Sema::DefineImplicitLambdaToBlockPointerConversion(
8787       SourceLocation CurrentLocation,
8788       CXXConversionDecl *Conv)
8789{
8790  Conv->setUsed();
8791
8792  ImplicitlyDefinedFunctionScope Scope(*this, Conv);
8793  DiagnosticErrorTrap Trap(Diags);
8794
8795  // Copy-initialize the lambda object as needed to capture it.
8796  Expr *This = ActOnCXXThis(CurrentLocation).take();
8797  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
8798
8799  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
8800                                                        Conv->getLocation(),
8801                                                        Conv, DerefThis);
8802
8803  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
8804  // behavior.  Note that only the general conversion function does this
8805  // (since it's unusable otherwise); in the case where we inline the
8806  // block literal, it has block literal lifetime semantics.
8807  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
8808    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
8809                                          CK_CopyAndAutoreleaseBlockObject,
8810                                          BuildBlock.get(), 0, VK_RValue);
8811
8812  if (BuildBlock.isInvalid()) {
8813    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8814    Conv->setInvalidDecl();
8815    return;
8816  }
8817
8818  // Create the return statement that returns the block from the conversion
8819  // function.
8820  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
8821  if (Return.isInvalid()) {
8822    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
8823    Conv->setInvalidDecl();
8824    return;
8825  }
8826
8827  // Set the body of the conversion function.
8828  Stmt *ReturnS = Return.take();
8829  Conv->setBody(new (Context) CompoundStmt(Context, &ReturnS, 1,
8830                                           Conv->getLocation(),
8831                                           Conv->getLocation()));
8832
8833  // We're done; notify the mutation listener, if any.
8834  if (ASTMutationListener *L = getASTMutationListener()) {
8835    L->CompletedImplicitDefinition(Conv);
8836  }
8837}
8838
8839/// \brief Determine whether the given list arguments contains exactly one
8840/// "real" (non-default) argument.
8841static bool hasOneRealArgument(MultiExprArg Args) {
8842  switch (Args.size()) {
8843  case 0:
8844    return false;
8845
8846  default:
8847    if (!Args.get()[1]->isDefaultArgument())
8848      return false;
8849
8850    // fall through
8851  case 1:
8852    return !Args.get()[0]->isDefaultArgument();
8853  }
8854
8855  return false;
8856}
8857
8858ExprResult
8859Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8860                            CXXConstructorDecl *Constructor,
8861                            MultiExprArg ExprArgs,
8862                            bool HadMultipleCandidates,
8863                            bool RequiresZeroInit,
8864                            unsigned ConstructKind,
8865                            SourceRange ParenRange) {
8866  bool Elidable = false;
8867
8868  // C++0x [class.copy]p34:
8869  //   When certain criteria are met, an implementation is allowed to
8870  //   omit the copy/move construction of a class object, even if the
8871  //   copy/move constructor and/or destructor for the object have
8872  //   side effects. [...]
8873  //     - when a temporary class object that has not been bound to a
8874  //       reference (12.2) would be copied/moved to a class object
8875  //       with the same cv-unqualified type, the copy/move operation
8876  //       can be omitted by constructing the temporary object
8877  //       directly into the target of the omitted copy/move
8878  if (ConstructKind == CXXConstructExpr::CK_Complete &&
8879      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
8880    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
8881    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
8882  }
8883
8884  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
8885                               Elidable, move(ExprArgs), HadMultipleCandidates,
8886                               RequiresZeroInit, ConstructKind, ParenRange);
8887}
8888
8889/// BuildCXXConstructExpr - Creates a complete call to a constructor,
8890/// including handling of its default argument expressions.
8891ExprResult
8892Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
8893                            CXXConstructorDecl *Constructor, bool Elidable,
8894                            MultiExprArg ExprArgs,
8895                            bool HadMultipleCandidates,
8896                            bool RequiresZeroInit,
8897                            unsigned ConstructKind,
8898                            SourceRange ParenRange) {
8899  unsigned NumExprs = ExprArgs.size();
8900  Expr **Exprs = (Expr **)ExprArgs.release();
8901
8902  for (specific_attr_iterator<NonNullAttr>
8903           i = Constructor->specific_attr_begin<NonNullAttr>(),
8904           e = Constructor->specific_attr_end<NonNullAttr>(); i != e; ++i) {
8905    const NonNullAttr *NonNull = *i;
8906    CheckNonNullArguments(NonNull, ExprArgs.get(), ConstructLoc);
8907  }
8908
8909  MarkFunctionReferenced(ConstructLoc, Constructor);
8910  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
8911                                        Constructor, Elidable, Exprs, NumExprs,
8912                                        HadMultipleCandidates, /*FIXME*/false,
8913                                        RequiresZeroInit,
8914              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
8915                                        ParenRange));
8916}
8917
8918bool Sema::InitializeVarWithConstructor(VarDecl *VD,
8919                                        CXXConstructorDecl *Constructor,
8920                                        MultiExprArg Exprs,
8921                                        bool HadMultipleCandidates) {
8922  // FIXME: Provide the correct paren SourceRange when available.
8923  ExprResult TempResult =
8924    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
8925                          move(Exprs), HadMultipleCandidates, false,
8926                          CXXConstructExpr::CK_Complete, SourceRange());
8927  if (TempResult.isInvalid())
8928    return true;
8929
8930  Expr *Temp = TempResult.takeAs<Expr>();
8931  CheckImplicitConversions(Temp, VD->getLocation());
8932  MarkFunctionReferenced(VD->getLocation(), Constructor);
8933  Temp = MaybeCreateExprWithCleanups(Temp);
8934  VD->setInit(Temp);
8935
8936  return false;
8937}
8938
8939void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
8940  if (VD->isInvalidDecl()) return;
8941
8942  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
8943  if (ClassDecl->isInvalidDecl()) return;
8944  if (ClassDecl->hasIrrelevantDestructor()) return;
8945  if (ClassDecl->isDependentContext()) return;
8946
8947  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
8948  MarkFunctionReferenced(VD->getLocation(), Destructor);
8949  CheckDestructorAccess(VD->getLocation(), Destructor,
8950                        PDiag(diag::err_access_dtor_var)
8951                        << VD->getDeclName()
8952                        << VD->getType());
8953  DiagnoseUseOfDecl(Destructor, VD->getLocation());
8954
8955  if (!VD->hasGlobalStorage()) return;
8956
8957  // Emit warning for non-trivial dtor in global scope (a real global,
8958  // class-static, function-static).
8959  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
8960
8961  // TODO: this should be re-enabled for static locals by !CXAAtExit
8962  if (!VD->isStaticLocal())
8963    Diag(VD->getLocation(), diag::warn_global_destructor);
8964}
8965
8966/// \brief Given a constructor and the set of arguments provided for the
8967/// constructor, convert the arguments and add any required default arguments
8968/// to form a proper call to this constructor.
8969///
8970/// \returns true if an error occurred, false otherwise.
8971bool
8972Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
8973                              MultiExprArg ArgsPtr,
8974                              SourceLocation Loc,
8975                              ASTOwningVector<Expr*> &ConvertedArgs,
8976                              bool AllowExplicit) {
8977  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
8978  unsigned NumArgs = ArgsPtr.size();
8979  Expr **Args = (Expr **)ArgsPtr.get();
8980
8981  const FunctionProtoType *Proto
8982    = Constructor->getType()->getAs<FunctionProtoType>();
8983  assert(Proto && "Constructor without a prototype?");
8984  unsigned NumArgsInProto = Proto->getNumArgs();
8985
8986  // If too few arguments are available, we'll fill in the rest with defaults.
8987  if (NumArgs < NumArgsInProto)
8988    ConvertedArgs.reserve(NumArgsInProto);
8989  else
8990    ConvertedArgs.reserve(NumArgs);
8991
8992  VariadicCallType CallType =
8993    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
8994  SmallVector<Expr *, 8> AllArgs;
8995  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
8996                                        Proto, 0, Args, NumArgs, AllArgs,
8997                                        CallType, AllowExplicit);
8998  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
8999
9000  DiagnoseSentinelCalls(Constructor, Loc, AllArgs.data(), AllArgs.size());
9001
9002  // FIXME: Missing call to CheckFunctionCall or equivalent
9003
9004  return Invalid;
9005}
9006
9007static inline bool
9008CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
9009                                       const FunctionDecl *FnDecl) {
9010  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
9011  if (isa<NamespaceDecl>(DC)) {
9012    return SemaRef.Diag(FnDecl->getLocation(),
9013                        diag::err_operator_new_delete_declared_in_namespace)
9014      << FnDecl->getDeclName();
9015  }
9016
9017  if (isa<TranslationUnitDecl>(DC) &&
9018      FnDecl->getStorageClass() == SC_Static) {
9019    return SemaRef.Diag(FnDecl->getLocation(),
9020                        diag::err_operator_new_delete_declared_static)
9021      << FnDecl->getDeclName();
9022  }
9023
9024  return false;
9025}
9026
9027static inline bool
9028CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
9029                            CanQualType ExpectedResultType,
9030                            CanQualType ExpectedFirstParamType,
9031                            unsigned DependentParamTypeDiag,
9032                            unsigned InvalidParamTypeDiag) {
9033  QualType ResultType =
9034    FnDecl->getType()->getAs<FunctionType>()->getResultType();
9035
9036  // Check that the result type is not dependent.
9037  if (ResultType->isDependentType())
9038    return SemaRef.Diag(FnDecl->getLocation(),
9039                        diag::err_operator_new_delete_dependent_result_type)
9040    << FnDecl->getDeclName() << ExpectedResultType;
9041
9042  // Check that the result type is what we expect.
9043  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
9044    return SemaRef.Diag(FnDecl->getLocation(),
9045                        diag::err_operator_new_delete_invalid_result_type)
9046    << FnDecl->getDeclName() << ExpectedResultType;
9047
9048  // A function template must have at least 2 parameters.
9049  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
9050    return SemaRef.Diag(FnDecl->getLocation(),
9051                      diag::err_operator_new_delete_template_too_few_parameters)
9052        << FnDecl->getDeclName();
9053
9054  // The function decl must have at least 1 parameter.
9055  if (FnDecl->getNumParams() == 0)
9056    return SemaRef.Diag(FnDecl->getLocation(),
9057                        diag::err_operator_new_delete_too_few_parameters)
9058      << FnDecl->getDeclName();
9059
9060  // Check the the first parameter type is not dependent.
9061  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
9062  if (FirstParamType->isDependentType())
9063    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
9064      << FnDecl->getDeclName() << ExpectedFirstParamType;
9065
9066  // Check that the first parameter type is what we expect.
9067  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
9068      ExpectedFirstParamType)
9069    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
9070    << FnDecl->getDeclName() << ExpectedFirstParamType;
9071
9072  return false;
9073}
9074
9075static bool
9076CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9077  // C++ [basic.stc.dynamic.allocation]p1:
9078  //   A program is ill-formed if an allocation function is declared in a
9079  //   namespace scope other than global scope or declared static in global
9080  //   scope.
9081  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9082    return true;
9083
9084  CanQualType SizeTy =
9085    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
9086
9087  // C++ [basic.stc.dynamic.allocation]p1:
9088  //  The return type shall be void*. The first parameter shall have type
9089  //  std::size_t.
9090  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
9091                                  SizeTy,
9092                                  diag::err_operator_new_dependent_param_type,
9093                                  diag::err_operator_new_param_type))
9094    return true;
9095
9096  // C++ [basic.stc.dynamic.allocation]p1:
9097  //  The first parameter shall not have an associated default argument.
9098  if (FnDecl->getParamDecl(0)->hasDefaultArg())
9099    return SemaRef.Diag(FnDecl->getLocation(),
9100                        diag::err_operator_new_default_arg)
9101      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
9102
9103  return false;
9104}
9105
9106static bool
9107CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
9108  // C++ [basic.stc.dynamic.deallocation]p1:
9109  //   A program is ill-formed if deallocation functions are declared in a
9110  //   namespace scope other than global scope or declared static in global
9111  //   scope.
9112  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
9113    return true;
9114
9115  // C++ [basic.stc.dynamic.deallocation]p2:
9116  //   Each deallocation function shall return void and its first parameter
9117  //   shall be void*.
9118  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
9119                                  SemaRef.Context.VoidPtrTy,
9120                                 diag::err_operator_delete_dependent_param_type,
9121                                 diag::err_operator_delete_param_type))
9122    return true;
9123
9124  return false;
9125}
9126
9127/// CheckOverloadedOperatorDeclaration - Check whether the declaration
9128/// of this overloaded operator is well-formed. If so, returns false;
9129/// otherwise, emits appropriate diagnostics and returns true.
9130bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
9131  assert(FnDecl && FnDecl->isOverloadedOperator() &&
9132         "Expected an overloaded operator declaration");
9133
9134  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
9135
9136  // C++ [over.oper]p5:
9137  //   The allocation and deallocation functions, operator new,
9138  //   operator new[], operator delete and operator delete[], are
9139  //   described completely in 3.7.3. The attributes and restrictions
9140  //   found in the rest of this subclause do not apply to them unless
9141  //   explicitly stated in 3.7.3.
9142  if (Op == OO_Delete || Op == OO_Array_Delete)
9143    return CheckOperatorDeleteDeclaration(*this, FnDecl);
9144
9145  if (Op == OO_New || Op == OO_Array_New)
9146    return CheckOperatorNewDeclaration(*this, FnDecl);
9147
9148  // C++ [over.oper]p6:
9149  //   An operator function shall either be a non-static member
9150  //   function or be a non-member function and have at least one
9151  //   parameter whose type is a class, a reference to a class, an
9152  //   enumeration, or a reference to an enumeration.
9153  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
9154    if (MethodDecl->isStatic())
9155      return Diag(FnDecl->getLocation(),
9156                  diag::err_operator_overload_static) << FnDecl->getDeclName();
9157  } else {
9158    bool ClassOrEnumParam = false;
9159    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9160                                   ParamEnd = FnDecl->param_end();
9161         Param != ParamEnd; ++Param) {
9162      QualType ParamType = (*Param)->getType().getNonReferenceType();
9163      if (ParamType->isDependentType() || ParamType->isRecordType() ||
9164          ParamType->isEnumeralType()) {
9165        ClassOrEnumParam = true;
9166        break;
9167      }
9168    }
9169
9170    if (!ClassOrEnumParam)
9171      return Diag(FnDecl->getLocation(),
9172                  diag::err_operator_overload_needs_class_or_enum)
9173        << FnDecl->getDeclName();
9174  }
9175
9176  // C++ [over.oper]p8:
9177  //   An operator function cannot have default arguments (8.3.6),
9178  //   except where explicitly stated below.
9179  //
9180  // Only the function-call operator allows default arguments
9181  // (C++ [over.call]p1).
9182  if (Op != OO_Call) {
9183    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
9184         Param != FnDecl->param_end(); ++Param) {
9185      if ((*Param)->hasDefaultArg())
9186        return Diag((*Param)->getLocation(),
9187                    diag::err_operator_overload_default_arg)
9188          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
9189    }
9190  }
9191
9192  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
9193    { false, false, false }
9194#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
9195    , { Unary, Binary, MemberOnly }
9196#include "clang/Basic/OperatorKinds.def"
9197  };
9198
9199  bool CanBeUnaryOperator = OperatorUses[Op][0];
9200  bool CanBeBinaryOperator = OperatorUses[Op][1];
9201  bool MustBeMemberOperator = OperatorUses[Op][2];
9202
9203  // C++ [over.oper]p8:
9204  //   [...] Operator functions cannot have more or fewer parameters
9205  //   than the number required for the corresponding operator, as
9206  //   described in the rest of this subclause.
9207  unsigned NumParams = FnDecl->getNumParams()
9208                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
9209  if (Op != OO_Call &&
9210      ((NumParams == 1 && !CanBeUnaryOperator) ||
9211       (NumParams == 2 && !CanBeBinaryOperator) ||
9212       (NumParams < 1) || (NumParams > 2))) {
9213    // We have the wrong number of parameters.
9214    unsigned ErrorKind;
9215    if (CanBeUnaryOperator && CanBeBinaryOperator) {
9216      ErrorKind = 2;  // 2 -> unary or binary.
9217    } else if (CanBeUnaryOperator) {
9218      ErrorKind = 0;  // 0 -> unary
9219    } else {
9220      assert(CanBeBinaryOperator &&
9221             "All non-call overloaded operators are unary or binary!");
9222      ErrorKind = 1;  // 1 -> binary
9223    }
9224
9225    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
9226      << FnDecl->getDeclName() << NumParams << ErrorKind;
9227  }
9228
9229  // Overloaded operators other than operator() cannot be variadic.
9230  if (Op != OO_Call &&
9231      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
9232    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
9233      << FnDecl->getDeclName();
9234  }
9235
9236  // Some operators must be non-static member functions.
9237  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
9238    return Diag(FnDecl->getLocation(),
9239                diag::err_operator_overload_must_be_member)
9240      << FnDecl->getDeclName();
9241  }
9242
9243  // C++ [over.inc]p1:
9244  //   The user-defined function called operator++ implements the
9245  //   prefix and postfix ++ operator. If this function is a member
9246  //   function with no parameters, or a non-member function with one
9247  //   parameter of class or enumeration type, it defines the prefix
9248  //   increment operator ++ for objects of that type. If the function
9249  //   is a member function with one parameter (which shall be of type
9250  //   int) or a non-member function with two parameters (the second
9251  //   of which shall be of type int), it defines the postfix
9252  //   increment operator ++ for objects of that type.
9253  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
9254    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
9255    bool ParamIsInt = false;
9256    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
9257      ParamIsInt = BT->getKind() == BuiltinType::Int;
9258
9259    if (!ParamIsInt)
9260      return Diag(LastParam->getLocation(),
9261                  diag::err_operator_overload_post_incdec_must_be_int)
9262        << LastParam->getType() << (Op == OO_MinusMinus);
9263  }
9264
9265  return false;
9266}
9267
9268/// CheckLiteralOperatorDeclaration - Check whether the declaration
9269/// of this literal operator function is well-formed. If so, returns
9270/// false; otherwise, emits appropriate diagnostics and returns true.
9271bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
9272  if (isa<CXXMethodDecl>(FnDecl)) {
9273    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
9274      << FnDecl->getDeclName();
9275    return true;
9276  }
9277
9278  if (FnDecl->isExternC()) {
9279    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
9280    return true;
9281  }
9282
9283  bool Valid = false;
9284
9285  // This might be the definition of a literal operator template.
9286  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
9287  // This might be a specialization of a literal operator template.
9288  if (!TpDecl)
9289    TpDecl = FnDecl->getPrimaryTemplate();
9290
9291  // template <char...> type operator "" name() is the only valid template
9292  // signature, and the only valid signature with no parameters.
9293  if (TpDecl) {
9294    if (FnDecl->param_size() == 0) {
9295      // Must have only one template parameter
9296      TemplateParameterList *Params = TpDecl->getTemplateParameters();
9297      if (Params->size() == 1) {
9298        NonTypeTemplateParmDecl *PmDecl =
9299          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
9300
9301        // The template parameter must be a char parameter pack.
9302        if (PmDecl && PmDecl->isTemplateParameterPack() &&
9303            Context.hasSameType(PmDecl->getType(), Context.CharTy))
9304          Valid = true;
9305      }
9306    }
9307  } else if (FnDecl->param_size()) {
9308    // Check the first parameter
9309    FunctionDecl::param_iterator Param = FnDecl->param_begin();
9310
9311    QualType T = (*Param)->getType().getUnqualifiedType();
9312
9313    // unsigned long long int, long double, and any character type are allowed
9314    // as the only parameters.
9315    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
9316        Context.hasSameType(T, Context.LongDoubleTy) ||
9317        Context.hasSameType(T, Context.CharTy) ||
9318        Context.hasSameType(T, Context.WCharTy) ||
9319        Context.hasSameType(T, Context.Char16Ty) ||
9320        Context.hasSameType(T, Context.Char32Ty)) {
9321      if (++Param == FnDecl->param_end())
9322        Valid = true;
9323      goto FinishedParams;
9324    }
9325
9326    // Otherwise it must be a pointer to const; let's strip those qualifiers.
9327    const PointerType *PT = T->getAs<PointerType>();
9328    if (!PT)
9329      goto FinishedParams;
9330    T = PT->getPointeeType();
9331    if (!T.isConstQualified() || T.isVolatileQualified())
9332      goto FinishedParams;
9333    T = T.getUnqualifiedType();
9334
9335    // Move on to the second parameter;
9336    ++Param;
9337
9338    // If there is no second parameter, the first must be a const char *
9339    if (Param == FnDecl->param_end()) {
9340      if (Context.hasSameType(T, Context.CharTy))
9341        Valid = true;
9342      goto FinishedParams;
9343    }
9344
9345    // const char *, const wchar_t*, const char16_t*, and const char32_t*
9346    // are allowed as the first parameter to a two-parameter function
9347    if (!(Context.hasSameType(T, Context.CharTy) ||
9348          Context.hasSameType(T, Context.WCharTy) ||
9349          Context.hasSameType(T, Context.Char16Ty) ||
9350          Context.hasSameType(T, Context.Char32Ty)))
9351      goto FinishedParams;
9352
9353    // The second and final parameter must be an std::size_t
9354    T = (*Param)->getType().getUnqualifiedType();
9355    if (Context.hasSameType(T, Context.getSizeType()) &&
9356        ++Param == FnDecl->param_end())
9357      Valid = true;
9358  }
9359
9360  // FIXME: This diagnostic is absolutely terrible.
9361FinishedParams:
9362  if (!Valid) {
9363    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
9364      << FnDecl->getDeclName();
9365    return true;
9366  }
9367
9368  // A parameter-declaration-clause containing a default argument is not
9369  // equivalent to any of the permitted forms.
9370  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
9371                                    ParamEnd = FnDecl->param_end();
9372       Param != ParamEnd; ++Param) {
9373    if ((*Param)->hasDefaultArg()) {
9374      Diag((*Param)->getDefaultArgRange().getBegin(),
9375           diag::err_literal_operator_default_argument)
9376        << (*Param)->getDefaultArgRange();
9377      break;
9378    }
9379  }
9380
9381  StringRef LiteralName
9382    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
9383  if (LiteralName[0] != '_') {
9384    // C++11 [usrlit.suffix]p1:
9385    //   Literal suffix identifiers that do not start with an underscore
9386    //   are reserved for future standardization.
9387    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved);
9388  }
9389
9390  return false;
9391}
9392
9393/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
9394/// linkage specification, including the language and (if present)
9395/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
9396/// the location of the language string literal, which is provided
9397/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
9398/// the '{' brace. Otherwise, this linkage specification does not
9399/// have any braces.
9400Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
9401                                           SourceLocation LangLoc,
9402                                           StringRef Lang,
9403                                           SourceLocation LBraceLoc) {
9404  LinkageSpecDecl::LanguageIDs Language;
9405  if (Lang == "\"C\"")
9406    Language = LinkageSpecDecl::lang_c;
9407  else if (Lang == "\"C++\"")
9408    Language = LinkageSpecDecl::lang_cxx;
9409  else {
9410    Diag(LangLoc, diag::err_bad_language);
9411    return 0;
9412  }
9413
9414  // FIXME: Add all the various semantics of linkage specifications
9415
9416  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
9417                                               ExternLoc, LangLoc, Language);
9418  CurContext->addDecl(D);
9419  PushDeclContext(S, D);
9420  return D;
9421}
9422
9423/// ActOnFinishLinkageSpecification - Complete the definition of
9424/// the C++ linkage specification LinkageSpec. If RBraceLoc is
9425/// valid, it's the position of the closing '}' brace in a linkage
9426/// specification that uses braces.
9427Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
9428                                            Decl *LinkageSpec,
9429                                            SourceLocation RBraceLoc) {
9430  if (LinkageSpec) {
9431    if (RBraceLoc.isValid()) {
9432      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
9433      LSDecl->setRBraceLoc(RBraceLoc);
9434    }
9435    PopDeclContext();
9436  }
9437  return LinkageSpec;
9438}
9439
9440/// \brief Perform semantic analysis for the variable declaration that
9441/// occurs within a C++ catch clause, returning the newly-created
9442/// variable.
9443VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
9444                                         TypeSourceInfo *TInfo,
9445                                         SourceLocation StartLoc,
9446                                         SourceLocation Loc,
9447                                         IdentifierInfo *Name) {
9448  bool Invalid = false;
9449  QualType ExDeclType = TInfo->getType();
9450
9451  // Arrays and functions decay.
9452  if (ExDeclType->isArrayType())
9453    ExDeclType = Context.getArrayDecayedType(ExDeclType);
9454  else if (ExDeclType->isFunctionType())
9455    ExDeclType = Context.getPointerType(ExDeclType);
9456
9457  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
9458  // The exception-declaration shall not denote a pointer or reference to an
9459  // incomplete type, other than [cv] void*.
9460  // N2844 forbids rvalue references.
9461  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
9462    Diag(Loc, diag::err_catch_rvalue_ref);
9463    Invalid = true;
9464  }
9465
9466  QualType BaseType = ExDeclType;
9467  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
9468  unsigned DK = diag::err_catch_incomplete;
9469  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
9470    BaseType = Ptr->getPointeeType();
9471    Mode = 1;
9472    DK = diag::err_catch_incomplete_ptr;
9473  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
9474    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
9475    BaseType = Ref->getPointeeType();
9476    Mode = 2;
9477    DK = diag::err_catch_incomplete_ref;
9478  }
9479  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
9480      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
9481    Invalid = true;
9482
9483  if (!Invalid && !ExDeclType->isDependentType() &&
9484      RequireNonAbstractType(Loc, ExDeclType,
9485                             diag::err_abstract_type_in_decl,
9486                             AbstractVariableType))
9487    Invalid = true;
9488
9489  // Only the non-fragile NeXT runtime currently supports C++ catches
9490  // of ObjC types, and no runtime supports catching ObjC types by value.
9491  if (!Invalid && getLangOpts().ObjC1) {
9492    QualType T = ExDeclType;
9493    if (const ReferenceType *RT = T->getAs<ReferenceType>())
9494      T = RT->getPointeeType();
9495
9496    if (T->isObjCObjectType()) {
9497      Diag(Loc, diag::err_objc_object_catch);
9498      Invalid = true;
9499    } else if (T->isObjCObjectPointerType()) {
9500      if (!getLangOpts().ObjCNonFragileABI)
9501        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
9502    }
9503  }
9504
9505  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
9506                                    ExDeclType, TInfo, SC_None, SC_None);
9507  ExDecl->setExceptionVariable(true);
9508
9509  // In ARC, infer 'retaining' for variables of retainable type.
9510  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
9511    Invalid = true;
9512
9513  if (!Invalid && !ExDeclType->isDependentType()) {
9514    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
9515      // C++ [except.handle]p16:
9516      //   The object declared in an exception-declaration or, if the
9517      //   exception-declaration does not specify a name, a temporary (12.2) is
9518      //   copy-initialized (8.5) from the exception object. [...]
9519      //   The object is destroyed when the handler exits, after the destruction
9520      //   of any automatic objects initialized within the handler.
9521      //
9522      // We just pretend to initialize the object with itself, then make sure
9523      // it can be destroyed later.
9524      QualType initType = ExDeclType;
9525
9526      InitializedEntity entity =
9527        InitializedEntity::InitializeVariable(ExDecl);
9528      InitializationKind initKind =
9529        InitializationKind::CreateCopy(Loc, SourceLocation());
9530
9531      Expr *opaqueValue =
9532        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
9533      InitializationSequence sequence(*this, entity, initKind, &opaqueValue, 1);
9534      ExprResult result = sequence.Perform(*this, entity, initKind,
9535                                           MultiExprArg(&opaqueValue, 1));
9536      if (result.isInvalid())
9537        Invalid = true;
9538      else {
9539        // If the constructor used was non-trivial, set this as the
9540        // "initializer".
9541        CXXConstructExpr *construct = cast<CXXConstructExpr>(result.take());
9542        if (!construct->getConstructor()->isTrivial()) {
9543          Expr *init = MaybeCreateExprWithCleanups(construct);
9544          ExDecl->setInit(init);
9545        }
9546
9547        // And make sure it's destructable.
9548        FinalizeVarWithDestructor(ExDecl, recordType);
9549      }
9550    }
9551  }
9552
9553  if (Invalid)
9554    ExDecl->setInvalidDecl();
9555
9556  return ExDecl;
9557}
9558
9559/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
9560/// handler.
9561Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
9562  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9563  bool Invalid = D.isInvalidType();
9564
9565  // Check for unexpanded parameter packs.
9566  if (TInfo && DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9567                                               UPPC_ExceptionType)) {
9568    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
9569                                             D.getIdentifierLoc());
9570    Invalid = true;
9571  }
9572
9573  IdentifierInfo *II = D.getIdentifier();
9574  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
9575                                             LookupOrdinaryName,
9576                                             ForRedeclaration)) {
9577    // The scope should be freshly made just for us. There is just no way
9578    // it contains any previous declaration.
9579    assert(!S->isDeclScope(PrevDecl));
9580    if (PrevDecl->isTemplateParameter()) {
9581      // Maybe we will complain about the shadowed template parameter.
9582      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9583      PrevDecl = 0;
9584    }
9585  }
9586
9587  if (D.getCXXScopeSpec().isSet() && !Invalid) {
9588    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
9589      << D.getCXXScopeSpec().getRange();
9590    Invalid = true;
9591  }
9592
9593  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
9594                                              D.getLocStart(),
9595                                              D.getIdentifierLoc(),
9596                                              D.getIdentifier());
9597  if (Invalid)
9598    ExDecl->setInvalidDecl();
9599
9600  // Add the exception declaration into this scope.
9601  if (II)
9602    PushOnScopeChains(ExDecl, S);
9603  else
9604    CurContext->addDecl(ExDecl);
9605
9606  ProcessDeclAttributes(S, ExDecl, D);
9607  return ExDecl;
9608}
9609
9610Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
9611                                         Expr *AssertExpr,
9612                                         Expr *AssertMessageExpr_,
9613                                         SourceLocation RParenLoc) {
9614  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr_);
9615
9616  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
9617    // In a static_assert-declaration, the constant-expression shall be a
9618    // constant expression that can be contextually converted to bool.
9619    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
9620    if (Converted.isInvalid())
9621      return 0;
9622
9623    llvm::APSInt Cond;
9624    if (VerifyIntegerConstantExpression(Converted.get(), &Cond,
9625          diag::err_static_assert_expression_is_not_constant,
9626          /*AllowFold=*/false).isInvalid())
9627      return 0;
9628
9629    if (!Cond) {
9630      llvm::SmallString<256> MsgBuffer;
9631      llvm::raw_svector_ostream Msg(MsgBuffer);
9632      AssertMessage->printPretty(Msg, Context, 0, getPrintingPolicy());
9633      Diag(StaticAssertLoc, diag::err_static_assert_failed)
9634        << Msg.str() << AssertExpr->getSourceRange();
9635    }
9636  }
9637
9638  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
9639    return 0;
9640
9641  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
9642                                        AssertExpr, AssertMessage, RParenLoc);
9643
9644  CurContext->addDecl(Decl);
9645  return Decl;
9646}
9647
9648/// \brief Perform semantic analysis of the given friend type declaration.
9649///
9650/// \returns A friend declaration that.
9651FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation Loc,
9652                                      SourceLocation FriendLoc,
9653                                      TypeSourceInfo *TSInfo) {
9654  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
9655
9656  QualType T = TSInfo->getType();
9657  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
9658
9659  // C++03 [class.friend]p2:
9660  //   An elaborated-type-specifier shall be used in a friend declaration
9661  //   for a class.*
9662  //
9663  //   * The class-key of the elaborated-type-specifier is required.
9664  if (!ActiveTemplateInstantiations.empty()) {
9665    // Do not complain about the form of friend template types during
9666    // template instantiation; we will already have complained when the
9667    // template was declared.
9668  } else if (!T->isElaboratedTypeSpecifier()) {
9669    // If we evaluated the type to a record type, suggest putting
9670    // a tag in front.
9671    if (const RecordType *RT = T->getAs<RecordType>()) {
9672      RecordDecl *RD = RT->getDecl();
9673
9674      std::string InsertionText = std::string(" ") + RD->getKindName();
9675
9676      Diag(TypeRange.getBegin(),
9677           getLangOpts().CPlusPlus0x ?
9678             diag::warn_cxx98_compat_unelaborated_friend_type :
9679             diag::ext_unelaborated_friend_type)
9680        << (unsigned) RD->getTagKind()
9681        << T
9682        << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
9683                                      InsertionText);
9684    } else {
9685      Diag(FriendLoc,
9686           getLangOpts().CPlusPlus0x ?
9687             diag::warn_cxx98_compat_nonclass_type_friend :
9688             diag::ext_nonclass_type_friend)
9689        << T
9690        << SourceRange(FriendLoc, TypeRange.getEnd());
9691    }
9692  } else if (T->getAs<EnumType>()) {
9693    Diag(FriendLoc,
9694         getLangOpts().CPlusPlus0x ?
9695           diag::warn_cxx98_compat_enum_friend :
9696           diag::ext_enum_friend)
9697      << T
9698      << SourceRange(FriendLoc, TypeRange.getEnd());
9699  }
9700
9701  // C++0x [class.friend]p3:
9702  //   If the type specifier in a friend declaration designates a (possibly
9703  //   cv-qualified) class type, that class is declared as a friend; otherwise,
9704  //   the friend declaration is ignored.
9705
9706  // FIXME: C++0x has some syntactic restrictions on friend type declarations
9707  // in [class.friend]p3 that we do not implement.
9708
9709  return FriendDecl::Create(Context, CurContext, Loc, TSInfo, FriendLoc);
9710}
9711
9712/// Handle a friend tag declaration where the scope specifier was
9713/// templated.
9714Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
9715                                    unsigned TagSpec, SourceLocation TagLoc,
9716                                    CXXScopeSpec &SS,
9717                                    IdentifierInfo *Name, SourceLocation NameLoc,
9718                                    AttributeList *Attr,
9719                                    MultiTemplateParamsArg TempParamLists) {
9720  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9721
9722  bool isExplicitSpecialization = false;
9723  bool Invalid = false;
9724
9725  if (TemplateParameterList *TemplateParams
9726        = MatchTemplateParametersToScopeSpecifier(TagLoc, NameLoc, SS,
9727                                                  TempParamLists.get(),
9728                                                  TempParamLists.size(),
9729                                                  /*friend*/ true,
9730                                                  isExplicitSpecialization,
9731                                                  Invalid)) {
9732    if (TemplateParams->size() > 0) {
9733      // This is a declaration of a class template.
9734      if (Invalid)
9735        return 0;
9736
9737      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
9738                                SS, Name, NameLoc, Attr,
9739                                TemplateParams, AS_public,
9740                                /*ModulePrivateLoc=*/SourceLocation(),
9741                                TempParamLists.size() - 1,
9742                   (TemplateParameterList**) TempParamLists.release()).take();
9743    } else {
9744      // The "template<>" header is extraneous.
9745      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9746        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9747      isExplicitSpecialization = true;
9748    }
9749  }
9750
9751  if (Invalid) return 0;
9752
9753  bool isAllExplicitSpecializations = true;
9754  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
9755    if (TempParamLists.get()[I]->size()) {
9756      isAllExplicitSpecializations = false;
9757      break;
9758    }
9759  }
9760
9761  // FIXME: don't ignore attributes.
9762
9763  // If it's explicit specializations all the way down, just forget
9764  // about the template header and build an appropriate non-templated
9765  // friend.  TODO: for source fidelity, remember the headers.
9766  if (isAllExplicitSpecializations) {
9767    if (SS.isEmpty()) {
9768      bool Owned = false;
9769      bool IsDependent = false;
9770      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
9771                      Attr, AS_public,
9772                      /*ModulePrivateLoc=*/SourceLocation(),
9773                      MultiTemplateParamsArg(), Owned, IsDependent,
9774                      /*ScopedEnumKWLoc=*/SourceLocation(),
9775                      /*ScopedEnumUsesClassTag=*/false,
9776                      /*UnderlyingType=*/TypeResult());
9777    }
9778
9779    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
9780    ElaboratedTypeKeyword Keyword
9781      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9782    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
9783                                   *Name, NameLoc);
9784    if (T.isNull())
9785      return 0;
9786
9787    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9788    if (isa<DependentNameType>(T)) {
9789      DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9790      TL.setElaboratedKeywordLoc(TagLoc);
9791      TL.setQualifierLoc(QualifierLoc);
9792      TL.setNameLoc(NameLoc);
9793    } else {
9794      ElaboratedTypeLoc TL = cast<ElaboratedTypeLoc>(TSI->getTypeLoc());
9795      TL.setElaboratedKeywordLoc(TagLoc);
9796      TL.setQualifierLoc(QualifierLoc);
9797      cast<TypeSpecTypeLoc>(TL.getNamedTypeLoc()).setNameLoc(NameLoc);
9798    }
9799
9800    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9801                                            TSI, FriendLoc);
9802    Friend->setAccess(AS_public);
9803    CurContext->addDecl(Friend);
9804    return Friend;
9805  }
9806
9807  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
9808
9809
9810
9811  // Handle the case of a templated-scope friend class.  e.g.
9812  //   template <class T> class A<T>::B;
9813  // FIXME: we don't support these right now.
9814  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
9815  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
9816  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
9817  DependentNameTypeLoc TL = cast<DependentNameTypeLoc>(TSI->getTypeLoc());
9818  TL.setElaboratedKeywordLoc(TagLoc);
9819  TL.setQualifierLoc(SS.getWithLocInContext(Context));
9820  TL.setNameLoc(NameLoc);
9821
9822  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
9823                                          TSI, FriendLoc);
9824  Friend->setAccess(AS_public);
9825  Friend->setUnsupportedFriend(true);
9826  CurContext->addDecl(Friend);
9827  return Friend;
9828}
9829
9830
9831/// Handle a friend type declaration.  This works in tandem with
9832/// ActOnTag.
9833///
9834/// Notes on friend class templates:
9835///
9836/// We generally treat friend class declarations as if they were
9837/// declaring a class.  So, for example, the elaborated type specifier
9838/// in a friend declaration is required to obey the restrictions of a
9839/// class-head (i.e. no typedefs in the scope chain), template
9840/// parameters are required to match up with simple template-ids, &c.
9841/// However, unlike when declaring a template specialization, it's
9842/// okay to refer to a template specialization without an empty
9843/// template parameter declaration, e.g.
9844///   friend class A<T>::B<unsigned>;
9845/// We permit this as a special case; if there are any template
9846/// parameters present at all, require proper matching, i.e.
9847///   template <> template <class T> friend class A<int>::B;
9848Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
9849                                MultiTemplateParamsArg TempParams) {
9850  SourceLocation Loc = DS.getLocStart();
9851
9852  assert(DS.isFriendSpecified());
9853  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9854
9855  // Try to convert the decl specifier to a type.  This works for
9856  // friend templates because ActOnTag never produces a ClassTemplateDecl
9857  // for a TUK_Friend.
9858  Declarator TheDeclarator(DS, Declarator::MemberContext);
9859  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
9860  QualType T = TSI->getType();
9861  if (TheDeclarator.isInvalidType())
9862    return 0;
9863
9864  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
9865    return 0;
9866
9867  // This is definitely an error in C++98.  It's probably meant to
9868  // be forbidden in C++0x, too, but the specification is just
9869  // poorly written.
9870  //
9871  // The problem is with declarations like the following:
9872  //   template <T> friend A<T>::foo;
9873  // where deciding whether a class C is a friend or not now hinges
9874  // on whether there exists an instantiation of A that causes
9875  // 'foo' to equal C.  There are restrictions on class-heads
9876  // (which we declare (by fiat) elaborated friend declarations to
9877  // be) that makes this tractable.
9878  //
9879  // FIXME: handle "template <> friend class A<T>;", which
9880  // is possibly well-formed?  Who even knows?
9881  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
9882    Diag(Loc, diag::err_tagless_friend_type_template)
9883      << DS.getSourceRange();
9884    return 0;
9885  }
9886
9887  // C++98 [class.friend]p1: A friend of a class is a function
9888  //   or class that is not a member of the class . . .
9889  // This is fixed in DR77, which just barely didn't make the C++03
9890  // deadline.  It's also a very silly restriction that seriously
9891  // affects inner classes and which nobody else seems to implement;
9892  // thus we never diagnose it, not even in -pedantic.
9893  //
9894  // But note that we could warn about it: it's always useless to
9895  // friend one of your own members (it's not, however, worthless to
9896  // friend a member of an arbitrary specialization of your template).
9897
9898  Decl *D;
9899  if (unsigned NumTempParamLists = TempParams.size())
9900    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
9901                                   NumTempParamLists,
9902                                   TempParams.release(),
9903                                   TSI,
9904                                   DS.getFriendSpecLoc());
9905  else
9906    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
9907
9908  if (!D)
9909    return 0;
9910
9911  D->setAccess(AS_public);
9912  CurContext->addDecl(D);
9913
9914  return D;
9915}
9916
9917Decl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
9918                                    MultiTemplateParamsArg TemplateParams) {
9919  const DeclSpec &DS = D.getDeclSpec();
9920
9921  assert(DS.isFriendSpecified());
9922  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
9923
9924  SourceLocation Loc = D.getIdentifierLoc();
9925  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9926
9927  // C++ [class.friend]p1
9928  //   A friend of a class is a function or class....
9929  // Note that this sees through typedefs, which is intended.
9930  // It *doesn't* see through dependent types, which is correct
9931  // according to [temp.arg.type]p3:
9932  //   If a declaration acquires a function type through a
9933  //   type dependent on a template-parameter and this causes
9934  //   a declaration that does not use the syntactic form of a
9935  //   function declarator to have a function type, the program
9936  //   is ill-formed.
9937  if (!TInfo->getType()->isFunctionType()) {
9938    Diag(Loc, diag::err_unexpected_friend);
9939
9940    // It might be worthwhile to try to recover by creating an
9941    // appropriate declaration.
9942    return 0;
9943  }
9944
9945  // C++ [namespace.memdef]p3
9946  //  - If a friend declaration in a non-local class first declares a
9947  //    class or function, the friend class or function is a member
9948  //    of the innermost enclosing namespace.
9949  //  - The name of the friend is not found by simple name lookup
9950  //    until a matching declaration is provided in that namespace
9951  //    scope (either before or after the class declaration granting
9952  //    friendship).
9953  //  - If a friend function is called, its name may be found by the
9954  //    name lookup that considers functions from namespaces and
9955  //    classes associated with the types of the function arguments.
9956  //  - When looking for a prior declaration of a class or a function
9957  //    declared as a friend, scopes outside the innermost enclosing
9958  //    namespace scope are not considered.
9959
9960  CXXScopeSpec &SS = D.getCXXScopeSpec();
9961  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
9962  DeclarationName Name = NameInfo.getName();
9963  assert(Name);
9964
9965  // Check for unexpanded parameter packs.
9966  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
9967      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
9968      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
9969    return 0;
9970
9971  // The context we found the declaration in, or in which we should
9972  // create the declaration.
9973  DeclContext *DC;
9974  Scope *DCScope = S;
9975  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
9976                        ForRedeclaration);
9977
9978  // FIXME: there are different rules in local classes
9979
9980  // There are four cases here.
9981  //   - There's no scope specifier, in which case we just go to the
9982  //     appropriate scope and look for a function or function template
9983  //     there as appropriate.
9984  // Recover from invalid scope qualifiers as if they just weren't there.
9985  if (SS.isInvalid() || !SS.isSet()) {
9986    // C++0x [namespace.memdef]p3:
9987    //   If the name in a friend declaration is neither qualified nor
9988    //   a template-id and the declaration is a function or an
9989    //   elaborated-type-specifier, the lookup to determine whether
9990    //   the entity has been previously declared shall not consider
9991    //   any scopes outside the innermost enclosing namespace.
9992    // C++0x [class.friend]p11:
9993    //   If a friend declaration appears in a local class and the name
9994    //   specified is an unqualified name, a prior declaration is
9995    //   looked up without considering scopes that are outside the
9996    //   innermost enclosing non-class scope. For a friend function
9997    //   declaration, if there is no prior declaration, the program is
9998    //   ill-formed.
9999    bool isLocal = cast<CXXRecordDecl>(CurContext)->isLocalClass();
10000    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
10001
10002    // Find the appropriate context according to the above.
10003    DC = CurContext;
10004    while (true) {
10005      // Skip class contexts.  If someone can cite chapter and verse
10006      // for this behavior, that would be nice --- it's what GCC and
10007      // EDG do, and it seems like a reasonable intent, but the spec
10008      // really only says that checks for unqualified existing
10009      // declarations should stop at the nearest enclosing namespace,
10010      // not that they should only consider the nearest enclosing
10011      // namespace.
10012      while (DC->isRecord() || DC->isTransparentContext())
10013        DC = DC->getParent();
10014
10015      LookupQualifiedName(Previous, DC);
10016
10017      // TODO: decide what we think about using declarations.
10018      if (isLocal || !Previous.empty())
10019        break;
10020
10021      if (isTemplateId) {
10022        if (isa<TranslationUnitDecl>(DC)) break;
10023      } else {
10024        if (DC->isFileContext()) break;
10025      }
10026      DC = DC->getParent();
10027    }
10028
10029    // C++ [class.friend]p1: A friend of a class is a function or
10030    //   class that is not a member of the class . . .
10031    // C++11 changes this for both friend types and functions.
10032    // Most C++ 98 compilers do seem to give an error here, so
10033    // we do, too.
10034    if (!Previous.empty() && DC->Equals(CurContext))
10035      Diag(DS.getFriendSpecLoc(),
10036           getLangOpts().CPlusPlus0x ?
10037             diag::warn_cxx98_compat_friend_is_member :
10038             diag::err_friend_is_member);
10039
10040    DCScope = getScopeForDeclContext(S, DC);
10041
10042    // C++ [class.friend]p6:
10043    //   A function can be defined in a friend declaration of a class if and
10044    //   only if the class is a non-local class (9.8), the function name is
10045    //   unqualified, and the function has namespace scope.
10046    if (isLocal && D.isFunctionDefinition()) {
10047      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
10048    }
10049
10050  //   - There's a non-dependent scope specifier, in which case we
10051  //     compute it and do a previous lookup there for a function
10052  //     or function template.
10053  } else if (!SS.getScopeRep()->isDependent()) {
10054    DC = computeDeclContext(SS);
10055    if (!DC) return 0;
10056
10057    if (RequireCompleteDeclContext(SS, DC)) return 0;
10058
10059    LookupQualifiedName(Previous, DC);
10060
10061    // Ignore things found implicitly in the wrong scope.
10062    // TODO: better diagnostics for this case.  Suggesting the right
10063    // qualified scope would be nice...
10064    LookupResult::Filter F = Previous.makeFilter();
10065    while (F.hasNext()) {
10066      NamedDecl *D = F.next();
10067      if (!DC->InEnclosingNamespaceSetOf(
10068              D->getDeclContext()->getRedeclContext()))
10069        F.erase();
10070    }
10071    F.done();
10072
10073    if (Previous.empty()) {
10074      D.setInvalidType();
10075      Diag(Loc, diag::err_qualified_friend_not_found)
10076          << Name << TInfo->getType();
10077      return 0;
10078    }
10079
10080    // C++ [class.friend]p1: A friend of a class is a function or
10081    //   class that is not a member of the class . . .
10082    if (DC->Equals(CurContext))
10083      Diag(DS.getFriendSpecLoc(),
10084           getLangOpts().CPlusPlus0x ?
10085             diag::warn_cxx98_compat_friend_is_member :
10086             diag::err_friend_is_member);
10087
10088    if (D.isFunctionDefinition()) {
10089      // C++ [class.friend]p6:
10090      //   A function can be defined in a friend declaration of a class if and
10091      //   only if the class is a non-local class (9.8), the function name is
10092      //   unqualified, and the function has namespace scope.
10093      SemaDiagnosticBuilder DB
10094        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
10095
10096      DB << SS.getScopeRep();
10097      if (DC->isFileContext())
10098        DB << FixItHint::CreateRemoval(SS.getRange());
10099      SS.clear();
10100    }
10101
10102  //   - There's a scope specifier that does not match any template
10103  //     parameter lists, in which case we use some arbitrary context,
10104  //     create a method or method template, and wait for instantiation.
10105  //   - There's a scope specifier that does match some template
10106  //     parameter lists, which we don't handle right now.
10107  } else {
10108    if (D.isFunctionDefinition()) {
10109      // C++ [class.friend]p6:
10110      //   A function can be defined in a friend declaration of a class if and
10111      //   only if the class is a non-local class (9.8), the function name is
10112      //   unqualified, and the function has namespace scope.
10113      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
10114        << SS.getScopeRep();
10115    }
10116
10117    DC = CurContext;
10118    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
10119  }
10120
10121  if (!DC->isRecord()) {
10122    // This implies that it has to be an operator or function.
10123    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
10124        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
10125        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
10126      Diag(Loc, diag::err_introducing_special_friend) <<
10127        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
10128         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
10129      return 0;
10130    }
10131  }
10132
10133  // FIXME: This is an egregious hack to cope with cases where the scope stack
10134  // does not contain the declaration context, i.e., in an out-of-line
10135  // definition of a class.
10136  Scope FakeDCScope(S, Scope::DeclScope, Diags);
10137  if (!DCScope) {
10138    FakeDCScope.setEntity(DC);
10139    DCScope = &FakeDCScope;
10140  }
10141
10142  bool AddToScope = true;
10143  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
10144                                          move(TemplateParams), AddToScope);
10145  if (!ND) return 0;
10146
10147  assert(ND->getDeclContext() == DC);
10148  assert(ND->getLexicalDeclContext() == CurContext);
10149
10150  // Add the function declaration to the appropriate lookup tables,
10151  // adjusting the redeclarations list as necessary.  We don't
10152  // want to do this yet if the friending class is dependent.
10153  //
10154  // Also update the scope-based lookup if the target context's
10155  // lookup context is in lexical scope.
10156  if (!CurContext->isDependentContext()) {
10157    DC = DC->getRedeclContext();
10158    DC->makeDeclVisibleInContext(ND);
10159    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10160      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
10161  }
10162
10163  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
10164                                       D.getIdentifierLoc(), ND,
10165                                       DS.getFriendSpecLoc());
10166  FrD->setAccess(AS_public);
10167  CurContext->addDecl(FrD);
10168
10169  if (ND->isInvalidDecl())
10170    FrD->setInvalidDecl();
10171  else {
10172    FunctionDecl *FD;
10173    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
10174      FD = FTD->getTemplatedDecl();
10175    else
10176      FD = cast<FunctionDecl>(ND);
10177
10178    // Mark templated-scope function declarations as unsupported.
10179    if (FD->getNumTemplateParameterLists())
10180      FrD->setUnsupportedFriend(true);
10181  }
10182
10183  return ND;
10184}
10185
10186void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
10187  AdjustDeclIfTemplate(Dcl);
10188
10189  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
10190  if (!Fn) {
10191    Diag(DelLoc, diag::err_deleted_non_function);
10192    return;
10193  }
10194  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
10195    Diag(DelLoc, diag::err_deleted_decl_not_first);
10196    Diag(Prev->getLocation(), diag::note_previous_declaration);
10197    // If the declaration wasn't the first, we delete the function anyway for
10198    // recovery.
10199  }
10200  Fn->setDeletedAsWritten();
10201
10202  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10203  if (!MD)
10204    return;
10205
10206  // A deleted special member function is trivial if the corresponding
10207  // implicitly-declared function would have been.
10208  switch (getSpecialMember(MD)) {
10209  case CXXInvalid:
10210    break;
10211  case CXXDefaultConstructor:
10212    MD->setTrivial(MD->getParent()->hasTrivialDefaultConstructor());
10213    break;
10214  case CXXCopyConstructor:
10215    MD->setTrivial(MD->getParent()->hasTrivialCopyConstructor());
10216    break;
10217  case CXXMoveConstructor:
10218    MD->setTrivial(MD->getParent()->hasTrivialMoveConstructor());
10219    break;
10220  case CXXCopyAssignment:
10221    MD->setTrivial(MD->getParent()->hasTrivialCopyAssignment());
10222    break;
10223  case CXXMoveAssignment:
10224    MD->setTrivial(MD->getParent()->hasTrivialMoveAssignment());
10225    break;
10226  case CXXDestructor:
10227    MD->setTrivial(MD->getParent()->hasTrivialDestructor());
10228    break;
10229  }
10230}
10231
10232void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
10233  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Dcl);
10234
10235  if (MD) {
10236    if (MD->getParent()->isDependentType()) {
10237      MD->setDefaulted();
10238      MD->setExplicitlyDefaulted();
10239      return;
10240    }
10241
10242    CXXSpecialMember Member = getSpecialMember(MD);
10243    if (Member == CXXInvalid) {
10244      Diag(DefaultLoc, diag::err_default_special_members);
10245      return;
10246    }
10247
10248    MD->setDefaulted();
10249    MD->setExplicitlyDefaulted();
10250
10251    // If this definition appears within the record, do the checking when
10252    // the record is complete.
10253    const FunctionDecl *Primary = MD;
10254    if (MD->getTemplatedKind() != FunctionDecl::TK_NonTemplate)
10255      // Find the uninstantiated declaration that actually had the '= default'
10256      // on it.
10257      MD->getTemplateInstantiationPattern()->isDefined(Primary);
10258
10259    if (Primary == Primary->getCanonicalDecl())
10260      return;
10261
10262    switch (Member) {
10263    case CXXDefaultConstructor: {
10264      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10265      CheckExplicitlyDefaultedSpecialMember(CD);
10266      if (!CD->isInvalidDecl())
10267        DefineImplicitDefaultConstructor(DefaultLoc, CD);
10268      break;
10269    }
10270
10271    case CXXCopyConstructor: {
10272      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10273      CheckExplicitlyDefaultedSpecialMember(CD);
10274      if (!CD->isInvalidDecl())
10275        DefineImplicitCopyConstructor(DefaultLoc, CD);
10276      break;
10277    }
10278
10279    case CXXCopyAssignment: {
10280      CheckExplicitlyDefaultedSpecialMember(MD);
10281      if (!MD->isInvalidDecl())
10282        DefineImplicitCopyAssignment(DefaultLoc, MD);
10283      break;
10284    }
10285
10286    case CXXDestructor: {
10287      CXXDestructorDecl *DD = cast<CXXDestructorDecl>(MD);
10288      CheckExplicitlyDefaultedSpecialMember(DD);
10289      if (!DD->isInvalidDecl())
10290        DefineImplicitDestructor(DefaultLoc, DD);
10291      break;
10292    }
10293
10294    case CXXMoveConstructor: {
10295      CXXConstructorDecl *CD = cast<CXXConstructorDecl>(MD);
10296      CheckExplicitlyDefaultedSpecialMember(CD);
10297      if (!CD->isInvalidDecl())
10298        DefineImplicitMoveConstructor(DefaultLoc, CD);
10299      break;
10300    }
10301
10302    case CXXMoveAssignment: {
10303      CheckExplicitlyDefaultedSpecialMember(MD);
10304      if (!MD->isInvalidDecl())
10305        DefineImplicitMoveAssignment(DefaultLoc, MD);
10306      break;
10307    }
10308
10309    case CXXInvalid:
10310      llvm_unreachable("Invalid special member.");
10311    }
10312  } else {
10313    Diag(DefaultLoc, diag::err_default_special_members);
10314  }
10315}
10316
10317static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
10318  for (Stmt::child_range CI = S->children(); CI; ++CI) {
10319    Stmt *SubStmt = *CI;
10320    if (!SubStmt)
10321      continue;
10322    if (isa<ReturnStmt>(SubStmt))
10323      Self.Diag(SubStmt->getLocStart(),
10324           diag::err_return_in_constructor_handler);
10325    if (!isa<Expr>(SubStmt))
10326      SearchForReturnInStmt(Self, SubStmt);
10327  }
10328}
10329
10330void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
10331  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
10332    CXXCatchStmt *Handler = TryBlock->getHandler(I);
10333    SearchForReturnInStmt(*this, Handler);
10334  }
10335}
10336
10337bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
10338                                             const CXXMethodDecl *Old) {
10339  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
10340  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
10341
10342  if (Context.hasSameType(NewTy, OldTy) ||
10343      NewTy->isDependentType() || OldTy->isDependentType())
10344    return false;
10345
10346  // Check if the return types are covariant
10347  QualType NewClassTy, OldClassTy;
10348
10349  /// Both types must be pointers or references to classes.
10350  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
10351    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
10352      NewClassTy = NewPT->getPointeeType();
10353      OldClassTy = OldPT->getPointeeType();
10354    }
10355  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
10356    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
10357      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
10358        NewClassTy = NewRT->getPointeeType();
10359        OldClassTy = OldRT->getPointeeType();
10360      }
10361    }
10362  }
10363
10364  // The return types aren't either both pointers or references to a class type.
10365  if (NewClassTy.isNull()) {
10366    Diag(New->getLocation(),
10367         diag::err_different_return_type_for_overriding_virtual_function)
10368      << New->getDeclName() << NewTy << OldTy;
10369    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10370
10371    return true;
10372  }
10373
10374  // C++ [class.virtual]p6:
10375  //   If the return type of D::f differs from the return type of B::f, the
10376  //   class type in the return type of D::f shall be complete at the point of
10377  //   declaration of D::f or shall be the class type D.
10378  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
10379    if (!RT->isBeingDefined() &&
10380        RequireCompleteType(New->getLocation(), NewClassTy,
10381                            diag::err_covariant_return_incomplete,
10382                            New->getDeclName()))
10383    return true;
10384  }
10385
10386  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
10387    // Check if the new class derives from the old class.
10388    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
10389      Diag(New->getLocation(),
10390           diag::err_covariant_return_not_derived)
10391      << New->getDeclName() << NewTy << OldTy;
10392      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10393      return true;
10394    }
10395
10396    // Check if we the conversion from derived to base is valid.
10397    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
10398                    diag::err_covariant_return_inaccessible_base,
10399                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
10400                    // FIXME: Should this point to the return type?
10401                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
10402      // FIXME: this note won't trigger for delayed access control
10403      // diagnostics, and it's impossible to get an undelayed error
10404      // here from access control during the original parse because
10405      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
10406      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10407      return true;
10408    }
10409  }
10410
10411  // The qualifiers of the return types must be the same.
10412  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
10413    Diag(New->getLocation(),
10414         diag::err_covariant_return_type_different_qualifications)
10415    << New->getDeclName() << NewTy << OldTy;
10416    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10417    return true;
10418  };
10419
10420
10421  // The new class type must have the same or less qualifiers as the old type.
10422  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
10423    Diag(New->getLocation(),
10424         diag::err_covariant_return_type_class_type_more_qualified)
10425    << New->getDeclName() << NewTy << OldTy;
10426    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
10427    return true;
10428  };
10429
10430  return false;
10431}
10432
10433/// \brief Mark the given method pure.
10434///
10435/// \param Method the method to be marked pure.
10436///
10437/// \param InitRange the source range that covers the "0" initializer.
10438bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
10439  SourceLocation EndLoc = InitRange.getEnd();
10440  if (EndLoc.isValid())
10441    Method->setRangeEnd(EndLoc);
10442
10443  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
10444    Method->setPure();
10445    return false;
10446  }
10447
10448  if (!Method->isInvalidDecl())
10449    Diag(Method->getLocation(), diag::err_non_virtual_pure)
10450      << Method->getDeclName() << InitRange;
10451  return true;
10452}
10453
10454/// \brief Determine whether the given declaration is a static data member.
10455static bool isStaticDataMember(Decl *D) {
10456  VarDecl *Var = dyn_cast_or_null<VarDecl>(D);
10457  if (!Var)
10458    return false;
10459
10460  return Var->isStaticDataMember();
10461}
10462/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
10463/// an initializer for the out-of-line declaration 'Dcl'.  The scope
10464/// is a fresh scope pushed for just this purpose.
10465///
10466/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
10467/// static data member of class X, names should be looked up in the scope of
10468/// class X.
10469void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
10470  // If there is no declaration, there was an error parsing it.
10471  if (D == 0 || D->isInvalidDecl()) return;
10472
10473  // We should only get called for declarations with scope specifiers, like:
10474  //   int foo::bar;
10475  assert(D->isOutOfLine());
10476  EnterDeclaratorContext(S, D->getDeclContext());
10477
10478  // If we are parsing the initializer for a static data member, push a
10479  // new expression evaluation context that is associated with this static
10480  // data member.
10481  if (isStaticDataMember(D))
10482    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
10483}
10484
10485/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
10486/// initializer for the out-of-line declaration 'D'.
10487void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
10488  // If there is no declaration, there was an error parsing it.
10489  if (D == 0 || D->isInvalidDecl()) return;
10490
10491  if (isStaticDataMember(D))
10492    PopExpressionEvaluationContext();
10493
10494  assert(D->isOutOfLine());
10495  ExitDeclaratorContext(S);
10496}
10497
10498/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
10499/// C++ if/switch/while/for statement.
10500/// e.g: "if (int x = f()) {...}"
10501DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
10502  // C++ 6.4p2:
10503  // The declarator shall not specify a function or an array.
10504  // The type-specifier-seq shall not contain typedef and shall not declare a
10505  // new class or enumeration.
10506  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
10507         "Parser allowed 'typedef' as storage class of condition decl.");
10508
10509  Decl *Dcl = ActOnDeclarator(S, D);
10510  if (!Dcl)
10511    return true;
10512
10513  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
10514    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
10515      << D.getSourceRange();
10516    return true;
10517  }
10518
10519  return Dcl;
10520}
10521
10522void Sema::LoadExternalVTableUses() {
10523  if (!ExternalSource)
10524    return;
10525
10526  SmallVector<ExternalVTableUse, 4> VTables;
10527  ExternalSource->ReadUsedVTables(VTables);
10528  SmallVector<VTableUse, 4> NewUses;
10529  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
10530    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
10531      = VTablesUsed.find(VTables[I].Record);
10532    // Even if a definition wasn't required before, it may be required now.
10533    if (Pos != VTablesUsed.end()) {
10534      if (!Pos->second && VTables[I].DefinitionRequired)
10535        Pos->second = true;
10536      continue;
10537    }
10538
10539    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
10540    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
10541  }
10542
10543  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
10544}
10545
10546void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
10547                          bool DefinitionRequired) {
10548  // Ignore any vtable uses in unevaluated operands or for classes that do
10549  // not have a vtable.
10550  if (!Class->isDynamicClass() || Class->isDependentContext() ||
10551      CurContext->isDependentContext() ||
10552      ExprEvalContexts.back().Context == Unevaluated)
10553    return;
10554
10555  // Try to insert this class into the map.
10556  LoadExternalVTableUses();
10557  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10558  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
10559    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
10560  if (!Pos.second) {
10561    // If we already had an entry, check to see if we are promoting this vtable
10562    // to required a definition. If so, we need to reappend to the VTableUses
10563    // list, since we may have already processed the first entry.
10564    if (DefinitionRequired && !Pos.first->second) {
10565      Pos.first->second = true;
10566    } else {
10567      // Otherwise, we can early exit.
10568      return;
10569    }
10570  }
10571
10572  // Local classes need to have their virtual members marked
10573  // immediately. For all other classes, we mark their virtual members
10574  // at the end of the translation unit.
10575  if (Class->isLocalClass())
10576    MarkVirtualMembersReferenced(Loc, Class);
10577  else
10578    VTableUses.push_back(std::make_pair(Class, Loc));
10579}
10580
10581bool Sema::DefineUsedVTables() {
10582  LoadExternalVTableUses();
10583  if (VTableUses.empty())
10584    return false;
10585
10586  // Note: The VTableUses vector could grow as a result of marking
10587  // the members of a class as "used", so we check the size each
10588  // time through the loop and prefer indices (with are stable) to
10589  // iterators (which are not).
10590  bool DefinedAnything = false;
10591  for (unsigned I = 0; I != VTableUses.size(); ++I) {
10592    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
10593    if (!Class)
10594      continue;
10595
10596    SourceLocation Loc = VTableUses[I].second;
10597
10598    // If this class has a key function, but that key function is
10599    // defined in another translation unit, we don't need to emit the
10600    // vtable even though we're using it.
10601    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
10602    if (KeyFunction && !KeyFunction->hasBody()) {
10603      switch (KeyFunction->getTemplateSpecializationKind()) {
10604      case TSK_Undeclared:
10605      case TSK_ExplicitSpecialization:
10606      case TSK_ExplicitInstantiationDeclaration:
10607        // The key function is in another translation unit.
10608        continue;
10609
10610      case TSK_ExplicitInstantiationDefinition:
10611      case TSK_ImplicitInstantiation:
10612        // We will be instantiating the key function.
10613        break;
10614      }
10615    } else if (!KeyFunction) {
10616      // If we have a class with no key function that is the subject
10617      // of an explicit instantiation declaration, suppress the
10618      // vtable; it will live with the explicit instantiation
10619      // definition.
10620      bool IsExplicitInstantiationDeclaration
10621        = Class->getTemplateSpecializationKind()
10622                                      == TSK_ExplicitInstantiationDeclaration;
10623      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
10624                                 REnd = Class->redecls_end();
10625           R != REnd; ++R) {
10626        TemplateSpecializationKind TSK
10627          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
10628        if (TSK == TSK_ExplicitInstantiationDeclaration)
10629          IsExplicitInstantiationDeclaration = true;
10630        else if (TSK == TSK_ExplicitInstantiationDefinition) {
10631          IsExplicitInstantiationDeclaration = false;
10632          break;
10633        }
10634      }
10635
10636      if (IsExplicitInstantiationDeclaration)
10637        continue;
10638    }
10639
10640    // Mark all of the virtual members of this class as referenced, so
10641    // that we can build a vtable. Then, tell the AST consumer that a
10642    // vtable for this class is required.
10643    DefinedAnything = true;
10644    MarkVirtualMembersReferenced(Loc, Class);
10645    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
10646    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
10647
10648    // Optionally warn if we're emitting a weak vtable.
10649    if (Class->getLinkage() == ExternalLinkage &&
10650        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
10651      const FunctionDecl *KeyFunctionDef = 0;
10652      if (!KeyFunction ||
10653          (KeyFunction->hasBody(KeyFunctionDef) &&
10654           KeyFunctionDef->isInlined()))
10655        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
10656             TSK_ExplicitInstantiationDefinition
10657             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
10658          << Class;
10659    }
10660  }
10661  VTableUses.clear();
10662
10663  return DefinedAnything;
10664}
10665
10666void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
10667                                        const CXXRecordDecl *RD) {
10668  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
10669       e = RD->method_end(); i != e; ++i) {
10670    CXXMethodDecl *MD = &*i;
10671
10672    // C++ [basic.def.odr]p2:
10673    //   [...] A virtual member function is used if it is not pure. [...]
10674    if (MD->isVirtual() && !MD->isPure())
10675      MarkFunctionReferenced(Loc, MD);
10676  }
10677
10678  // Only classes that have virtual bases need a VTT.
10679  if (RD->getNumVBases() == 0)
10680    return;
10681
10682  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
10683           e = RD->bases_end(); i != e; ++i) {
10684    const CXXRecordDecl *Base =
10685        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
10686    if (Base->getNumVBases() == 0)
10687      continue;
10688    MarkVirtualMembersReferenced(Loc, Base);
10689  }
10690}
10691
10692/// SetIvarInitializers - This routine builds initialization ASTs for the
10693/// Objective-C implementation whose ivars need be initialized.
10694void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
10695  if (!getLangOpts().CPlusPlus)
10696    return;
10697  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
10698    SmallVector<ObjCIvarDecl*, 8> ivars;
10699    CollectIvarsToConstructOrDestruct(OID, ivars);
10700    if (ivars.empty())
10701      return;
10702    SmallVector<CXXCtorInitializer*, 32> AllToInit;
10703    for (unsigned i = 0; i < ivars.size(); i++) {
10704      FieldDecl *Field = ivars[i];
10705      if (Field->isInvalidDecl())
10706        continue;
10707
10708      CXXCtorInitializer *Member;
10709      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
10710      InitializationKind InitKind =
10711        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
10712
10713      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
10714      ExprResult MemberInit =
10715        InitSeq.Perform(*this, InitEntity, InitKind, MultiExprArg());
10716      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
10717      // Note, MemberInit could actually come back empty if no initialization
10718      // is required (e.g., because it would call a trivial default constructor)
10719      if (!MemberInit.get() || MemberInit.isInvalid())
10720        continue;
10721
10722      Member =
10723        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
10724                                         SourceLocation(),
10725                                         MemberInit.takeAs<Expr>(),
10726                                         SourceLocation());
10727      AllToInit.push_back(Member);
10728
10729      // Be sure that the destructor is accessible and is marked as referenced.
10730      if (const RecordType *RecordTy
10731                  = Context.getBaseElementType(Field->getType())
10732                                                        ->getAs<RecordType>()) {
10733                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
10734        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
10735          MarkFunctionReferenced(Field->getLocation(), Destructor);
10736          CheckDestructorAccess(Field->getLocation(), Destructor,
10737                            PDiag(diag::err_access_dtor_ivar)
10738                              << Context.getBaseElementType(Field->getType()));
10739        }
10740      }
10741    }
10742    ObjCImplementation->setIvarInitializers(Context,
10743                                            AllToInit.data(), AllToInit.size());
10744  }
10745}
10746
10747static
10748void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
10749                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
10750                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
10751                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
10752                           Sema &S) {
10753  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10754                                                   CE = Current.end();
10755  if (Ctor->isInvalidDecl())
10756    return;
10757
10758  const FunctionDecl *FNTarget = 0;
10759  CXXConstructorDecl *Target;
10760
10761  // We ignore the result here since if we don't have a body, Target will be
10762  // null below.
10763  (void)Ctor->getTargetConstructor()->hasBody(FNTarget);
10764  Target
10765= const_cast<CXXConstructorDecl*>(cast_or_null<CXXConstructorDecl>(FNTarget));
10766
10767  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
10768                     // Avoid dereferencing a null pointer here.
10769                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
10770
10771  if (!Current.insert(Canonical))
10772    return;
10773
10774  // We know that beyond here, we aren't chaining into a cycle.
10775  if (!Target || !Target->isDelegatingConstructor() ||
10776      Target->isInvalidDecl() || Valid.count(TCanonical)) {
10777    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10778      Valid.insert(*CI);
10779    Current.clear();
10780  // We've hit a cycle.
10781  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
10782             Current.count(TCanonical)) {
10783    // If we haven't diagnosed this cycle yet, do so now.
10784    if (!Invalid.count(TCanonical)) {
10785      S.Diag((*Ctor->init_begin())->getSourceLocation(),
10786             diag::warn_delegating_ctor_cycle)
10787        << Ctor;
10788
10789      // Don't add a note for a function delegating directo to itself.
10790      if (TCanonical != Canonical)
10791        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
10792
10793      CXXConstructorDecl *C = Target;
10794      while (C->getCanonicalDecl() != Canonical) {
10795        (void)C->getTargetConstructor()->hasBody(FNTarget);
10796        assert(FNTarget && "Ctor cycle through bodiless function");
10797
10798        C
10799       = const_cast<CXXConstructorDecl*>(cast<CXXConstructorDecl>(FNTarget));
10800        S.Diag(C->getLocation(), diag::note_which_delegates_to);
10801      }
10802    }
10803
10804    for (CI = Current.begin(), CE = Current.end(); CI != CE; ++CI)
10805      Invalid.insert(*CI);
10806    Current.clear();
10807  } else {
10808    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
10809  }
10810}
10811
10812
10813void Sema::CheckDelegatingCtorCycles() {
10814  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
10815
10816  llvm::SmallSet<CXXConstructorDecl*, 4>::iterator CI = Current.begin(),
10817                                                   CE = Current.end();
10818
10819  for (DelegatingCtorDeclsType::iterator
10820         I = DelegatingCtorDecls.begin(ExternalSource),
10821         E = DelegatingCtorDecls.end();
10822       I != E; ++I) {
10823   DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
10824  }
10825
10826  for (CI = Invalid.begin(), CE = Invalid.end(); CI != CE; ++CI)
10827    (*CI)->setInvalidDecl();
10828}
10829
10830namespace {
10831  /// \brief AST visitor that finds references to the 'this' expression.
10832  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
10833    Sema &S;
10834
10835  public:
10836    explicit FindCXXThisExpr(Sema &S) : S(S) { }
10837
10838    bool VisitCXXThisExpr(CXXThisExpr *E) {
10839      S.Diag(E->getLocation(), diag::err_this_static_member_func)
10840        << E->isImplicit();
10841      return false;
10842    }
10843  };
10844}
10845
10846bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
10847  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
10848  if (!TSInfo)
10849    return false;
10850
10851  TypeLoc TL = TSInfo->getTypeLoc();
10852  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
10853  if (!ProtoTL)
10854    return false;
10855
10856  // C++11 [expr.prim.general]p3:
10857  //   [The expression this] shall not appear before the optional
10858  //   cv-qualifier-seq and it shall not appear within the declaration of a
10859  //   static member function (although its type and value category are defined
10860  //   within a static member function as they are within a non-static member
10861  //   function). [ Note: this is because declaration matching does not occur
10862  //  until the complete declarator is known. - end note ]
10863  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
10864  FindCXXThisExpr Finder(*this);
10865
10866  // If the return type came after the cv-qualifier-seq, check it now.
10867  if (Proto->hasTrailingReturn() &&
10868      !Finder.TraverseTypeLoc(ProtoTL->getResultLoc()))
10869    return true;
10870
10871  // Check the exception specification.
10872  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
10873    return true;
10874
10875  return checkThisInStaticMemberFunctionAttributes(Method);
10876}
10877
10878bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
10879  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
10880  if (!TSInfo)
10881    return false;
10882
10883  TypeLoc TL = TSInfo->getTypeLoc();
10884  FunctionProtoTypeLoc *ProtoTL = dyn_cast<FunctionProtoTypeLoc>(&TL);
10885  if (!ProtoTL)
10886    return false;
10887
10888  const FunctionProtoType *Proto = ProtoTL->getTypePtr();
10889  FindCXXThisExpr Finder(*this);
10890
10891  switch (Proto->getExceptionSpecType()) {
10892  case EST_Uninstantiated:
10893  case EST_BasicNoexcept:
10894  case EST_Delayed:
10895  case EST_DynamicNone:
10896  case EST_MSAny:
10897  case EST_None:
10898    break;
10899
10900  case EST_ComputedNoexcept:
10901    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
10902      return true;
10903
10904  case EST_Dynamic:
10905    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
10906         EEnd = Proto->exception_end();
10907         E != EEnd; ++E) {
10908      if (!Finder.TraverseType(*E))
10909        return true;
10910    }
10911    break;
10912  }
10913
10914  return false;
10915}
10916
10917bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
10918  FindCXXThisExpr Finder(*this);
10919
10920  // Check attributes.
10921  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
10922       A != AEnd; ++A) {
10923    // FIXME: This should be emitted by tblgen.
10924    Expr *Arg = 0;
10925    ArrayRef<Expr *> Args;
10926    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
10927      Arg = G->getArg();
10928    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
10929      Arg = G->getArg();
10930    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
10931      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
10932    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
10933      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
10934    else if (ExclusiveLockFunctionAttr *ELF
10935               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
10936      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
10937    else if (SharedLockFunctionAttr *SLF
10938               = dyn_cast<SharedLockFunctionAttr>(*A))
10939      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
10940    else if (ExclusiveTrylockFunctionAttr *ETLF
10941               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
10942      Arg = ETLF->getSuccessValue();
10943      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
10944    } else if (SharedTrylockFunctionAttr *STLF
10945                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
10946      Arg = STLF->getSuccessValue();
10947      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
10948    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
10949      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
10950    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
10951      Arg = LR->getArg();
10952    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
10953      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
10954    else if (ExclusiveLocksRequiredAttr *ELR
10955               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
10956      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
10957    else if (SharedLocksRequiredAttr *SLR
10958               = dyn_cast<SharedLocksRequiredAttr>(*A))
10959      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
10960
10961    if (Arg && !Finder.TraverseStmt(Arg))
10962      return true;
10963
10964    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
10965      if (!Finder.TraverseStmt(Args[I]))
10966        return true;
10967    }
10968  }
10969
10970  return false;
10971}
10972
10973void
10974Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
10975                                  ArrayRef<ParsedType> DynamicExceptions,
10976                                  ArrayRef<SourceRange> DynamicExceptionRanges,
10977                                  Expr *NoexceptExpr,
10978                                  llvm::SmallVectorImpl<QualType> &Exceptions,
10979                                  FunctionProtoType::ExtProtoInfo &EPI) {
10980  Exceptions.clear();
10981  EPI.ExceptionSpecType = EST;
10982  if (EST == EST_Dynamic) {
10983    Exceptions.reserve(DynamicExceptions.size());
10984    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
10985      // FIXME: Preserve type source info.
10986      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
10987
10988      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
10989      collectUnexpandedParameterPacks(ET, Unexpanded);
10990      if (!Unexpanded.empty()) {
10991        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
10992                                         UPPC_ExceptionType,
10993                                         Unexpanded);
10994        continue;
10995      }
10996
10997      // Check that the type is valid for an exception spec, and
10998      // drop it if not.
10999      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
11000        Exceptions.push_back(ET);
11001    }
11002    EPI.NumExceptions = Exceptions.size();
11003    EPI.Exceptions = Exceptions.data();
11004    return;
11005  }
11006
11007  if (EST == EST_ComputedNoexcept) {
11008    // If an error occurred, there's no expression here.
11009    if (NoexceptExpr) {
11010      assert((NoexceptExpr->isTypeDependent() ||
11011              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
11012              Context.BoolTy) &&
11013             "Parser should have made sure that the expression is boolean");
11014      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
11015        EPI.ExceptionSpecType = EST_BasicNoexcept;
11016        return;
11017      }
11018
11019      if (!NoexceptExpr->isValueDependent())
11020        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
11021                         diag::err_noexcept_needs_constant_expression,
11022                         /*AllowFold*/ false).take();
11023      EPI.NoexceptExpr = NoexceptExpr;
11024    }
11025    return;
11026  }
11027}
11028
11029/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
11030Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
11031  // Implicitly declared functions (e.g. copy constructors) are
11032  // __host__ __device__
11033  if (D->isImplicit())
11034    return CFT_HostDevice;
11035
11036  if (D->hasAttr<CUDAGlobalAttr>())
11037    return CFT_Global;
11038
11039  if (D->hasAttr<CUDADeviceAttr>()) {
11040    if (D->hasAttr<CUDAHostAttr>())
11041      return CFT_HostDevice;
11042    else
11043      return CFT_Device;
11044  }
11045
11046  return CFT_Host;
11047}
11048
11049bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
11050                           CUDAFunctionTarget CalleeTarget) {
11051  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
11052  // Callable from the device only."
11053  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
11054    return true;
11055
11056  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
11057  // Callable from the host only."
11058  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
11059  // Callable from the host only."
11060  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
11061      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
11062    return true;
11063
11064  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
11065    return true;
11066
11067  return false;
11068}
11069