SemaDeclCXX.cpp revision faccd72e2448b552f17992eaba6cfe12ec497e58
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclVisitor.h"
19#include "clang/AST/TypeOrdering.h"
20#include "clang/AST/StmtVisitor.h"
21#include "clang/Basic/PartialDiagnostic.h"
22#include "clang/Lex/Preprocessor.h"
23#include "clang/Parse/DeclSpec.h"
24#include "llvm/ADT/STLExtras.h"
25#include "llvm/Support/Compiler.h"
26#include <algorithm> // for std::equal
27#include <map>
28
29using namespace clang;
30
31//===----------------------------------------------------------------------===//
32// CheckDefaultArgumentVisitor
33//===----------------------------------------------------------------------===//
34
35namespace {
36  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
37  /// the default argument of a parameter to determine whether it
38  /// contains any ill-formed subexpressions. For example, this will
39  /// diagnose the use of local variables or parameters within the
40  /// default argument expression.
41  class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor
42    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
43    Expr *DefaultArg;
44    Sema *S;
45
46  public:
47    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
48      : DefaultArg(defarg), S(s) {}
49
50    bool VisitExpr(Expr *Node);
51    bool VisitDeclRefExpr(DeclRefExpr *DRE);
52    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
53  };
54
55  /// VisitExpr - Visit all of the children of this expression.
56  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
57    bool IsInvalid = false;
58    for (Stmt::child_iterator I = Node->child_begin(),
59         E = Node->child_end(); I != E; ++I)
60      IsInvalid |= Visit(*I);
61    return IsInvalid;
62  }
63
64  /// VisitDeclRefExpr - Visit a reference to a declaration, to
65  /// determine whether this declaration can be used in the default
66  /// argument expression.
67  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
68    NamedDecl *Decl = DRE->getDecl();
69    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
70      // C++ [dcl.fct.default]p9
71      //   Default arguments are evaluated each time the function is
72      //   called. The order of evaluation of function arguments is
73      //   unspecified. Consequently, parameters of a function shall not
74      //   be used in default argument expressions, even if they are not
75      //   evaluated. Parameters of a function declared before a default
76      //   argument expression are in scope and can hide namespace and
77      //   class member names.
78      return S->Diag(DRE->getSourceRange().getBegin(),
79                     diag::err_param_default_argument_references_param)
80         << Param->getDeclName() << DefaultArg->getSourceRange();
81    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
82      // C++ [dcl.fct.default]p7
83      //   Local variables shall not be used in default argument
84      //   expressions.
85      if (VDecl->isBlockVarDecl())
86        return S->Diag(DRE->getSourceRange().getBegin(),
87                       diag::err_param_default_argument_references_local)
88          << VDecl->getDeclName() << DefaultArg->getSourceRange();
89    }
90
91    return false;
92  }
93
94  /// VisitCXXThisExpr - Visit a C++ "this" expression.
95  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
96    // C++ [dcl.fct.default]p8:
97    //   The keyword this shall not be used in a default argument of a
98    //   member function.
99    return S->Diag(ThisE->getSourceRange().getBegin(),
100                   diag::err_param_default_argument_references_this)
101               << ThisE->getSourceRange();
102  }
103}
104
105bool
106Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
107                              SourceLocation EqualLoc)
108{
109  QualType ParamType = Param->getType();
110
111  if (RequireCompleteType(Param->getLocation(), Param->getType(),
112                          diag::err_typecheck_decl_incomplete_type)) {
113    Param->setInvalidDecl();
114    return true;
115  }
116
117  Expr *Arg = (Expr *)DefaultArg.get();
118
119  // C++ [dcl.fct.default]p5
120  //   A default argument expression is implicitly converted (clause
121  //   4) to the parameter type. The default argument expression has
122  //   the same semantic constraints as the initializer expression in
123  //   a declaration of a variable of the parameter type, using the
124  //   copy-initialization semantics (8.5).
125  if (CheckInitializerTypes(Arg, ParamType, EqualLoc,
126                            Param->getDeclName(), /*DirectInit=*/false))
127    return true;
128
129  Arg = MaybeCreateCXXExprWithTemporaries(Arg, /*DestroyTemps=*/false);
130
131  // Okay: add the default argument to the parameter
132  Param->setDefaultArg(Arg);
133
134  DefaultArg.release();
135
136  return false;
137}
138
139/// ActOnParamDefaultArgument - Check whether the default argument
140/// provided for a function parameter is well-formed. If so, attach it
141/// to the parameter declaration.
142void
143Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
144                                ExprArg defarg) {
145  if (!param || !defarg.get())
146    return;
147
148  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
149  UnparsedDefaultArgLocs.erase(Param);
150
151  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
152  QualType ParamType = Param->getType();
153
154  // Default arguments are only permitted in C++
155  if (!getLangOptions().CPlusPlus) {
156    Diag(EqualLoc, diag::err_param_default_argument)
157      << DefaultArg->getSourceRange();
158    Param->setInvalidDecl();
159    return;
160  }
161
162  // Check that the default argument is well-formed
163  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
164  if (DefaultArgChecker.Visit(DefaultArg.get())) {
165    Param->setInvalidDecl();
166    return;
167  }
168
169  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
170}
171
172/// ActOnParamUnparsedDefaultArgument - We've seen a default
173/// argument for a function parameter, but we can't parse it yet
174/// because we're inside a class definition. Note that this default
175/// argument will be parsed later.
176void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
177                                             SourceLocation EqualLoc,
178                                             SourceLocation ArgLoc) {
179  if (!param)
180    return;
181
182  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
183  if (Param)
184    Param->setUnparsedDefaultArg();
185
186  UnparsedDefaultArgLocs[Param] = ArgLoc;
187}
188
189/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
190/// the default argument for the parameter param failed.
191void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
192  if (!param)
193    return;
194
195  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
196
197  Param->setInvalidDecl();
198
199  UnparsedDefaultArgLocs.erase(Param);
200}
201
202/// CheckExtraCXXDefaultArguments - Check for any extra default
203/// arguments in the declarator, which is not a function declaration
204/// or definition and therefore is not permitted to have default
205/// arguments. This routine should be invoked for every declarator
206/// that is not a function declaration or definition.
207void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
208  // C++ [dcl.fct.default]p3
209  //   A default argument expression shall be specified only in the
210  //   parameter-declaration-clause of a function declaration or in a
211  //   template-parameter (14.1). It shall not be specified for a
212  //   parameter pack. If it is specified in a
213  //   parameter-declaration-clause, it shall not occur within a
214  //   declarator or abstract-declarator of a parameter-declaration.
215  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
216    DeclaratorChunk &chunk = D.getTypeObject(i);
217    if (chunk.Kind == DeclaratorChunk::Function) {
218      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
219        ParmVarDecl *Param =
220          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
221        if (Param->hasUnparsedDefaultArg()) {
222          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
223          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
224            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
225          delete Toks;
226          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
227        } else if (Param->getDefaultArg()) {
228          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
229            << Param->getDefaultArg()->getSourceRange();
230          Param->setDefaultArg(0);
231        }
232      }
233    }
234  }
235}
236
237// MergeCXXFunctionDecl - Merge two declarations of the same C++
238// function, once we already know that they have the same
239// type. Subroutine of MergeFunctionDecl. Returns true if there was an
240// error, false otherwise.
241bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
242  bool Invalid = false;
243
244  // C++ [dcl.fct.default]p4:
245  //
246  //   For non-template functions, default arguments can be added in
247  //   later declarations of a function in the same
248  //   scope. Declarations in different scopes have completely
249  //   distinct sets of default arguments. That is, declarations in
250  //   inner scopes do not acquire default arguments from
251  //   declarations in outer scopes, and vice versa. In a given
252  //   function declaration, all parameters subsequent to a
253  //   parameter with a default argument shall have default
254  //   arguments supplied in this or previous declarations. A
255  //   default argument shall not be redefined by a later
256  //   declaration (not even to the same value).
257  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
258    ParmVarDecl *OldParam = Old->getParamDecl(p);
259    ParmVarDecl *NewParam = New->getParamDecl(p);
260
261    if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) {
262      Diag(NewParam->getLocation(),
263           diag::err_param_default_argument_redefinition)
264        << NewParam->getDefaultArg()->getSourceRange();
265      Diag(OldParam->getLocation(), diag::note_previous_definition);
266      Invalid = true;
267    } else if (OldParam->getDefaultArg()) {
268      // Merge the old default argument into the new parameter
269      NewParam->setDefaultArg(OldParam->getDefaultArg());
270    }
271  }
272
273  if (CheckEquivalentExceptionSpec(
274          Old->getType()->getAsFunctionProtoType(), Old->getLocation(),
275          New->getType()->getAsFunctionProtoType(), New->getLocation())) {
276    Invalid = true;
277  }
278
279  return Invalid;
280}
281
282/// CheckCXXDefaultArguments - Verify that the default arguments for a
283/// function declaration are well-formed according to C++
284/// [dcl.fct.default].
285void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
286  unsigned NumParams = FD->getNumParams();
287  unsigned p;
288
289  // Find first parameter with a default argument
290  for (p = 0; p < NumParams; ++p) {
291    ParmVarDecl *Param = FD->getParamDecl(p);
292    if (Param->hasDefaultArg())
293      break;
294  }
295
296  // C++ [dcl.fct.default]p4:
297  //   In a given function declaration, all parameters
298  //   subsequent to a parameter with a default argument shall
299  //   have default arguments supplied in this or previous
300  //   declarations. A default argument shall not be redefined
301  //   by a later declaration (not even to the same value).
302  unsigned LastMissingDefaultArg = 0;
303  for(; p < NumParams; ++p) {
304    ParmVarDecl *Param = FD->getParamDecl(p);
305    if (!Param->hasDefaultArg()) {
306      if (Param->isInvalidDecl())
307        /* We already complained about this parameter. */;
308      else if (Param->getIdentifier())
309        Diag(Param->getLocation(),
310             diag::err_param_default_argument_missing_name)
311          << Param->getIdentifier();
312      else
313        Diag(Param->getLocation(),
314             diag::err_param_default_argument_missing);
315
316      LastMissingDefaultArg = p;
317    }
318  }
319
320  if (LastMissingDefaultArg > 0) {
321    // Some default arguments were missing. Clear out all of the
322    // default arguments up to (and including) the last missing
323    // default argument, so that we leave the function parameters
324    // in a semantically valid state.
325    for (p = 0; p <= LastMissingDefaultArg; ++p) {
326      ParmVarDecl *Param = FD->getParamDecl(p);
327      if (Param->hasDefaultArg()) {
328        if (!Param->hasUnparsedDefaultArg())
329          Param->getDefaultArg()->Destroy(Context);
330        Param->setDefaultArg(0);
331      }
332    }
333  }
334}
335
336/// isCurrentClassName - Determine whether the identifier II is the
337/// name of the class type currently being defined. In the case of
338/// nested classes, this will only return true if II is the name of
339/// the innermost class.
340bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
341                              const CXXScopeSpec *SS) {
342  CXXRecordDecl *CurDecl;
343  if (SS && SS->isSet() && !SS->isInvalid()) {
344    DeclContext *DC = computeDeclContext(*SS, true);
345    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
346  } else
347    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
348
349  if (CurDecl)
350    return &II == CurDecl->getIdentifier();
351  else
352    return false;
353}
354
355/// \brief Check the validity of a C++ base class specifier.
356///
357/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
358/// and returns NULL otherwise.
359CXXBaseSpecifier *
360Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
361                         SourceRange SpecifierRange,
362                         bool Virtual, AccessSpecifier Access,
363                         QualType BaseType,
364                         SourceLocation BaseLoc) {
365  // C++ [class.union]p1:
366  //   A union shall not have base classes.
367  if (Class->isUnion()) {
368    Diag(Class->getLocation(), diag::err_base_clause_on_union)
369      << SpecifierRange;
370    return 0;
371  }
372
373  if (BaseType->isDependentType())
374    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
375                                Class->getTagKind() == RecordDecl::TK_class,
376                                Access, BaseType);
377
378  // Base specifiers must be record types.
379  if (!BaseType->isRecordType()) {
380    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
381    return 0;
382  }
383
384  // C++ [class.union]p1:
385  //   A union shall not be used as a base class.
386  if (BaseType->isUnionType()) {
387    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
388    return 0;
389  }
390
391  // C++ [class.derived]p2:
392  //   The class-name in a base-specifier shall not be an incompletely
393  //   defined class.
394  if (RequireCompleteType(BaseLoc, BaseType,
395                          PDiag(diag::err_incomplete_base_class)
396                            << SpecifierRange))
397    return 0;
398
399  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
400  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
401  assert(BaseDecl && "Record type has no declaration");
402  BaseDecl = BaseDecl->getDefinition(Context);
403  assert(BaseDecl && "Base type is not incomplete, but has no definition");
404  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
405  assert(CXXBaseDecl && "Base type is not a C++ type");
406  if (!CXXBaseDecl->isEmpty())
407    Class->setEmpty(false);
408  if (CXXBaseDecl->isPolymorphic())
409    Class->setPolymorphic(true);
410
411  // C++ [dcl.init.aggr]p1:
412  //   An aggregate is [...] a class with [...] no base classes [...].
413  Class->setAggregate(false);
414  Class->setPOD(false);
415
416  if (Virtual) {
417    // C++ [class.ctor]p5:
418    //   A constructor is trivial if its class has no virtual base classes.
419    Class->setHasTrivialConstructor(false);
420
421    // C++ [class.copy]p6:
422    //   A copy constructor is trivial if its class has no virtual base classes.
423    Class->setHasTrivialCopyConstructor(false);
424
425    // C++ [class.copy]p11:
426    //   A copy assignment operator is trivial if its class has no virtual
427    //   base classes.
428    Class->setHasTrivialCopyAssignment(false);
429
430    // C++0x [meta.unary.prop] is_empty:
431    //    T is a class type, but not a union type, with ... no virtual base
432    //    classes
433    Class->setEmpty(false);
434  } else {
435    // C++ [class.ctor]p5:
436    //   A constructor is trivial if all the direct base classes of its
437    //   class have trivial constructors.
438    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialConstructor())
439      Class->setHasTrivialConstructor(false);
440
441    // C++ [class.copy]p6:
442    //   A copy constructor is trivial if all the direct base classes of its
443    //   class have trivial copy constructors.
444    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyConstructor())
445      Class->setHasTrivialCopyConstructor(false);
446
447    // C++ [class.copy]p11:
448    //   A copy assignment operator is trivial if all the direct base classes
449    //   of its class have trivial copy assignment operators.
450    if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialCopyAssignment())
451      Class->setHasTrivialCopyAssignment(false);
452  }
453
454  // C++ [class.ctor]p3:
455  //   A destructor is trivial if all the direct base classes of its class
456  //   have trivial destructors.
457  if (!cast<CXXRecordDecl>(BaseDecl)->hasTrivialDestructor())
458    Class->setHasTrivialDestructor(false);
459
460  // Create the base specifier.
461  // FIXME: Allocate via ASTContext?
462  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
463                              Class->getTagKind() == RecordDecl::TK_class,
464                              Access, BaseType);
465}
466
467/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
468/// one entry in the base class list of a class specifier, for
469/// example:
470///    class foo : public bar, virtual private baz {
471/// 'public bar' and 'virtual private baz' are each base-specifiers.
472Sema::BaseResult
473Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
474                         bool Virtual, AccessSpecifier Access,
475                         TypeTy *basetype, SourceLocation BaseLoc) {
476  if (!classdecl)
477    return true;
478
479  AdjustDeclIfTemplate(classdecl);
480  CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>());
481  QualType BaseType = GetTypeFromParser(basetype);
482  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
483                                                      Virtual, Access,
484                                                      BaseType, BaseLoc))
485    return BaseSpec;
486
487  return true;
488}
489
490/// \brief Performs the actual work of attaching the given base class
491/// specifiers to a C++ class.
492bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
493                                unsigned NumBases) {
494 if (NumBases == 0)
495    return false;
496
497  // Used to keep track of which base types we have already seen, so
498  // that we can properly diagnose redundant direct base types. Note
499  // that the key is always the unqualified canonical type of the base
500  // class.
501  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
502
503  // Copy non-redundant base specifiers into permanent storage.
504  unsigned NumGoodBases = 0;
505  bool Invalid = false;
506  for (unsigned idx = 0; idx < NumBases; ++idx) {
507    QualType NewBaseType
508      = Context.getCanonicalType(Bases[idx]->getType());
509    NewBaseType = NewBaseType.getUnqualifiedType();
510
511    if (KnownBaseTypes[NewBaseType]) {
512      // C++ [class.mi]p3:
513      //   A class shall not be specified as a direct base class of a
514      //   derived class more than once.
515      Diag(Bases[idx]->getSourceRange().getBegin(),
516           diag::err_duplicate_base_class)
517        << KnownBaseTypes[NewBaseType]->getType()
518        << Bases[idx]->getSourceRange();
519
520      // Delete the duplicate base class specifier; we're going to
521      // overwrite its pointer later.
522      Context.Deallocate(Bases[idx]);
523
524      Invalid = true;
525    } else {
526      // Okay, add this new base class.
527      KnownBaseTypes[NewBaseType] = Bases[idx];
528      Bases[NumGoodBases++] = Bases[idx];
529    }
530  }
531
532  // Attach the remaining base class specifiers to the derived class.
533  Class->setBases(Context, Bases, NumGoodBases);
534
535  // Delete the remaining (good) base class specifiers, since their
536  // data has been copied into the CXXRecordDecl.
537  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
538    Context.Deallocate(Bases[idx]);
539
540  return Invalid;
541}
542
543/// ActOnBaseSpecifiers - Attach the given base specifiers to the
544/// class, after checking whether there are any duplicate base
545/// classes.
546void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
547                               unsigned NumBases) {
548  if (!ClassDecl || !Bases || !NumBases)
549    return;
550
551  AdjustDeclIfTemplate(ClassDecl);
552  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
553                       (CXXBaseSpecifier**)(Bases), NumBases);
554}
555
556//===----------------------------------------------------------------------===//
557// C++ class member Handling
558//===----------------------------------------------------------------------===//
559
560/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
561/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
562/// bitfield width if there is one and 'InitExpr' specifies the initializer if
563/// any.
564Sema::DeclPtrTy
565Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
566                               MultiTemplateParamsArg TemplateParameterLists,
567                               ExprTy *BW, ExprTy *InitExpr, bool Deleted) {
568  const DeclSpec &DS = D.getDeclSpec();
569  DeclarationName Name = GetNameForDeclarator(D);
570  Expr *BitWidth = static_cast<Expr*>(BW);
571  Expr *Init = static_cast<Expr*>(InitExpr);
572  SourceLocation Loc = D.getIdentifierLoc();
573
574  bool isFunc = D.isFunctionDeclarator();
575
576  assert(!DS.isFriendSpecified());
577
578  // C++ 9.2p6: A member shall not be declared to have automatic storage
579  // duration (auto, register) or with the extern storage-class-specifier.
580  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
581  // data members and cannot be applied to names declared const or static,
582  // and cannot be applied to reference members.
583  switch (DS.getStorageClassSpec()) {
584    case DeclSpec::SCS_unspecified:
585    case DeclSpec::SCS_typedef:
586    case DeclSpec::SCS_static:
587      // FALL THROUGH.
588      break;
589    case DeclSpec::SCS_mutable:
590      if (isFunc) {
591        if (DS.getStorageClassSpecLoc().isValid())
592          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
593        else
594          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
595
596        // FIXME: It would be nicer if the keyword was ignored only for this
597        // declarator. Otherwise we could get follow-up errors.
598        D.getMutableDeclSpec().ClearStorageClassSpecs();
599      } else {
600        QualType T = GetTypeForDeclarator(D, S);
601        diag::kind err = static_cast<diag::kind>(0);
602        if (T->isReferenceType())
603          err = diag::err_mutable_reference;
604        else if (T.isConstQualified())
605          err = diag::err_mutable_const;
606        if (err != 0) {
607          if (DS.getStorageClassSpecLoc().isValid())
608            Diag(DS.getStorageClassSpecLoc(), err);
609          else
610            Diag(DS.getThreadSpecLoc(), err);
611          // FIXME: It would be nicer if the keyword was ignored only for this
612          // declarator. Otherwise we could get follow-up errors.
613          D.getMutableDeclSpec().ClearStorageClassSpecs();
614        }
615      }
616      break;
617    default:
618      if (DS.getStorageClassSpecLoc().isValid())
619        Diag(DS.getStorageClassSpecLoc(),
620             diag::err_storageclass_invalid_for_member);
621      else
622        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
623      D.getMutableDeclSpec().ClearStorageClassSpecs();
624  }
625
626  if (!isFunc &&
627      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
628      D.getNumTypeObjects() == 0) {
629    // Check also for this case:
630    //
631    // typedef int f();
632    // f a;
633    //
634    QualType TDType = GetTypeFromParser(DS.getTypeRep());
635    isFunc = TDType->isFunctionType();
636  }
637
638  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
639                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
640                      !isFunc);
641
642  Decl *Member;
643  if (isInstField) {
644    // FIXME: Check for template parameters!
645    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
646                         AS);
647    assert(Member && "HandleField never returns null");
648  } else {
649    Member = HandleDeclarator(S, D, move(TemplateParameterLists), false)
650               .getAs<Decl>();
651    if (!Member) {
652      if (BitWidth) DeleteExpr(BitWidth);
653      return DeclPtrTy();
654    }
655
656    // Non-instance-fields can't have a bitfield.
657    if (BitWidth) {
658      if (Member->isInvalidDecl()) {
659        // don't emit another diagnostic.
660      } else if (isa<VarDecl>(Member)) {
661        // C++ 9.6p3: A bit-field shall not be a static member.
662        // "static member 'A' cannot be a bit-field"
663        Diag(Loc, diag::err_static_not_bitfield)
664          << Name << BitWidth->getSourceRange();
665      } else if (isa<TypedefDecl>(Member)) {
666        // "typedef member 'x' cannot be a bit-field"
667        Diag(Loc, diag::err_typedef_not_bitfield)
668          << Name << BitWidth->getSourceRange();
669      } else {
670        // A function typedef ("typedef int f(); f a;").
671        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
672        Diag(Loc, diag::err_not_integral_type_bitfield)
673          << Name << cast<ValueDecl>(Member)->getType()
674          << BitWidth->getSourceRange();
675      }
676
677      DeleteExpr(BitWidth);
678      BitWidth = 0;
679      Member->setInvalidDecl();
680    }
681
682    Member->setAccess(AS);
683
684    // If we have declared a member function template, set the access of the
685    // templated declaration as well.
686    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
687      FunTmpl->getTemplatedDecl()->setAccess(AS);
688  }
689
690  assert((Name || isInstField) && "No identifier for non-field ?");
691
692  if (Init)
693    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
694  if (Deleted) // FIXME: Source location is not very good.
695    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
696
697  if (isInstField) {
698    FieldCollector->Add(cast<FieldDecl>(Member));
699    return DeclPtrTy();
700  }
701  return DeclPtrTy::make(Member);
702}
703
704/// ActOnMemInitializer - Handle a C++ member initializer.
705Sema::MemInitResult
706Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
707                          Scope *S,
708                          const CXXScopeSpec &SS,
709                          IdentifierInfo *MemberOrBase,
710                          TypeTy *TemplateTypeTy,
711                          SourceLocation IdLoc,
712                          SourceLocation LParenLoc,
713                          ExprTy **Args, unsigned NumArgs,
714                          SourceLocation *CommaLocs,
715                          SourceLocation RParenLoc) {
716  if (!ConstructorD)
717    return true;
718
719  AdjustDeclIfTemplate(ConstructorD);
720
721  CXXConstructorDecl *Constructor
722    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
723  if (!Constructor) {
724    // The user wrote a constructor initializer on a function that is
725    // not a C++ constructor. Ignore the error for now, because we may
726    // have more member initializers coming; we'll diagnose it just
727    // once in ActOnMemInitializers.
728    return true;
729  }
730
731  CXXRecordDecl *ClassDecl = Constructor->getParent();
732
733  // C++ [class.base.init]p2:
734  //   Names in a mem-initializer-id are looked up in the scope of the
735  //   constructor’s class and, if not found in that scope, are looked
736  //   up in the scope containing the constructor’s
737  //   definition. [Note: if the constructor’s class contains a member
738  //   with the same name as a direct or virtual base class of the
739  //   class, a mem-initializer-id naming the member or base class and
740  //   composed of a single identifier refers to the class member. A
741  //   mem-initializer-id for the hidden base class may be specified
742  //   using a qualified name. ]
743  if (!SS.getScopeRep() && !TemplateTypeTy) {
744    // Look for a member, first.
745    FieldDecl *Member = 0;
746    DeclContext::lookup_result Result
747      = ClassDecl->lookup(MemberOrBase);
748    if (Result.first != Result.second)
749      Member = dyn_cast<FieldDecl>(*Result.first);
750
751    // FIXME: Handle members of an anonymous union.
752
753    if (Member)
754      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
755                                    RParenLoc);
756  }
757  // It didn't name a member, so see if it names a class.
758  TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy
759                     : getTypeName(*MemberOrBase, IdLoc, S, &SS);
760  if (!BaseTy)
761    return Diag(IdLoc, diag::err_mem_init_not_member_or_class)
762      << MemberOrBase << SourceRange(IdLoc, RParenLoc);
763
764  QualType BaseType = GetTypeFromParser(BaseTy);
765
766  return BuildBaseInitializer(BaseType, (Expr **)Args, NumArgs, IdLoc,
767                              RParenLoc, ClassDecl);
768}
769
770Sema::MemInitResult
771Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
772                             unsigned NumArgs, SourceLocation IdLoc,
773                             SourceLocation RParenLoc) {
774  bool HasDependentArg = false;
775  for (unsigned i = 0; i < NumArgs; i++)
776    HasDependentArg |= Args[i]->isTypeDependent();
777
778  CXXConstructorDecl *C = 0;
779  QualType FieldType = Member->getType();
780  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
781    FieldType = Array->getElementType();
782  if (FieldType->isDependentType()) {
783    // Can't check init for dependent type.
784  } else if (FieldType->getAs<RecordType>()) {
785    if (!HasDependentArg)
786      C = PerformInitializationByConstructor(
787            FieldType, (Expr **)Args, NumArgs, IdLoc,
788            SourceRange(IdLoc, RParenLoc), Member->getDeclName(), IK_Direct);
789  } else if (NumArgs != 1) {
790    return Diag(IdLoc, diag::err_mem_initializer_mismatch)
791                << Member->getDeclName() << SourceRange(IdLoc, RParenLoc);
792  } else if (!HasDependentArg) {
793    Expr *NewExp = (Expr*)Args[0];
794    if (PerformCopyInitialization(NewExp, FieldType, "passing"))
795      return true;
796    Args[0] = NewExp;
797  }
798  // FIXME: Perform direct initialization of the member.
799  return new (Context) CXXBaseOrMemberInitializer(Member, (Expr **)Args,
800                                                  NumArgs, C, IdLoc);
801}
802
803Sema::MemInitResult
804Sema::BuildBaseInitializer(QualType BaseType, Expr **Args,
805                           unsigned NumArgs, SourceLocation IdLoc,
806                           SourceLocation RParenLoc, CXXRecordDecl *ClassDecl) {
807  bool HasDependentArg = false;
808  for (unsigned i = 0; i < NumArgs; i++)
809    HasDependentArg |= Args[i]->isTypeDependent();
810
811  if (!BaseType->isDependentType()) {
812    if (!BaseType->isRecordType())
813      return Diag(IdLoc, diag::err_base_init_does_not_name_class)
814        << BaseType << SourceRange(IdLoc, RParenLoc);
815
816    // C++ [class.base.init]p2:
817    //   [...] Unless the mem-initializer-id names a nonstatic data
818    //   member of the constructor’s class or a direct or virtual base
819    //   of that class, the mem-initializer is ill-formed. A
820    //   mem-initializer-list can initialize a base class using any
821    //   name that denotes that base class type.
822
823    // First, check for a direct base class.
824    const CXXBaseSpecifier *DirectBaseSpec = 0;
825    for (CXXRecordDecl::base_class_const_iterator Base =
826         ClassDecl->bases_begin(); Base != ClassDecl->bases_end(); ++Base) {
827      if (Context.getCanonicalType(BaseType).getUnqualifiedType() ==
828          Context.getCanonicalType(Base->getType()).getUnqualifiedType()) {
829        // We found a direct base of this type. That's what we're
830        // initializing.
831        DirectBaseSpec = &*Base;
832        break;
833      }
834    }
835
836    // Check for a virtual base class.
837    // FIXME: We might be able to short-circuit this if we know in advance that
838    // there are no virtual bases.
839    const CXXBaseSpecifier *VirtualBaseSpec = 0;
840    if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
841      // We haven't found a base yet; search the class hierarchy for a
842      // virtual base class.
843      BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
844                      /*DetectVirtual=*/false);
845      if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) {
846        for (BasePaths::paths_iterator Path = Paths.begin();
847             Path != Paths.end(); ++Path) {
848          if (Path->back().Base->isVirtual()) {
849            VirtualBaseSpec = Path->back().Base;
850            break;
851          }
852        }
853      }
854    }
855
856    // C++ [base.class.init]p2:
857    //   If a mem-initializer-id is ambiguous because it designates both
858    //   a direct non-virtual base class and an inherited virtual base
859    //   class, the mem-initializer is ill-formed.
860    if (DirectBaseSpec && VirtualBaseSpec)
861      return Diag(IdLoc, diag::err_base_init_direct_and_virtual)
862        << BaseType << SourceRange(IdLoc, RParenLoc);
863    // C++ [base.class.init]p2:
864    // Unless the mem-initializer-id names a nonstatic data membeer of the
865    // constructor's class ot a direst or virtual base of that class, the
866    // mem-initializer is ill-formed.
867    if (!DirectBaseSpec && !VirtualBaseSpec)
868      return Diag(IdLoc, diag::err_not_direct_base_or_virtual)
869      << BaseType << ClassDecl->getNameAsCString()
870      << SourceRange(IdLoc, RParenLoc);
871  }
872
873  CXXConstructorDecl *C = 0;
874  if (!BaseType->isDependentType() && !HasDependentArg) {
875    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
876                                            Context.getCanonicalType(BaseType));
877    C = PerformInitializationByConstructor(BaseType, (Expr **)Args, NumArgs,
878                                           IdLoc, SourceRange(IdLoc, RParenLoc),
879                                           Name, IK_Direct);
880  }
881
882  return new (Context) CXXBaseOrMemberInitializer(BaseType, (Expr **)Args,
883                                                  NumArgs, C, IdLoc);
884}
885
886void
887Sema::BuildBaseOrMemberInitializers(ASTContext &C,
888                                 CXXConstructorDecl *Constructor,
889                                 CXXBaseOrMemberInitializer **Initializers,
890                                 unsigned NumInitializers
891                                 ) {
892  llvm::SmallVector<CXXBaseSpecifier *, 4>Bases;
893  llvm::SmallVector<FieldDecl *, 4>Members;
894
895  Constructor->setBaseOrMemberInitializers(C,
896                                           Initializers, NumInitializers,
897                                           Bases, Members);
898  for (unsigned int i = 0; i < Bases.size(); i++)
899    Diag(Bases[i]->getSourceRange().getBegin(),
900         diag::err_missing_default_constructor) << 0 << Bases[i]->getType();
901  for (unsigned int i = 0; i < Members.size(); i++)
902    Diag(Members[i]->getLocation(), diag::err_missing_default_constructor)
903          << 1 << Members[i]->getType();
904}
905
906static void *GetKeyForTopLevelField(FieldDecl *Field) {
907  // For anonymous unions, use the class declaration as the key.
908  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
909    if (RT->getDecl()->isAnonymousStructOrUnion())
910      return static_cast<void *>(RT->getDecl());
911  }
912  return static_cast<void *>(Field);
913}
914
915static void *GetKeyForMember(CXXBaseOrMemberInitializer *Member,
916                             bool MemberMaybeAnon=false) {
917  // For fields injected into the class via declaration of an anonymous union,
918  // use its anonymous union class declaration as the unique key.
919  if (FieldDecl *Field = Member->getMember()) {
920    // After BuildBaseOrMemberInitializers call, Field is the anonymous union
921    // data member of the class. Data member used in the initializer list is
922    // in AnonUnionMember field.
923    if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
924      Field = Member->getAnonUnionMember();
925    if (Field->getDeclContext()->isRecord()) {
926      RecordDecl *RD = cast<RecordDecl>(Field->getDeclContext());
927      if (RD->isAnonymousStructOrUnion())
928        return static_cast<void *>(RD);
929    }
930    return static_cast<void *>(Field);
931  }
932  return static_cast<RecordType *>(Member->getBaseClass());
933}
934
935void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
936                                SourceLocation ColonLoc,
937                                MemInitTy **MemInits, unsigned NumMemInits) {
938  if (!ConstructorDecl)
939    return;
940
941  AdjustDeclIfTemplate(ConstructorDecl);
942
943  CXXConstructorDecl *Constructor
944    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
945
946  if (!Constructor) {
947    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
948    return;
949  }
950
951  if (!Constructor->isDependentContext()) {
952    llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members;
953    bool err = false;
954    for (unsigned i = 0; i < NumMemInits; i++) {
955      CXXBaseOrMemberInitializer *Member =
956        static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
957      void *KeyToMember = GetKeyForMember(Member);
958      CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember];
959      if (!PrevMember) {
960        PrevMember = Member;
961        continue;
962      }
963      if (FieldDecl *Field = Member->getMember())
964        Diag(Member->getSourceLocation(),
965             diag::error_multiple_mem_initialization)
966        << Field->getNameAsString();
967      else {
968        Type *BaseClass = Member->getBaseClass();
969        assert(BaseClass && "ActOnMemInitializers - neither field or base");
970        Diag(Member->getSourceLocation(),
971             diag::error_multiple_base_initialization)
972          << BaseClass->getDesugaredType(true);
973      }
974      Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer)
975        << 0;
976      err = true;
977    }
978
979    if (err)
980      return;
981  }
982
983  BuildBaseOrMemberInitializers(Context, Constructor,
984                      reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits),
985                      NumMemInits);
986
987  if (Constructor->isDependentContext())
988    return;
989
990  if (Diags.getDiagnosticLevel(diag::warn_base_initialized) ==
991      Diagnostic::Ignored &&
992      Diags.getDiagnosticLevel(diag::warn_field_initialized) ==
993      Diagnostic::Ignored)
994    return;
995
996  // Also issue warning if order of ctor-initializer list does not match order
997  // of 1) base class declarations and 2) order of non-static data members.
998  llvm::SmallVector<const void*, 32> AllBaseOrMembers;
999
1000  CXXRecordDecl *ClassDecl
1001    = cast<CXXRecordDecl>(Constructor->getDeclContext());
1002  // Push virtual bases before others.
1003  for (CXXRecordDecl::base_class_iterator VBase =
1004       ClassDecl->vbases_begin(),
1005       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1006    AllBaseOrMembers.push_back(VBase->getType()->getAs<RecordType>());
1007
1008  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1009       E = ClassDecl->bases_end(); Base != E; ++Base) {
1010    // Virtuals are alread in the virtual base list and are constructed
1011    // first.
1012    if (Base->isVirtual())
1013      continue;
1014    AllBaseOrMembers.push_back(Base->getType()->getAs<RecordType>());
1015  }
1016
1017  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1018       E = ClassDecl->field_end(); Field != E; ++Field)
1019    AllBaseOrMembers.push_back(GetKeyForTopLevelField(*Field));
1020
1021  int Last = AllBaseOrMembers.size();
1022  int curIndex = 0;
1023  CXXBaseOrMemberInitializer *PrevMember = 0;
1024  for (unsigned i = 0; i < NumMemInits; i++) {
1025    CXXBaseOrMemberInitializer *Member =
1026      static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]);
1027    void *MemberInCtorList = GetKeyForMember(Member, true);
1028
1029    for (; curIndex < Last; curIndex++)
1030      if (MemberInCtorList == AllBaseOrMembers[curIndex])
1031        break;
1032    if (curIndex == Last) {
1033      assert(PrevMember && "Member not in member list?!");
1034      // Initializer as specified in ctor-initializer list is out of order.
1035      // Issue a warning diagnostic.
1036      if (PrevMember->isBaseInitializer()) {
1037        // Diagnostics is for an initialized base class.
1038        Type *BaseClass = PrevMember->getBaseClass();
1039        Diag(PrevMember->getSourceLocation(),
1040             diag::warn_base_initialized)
1041              << BaseClass->getDesugaredType(true);
1042      } else {
1043        FieldDecl *Field = PrevMember->getMember();
1044        Diag(PrevMember->getSourceLocation(),
1045             diag::warn_field_initialized)
1046          << Field->getNameAsString();
1047      }
1048      // Also the note!
1049      if (FieldDecl *Field = Member->getMember())
1050        Diag(Member->getSourceLocation(),
1051             diag::note_fieldorbase_initialized_here) << 0
1052          << Field->getNameAsString();
1053      else {
1054        Type *BaseClass = Member->getBaseClass();
1055        Diag(Member->getSourceLocation(),
1056             diag::note_fieldorbase_initialized_here) << 1
1057          << BaseClass->getDesugaredType(true);
1058      }
1059      for (curIndex = 0; curIndex < Last; curIndex++)
1060        if (MemberInCtorList == AllBaseOrMembers[curIndex])
1061          break;
1062    }
1063    PrevMember = Member;
1064  }
1065}
1066
1067void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1068  if (!CDtorDecl)
1069    return;
1070
1071  AdjustDeclIfTemplate(CDtorDecl);
1072
1073  if (CXXConstructorDecl *Constructor
1074      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1075    BuildBaseOrMemberInitializers(Context,
1076                                     Constructor,
1077                                     (CXXBaseOrMemberInitializer **)0, 0);
1078}
1079
1080namespace {
1081  /// PureVirtualMethodCollector - traverses a class and its superclasses
1082  /// and determines if it has any pure virtual methods.
1083  class VISIBILITY_HIDDEN PureVirtualMethodCollector {
1084    ASTContext &Context;
1085
1086  public:
1087    typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList;
1088
1089  private:
1090    MethodList Methods;
1091
1092    void Collect(const CXXRecordDecl* RD, MethodList& Methods);
1093
1094  public:
1095    PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD)
1096      : Context(Ctx) {
1097
1098      MethodList List;
1099      Collect(RD, List);
1100
1101      // Copy the temporary list to methods, and make sure to ignore any
1102      // null entries.
1103      for (size_t i = 0, e = List.size(); i != e; ++i) {
1104        if (List[i])
1105          Methods.push_back(List[i]);
1106      }
1107    }
1108
1109    bool empty() const { return Methods.empty(); }
1110
1111    MethodList::const_iterator methods_begin() { return Methods.begin(); }
1112    MethodList::const_iterator methods_end() { return Methods.end(); }
1113  };
1114
1115  void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD,
1116                                           MethodList& Methods) {
1117    // First, collect the pure virtual methods for the base classes.
1118    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
1119         BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) {
1120      if (const RecordType *RT = Base->getType()->getAs<RecordType>()) {
1121        const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl());
1122        if (BaseDecl && BaseDecl->isAbstract())
1123          Collect(BaseDecl, Methods);
1124      }
1125    }
1126
1127    // Next, zero out any pure virtual methods that this class overrides.
1128    typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy;
1129
1130    MethodSetTy OverriddenMethods;
1131    size_t MethodsSize = Methods.size();
1132
1133    for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end();
1134         i != e; ++i) {
1135      // Traverse the record, looking for methods.
1136      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) {
1137        // If the method is pure virtual, add it to the methods vector.
1138        if (MD->isPure()) {
1139          Methods.push_back(MD);
1140          continue;
1141        }
1142
1143        // Otherwise, record all the overridden methods in our set.
1144        for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
1145             E = MD->end_overridden_methods(); I != E; ++I) {
1146          // Keep track of the overridden methods.
1147          OverriddenMethods.insert(*I);
1148        }
1149      }
1150    }
1151
1152    // Now go through the methods and zero out all the ones we know are
1153    // overridden.
1154    for (size_t i = 0, e = MethodsSize; i != e; ++i) {
1155      if (OverriddenMethods.count(Methods[i]))
1156        Methods[i] = 0;
1157    }
1158
1159  }
1160}
1161
1162
1163bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1164                                  unsigned DiagID, AbstractDiagSelID SelID,
1165                                  const CXXRecordDecl *CurrentRD) {
1166  if (SelID == -1)
1167    return RequireNonAbstractType(Loc, T,
1168                                  PDiag(DiagID), CurrentRD);
1169  else
1170    return RequireNonAbstractType(Loc, T,
1171                                  PDiag(DiagID) << SelID, CurrentRD);
1172}
1173
1174bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1175                                  const PartialDiagnostic &PD,
1176                                  const CXXRecordDecl *CurrentRD) {
1177  if (!getLangOptions().CPlusPlus)
1178    return false;
1179
1180  if (const ArrayType *AT = Context.getAsArrayType(T))
1181    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
1182                                  CurrentRD);
1183
1184  if (const PointerType *PT = T->getAs<PointerType>()) {
1185    // Find the innermost pointer type.
1186    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
1187      PT = T;
1188
1189    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
1190      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
1191  }
1192
1193  const RecordType *RT = T->getAs<RecordType>();
1194  if (!RT)
1195    return false;
1196
1197  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
1198  if (!RD)
1199    return false;
1200
1201  if (CurrentRD && CurrentRD != RD)
1202    return false;
1203
1204  if (!RD->isAbstract())
1205    return false;
1206
1207  Diag(Loc, PD) << RD->getDeclName();
1208
1209  // Check if we've already emitted the list of pure virtual functions for this
1210  // class.
1211  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
1212    return true;
1213
1214  PureVirtualMethodCollector Collector(Context, RD);
1215
1216  for (PureVirtualMethodCollector::MethodList::const_iterator I =
1217       Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) {
1218    const CXXMethodDecl *MD = *I;
1219
1220    Diag(MD->getLocation(), diag::note_pure_virtual_function) <<
1221      MD->getDeclName();
1222  }
1223
1224  if (!PureVirtualClassDiagSet)
1225    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
1226  PureVirtualClassDiagSet->insert(RD);
1227
1228  return true;
1229}
1230
1231namespace {
1232  class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser
1233    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
1234    Sema &SemaRef;
1235    CXXRecordDecl *AbstractClass;
1236
1237    bool VisitDeclContext(const DeclContext *DC) {
1238      bool Invalid = false;
1239
1240      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
1241           E = DC->decls_end(); I != E; ++I)
1242        Invalid |= Visit(*I);
1243
1244      return Invalid;
1245    }
1246
1247  public:
1248    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
1249      : SemaRef(SemaRef), AbstractClass(ac) {
1250        Visit(SemaRef.Context.getTranslationUnitDecl());
1251    }
1252
1253    bool VisitFunctionDecl(const FunctionDecl *FD) {
1254      if (FD->isThisDeclarationADefinition()) {
1255        // No need to do the check if we're in a definition, because it requires
1256        // that the return/param types are complete.
1257        // because that requires
1258        return VisitDeclContext(FD);
1259      }
1260
1261      // Check the return type.
1262      QualType RTy = FD->getType()->getAsFunctionType()->getResultType();
1263      bool Invalid =
1264        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
1265                                       diag::err_abstract_type_in_decl,
1266                                       Sema::AbstractReturnType,
1267                                       AbstractClass);
1268
1269      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
1270           E = FD->param_end(); I != E; ++I) {
1271        const ParmVarDecl *VD = *I;
1272        Invalid |=
1273          SemaRef.RequireNonAbstractType(VD->getLocation(),
1274                                         VD->getOriginalType(),
1275                                         diag::err_abstract_type_in_decl,
1276                                         Sema::AbstractParamType,
1277                                         AbstractClass);
1278      }
1279
1280      return Invalid;
1281    }
1282
1283    bool VisitDecl(const Decl* D) {
1284      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
1285        return VisitDeclContext(DC);
1286
1287      return false;
1288    }
1289  };
1290}
1291
1292void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
1293                                             DeclPtrTy TagDecl,
1294                                             SourceLocation LBrac,
1295                                             SourceLocation RBrac) {
1296  if (!TagDecl)
1297    return;
1298
1299  AdjustDeclIfTemplate(TagDecl);
1300  ActOnFields(S, RLoc, TagDecl,
1301              (DeclPtrTy*)FieldCollector->getCurFields(),
1302              FieldCollector->getCurNumFields(), LBrac, RBrac, 0);
1303
1304  CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>());
1305  if (!RD->isAbstract()) {
1306    // Collect all the pure virtual methods and see if this is an abstract
1307    // class after all.
1308    PureVirtualMethodCollector Collector(Context, RD);
1309    if (!Collector.empty())
1310      RD->setAbstract(true);
1311  }
1312
1313  if (RD->isAbstract())
1314    AbstractClassUsageDiagnoser(*this, RD);
1315
1316  if (!RD->isDependentType())
1317    AddImplicitlyDeclaredMembersToClass(RD);
1318}
1319
1320/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
1321/// special functions, such as the default constructor, copy
1322/// constructor, or destructor, to the given C++ class (C++
1323/// [special]p1).  This routine can only be executed just before the
1324/// definition of the class is complete.
1325void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
1326  CanQualType ClassType
1327    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1328
1329  // FIXME: Implicit declarations have exception specifications, which are
1330  // the union of the specifications of the implicitly called functions.
1331
1332  if (!ClassDecl->hasUserDeclaredConstructor()) {
1333    // C++ [class.ctor]p5:
1334    //   A default constructor for a class X is a constructor of class X
1335    //   that can be called without an argument. If there is no
1336    //   user-declared constructor for class X, a default constructor is
1337    //   implicitly declared. An implicitly-declared default constructor
1338    //   is an inline public member of its class.
1339    DeclarationName Name
1340      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1341    CXXConstructorDecl *DefaultCon =
1342      CXXConstructorDecl::Create(Context, ClassDecl,
1343                                 ClassDecl->getLocation(), Name,
1344                                 Context.getFunctionType(Context.VoidTy,
1345                                                         0, 0, false, 0),
1346                                 /*DInfo=*/0,
1347                                 /*isExplicit=*/false,
1348                                 /*isInline=*/true,
1349                                 /*isImplicitlyDeclared=*/true);
1350    DefaultCon->setAccess(AS_public);
1351    DefaultCon->setImplicit();
1352    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
1353    ClassDecl->addDecl(DefaultCon);
1354  }
1355
1356  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
1357    // C++ [class.copy]p4:
1358    //   If the class definition does not explicitly declare a copy
1359    //   constructor, one is declared implicitly.
1360
1361    // C++ [class.copy]p5:
1362    //   The implicitly-declared copy constructor for a class X will
1363    //   have the form
1364    //
1365    //       X::X(const X&)
1366    //
1367    //   if
1368    bool HasConstCopyConstructor = true;
1369
1370    //     -- each direct or virtual base class B of X has a copy
1371    //        constructor whose first parameter is of type const B& or
1372    //        const volatile B&, and
1373    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1374         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
1375      const CXXRecordDecl *BaseClassDecl
1376        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1377      HasConstCopyConstructor
1378        = BaseClassDecl->hasConstCopyConstructor(Context);
1379    }
1380
1381    //     -- for all the nonstatic data members of X that are of a
1382    //        class type M (or array thereof), each such class type
1383    //        has a copy constructor whose first parameter is of type
1384    //        const M& or const volatile M&.
1385    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1386         HasConstCopyConstructor && Field != ClassDecl->field_end();
1387         ++Field) {
1388      QualType FieldType = (*Field)->getType();
1389      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1390        FieldType = Array->getElementType();
1391      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1392        const CXXRecordDecl *FieldClassDecl
1393          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1394        HasConstCopyConstructor
1395          = FieldClassDecl->hasConstCopyConstructor(Context);
1396      }
1397    }
1398
1399    //   Otherwise, the implicitly declared copy constructor will have
1400    //   the form
1401    //
1402    //       X::X(X&)
1403    QualType ArgType = ClassType;
1404    if (HasConstCopyConstructor)
1405      ArgType = ArgType.withConst();
1406    ArgType = Context.getLValueReferenceType(ArgType);
1407
1408    //   An implicitly-declared copy constructor is an inline public
1409    //   member of its class.
1410    DeclarationName Name
1411      = Context.DeclarationNames.getCXXConstructorName(ClassType);
1412    CXXConstructorDecl *CopyConstructor
1413      = CXXConstructorDecl::Create(Context, ClassDecl,
1414                                   ClassDecl->getLocation(), Name,
1415                                   Context.getFunctionType(Context.VoidTy,
1416                                                           &ArgType, 1,
1417                                                           false, 0),
1418                                   /*DInfo=*/0,
1419                                   /*isExplicit=*/false,
1420                                   /*isInline=*/true,
1421                                   /*isImplicitlyDeclared=*/true);
1422    CopyConstructor->setAccess(AS_public);
1423    CopyConstructor->setImplicit();
1424    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
1425
1426    // Add the parameter to the constructor.
1427    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
1428                                                 ClassDecl->getLocation(),
1429                                                 /*IdentifierInfo=*/0,
1430                                                 ArgType, /*DInfo=*/0,
1431                                                 VarDecl::None, 0);
1432    CopyConstructor->setParams(Context, &FromParam, 1);
1433    ClassDecl->addDecl(CopyConstructor);
1434  }
1435
1436  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
1437    // Note: The following rules are largely analoguous to the copy
1438    // constructor rules. Note that virtual bases are not taken into account
1439    // for determining the argument type of the operator. Note also that
1440    // operators taking an object instead of a reference are allowed.
1441    //
1442    // C++ [class.copy]p10:
1443    //   If the class definition does not explicitly declare a copy
1444    //   assignment operator, one is declared implicitly.
1445    //   The implicitly-defined copy assignment operator for a class X
1446    //   will have the form
1447    //
1448    //       X& X::operator=(const X&)
1449    //
1450    //   if
1451    bool HasConstCopyAssignment = true;
1452
1453    //       -- each direct base class B of X has a copy assignment operator
1454    //          whose parameter is of type const B&, const volatile B& or B,
1455    //          and
1456    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
1457         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
1458      const CXXRecordDecl *BaseClassDecl
1459        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
1460      const CXXMethodDecl *MD = 0;
1461      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
1462                                                                     MD);
1463    }
1464
1465    //       -- for all the nonstatic data members of X that are of a class
1466    //          type M (or array thereof), each such class type has a copy
1467    //          assignment operator whose parameter is of type const M&,
1468    //          const volatile M& or M.
1469    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
1470         HasConstCopyAssignment && Field != ClassDecl->field_end();
1471         ++Field) {
1472      QualType FieldType = (*Field)->getType();
1473      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1474        FieldType = Array->getElementType();
1475      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
1476        const CXXRecordDecl *FieldClassDecl
1477          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1478        const CXXMethodDecl *MD = 0;
1479        HasConstCopyAssignment
1480          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
1481      }
1482    }
1483
1484    //   Otherwise, the implicitly declared copy assignment operator will
1485    //   have the form
1486    //
1487    //       X& X::operator=(X&)
1488    QualType ArgType = ClassType;
1489    QualType RetType = Context.getLValueReferenceType(ArgType);
1490    if (HasConstCopyAssignment)
1491      ArgType = ArgType.withConst();
1492    ArgType = Context.getLValueReferenceType(ArgType);
1493
1494    //   An implicitly-declared copy assignment operator is an inline public
1495    //   member of its class.
1496    DeclarationName Name =
1497      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
1498    CXXMethodDecl *CopyAssignment =
1499      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
1500                            Context.getFunctionType(RetType, &ArgType, 1,
1501                                                    false, 0),
1502                            /*DInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
1503    CopyAssignment->setAccess(AS_public);
1504    CopyAssignment->setImplicit();
1505    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
1506    CopyAssignment->setCopyAssignment(true);
1507
1508    // Add the parameter to the operator.
1509    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
1510                                                 ClassDecl->getLocation(),
1511                                                 /*IdentifierInfo=*/0,
1512                                                 ArgType, /*DInfo=*/0,
1513                                                 VarDecl::None, 0);
1514    CopyAssignment->setParams(Context, &FromParam, 1);
1515
1516    // Don't call addedAssignmentOperator. There is no way to distinguish an
1517    // implicit from an explicit assignment operator.
1518    ClassDecl->addDecl(CopyAssignment);
1519  }
1520
1521  if (!ClassDecl->hasUserDeclaredDestructor()) {
1522    // C++ [class.dtor]p2:
1523    //   If a class has no user-declared destructor, a destructor is
1524    //   declared implicitly. An implicitly-declared destructor is an
1525    //   inline public member of its class.
1526    DeclarationName Name
1527      = Context.DeclarationNames.getCXXDestructorName(ClassType);
1528    CXXDestructorDecl *Destructor
1529      = CXXDestructorDecl::Create(Context, ClassDecl,
1530                                  ClassDecl->getLocation(), Name,
1531                                  Context.getFunctionType(Context.VoidTy,
1532                                                          0, 0, false, 0),
1533                                  /*isInline=*/true,
1534                                  /*isImplicitlyDeclared=*/true);
1535    Destructor->setAccess(AS_public);
1536    Destructor->setImplicit();
1537    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
1538    ClassDecl->addDecl(Destructor);
1539  }
1540}
1541
1542void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
1543  TemplateDecl *Template = TemplateD.getAs<TemplateDecl>();
1544  if (!Template)
1545    return;
1546
1547  TemplateParameterList *Params = Template->getTemplateParameters();
1548  for (TemplateParameterList::iterator Param = Params->begin(),
1549                                    ParamEnd = Params->end();
1550       Param != ParamEnd; ++Param) {
1551    NamedDecl *Named = cast<NamedDecl>(*Param);
1552    if (Named->getDeclName()) {
1553      S->AddDecl(DeclPtrTy::make(Named));
1554      IdResolver.AddDecl(Named);
1555    }
1556  }
1557}
1558
1559/// ActOnStartDelayedCXXMethodDeclaration - We have completed
1560/// parsing a top-level (non-nested) C++ class, and we are now
1561/// parsing those parts of the given Method declaration that could
1562/// not be parsed earlier (C++ [class.mem]p2), such as default
1563/// arguments. This action should enter the scope of the given
1564/// Method declaration as if we had just parsed the qualified method
1565/// name. However, it should not bring the parameters into scope;
1566/// that will be performed by ActOnDelayedCXXMethodParameter.
1567void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1568  if (!MethodD)
1569    return;
1570
1571  AdjustDeclIfTemplate(MethodD);
1572
1573  CXXScopeSpec SS;
1574  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1575  QualType ClassTy
1576    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1577  SS.setScopeRep(
1578    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1579  ActOnCXXEnterDeclaratorScope(S, SS);
1580}
1581
1582/// ActOnDelayedCXXMethodParameter - We've already started a delayed
1583/// C++ method declaration. We're (re-)introducing the given
1584/// function parameter into scope for use in parsing later parts of
1585/// the method declaration. For example, we could see an
1586/// ActOnParamDefaultArgument event for this parameter.
1587void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
1588  if (!ParamD)
1589    return;
1590
1591  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
1592
1593  // If this parameter has an unparsed default argument, clear it out
1594  // to make way for the parsed default argument.
1595  if (Param->hasUnparsedDefaultArg())
1596    Param->setDefaultArg(0);
1597
1598  S->AddDecl(DeclPtrTy::make(Param));
1599  if (Param->getDeclName())
1600    IdResolver.AddDecl(Param);
1601}
1602
1603/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
1604/// processing the delayed method declaration for Method. The method
1605/// declaration is now considered finished. There may be a separate
1606/// ActOnStartOfFunctionDef action later (not necessarily
1607/// immediately!) for this method, if it was also defined inside the
1608/// class body.
1609void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
1610  if (!MethodD)
1611    return;
1612
1613  AdjustDeclIfTemplate(MethodD);
1614
1615  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
1616  CXXScopeSpec SS;
1617  QualType ClassTy
1618    = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext()));
1619  SS.setScopeRep(
1620    NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr()));
1621  ActOnCXXExitDeclaratorScope(S, SS);
1622
1623  // Now that we have our default arguments, check the constructor
1624  // again. It could produce additional diagnostics or affect whether
1625  // the class has implicitly-declared destructors, among other
1626  // things.
1627  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
1628    CheckConstructor(Constructor);
1629
1630  // Check the default arguments, which we may have added.
1631  if (!Method->isInvalidDecl())
1632    CheckCXXDefaultArguments(Method);
1633}
1634
1635/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
1636/// the well-formedness of the constructor declarator @p D with type @p
1637/// R. If there are any errors in the declarator, this routine will
1638/// emit diagnostics and set the invalid bit to true.  In any case, the type
1639/// will be updated to reflect a well-formed type for the constructor and
1640/// returned.
1641QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
1642                                          FunctionDecl::StorageClass &SC) {
1643  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1644
1645  // C++ [class.ctor]p3:
1646  //   A constructor shall not be virtual (10.3) or static (9.4). A
1647  //   constructor can be invoked for a const, volatile or const
1648  //   volatile object. A constructor shall not be declared const,
1649  //   volatile, or const volatile (9.3.2).
1650  if (isVirtual) {
1651    if (!D.isInvalidType())
1652      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1653        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
1654        << SourceRange(D.getIdentifierLoc());
1655    D.setInvalidType();
1656  }
1657  if (SC == FunctionDecl::Static) {
1658    if (!D.isInvalidType())
1659      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
1660        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1661        << SourceRange(D.getIdentifierLoc());
1662    D.setInvalidType();
1663    SC = FunctionDecl::None;
1664  }
1665
1666  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1667  if (FTI.TypeQuals != 0) {
1668    if (FTI.TypeQuals & QualType::Const)
1669      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1670        << "const" << SourceRange(D.getIdentifierLoc());
1671    if (FTI.TypeQuals & QualType::Volatile)
1672      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1673        << "volatile" << SourceRange(D.getIdentifierLoc());
1674    if (FTI.TypeQuals & QualType::Restrict)
1675      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
1676        << "restrict" << SourceRange(D.getIdentifierLoc());
1677  }
1678
1679  // Rebuild the function type "R" without any type qualifiers (in
1680  // case any of the errors above fired) and with "void" as the
1681  // return type, since constructors don't have return types. We
1682  // *always* have to do this, because GetTypeForDeclarator will
1683  // put in a result type of "int" when none was specified.
1684  const FunctionProtoType *Proto = R->getAsFunctionProtoType();
1685  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
1686                                 Proto->getNumArgs(),
1687                                 Proto->isVariadic(), 0);
1688}
1689
1690/// CheckConstructor - Checks a fully-formed constructor for
1691/// well-formedness, issuing any diagnostics required. Returns true if
1692/// the constructor declarator is invalid.
1693void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
1694  CXXRecordDecl *ClassDecl
1695    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
1696  if (!ClassDecl)
1697    return Constructor->setInvalidDecl();
1698
1699  // C++ [class.copy]p3:
1700  //   A declaration of a constructor for a class X is ill-formed if
1701  //   its first parameter is of type (optionally cv-qualified) X and
1702  //   either there are no other parameters or else all other
1703  //   parameters have default arguments.
1704  if (!Constructor->isInvalidDecl() &&
1705      ((Constructor->getNumParams() == 1) ||
1706       (Constructor->getNumParams() > 1 &&
1707        Constructor->getParamDecl(1)->hasDefaultArg()))) {
1708    QualType ParamType = Constructor->getParamDecl(0)->getType();
1709    QualType ClassTy = Context.getTagDeclType(ClassDecl);
1710    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
1711      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
1712      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
1713        << CodeModificationHint::CreateInsertion(ParamLoc, " const &");
1714      Constructor->setInvalidDecl();
1715    }
1716  }
1717
1718  // Notify the class that we've added a constructor.
1719  ClassDecl->addedConstructor(Context, Constructor);
1720}
1721
1722static inline bool
1723FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
1724  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1725          FTI.ArgInfo[0].Param &&
1726          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
1727}
1728
1729/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
1730/// the well-formednes of the destructor declarator @p D with type @p
1731/// R. If there are any errors in the declarator, this routine will
1732/// emit diagnostics and set the declarator to invalid.  Even if this happens,
1733/// will be updated to reflect a well-formed type for the destructor and
1734/// returned.
1735QualType Sema::CheckDestructorDeclarator(Declarator &D,
1736                                         FunctionDecl::StorageClass& SC) {
1737  // C++ [class.dtor]p1:
1738  //   [...] A typedef-name that names a class is a class-name
1739  //   (7.1.3); however, a typedef-name that names a class shall not
1740  //   be used as the identifier in the declarator for a destructor
1741  //   declaration.
1742  QualType DeclaratorType = GetTypeFromParser(D.getDeclaratorIdType());
1743  if (isa<TypedefType>(DeclaratorType)) {
1744    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
1745      << DeclaratorType;
1746    D.setInvalidType();
1747  }
1748
1749  // C++ [class.dtor]p2:
1750  //   A destructor is used to destroy objects of its class type. A
1751  //   destructor takes no parameters, and no return type can be
1752  //   specified for it (not even void). The address of a destructor
1753  //   shall not be taken. A destructor shall not be static. A
1754  //   destructor can be invoked for a const, volatile or const
1755  //   volatile object. A destructor shall not be declared const,
1756  //   volatile or const volatile (9.3.2).
1757  if (SC == FunctionDecl::Static) {
1758    if (!D.isInvalidType())
1759      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
1760        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1761        << SourceRange(D.getIdentifierLoc());
1762    SC = FunctionDecl::None;
1763    D.setInvalidType();
1764  }
1765  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1766    // Destructors don't have return types, but the parser will
1767    // happily parse something like:
1768    //
1769    //   class X {
1770    //     float ~X();
1771    //   };
1772    //
1773    // The return type will be eliminated later.
1774    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
1775      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1776      << SourceRange(D.getIdentifierLoc());
1777  }
1778
1779  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1780  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
1781    if (FTI.TypeQuals & QualType::Const)
1782      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1783        << "const" << SourceRange(D.getIdentifierLoc());
1784    if (FTI.TypeQuals & QualType::Volatile)
1785      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1786        << "volatile" << SourceRange(D.getIdentifierLoc());
1787    if (FTI.TypeQuals & QualType::Restrict)
1788      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
1789        << "restrict" << SourceRange(D.getIdentifierLoc());
1790    D.setInvalidType();
1791  }
1792
1793  // Make sure we don't have any parameters.
1794  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
1795    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
1796
1797    // Delete the parameters.
1798    FTI.freeArgs();
1799    D.setInvalidType();
1800  }
1801
1802  // Make sure the destructor isn't variadic.
1803  if (FTI.isVariadic) {
1804    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
1805    D.setInvalidType();
1806  }
1807
1808  // Rebuild the function type "R" without any type qualifiers or
1809  // parameters (in case any of the errors above fired) and with
1810  // "void" as the return type, since destructors don't have return
1811  // types. We *always* have to do this, because GetTypeForDeclarator
1812  // will put in a result type of "int" when none was specified.
1813  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0);
1814}
1815
1816/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
1817/// well-formednes of the conversion function declarator @p D with
1818/// type @p R. If there are any errors in the declarator, this routine
1819/// will emit diagnostics and return true. Otherwise, it will return
1820/// false. Either way, the type @p R will be updated to reflect a
1821/// well-formed type for the conversion operator.
1822void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
1823                                     FunctionDecl::StorageClass& SC) {
1824  // C++ [class.conv.fct]p1:
1825  //   Neither parameter types nor return type can be specified. The
1826  //   type of a conversion function (8.3.5) is "function taking no
1827  //   parameter returning conversion-type-id."
1828  if (SC == FunctionDecl::Static) {
1829    if (!D.isInvalidType())
1830      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
1831        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
1832        << SourceRange(D.getIdentifierLoc());
1833    D.setInvalidType();
1834    SC = FunctionDecl::None;
1835  }
1836  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
1837    // Conversion functions don't have return types, but the parser will
1838    // happily parse something like:
1839    //
1840    //   class X {
1841    //     float operator bool();
1842    //   };
1843    //
1844    // The return type will be changed later anyway.
1845    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
1846      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
1847      << SourceRange(D.getIdentifierLoc());
1848  }
1849
1850  // Make sure we don't have any parameters.
1851  if (R->getAsFunctionProtoType()->getNumArgs() > 0) {
1852    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
1853
1854    // Delete the parameters.
1855    D.getTypeObject(0).Fun.freeArgs();
1856    D.setInvalidType();
1857  }
1858
1859  // Make sure the conversion function isn't variadic.
1860  if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) {
1861    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
1862    D.setInvalidType();
1863  }
1864
1865  // C++ [class.conv.fct]p4:
1866  //   The conversion-type-id shall not represent a function type nor
1867  //   an array type.
1868  QualType ConvType = GetTypeFromParser(D.getDeclaratorIdType());
1869  if (ConvType->isArrayType()) {
1870    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
1871    ConvType = Context.getPointerType(ConvType);
1872    D.setInvalidType();
1873  } else if (ConvType->isFunctionType()) {
1874    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
1875    ConvType = Context.getPointerType(ConvType);
1876    D.setInvalidType();
1877  }
1878
1879  // Rebuild the function type "R" without any parameters (in case any
1880  // of the errors above fired) and with the conversion type as the
1881  // return type.
1882  R = Context.getFunctionType(ConvType, 0, 0, false,
1883                              R->getAsFunctionProtoType()->getTypeQuals());
1884
1885  // C++0x explicit conversion operators.
1886  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
1887    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1888         diag::warn_explicit_conversion_functions)
1889      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
1890}
1891
1892/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
1893/// the declaration of the given C++ conversion function. This routine
1894/// is responsible for recording the conversion function in the C++
1895/// class, if possible.
1896Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
1897  assert(Conversion && "Expected to receive a conversion function declaration");
1898
1899  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
1900
1901  // Make sure we aren't redeclaring the conversion function.
1902  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
1903
1904  // C++ [class.conv.fct]p1:
1905  //   [...] A conversion function is never used to convert a
1906  //   (possibly cv-qualified) object to the (possibly cv-qualified)
1907  //   same object type (or a reference to it), to a (possibly
1908  //   cv-qualified) base class of that type (or a reference to it),
1909  //   or to (possibly cv-qualified) void.
1910  // FIXME: Suppress this warning if the conversion function ends up being a
1911  // virtual function that overrides a virtual function in a base class.
1912  QualType ClassType
1913    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
1914  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
1915    ConvType = ConvTypeRef->getPointeeType();
1916  if (ConvType->isRecordType()) {
1917    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
1918    if (ConvType == ClassType)
1919      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
1920        << ClassType;
1921    else if (IsDerivedFrom(ClassType, ConvType))
1922      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
1923        <<  ClassType << ConvType;
1924  } else if (ConvType->isVoidType()) {
1925    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
1926      << ClassType << ConvType;
1927  }
1928
1929  if (Conversion->getPreviousDeclaration()) {
1930    const NamedDecl *ExpectedPrevDecl = Conversion->getPreviousDeclaration();
1931    if (FunctionTemplateDecl *ConversionTemplate
1932          = Conversion->getDescribedFunctionTemplate())
1933      ExpectedPrevDecl = ConversionTemplate->getPreviousDeclaration();
1934    OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions();
1935    for (OverloadedFunctionDecl::function_iterator
1936           Conv = Conversions->function_begin(),
1937           ConvEnd = Conversions->function_end();
1938         Conv != ConvEnd; ++Conv) {
1939      if (*Conv == ExpectedPrevDecl) {
1940        *Conv = Conversion;
1941        return DeclPtrTy::make(Conversion);
1942      }
1943    }
1944    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
1945  } else if (FunctionTemplateDecl *ConversionTemplate
1946               = Conversion->getDescribedFunctionTemplate())
1947    ClassDecl->addConversionFunction(Context, ConversionTemplate);
1948  else if (!Conversion->getPrimaryTemplate()) // ignore specializations
1949    ClassDecl->addConversionFunction(Context, Conversion);
1950
1951  return DeclPtrTy::make(Conversion);
1952}
1953
1954//===----------------------------------------------------------------------===//
1955// Namespace Handling
1956//===----------------------------------------------------------------------===//
1957
1958/// ActOnStartNamespaceDef - This is called at the start of a namespace
1959/// definition.
1960Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
1961                                             SourceLocation IdentLoc,
1962                                             IdentifierInfo *II,
1963                                             SourceLocation LBrace) {
1964  NamespaceDecl *Namespc =
1965      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
1966  Namespc->setLBracLoc(LBrace);
1967
1968  Scope *DeclRegionScope = NamespcScope->getParent();
1969
1970  if (II) {
1971    // C++ [namespace.def]p2:
1972    // The identifier in an original-namespace-definition shall not have been
1973    // previously defined in the declarative region in which the
1974    // original-namespace-definition appears. The identifier in an
1975    // original-namespace-definition is the name of the namespace. Subsequently
1976    // in that declarative region, it is treated as an original-namespace-name.
1977
1978    NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName,
1979                                     true);
1980
1981    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
1982      // This is an extended namespace definition.
1983      // Attach this namespace decl to the chain of extended namespace
1984      // definitions.
1985      OrigNS->setNextNamespace(Namespc);
1986      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
1987
1988      // Remove the previous declaration from the scope.
1989      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
1990        IdResolver.RemoveDecl(OrigNS);
1991        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
1992      }
1993    } else if (PrevDecl) {
1994      // This is an invalid name redefinition.
1995      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
1996       << Namespc->getDeclName();
1997      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1998      Namespc->setInvalidDecl();
1999      // Continue on to push Namespc as current DeclContext and return it.
2000    }
2001
2002    PushOnScopeChains(Namespc, DeclRegionScope);
2003  } else {
2004    // FIXME: Handle anonymous namespaces
2005  }
2006
2007  // Although we could have an invalid decl (i.e. the namespace name is a
2008  // redefinition), push it as current DeclContext and try to continue parsing.
2009  // FIXME: We should be able to push Namespc here, so that the each DeclContext
2010  // for the namespace has the declarations that showed up in that particular
2011  // namespace definition.
2012  PushDeclContext(NamespcScope, Namespc);
2013  return DeclPtrTy::make(Namespc);
2014}
2015
2016/// ActOnFinishNamespaceDef - This callback is called after a namespace is
2017/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
2018void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
2019  Decl *Dcl = D.getAs<Decl>();
2020  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
2021  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
2022  Namespc->setRBracLoc(RBrace);
2023  PopDeclContext();
2024}
2025
2026Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
2027                                          SourceLocation UsingLoc,
2028                                          SourceLocation NamespcLoc,
2029                                          const CXXScopeSpec &SS,
2030                                          SourceLocation IdentLoc,
2031                                          IdentifierInfo *NamespcName,
2032                                          AttributeList *AttrList) {
2033  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2034  assert(NamespcName && "Invalid NamespcName.");
2035  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
2036  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2037
2038  UsingDirectiveDecl *UDir = 0;
2039
2040  // Lookup namespace name.
2041  LookupResult R = LookupParsedName(S, &SS, NamespcName,
2042                                    LookupNamespaceName, false);
2043  if (R.isAmbiguous()) {
2044    DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc);
2045    return DeclPtrTy();
2046  }
2047  if (NamedDecl *NS = R) {
2048    assert(isa<NamespaceDecl>(NS) && "expected namespace decl");
2049    // C++ [namespace.udir]p1:
2050    //   A using-directive specifies that the names in the nominated
2051    //   namespace can be used in the scope in which the
2052    //   using-directive appears after the using-directive. During
2053    //   unqualified name lookup (3.4.1), the names appear as if they
2054    //   were declared in the nearest enclosing namespace which
2055    //   contains both the using-directive and the nominated
2056    //   namespace. [Note: in this context, "contains" means "contains
2057    //   directly or indirectly". ]
2058
2059    // Find enclosing context containing both using-directive and
2060    // nominated namespace.
2061    DeclContext *CommonAncestor = cast<DeclContext>(NS);
2062    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
2063      CommonAncestor = CommonAncestor->getParent();
2064
2065    UDir = UsingDirectiveDecl::Create(Context,
2066                                      CurContext, UsingLoc,
2067                                      NamespcLoc,
2068                                      SS.getRange(),
2069                                      (NestedNameSpecifier *)SS.getScopeRep(),
2070                                      IdentLoc,
2071                                      cast<NamespaceDecl>(NS),
2072                                      CommonAncestor);
2073    PushUsingDirective(S, UDir);
2074  } else {
2075    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
2076  }
2077
2078  // FIXME: We ignore attributes for now.
2079  delete AttrList;
2080  return DeclPtrTy::make(UDir);
2081}
2082
2083void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
2084  // If scope has associated entity, then using directive is at namespace
2085  // or translation unit scope. We add UsingDirectiveDecls, into
2086  // it's lookup structure.
2087  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
2088    Ctx->addDecl(UDir);
2089  else
2090    // Otherwise it is block-sope. using-directives will affect lookup
2091    // only to the end of scope.
2092    S->PushUsingDirective(DeclPtrTy::make(UDir));
2093}
2094
2095
2096Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
2097                                            SourceLocation UsingLoc,
2098                                            const CXXScopeSpec &SS,
2099                                            SourceLocation IdentLoc,
2100                                            IdentifierInfo *TargetName,
2101                                            OverloadedOperatorKind Op,
2102                                            AttributeList *AttrList,
2103                                            bool IsTypeName) {
2104  assert((TargetName || Op) && "Invalid TargetName.");
2105  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
2106
2107  DeclarationName Name;
2108  if (TargetName)
2109    Name = TargetName;
2110  else
2111    Name = Context.DeclarationNames.getCXXOperatorName(Op);
2112
2113  NamedDecl *UD = BuildUsingDeclaration(UsingLoc, SS, IdentLoc,
2114                                        Name, AttrList, IsTypeName);
2115  if (UD)
2116    PushOnScopeChains(UD, S);
2117
2118  return DeclPtrTy::make(UD);
2119}
2120
2121NamedDecl *Sema::BuildUsingDeclaration(SourceLocation UsingLoc,
2122                                       const CXXScopeSpec &SS,
2123                                       SourceLocation IdentLoc,
2124                                       DeclarationName Name,
2125                                       AttributeList *AttrList,
2126                                       bool IsTypeName) {
2127  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
2128  assert(IdentLoc.isValid() && "Invalid TargetName location.");
2129
2130  // FIXME: We ignore attributes for now.
2131  delete AttrList;
2132
2133  if (SS.isEmpty()) {
2134    Diag(IdentLoc, diag::err_using_requires_qualname);
2135    return 0;
2136  }
2137
2138  NestedNameSpecifier *NNS =
2139    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
2140
2141  if (isUnknownSpecialization(SS)) {
2142    return UnresolvedUsingDecl::Create(Context, CurContext, UsingLoc,
2143                                       SS.getRange(), NNS,
2144                                       IdentLoc, Name, IsTypeName);
2145  }
2146
2147  DeclContext *LookupContext = 0;
2148
2149  if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
2150    // C++0x N2914 [namespace.udecl]p3:
2151    // A using-declaration used as a member-declaration shall refer to a member
2152    // of a base class of the class being defined, shall refer to a member of an
2153    // anonymous union that is a member of a base class of the class being
2154    // defined, or shall refer to an enumerator for an enumeration type that is
2155    // a member of a base class of the class being defined.
2156    const Type *Ty = NNS->getAsType();
2157    if (!Ty || !IsDerivedFrom(Context.getTagDeclType(RD), QualType(Ty, 0))) {
2158      Diag(SS.getRange().getBegin(),
2159           diag::err_using_decl_nested_name_specifier_is_not_a_base_class)
2160        << NNS << RD->getDeclName();
2161      return 0;
2162    }
2163
2164    QualType BaseTy = Context.getCanonicalType(QualType(Ty, 0));
2165    LookupContext = BaseTy->getAs<RecordType>()->getDecl();
2166  } else {
2167    // C++0x N2914 [namespace.udecl]p8:
2168    // A using-declaration for a class member shall be a member-declaration.
2169    if (NNS->getKind() == NestedNameSpecifier::TypeSpec) {
2170      Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_class_member)
2171        << SS.getRange();
2172      return 0;
2173    }
2174
2175    // C++0x N2914 [namespace.udecl]p9:
2176    // In a using-declaration, a prefix :: refers to the global namespace.
2177    if (NNS->getKind() == NestedNameSpecifier::Global)
2178      LookupContext = Context.getTranslationUnitDecl();
2179    else
2180      LookupContext = NNS->getAsNamespace();
2181  }
2182
2183
2184  // Lookup target name.
2185  LookupResult R = LookupQualifiedName(LookupContext,
2186                                       Name, LookupOrdinaryName);
2187
2188  if (!R) {
2189    Diag(IdentLoc, diag::err_typecheck_no_member) << Name << SS.getRange();
2190    return 0;
2191  }
2192
2193  NamedDecl *ND = R.getAsDecl();
2194
2195  if (IsTypeName && !isa<TypeDecl>(ND)) {
2196    Diag(IdentLoc, diag::err_using_typename_non_type);
2197    return 0;
2198  }
2199
2200  // C++0x N2914 [namespace.udecl]p6:
2201  // A using-declaration shall not name a namespace.
2202  if (isa<NamespaceDecl>(ND)) {
2203    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
2204      << SS.getRange();
2205    return 0;
2206  }
2207
2208  return UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(),
2209                           ND->getLocation(), UsingLoc, ND, NNS, IsTypeName);
2210}
2211
2212/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
2213/// is a namespace alias, returns the namespace it points to.
2214static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
2215  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
2216    return AD->getNamespace();
2217  return dyn_cast_or_null<NamespaceDecl>(D);
2218}
2219
2220Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
2221                                             SourceLocation NamespaceLoc,
2222                                             SourceLocation AliasLoc,
2223                                             IdentifierInfo *Alias,
2224                                             const CXXScopeSpec &SS,
2225                                             SourceLocation IdentLoc,
2226                                             IdentifierInfo *Ident) {
2227
2228  // Lookup the namespace name.
2229  LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false);
2230
2231  // Check if we have a previous declaration with the same name.
2232  if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) {
2233    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
2234      // We already have an alias with the same name that points to the same
2235      // namespace, so don't create a new one.
2236      if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R))
2237        return DeclPtrTy();
2238    }
2239
2240    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
2241      diag::err_redefinition_different_kind;
2242    Diag(AliasLoc, DiagID) << Alias;
2243    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2244    return DeclPtrTy();
2245  }
2246
2247  if (R.isAmbiguous()) {
2248    DiagnoseAmbiguousLookup(R, Ident, IdentLoc);
2249    return DeclPtrTy();
2250  }
2251
2252  if (!R) {
2253    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
2254    return DeclPtrTy();
2255  }
2256
2257  NamespaceAliasDecl *AliasDecl =
2258    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
2259                               Alias, SS.getRange(),
2260                               (NestedNameSpecifier *)SS.getScopeRep(),
2261                               IdentLoc, R);
2262
2263  CurContext->addDecl(AliasDecl);
2264  return DeclPtrTy::make(AliasDecl);
2265}
2266
2267void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
2268                                            CXXConstructorDecl *Constructor) {
2269  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
2270          !Constructor->isUsed()) &&
2271    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
2272
2273  CXXRecordDecl *ClassDecl
2274    = cast<CXXRecordDecl>(Constructor->getDeclContext());
2275  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
2276  // Before the implicitly-declared default constructor for a class is
2277  // implicitly defined, all the implicitly-declared default constructors
2278  // for its base class and its non-static data members shall have been
2279  // implicitly defined.
2280  bool err = false;
2281  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2282       E = ClassDecl->bases_end(); Base != E; ++Base) {
2283    CXXRecordDecl *BaseClassDecl
2284      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2285    if (!BaseClassDecl->hasTrivialConstructor()) {
2286      if (CXXConstructorDecl *BaseCtor =
2287            BaseClassDecl->getDefaultConstructor(Context))
2288        MarkDeclarationReferenced(CurrentLocation, BaseCtor);
2289      else {
2290        Diag(CurrentLocation, diag::err_defining_default_ctor)
2291          << Context.getTagDeclType(ClassDecl) << 1
2292          << Context.getTagDeclType(BaseClassDecl);
2293        Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl)
2294              << Context.getTagDeclType(BaseClassDecl);
2295        err = true;
2296      }
2297    }
2298  }
2299  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2300       E = ClassDecl->field_end(); Field != E; ++Field) {
2301    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2302    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2303      FieldType = Array->getElementType();
2304    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2305      CXXRecordDecl *FieldClassDecl
2306        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2307      if (!FieldClassDecl->hasTrivialConstructor()) {
2308        if (CXXConstructorDecl *FieldCtor =
2309            FieldClassDecl->getDefaultConstructor(Context))
2310          MarkDeclarationReferenced(CurrentLocation, FieldCtor);
2311        else {
2312          Diag(CurrentLocation, diag::err_defining_default_ctor)
2313          << Context.getTagDeclType(ClassDecl) << 0 <<
2314              Context.getTagDeclType(FieldClassDecl);
2315          Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl)
2316          << Context.getTagDeclType(FieldClassDecl);
2317          err = true;
2318        }
2319      }
2320    } else if (FieldType->isReferenceType()) {
2321      Diag(CurrentLocation, diag::err_unintialized_member)
2322        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2323      Diag((*Field)->getLocation(), diag::note_declared_at);
2324      err = true;
2325    } else if (FieldType.isConstQualified()) {
2326      Diag(CurrentLocation, diag::err_unintialized_member)
2327        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2328       Diag((*Field)->getLocation(), diag::note_declared_at);
2329      err = true;
2330    }
2331  }
2332  if (!err)
2333    Constructor->setUsed();
2334  else
2335    Constructor->setInvalidDecl();
2336}
2337
2338void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
2339                                            CXXDestructorDecl *Destructor) {
2340  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
2341         "DefineImplicitDestructor - call it for implicit default dtor");
2342
2343  CXXRecordDecl *ClassDecl
2344  = cast<CXXRecordDecl>(Destructor->getDeclContext());
2345  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
2346  // C++ [class.dtor] p5
2347  // Before the implicitly-declared default destructor for a class is
2348  // implicitly defined, all the implicitly-declared default destructors
2349  // for its base class and its non-static data members shall have been
2350  // implicitly defined.
2351  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2352       E = ClassDecl->bases_end(); Base != E; ++Base) {
2353    CXXRecordDecl *BaseClassDecl
2354      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2355    if (!BaseClassDecl->hasTrivialDestructor()) {
2356      if (CXXDestructorDecl *BaseDtor =
2357          const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context)))
2358        MarkDeclarationReferenced(CurrentLocation, BaseDtor);
2359      else
2360        assert(false &&
2361               "DefineImplicitDestructor - missing dtor in a base class");
2362    }
2363  }
2364
2365  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2366       E = ClassDecl->field_end(); Field != E; ++Field) {
2367    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2368    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2369      FieldType = Array->getElementType();
2370    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2371      CXXRecordDecl *FieldClassDecl
2372        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2373      if (!FieldClassDecl->hasTrivialDestructor()) {
2374        if (CXXDestructorDecl *FieldDtor =
2375            const_cast<CXXDestructorDecl*>(
2376                                        FieldClassDecl->getDestructor(Context)))
2377          MarkDeclarationReferenced(CurrentLocation, FieldDtor);
2378        else
2379          assert(false &&
2380          "DefineImplicitDestructor - missing dtor in class of a data member");
2381      }
2382    }
2383  }
2384  Destructor->setUsed();
2385}
2386
2387void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
2388                                          CXXMethodDecl *MethodDecl) {
2389  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
2390          MethodDecl->getOverloadedOperator() == OO_Equal &&
2391          !MethodDecl->isUsed()) &&
2392         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
2393
2394  CXXRecordDecl *ClassDecl
2395    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
2396
2397  // C++[class.copy] p12
2398  // Before the implicitly-declared copy assignment operator for a class is
2399  // implicitly defined, all implicitly-declared copy assignment operators
2400  // for its direct base classes and its nonstatic data members shall have
2401  // been implicitly defined.
2402  bool err = false;
2403  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2404       E = ClassDecl->bases_end(); Base != E; ++Base) {
2405    CXXRecordDecl *BaseClassDecl
2406      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2407    if (CXXMethodDecl *BaseAssignOpMethod =
2408          getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl))
2409      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
2410  }
2411  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2412       E = ClassDecl->field_end(); Field != E; ++Field) {
2413    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2414    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2415      FieldType = Array->getElementType();
2416    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2417      CXXRecordDecl *FieldClassDecl
2418        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2419      if (CXXMethodDecl *FieldAssignOpMethod =
2420          getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl))
2421        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
2422    } else if (FieldType->isReferenceType()) {
2423      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2424      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
2425      Diag(Field->getLocation(), diag::note_declared_at);
2426      Diag(CurrentLocation, diag::note_first_required_here);
2427      err = true;
2428    } else if (FieldType.isConstQualified()) {
2429      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
2430      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
2431      Diag(Field->getLocation(), diag::note_declared_at);
2432      Diag(CurrentLocation, diag::note_first_required_here);
2433      err = true;
2434    }
2435  }
2436  if (!err)
2437    MethodDecl->setUsed();
2438}
2439
2440CXXMethodDecl *
2441Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl,
2442                              CXXRecordDecl *ClassDecl) {
2443  QualType LHSType = Context.getTypeDeclType(ClassDecl);
2444  QualType RHSType(LHSType);
2445  // If class's assignment operator argument is const/volatile qualified,
2446  // look for operator = (const/volatile B&). Otherwise, look for
2447  // operator = (B&).
2448  if (ParmDecl->getType().isConstQualified())
2449    RHSType.addConst();
2450  if (ParmDecl->getType().isVolatileQualified())
2451    RHSType.addVolatile();
2452  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
2453                                                          LHSType,
2454                                                          SourceLocation()));
2455  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
2456                                                          RHSType,
2457                                                          SourceLocation()));
2458  Expr *Args[2] = { &*LHS, &*RHS };
2459  OverloadCandidateSet CandidateSet;
2460  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
2461                              CandidateSet);
2462  OverloadCandidateSet::iterator Best;
2463  if (BestViableFunction(CandidateSet,
2464                         ClassDecl->getLocation(), Best) == OR_Success)
2465    return cast<CXXMethodDecl>(Best->Function);
2466  assert(false &&
2467         "getAssignOperatorMethod - copy assignment operator method not found");
2468  return 0;
2469}
2470
2471void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
2472                                   CXXConstructorDecl *CopyConstructor,
2473                                   unsigned TypeQuals) {
2474  assert((CopyConstructor->isImplicit() &&
2475          CopyConstructor->isCopyConstructor(Context, TypeQuals) &&
2476          !CopyConstructor->isUsed()) &&
2477         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
2478
2479  CXXRecordDecl *ClassDecl
2480    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
2481  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
2482  // C++ [class.copy] p209
2483  // Before the implicitly-declared copy constructor for a class is
2484  // implicitly defined, all the implicitly-declared copy constructors
2485  // for its base class and its non-static data members shall have been
2486  // implicitly defined.
2487  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2488       Base != ClassDecl->bases_end(); ++Base) {
2489    CXXRecordDecl *BaseClassDecl
2490      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2491    if (CXXConstructorDecl *BaseCopyCtor =
2492        BaseClassDecl->getCopyConstructor(Context, TypeQuals))
2493      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
2494  }
2495  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
2496                                  FieldEnd = ClassDecl->field_end();
2497       Field != FieldEnd; ++Field) {
2498    QualType FieldType = Context.getCanonicalType((*Field)->getType());
2499    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2500      FieldType = Array->getElementType();
2501    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2502      CXXRecordDecl *FieldClassDecl
2503        = cast<CXXRecordDecl>(FieldClassType->getDecl());
2504      if (CXXConstructorDecl *FieldCopyCtor =
2505          FieldClassDecl->getCopyConstructor(Context, TypeQuals))
2506        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
2507    }
2508  }
2509  CopyConstructor->setUsed();
2510}
2511
2512Sema::OwningExprResult
2513Sema::BuildCXXConstructExpr(QualType DeclInitType,
2514                            CXXConstructorDecl *Constructor,
2515                            Expr **Exprs, unsigned NumExprs) {
2516  bool Elidable = false;
2517
2518  // [class.copy]p15:
2519  // Whenever a temporary class object is copied using a copy constructor, and
2520  // this object and the copy have the same cv-unqualified type, an
2521  // implementation is permitted to treat the original and the copy as two
2522  // different ways of referring to the same object and not perform a copy at
2523  //all, even if the class copy constructor or destructor have side effects.
2524
2525  // FIXME: Is this enough?
2526  if (Constructor->isCopyConstructor(Context) && NumExprs == 1) {
2527    Expr *E = Exprs[0];
2528    while (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2529      E = BE->getSubExpr();
2530
2531    if (isa<CallExpr>(E) || isa<CXXTemporaryObjectExpr>(E))
2532      Elidable = true;
2533  }
2534
2535  return BuildCXXConstructExpr(DeclInitType, Constructor, Elidable,
2536                               Exprs, NumExprs);
2537}
2538
2539/// BuildCXXConstructExpr - Creates a complete call to a constructor,
2540/// including handling of its default argument expressions.
2541Sema::OwningExprResult
2542Sema::BuildCXXConstructExpr(QualType DeclInitType,
2543                            CXXConstructorDecl *Constructor,
2544                            bool Elidable,
2545                            Expr **Exprs,
2546                            unsigned NumExprs) {
2547  ExprOwningPtr<CXXConstructExpr> Temp(this,
2548                                       CXXConstructExpr::Create(Context,
2549                                                                DeclInitType,
2550                                                                Constructor,
2551                                                                Elidable,
2552                                                                Exprs,
2553                                                                NumExprs));
2554  // Default arguments must be added to constructor call expression.
2555  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2556  unsigned NumArgsInProto = FDecl->param_size();
2557  for (unsigned j = NumExprs; j != NumArgsInProto; j++) {
2558    ParmVarDecl *Param = FDecl->getParamDecl(j);
2559
2560    OwningExprResult ArgExpr =
2561      BuildCXXDefaultArgExpr(/*FIXME:*/SourceLocation(),
2562                             FDecl, Param);
2563    if (ArgExpr.isInvalid())
2564      return ExprError();
2565
2566    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2567  }
2568  return move(Temp);
2569}
2570
2571Sema::OwningExprResult
2572Sema::BuildCXXTemporaryObjectExpr(CXXConstructorDecl *Constructor,
2573                                  QualType Ty,
2574                                  SourceLocation TyBeginLoc,
2575                                  MultiExprArg Args,
2576                                  SourceLocation RParenLoc) {
2577  CXXTemporaryObjectExpr *E
2578    = new (Context) CXXTemporaryObjectExpr(Context, Constructor, Ty, TyBeginLoc,
2579                                           (Expr **)Args.get(),
2580                                           Args.size(), RParenLoc);
2581
2582  ExprOwningPtr<CXXTemporaryObjectExpr> Temp(this, E);
2583
2584    // Default arguments must be added to constructor call expression.
2585  FunctionDecl *FDecl = cast<FunctionDecl>(Constructor);
2586  unsigned NumArgsInProto = FDecl->param_size();
2587  for (unsigned j = Args.size(); j != NumArgsInProto; j++) {
2588    ParmVarDecl *Param = FDecl->getParamDecl(j);
2589
2590    OwningExprResult ArgExpr = BuildCXXDefaultArgExpr(TyBeginLoc, FDecl, Param);
2591    if (ArgExpr.isInvalid())
2592      return ExprError();
2593
2594    Temp->setArg(j, ArgExpr.takeAs<Expr>());
2595  }
2596
2597  Args.release();
2598  return move(Temp);
2599}
2600
2601
2602bool Sema::InitializeVarWithConstructor(VarDecl *VD,
2603                                        CXXConstructorDecl *Constructor,
2604                                        QualType DeclInitType,
2605                                        Expr **Exprs, unsigned NumExprs) {
2606  OwningExprResult TempResult = BuildCXXConstructExpr(DeclInitType, Constructor,
2607                                                      Exprs, NumExprs);
2608  if (TempResult.isInvalid())
2609    return true;
2610
2611  Expr *Temp = TempResult.takeAs<Expr>();
2612  MarkDeclarationReferenced(VD->getLocation(), Constructor);
2613  Temp = MaybeCreateCXXExprWithTemporaries(Temp, /*DestroyTemps=*/true);
2614  VD->setInit(Context, Temp);
2615
2616  return false;
2617}
2618
2619void Sema::FinalizeVarWithDestructor(VarDecl *VD, QualType DeclInitType)
2620{
2621  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(
2622                                  DeclInitType->getAs<RecordType>()->getDecl());
2623  if (!ClassDecl->hasTrivialDestructor())
2624    if (CXXDestructorDecl *Destructor =
2625        const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context)))
2626      MarkDeclarationReferenced(VD->getLocation(), Destructor);
2627}
2628
2629/// AddCXXDirectInitializerToDecl - This action is called immediately after
2630/// ActOnDeclarator, when a C++ direct initializer is present.
2631/// e.g: "int x(1);"
2632void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
2633                                         SourceLocation LParenLoc,
2634                                         MultiExprArg Exprs,
2635                                         SourceLocation *CommaLocs,
2636                                         SourceLocation RParenLoc) {
2637  unsigned NumExprs = Exprs.size();
2638  assert(NumExprs != 0 && Exprs.get() && "missing expressions");
2639  Decl *RealDecl = Dcl.getAs<Decl>();
2640
2641  // If there is no declaration, there was an error parsing it.  Just ignore
2642  // the initializer.
2643  if (RealDecl == 0)
2644    return;
2645
2646  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2647  if (!VDecl) {
2648    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2649    RealDecl->setInvalidDecl();
2650    return;
2651  }
2652
2653  // We will represent direct-initialization similarly to copy-initialization:
2654  //    int x(1);  -as-> int x = 1;
2655  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
2656  //
2657  // Clients that want to distinguish between the two forms, can check for
2658  // direct initializer using VarDecl::hasCXXDirectInitializer().
2659  // A major benefit is that clients that don't particularly care about which
2660  // exactly form was it (like the CodeGen) can handle both cases without
2661  // special case code.
2662
2663  // If either the declaration has a dependent type or if any of the expressions
2664  // is type-dependent, we represent the initialization via a ParenListExpr for
2665  // later use during template instantiation.
2666  if (VDecl->getType()->isDependentType() ||
2667      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
2668    // Let clients know that initialization was done with a direct initializer.
2669    VDecl->setCXXDirectInitializer(true);
2670
2671    // Store the initialization expressions as a ParenListExpr.
2672    unsigned NumExprs = Exprs.size();
2673    VDecl->setInit(Context,
2674                   new (Context) ParenListExpr(Context, LParenLoc,
2675                                               (Expr **)Exprs.release(),
2676                                               NumExprs, RParenLoc));
2677    return;
2678  }
2679
2680
2681  // C++ 8.5p11:
2682  // The form of initialization (using parentheses or '=') is generally
2683  // insignificant, but does matter when the entity being initialized has a
2684  // class type.
2685  QualType DeclInitType = VDecl->getType();
2686  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
2687    DeclInitType = Array->getElementType();
2688
2689  // FIXME: This isn't the right place to complete the type.
2690  if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2691                          diag::err_typecheck_decl_incomplete_type)) {
2692    VDecl->setInvalidDecl();
2693    return;
2694  }
2695
2696  if (VDecl->getType()->isRecordType()) {
2697    CXXConstructorDecl *Constructor
2698      = PerformInitializationByConstructor(DeclInitType,
2699                                           (Expr **)Exprs.get(), NumExprs,
2700                                           VDecl->getLocation(),
2701                                           SourceRange(VDecl->getLocation(),
2702                                                       RParenLoc),
2703                                           VDecl->getDeclName(),
2704                                           IK_Direct);
2705    if (!Constructor)
2706      RealDecl->setInvalidDecl();
2707    else {
2708      VDecl->setCXXDirectInitializer(true);
2709      if (InitializeVarWithConstructor(VDecl, Constructor, DeclInitType,
2710                                       (Expr**)Exprs.release(), NumExprs))
2711        RealDecl->setInvalidDecl();
2712      FinalizeVarWithDestructor(VDecl, DeclInitType);
2713    }
2714    return;
2715  }
2716
2717  if (NumExprs > 1) {
2718    Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg)
2719      << SourceRange(VDecl->getLocation(), RParenLoc);
2720    RealDecl->setInvalidDecl();
2721    return;
2722  }
2723
2724  // Let clients know that initialization was done with a direct initializer.
2725  VDecl->setCXXDirectInitializer(true);
2726
2727  assert(NumExprs == 1 && "Expected 1 expression");
2728  // Set the init expression, handles conversions.
2729  AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]),
2730                       /*DirectInit=*/true);
2731}
2732
2733/// PerformInitializationByConstructor - Perform initialization by
2734/// constructor (C++ [dcl.init]p14), which may occur as part of
2735/// direct-initialization or copy-initialization. We are initializing
2736/// an object of type @p ClassType with the given arguments @p
2737/// Args. @p Loc is the location in the source code where the
2738/// initializer occurs (e.g., a declaration, member initializer,
2739/// functional cast, etc.) while @p Range covers the whole
2740/// initialization. @p InitEntity is the entity being initialized,
2741/// which may by the name of a declaration or a type. @p Kind is the
2742/// kind of initialization we're performing, which affects whether
2743/// explicit constructors will be considered. When successful, returns
2744/// the constructor that will be used to perform the initialization;
2745/// when the initialization fails, emits a diagnostic and returns
2746/// null.
2747CXXConstructorDecl *
2748Sema::PerformInitializationByConstructor(QualType ClassType,
2749                                         Expr **Args, unsigned NumArgs,
2750                                         SourceLocation Loc, SourceRange Range,
2751                                         DeclarationName InitEntity,
2752                                         InitializationKind Kind) {
2753  const RecordType *ClassRec = ClassType->getAs<RecordType>();
2754  assert(ClassRec && "Can only initialize a class type here");
2755
2756  // C++ [dcl.init]p14:
2757  //
2758  //   If the initialization is direct-initialization, or if it is
2759  //   copy-initialization where the cv-unqualified version of the
2760  //   source type is the same class as, or a derived class of, the
2761  //   class of the destination, constructors are considered. The
2762  //   applicable constructors are enumerated (13.3.1.3), and the
2763  //   best one is chosen through overload resolution (13.3). The
2764  //   constructor so selected is called to initialize the object,
2765  //   with the initializer expression(s) as its argument(s). If no
2766  //   constructor applies, or the overload resolution is ambiguous,
2767  //   the initialization is ill-formed.
2768  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
2769  OverloadCandidateSet CandidateSet;
2770
2771  // Add constructors to the overload set.
2772  DeclarationName ConstructorName
2773    = Context.DeclarationNames.getCXXConstructorName(
2774                       Context.getCanonicalType(ClassType.getUnqualifiedType()));
2775  DeclContext::lookup_const_iterator Con, ConEnd;
2776  for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName);
2777       Con != ConEnd; ++Con) {
2778    // Find the constructor (which may be a template).
2779    CXXConstructorDecl *Constructor = 0;
2780    FunctionTemplateDecl *ConstructorTmpl= dyn_cast<FunctionTemplateDecl>(*Con);
2781    if (ConstructorTmpl)
2782      Constructor
2783        = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
2784    else
2785      Constructor = cast<CXXConstructorDecl>(*Con);
2786
2787    if ((Kind == IK_Direct) ||
2788        (Kind == IK_Copy &&
2789         Constructor->isConvertingConstructor(/*AllowExplicit=*/false)) ||
2790        (Kind == IK_Default && Constructor->isDefaultConstructor())) {
2791      if (ConstructorTmpl)
2792        AddTemplateOverloadCandidate(ConstructorTmpl, false, 0, 0,
2793                                     Args, NumArgs, CandidateSet);
2794      else
2795        AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet);
2796    }
2797  }
2798
2799  // FIXME: When we decide not to synthesize the implicitly-declared
2800  // constructors, we'll need to make them appear here.
2801
2802  OverloadCandidateSet::iterator Best;
2803  switch (BestViableFunction(CandidateSet, Loc, Best)) {
2804  case OR_Success:
2805    // We found a constructor. Return it.
2806    return cast<CXXConstructorDecl>(Best->Function);
2807
2808  case OR_No_Viable_Function:
2809    if (InitEntity)
2810      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2811        << InitEntity << Range;
2812    else
2813      Diag(Loc, diag::err_ovl_no_viable_function_in_init)
2814        << ClassType << Range;
2815    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false);
2816    return 0;
2817
2818  case OR_Ambiguous:
2819    if (InitEntity)
2820      Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range;
2821    else
2822      Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range;
2823    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2824    return 0;
2825
2826  case OR_Deleted:
2827    if (InitEntity)
2828      Diag(Loc, diag::err_ovl_deleted_init)
2829        << Best->Function->isDeleted()
2830        << InitEntity << Range;
2831    else
2832      Diag(Loc, diag::err_ovl_deleted_init)
2833        << Best->Function->isDeleted()
2834        << InitEntity << Range;
2835    PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true);
2836    return 0;
2837  }
2838
2839  return 0;
2840}
2841
2842/// CompareReferenceRelationship - Compare the two types T1 and T2 to
2843/// determine whether they are reference-related,
2844/// reference-compatible, reference-compatible with added
2845/// qualification, or incompatible, for use in C++ initialization by
2846/// reference (C++ [dcl.ref.init]p4). Neither type can be a reference
2847/// type, and the first type (T1) is the pointee type of the reference
2848/// type being initialized.
2849Sema::ReferenceCompareResult
2850Sema::CompareReferenceRelationship(QualType T1, QualType T2,
2851                                   bool& DerivedToBase) {
2852  assert(!T1->isReferenceType() &&
2853    "T1 must be the pointee type of the reference type");
2854  assert(!T2->isReferenceType() && "T2 cannot be a reference type");
2855
2856  T1 = Context.getCanonicalType(T1);
2857  T2 = Context.getCanonicalType(T2);
2858  QualType UnqualT1 = T1.getUnqualifiedType();
2859  QualType UnqualT2 = T2.getUnqualifiedType();
2860
2861  // C++ [dcl.init.ref]p4:
2862  //   Given types "cv1 T1" and "cv2 T2," "cv1 T1" is
2863  //   reference-related to "cv2 T2" if T1 is the same type as T2, or
2864  //   T1 is a base class of T2.
2865  if (UnqualT1 == UnqualT2)
2866    DerivedToBase = false;
2867  else if (IsDerivedFrom(UnqualT2, UnqualT1))
2868    DerivedToBase = true;
2869  else
2870    return Ref_Incompatible;
2871
2872  // At this point, we know that T1 and T2 are reference-related (at
2873  // least).
2874
2875  // C++ [dcl.init.ref]p4:
2876  //   "cv1 T1" is reference-compatible with "cv2 T2" if T1 is
2877  //   reference-related to T2 and cv1 is the same cv-qualification
2878  //   as, or greater cv-qualification than, cv2. For purposes of
2879  //   overload resolution, cases for which cv1 is greater
2880  //   cv-qualification than cv2 are identified as
2881  //   reference-compatible with added qualification (see 13.3.3.2).
2882  if (T1.getCVRQualifiers() == T2.getCVRQualifiers())
2883    return Ref_Compatible;
2884  else if (T1.isMoreQualifiedThan(T2))
2885    return Ref_Compatible_With_Added_Qualification;
2886  else
2887    return Ref_Related;
2888}
2889
2890/// CheckReferenceInit - Check the initialization of a reference
2891/// variable with the given initializer (C++ [dcl.init.ref]). Init is
2892/// the initializer (either a simple initializer or an initializer
2893/// list), and DeclType is the type of the declaration. When ICS is
2894/// non-null, this routine will compute the implicit conversion
2895/// sequence according to C++ [over.ics.ref] and will not produce any
2896/// diagnostics; when ICS is null, it will emit diagnostics when any
2897/// errors are found. Either way, a return value of true indicates
2898/// that there was a failure, a return value of false indicates that
2899/// the reference initialization succeeded.
2900///
2901/// When @p SuppressUserConversions, user-defined conversions are
2902/// suppressed.
2903/// When @p AllowExplicit, we also permit explicit user-defined
2904/// conversion functions.
2905/// When @p ForceRValue, we unconditionally treat the initializer as an rvalue.
2906bool
2907Sema::CheckReferenceInit(Expr *&Init, QualType DeclType,
2908                         bool SuppressUserConversions,
2909                         bool AllowExplicit, bool ForceRValue,
2910                         ImplicitConversionSequence *ICS) {
2911  assert(DeclType->isReferenceType() && "Reference init needs a reference");
2912
2913  QualType T1 = DeclType->getAs<ReferenceType>()->getPointeeType();
2914  QualType T2 = Init->getType();
2915
2916  // If the initializer is the address of an overloaded function, try
2917  // to resolve the overloaded function. If all goes well, T2 is the
2918  // type of the resulting function.
2919  if (Context.getCanonicalType(T2) == Context.OverloadTy) {
2920    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType,
2921                                                          ICS != 0);
2922    if (Fn) {
2923      // Since we're performing this reference-initialization for
2924      // real, update the initializer with the resulting function.
2925      if (!ICS) {
2926        if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin()))
2927          return true;
2928
2929        FixOverloadedFunctionReference(Init, Fn);
2930      }
2931
2932      T2 = Fn->getType();
2933    }
2934  }
2935
2936  // Compute some basic properties of the types and the initializer.
2937  bool isRValRef = DeclType->isRValueReferenceType();
2938  bool DerivedToBase = false;
2939  Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression :
2940                                                  Init->isLvalue(Context);
2941  ReferenceCompareResult RefRelationship
2942    = CompareReferenceRelationship(T1, T2, DerivedToBase);
2943
2944  // Most paths end in a failed conversion.
2945  if (ICS)
2946    ICS->ConversionKind = ImplicitConversionSequence::BadConversion;
2947
2948  // C++ [dcl.init.ref]p5:
2949  //   A reference to type "cv1 T1" is initialized by an expression
2950  //   of type "cv2 T2" as follows:
2951
2952  //     -- If the initializer expression
2953
2954  // Rvalue references cannot bind to lvalues (N2812).
2955  // There is absolutely no situation where they can. In particular, note that
2956  // this is ill-formed, even if B has a user-defined conversion to A&&:
2957  //   B b;
2958  //   A&& r = b;
2959  if (isRValRef && InitLvalue == Expr::LV_Valid) {
2960    if (!ICS)
2961      Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref)
2962        << Init->getSourceRange();
2963    return true;
2964  }
2965
2966  bool BindsDirectly = false;
2967  //       -- is an lvalue (but is not a bit-field), and "cv1 T1" is
2968  //          reference-compatible with "cv2 T2," or
2969  //
2970  // Note that the bit-field check is skipped if we are just computing
2971  // the implicit conversion sequence (C++ [over.best.ics]p2).
2972  if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) &&
2973      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
2974    BindsDirectly = true;
2975
2976    if (ICS) {
2977      // C++ [over.ics.ref]p1:
2978      //   When a parameter of reference type binds directly (8.5.3)
2979      //   to an argument expression, the implicit conversion sequence
2980      //   is the identity conversion, unless the argument expression
2981      //   has a type that is a derived class of the parameter type,
2982      //   in which case the implicit conversion sequence is a
2983      //   derived-to-base Conversion (13.3.3.1).
2984      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
2985      ICS->Standard.First = ICK_Identity;
2986      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
2987      ICS->Standard.Third = ICK_Identity;
2988      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
2989      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
2990      ICS->Standard.ReferenceBinding = true;
2991      ICS->Standard.DirectBinding = true;
2992      ICS->Standard.RRefBinding = false;
2993      ICS->Standard.CopyConstructor = 0;
2994
2995      // Nothing more to do: the inaccessibility/ambiguity check for
2996      // derived-to-base conversions is suppressed when we're
2997      // computing the implicit conversion sequence (C++
2998      // [over.best.ics]p2).
2999      return false;
3000    } else {
3001      // Perform the conversion.
3002      // FIXME: Binding to a subobject of the lvalue is going to require more
3003      // AST annotation than this.
3004      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3005    }
3006  }
3007
3008  //       -- has a class type (i.e., T2 is a class type) and can be
3009  //          implicitly converted to an lvalue of type "cv3 T3,"
3010  //          where "cv1 T1" is reference-compatible with "cv3 T3"
3011  //          92) (this conversion is selected by enumerating the
3012  //          applicable conversion functions (13.3.1.6) and choosing
3013  //          the best one through overload resolution (13.3)),
3014  if (!isRValRef && !SuppressUserConversions && T2->isRecordType() &&
3015      !RequireCompleteType(SourceLocation(), T2, 0)) {
3016    // FIXME: Look for conversions in base classes!
3017    CXXRecordDecl *T2RecordDecl
3018      = dyn_cast<CXXRecordDecl>(T2->getAs<RecordType>()->getDecl());
3019
3020    OverloadCandidateSet CandidateSet;
3021    OverloadedFunctionDecl *Conversions
3022      = T2RecordDecl->getConversionFunctions();
3023    for (OverloadedFunctionDecl::function_iterator Func
3024           = Conversions->function_begin();
3025         Func != Conversions->function_end(); ++Func) {
3026      FunctionTemplateDecl *ConvTemplate
3027        = dyn_cast<FunctionTemplateDecl>(*Func);
3028      CXXConversionDecl *Conv;
3029      if (ConvTemplate)
3030        Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3031      else
3032        Conv = cast<CXXConversionDecl>(*Func);
3033
3034      // If the conversion function doesn't return a reference type,
3035      // it can't be considered for this conversion.
3036      if (Conv->getConversionType()->isLValueReferenceType() &&
3037          (AllowExplicit || !Conv->isExplicit())) {
3038        if (ConvTemplate)
3039          AddTemplateConversionCandidate(ConvTemplate, Init, DeclType,
3040                                         CandidateSet);
3041        else
3042          AddConversionCandidate(Conv, Init, DeclType, CandidateSet);
3043      }
3044    }
3045
3046    OverloadCandidateSet::iterator Best;
3047    switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) {
3048    case OR_Success:
3049      // This is a direct binding.
3050      BindsDirectly = true;
3051
3052      if (ICS) {
3053        // C++ [over.ics.ref]p1:
3054        //
3055        //   [...] If the parameter binds directly to the result of
3056        //   applying a conversion function to the argument
3057        //   expression, the implicit conversion sequence is a
3058        //   user-defined conversion sequence (13.3.3.1.2), with the
3059        //   second standard conversion sequence either an identity
3060        //   conversion or, if the conversion function returns an
3061        //   entity of a type that is a derived class of the parameter
3062        //   type, a derived-to-base Conversion.
3063        ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion;
3064        ICS->UserDefined.Before = Best->Conversions[0].Standard;
3065        ICS->UserDefined.After = Best->FinalConversion;
3066        ICS->UserDefined.ConversionFunction = Best->Function;
3067        assert(ICS->UserDefined.After.ReferenceBinding &&
3068               ICS->UserDefined.After.DirectBinding &&
3069               "Expected a direct reference binding!");
3070        return false;
3071      } else {
3072        // Perform the conversion.
3073        // FIXME: Binding to a subobject of the lvalue is going to require more
3074        // AST annotation than this.
3075        ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/true);
3076      }
3077      break;
3078
3079    case OR_Ambiguous:
3080      assert(false && "Ambiguous reference binding conversions not implemented.");
3081      return true;
3082
3083    case OR_No_Viable_Function:
3084    case OR_Deleted:
3085      // There was no suitable conversion, or we found a deleted
3086      // conversion; continue with other checks.
3087      break;
3088    }
3089  }
3090
3091  if (BindsDirectly) {
3092    // C++ [dcl.init.ref]p4:
3093    //   [...] In all cases where the reference-related or
3094    //   reference-compatible relationship of two types is used to
3095    //   establish the validity of a reference binding, and T1 is a
3096    //   base class of T2, a program that necessitates such a binding
3097    //   is ill-formed if T1 is an inaccessible (clause 11) or
3098    //   ambiguous (10.2) base class of T2.
3099    //
3100    // Note that we only check this condition when we're allowed to
3101    // complain about errors, because we should not be checking for
3102    // ambiguity (or inaccessibility) unless the reference binding
3103    // actually happens.
3104    if (DerivedToBase)
3105      return CheckDerivedToBaseConversion(T2, T1,
3106                                          Init->getSourceRange().getBegin(),
3107                                          Init->getSourceRange());
3108    else
3109      return false;
3110  }
3111
3112  //     -- Otherwise, the reference shall be to a non-volatile const
3113  //        type (i.e., cv1 shall be const), or the reference shall be an
3114  //        rvalue reference and the initializer expression shall be an rvalue.
3115  if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) {
3116    if (!ICS)
3117      Diag(Init->getSourceRange().getBegin(),
3118           diag::err_not_reference_to_const_init)
3119        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3120        << T2 << Init->getSourceRange();
3121    return true;
3122  }
3123
3124  //       -- If the initializer expression is an rvalue, with T2 a
3125  //          class type, and "cv1 T1" is reference-compatible with
3126  //          "cv2 T2," the reference is bound in one of the
3127  //          following ways (the choice is implementation-defined):
3128  //
3129  //          -- The reference is bound to the object represented by
3130  //             the rvalue (see 3.10) or to a sub-object within that
3131  //             object.
3132  //
3133  //          -- A temporary of type "cv1 T2" [sic] is created, and
3134  //             a constructor is called to copy the entire rvalue
3135  //             object into the temporary. The reference is bound to
3136  //             the temporary or to a sub-object within the
3137  //             temporary.
3138  //
3139  //          The constructor that would be used to make the copy
3140  //          shall be callable whether or not the copy is actually
3141  //          done.
3142  //
3143  // Note that C++0x [dcl.init.ref]p5 takes away this implementation
3144  // freedom, so we will always take the first option and never build
3145  // a temporary in this case. FIXME: We will, however, have to check
3146  // for the presence of a copy constructor in C++98/03 mode.
3147  if (InitLvalue != Expr::LV_Valid && T2->isRecordType() &&
3148      RefRelationship >= Ref_Compatible_With_Added_Qualification) {
3149    if (ICS) {
3150      ICS->ConversionKind = ImplicitConversionSequence::StandardConversion;
3151      ICS->Standard.First = ICK_Identity;
3152      ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity;
3153      ICS->Standard.Third = ICK_Identity;
3154      ICS->Standard.FromTypePtr = T2.getAsOpaquePtr();
3155      ICS->Standard.ToTypePtr = T1.getAsOpaquePtr();
3156      ICS->Standard.ReferenceBinding = true;
3157      ICS->Standard.DirectBinding = false;
3158      ICS->Standard.RRefBinding = isRValRef;
3159      ICS->Standard.CopyConstructor = 0;
3160    } else {
3161      // FIXME: Binding to a subobject of the rvalue is going to require more
3162      // AST annotation than this.
3163      ImpCastExprToType(Init, T1, CastExpr::CK_Unknown, /*isLvalue=*/false);
3164    }
3165    return false;
3166  }
3167
3168  //       -- Otherwise, a temporary of type "cv1 T1" is created and
3169  //          initialized from the initializer expression using the
3170  //          rules for a non-reference copy initialization (8.5). The
3171  //          reference is then bound to the temporary. If T1 is
3172  //          reference-related to T2, cv1 must be the same
3173  //          cv-qualification as, or greater cv-qualification than,
3174  //          cv2; otherwise, the program is ill-formed.
3175  if (RefRelationship == Ref_Related) {
3176    // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then
3177    // we would be reference-compatible or reference-compatible with
3178    // added qualification. But that wasn't the case, so the reference
3179    // initialization fails.
3180    if (!ICS)
3181      Diag(Init->getSourceRange().getBegin(),
3182           diag::err_reference_init_drops_quals)
3183        << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value")
3184        << T2 << Init->getSourceRange();
3185    return true;
3186  }
3187
3188  // If at least one of the types is a class type, the types are not
3189  // related, and we aren't allowed any user conversions, the
3190  // reference binding fails. This case is important for breaking
3191  // recursion, since TryImplicitConversion below will attempt to
3192  // create a temporary through the use of a copy constructor.
3193  if (SuppressUserConversions && RefRelationship == Ref_Incompatible &&
3194      (T1->isRecordType() || T2->isRecordType())) {
3195    if (!ICS)
3196      Diag(Init->getSourceRange().getBegin(),
3197           diag::err_typecheck_convert_incompatible)
3198        << DeclType << Init->getType() << "initializing" << Init->getSourceRange();
3199    return true;
3200  }
3201
3202  // Actually try to convert the initializer to T1.
3203  if (ICS) {
3204    // C++ [over.ics.ref]p2:
3205    //
3206    //   When a parameter of reference type is not bound directly to
3207    //   an argument expression, the conversion sequence is the one
3208    //   required to convert the argument expression to the
3209    //   underlying type of the reference according to
3210    //   13.3.3.1. Conceptually, this conversion sequence corresponds
3211    //   to copy-initializing a temporary of the underlying type with
3212    //   the argument expression. Any difference in top-level
3213    //   cv-qualification is subsumed by the initialization itself
3214    //   and does not constitute a conversion.
3215    *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions,
3216                                 /*AllowExplicit=*/false,
3217                                 /*ForceRValue=*/false,
3218                                 /*InOverloadResolution=*/false);
3219
3220    // Of course, that's still a reference binding.
3221    if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) {
3222      ICS->Standard.ReferenceBinding = true;
3223      ICS->Standard.RRefBinding = isRValRef;
3224    } else if(ICS->ConversionKind ==
3225              ImplicitConversionSequence::UserDefinedConversion) {
3226      ICS->UserDefined.After.ReferenceBinding = true;
3227      ICS->UserDefined.After.RRefBinding = isRValRef;
3228    }
3229    return ICS->ConversionKind == ImplicitConversionSequence::BadConversion;
3230  } else {
3231    return PerformImplicitConversion(Init, T1, "initializing");
3232  }
3233}
3234
3235/// CheckOverloadedOperatorDeclaration - Check whether the declaration
3236/// of this overloaded operator is well-formed. If so, returns false;
3237/// otherwise, emits appropriate diagnostics and returns true.
3238bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
3239  assert(FnDecl && FnDecl->isOverloadedOperator() &&
3240         "Expected an overloaded operator declaration");
3241
3242  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
3243
3244  // C++ [over.oper]p5:
3245  //   The allocation and deallocation functions, operator new,
3246  //   operator new[], operator delete and operator delete[], are
3247  //   described completely in 3.7.3. The attributes and restrictions
3248  //   found in the rest of this subclause do not apply to them unless
3249  //   explicitly stated in 3.7.3.
3250  // FIXME: Write a separate routine for checking this. For now, just allow it.
3251  if (Op == OO_New || Op == OO_Array_New ||
3252      Op == OO_Delete || Op == OO_Array_Delete)
3253    return false;
3254
3255  // C++ [over.oper]p6:
3256  //   An operator function shall either be a non-static member
3257  //   function or be a non-member function and have at least one
3258  //   parameter whose type is a class, a reference to a class, an
3259  //   enumeration, or a reference to an enumeration.
3260  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
3261    if (MethodDecl->isStatic())
3262      return Diag(FnDecl->getLocation(),
3263                  diag::err_operator_overload_static) << FnDecl->getDeclName();
3264  } else {
3265    bool ClassOrEnumParam = false;
3266    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
3267                                   ParamEnd = FnDecl->param_end();
3268         Param != ParamEnd; ++Param) {
3269      QualType ParamType = (*Param)->getType().getNonReferenceType();
3270      if (ParamType->isDependentType() || ParamType->isRecordType() ||
3271          ParamType->isEnumeralType()) {
3272        ClassOrEnumParam = true;
3273        break;
3274      }
3275    }
3276
3277    if (!ClassOrEnumParam)
3278      return Diag(FnDecl->getLocation(),
3279                  diag::err_operator_overload_needs_class_or_enum)
3280        << FnDecl->getDeclName();
3281  }
3282
3283  // C++ [over.oper]p8:
3284  //   An operator function cannot have default arguments (8.3.6),
3285  //   except where explicitly stated below.
3286  //
3287  // Only the function-call operator allows default arguments
3288  // (C++ [over.call]p1).
3289  if (Op != OO_Call) {
3290    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
3291         Param != FnDecl->param_end(); ++Param) {
3292      if ((*Param)->hasUnparsedDefaultArg())
3293        return Diag((*Param)->getLocation(),
3294                    diag::err_operator_overload_default_arg)
3295          << FnDecl->getDeclName();
3296      else if (Expr *DefArg = (*Param)->getDefaultArg())
3297        return Diag((*Param)->getLocation(),
3298                    diag::err_operator_overload_default_arg)
3299          << FnDecl->getDeclName() << DefArg->getSourceRange();
3300    }
3301  }
3302
3303  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
3304    { false, false, false }
3305#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
3306    , { Unary, Binary, MemberOnly }
3307#include "clang/Basic/OperatorKinds.def"
3308  };
3309
3310  bool CanBeUnaryOperator = OperatorUses[Op][0];
3311  bool CanBeBinaryOperator = OperatorUses[Op][1];
3312  bool MustBeMemberOperator = OperatorUses[Op][2];
3313
3314  // C++ [over.oper]p8:
3315  //   [...] Operator functions cannot have more or fewer parameters
3316  //   than the number required for the corresponding operator, as
3317  //   described in the rest of this subclause.
3318  unsigned NumParams = FnDecl->getNumParams()
3319                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
3320  if (Op != OO_Call &&
3321      ((NumParams == 1 && !CanBeUnaryOperator) ||
3322       (NumParams == 2 && !CanBeBinaryOperator) ||
3323       (NumParams < 1) || (NumParams > 2))) {
3324    // We have the wrong number of parameters.
3325    unsigned ErrorKind;
3326    if (CanBeUnaryOperator && CanBeBinaryOperator) {
3327      ErrorKind = 2;  // 2 -> unary or binary.
3328    } else if (CanBeUnaryOperator) {
3329      ErrorKind = 0;  // 0 -> unary
3330    } else {
3331      assert(CanBeBinaryOperator &&
3332             "All non-call overloaded operators are unary or binary!");
3333      ErrorKind = 1;  // 1 -> binary
3334    }
3335
3336    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
3337      << FnDecl->getDeclName() << NumParams << ErrorKind;
3338  }
3339
3340  // Overloaded operators other than operator() cannot be variadic.
3341  if (Op != OO_Call &&
3342      FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) {
3343    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
3344      << FnDecl->getDeclName();
3345  }
3346
3347  // Some operators must be non-static member functions.
3348  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
3349    return Diag(FnDecl->getLocation(),
3350                diag::err_operator_overload_must_be_member)
3351      << FnDecl->getDeclName();
3352  }
3353
3354  // C++ [over.inc]p1:
3355  //   The user-defined function called operator++ implements the
3356  //   prefix and postfix ++ operator. If this function is a member
3357  //   function with no parameters, or a non-member function with one
3358  //   parameter of class or enumeration type, it defines the prefix
3359  //   increment operator ++ for objects of that type. If the function
3360  //   is a member function with one parameter (which shall be of type
3361  //   int) or a non-member function with two parameters (the second
3362  //   of which shall be of type int), it defines the postfix
3363  //   increment operator ++ for objects of that type.
3364  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
3365    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
3366    bool ParamIsInt = false;
3367    if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType())
3368      ParamIsInt = BT->getKind() == BuiltinType::Int;
3369
3370    if (!ParamIsInt)
3371      return Diag(LastParam->getLocation(),
3372                  diag::err_operator_overload_post_incdec_must_be_int)
3373        << LastParam->getType() << (Op == OO_MinusMinus);
3374  }
3375
3376  // Notify the class if it got an assignment operator.
3377  if (Op == OO_Equal) {
3378    // Would have returned earlier otherwise.
3379    assert(isa<CXXMethodDecl>(FnDecl) &&
3380      "Overloaded = not member, but not filtered.");
3381    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
3382    Method->setCopyAssignment(true);
3383    Method->getParent()->addedAssignmentOperator(Context, Method);
3384  }
3385
3386  return false;
3387}
3388
3389/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
3390/// linkage specification, including the language and (if present)
3391/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
3392/// the location of the language string literal, which is provided
3393/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
3394/// the '{' brace. Otherwise, this linkage specification does not
3395/// have any braces.
3396Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
3397                                                     SourceLocation ExternLoc,
3398                                                     SourceLocation LangLoc,
3399                                                     const char *Lang,
3400                                                     unsigned StrSize,
3401                                                     SourceLocation LBraceLoc) {
3402  LinkageSpecDecl::LanguageIDs Language;
3403  if (strncmp(Lang, "\"C\"", StrSize) == 0)
3404    Language = LinkageSpecDecl::lang_c;
3405  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
3406    Language = LinkageSpecDecl::lang_cxx;
3407  else {
3408    Diag(LangLoc, diag::err_bad_language);
3409    return DeclPtrTy();
3410  }
3411
3412  // FIXME: Add all the various semantics of linkage specifications
3413
3414  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
3415                                               LangLoc, Language,
3416                                               LBraceLoc.isValid());
3417  CurContext->addDecl(D);
3418  PushDeclContext(S, D);
3419  return DeclPtrTy::make(D);
3420}
3421
3422/// ActOnFinishLinkageSpecification - Completely the definition of
3423/// the C++ linkage specification LinkageSpec. If RBraceLoc is
3424/// valid, it's the position of the closing '}' brace in a linkage
3425/// specification that uses braces.
3426Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
3427                                                      DeclPtrTy LinkageSpec,
3428                                                      SourceLocation RBraceLoc) {
3429  if (LinkageSpec)
3430    PopDeclContext();
3431  return LinkageSpec;
3432}
3433
3434/// \brief Perform semantic analysis for the variable declaration that
3435/// occurs within a C++ catch clause, returning the newly-created
3436/// variable.
3437VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
3438                                         DeclaratorInfo *DInfo,
3439                                         IdentifierInfo *Name,
3440                                         SourceLocation Loc,
3441                                         SourceRange Range) {
3442  bool Invalid = false;
3443
3444  // Arrays and functions decay.
3445  if (ExDeclType->isArrayType())
3446    ExDeclType = Context.getArrayDecayedType(ExDeclType);
3447  else if (ExDeclType->isFunctionType())
3448    ExDeclType = Context.getPointerType(ExDeclType);
3449
3450  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
3451  // The exception-declaration shall not denote a pointer or reference to an
3452  // incomplete type, other than [cv] void*.
3453  // N2844 forbids rvalue references.
3454  if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
3455    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
3456    Invalid = true;
3457  }
3458
3459  QualType BaseType = ExDeclType;
3460  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
3461  unsigned DK = diag::err_catch_incomplete;
3462  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
3463    BaseType = Ptr->getPointeeType();
3464    Mode = 1;
3465    DK = diag::err_catch_incomplete_ptr;
3466  } else if(const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
3467    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
3468    BaseType = Ref->getPointeeType();
3469    Mode = 2;
3470    DK = diag::err_catch_incomplete_ref;
3471  }
3472  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
3473      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
3474    Invalid = true;
3475
3476  if (!Invalid && !ExDeclType->isDependentType() &&
3477      RequireNonAbstractType(Loc, ExDeclType,
3478                             diag::err_abstract_type_in_decl,
3479                             AbstractVariableType))
3480    Invalid = true;
3481
3482  // FIXME: Need to test for ability to copy-construct and destroy the
3483  // exception variable.
3484
3485  // FIXME: Need to check for abstract classes.
3486
3487  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
3488                                    Name, ExDeclType, DInfo, VarDecl::None);
3489
3490  if (Invalid)
3491    ExDecl->setInvalidDecl();
3492
3493  return ExDecl;
3494}
3495
3496/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
3497/// handler.
3498Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
3499  DeclaratorInfo *DInfo = 0;
3500  QualType ExDeclType = GetTypeForDeclarator(D, S, &DInfo);
3501
3502  bool Invalid = D.isInvalidType();
3503  IdentifierInfo *II = D.getIdentifier();
3504  if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3505    // The scope should be freshly made just for us. There is just no way
3506    // it contains any previous declaration.
3507    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
3508    if (PrevDecl->isTemplateParameter()) {
3509      // Maybe we will complain about the shadowed template parameter.
3510      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3511    }
3512  }
3513
3514  if (D.getCXXScopeSpec().isSet() && !Invalid) {
3515    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
3516      << D.getCXXScopeSpec().getRange();
3517    Invalid = true;
3518  }
3519
3520  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, DInfo,
3521                                              D.getIdentifier(),
3522                                              D.getIdentifierLoc(),
3523                                            D.getDeclSpec().getSourceRange());
3524
3525  if (Invalid)
3526    ExDecl->setInvalidDecl();
3527
3528  // Add the exception declaration into this scope.
3529  if (II)
3530    PushOnScopeChains(ExDecl, S);
3531  else
3532    CurContext->addDecl(ExDecl);
3533
3534  ProcessDeclAttributes(S, ExDecl, D);
3535  return DeclPtrTy::make(ExDecl);
3536}
3537
3538Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
3539                                                   ExprArg assertexpr,
3540                                                   ExprArg assertmessageexpr) {
3541  Expr *AssertExpr = (Expr *)assertexpr.get();
3542  StringLiteral *AssertMessage =
3543    cast<StringLiteral>((Expr *)assertmessageexpr.get());
3544
3545  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
3546    llvm::APSInt Value(32);
3547    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
3548      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
3549        AssertExpr->getSourceRange();
3550      return DeclPtrTy();
3551    }
3552
3553    if (Value == 0) {
3554      std::string str(AssertMessage->getStrData(),
3555                      AssertMessage->getByteLength());
3556      Diag(AssertLoc, diag::err_static_assert_failed)
3557        << str << AssertExpr->getSourceRange();
3558    }
3559  }
3560
3561  assertexpr.release();
3562  assertmessageexpr.release();
3563  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
3564                                        AssertExpr, AssertMessage);
3565
3566  CurContext->addDecl(Decl);
3567  return DeclPtrTy::make(Decl);
3568}
3569
3570Sema::DeclPtrTy Sema::ActOnFriendDecl(Scope *S,
3571                       llvm::PointerUnion<const DeclSpec*,Declarator*> DU,
3572                                      bool IsDefinition) {
3573  if (DU.is<Declarator*>())
3574    return ActOnFriendFunctionDecl(S, *DU.get<Declarator*>(), IsDefinition);
3575  else
3576    return ActOnFriendTypeDecl(S, *DU.get<const DeclSpec*>(), IsDefinition);
3577}
3578
3579Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S,
3580                                          const DeclSpec &DS,
3581                                          bool IsDefinition) {
3582  SourceLocation Loc = DS.getSourceRange().getBegin();
3583
3584  assert(DS.isFriendSpecified());
3585  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3586
3587  // Check to see if the decl spec was syntactically like "struct foo".
3588  RecordDecl *RD = NULL;
3589
3590  switch (DS.getTypeSpecType()) {
3591  case DeclSpec::TST_class:
3592  case DeclSpec::TST_struct:
3593  case DeclSpec::TST_union:
3594    RD = dyn_cast_or_null<CXXRecordDecl>((Decl*) DS.getTypeRep());
3595    if (!RD) return DeclPtrTy();
3596
3597    // The parser doesn't quite handle
3598    //   friend class A {}
3599    // as we'd like, because it might have been the (valid) prefix of
3600    //   friend class A {} foo();
3601    // So even in C++0x mode we don't want to
3602    IsDefinition |= RD->isDefinition();
3603    break;
3604
3605  default: break;
3606  }
3607
3608  FriendDecl::FriendUnion FU = RD;
3609
3610  // C++ [class.friend]p2:
3611  //   An elaborated-type-specifier shall be used in a friend declaration
3612  //   for a class.*
3613  //   * The class-key of the elaborated-type-specifier is required.
3614  // So if we didn't get a record decl above, we're invalid in C++98 mode.
3615  if (!RD) {
3616    bool invalid = false;
3617    QualType T = ConvertDeclSpecToType(DS, Loc, invalid);
3618    if (invalid) return DeclPtrTy();
3619
3620    if (const RecordType *RT = T->getAs<RecordType>()) {
3621      FU = RD = cast<CXXRecordDecl>(RT->getDecl());
3622
3623      // Untagged typenames are invalid prior to C++0x, but we can
3624      // suggest an easy fix which should work.
3625      if (!getLangOptions().CPlusPlus0x) {
3626        Diag(DS.getFriendSpecLoc(), diag::err_unelaborated_friend_type)
3627          << (RD->isUnion())
3628          << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
3629                                        RD->isUnion() ? " union" : " class");
3630        return DeclPtrTy();
3631      }
3632    }else if (!getLangOptions().CPlusPlus0x) {
3633      Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
3634          << DS.getSourceRange();
3635      return DeclPtrTy();
3636    }else {
3637      FU = T.getTypePtr();
3638    }
3639  }
3640
3641  assert(FU && "should have a friend decl/type by here!");
3642
3643  // C++ [class.friend]p2: A class shall not be defined inside
3644  //   a friend declaration.
3645  if (IsDefinition) {
3646    Diag(DS.getFriendSpecLoc(), diag::err_friend_decl_defines_class)
3647      << DS.getSourceRange();
3648    return DeclPtrTy();
3649  }
3650
3651  // C++98 [class.friend]p1: A friend of a class is a function
3652  //   or class that is not a member of the class . . .
3653  // But that's a silly restriction which nobody implements for
3654  // inner classes, and C++0x removes it anyway, so we only report
3655  // this (as a warning) if we're being pedantic.
3656  if (!getLangOptions().CPlusPlus0x) {
3657    assert(RD && "must have a record decl in C++98 mode");
3658    if (RD->getDeclContext() == CurContext)
3659      Diag(DS.getFriendSpecLoc(), diag::ext_friend_inner_class);
3660  }
3661
3662  FriendDecl *FD = FriendDecl::Create(Context, CurContext, Loc, FU,
3663                                      DS.getFriendSpecLoc());
3664  CurContext->addDecl(FD);
3665
3666  return DeclPtrTy::make(FD);
3667}
3668
3669Sema::DeclPtrTy Sema::ActOnFriendFunctionDecl(Scope *S,
3670                                              Declarator &D,
3671                                              bool IsDefinition) {
3672  const DeclSpec &DS = D.getDeclSpec();
3673
3674  assert(DS.isFriendSpecified());
3675  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
3676
3677  SourceLocation Loc = D.getIdentifierLoc();
3678  DeclaratorInfo *DInfo = 0;
3679  QualType T = GetTypeForDeclarator(D, S, &DInfo);
3680
3681  // C++ [class.friend]p1
3682  //   A friend of a class is a function or class....
3683  // Note that this sees through typedefs, which is intended.
3684  // It *doesn't* see through dependent types, which is correct
3685  // according to [temp.arg.type]p3:
3686  //   If a declaration acquires a function type through a
3687  //   type dependent on a template-parameter and this causes
3688  //   a declaration that does not use the syntactic form of a
3689  //   function declarator to have a function type, the program
3690  //   is ill-formed.
3691  if (!T->isFunctionType()) {
3692    Diag(Loc, diag::err_unexpected_friend);
3693
3694    // It might be worthwhile to try to recover by creating an
3695    // appropriate declaration.
3696    return DeclPtrTy();
3697  }
3698
3699  // C++ [namespace.memdef]p3
3700  //  - If a friend declaration in a non-local class first declares a
3701  //    class or function, the friend class or function is a member
3702  //    of the innermost enclosing namespace.
3703  //  - The name of the friend is not found by simple name lookup
3704  //    until a matching declaration is provided in that namespace
3705  //    scope (either before or after the class declaration granting
3706  //    friendship).
3707  //  - If a friend function is called, its name may be found by the
3708  //    name lookup that considers functions from namespaces and
3709  //    classes associated with the types of the function arguments.
3710  //  - When looking for a prior declaration of a class or a function
3711  //    declared as a friend, scopes outside the innermost enclosing
3712  //    namespace scope are not considered.
3713
3714  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
3715  DeclarationName Name = GetNameForDeclarator(D);
3716  assert(Name);
3717
3718  // The existing declaration we found.
3719  FunctionDecl *FD = NULL;
3720
3721  // The context we found the declaration in, or in which we should
3722  // create the declaration.
3723  DeclContext *DC;
3724
3725  // FIXME: handle local classes
3726
3727  // Recover from invalid scope qualifiers as if they just weren't there.
3728  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
3729    DC = computeDeclContext(ScopeQual);
3730
3731    // FIXME: handle dependent contexts
3732    if (!DC) return DeclPtrTy();
3733
3734    Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3735
3736    // If searching in that context implicitly found a declaration in
3737    // a different context, treat it like it wasn't found at all.
3738    // TODO: better diagnostics for this case.  Suggesting the right
3739    // qualified scope would be nice...
3740    if (!Dec || Dec->getDeclContext() != DC) {
3741      D.setInvalidType();
3742      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
3743      return DeclPtrTy();
3744    }
3745
3746    // C++ [class.friend]p1: A friend of a class is a function or
3747    //   class that is not a member of the class . . .
3748    if (DC == CurContext)
3749      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3750
3751    FD = cast<FunctionDecl>(Dec);
3752
3753  // Otherwise walk out to the nearest namespace scope looking for matches.
3754  } else {
3755    // TODO: handle local class contexts.
3756
3757    DC = CurContext;
3758    while (true) {
3759      // Skip class contexts.  If someone can cite chapter and verse
3760      // for this behavior, that would be nice --- it's what GCC and
3761      // EDG do, and it seems like a reasonable intent, but the spec
3762      // really only says that checks for unqualified existing
3763      // declarations should stop at the nearest enclosing namespace,
3764      // not that they should only consider the nearest enclosing
3765      // namespace.
3766      while (DC->isRecord()) DC = DC->getParent();
3767
3768      Decl *Dec = LookupQualifiedNameWithType(DC, Name, T);
3769
3770      // TODO: decide what we think about using declarations.
3771      if (Dec) {
3772        FD = cast<FunctionDecl>(Dec);
3773        break;
3774      }
3775      if (DC->isFileContext()) break;
3776      DC = DC->getParent();
3777    }
3778
3779    // C++ [class.friend]p1: A friend of a class is a function or
3780    //   class that is not a member of the class . . .
3781    // C++0x changes this for both friend types and functions.
3782    // Most C++ 98 compilers do seem to give an error here, so
3783    // we do, too.
3784    if (FD && DC == CurContext && !getLangOptions().CPlusPlus0x)
3785      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
3786  }
3787
3788  bool Redeclaration = (FD != 0);
3789
3790  // If we found a match, create a friend function declaration with
3791  // that function as the previous declaration.
3792  if (Redeclaration) {
3793    // Create it in the semantic context of the original declaration.
3794    DC = FD->getDeclContext();
3795
3796  // If we didn't find something matching the type exactly, create
3797  // a declaration.  This declaration should only be findable via
3798  // argument-dependent lookup.
3799  } else {
3800    assert(DC->isFileContext());
3801
3802    // This implies that it has to be an operator or function.
3803    if (D.getKind() == Declarator::DK_Constructor ||
3804        D.getKind() == Declarator::DK_Destructor ||
3805        D.getKind() == Declarator::DK_Conversion) {
3806      Diag(Loc, diag::err_introducing_special_friend) <<
3807        (D.getKind() == Declarator::DK_Constructor ? 0 :
3808         D.getKind() == Declarator::DK_Destructor ? 1 : 2);
3809      return DeclPtrTy();
3810    }
3811  }
3812
3813  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, DInfo,
3814                                          /* PrevDecl = */ FD,
3815                                          MultiTemplateParamsArg(*this),
3816                                          IsDefinition,
3817                                          Redeclaration);
3818  if (!ND) return DeclPtrTy();
3819  FD = cast<FunctionDecl>(ND);
3820
3821  assert(FD->getDeclContext() == DC);
3822  assert(FD->getLexicalDeclContext() == CurContext);
3823
3824  // We only add the function declaration to the lookup tables, not
3825  // the decl list, and only if the context isn't dependent.
3826  if (!CurContext->isDependentContext())
3827    DC->makeDeclVisibleInContext(FD);
3828
3829  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
3830                                       D.getIdentifierLoc(), FD,
3831                                       DS.getFriendSpecLoc());
3832  CurContext->addDecl(FrD);
3833
3834  return DeclPtrTy::make(FD);
3835}
3836
3837void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
3838  AdjustDeclIfTemplate(dcl);
3839
3840  Decl *Dcl = dcl.getAs<Decl>();
3841  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
3842  if (!Fn) {
3843    Diag(DelLoc, diag::err_deleted_non_function);
3844    return;
3845  }
3846  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
3847    Diag(DelLoc, diag::err_deleted_decl_not_first);
3848    Diag(Prev->getLocation(), diag::note_previous_declaration);
3849    // If the declaration wasn't the first, we delete the function anyway for
3850    // recovery.
3851  }
3852  Fn->setDeleted();
3853}
3854
3855static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
3856  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
3857       ++CI) {
3858    Stmt *SubStmt = *CI;
3859    if (!SubStmt)
3860      continue;
3861    if (isa<ReturnStmt>(SubStmt))
3862      Self.Diag(SubStmt->getSourceRange().getBegin(),
3863           diag::err_return_in_constructor_handler);
3864    if (!isa<Expr>(SubStmt))
3865      SearchForReturnInStmt(Self, SubStmt);
3866  }
3867}
3868
3869void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
3870  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
3871    CXXCatchStmt *Handler = TryBlock->getHandler(I);
3872    SearchForReturnInStmt(*this, Handler);
3873  }
3874}
3875
3876bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
3877                                             const CXXMethodDecl *Old) {
3878  QualType NewTy = New->getType()->getAsFunctionType()->getResultType();
3879  QualType OldTy = Old->getType()->getAsFunctionType()->getResultType();
3880
3881  QualType CNewTy = Context.getCanonicalType(NewTy);
3882  QualType COldTy = Context.getCanonicalType(OldTy);
3883
3884  if (CNewTy == COldTy &&
3885      CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers())
3886    return false;
3887
3888  // Check if the return types are covariant
3889  QualType NewClassTy, OldClassTy;
3890
3891  /// Both types must be pointers or references to classes.
3892  if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) {
3893    if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) {
3894      NewClassTy = NewPT->getPointeeType();
3895      OldClassTy = OldPT->getPointeeType();
3896    }
3897  } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) {
3898    if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) {
3899      NewClassTy = NewRT->getPointeeType();
3900      OldClassTy = OldRT->getPointeeType();
3901    }
3902  }
3903
3904  // The return types aren't either both pointers or references to a class type.
3905  if (NewClassTy.isNull()) {
3906    Diag(New->getLocation(),
3907         diag::err_different_return_type_for_overriding_virtual_function)
3908      << New->getDeclName() << NewTy << OldTy;
3909    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3910
3911    return true;
3912  }
3913
3914  if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) {
3915    // Check if the new class derives from the old class.
3916    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
3917      Diag(New->getLocation(),
3918           diag::err_covariant_return_not_derived)
3919      << New->getDeclName() << NewTy << OldTy;
3920      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3921      return true;
3922    }
3923
3924    // Check if we the conversion from derived to base is valid.
3925    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
3926                      diag::err_covariant_return_inaccessible_base,
3927                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
3928                      // FIXME: Should this point to the return type?
3929                      New->getLocation(), SourceRange(), New->getDeclName())) {
3930      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3931      return true;
3932    }
3933  }
3934
3935  // The qualifiers of the return types must be the same.
3936  if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) {
3937    Diag(New->getLocation(),
3938         diag::err_covariant_return_type_different_qualifications)
3939    << New->getDeclName() << NewTy << OldTy;
3940    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3941    return true;
3942  };
3943
3944
3945  // The new class type must have the same or less qualifiers as the old type.
3946  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
3947    Diag(New->getLocation(),
3948         diag::err_covariant_return_type_class_type_more_qualified)
3949    << New->getDeclName() << NewTy << OldTy;
3950    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
3951    return true;
3952  };
3953
3954  return false;
3955}
3956
3957bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New,
3958                                                const CXXMethodDecl *Old)
3959{
3960  return CheckExceptionSpecSubset(diag::err_override_exception_spec,
3961                                  diag::note_overridden_virtual_function,
3962                                  Old->getType()->getAsFunctionProtoType(),
3963                                  Old->getLocation(),
3964                                  New->getType()->getAsFunctionProtoType(),
3965                                  New->getLocation());
3966}
3967
3968/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
3969/// initializer for the declaration 'Dcl'.
3970/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
3971/// static data member of class X, names should be looked up in the scope of
3972/// class X.
3973void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3974  AdjustDeclIfTemplate(Dcl);
3975
3976  Decl *D = Dcl.getAs<Decl>();
3977  // If there is no declaration, there was an error parsing it.
3978  if (D == 0)
3979    return;
3980
3981  // Check whether it is a declaration with a nested name specifier like
3982  // int foo::bar;
3983  if (!D->isOutOfLine())
3984    return;
3985
3986  // C++ [basic.lookup.unqual]p13
3987  //
3988  // A name used in the definition of a static data member of class X
3989  // (after the qualified-id of the static member) is looked up as if the name
3990  // was used in a member function of X.
3991
3992  // Change current context into the context of the initializing declaration.
3993  EnterDeclaratorContext(S, D->getDeclContext());
3994}
3995
3996/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
3997/// initializer for the declaration 'Dcl'.
3998void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
3999  AdjustDeclIfTemplate(Dcl);
4000
4001  Decl *D = Dcl.getAs<Decl>();
4002  // If there is no declaration, there was an error parsing it.
4003  if (D == 0)
4004    return;
4005
4006  // Check whether it is a declaration with a nested name specifier like
4007  // int foo::bar;
4008  if (!D->isOutOfLine())
4009    return;
4010
4011  assert(S->getEntity() == D->getDeclContext() && "Context imbalance!");
4012  ExitDeclaratorContext(S);
4013}
4014