SemaDeclCXX.cpp revision fad9e13f3cb85198f0ee5af620ba81cd78574faa
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/ASTMutationListener.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/RecordLayout.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/StmtVisitor.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/AST/TypeOrdering.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/LiteralSupport.h"
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Sema/CXXFieldCollector.h"
34#include "clang/Sema/DeclSpec.h"
35#include "clang/Sema/Initialization.h"
36#include "clang/Sema/Lookup.h"
37#include "clang/Sema/ParsedTemplate.h"
38#include "clang/Sema/Scope.h"
39#include "clang/Sema/ScopeInfo.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include <map>
43#include <set>
44
45using namespace clang;
46
47//===----------------------------------------------------------------------===//
48// CheckDefaultArgumentVisitor
49//===----------------------------------------------------------------------===//
50
51namespace {
52  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
53  /// the default argument of a parameter to determine whether it
54  /// contains any ill-formed subexpressions. For example, this will
55  /// diagnose the use of local variables or parameters within the
56  /// default argument expression.
57  class CheckDefaultArgumentVisitor
58    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
59    Expr *DefaultArg;
60    Sema *S;
61
62  public:
63    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
64      : DefaultArg(defarg), S(s) {}
65
66    bool VisitExpr(Expr *Node);
67    bool VisitDeclRefExpr(DeclRefExpr *DRE);
68    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
69    bool VisitLambdaExpr(LambdaExpr *Lambda);
70    bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
71  };
72
73  /// VisitExpr - Visit all of the children of this expression.
74  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
75    bool IsInvalid = false;
76    for (Stmt::child_range I = Node->children(); I; ++I)
77      IsInvalid |= Visit(*I);
78    return IsInvalid;
79  }
80
81  /// VisitDeclRefExpr - Visit a reference to a declaration, to
82  /// determine whether this declaration can be used in the default
83  /// argument expression.
84  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
85    NamedDecl *Decl = DRE->getDecl();
86    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p9
88      //   Default arguments are evaluated each time the function is
89      //   called. The order of evaluation of function arguments is
90      //   unspecified. Consequently, parameters of a function shall not
91      //   be used in default argument expressions, even if they are not
92      //   evaluated. Parameters of a function declared before a default
93      //   argument expression are in scope and can hide namespace and
94      //   class member names.
95      return S->Diag(DRE->getLocStart(),
96                     diag::err_param_default_argument_references_param)
97         << Param->getDeclName() << DefaultArg->getSourceRange();
98    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
99      // C++ [dcl.fct.default]p7
100      //   Local variables shall not be used in default argument
101      //   expressions.
102      if (VDecl->isLocalVarDecl())
103        return S->Diag(DRE->getLocStart(),
104                       diag::err_param_default_argument_references_local)
105          << VDecl->getDeclName() << DefaultArg->getSourceRange();
106    }
107
108    return false;
109  }
110
111  /// VisitCXXThisExpr - Visit a C++ "this" expression.
112  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
113    // C++ [dcl.fct.default]p8:
114    //   The keyword this shall not be used in a default argument of a
115    //   member function.
116    return S->Diag(ThisE->getLocStart(),
117                   diag::err_param_default_argument_references_this)
118               << ThisE->getSourceRange();
119  }
120
121  bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
122    bool Invalid = false;
123    for (PseudoObjectExpr::semantics_iterator
124           i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
125      Expr *E = *i;
126
127      // Look through bindings.
128      if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
129        E = OVE->getSourceExpr();
130        assert(E && "pseudo-object binding without source expression?");
131      }
132
133      Invalid |= Visit(E);
134    }
135    return Invalid;
136  }
137
138  bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
139    // C++11 [expr.lambda.prim]p13:
140    //   A lambda-expression appearing in a default argument shall not
141    //   implicitly or explicitly capture any entity.
142    if (Lambda->capture_begin() == Lambda->capture_end())
143      return false;
144
145    return S->Diag(Lambda->getLocStart(),
146                   diag::err_lambda_capture_default_arg);
147  }
148}
149
150void
151Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
152                                                 const CXXMethodDecl *Method) {
153  // If we have an MSAny spec already, don't bother.
154  if (!Method || ComputedEST == EST_MSAny)
155    return;
156
157  const FunctionProtoType *Proto
158    = Method->getType()->getAs<FunctionProtoType>();
159  Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
160  if (!Proto)
161    return;
162
163  ExceptionSpecificationType EST = Proto->getExceptionSpecType();
164
165  // If this function can throw any exceptions, make a note of that.
166  if (EST == EST_MSAny || EST == EST_None) {
167    ClearExceptions();
168    ComputedEST = EST;
169    return;
170  }
171
172  // FIXME: If the call to this decl is using any of its default arguments, we
173  // need to search them for potentially-throwing calls.
174
175  // If this function has a basic noexcept, it doesn't affect the outcome.
176  if (EST == EST_BasicNoexcept)
177    return;
178
179  // If we have a throw-all spec at this point, ignore the function.
180  if (ComputedEST == EST_None)
181    return;
182
183  // If we're still at noexcept(true) and there's a nothrow() callee,
184  // change to that specification.
185  if (EST == EST_DynamicNone) {
186    if (ComputedEST == EST_BasicNoexcept)
187      ComputedEST = EST_DynamicNone;
188    return;
189  }
190
191  // Check out noexcept specs.
192  if (EST == EST_ComputedNoexcept) {
193    FunctionProtoType::NoexceptResult NR =
194        Proto->getNoexceptSpec(Self->Context);
195    assert(NR != FunctionProtoType::NR_NoNoexcept &&
196           "Must have noexcept result for EST_ComputedNoexcept.");
197    assert(NR != FunctionProtoType::NR_Dependent &&
198           "Should not generate implicit declarations for dependent cases, "
199           "and don't know how to handle them anyway.");
200
201    // noexcept(false) -> no spec on the new function
202    if (NR == FunctionProtoType::NR_Throw) {
203      ClearExceptions();
204      ComputedEST = EST_None;
205    }
206    // noexcept(true) won't change anything either.
207    return;
208  }
209
210  assert(EST == EST_Dynamic && "EST case not considered earlier.");
211  assert(ComputedEST != EST_None &&
212         "Shouldn't collect exceptions when throw-all is guaranteed.");
213  ComputedEST = EST_Dynamic;
214  // Record the exceptions in this function's exception specification.
215  for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
216                                          EEnd = Proto->exception_end();
217       E != EEnd; ++E)
218    if (ExceptionsSeen.insert(Self->Context.getCanonicalType(*E)))
219      Exceptions.push_back(*E);
220}
221
222void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
223  if (!E || ComputedEST == EST_MSAny)
224    return;
225
226  // FIXME:
227  //
228  // C++0x [except.spec]p14:
229  //   [An] implicit exception-specification specifies the type-id T if and
230  // only if T is allowed by the exception-specification of a function directly
231  // invoked by f's implicit definition; f shall allow all exceptions if any
232  // function it directly invokes allows all exceptions, and f shall allow no
233  // exceptions if every function it directly invokes allows no exceptions.
234  //
235  // Note in particular that if an implicit exception-specification is generated
236  // for a function containing a throw-expression, that specification can still
237  // be noexcept(true).
238  //
239  // Note also that 'directly invoked' is not defined in the standard, and there
240  // is no indication that we should only consider potentially-evaluated calls.
241  //
242  // Ultimately we should implement the intent of the standard: the exception
243  // specification should be the set of exceptions which can be thrown by the
244  // implicit definition. For now, we assume that any non-nothrow expression can
245  // throw any exception.
246
247  if (Self->canThrow(E))
248    ComputedEST = EST_None;
249}
250
251bool
252Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
253                              SourceLocation EqualLoc) {
254  if (RequireCompleteType(Param->getLocation(), Param->getType(),
255                          diag::err_typecheck_decl_incomplete_type)) {
256    Param->setInvalidDecl();
257    return true;
258  }
259
260  // C++ [dcl.fct.default]p5
261  //   A default argument expression is implicitly converted (clause
262  //   4) to the parameter type. The default argument expression has
263  //   the same semantic constraints as the initializer expression in
264  //   a declaration of a variable of the parameter type, using the
265  //   copy-initialization semantics (8.5).
266  InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
267                                                                    Param);
268  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
269                                                           EqualLoc);
270  InitializationSequence InitSeq(*this, Entity, Kind, Arg);
271  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
272  if (Result.isInvalid())
273    return true;
274  Arg = Result.takeAs<Expr>();
275
276  CheckCompletedExpr(Arg, EqualLoc);
277  Arg = MaybeCreateExprWithCleanups(Arg);
278
279  // Okay: add the default argument to the parameter
280  Param->setDefaultArg(Arg);
281
282  // We have already instantiated this parameter; provide each of the
283  // instantiations with the uninstantiated default argument.
284  UnparsedDefaultArgInstantiationsMap::iterator InstPos
285    = UnparsedDefaultArgInstantiations.find(Param);
286  if (InstPos != UnparsedDefaultArgInstantiations.end()) {
287    for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
288      InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
289
290    // We're done tracking this parameter's instantiations.
291    UnparsedDefaultArgInstantiations.erase(InstPos);
292  }
293
294  return false;
295}
296
297/// ActOnParamDefaultArgument - Check whether the default argument
298/// provided for a function parameter is well-formed. If so, attach it
299/// to the parameter declaration.
300void
301Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
302                                Expr *DefaultArg) {
303  if (!param || !DefaultArg)
304    return;
305
306  ParmVarDecl *Param = cast<ParmVarDecl>(param);
307  UnparsedDefaultArgLocs.erase(Param);
308
309  // Default arguments are only permitted in C++
310  if (!getLangOpts().CPlusPlus) {
311    Diag(EqualLoc, diag::err_param_default_argument)
312      << DefaultArg->getSourceRange();
313    Param->setInvalidDecl();
314    return;
315  }
316
317  // Check for unexpanded parameter packs.
318  if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
319    Param->setInvalidDecl();
320    return;
321  }
322
323  // Check that the default argument is well-formed
324  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
325  if (DefaultArgChecker.Visit(DefaultArg)) {
326    Param->setInvalidDecl();
327    return;
328  }
329
330  SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
331}
332
333/// ActOnParamUnparsedDefaultArgument - We've seen a default
334/// argument for a function parameter, but we can't parse it yet
335/// because we're inside a class definition. Note that this default
336/// argument will be parsed later.
337void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
338                                             SourceLocation EqualLoc,
339                                             SourceLocation ArgLoc) {
340  if (!param)
341    return;
342
343  ParmVarDecl *Param = cast<ParmVarDecl>(param);
344  Param->setUnparsedDefaultArg();
345  UnparsedDefaultArgLocs[Param] = ArgLoc;
346}
347
348/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
349/// the default argument for the parameter param failed.
350void Sema::ActOnParamDefaultArgumentError(Decl *param) {
351  if (!param)
352    return;
353
354  ParmVarDecl *Param = cast<ParmVarDecl>(param);
355  Param->setInvalidDecl();
356  UnparsedDefaultArgLocs.erase(Param);
357}
358
359/// CheckExtraCXXDefaultArguments - Check for any extra default
360/// arguments in the declarator, which is not a function declaration
361/// or definition and therefore is not permitted to have default
362/// arguments. This routine should be invoked for every declarator
363/// that is not a function declaration or definition.
364void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
365  // C++ [dcl.fct.default]p3
366  //   A default argument expression shall be specified only in the
367  //   parameter-declaration-clause of a function declaration or in a
368  //   template-parameter (14.1). It shall not be specified for a
369  //   parameter pack. If it is specified in a
370  //   parameter-declaration-clause, it shall not occur within a
371  //   declarator or abstract-declarator of a parameter-declaration.
372  bool MightBeFunction = D.isFunctionDeclarationContext();
373  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
374    DeclaratorChunk &chunk = D.getTypeObject(i);
375    if (chunk.Kind == DeclaratorChunk::Function) {
376      if (MightBeFunction) {
377        // This is a function declaration. It can have default arguments, but
378        // keep looking in case its return type is a function type with default
379        // arguments.
380        MightBeFunction = false;
381        continue;
382      }
383      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
384        ParmVarDecl *Param =
385          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param);
386        if (Param->hasUnparsedDefaultArg()) {
387          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
388          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
389            << SourceRange((*Toks)[1].getLocation(),
390                           Toks->back().getLocation());
391          delete Toks;
392          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
393        } else if (Param->getDefaultArg()) {
394          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
395            << Param->getDefaultArg()->getSourceRange();
396          Param->setDefaultArg(0);
397        }
398      }
399    } else if (chunk.Kind != DeclaratorChunk::Paren) {
400      MightBeFunction = false;
401    }
402  }
403}
404
405static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
406  for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
407    const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
408    if (!PVD->hasDefaultArg())
409      return false;
410    if (!PVD->hasInheritedDefaultArg())
411      return true;
412  }
413  return false;
414}
415
416/// MergeCXXFunctionDecl - Merge two declarations of the same C++
417/// function, once we already know that they have the same
418/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
419/// error, false otherwise.
420bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
421                                Scope *S) {
422  bool Invalid = false;
423
424  // C++ [dcl.fct.default]p4:
425  //   For non-template functions, default arguments can be added in
426  //   later declarations of a function in the same
427  //   scope. Declarations in different scopes have completely
428  //   distinct sets of default arguments. That is, declarations in
429  //   inner scopes do not acquire default arguments from
430  //   declarations in outer scopes, and vice versa. In a given
431  //   function declaration, all parameters subsequent to a
432  //   parameter with a default argument shall have default
433  //   arguments supplied in this or previous declarations. A
434  //   default argument shall not be redefined by a later
435  //   declaration (not even to the same value).
436  //
437  // C++ [dcl.fct.default]p6:
438  //   Except for member functions of class templates, the default arguments
439  //   in a member function definition that appears outside of the class
440  //   definition are added to the set of default arguments provided by the
441  //   member function declaration in the class definition.
442  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
443    ParmVarDecl *OldParam = Old->getParamDecl(p);
444    ParmVarDecl *NewParam = New->getParamDecl(p);
445
446    bool OldParamHasDfl = OldParam->hasDefaultArg();
447    bool NewParamHasDfl = NewParam->hasDefaultArg();
448
449    NamedDecl *ND = Old;
450
451    // The declaration context corresponding to the scope is the semantic
452    // parent, unless this is a local function declaration, in which case
453    // it is that surrounding function.
454    DeclContext *ScopeDC = New->getLexicalDeclContext();
455    if (!ScopeDC->isFunctionOrMethod())
456      ScopeDC = New->getDeclContext();
457    if (S && !isDeclInScope(ND, ScopeDC, S) &&
458        !New->getDeclContext()->isRecord())
459      // Ignore default parameters of old decl if they are not in
460      // the same scope and this is not an out-of-line definition of
461      // a member function.
462      OldParamHasDfl = false;
463
464    if (OldParamHasDfl && NewParamHasDfl) {
465
466      unsigned DiagDefaultParamID =
467        diag::err_param_default_argument_redefinition;
468
469      // MSVC accepts that default parameters be redefined for member functions
470      // of template class. The new default parameter's value is ignored.
471      Invalid = true;
472      if (getLangOpts().MicrosoftExt) {
473        CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
474        if (MD && MD->getParent()->getDescribedClassTemplate()) {
475          // Merge the old default argument into the new parameter.
476          NewParam->setHasInheritedDefaultArg();
477          if (OldParam->hasUninstantiatedDefaultArg())
478            NewParam->setUninstantiatedDefaultArg(
479                                      OldParam->getUninstantiatedDefaultArg());
480          else
481            NewParam->setDefaultArg(OldParam->getInit());
482          DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
483          Invalid = false;
484        }
485      }
486
487      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
488      // hint here. Alternatively, we could walk the type-source information
489      // for NewParam to find the last source location in the type... but it
490      // isn't worth the effort right now. This is the kind of test case that
491      // is hard to get right:
492      //   int f(int);
493      //   void g(int (*fp)(int) = f);
494      //   void g(int (*fp)(int) = &f);
495      Diag(NewParam->getLocation(), DiagDefaultParamID)
496        << NewParam->getDefaultArgRange();
497
498      // Look for the function declaration where the default argument was
499      // actually written, which may be a declaration prior to Old.
500      for (FunctionDecl *Older = Old->getPreviousDecl();
501           Older; Older = Older->getPreviousDecl()) {
502        if (!Older->getParamDecl(p)->hasDefaultArg())
503          break;
504
505        OldParam = Older->getParamDecl(p);
506      }
507
508      Diag(OldParam->getLocation(), diag::note_previous_definition)
509        << OldParam->getDefaultArgRange();
510    } else if (OldParamHasDfl) {
511      // Merge the old default argument into the new parameter.
512      // It's important to use getInit() here;  getDefaultArg()
513      // strips off any top-level ExprWithCleanups.
514      NewParam->setHasInheritedDefaultArg();
515      if (OldParam->hasUninstantiatedDefaultArg())
516        NewParam->setUninstantiatedDefaultArg(
517                                      OldParam->getUninstantiatedDefaultArg());
518      else
519        NewParam->setDefaultArg(OldParam->getInit());
520    } else if (NewParamHasDfl) {
521      if (New->getDescribedFunctionTemplate()) {
522        // Paragraph 4, quoted above, only applies to non-template functions.
523        Diag(NewParam->getLocation(),
524             diag::err_param_default_argument_template_redecl)
525          << NewParam->getDefaultArgRange();
526        Diag(Old->getLocation(), diag::note_template_prev_declaration)
527          << false;
528      } else if (New->getTemplateSpecializationKind()
529                   != TSK_ImplicitInstantiation &&
530                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
531        // C++ [temp.expr.spec]p21:
532        //   Default function arguments shall not be specified in a declaration
533        //   or a definition for one of the following explicit specializations:
534        //     - the explicit specialization of a function template;
535        //     - the explicit specialization of a member function template;
536        //     - the explicit specialization of a member function of a class
537        //       template where the class template specialization to which the
538        //       member function specialization belongs is implicitly
539        //       instantiated.
540        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
541          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
542          << New->getDeclName()
543          << NewParam->getDefaultArgRange();
544      } else if (New->getDeclContext()->isDependentContext()) {
545        // C++ [dcl.fct.default]p6 (DR217):
546        //   Default arguments for a member function of a class template shall
547        //   be specified on the initial declaration of the member function
548        //   within the class template.
549        //
550        // Reading the tea leaves a bit in DR217 and its reference to DR205
551        // leads me to the conclusion that one cannot add default function
552        // arguments for an out-of-line definition of a member function of a
553        // dependent type.
554        int WhichKind = 2;
555        if (CXXRecordDecl *Record
556              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
557          if (Record->getDescribedClassTemplate())
558            WhichKind = 0;
559          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
560            WhichKind = 1;
561          else
562            WhichKind = 2;
563        }
564
565        Diag(NewParam->getLocation(),
566             diag::err_param_default_argument_member_template_redecl)
567          << WhichKind
568          << NewParam->getDefaultArgRange();
569      }
570    }
571  }
572
573  // DR1344: If a default argument is added outside a class definition and that
574  // default argument makes the function a special member function, the program
575  // is ill-formed. This can only happen for constructors.
576  if (isa<CXXConstructorDecl>(New) &&
577      New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
578    CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
579                     OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
580    if (NewSM != OldSM) {
581      ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
582      assert(NewParam->hasDefaultArg());
583      Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
584        << NewParam->getDefaultArgRange() << NewSM;
585      Diag(Old->getLocation(), diag::note_previous_declaration);
586    }
587  }
588
589  // C++11 [dcl.constexpr]p1: If any declaration of a function or function
590  // template has a constexpr specifier then all its declarations shall
591  // contain the constexpr specifier.
592  if (New->isConstexpr() != Old->isConstexpr()) {
593    Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
594      << New << New->isConstexpr();
595    Diag(Old->getLocation(), diag::note_previous_declaration);
596    Invalid = true;
597  }
598
599  // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
600  // argument expression, that declaration shall be a definition and shall be
601  // the only declaration of the function or function template in the
602  // translation unit.
603  if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
604      functionDeclHasDefaultArgument(Old)) {
605    Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
606    Diag(Old->getLocation(), diag::note_previous_declaration);
607    Invalid = true;
608  }
609
610  if (CheckEquivalentExceptionSpec(Old, New))
611    Invalid = true;
612
613  return Invalid;
614}
615
616/// \brief Merge the exception specifications of two variable declarations.
617///
618/// This is called when there's a redeclaration of a VarDecl. The function
619/// checks if the redeclaration might have an exception specification and
620/// validates compatibility and merges the specs if necessary.
621void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
622  // Shortcut if exceptions are disabled.
623  if (!getLangOpts().CXXExceptions)
624    return;
625
626  assert(Context.hasSameType(New->getType(), Old->getType()) &&
627         "Should only be called if types are otherwise the same.");
628
629  QualType NewType = New->getType();
630  QualType OldType = Old->getType();
631
632  // We're only interested in pointers and references to functions, as well
633  // as pointers to member functions.
634  if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
635    NewType = R->getPointeeType();
636    OldType = OldType->getAs<ReferenceType>()->getPointeeType();
637  } else if (const PointerType *P = NewType->getAs<PointerType>()) {
638    NewType = P->getPointeeType();
639    OldType = OldType->getAs<PointerType>()->getPointeeType();
640  } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
641    NewType = M->getPointeeType();
642    OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
643  }
644
645  if (!NewType->isFunctionProtoType())
646    return;
647
648  // There's lots of special cases for functions. For function pointers, system
649  // libraries are hopefully not as broken so that we don't need these
650  // workarounds.
651  if (CheckEquivalentExceptionSpec(
652        OldType->getAs<FunctionProtoType>(), Old->getLocation(),
653        NewType->getAs<FunctionProtoType>(), New->getLocation())) {
654    New->setInvalidDecl();
655  }
656}
657
658/// CheckCXXDefaultArguments - Verify that the default arguments for a
659/// function declaration are well-formed according to C++
660/// [dcl.fct.default].
661void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
662  unsigned NumParams = FD->getNumParams();
663  unsigned p;
664
665  // Find first parameter with a default argument
666  for (p = 0; p < NumParams; ++p) {
667    ParmVarDecl *Param = FD->getParamDecl(p);
668    if (Param->hasDefaultArg())
669      break;
670  }
671
672  // C++ [dcl.fct.default]p4:
673  //   In a given function declaration, all parameters
674  //   subsequent to a parameter with a default argument shall
675  //   have default arguments supplied in this or previous
676  //   declarations. A default argument shall not be redefined
677  //   by a later declaration (not even to the same value).
678  unsigned LastMissingDefaultArg = 0;
679  for (; p < NumParams; ++p) {
680    ParmVarDecl *Param = FD->getParamDecl(p);
681    if (!Param->hasDefaultArg()) {
682      if (Param->isInvalidDecl())
683        /* We already complained about this parameter. */;
684      else if (Param->getIdentifier())
685        Diag(Param->getLocation(),
686             diag::err_param_default_argument_missing_name)
687          << Param->getIdentifier();
688      else
689        Diag(Param->getLocation(),
690             diag::err_param_default_argument_missing);
691
692      LastMissingDefaultArg = p;
693    }
694  }
695
696  if (LastMissingDefaultArg > 0) {
697    // Some default arguments were missing. Clear out all of the
698    // default arguments up to (and including) the last missing
699    // default argument, so that we leave the function parameters
700    // in a semantically valid state.
701    for (p = 0; p <= LastMissingDefaultArg; ++p) {
702      ParmVarDecl *Param = FD->getParamDecl(p);
703      if (Param->hasDefaultArg()) {
704        Param->setDefaultArg(0);
705      }
706    }
707  }
708}
709
710// CheckConstexprParameterTypes - Check whether a function's parameter types
711// are all literal types. If so, return true. If not, produce a suitable
712// diagnostic and return false.
713static bool CheckConstexprParameterTypes(Sema &SemaRef,
714                                         const FunctionDecl *FD) {
715  unsigned ArgIndex = 0;
716  const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
717  for (FunctionProtoType::arg_type_iterator i = FT->arg_type_begin(),
718       e = FT->arg_type_end(); i != e; ++i, ++ArgIndex) {
719    const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
720    SourceLocation ParamLoc = PD->getLocation();
721    if (!(*i)->isDependentType() &&
722        SemaRef.RequireLiteralType(ParamLoc, *i,
723                                   diag::err_constexpr_non_literal_param,
724                                   ArgIndex+1, PD->getSourceRange(),
725                                   isa<CXXConstructorDecl>(FD)))
726      return false;
727  }
728  return true;
729}
730
731/// \brief Get diagnostic %select index for tag kind for
732/// record diagnostic message.
733/// WARNING: Indexes apply to particular diagnostics only!
734///
735/// \returns diagnostic %select index.
736static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
737  switch (Tag) {
738  case TTK_Struct: return 0;
739  case TTK_Interface: return 1;
740  case TTK_Class:  return 2;
741  default: llvm_unreachable("Invalid tag kind for record diagnostic!");
742  }
743}
744
745// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
746// the requirements of a constexpr function definition or a constexpr
747// constructor definition. If so, return true. If not, produce appropriate
748// diagnostics and return false.
749//
750// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
751bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
752  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
753  if (MD && MD->isInstance()) {
754    // C++11 [dcl.constexpr]p4:
755    //  The definition of a constexpr constructor shall satisfy the following
756    //  constraints:
757    //  - the class shall not have any virtual base classes;
758    const CXXRecordDecl *RD = MD->getParent();
759    if (RD->getNumVBases()) {
760      Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
761        << isa<CXXConstructorDecl>(NewFD)
762        << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
763      for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
764             E = RD->vbases_end(); I != E; ++I)
765        Diag(I->getLocStart(),
766             diag::note_constexpr_virtual_base_here) << I->getSourceRange();
767      return false;
768    }
769  }
770
771  if (!isa<CXXConstructorDecl>(NewFD)) {
772    // C++11 [dcl.constexpr]p3:
773    //  The definition of a constexpr function shall satisfy the following
774    //  constraints:
775    // - it shall not be virtual;
776    const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
777    if (Method && Method->isVirtual()) {
778      Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
779
780      // If it's not obvious why this function is virtual, find an overridden
781      // function which uses the 'virtual' keyword.
782      const CXXMethodDecl *WrittenVirtual = Method;
783      while (!WrittenVirtual->isVirtualAsWritten())
784        WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
785      if (WrittenVirtual != Method)
786        Diag(WrittenVirtual->getLocation(),
787             diag::note_overridden_virtual_function);
788      return false;
789    }
790
791    // - its return type shall be a literal type;
792    QualType RT = NewFD->getResultType();
793    if (!RT->isDependentType() &&
794        RequireLiteralType(NewFD->getLocation(), RT,
795                           diag::err_constexpr_non_literal_return))
796      return false;
797  }
798
799  // - each of its parameter types shall be a literal type;
800  if (!CheckConstexprParameterTypes(*this, NewFD))
801    return false;
802
803  return true;
804}
805
806/// Check the given declaration statement is legal within a constexpr function
807/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
808///
809/// \return true if the body is OK (maybe only as an extension), false if we
810///         have diagnosed a problem.
811static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
812                                   DeclStmt *DS, SourceLocation &Cxx1yLoc) {
813  // C++11 [dcl.constexpr]p3 and p4:
814  //  The definition of a constexpr function(p3) or constructor(p4) [...] shall
815  //  contain only
816  for (DeclStmt::decl_iterator DclIt = DS->decl_begin(),
817         DclEnd = DS->decl_end(); DclIt != DclEnd; ++DclIt) {
818    switch ((*DclIt)->getKind()) {
819    case Decl::StaticAssert:
820    case Decl::Using:
821    case Decl::UsingShadow:
822    case Decl::UsingDirective:
823    case Decl::UnresolvedUsingTypename:
824    case Decl::UnresolvedUsingValue:
825      //   - static_assert-declarations
826      //   - using-declarations,
827      //   - using-directives,
828      continue;
829
830    case Decl::Typedef:
831    case Decl::TypeAlias: {
832      //   - typedef declarations and alias-declarations that do not define
833      //     classes or enumerations,
834      TypedefNameDecl *TN = cast<TypedefNameDecl>(*DclIt);
835      if (TN->getUnderlyingType()->isVariablyModifiedType()) {
836        // Don't allow variably-modified types in constexpr functions.
837        TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
838        SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
839          << TL.getSourceRange() << TL.getType()
840          << isa<CXXConstructorDecl>(Dcl);
841        return false;
842      }
843      continue;
844    }
845
846    case Decl::Enum:
847    case Decl::CXXRecord:
848      // C++1y allows types to be defined, not just declared.
849      if (cast<TagDecl>(*DclIt)->isThisDeclarationADefinition())
850        SemaRef.Diag(DS->getLocStart(),
851                     SemaRef.getLangOpts().CPlusPlus1y
852                       ? diag::warn_cxx11_compat_constexpr_type_definition
853                       : diag::ext_constexpr_type_definition)
854          << isa<CXXConstructorDecl>(Dcl);
855      continue;
856
857    case Decl::EnumConstant:
858    case Decl::IndirectField:
859    case Decl::ParmVar:
860      // These can only appear with other declarations which are banned in
861      // C++11 and permitted in C++1y, so ignore them.
862      continue;
863
864    case Decl::Var: {
865      // C++1y [dcl.constexpr]p3 allows anything except:
866      //   a definition of a variable of non-literal type or of static or
867      //   thread storage duration or for which no initialization is performed.
868      VarDecl *VD = cast<VarDecl>(*DclIt);
869      if (VD->isThisDeclarationADefinition()) {
870        if (VD->isStaticLocal()) {
871          SemaRef.Diag(VD->getLocation(),
872                       diag::err_constexpr_local_var_static)
873            << isa<CXXConstructorDecl>(Dcl)
874            << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
875          return false;
876        }
877        if (!VD->getType()->isDependentType() &&
878            SemaRef.RequireLiteralType(
879              VD->getLocation(), VD->getType(),
880              diag::err_constexpr_local_var_non_literal_type,
881              isa<CXXConstructorDecl>(Dcl)))
882          return false;
883        if (!VD->hasInit()) {
884          SemaRef.Diag(VD->getLocation(),
885                       diag::err_constexpr_local_var_no_init)
886            << isa<CXXConstructorDecl>(Dcl);
887          return false;
888        }
889      }
890      SemaRef.Diag(VD->getLocation(),
891                   SemaRef.getLangOpts().CPlusPlus1y
892                    ? diag::warn_cxx11_compat_constexpr_local_var
893                    : diag::ext_constexpr_local_var)
894        << isa<CXXConstructorDecl>(Dcl);
895      continue;
896    }
897
898    case Decl::NamespaceAlias:
899    case Decl::Function:
900      // These are disallowed in C++11 and permitted in C++1y. Allow them
901      // everywhere as an extension.
902      if (!Cxx1yLoc.isValid())
903        Cxx1yLoc = DS->getLocStart();
904      continue;
905
906    default:
907      SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
908        << isa<CXXConstructorDecl>(Dcl);
909      return false;
910    }
911  }
912
913  return true;
914}
915
916/// Check that the given field is initialized within a constexpr constructor.
917///
918/// \param Dcl The constexpr constructor being checked.
919/// \param Field The field being checked. This may be a member of an anonymous
920///        struct or union nested within the class being checked.
921/// \param Inits All declarations, including anonymous struct/union members and
922///        indirect members, for which any initialization was provided.
923/// \param Diagnosed Set to true if an error is produced.
924static void CheckConstexprCtorInitializer(Sema &SemaRef,
925                                          const FunctionDecl *Dcl,
926                                          FieldDecl *Field,
927                                          llvm::SmallSet<Decl*, 16> &Inits,
928                                          bool &Diagnosed) {
929  if (Field->isInvalidDecl())
930    return;
931
932  if (Field->isUnnamedBitfield())
933    return;
934
935  if (Field->isAnonymousStructOrUnion() &&
936      Field->getType()->getAsCXXRecordDecl()->isEmpty())
937    return;
938
939  if (!Inits.count(Field)) {
940    if (!Diagnosed) {
941      SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
942      Diagnosed = true;
943    }
944    SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
945  } else if (Field->isAnonymousStructOrUnion()) {
946    const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
947    for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
948         I != E; ++I)
949      // If an anonymous union contains an anonymous struct of which any member
950      // is initialized, all members must be initialized.
951      if (!RD->isUnion() || Inits.count(*I))
952        CheckConstexprCtorInitializer(SemaRef, Dcl, *I, Inits, Diagnosed);
953  }
954}
955
956/// Check the provided statement is allowed in a constexpr function
957/// definition.
958static bool
959CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
960                           SmallVectorImpl<SourceLocation> &ReturnStmts,
961                           SourceLocation &Cxx1yLoc) {
962  // - its function-body shall be [...] a compound-statement that contains only
963  switch (S->getStmtClass()) {
964  case Stmt::NullStmtClass:
965    //   - null statements,
966    return true;
967
968  case Stmt::DeclStmtClass:
969    //   - static_assert-declarations
970    //   - using-declarations,
971    //   - using-directives,
972    //   - typedef declarations and alias-declarations that do not define
973    //     classes or enumerations,
974    if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
975      return false;
976    return true;
977
978  case Stmt::ReturnStmtClass:
979    //   - and exactly one return statement;
980    if (isa<CXXConstructorDecl>(Dcl)) {
981      // C++1y allows return statements in constexpr constructors.
982      if (!Cxx1yLoc.isValid())
983        Cxx1yLoc = S->getLocStart();
984      return true;
985    }
986
987    ReturnStmts.push_back(S->getLocStart());
988    return true;
989
990  case Stmt::CompoundStmtClass: {
991    // C++1y allows compound-statements.
992    if (!Cxx1yLoc.isValid())
993      Cxx1yLoc = S->getLocStart();
994
995    CompoundStmt *CompStmt = cast<CompoundStmt>(S);
996    for (CompoundStmt::body_iterator BodyIt = CompStmt->body_begin(),
997           BodyEnd = CompStmt->body_end(); BodyIt != BodyEnd; ++BodyIt) {
998      if (!CheckConstexprFunctionStmt(SemaRef, Dcl, *BodyIt, ReturnStmts,
999                                      Cxx1yLoc))
1000        return false;
1001    }
1002    return true;
1003  }
1004
1005  case Stmt::AttributedStmtClass:
1006    if (!Cxx1yLoc.isValid())
1007      Cxx1yLoc = S->getLocStart();
1008    return true;
1009
1010  case Stmt::IfStmtClass: {
1011    // C++1y allows if-statements.
1012    if (!Cxx1yLoc.isValid())
1013      Cxx1yLoc = S->getLocStart();
1014
1015    IfStmt *If = cast<IfStmt>(S);
1016    if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1017                                    Cxx1yLoc))
1018      return false;
1019    if (If->getElse() &&
1020        !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1021                                    Cxx1yLoc))
1022      return false;
1023    return true;
1024  }
1025
1026  case Stmt::WhileStmtClass:
1027  case Stmt::DoStmtClass:
1028  case Stmt::ForStmtClass:
1029  case Stmt::CXXForRangeStmtClass:
1030  case Stmt::ContinueStmtClass:
1031    // C++1y allows all of these. We don't allow them as extensions in C++11,
1032    // because they don't make sense without variable mutation.
1033    if (!SemaRef.getLangOpts().CPlusPlus1y)
1034      break;
1035    if (!Cxx1yLoc.isValid())
1036      Cxx1yLoc = S->getLocStart();
1037    for (Stmt::child_range Children = S->children(); Children; ++Children)
1038      if (*Children &&
1039          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1040                                      Cxx1yLoc))
1041        return false;
1042    return true;
1043
1044  case Stmt::SwitchStmtClass:
1045  case Stmt::CaseStmtClass:
1046  case Stmt::DefaultStmtClass:
1047  case Stmt::BreakStmtClass:
1048    // C++1y allows switch-statements, and since they don't need variable
1049    // mutation, we can reasonably allow them in C++11 as an extension.
1050    if (!Cxx1yLoc.isValid())
1051      Cxx1yLoc = S->getLocStart();
1052    for (Stmt::child_range Children = S->children(); Children; ++Children)
1053      if (*Children &&
1054          !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1055                                      Cxx1yLoc))
1056        return false;
1057    return true;
1058
1059  default:
1060    if (!isa<Expr>(S))
1061      break;
1062
1063    // C++1y allows expression-statements.
1064    if (!Cxx1yLoc.isValid())
1065      Cxx1yLoc = S->getLocStart();
1066    return true;
1067  }
1068
1069  SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1070    << isa<CXXConstructorDecl>(Dcl);
1071  return false;
1072}
1073
1074/// Check the body for the given constexpr function declaration only contains
1075/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1076///
1077/// \return true if the body is OK, false if we have diagnosed a problem.
1078bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1079  if (isa<CXXTryStmt>(Body)) {
1080    // C++11 [dcl.constexpr]p3:
1081    //  The definition of a constexpr function shall satisfy the following
1082    //  constraints: [...]
1083    // - its function-body shall be = delete, = default, or a
1084    //   compound-statement
1085    //
1086    // C++11 [dcl.constexpr]p4:
1087    //  In the definition of a constexpr constructor, [...]
1088    // - its function-body shall not be a function-try-block;
1089    Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1090      << isa<CXXConstructorDecl>(Dcl);
1091    return false;
1092  }
1093
1094  SmallVector<SourceLocation, 4> ReturnStmts;
1095
1096  // - its function-body shall be [...] a compound-statement that contains only
1097  //   [... list of cases ...]
1098  CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1099  SourceLocation Cxx1yLoc;
1100  for (CompoundStmt::body_iterator BodyIt = CompBody->body_begin(),
1101         BodyEnd = CompBody->body_end(); BodyIt != BodyEnd; ++BodyIt) {
1102    if (!CheckConstexprFunctionStmt(*this, Dcl, *BodyIt, ReturnStmts, Cxx1yLoc))
1103      return false;
1104  }
1105
1106  if (Cxx1yLoc.isValid())
1107    Diag(Cxx1yLoc,
1108         getLangOpts().CPlusPlus1y
1109           ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1110           : diag::ext_constexpr_body_invalid_stmt)
1111      << isa<CXXConstructorDecl>(Dcl);
1112
1113  if (const CXXConstructorDecl *Constructor
1114        = dyn_cast<CXXConstructorDecl>(Dcl)) {
1115    const CXXRecordDecl *RD = Constructor->getParent();
1116    // DR1359:
1117    // - every non-variant non-static data member and base class sub-object
1118    //   shall be initialized;
1119    // - if the class is a non-empty union, or for each non-empty anonymous
1120    //   union member of a non-union class, exactly one non-static data member
1121    //   shall be initialized;
1122    if (RD->isUnion()) {
1123      if (Constructor->getNumCtorInitializers() == 0 && !RD->isEmpty()) {
1124        Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1125        return false;
1126      }
1127    } else if (!Constructor->isDependentContext() &&
1128               !Constructor->isDelegatingConstructor()) {
1129      assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1130
1131      // Skip detailed checking if we have enough initializers, and we would
1132      // allow at most one initializer per member.
1133      bool AnyAnonStructUnionMembers = false;
1134      unsigned Fields = 0;
1135      for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1136           E = RD->field_end(); I != E; ++I, ++Fields) {
1137        if (I->isAnonymousStructOrUnion()) {
1138          AnyAnonStructUnionMembers = true;
1139          break;
1140        }
1141      }
1142      if (AnyAnonStructUnionMembers ||
1143          Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1144        // Check initialization of non-static data members. Base classes are
1145        // always initialized so do not need to be checked. Dependent bases
1146        // might not have initializers in the member initializer list.
1147        llvm::SmallSet<Decl*, 16> Inits;
1148        for (CXXConstructorDecl::init_const_iterator
1149               I = Constructor->init_begin(), E = Constructor->init_end();
1150             I != E; ++I) {
1151          if (FieldDecl *FD = (*I)->getMember())
1152            Inits.insert(FD);
1153          else if (IndirectFieldDecl *ID = (*I)->getIndirectMember())
1154            Inits.insert(ID->chain_begin(), ID->chain_end());
1155        }
1156
1157        bool Diagnosed = false;
1158        for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1159             E = RD->field_end(); I != E; ++I)
1160          CheckConstexprCtorInitializer(*this, Dcl, *I, Inits, Diagnosed);
1161        if (Diagnosed)
1162          return false;
1163      }
1164    }
1165  } else {
1166    if (ReturnStmts.empty()) {
1167      // C++1y doesn't require constexpr functions to contain a 'return'
1168      // statement. We still do, unless the return type is void, because
1169      // otherwise if there's no return statement, the function cannot
1170      // be used in a core constant expression.
1171      bool OK = getLangOpts().CPlusPlus1y && Dcl->getResultType()->isVoidType();
1172      Diag(Dcl->getLocation(),
1173           OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1174              : diag::err_constexpr_body_no_return);
1175      return OK;
1176    }
1177    if (ReturnStmts.size() > 1) {
1178      Diag(ReturnStmts.back(),
1179           getLangOpts().CPlusPlus1y
1180             ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1181             : diag::ext_constexpr_body_multiple_return);
1182      for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1183        Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1184    }
1185  }
1186
1187  // C++11 [dcl.constexpr]p5:
1188  //   if no function argument values exist such that the function invocation
1189  //   substitution would produce a constant expression, the program is
1190  //   ill-formed; no diagnostic required.
1191  // C++11 [dcl.constexpr]p3:
1192  //   - every constructor call and implicit conversion used in initializing the
1193  //     return value shall be one of those allowed in a constant expression.
1194  // C++11 [dcl.constexpr]p4:
1195  //   - every constructor involved in initializing non-static data members and
1196  //     base class sub-objects shall be a constexpr constructor.
1197  SmallVector<PartialDiagnosticAt, 8> Diags;
1198  if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1199    Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1200      << isa<CXXConstructorDecl>(Dcl);
1201    for (size_t I = 0, N = Diags.size(); I != N; ++I)
1202      Diag(Diags[I].first, Diags[I].second);
1203    // Don't return false here: we allow this for compatibility in
1204    // system headers.
1205  }
1206
1207  return true;
1208}
1209
1210/// isCurrentClassName - Determine whether the identifier II is the
1211/// name of the class type currently being defined. In the case of
1212/// nested classes, this will only return true if II is the name of
1213/// the innermost class.
1214bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1215                              const CXXScopeSpec *SS) {
1216  assert(getLangOpts().CPlusPlus && "No class names in C!");
1217
1218  CXXRecordDecl *CurDecl;
1219  if (SS && SS->isSet() && !SS->isInvalid()) {
1220    DeclContext *DC = computeDeclContext(*SS, true);
1221    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1222  } else
1223    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1224
1225  if (CurDecl && CurDecl->getIdentifier())
1226    return &II == CurDecl->getIdentifier();
1227  return false;
1228}
1229
1230/// \brief Determine whether the given class is a base class of the given
1231/// class, including looking at dependent bases.
1232static bool findCircularInheritance(const CXXRecordDecl *Class,
1233                                    const CXXRecordDecl *Current) {
1234  SmallVector<const CXXRecordDecl*, 8> Queue;
1235
1236  Class = Class->getCanonicalDecl();
1237  while (true) {
1238    for (CXXRecordDecl::base_class_const_iterator I = Current->bases_begin(),
1239                                                  E = Current->bases_end();
1240         I != E; ++I) {
1241      CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
1242      if (!Base)
1243        continue;
1244
1245      Base = Base->getDefinition();
1246      if (!Base)
1247        continue;
1248
1249      if (Base->getCanonicalDecl() == Class)
1250        return true;
1251
1252      Queue.push_back(Base);
1253    }
1254
1255    if (Queue.empty())
1256      return false;
1257
1258    Current = Queue.pop_back_val();
1259  }
1260
1261  return false;
1262}
1263
1264/// \brief Check the validity of a C++ base class specifier.
1265///
1266/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1267/// and returns NULL otherwise.
1268CXXBaseSpecifier *
1269Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1270                         SourceRange SpecifierRange,
1271                         bool Virtual, AccessSpecifier Access,
1272                         TypeSourceInfo *TInfo,
1273                         SourceLocation EllipsisLoc) {
1274  QualType BaseType = TInfo->getType();
1275
1276  // C++ [class.union]p1:
1277  //   A union shall not have base classes.
1278  if (Class->isUnion()) {
1279    Diag(Class->getLocation(), diag::err_base_clause_on_union)
1280      << SpecifierRange;
1281    return 0;
1282  }
1283
1284  if (EllipsisLoc.isValid() &&
1285      !TInfo->getType()->containsUnexpandedParameterPack()) {
1286    Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1287      << TInfo->getTypeLoc().getSourceRange();
1288    EllipsisLoc = SourceLocation();
1289  }
1290
1291  SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1292
1293  if (BaseType->isDependentType()) {
1294    // Make sure that we don't have circular inheritance among our dependent
1295    // bases. For non-dependent bases, the check for completeness below handles
1296    // this.
1297    if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1298      if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1299          ((BaseDecl = BaseDecl->getDefinition()) &&
1300           findCircularInheritance(Class, BaseDecl))) {
1301        Diag(BaseLoc, diag::err_circular_inheritance)
1302          << BaseType << Context.getTypeDeclType(Class);
1303
1304        if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1305          Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1306            << BaseType;
1307
1308        return 0;
1309      }
1310    }
1311
1312    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1313                                          Class->getTagKind() == TTK_Class,
1314                                          Access, TInfo, EllipsisLoc);
1315  }
1316
1317  // Base specifiers must be record types.
1318  if (!BaseType->isRecordType()) {
1319    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1320    return 0;
1321  }
1322
1323  // C++ [class.union]p1:
1324  //   A union shall not be used as a base class.
1325  if (BaseType->isUnionType()) {
1326    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1327    return 0;
1328  }
1329
1330  // C++ [class.derived]p2:
1331  //   The class-name in a base-specifier shall not be an incompletely
1332  //   defined class.
1333  if (RequireCompleteType(BaseLoc, BaseType,
1334                          diag::err_incomplete_base_class, SpecifierRange)) {
1335    Class->setInvalidDecl();
1336    return 0;
1337  }
1338
1339  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1340  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1341  assert(BaseDecl && "Record type has no declaration");
1342  BaseDecl = BaseDecl->getDefinition();
1343  assert(BaseDecl && "Base type is not incomplete, but has no definition");
1344  CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1345  assert(CXXBaseDecl && "Base type is not a C++ type");
1346
1347  // C++ [class]p3:
1348  //   If a class is marked final and it appears as a base-type-specifier in
1349  //   base-clause, the program is ill-formed.
1350  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
1351    Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1352      << CXXBaseDecl->getDeclName();
1353    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
1354      << CXXBaseDecl->getDeclName();
1355    return 0;
1356  }
1357
1358  if (BaseDecl->isInvalidDecl())
1359    Class->setInvalidDecl();
1360
1361  // Create the base specifier.
1362  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1363                                        Class->getTagKind() == TTK_Class,
1364                                        Access, TInfo, EllipsisLoc);
1365}
1366
1367/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1368/// one entry in the base class list of a class specifier, for
1369/// example:
1370///    class foo : public bar, virtual private baz {
1371/// 'public bar' and 'virtual private baz' are each base-specifiers.
1372BaseResult
1373Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1374                         ParsedAttributes &Attributes,
1375                         bool Virtual, AccessSpecifier Access,
1376                         ParsedType basetype, SourceLocation BaseLoc,
1377                         SourceLocation EllipsisLoc) {
1378  if (!classdecl)
1379    return true;
1380
1381  AdjustDeclIfTemplate(classdecl);
1382  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1383  if (!Class)
1384    return true;
1385
1386  // We do not support any C++11 attributes on base-specifiers yet.
1387  // Diagnose any attributes we see.
1388  if (!Attributes.empty()) {
1389    for (AttributeList *Attr = Attributes.getList(); Attr;
1390         Attr = Attr->getNext()) {
1391      if (Attr->isInvalid() ||
1392          Attr->getKind() == AttributeList::IgnoredAttribute)
1393        continue;
1394      Diag(Attr->getLoc(),
1395           Attr->getKind() == AttributeList::UnknownAttribute
1396             ? diag::warn_unknown_attribute_ignored
1397             : diag::err_base_specifier_attribute)
1398        << Attr->getName();
1399    }
1400  }
1401
1402  TypeSourceInfo *TInfo = 0;
1403  GetTypeFromParser(basetype, &TInfo);
1404
1405  if (EllipsisLoc.isInvalid() &&
1406      DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1407                                      UPPC_BaseType))
1408    return true;
1409
1410  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1411                                                      Virtual, Access, TInfo,
1412                                                      EllipsisLoc))
1413    return BaseSpec;
1414  else
1415    Class->setInvalidDecl();
1416
1417  return true;
1418}
1419
1420/// \brief Performs the actual work of attaching the given base class
1421/// specifiers to a C++ class.
1422bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1423                                unsigned NumBases) {
1424 if (NumBases == 0)
1425    return false;
1426
1427  // Used to keep track of which base types we have already seen, so
1428  // that we can properly diagnose redundant direct base types. Note
1429  // that the key is always the unqualified canonical type of the base
1430  // class.
1431  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1432
1433  // Copy non-redundant base specifiers into permanent storage.
1434  unsigned NumGoodBases = 0;
1435  bool Invalid = false;
1436  for (unsigned idx = 0; idx < NumBases; ++idx) {
1437    QualType NewBaseType
1438      = Context.getCanonicalType(Bases[idx]->getType());
1439    NewBaseType = NewBaseType.getLocalUnqualifiedType();
1440
1441    CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1442    if (KnownBase) {
1443      // C++ [class.mi]p3:
1444      //   A class shall not be specified as a direct base class of a
1445      //   derived class more than once.
1446      Diag(Bases[idx]->getLocStart(),
1447           diag::err_duplicate_base_class)
1448        << KnownBase->getType()
1449        << Bases[idx]->getSourceRange();
1450
1451      // Delete the duplicate base class specifier; we're going to
1452      // overwrite its pointer later.
1453      Context.Deallocate(Bases[idx]);
1454
1455      Invalid = true;
1456    } else {
1457      // Okay, add this new base class.
1458      KnownBase = Bases[idx];
1459      Bases[NumGoodBases++] = Bases[idx];
1460      if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1461        const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1462        if (Class->isInterface() &&
1463              (!RD->isInterface() ||
1464               KnownBase->getAccessSpecifier() != AS_public)) {
1465          // The Microsoft extension __interface does not permit bases that
1466          // are not themselves public interfaces.
1467          Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1468            << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1469            << RD->getSourceRange();
1470          Invalid = true;
1471        }
1472        if (RD->hasAttr<WeakAttr>())
1473          Class->addAttr(::new (Context) WeakAttr(SourceRange(), Context));
1474      }
1475    }
1476  }
1477
1478  // Attach the remaining base class specifiers to the derived class.
1479  Class->setBases(Bases, NumGoodBases);
1480
1481  // Delete the remaining (good) base class specifiers, since their
1482  // data has been copied into the CXXRecordDecl.
1483  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1484    Context.Deallocate(Bases[idx]);
1485
1486  return Invalid;
1487}
1488
1489/// ActOnBaseSpecifiers - Attach the given base specifiers to the
1490/// class, after checking whether there are any duplicate base
1491/// classes.
1492void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1493                               unsigned NumBases) {
1494  if (!ClassDecl || !Bases || !NumBases)
1495    return;
1496
1497  AdjustDeclIfTemplate(ClassDecl);
1498  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1499}
1500
1501/// \brief Determine whether the type \p Derived is a C++ class that is
1502/// derived from the type \p Base.
1503bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1504  if (!getLangOpts().CPlusPlus)
1505    return false;
1506
1507  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1508  if (!DerivedRD)
1509    return false;
1510
1511  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1512  if (!BaseRD)
1513    return false;
1514
1515  // If either the base or the derived type is invalid, don't try to
1516  // check whether one is derived from the other.
1517  if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1518    return false;
1519
1520  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
1521  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1522}
1523
1524/// \brief Determine whether the type \p Derived is a C++ class that is
1525/// derived from the type \p Base.
1526bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1527  if (!getLangOpts().CPlusPlus)
1528    return false;
1529
1530  CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1531  if (!DerivedRD)
1532    return false;
1533
1534  CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1535  if (!BaseRD)
1536    return false;
1537
1538  return DerivedRD->isDerivedFrom(BaseRD, Paths);
1539}
1540
1541void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1542                              CXXCastPath &BasePathArray) {
1543  assert(BasePathArray.empty() && "Base path array must be empty!");
1544  assert(Paths.isRecordingPaths() && "Must record paths!");
1545
1546  const CXXBasePath &Path = Paths.front();
1547
1548  // We first go backward and check if we have a virtual base.
1549  // FIXME: It would be better if CXXBasePath had the base specifier for
1550  // the nearest virtual base.
1551  unsigned Start = 0;
1552  for (unsigned I = Path.size(); I != 0; --I) {
1553    if (Path[I - 1].Base->isVirtual()) {
1554      Start = I - 1;
1555      break;
1556    }
1557  }
1558
1559  // Now add all bases.
1560  for (unsigned I = Start, E = Path.size(); I != E; ++I)
1561    BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1562}
1563
1564/// \brief Determine whether the given base path includes a virtual
1565/// base class.
1566bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1567  for (CXXCastPath::const_iterator B = BasePath.begin(),
1568                                BEnd = BasePath.end();
1569       B != BEnd; ++B)
1570    if ((*B)->isVirtual())
1571      return true;
1572
1573  return false;
1574}
1575
1576/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1577/// conversion (where Derived and Base are class types) is
1578/// well-formed, meaning that the conversion is unambiguous (and
1579/// that all of the base classes are accessible). Returns true
1580/// and emits a diagnostic if the code is ill-formed, returns false
1581/// otherwise. Loc is the location where this routine should point to
1582/// if there is an error, and Range is the source range to highlight
1583/// if there is an error.
1584bool
1585Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1586                                   unsigned InaccessibleBaseID,
1587                                   unsigned AmbigiousBaseConvID,
1588                                   SourceLocation Loc, SourceRange Range,
1589                                   DeclarationName Name,
1590                                   CXXCastPath *BasePath) {
1591  // First, determine whether the path from Derived to Base is
1592  // ambiguous. This is slightly more expensive than checking whether
1593  // the Derived to Base conversion exists, because here we need to
1594  // explore multiple paths to determine if there is an ambiguity.
1595  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1596                     /*DetectVirtual=*/false);
1597  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1598  assert(DerivationOkay &&
1599         "Can only be used with a derived-to-base conversion");
1600  (void)DerivationOkay;
1601
1602  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1603    if (InaccessibleBaseID) {
1604      // Check that the base class can be accessed.
1605      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1606                                   InaccessibleBaseID)) {
1607        case AR_inaccessible:
1608          return true;
1609        case AR_accessible:
1610        case AR_dependent:
1611        case AR_delayed:
1612          break;
1613      }
1614    }
1615
1616    // Build a base path if necessary.
1617    if (BasePath)
1618      BuildBasePathArray(Paths, *BasePath);
1619    return false;
1620  }
1621
1622  if (AmbigiousBaseConvID) {
1623    // We know that the derived-to-base conversion is ambiguous, and
1624    // we're going to produce a diagnostic. Perform the derived-to-base
1625    // search just one more time to compute all of the possible paths so
1626    // that we can print them out. This is more expensive than any of
1627    // the previous derived-to-base checks we've done, but at this point
1628    // performance isn't as much of an issue.
1629    Paths.clear();
1630    Paths.setRecordingPaths(true);
1631    bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1632    assert(StillOkay && "Can only be used with a derived-to-base conversion");
1633    (void)StillOkay;
1634
1635    // Build up a textual representation of the ambiguous paths, e.g.,
1636    // D -> B -> A, that will be used to illustrate the ambiguous
1637    // conversions in the diagnostic. We only print one of the paths
1638    // to each base class subobject.
1639    std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1640
1641    Diag(Loc, AmbigiousBaseConvID)
1642    << Derived << Base << PathDisplayStr << Range << Name;
1643  }
1644  return true;
1645}
1646
1647bool
1648Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1649                                   SourceLocation Loc, SourceRange Range,
1650                                   CXXCastPath *BasePath,
1651                                   bool IgnoreAccess) {
1652  return CheckDerivedToBaseConversion(Derived, Base,
1653                                      IgnoreAccess ? 0
1654                                       : diag::err_upcast_to_inaccessible_base,
1655                                      diag::err_ambiguous_derived_to_base_conv,
1656                                      Loc, Range, DeclarationName(),
1657                                      BasePath);
1658}
1659
1660
1661/// @brief Builds a string representing ambiguous paths from a
1662/// specific derived class to different subobjects of the same base
1663/// class.
1664///
1665/// This function builds a string that can be used in error messages
1666/// to show the different paths that one can take through the
1667/// inheritance hierarchy to go from the derived class to different
1668/// subobjects of a base class. The result looks something like this:
1669/// @code
1670/// struct D -> struct B -> struct A
1671/// struct D -> struct C -> struct A
1672/// @endcode
1673std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1674  std::string PathDisplayStr;
1675  std::set<unsigned> DisplayedPaths;
1676  for (CXXBasePaths::paths_iterator Path = Paths.begin();
1677       Path != Paths.end(); ++Path) {
1678    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1679      // We haven't displayed a path to this particular base
1680      // class subobject yet.
1681      PathDisplayStr += "\n    ";
1682      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1683      for (CXXBasePath::const_iterator Element = Path->begin();
1684           Element != Path->end(); ++Element)
1685        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1686    }
1687  }
1688
1689  return PathDisplayStr;
1690}
1691
1692//===----------------------------------------------------------------------===//
1693// C++ class member Handling
1694//===----------------------------------------------------------------------===//
1695
1696/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
1697bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1698                                SourceLocation ASLoc,
1699                                SourceLocation ColonLoc,
1700                                AttributeList *Attrs) {
1701  assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1702  AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1703                                                  ASLoc, ColonLoc);
1704  CurContext->addHiddenDecl(ASDecl);
1705  return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1706}
1707
1708/// CheckOverrideControl - Check C++11 override control semantics.
1709void Sema::CheckOverrideControl(NamedDecl *D) {
1710  if (D->isInvalidDecl())
1711    return;
1712
1713  // We only care about "override" and "final" declarations.
1714  if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1715    return;
1716
1717  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1718
1719  // We can't check dependent instance methods.
1720  if (MD && MD->isInstance() &&
1721      (MD->getParent()->hasAnyDependentBases() ||
1722       MD->getType()->isDependentType()))
1723    return;
1724
1725  if (MD && !MD->isVirtual()) {
1726    // If we have a non-virtual method, check if if hides a virtual method.
1727    // (In that case, it's most likely the method has the wrong type.)
1728    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1729    FindHiddenVirtualMethods(MD, OverloadedMethods);
1730
1731    if (!OverloadedMethods.empty()) {
1732      if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1733        Diag(OA->getLocation(),
1734             diag::override_keyword_hides_virtual_member_function)
1735          << "override" << (OverloadedMethods.size() > 1);
1736      } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1737        Diag(FA->getLocation(),
1738             diag::override_keyword_hides_virtual_member_function)
1739            << "final" << (OverloadedMethods.size() > 1);
1740      }
1741      NoteHiddenVirtualMethods(MD, OverloadedMethods);
1742      MD->setInvalidDecl();
1743      return;
1744    }
1745    // Fall through into the general case diagnostic.
1746    // FIXME: We might want to attempt typo correction here.
1747  }
1748
1749  if (!MD || !MD->isVirtual()) {
1750    if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1751      Diag(OA->getLocation(),
1752           diag::override_keyword_only_allowed_on_virtual_member_functions)
1753        << "override" << FixItHint::CreateRemoval(OA->getLocation());
1754      D->dropAttr<OverrideAttr>();
1755    }
1756    if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1757      Diag(FA->getLocation(),
1758           diag::override_keyword_only_allowed_on_virtual_member_functions)
1759        << "final" << FixItHint::CreateRemoval(FA->getLocation());
1760      D->dropAttr<FinalAttr>();
1761    }
1762    return;
1763  }
1764
1765  // C++11 [class.virtual]p5:
1766  //   If a virtual function is marked with the virt-specifier override and
1767  //   does not override a member function of a base class, the program is
1768  //   ill-formed.
1769  bool HasOverriddenMethods =
1770    MD->begin_overridden_methods() != MD->end_overridden_methods();
1771  if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1772    Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1773      << MD->getDeclName();
1774}
1775
1776/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1777/// function overrides a virtual member function marked 'final', according to
1778/// C++11 [class.virtual]p4.
1779bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1780                                                  const CXXMethodDecl *Old) {
1781  if (!Old->hasAttr<FinalAttr>())
1782    return false;
1783
1784  Diag(New->getLocation(), diag::err_final_function_overridden)
1785    << New->getDeclName();
1786  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1787  return true;
1788}
1789
1790static bool InitializationHasSideEffects(const FieldDecl &FD) {
1791  const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1792  // FIXME: Destruction of ObjC lifetime types has side-effects.
1793  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1794    return !RD->isCompleteDefinition() ||
1795           !RD->hasTrivialDefaultConstructor() ||
1796           !RD->hasTrivialDestructor();
1797  return false;
1798}
1799
1800static AttributeList *getMSPropertyAttr(AttributeList *list) {
1801  for (AttributeList* it = list; it != 0; it = it->getNext())
1802    if (it->isDeclspecPropertyAttribute())
1803      return it;
1804  return 0;
1805}
1806
1807/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1808/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1809/// bitfield width if there is one, 'InitExpr' specifies the initializer if
1810/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1811/// present (but parsing it has been deferred).
1812NamedDecl *
1813Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1814                               MultiTemplateParamsArg TemplateParameterLists,
1815                               Expr *BW, const VirtSpecifiers &VS,
1816                               InClassInitStyle InitStyle) {
1817  const DeclSpec &DS = D.getDeclSpec();
1818  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1819  DeclarationName Name = NameInfo.getName();
1820  SourceLocation Loc = NameInfo.getLoc();
1821
1822  // For anonymous bitfields, the location should point to the type.
1823  if (Loc.isInvalid())
1824    Loc = D.getLocStart();
1825
1826  Expr *BitWidth = static_cast<Expr*>(BW);
1827
1828  assert(isa<CXXRecordDecl>(CurContext));
1829  assert(!DS.isFriendSpecified());
1830
1831  bool isFunc = D.isDeclarationOfFunction();
1832
1833  if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1834    // The Microsoft extension __interface only permits public member functions
1835    // and prohibits constructors, destructors, operators, non-public member
1836    // functions, static methods and data members.
1837    unsigned InvalidDecl;
1838    bool ShowDeclName = true;
1839    if (!isFunc)
1840      InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1841    else if (AS != AS_public)
1842      InvalidDecl = 2;
1843    else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1844      InvalidDecl = 3;
1845    else switch (Name.getNameKind()) {
1846      case DeclarationName::CXXConstructorName:
1847        InvalidDecl = 4;
1848        ShowDeclName = false;
1849        break;
1850
1851      case DeclarationName::CXXDestructorName:
1852        InvalidDecl = 5;
1853        ShowDeclName = false;
1854        break;
1855
1856      case DeclarationName::CXXOperatorName:
1857      case DeclarationName::CXXConversionFunctionName:
1858        InvalidDecl = 6;
1859        break;
1860
1861      default:
1862        InvalidDecl = 0;
1863        break;
1864    }
1865
1866    if (InvalidDecl) {
1867      if (ShowDeclName)
1868        Diag(Loc, diag::err_invalid_member_in_interface)
1869          << (InvalidDecl-1) << Name;
1870      else
1871        Diag(Loc, diag::err_invalid_member_in_interface)
1872          << (InvalidDecl-1) << "";
1873      return 0;
1874    }
1875  }
1876
1877  // C++ 9.2p6: A member shall not be declared to have automatic storage
1878  // duration (auto, register) or with the extern storage-class-specifier.
1879  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1880  // data members and cannot be applied to names declared const or static,
1881  // and cannot be applied to reference members.
1882  switch (DS.getStorageClassSpec()) {
1883  case DeclSpec::SCS_unspecified:
1884  case DeclSpec::SCS_typedef:
1885  case DeclSpec::SCS_static:
1886    break;
1887  case DeclSpec::SCS_mutable:
1888    if (isFunc) {
1889      Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
1890
1891      // FIXME: It would be nicer if the keyword was ignored only for this
1892      // declarator. Otherwise we could get follow-up errors.
1893      D.getMutableDeclSpec().ClearStorageClassSpecs();
1894    }
1895    break;
1896  default:
1897    Diag(DS.getStorageClassSpecLoc(),
1898         diag::err_storageclass_invalid_for_member);
1899    D.getMutableDeclSpec().ClearStorageClassSpecs();
1900    break;
1901  }
1902
1903  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
1904                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
1905                      !isFunc);
1906
1907  if (DS.isConstexprSpecified() && isInstField) {
1908    SemaDiagnosticBuilder B =
1909        Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
1910    SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
1911    if (InitStyle == ICIS_NoInit) {
1912      B << 0 << 0 << FixItHint::CreateReplacement(ConstexprLoc, "const");
1913      D.getMutableDeclSpec().ClearConstexprSpec();
1914      const char *PrevSpec;
1915      unsigned DiagID;
1916      bool Failed = D.getMutableDeclSpec().SetTypeQual(DeclSpec::TQ_const, ConstexprLoc,
1917                                         PrevSpec, DiagID, getLangOpts());
1918      (void)Failed;
1919      assert(!Failed && "Making a constexpr member const shouldn't fail");
1920    } else {
1921      B << 1;
1922      const char *PrevSpec;
1923      unsigned DiagID;
1924      if (D.getMutableDeclSpec().SetStorageClassSpec(
1925          *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID)) {
1926        assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
1927               "This is the only DeclSpec that should fail to be applied");
1928        B << 1;
1929      } else {
1930        B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
1931        isInstField = false;
1932      }
1933    }
1934  }
1935
1936  NamedDecl *Member;
1937  if (isInstField) {
1938    CXXScopeSpec &SS = D.getCXXScopeSpec();
1939
1940    // Data members must have identifiers for names.
1941    if (!Name.isIdentifier()) {
1942      Diag(Loc, diag::err_bad_variable_name)
1943        << Name;
1944      return 0;
1945    }
1946
1947    IdentifierInfo *II = Name.getAsIdentifierInfo();
1948
1949    // Member field could not be with "template" keyword.
1950    // So TemplateParameterLists should be empty in this case.
1951    if (TemplateParameterLists.size()) {
1952      TemplateParameterList* TemplateParams = TemplateParameterLists[0];
1953      if (TemplateParams->size()) {
1954        // There is no such thing as a member field template.
1955        Diag(D.getIdentifierLoc(), diag::err_template_member)
1956            << II
1957            << SourceRange(TemplateParams->getTemplateLoc(),
1958                TemplateParams->getRAngleLoc());
1959      } else {
1960        // There is an extraneous 'template<>' for this member.
1961        Diag(TemplateParams->getTemplateLoc(),
1962            diag::err_template_member_noparams)
1963            << II
1964            << SourceRange(TemplateParams->getTemplateLoc(),
1965                TemplateParams->getRAngleLoc());
1966      }
1967      return 0;
1968    }
1969
1970    if (SS.isSet() && !SS.isInvalid()) {
1971      // The user provided a superfluous scope specifier inside a class
1972      // definition:
1973      //
1974      // class X {
1975      //   int X::member;
1976      // };
1977      if (DeclContext *DC = computeDeclContext(SS, false))
1978        diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
1979      else
1980        Diag(D.getIdentifierLoc(), diag::err_member_qualification)
1981          << Name << SS.getRange();
1982
1983      SS.clear();
1984    }
1985
1986    AttributeList *MSPropertyAttr =
1987      getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
1988    if (MSPropertyAttr) {
1989      Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1990                                BitWidth, InitStyle, AS, MSPropertyAttr);
1991      if (!Member)
1992        return 0;
1993      isInstField = false;
1994    } else {
1995      Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
1996                                BitWidth, InitStyle, AS);
1997      assert(Member && "HandleField never returns null");
1998    }
1999  } else {
2000    assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
2001
2002    Member = HandleDeclarator(S, D, TemplateParameterLists);
2003    if (!Member)
2004      return 0;
2005
2006    // Non-instance-fields can't have a bitfield.
2007    if (BitWidth) {
2008      if (Member->isInvalidDecl()) {
2009        // don't emit another diagnostic.
2010      } else if (isa<VarDecl>(Member)) {
2011        // C++ 9.6p3: A bit-field shall not be a static member.
2012        // "static member 'A' cannot be a bit-field"
2013        Diag(Loc, diag::err_static_not_bitfield)
2014          << Name << BitWidth->getSourceRange();
2015      } else if (isa<TypedefDecl>(Member)) {
2016        // "typedef member 'x' cannot be a bit-field"
2017        Diag(Loc, diag::err_typedef_not_bitfield)
2018          << Name << BitWidth->getSourceRange();
2019      } else {
2020        // A function typedef ("typedef int f(); f a;").
2021        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2022        Diag(Loc, diag::err_not_integral_type_bitfield)
2023          << Name << cast<ValueDecl>(Member)->getType()
2024          << BitWidth->getSourceRange();
2025      }
2026
2027      BitWidth = 0;
2028      Member->setInvalidDecl();
2029    }
2030
2031    Member->setAccess(AS);
2032
2033    // If we have declared a member function template or static data member
2034    // template, set the access of the templated declaration as well.
2035    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2036      FunTmpl->getTemplatedDecl()->setAccess(AS);
2037    else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2038      VarTmpl->getTemplatedDecl()->setAccess(AS);
2039  }
2040
2041  if (VS.isOverrideSpecified())
2042    Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context));
2043  if (VS.isFinalSpecified())
2044    Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context));
2045
2046  if (VS.getLastLocation().isValid()) {
2047    // Update the end location of a method that has a virt-specifiers.
2048    if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2049      MD->setRangeEnd(VS.getLastLocation());
2050  }
2051
2052  CheckOverrideControl(Member);
2053
2054  assert((Name || isInstField) && "No identifier for non-field ?");
2055
2056  if (isInstField) {
2057    FieldDecl *FD = cast<FieldDecl>(Member);
2058    FieldCollector->Add(FD);
2059
2060    if (Diags.getDiagnosticLevel(diag::warn_unused_private_field,
2061                                 FD->getLocation())
2062          != DiagnosticsEngine::Ignored) {
2063      // Remember all explicit private FieldDecls that have a name, no side
2064      // effects and are not part of a dependent type declaration.
2065      if (!FD->isImplicit() && FD->getDeclName() &&
2066          FD->getAccess() == AS_private &&
2067          !FD->hasAttr<UnusedAttr>() &&
2068          !FD->getParent()->isDependentContext() &&
2069          !InitializationHasSideEffects(*FD))
2070        UnusedPrivateFields.insert(FD);
2071    }
2072  }
2073
2074  return Member;
2075}
2076
2077namespace {
2078  class UninitializedFieldVisitor
2079      : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2080    Sema &S;
2081    // If VD is null, this visitor will only update the Decls set.
2082    ValueDecl *VD;
2083    bool isReferenceType;
2084    // List of Decls to generate a warning on.
2085    llvm::SmallPtrSet<ValueDecl*, 4> &Decls;
2086    bool WarnOnSelfReference;
2087    // If non-null, add a note to the warning pointing back to the constructor.
2088    const CXXConstructorDecl *Constructor;
2089  public:
2090    typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
2091    UninitializedFieldVisitor(Sema &S, ValueDecl *VD,
2092                              llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2093                              bool WarnOnSelfReference,
2094                              const CXXConstructorDecl *Constructor)
2095      : Inherited(S.Context), S(S), VD(VD), isReferenceType(false), Decls(Decls),
2096        WarnOnSelfReference(WarnOnSelfReference), Constructor(Constructor) {
2097      // When VD is null, this visitor is used to detect initialization of other
2098      // fields.
2099      if (VD) {
2100        if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(VD))
2101          this->VD = IFD->getAnonField();
2102        else
2103          this->VD = VD;
2104        isReferenceType = this->VD->getType()->isReferenceType();
2105      }
2106    }
2107
2108    void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly) {
2109      if (!VD)
2110        return;
2111
2112      if (CheckReferenceOnly && !isReferenceType)
2113        return;
2114
2115      if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2116        return;
2117
2118      // FieldME is the inner-most MemberExpr that is not an anonymous struct
2119      // or union.
2120      MemberExpr *FieldME = ME;
2121
2122      Expr *Base = ME;
2123      while (isa<MemberExpr>(Base)) {
2124        ME = cast<MemberExpr>(Base);
2125
2126        if (isa<VarDecl>(ME->getMemberDecl()))
2127          return;
2128
2129        if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2130          if (!FD->isAnonymousStructOrUnion())
2131            FieldME = ME;
2132
2133        Base = ME->getBase();
2134      }
2135
2136      if (!isa<CXXThisExpr>(Base))
2137        return;
2138
2139      ValueDecl* FoundVD = FieldME->getMemberDecl();
2140
2141      if (VD == FoundVD) {
2142        if (!WarnOnSelfReference)
2143          return;
2144
2145        unsigned diag = isReferenceType
2146            ? diag::warn_reference_field_is_uninit
2147            : diag::warn_field_is_uninit;
2148        S.Diag(FieldME->getExprLoc(), diag) << VD;
2149        if (Constructor)
2150          S.Diag(Constructor->getLocation(),
2151                 diag::note_uninit_in_this_constructor);
2152        return;
2153      }
2154
2155      if (CheckReferenceOnly)
2156        return;
2157
2158      if (Decls.count(FoundVD)) {
2159        S.Diag(FieldME->getExprLoc(), diag::warn_field_is_uninit) << FoundVD;
2160        if (Constructor)
2161          S.Diag(Constructor->getLocation(),
2162                 diag::note_uninit_in_this_constructor);
2163
2164      }
2165    }
2166
2167    void HandleValue(Expr *E) {
2168      if (!VD)
2169        return;
2170
2171      E = E->IgnoreParens();
2172
2173      if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2174        HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2175        return;
2176      }
2177
2178      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2179        HandleValue(CO->getTrueExpr());
2180        HandleValue(CO->getFalseExpr());
2181        return;
2182      }
2183
2184      if (BinaryConditionalOperator *BCO =
2185              dyn_cast<BinaryConditionalOperator>(E)) {
2186        HandleValue(BCO->getCommon());
2187        HandleValue(BCO->getFalseExpr());
2188        return;
2189      }
2190
2191      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2192        switch (BO->getOpcode()) {
2193        default:
2194          return;
2195        case(BO_PtrMemD):
2196        case(BO_PtrMemI):
2197          HandleValue(BO->getLHS());
2198          return;
2199        case(BO_Comma):
2200          HandleValue(BO->getRHS());
2201          return;
2202        }
2203      }
2204    }
2205
2206    void VisitMemberExpr(MemberExpr *ME) {
2207      HandleMemberExpr(ME, true /*CheckReferenceOnly*/);
2208
2209      Inherited::VisitMemberExpr(ME);
2210    }
2211
2212    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2213      if (E->getCastKind() == CK_LValueToRValue)
2214        HandleValue(E->getSubExpr());
2215
2216      Inherited::VisitImplicitCastExpr(E);
2217    }
2218
2219    void VisitCXXConstructExpr(CXXConstructExpr *E) {
2220      if (E->getConstructor()->isCopyConstructor())
2221        if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(E->getArg(0)))
2222          if (ICE->getCastKind() == CK_NoOp)
2223            if (MemberExpr *ME = dyn_cast<MemberExpr>(ICE->getSubExpr()))
2224              HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2225
2226      Inherited::VisitCXXConstructExpr(E);
2227    }
2228
2229    void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2230      Expr *Callee = E->getCallee();
2231      if (isa<MemberExpr>(Callee))
2232        HandleValue(Callee);
2233
2234      Inherited::VisitCXXMemberCallExpr(E);
2235    }
2236
2237    void VisitBinaryOperator(BinaryOperator *E) {
2238      // If a field assignment is detected, remove the field from the
2239      // uninitiailized field set.
2240      if (E->getOpcode() == BO_Assign)
2241        if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2242          if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2243            Decls.erase(FD);
2244
2245      Inherited::VisitBinaryOperator(E);
2246    }
2247  };
2248  static void CheckInitExprContainsUninitializedFields(
2249      Sema &S, Expr *E, ValueDecl *VD, llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2250      bool WarnOnSelfReference, const CXXConstructorDecl *Constructor = 0) {
2251    if (Decls.size() == 0 && !WarnOnSelfReference)
2252      return;
2253
2254    if (E)
2255      UninitializedFieldVisitor(S, VD, Decls, WarnOnSelfReference, Constructor)
2256          .Visit(E);
2257  }
2258} // namespace
2259
2260/// ActOnCXXInClassMemberInitializer - This is invoked after parsing an
2261/// in-class initializer for a non-static C++ class member, and after
2262/// instantiating an in-class initializer in a class template. Such actions
2263/// are deferred until the class is complete.
2264void
2265Sema::ActOnCXXInClassMemberInitializer(Decl *D, SourceLocation InitLoc,
2266                                       Expr *InitExpr) {
2267  FieldDecl *FD = cast<FieldDecl>(D);
2268  assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2269         "must set init style when field is created");
2270
2271  if (!InitExpr) {
2272    FD->setInvalidDecl();
2273    FD->removeInClassInitializer();
2274    return;
2275  }
2276
2277  if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2278    FD->setInvalidDecl();
2279    FD->removeInClassInitializer();
2280    return;
2281  }
2282
2283  ExprResult Init = InitExpr;
2284  if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2285    InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2286    InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2287        ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2288        : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2289    InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2290    Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2291    if (Init.isInvalid()) {
2292      FD->setInvalidDecl();
2293      return;
2294    }
2295  }
2296
2297  // C++11 [class.base.init]p7:
2298  //   The initialization of each base and member constitutes a
2299  //   full-expression.
2300  Init = ActOnFinishFullExpr(Init.take(), InitLoc);
2301  if (Init.isInvalid()) {
2302    FD->setInvalidDecl();
2303    return;
2304  }
2305
2306  InitExpr = Init.release();
2307
2308  FD->setInClassInitializer(InitExpr);
2309}
2310
2311/// \brief Find the direct and/or virtual base specifiers that
2312/// correspond to the given base type, for use in base initialization
2313/// within a constructor.
2314static bool FindBaseInitializer(Sema &SemaRef,
2315                                CXXRecordDecl *ClassDecl,
2316                                QualType BaseType,
2317                                const CXXBaseSpecifier *&DirectBaseSpec,
2318                                const CXXBaseSpecifier *&VirtualBaseSpec) {
2319  // First, check for a direct base class.
2320  DirectBaseSpec = 0;
2321  for (CXXRecordDecl::base_class_const_iterator Base
2322         = ClassDecl->bases_begin();
2323       Base != ClassDecl->bases_end(); ++Base) {
2324    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
2325      // We found a direct base of this type. That's what we're
2326      // initializing.
2327      DirectBaseSpec = &*Base;
2328      break;
2329    }
2330  }
2331
2332  // Check for a virtual base class.
2333  // FIXME: We might be able to short-circuit this if we know in advance that
2334  // there are no virtual bases.
2335  VirtualBaseSpec = 0;
2336  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2337    // We haven't found a base yet; search the class hierarchy for a
2338    // virtual base class.
2339    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2340                       /*DetectVirtual=*/false);
2341    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2342                              BaseType, Paths)) {
2343      for (CXXBasePaths::paths_iterator Path = Paths.begin();
2344           Path != Paths.end(); ++Path) {
2345        if (Path->back().Base->isVirtual()) {
2346          VirtualBaseSpec = Path->back().Base;
2347          break;
2348        }
2349      }
2350    }
2351  }
2352
2353  return DirectBaseSpec || VirtualBaseSpec;
2354}
2355
2356/// \brief Handle a C++ member initializer using braced-init-list syntax.
2357MemInitResult
2358Sema::ActOnMemInitializer(Decl *ConstructorD,
2359                          Scope *S,
2360                          CXXScopeSpec &SS,
2361                          IdentifierInfo *MemberOrBase,
2362                          ParsedType TemplateTypeTy,
2363                          const DeclSpec &DS,
2364                          SourceLocation IdLoc,
2365                          Expr *InitList,
2366                          SourceLocation EllipsisLoc) {
2367  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2368                             DS, IdLoc, InitList,
2369                             EllipsisLoc);
2370}
2371
2372/// \brief Handle a C++ member initializer using parentheses syntax.
2373MemInitResult
2374Sema::ActOnMemInitializer(Decl *ConstructorD,
2375                          Scope *S,
2376                          CXXScopeSpec &SS,
2377                          IdentifierInfo *MemberOrBase,
2378                          ParsedType TemplateTypeTy,
2379                          const DeclSpec &DS,
2380                          SourceLocation IdLoc,
2381                          SourceLocation LParenLoc,
2382                          ArrayRef<Expr *> Args,
2383                          SourceLocation RParenLoc,
2384                          SourceLocation EllipsisLoc) {
2385  Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2386                                           Args, RParenLoc);
2387  return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2388                             DS, IdLoc, List, EllipsisLoc);
2389}
2390
2391namespace {
2392
2393// Callback to only accept typo corrections that can be a valid C++ member
2394// intializer: either a non-static field member or a base class.
2395class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2396public:
2397  explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2398      : ClassDecl(ClassDecl) {}
2399
2400  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
2401    if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2402      if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2403        return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2404      return isa<TypeDecl>(ND);
2405    }
2406    return false;
2407  }
2408
2409private:
2410  CXXRecordDecl *ClassDecl;
2411};
2412
2413}
2414
2415/// \brief Handle a C++ member initializer.
2416MemInitResult
2417Sema::BuildMemInitializer(Decl *ConstructorD,
2418                          Scope *S,
2419                          CXXScopeSpec &SS,
2420                          IdentifierInfo *MemberOrBase,
2421                          ParsedType TemplateTypeTy,
2422                          const DeclSpec &DS,
2423                          SourceLocation IdLoc,
2424                          Expr *Init,
2425                          SourceLocation EllipsisLoc) {
2426  if (!ConstructorD)
2427    return true;
2428
2429  AdjustDeclIfTemplate(ConstructorD);
2430
2431  CXXConstructorDecl *Constructor
2432    = dyn_cast<CXXConstructorDecl>(ConstructorD);
2433  if (!Constructor) {
2434    // The user wrote a constructor initializer on a function that is
2435    // not a C++ constructor. Ignore the error for now, because we may
2436    // have more member initializers coming; we'll diagnose it just
2437    // once in ActOnMemInitializers.
2438    return true;
2439  }
2440
2441  CXXRecordDecl *ClassDecl = Constructor->getParent();
2442
2443  // C++ [class.base.init]p2:
2444  //   Names in a mem-initializer-id are looked up in the scope of the
2445  //   constructor's class and, if not found in that scope, are looked
2446  //   up in the scope containing the constructor's definition.
2447  //   [Note: if the constructor's class contains a member with the
2448  //   same name as a direct or virtual base class of the class, a
2449  //   mem-initializer-id naming the member or base class and composed
2450  //   of a single identifier refers to the class member. A
2451  //   mem-initializer-id for the hidden base class may be specified
2452  //   using a qualified name. ]
2453  if (!SS.getScopeRep() && !TemplateTypeTy) {
2454    // Look for a member, first.
2455    DeclContext::lookup_result Result
2456      = ClassDecl->lookup(MemberOrBase);
2457    if (!Result.empty()) {
2458      ValueDecl *Member;
2459      if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2460          (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2461        if (EllipsisLoc.isValid())
2462          Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2463            << MemberOrBase
2464            << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2465
2466        return BuildMemberInitializer(Member, Init, IdLoc);
2467      }
2468    }
2469  }
2470  // It didn't name a member, so see if it names a class.
2471  QualType BaseType;
2472  TypeSourceInfo *TInfo = 0;
2473
2474  if (TemplateTypeTy) {
2475    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2476  } else if (DS.getTypeSpecType() == TST_decltype) {
2477    BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2478  } else {
2479    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2480    LookupParsedName(R, S, &SS);
2481
2482    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2483    if (!TyD) {
2484      if (R.isAmbiguous()) return true;
2485
2486      // We don't want access-control diagnostics here.
2487      R.suppressDiagnostics();
2488
2489      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2490        bool NotUnknownSpecialization = false;
2491        DeclContext *DC = computeDeclContext(SS, false);
2492        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2493          NotUnknownSpecialization = !Record->hasAnyDependentBases();
2494
2495        if (!NotUnknownSpecialization) {
2496          // When the scope specifier can refer to a member of an unknown
2497          // specialization, we take it as a type name.
2498          BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2499                                       SS.getWithLocInContext(Context),
2500                                       *MemberOrBase, IdLoc);
2501          if (BaseType.isNull())
2502            return true;
2503
2504          R.clear();
2505          R.setLookupName(MemberOrBase);
2506        }
2507      }
2508
2509      // If no results were found, try to correct typos.
2510      TypoCorrection Corr;
2511      MemInitializerValidatorCCC Validator(ClassDecl);
2512      if (R.empty() && BaseType.isNull() &&
2513          (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2514                              Validator, ClassDecl))) {
2515        if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2516          // We have found a non-static data member with a similar
2517          // name to what was typed; complain and initialize that
2518          // member.
2519          diagnoseTypo(Corr,
2520                       PDiag(diag::err_mem_init_not_member_or_class_suggest)
2521                         << MemberOrBase << true);
2522          return BuildMemberInitializer(Member, Init, IdLoc);
2523        } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2524          const CXXBaseSpecifier *DirectBaseSpec;
2525          const CXXBaseSpecifier *VirtualBaseSpec;
2526          if (FindBaseInitializer(*this, ClassDecl,
2527                                  Context.getTypeDeclType(Type),
2528                                  DirectBaseSpec, VirtualBaseSpec)) {
2529            // We have found a direct or virtual base class with a
2530            // similar name to what was typed; complain and initialize
2531            // that base class.
2532            diagnoseTypo(Corr,
2533                         PDiag(diag::err_mem_init_not_member_or_class_suggest)
2534                           << MemberOrBase << false,
2535                         PDiag() /*Suppress note, we provide our own.*/);
2536
2537            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2538                                                              : VirtualBaseSpec;
2539            Diag(BaseSpec->getLocStart(),
2540                 diag::note_base_class_specified_here)
2541              << BaseSpec->getType()
2542              << BaseSpec->getSourceRange();
2543
2544            TyD = Type;
2545          }
2546        }
2547      }
2548
2549      if (!TyD && BaseType.isNull()) {
2550        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2551          << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2552        return true;
2553      }
2554    }
2555
2556    if (BaseType.isNull()) {
2557      BaseType = Context.getTypeDeclType(TyD);
2558      if (SS.isSet()) {
2559        NestedNameSpecifier *Qualifier =
2560          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
2561
2562        // FIXME: preserve source range information
2563        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
2564      }
2565    }
2566  }
2567
2568  if (!TInfo)
2569    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2570
2571  return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2572}
2573
2574/// Checks a member initializer expression for cases where reference (or
2575/// pointer) members are bound to by-value parameters (or their addresses).
2576static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2577                                               Expr *Init,
2578                                               SourceLocation IdLoc) {
2579  QualType MemberTy = Member->getType();
2580
2581  // We only handle pointers and references currently.
2582  // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2583  if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2584    return;
2585
2586  const bool IsPointer = MemberTy->isPointerType();
2587  if (IsPointer) {
2588    if (const UnaryOperator *Op
2589          = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2590      // The only case we're worried about with pointers requires taking the
2591      // address.
2592      if (Op->getOpcode() != UO_AddrOf)
2593        return;
2594
2595      Init = Op->getSubExpr();
2596    } else {
2597      // We only handle address-of expression initializers for pointers.
2598      return;
2599    }
2600  }
2601
2602  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2603    // We only warn when referring to a non-reference parameter declaration.
2604    const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2605    if (!Parameter || Parameter->getType()->isReferenceType())
2606      return;
2607
2608    S.Diag(Init->getExprLoc(),
2609           IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2610                     : diag::warn_bind_ref_member_to_parameter)
2611      << Member << Parameter << Init->getSourceRange();
2612  } else {
2613    // Other initializers are fine.
2614    return;
2615  }
2616
2617  S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2618    << (unsigned)IsPointer;
2619}
2620
2621MemInitResult
2622Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2623                             SourceLocation IdLoc) {
2624  FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2625  IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2626  assert((DirectMember || IndirectMember) &&
2627         "Member must be a FieldDecl or IndirectFieldDecl");
2628
2629  if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2630    return true;
2631
2632  if (Member->isInvalidDecl())
2633    return true;
2634
2635  MultiExprArg Args;
2636  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2637    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2638  } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2639    Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2640  } else {
2641    // Template instantiation doesn't reconstruct ParenListExprs for us.
2642    Args = Init;
2643  }
2644
2645  SourceRange InitRange = Init->getSourceRange();
2646
2647  if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2648    // Can't check initialization for a member of dependent type or when
2649    // any of the arguments are type-dependent expressions.
2650    DiscardCleanupsInEvaluationContext();
2651  } else {
2652    bool InitList = false;
2653    if (isa<InitListExpr>(Init)) {
2654      InitList = true;
2655      Args = Init;
2656    }
2657
2658    // Initialize the member.
2659    InitializedEntity MemberEntity =
2660      DirectMember ? InitializedEntity::InitializeMember(DirectMember, 0)
2661                   : InitializedEntity::InitializeMember(IndirectMember, 0);
2662    InitializationKind Kind =
2663      InitList ? InitializationKind::CreateDirectList(IdLoc)
2664               : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2665                                                  InitRange.getEnd());
2666
2667    InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2668    ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args, 0);
2669    if (MemberInit.isInvalid())
2670      return true;
2671
2672    CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2673
2674    // C++11 [class.base.init]p7:
2675    //   The initialization of each base and member constitutes a
2676    //   full-expression.
2677    MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2678    if (MemberInit.isInvalid())
2679      return true;
2680
2681    Init = MemberInit.get();
2682  }
2683
2684  if (DirectMember) {
2685    return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2686                                            InitRange.getBegin(), Init,
2687                                            InitRange.getEnd());
2688  } else {
2689    return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2690                                            InitRange.getBegin(), Init,
2691                                            InitRange.getEnd());
2692  }
2693}
2694
2695MemInitResult
2696Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2697                                 CXXRecordDecl *ClassDecl) {
2698  SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2699  if (!LangOpts.CPlusPlus11)
2700    return Diag(NameLoc, diag::err_delegating_ctor)
2701      << TInfo->getTypeLoc().getLocalSourceRange();
2702  Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2703
2704  bool InitList = true;
2705  MultiExprArg Args = Init;
2706  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2707    InitList = false;
2708    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2709  }
2710
2711  SourceRange InitRange = Init->getSourceRange();
2712  // Initialize the object.
2713  InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2714                                     QualType(ClassDecl->getTypeForDecl(), 0));
2715  InitializationKind Kind =
2716    InitList ? InitializationKind::CreateDirectList(NameLoc)
2717             : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2718                                                InitRange.getEnd());
2719  InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2720  ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2721                                              Args, 0);
2722  if (DelegationInit.isInvalid())
2723    return true;
2724
2725  assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2726         "Delegating constructor with no target?");
2727
2728  // C++11 [class.base.init]p7:
2729  //   The initialization of each base and member constitutes a
2730  //   full-expression.
2731  DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2732                                       InitRange.getBegin());
2733  if (DelegationInit.isInvalid())
2734    return true;
2735
2736  // If we are in a dependent context, template instantiation will
2737  // perform this type-checking again. Just save the arguments that we
2738  // received in a ParenListExpr.
2739  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2740  // of the information that we have about the base
2741  // initializer. However, deconstructing the ASTs is a dicey process,
2742  // and this approach is far more likely to get the corner cases right.
2743  if (CurContext->isDependentContext())
2744    DelegationInit = Owned(Init);
2745
2746  return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2747                                          DelegationInit.takeAs<Expr>(),
2748                                          InitRange.getEnd());
2749}
2750
2751MemInitResult
2752Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2753                           Expr *Init, CXXRecordDecl *ClassDecl,
2754                           SourceLocation EllipsisLoc) {
2755  SourceLocation BaseLoc
2756    = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2757
2758  if (!BaseType->isDependentType() && !BaseType->isRecordType())
2759    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2760             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2761
2762  // C++ [class.base.init]p2:
2763  //   [...] Unless the mem-initializer-id names a nonstatic data
2764  //   member of the constructor's class or a direct or virtual base
2765  //   of that class, the mem-initializer is ill-formed. A
2766  //   mem-initializer-list can initialize a base class using any
2767  //   name that denotes that base class type.
2768  bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2769
2770  SourceRange InitRange = Init->getSourceRange();
2771  if (EllipsisLoc.isValid()) {
2772    // This is a pack expansion.
2773    if (!BaseType->containsUnexpandedParameterPack())  {
2774      Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2775        << SourceRange(BaseLoc, InitRange.getEnd());
2776
2777      EllipsisLoc = SourceLocation();
2778    }
2779  } else {
2780    // Check for any unexpanded parameter packs.
2781    if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2782      return true;
2783
2784    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2785      return true;
2786  }
2787
2788  // Check for direct and virtual base classes.
2789  const CXXBaseSpecifier *DirectBaseSpec = 0;
2790  const CXXBaseSpecifier *VirtualBaseSpec = 0;
2791  if (!Dependent) {
2792    if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2793                                       BaseType))
2794      return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2795
2796    FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2797                        VirtualBaseSpec);
2798
2799    // C++ [base.class.init]p2:
2800    // Unless the mem-initializer-id names a nonstatic data member of the
2801    // constructor's class or a direct or virtual base of that class, the
2802    // mem-initializer is ill-formed.
2803    if (!DirectBaseSpec && !VirtualBaseSpec) {
2804      // If the class has any dependent bases, then it's possible that
2805      // one of those types will resolve to the same type as
2806      // BaseType. Therefore, just treat this as a dependent base
2807      // class initialization.  FIXME: Should we try to check the
2808      // initialization anyway? It seems odd.
2809      if (ClassDecl->hasAnyDependentBases())
2810        Dependent = true;
2811      else
2812        return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2813          << BaseType << Context.getTypeDeclType(ClassDecl)
2814          << BaseTInfo->getTypeLoc().getLocalSourceRange();
2815    }
2816  }
2817
2818  if (Dependent) {
2819    DiscardCleanupsInEvaluationContext();
2820
2821    return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2822                                            /*IsVirtual=*/false,
2823                                            InitRange.getBegin(), Init,
2824                                            InitRange.getEnd(), EllipsisLoc);
2825  }
2826
2827  // C++ [base.class.init]p2:
2828  //   If a mem-initializer-id is ambiguous because it designates both
2829  //   a direct non-virtual base class and an inherited virtual base
2830  //   class, the mem-initializer is ill-formed.
2831  if (DirectBaseSpec && VirtualBaseSpec)
2832    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2833      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2834
2835  const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
2836  if (!BaseSpec)
2837    BaseSpec = VirtualBaseSpec;
2838
2839  // Initialize the base.
2840  bool InitList = true;
2841  MultiExprArg Args = Init;
2842  if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2843    InitList = false;
2844    Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2845  }
2846
2847  InitializedEntity BaseEntity =
2848    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
2849  InitializationKind Kind =
2850    InitList ? InitializationKind::CreateDirectList(BaseLoc)
2851             : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
2852                                                InitRange.getEnd());
2853  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
2854  ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, 0);
2855  if (BaseInit.isInvalid())
2856    return true;
2857
2858  // C++11 [class.base.init]p7:
2859  //   The initialization of each base and member constitutes a
2860  //   full-expression.
2861  BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
2862  if (BaseInit.isInvalid())
2863    return true;
2864
2865  // If we are in a dependent context, template instantiation will
2866  // perform this type-checking again. Just save the arguments that we
2867  // received in a ParenListExpr.
2868  // FIXME: This isn't quite ideal, since our ASTs don't capture all
2869  // of the information that we have about the base
2870  // initializer. However, deconstructing the ASTs is a dicey process,
2871  // and this approach is far more likely to get the corner cases right.
2872  if (CurContext->isDependentContext())
2873    BaseInit = Owned(Init);
2874
2875  return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2876                                          BaseSpec->isVirtual(),
2877                                          InitRange.getBegin(),
2878                                          BaseInit.takeAs<Expr>(),
2879                                          InitRange.getEnd(), EllipsisLoc);
2880}
2881
2882// Create a static_cast\<T&&>(expr).
2883static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
2884  if (T.isNull()) T = E->getType();
2885  QualType TargetType = SemaRef.BuildReferenceType(
2886      T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
2887  SourceLocation ExprLoc = E->getLocStart();
2888  TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
2889      TargetType, ExprLoc);
2890
2891  return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
2892                                   SourceRange(ExprLoc, ExprLoc),
2893                                   E->getSourceRange()).take();
2894}
2895
2896/// ImplicitInitializerKind - How an implicit base or member initializer should
2897/// initialize its base or member.
2898enum ImplicitInitializerKind {
2899  IIK_Default,
2900  IIK_Copy,
2901  IIK_Move,
2902  IIK_Inherit
2903};
2904
2905static bool
2906BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
2907                             ImplicitInitializerKind ImplicitInitKind,
2908                             CXXBaseSpecifier *BaseSpec,
2909                             bool IsInheritedVirtualBase,
2910                             CXXCtorInitializer *&CXXBaseInit) {
2911  InitializedEntity InitEntity
2912    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
2913                                        IsInheritedVirtualBase);
2914
2915  ExprResult BaseInit;
2916
2917  switch (ImplicitInitKind) {
2918  case IIK_Inherit: {
2919    const CXXRecordDecl *Inherited =
2920        Constructor->getInheritedConstructor()->getParent();
2921    const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
2922    if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
2923      // C++11 [class.inhctor]p8:
2924      //   Each expression in the expression-list is of the form
2925      //   static_cast<T&&>(p), where p is the name of the corresponding
2926      //   constructor parameter and T is the declared type of p.
2927      SmallVector<Expr*, 16> Args;
2928      for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
2929        ParmVarDecl *PD = Constructor->getParamDecl(I);
2930        ExprResult ArgExpr =
2931            SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
2932                                     VK_LValue, SourceLocation());
2933        if (ArgExpr.isInvalid())
2934          return true;
2935        Args.push_back(CastForMoving(SemaRef, ArgExpr.take(), PD->getType()));
2936      }
2937
2938      InitializationKind InitKind = InitializationKind::CreateDirect(
2939          Constructor->getLocation(), SourceLocation(), SourceLocation());
2940      InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
2941      BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
2942      break;
2943    }
2944  }
2945  // Fall through.
2946  case IIK_Default: {
2947    InitializationKind InitKind
2948      = InitializationKind::CreateDefault(Constructor->getLocation());
2949    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
2950    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
2951    break;
2952  }
2953
2954  case IIK_Move:
2955  case IIK_Copy: {
2956    bool Moving = ImplicitInitKind == IIK_Move;
2957    ParmVarDecl *Param = Constructor->getParamDecl(0);
2958    QualType ParamType = Param->getType().getNonReferenceType();
2959
2960    Expr *CopyCtorArg =
2961      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
2962                          SourceLocation(), Param, false,
2963                          Constructor->getLocation(), ParamType,
2964                          VK_LValue, 0);
2965
2966    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
2967
2968    // Cast to the base class to avoid ambiguities.
2969    QualType ArgTy =
2970      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
2971                                       ParamType.getQualifiers());
2972
2973    if (Moving) {
2974      CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
2975    }
2976
2977    CXXCastPath BasePath;
2978    BasePath.push_back(BaseSpec);
2979    CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
2980                                            CK_UncheckedDerivedToBase,
2981                                            Moving ? VK_XValue : VK_LValue,
2982                                            &BasePath).take();
2983
2984    InitializationKind InitKind
2985      = InitializationKind::CreateDirect(Constructor->getLocation(),
2986                                         SourceLocation(), SourceLocation());
2987    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
2988    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
2989    break;
2990  }
2991  }
2992
2993  BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
2994  if (BaseInit.isInvalid())
2995    return true;
2996
2997  CXXBaseInit =
2998    new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
2999               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3000                                                        SourceLocation()),
3001                                             BaseSpec->isVirtual(),
3002                                             SourceLocation(),
3003                                             BaseInit.takeAs<Expr>(),
3004                                             SourceLocation(),
3005                                             SourceLocation());
3006
3007  return false;
3008}
3009
3010static bool RefersToRValueRef(Expr *MemRef) {
3011  ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3012  return Referenced->getType()->isRValueReferenceType();
3013}
3014
3015static bool
3016BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3017                               ImplicitInitializerKind ImplicitInitKind,
3018                               FieldDecl *Field, IndirectFieldDecl *Indirect,
3019                               CXXCtorInitializer *&CXXMemberInit) {
3020  if (Field->isInvalidDecl())
3021    return true;
3022
3023  SourceLocation Loc = Constructor->getLocation();
3024
3025  if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3026    bool Moving = ImplicitInitKind == IIK_Move;
3027    ParmVarDecl *Param = Constructor->getParamDecl(0);
3028    QualType ParamType = Param->getType().getNonReferenceType();
3029
3030    // Suppress copying zero-width bitfields.
3031    if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3032      return false;
3033
3034    Expr *MemberExprBase =
3035      DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3036                          SourceLocation(), Param, false,
3037                          Loc, ParamType, VK_LValue, 0);
3038
3039    SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3040
3041    if (Moving) {
3042      MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3043    }
3044
3045    // Build a reference to this field within the parameter.
3046    CXXScopeSpec SS;
3047    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3048                              Sema::LookupMemberName);
3049    MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3050                                  : cast<ValueDecl>(Field), AS_public);
3051    MemberLookup.resolveKind();
3052    ExprResult CtorArg
3053      = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3054                                         ParamType, Loc,
3055                                         /*IsArrow=*/false,
3056                                         SS,
3057                                         /*TemplateKWLoc=*/SourceLocation(),
3058                                         /*FirstQualifierInScope=*/0,
3059                                         MemberLookup,
3060                                         /*TemplateArgs=*/0);
3061    if (CtorArg.isInvalid())
3062      return true;
3063
3064    // C++11 [class.copy]p15:
3065    //   - if a member m has rvalue reference type T&&, it is direct-initialized
3066    //     with static_cast<T&&>(x.m);
3067    if (RefersToRValueRef(CtorArg.get())) {
3068      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3069    }
3070
3071    // When the field we are copying is an array, create index variables for
3072    // each dimension of the array. We use these index variables to subscript
3073    // the source array, and other clients (e.g., CodeGen) will perform the
3074    // necessary iteration with these index variables.
3075    SmallVector<VarDecl *, 4> IndexVariables;
3076    QualType BaseType = Field->getType();
3077    QualType SizeType = SemaRef.Context.getSizeType();
3078    bool InitializingArray = false;
3079    while (const ConstantArrayType *Array
3080                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3081      InitializingArray = true;
3082      // Create the iteration variable for this array index.
3083      IdentifierInfo *IterationVarName = 0;
3084      {
3085        SmallString<8> Str;
3086        llvm::raw_svector_ostream OS(Str);
3087        OS << "__i" << IndexVariables.size();
3088        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3089      }
3090      VarDecl *IterationVar
3091        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3092                          IterationVarName, SizeType,
3093                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3094                          SC_None);
3095      IndexVariables.push_back(IterationVar);
3096
3097      // Create a reference to the iteration variable.
3098      ExprResult IterationVarRef
3099        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3100      assert(!IterationVarRef.isInvalid() &&
3101             "Reference to invented variable cannot fail!");
3102      IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.take());
3103      assert(!IterationVarRef.isInvalid() &&
3104             "Conversion of invented variable cannot fail!");
3105
3106      // Subscript the array with this iteration variable.
3107      CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.take(), Loc,
3108                                                        IterationVarRef.take(),
3109                                                        Loc);
3110      if (CtorArg.isInvalid())
3111        return true;
3112
3113      BaseType = Array->getElementType();
3114    }
3115
3116    // The array subscript expression is an lvalue, which is wrong for moving.
3117    if (Moving && InitializingArray)
3118      CtorArg = CastForMoving(SemaRef, CtorArg.take());
3119
3120    // Construct the entity that we will be initializing. For an array, this
3121    // will be first element in the array, which may require several levels
3122    // of array-subscript entities.
3123    SmallVector<InitializedEntity, 4> Entities;
3124    Entities.reserve(1 + IndexVariables.size());
3125    if (Indirect)
3126      Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3127    else
3128      Entities.push_back(InitializedEntity::InitializeMember(Field));
3129    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3130      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3131                                                              0,
3132                                                              Entities.back()));
3133
3134    // Direct-initialize to use the copy constructor.
3135    InitializationKind InitKind =
3136      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3137
3138    Expr *CtorArgE = CtorArg.takeAs<Expr>();
3139    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3140
3141    ExprResult MemberInit
3142      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3143                        MultiExprArg(&CtorArgE, 1));
3144    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3145    if (MemberInit.isInvalid())
3146      return true;
3147
3148    if (Indirect) {
3149      assert(IndexVariables.size() == 0 &&
3150             "Indirect field improperly initialized");
3151      CXXMemberInit
3152        = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3153                                                   Loc, Loc,
3154                                                   MemberInit.takeAs<Expr>(),
3155                                                   Loc);
3156    } else
3157      CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3158                                                 Loc, MemberInit.takeAs<Expr>(),
3159                                                 Loc,
3160                                                 IndexVariables.data(),
3161                                                 IndexVariables.size());
3162    return false;
3163  }
3164
3165  assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3166         "Unhandled implicit init kind!");
3167
3168  QualType FieldBaseElementType =
3169    SemaRef.Context.getBaseElementType(Field->getType());
3170
3171  if (FieldBaseElementType->isRecordType()) {
3172    InitializedEntity InitEntity
3173      = Indirect? InitializedEntity::InitializeMember(Indirect)
3174                : InitializedEntity::InitializeMember(Field);
3175    InitializationKind InitKind =
3176      InitializationKind::CreateDefault(Loc);
3177
3178    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3179    ExprResult MemberInit =
3180      InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3181
3182    MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3183    if (MemberInit.isInvalid())
3184      return true;
3185
3186    if (Indirect)
3187      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3188                                                               Indirect, Loc,
3189                                                               Loc,
3190                                                               MemberInit.get(),
3191                                                               Loc);
3192    else
3193      CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3194                                                               Field, Loc, Loc,
3195                                                               MemberInit.get(),
3196                                                               Loc);
3197    return false;
3198  }
3199
3200  if (!Field->getParent()->isUnion()) {
3201    if (FieldBaseElementType->isReferenceType()) {
3202      SemaRef.Diag(Constructor->getLocation(),
3203                   diag::err_uninitialized_member_in_ctor)
3204      << (int)Constructor->isImplicit()
3205      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3206      << 0 << Field->getDeclName();
3207      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3208      return true;
3209    }
3210
3211    if (FieldBaseElementType.isConstQualified()) {
3212      SemaRef.Diag(Constructor->getLocation(),
3213                   diag::err_uninitialized_member_in_ctor)
3214      << (int)Constructor->isImplicit()
3215      << SemaRef.Context.getTagDeclType(Constructor->getParent())
3216      << 1 << Field->getDeclName();
3217      SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3218      return true;
3219    }
3220  }
3221
3222  if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3223      FieldBaseElementType->isObjCRetainableType() &&
3224      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3225      FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3226    // ARC:
3227    //   Default-initialize Objective-C pointers to NULL.
3228    CXXMemberInit
3229      = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3230                                                 Loc, Loc,
3231                 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3232                                                 Loc);
3233    return false;
3234  }
3235
3236  // Nothing to initialize.
3237  CXXMemberInit = 0;
3238  return false;
3239}
3240
3241namespace {
3242struct BaseAndFieldInfo {
3243  Sema &S;
3244  CXXConstructorDecl *Ctor;
3245  bool AnyErrorsInInits;
3246  ImplicitInitializerKind IIK;
3247  llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3248  SmallVector<CXXCtorInitializer*, 8> AllToInit;
3249
3250  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3251    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3252    bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3253    if (Generated && Ctor->isCopyConstructor())
3254      IIK = IIK_Copy;
3255    else if (Generated && Ctor->isMoveConstructor())
3256      IIK = IIK_Move;
3257    else if (Ctor->getInheritedConstructor())
3258      IIK = IIK_Inherit;
3259    else
3260      IIK = IIK_Default;
3261  }
3262
3263  bool isImplicitCopyOrMove() const {
3264    switch (IIK) {
3265    case IIK_Copy:
3266    case IIK_Move:
3267      return true;
3268
3269    case IIK_Default:
3270    case IIK_Inherit:
3271      return false;
3272    }
3273
3274    llvm_unreachable("Invalid ImplicitInitializerKind!");
3275  }
3276
3277  bool addFieldInitializer(CXXCtorInitializer *Init) {
3278    AllToInit.push_back(Init);
3279
3280    // Check whether this initializer makes the field "used".
3281    if (Init->getInit()->HasSideEffects(S.Context))
3282      S.UnusedPrivateFields.remove(Init->getAnyMember());
3283
3284    return false;
3285  }
3286};
3287}
3288
3289/// \brief Determine whether the given indirect field declaration is somewhere
3290/// within an anonymous union.
3291static bool isWithinAnonymousUnion(IndirectFieldDecl *F) {
3292  for (IndirectFieldDecl::chain_iterator C = F->chain_begin(),
3293                                      CEnd = F->chain_end();
3294       C != CEnd; ++C)
3295    if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>((*C)->getDeclContext()))
3296      if (Record->isUnion())
3297        return true;
3298
3299  return false;
3300}
3301
3302/// \brief Determine whether the given type is an incomplete or zero-lenfgth
3303/// array type.
3304static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3305  if (T->isIncompleteArrayType())
3306    return true;
3307
3308  while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3309    if (!ArrayT->getSize())
3310      return true;
3311
3312    T = ArrayT->getElementType();
3313  }
3314
3315  return false;
3316}
3317
3318static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3319                                    FieldDecl *Field,
3320                                    IndirectFieldDecl *Indirect = 0) {
3321  if (Field->isInvalidDecl())
3322    return false;
3323
3324  // Overwhelmingly common case: we have a direct initializer for this field.
3325  if (CXXCtorInitializer *Init = Info.AllBaseFields.lookup(Field))
3326    return Info.addFieldInitializer(Init);
3327
3328  // C++11 [class.base.init]p8: if the entity is a non-static data member that
3329  // has a brace-or-equal-initializer, the entity is initialized as specified
3330  // in [dcl.init].
3331  if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3332    Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3333                                           Info.Ctor->getLocation(), Field);
3334    CXXCtorInitializer *Init;
3335    if (Indirect)
3336      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3337                                                      SourceLocation(),
3338                                                      SourceLocation(), DIE,
3339                                                      SourceLocation());
3340    else
3341      Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3342                                                      SourceLocation(),
3343                                                      SourceLocation(), DIE,
3344                                                      SourceLocation());
3345    return Info.addFieldInitializer(Init);
3346  }
3347
3348  // Don't build an implicit initializer for union members if none was
3349  // explicitly specified.
3350  if (Field->getParent()->isUnion() ||
3351      (Indirect && isWithinAnonymousUnion(Indirect)))
3352    return false;
3353
3354  // Don't initialize incomplete or zero-length arrays.
3355  if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3356    return false;
3357
3358  // Don't try to build an implicit initializer if there were semantic
3359  // errors in any of the initializers (and therefore we might be
3360  // missing some that the user actually wrote).
3361  if (Info.AnyErrorsInInits)
3362    return false;
3363
3364  CXXCtorInitializer *Init = 0;
3365  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3366                                     Indirect, Init))
3367    return true;
3368
3369  if (!Init)
3370    return false;
3371
3372  return Info.addFieldInitializer(Init);
3373}
3374
3375bool
3376Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3377                               CXXCtorInitializer *Initializer) {
3378  assert(Initializer->isDelegatingInitializer());
3379  Constructor->setNumCtorInitializers(1);
3380  CXXCtorInitializer **initializer =
3381    new (Context) CXXCtorInitializer*[1];
3382  memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3383  Constructor->setCtorInitializers(initializer);
3384
3385  if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3386    MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3387    DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3388  }
3389
3390  DelegatingCtorDecls.push_back(Constructor);
3391
3392  return false;
3393}
3394
3395bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3396                               ArrayRef<CXXCtorInitializer *> Initializers) {
3397  if (Constructor->isDependentContext()) {
3398    // Just store the initializers as written, they will be checked during
3399    // instantiation.
3400    if (!Initializers.empty()) {
3401      Constructor->setNumCtorInitializers(Initializers.size());
3402      CXXCtorInitializer **baseOrMemberInitializers =
3403        new (Context) CXXCtorInitializer*[Initializers.size()];
3404      memcpy(baseOrMemberInitializers, Initializers.data(),
3405             Initializers.size() * sizeof(CXXCtorInitializer*));
3406      Constructor->setCtorInitializers(baseOrMemberInitializers);
3407    }
3408
3409    // Let template instantiation know whether we had errors.
3410    if (AnyErrors)
3411      Constructor->setInvalidDecl();
3412
3413    return false;
3414  }
3415
3416  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3417
3418  // We need to build the initializer AST according to order of construction
3419  // and not what user specified in the Initializers list.
3420  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3421  if (!ClassDecl)
3422    return true;
3423
3424  bool HadError = false;
3425
3426  for (unsigned i = 0; i < Initializers.size(); i++) {
3427    CXXCtorInitializer *Member = Initializers[i];
3428
3429    if (Member->isBaseInitializer())
3430      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3431    else
3432      Info.AllBaseFields[Member->getAnyMember()] = Member;
3433  }
3434
3435  // Keep track of the direct virtual bases.
3436  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3437  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
3438       E = ClassDecl->bases_end(); I != E; ++I) {
3439    if (I->isVirtual())
3440      DirectVBases.insert(I);
3441  }
3442
3443  // Push virtual bases before others.
3444  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3445       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3446
3447    if (CXXCtorInitializer *Value
3448        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
3449      // [class.base.init]p7, per DR257:
3450      //   A mem-initializer where the mem-initializer-id names a virtual base
3451      //   class is ignored during execution of a constructor of any class that
3452      //   is not the most derived class.
3453      if (ClassDecl->isAbstract()) {
3454        // FIXME: Provide a fixit to remove the base specifier. This requires
3455        // tracking the location of the associated comma for a base specifier.
3456        Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3457          << VBase->getType() << ClassDecl;
3458        DiagnoseAbstractType(ClassDecl);
3459      }
3460
3461      Info.AllToInit.push_back(Value);
3462    } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3463      // [class.base.init]p8, per DR257:
3464      //   If a given [...] base class is not named by a mem-initializer-id
3465      //   [...] and the entity is not a virtual base class of an abstract
3466      //   class, then [...] the entity is default-initialized.
3467      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
3468      CXXCtorInitializer *CXXBaseInit;
3469      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3470                                       VBase, IsInheritedVirtualBase,
3471                                       CXXBaseInit)) {
3472        HadError = true;
3473        continue;
3474      }
3475
3476      Info.AllToInit.push_back(CXXBaseInit);
3477    }
3478  }
3479
3480  // Non-virtual bases.
3481  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3482       E = ClassDecl->bases_end(); Base != E; ++Base) {
3483    // Virtuals are in the virtual base list and already constructed.
3484    if (Base->isVirtual())
3485      continue;
3486
3487    if (CXXCtorInitializer *Value
3488          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
3489      Info.AllToInit.push_back(Value);
3490    } else if (!AnyErrors) {
3491      CXXCtorInitializer *CXXBaseInit;
3492      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3493                                       Base, /*IsInheritedVirtualBase=*/false,
3494                                       CXXBaseInit)) {
3495        HadError = true;
3496        continue;
3497      }
3498
3499      Info.AllToInit.push_back(CXXBaseInit);
3500    }
3501  }
3502
3503  // Fields.
3504  for (DeclContext::decl_iterator Mem = ClassDecl->decls_begin(),
3505                               MemEnd = ClassDecl->decls_end();
3506       Mem != MemEnd; ++Mem) {
3507    if (FieldDecl *F = dyn_cast<FieldDecl>(*Mem)) {
3508      // C++ [class.bit]p2:
3509      //   A declaration for a bit-field that omits the identifier declares an
3510      //   unnamed bit-field. Unnamed bit-fields are not members and cannot be
3511      //   initialized.
3512      if (F->isUnnamedBitfield())
3513        continue;
3514
3515      // If we're not generating the implicit copy/move constructor, then we'll
3516      // handle anonymous struct/union fields based on their individual
3517      // indirect fields.
3518      if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3519        continue;
3520
3521      if (CollectFieldInitializer(*this, Info, F))
3522        HadError = true;
3523      continue;
3524    }
3525
3526    // Beyond this point, we only consider default initialization.
3527    if (Info.isImplicitCopyOrMove())
3528      continue;
3529
3530    if (IndirectFieldDecl *F = dyn_cast<IndirectFieldDecl>(*Mem)) {
3531      if (F->getType()->isIncompleteArrayType()) {
3532        assert(ClassDecl->hasFlexibleArrayMember() &&
3533               "Incomplete array type is not valid");
3534        continue;
3535      }
3536
3537      // Initialize each field of an anonymous struct individually.
3538      if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3539        HadError = true;
3540
3541      continue;
3542    }
3543  }
3544
3545  unsigned NumInitializers = Info.AllToInit.size();
3546  if (NumInitializers > 0) {
3547    Constructor->setNumCtorInitializers(NumInitializers);
3548    CXXCtorInitializer **baseOrMemberInitializers =
3549      new (Context) CXXCtorInitializer*[NumInitializers];
3550    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3551           NumInitializers * sizeof(CXXCtorInitializer*));
3552    Constructor->setCtorInitializers(baseOrMemberInitializers);
3553
3554    // Constructors implicitly reference the base and member
3555    // destructors.
3556    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3557                                           Constructor->getParent());
3558  }
3559
3560  return HadError;
3561}
3562
3563static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3564  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3565    const RecordDecl *RD = RT->getDecl();
3566    if (RD->isAnonymousStructOrUnion()) {
3567      for (RecordDecl::field_iterator Field = RD->field_begin(),
3568          E = RD->field_end(); Field != E; ++Field)
3569        PopulateKeysForFields(*Field, IdealInits);
3570      return;
3571    }
3572  }
3573  IdealInits.push_back(Field);
3574}
3575
3576static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3577  return Context.getCanonicalType(BaseType).getTypePtr();
3578}
3579
3580static const void *GetKeyForMember(ASTContext &Context,
3581                                   CXXCtorInitializer *Member) {
3582  if (!Member->isAnyMemberInitializer())
3583    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3584
3585  return Member->getAnyMember();
3586}
3587
3588static void DiagnoseBaseOrMemInitializerOrder(
3589    Sema &SemaRef, const CXXConstructorDecl *Constructor,
3590    ArrayRef<CXXCtorInitializer *> Inits) {
3591  if (Constructor->getDeclContext()->isDependentContext())
3592    return;
3593
3594  // Don't check initializers order unless the warning is enabled at the
3595  // location of at least one initializer.
3596  bool ShouldCheckOrder = false;
3597  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3598    CXXCtorInitializer *Init = Inits[InitIndex];
3599    if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order,
3600                                         Init->getSourceLocation())
3601          != DiagnosticsEngine::Ignored) {
3602      ShouldCheckOrder = true;
3603      break;
3604    }
3605  }
3606  if (!ShouldCheckOrder)
3607    return;
3608
3609  // Build the list of bases and members in the order that they'll
3610  // actually be initialized.  The explicit initializers should be in
3611  // this same order but may be missing things.
3612  SmallVector<const void*, 32> IdealInitKeys;
3613
3614  const CXXRecordDecl *ClassDecl = Constructor->getParent();
3615
3616  // 1. Virtual bases.
3617  for (CXXRecordDecl::base_class_const_iterator VBase =
3618       ClassDecl->vbases_begin(),
3619       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
3620    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
3621
3622  // 2. Non-virtual bases.
3623  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
3624       E = ClassDecl->bases_end(); Base != E; ++Base) {
3625    if (Base->isVirtual())
3626      continue;
3627    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
3628  }
3629
3630  // 3. Direct fields.
3631  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3632       E = ClassDecl->field_end(); Field != E; ++Field) {
3633    if (Field->isUnnamedBitfield())
3634      continue;
3635
3636    PopulateKeysForFields(*Field, IdealInitKeys);
3637  }
3638
3639  unsigned NumIdealInits = IdealInitKeys.size();
3640  unsigned IdealIndex = 0;
3641
3642  CXXCtorInitializer *PrevInit = 0;
3643  for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3644    CXXCtorInitializer *Init = Inits[InitIndex];
3645    const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3646
3647    // Scan forward to try to find this initializer in the idealized
3648    // initializers list.
3649    for (; IdealIndex != NumIdealInits; ++IdealIndex)
3650      if (InitKey == IdealInitKeys[IdealIndex])
3651        break;
3652
3653    // If we didn't find this initializer, it must be because we
3654    // scanned past it on a previous iteration.  That can only
3655    // happen if we're out of order;  emit a warning.
3656    if (IdealIndex == NumIdealInits && PrevInit) {
3657      Sema::SemaDiagnosticBuilder D =
3658        SemaRef.Diag(PrevInit->getSourceLocation(),
3659                     diag::warn_initializer_out_of_order);
3660
3661      if (PrevInit->isAnyMemberInitializer())
3662        D << 0 << PrevInit->getAnyMember()->getDeclName();
3663      else
3664        D << 1 << PrevInit->getTypeSourceInfo()->getType();
3665
3666      if (Init->isAnyMemberInitializer())
3667        D << 0 << Init->getAnyMember()->getDeclName();
3668      else
3669        D << 1 << Init->getTypeSourceInfo()->getType();
3670
3671      // Move back to the initializer's location in the ideal list.
3672      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3673        if (InitKey == IdealInitKeys[IdealIndex])
3674          break;
3675
3676      assert(IdealIndex != NumIdealInits &&
3677             "initializer not found in initializer list");
3678    }
3679
3680    PrevInit = Init;
3681  }
3682}
3683
3684namespace {
3685bool CheckRedundantInit(Sema &S,
3686                        CXXCtorInitializer *Init,
3687                        CXXCtorInitializer *&PrevInit) {
3688  if (!PrevInit) {
3689    PrevInit = Init;
3690    return false;
3691  }
3692
3693  if (FieldDecl *Field = Init->getAnyMember())
3694    S.Diag(Init->getSourceLocation(),
3695           diag::err_multiple_mem_initialization)
3696      << Field->getDeclName()
3697      << Init->getSourceRange();
3698  else {
3699    const Type *BaseClass = Init->getBaseClass();
3700    assert(BaseClass && "neither field nor base");
3701    S.Diag(Init->getSourceLocation(),
3702           diag::err_multiple_base_initialization)
3703      << QualType(BaseClass, 0)
3704      << Init->getSourceRange();
3705  }
3706  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3707    << 0 << PrevInit->getSourceRange();
3708
3709  return true;
3710}
3711
3712typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3713typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3714
3715bool CheckRedundantUnionInit(Sema &S,
3716                             CXXCtorInitializer *Init,
3717                             RedundantUnionMap &Unions) {
3718  FieldDecl *Field = Init->getAnyMember();
3719  RecordDecl *Parent = Field->getParent();
3720  NamedDecl *Child = Field;
3721
3722  while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3723    if (Parent->isUnion()) {
3724      UnionEntry &En = Unions[Parent];
3725      if (En.first && En.first != Child) {
3726        S.Diag(Init->getSourceLocation(),
3727               diag::err_multiple_mem_union_initialization)
3728          << Field->getDeclName()
3729          << Init->getSourceRange();
3730        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3731          << 0 << En.second->getSourceRange();
3732        return true;
3733      }
3734      if (!En.first) {
3735        En.first = Child;
3736        En.second = Init;
3737      }
3738      if (!Parent->isAnonymousStructOrUnion())
3739        return false;
3740    }
3741
3742    Child = Parent;
3743    Parent = cast<RecordDecl>(Parent->getDeclContext());
3744  }
3745
3746  return false;
3747}
3748}
3749
3750// Diagnose value-uses of fields to initialize themselves, e.g.
3751//   foo(foo)
3752// where foo is not also a parameter to the constructor.
3753// Also diagnose across field uninitialized use such as
3754//   x(y), y(x)
3755// TODO: implement -Wuninitialized and fold this into that framework.
3756static void DiagnoseUnitializedFields(
3757    Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3758
3759  if (SemaRef.getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit,
3760                                                  Constructor->getLocation())
3761      == DiagnosticsEngine::Ignored) {
3762    return;
3763  }
3764
3765  const CXXRecordDecl *RD = Constructor->getParent();
3766
3767  // Holds fields that are uninitialized.
3768  llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3769
3770  for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
3771       I != E; ++I) {
3772    if (FieldDecl *FD = dyn_cast<FieldDecl>(*I)) {
3773      UninitializedFields.insert(FD);
3774    } else if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I)) {
3775      UninitializedFields.insert(IFD->getAnonField());
3776    }
3777  }
3778
3779  // Fields already checked when processing the in class initializers.
3780  llvm::SmallPtrSet<ValueDecl*, 4>
3781      InClassUninitializedFields = UninitializedFields;
3782
3783  for (CXXConstructorDecl::init_const_iterator FieldInit =
3784           Constructor->init_begin(),
3785           FieldInitEnd = Constructor->init_end();
3786       FieldInit != FieldInitEnd; ++FieldInit) {
3787
3788    FieldDecl *Field = (*FieldInit)->getAnyMember();
3789    Expr *InitExpr = (*FieldInit)->getInit();
3790
3791    if (!Field) {
3792      CheckInitExprContainsUninitializedFields(
3793          SemaRef, InitExpr, 0, UninitializedFields,
3794          false/*WarnOnSelfReference*/);
3795      continue;
3796    }
3797
3798    if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3799      // This field is initialized with an in-class initailzer.  Remove the
3800      // fields already checked to prevent duplicate warnings.
3801      llvm::SmallPtrSet<ValueDecl*, 4> DiffSet = UninitializedFields;
3802      for (llvm::SmallPtrSet<ValueDecl*, 4>::iterator
3803               I = InClassUninitializedFields.begin(),
3804               E = InClassUninitializedFields.end();
3805           I != E; ++I) {
3806        DiffSet.erase(*I);
3807      }
3808      CheckInitExprContainsUninitializedFields(
3809            SemaRef, Default->getExpr(), Field, DiffSet,
3810            DiffSet.count(Field), Constructor);
3811
3812      // Update the unitialized field sets.
3813      CheckInitExprContainsUninitializedFields(
3814            SemaRef, Default->getExpr(), 0, UninitializedFields,
3815            false);
3816      CheckInitExprContainsUninitializedFields(
3817            SemaRef, Default->getExpr(), 0, InClassUninitializedFields,
3818            false);
3819    } else {
3820      CheckInitExprContainsUninitializedFields(
3821          SemaRef, InitExpr, Field, UninitializedFields,
3822          UninitializedFields.count(Field));
3823      if (Expr* InClassInit = Field->getInClassInitializer()) {
3824        CheckInitExprContainsUninitializedFields(
3825            SemaRef, InClassInit, 0, InClassUninitializedFields,
3826            false);
3827      }
3828    }
3829    UninitializedFields.erase(Field);
3830    InClassUninitializedFields.erase(Field);
3831  }
3832}
3833
3834/// ActOnMemInitializers - Handle the member initializers for a constructor.
3835void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3836                                SourceLocation ColonLoc,
3837                                ArrayRef<CXXCtorInitializer*> MemInits,
3838                                bool AnyErrors) {
3839  if (!ConstructorDecl)
3840    return;
3841
3842  AdjustDeclIfTemplate(ConstructorDecl);
3843
3844  CXXConstructorDecl *Constructor
3845    = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3846
3847  if (!Constructor) {
3848    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3849    return;
3850  }
3851
3852  // Mapping for the duplicate initializers check.
3853  // For member initializers, this is keyed with a FieldDecl*.
3854  // For base initializers, this is keyed with a Type*.
3855  llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
3856
3857  // Mapping for the inconsistent anonymous-union initializers check.
3858  RedundantUnionMap MemberUnions;
3859
3860  bool HadError = false;
3861  for (unsigned i = 0; i < MemInits.size(); i++) {
3862    CXXCtorInitializer *Init = MemInits[i];
3863
3864    // Set the source order index.
3865    Init->setSourceOrder(i);
3866
3867    if (Init->isAnyMemberInitializer()) {
3868      FieldDecl *Field = Init->getAnyMember();
3869      if (CheckRedundantInit(*this, Init, Members[Field]) ||
3870          CheckRedundantUnionInit(*this, Init, MemberUnions))
3871        HadError = true;
3872    } else if (Init->isBaseInitializer()) {
3873      const void *Key =
3874          GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
3875      if (CheckRedundantInit(*this, Init, Members[Key]))
3876        HadError = true;
3877    } else {
3878      assert(Init->isDelegatingInitializer());
3879      // This must be the only initializer
3880      if (MemInits.size() != 1) {
3881        Diag(Init->getSourceLocation(),
3882             diag::err_delegating_initializer_alone)
3883          << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3884        // We will treat this as being the only initializer.
3885      }
3886      SetDelegatingInitializer(Constructor, MemInits[i]);
3887      // Return immediately as the initializer is set.
3888      return;
3889    }
3890  }
3891
3892  if (HadError)
3893    return;
3894
3895  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
3896
3897  SetCtorInitializers(Constructor, AnyErrors, MemInits);
3898
3899  DiagnoseUnitializedFields(*this, Constructor);
3900}
3901
3902void
3903Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
3904                                             CXXRecordDecl *ClassDecl) {
3905  // Ignore dependent contexts. Also ignore unions, since their members never
3906  // have destructors implicitly called.
3907  if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
3908    return;
3909
3910  // FIXME: all the access-control diagnostics are positioned on the
3911  // field/base declaration.  That's probably good; that said, the
3912  // user might reasonably want to know why the destructor is being
3913  // emitted, and we currently don't say.
3914
3915  // Non-static data members.
3916  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
3917       E = ClassDecl->field_end(); I != E; ++I) {
3918    FieldDecl *Field = *I;
3919    if (Field->isInvalidDecl())
3920      continue;
3921
3922    // Don't destroy incomplete or zero-length arrays.
3923    if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
3924      continue;
3925
3926    QualType FieldType = Context.getBaseElementType(Field->getType());
3927
3928    const RecordType* RT = FieldType->getAs<RecordType>();
3929    if (!RT)
3930      continue;
3931
3932    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3933    if (FieldClassDecl->isInvalidDecl())
3934      continue;
3935    if (FieldClassDecl->hasIrrelevantDestructor())
3936      continue;
3937    // The destructor for an implicit anonymous union member is never invoked.
3938    if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
3939      continue;
3940
3941    CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
3942    assert(Dtor && "No dtor found for FieldClassDecl!");
3943    CheckDestructorAccess(Field->getLocation(), Dtor,
3944                          PDiag(diag::err_access_dtor_field)
3945                            << Field->getDeclName()
3946                            << FieldType);
3947
3948    MarkFunctionReferenced(Location, Dtor);
3949    DiagnoseUseOfDecl(Dtor, Location);
3950  }
3951
3952  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
3953
3954  // Bases.
3955  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3956       E = ClassDecl->bases_end(); Base != E; ++Base) {
3957    // Bases are always records in a well-formed non-dependent class.
3958    const RecordType *RT = Base->getType()->getAs<RecordType>();
3959
3960    // Remember direct virtual bases.
3961    if (Base->isVirtual())
3962      DirectVirtualBases.insert(RT);
3963
3964    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3965    // If our base class is invalid, we probably can't get its dtor anyway.
3966    if (BaseClassDecl->isInvalidDecl())
3967      continue;
3968    if (BaseClassDecl->hasIrrelevantDestructor())
3969      continue;
3970
3971    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
3972    assert(Dtor && "No dtor found for BaseClassDecl!");
3973
3974    // FIXME: caret should be on the start of the class name
3975    CheckDestructorAccess(Base->getLocStart(), Dtor,
3976                          PDiag(diag::err_access_dtor_base)
3977                            << Base->getType()
3978                            << Base->getSourceRange(),
3979                          Context.getTypeDeclType(ClassDecl));
3980
3981    MarkFunctionReferenced(Location, Dtor);
3982    DiagnoseUseOfDecl(Dtor, Location);
3983  }
3984
3985  // Virtual bases.
3986  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
3987       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
3988
3989    // Bases are always records in a well-formed non-dependent class.
3990    const RecordType *RT = VBase->getType()->castAs<RecordType>();
3991
3992    // Ignore direct virtual bases.
3993    if (DirectVirtualBases.count(RT))
3994      continue;
3995
3996    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
3997    // If our base class is invalid, we probably can't get its dtor anyway.
3998    if (BaseClassDecl->isInvalidDecl())
3999      continue;
4000    if (BaseClassDecl->hasIrrelevantDestructor())
4001      continue;
4002
4003    CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4004    assert(Dtor && "No dtor found for BaseClassDecl!");
4005    if (CheckDestructorAccess(
4006            ClassDecl->getLocation(), Dtor,
4007            PDiag(diag::err_access_dtor_vbase)
4008                << Context.getTypeDeclType(ClassDecl) << VBase->getType(),
4009            Context.getTypeDeclType(ClassDecl)) ==
4010        AR_accessible) {
4011      CheckDerivedToBaseConversion(
4012          Context.getTypeDeclType(ClassDecl), VBase->getType(),
4013          diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4014          SourceRange(), DeclarationName(), 0);
4015    }
4016
4017    MarkFunctionReferenced(Location, Dtor);
4018    DiagnoseUseOfDecl(Dtor, Location);
4019  }
4020}
4021
4022void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4023  if (!CDtorDecl)
4024    return;
4025
4026  if (CXXConstructorDecl *Constructor
4027      = dyn_cast<CXXConstructorDecl>(CDtorDecl))
4028    SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4029}
4030
4031bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4032                                  unsigned DiagID, AbstractDiagSelID SelID) {
4033  class NonAbstractTypeDiagnoser : public TypeDiagnoser {
4034    unsigned DiagID;
4035    AbstractDiagSelID SelID;
4036
4037  public:
4038    NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
4039      : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
4040
4041    void diagnose(Sema &S, SourceLocation Loc, QualType T) LLVM_OVERRIDE {
4042      if (Suppressed) return;
4043      if (SelID == -1)
4044        S.Diag(Loc, DiagID) << T;
4045      else
4046        S.Diag(Loc, DiagID) << SelID << T;
4047    }
4048  } Diagnoser(DiagID, SelID);
4049
4050  return RequireNonAbstractType(Loc, T, Diagnoser);
4051}
4052
4053bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4054                                  TypeDiagnoser &Diagnoser) {
4055  if (!getLangOpts().CPlusPlus)
4056    return false;
4057
4058  if (const ArrayType *AT = Context.getAsArrayType(T))
4059    return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4060
4061  if (const PointerType *PT = T->getAs<PointerType>()) {
4062    // Find the innermost pointer type.
4063    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
4064      PT = T;
4065
4066    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
4067      return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4068  }
4069
4070  const RecordType *RT = T->getAs<RecordType>();
4071  if (!RT)
4072    return false;
4073
4074  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4075
4076  // We can't answer whether something is abstract until it has a
4077  // definition.  If it's currently being defined, we'll walk back
4078  // over all the declarations when we have a full definition.
4079  const CXXRecordDecl *Def = RD->getDefinition();
4080  if (!Def || Def->isBeingDefined())
4081    return false;
4082
4083  if (!RD->isAbstract())
4084    return false;
4085
4086  Diagnoser.diagnose(*this, Loc, T);
4087  DiagnoseAbstractType(RD);
4088
4089  return true;
4090}
4091
4092void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4093  // Check if we've already emitted the list of pure virtual functions
4094  // for this class.
4095  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4096    return;
4097
4098  // If the diagnostic is suppressed, don't emit the notes. We're only
4099  // going to emit them once, so try to attach them to a diagnostic we're
4100  // actually going to show.
4101  if (Diags.isLastDiagnosticIgnored())
4102    return;
4103
4104  CXXFinalOverriderMap FinalOverriders;
4105  RD->getFinalOverriders(FinalOverriders);
4106
4107  // Keep a set of seen pure methods so we won't diagnose the same method
4108  // more than once.
4109  llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4110
4111  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4112                                   MEnd = FinalOverriders.end();
4113       M != MEnd;
4114       ++M) {
4115    for (OverridingMethods::iterator SO = M->second.begin(),
4116                                  SOEnd = M->second.end();
4117         SO != SOEnd; ++SO) {
4118      // C++ [class.abstract]p4:
4119      //   A class is abstract if it contains or inherits at least one
4120      //   pure virtual function for which the final overrider is pure
4121      //   virtual.
4122
4123      //
4124      if (SO->second.size() != 1)
4125        continue;
4126
4127      if (!SO->second.front().Method->isPure())
4128        continue;
4129
4130      if (!SeenPureMethods.insert(SO->second.front().Method))
4131        continue;
4132
4133      Diag(SO->second.front().Method->getLocation(),
4134           diag::note_pure_virtual_function)
4135        << SO->second.front().Method->getDeclName() << RD->getDeclName();
4136    }
4137  }
4138
4139  if (!PureVirtualClassDiagSet)
4140    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4141  PureVirtualClassDiagSet->insert(RD);
4142}
4143
4144namespace {
4145struct AbstractUsageInfo {
4146  Sema &S;
4147  CXXRecordDecl *Record;
4148  CanQualType AbstractType;
4149  bool Invalid;
4150
4151  AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4152    : S(S), Record(Record),
4153      AbstractType(S.Context.getCanonicalType(
4154                   S.Context.getTypeDeclType(Record))),
4155      Invalid(false) {}
4156
4157  void DiagnoseAbstractType() {
4158    if (Invalid) return;
4159    S.DiagnoseAbstractType(Record);
4160    Invalid = true;
4161  }
4162
4163  void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4164};
4165
4166struct CheckAbstractUsage {
4167  AbstractUsageInfo &Info;
4168  const NamedDecl *Ctx;
4169
4170  CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4171    : Info(Info), Ctx(Ctx) {}
4172
4173  void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4174    switch (TL.getTypeLocClass()) {
4175#define ABSTRACT_TYPELOC(CLASS, PARENT)
4176#define TYPELOC(CLASS, PARENT) \
4177    case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4178#include "clang/AST/TypeLocNodes.def"
4179    }
4180  }
4181
4182  void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4183    Visit(TL.getResultLoc(), Sema::AbstractReturnType);
4184    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4185      if (!TL.getArg(I))
4186        continue;
4187
4188      TypeSourceInfo *TSI = TL.getArg(I)->getTypeSourceInfo();
4189      if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4190    }
4191  }
4192
4193  void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4194    Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4195  }
4196
4197  void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4198    // Visit the type parameters from a permissive context.
4199    for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4200      TemplateArgumentLoc TAL = TL.getArgLoc(I);
4201      if (TAL.getArgument().getKind() == TemplateArgument::Type)
4202        if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4203          Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4204      // TODO: other template argument types?
4205    }
4206  }
4207
4208  // Visit pointee types from a permissive context.
4209#define CheckPolymorphic(Type) \
4210  void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4211    Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4212  }
4213  CheckPolymorphic(PointerTypeLoc)
4214  CheckPolymorphic(ReferenceTypeLoc)
4215  CheckPolymorphic(MemberPointerTypeLoc)
4216  CheckPolymorphic(BlockPointerTypeLoc)
4217  CheckPolymorphic(AtomicTypeLoc)
4218
4219  /// Handle all the types we haven't given a more specific
4220  /// implementation for above.
4221  void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4222    // Every other kind of type that we haven't called out already
4223    // that has an inner type is either (1) sugar or (2) contains that
4224    // inner type in some way as a subobject.
4225    if (TypeLoc Next = TL.getNextTypeLoc())
4226      return Visit(Next, Sel);
4227
4228    // If there's no inner type and we're in a permissive context,
4229    // don't diagnose.
4230    if (Sel == Sema::AbstractNone) return;
4231
4232    // Check whether the type matches the abstract type.
4233    QualType T = TL.getType();
4234    if (T->isArrayType()) {
4235      Sel = Sema::AbstractArrayType;
4236      T = Info.S.Context.getBaseElementType(T);
4237    }
4238    CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4239    if (CT != Info.AbstractType) return;
4240
4241    // It matched; do some magic.
4242    if (Sel == Sema::AbstractArrayType) {
4243      Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4244        << T << TL.getSourceRange();
4245    } else {
4246      Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4247        << Sel << T << TL.getSourceRange();
4248    }
4249    Info.DiagnoseAbstractType();
4250  }
4251};
4252
4253void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4254                                  Sema::AbstractDiagSelID Sel) {
4255  CheckAbstractUsage(*this, D).Visit(TL, Sel);
4256}
4257
4258}
4259
4260/// Check for invalid uses of an abstract type in a method declaration.
4261static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4262                                    CXXMethodDecl *MD) {
4263  // No need to do the check on definitions, which require that
4264  // the return/param types be complete.
4265  if (MD->doesThisDeclarationHaveABody())
4266    return;
4267
4268  // For safety's sake, just ignore it if we don't have type source
4269  // information.  This should never happen for non-implicit methods,
4270  // but...
4271  if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4272    Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4273}
4274
4275/// Check for invalid uses of an abstract type within a class definition.
4276static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4277                                    CXXRecordDecl *RD) {
4278  for (CXXRecordDecl::decl_iterator
4279         I = RD->decls_begin(), E = RD->decls_end(); I != E; ++I) {
4280    Decl *D = *I;
4281    if (D->isImplicit()) continue;
4282
4283    // Methods and method templates.
4284    if (isa<CXXMethodDecl>(D)) {
4285      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4286    } else if (isa<FunctionTemplateDecl>(D)) {
4287      FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4288      CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4289
4290    // Fields and static variables.
4291    } else if (isa<FieldDecl>(D)) {
4292      FieldDecl *FD = cast<FieldDecl>(D);
4293      if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4294        Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4295    } else if (isa<VarDecl>(D)) {
4296      VarDecl *VD = cast<VarDecl>(D);
4297      if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4298        Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4299
4300    // Nested classes and class templates.
4301    } else if (isa<CXXRecordDecl>(D)) {
4302      CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4303    } else if (isa<ClassTemplateDecl>(D)) {
4304      CheckAbstractClassUsage(Info,
4305                             cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4306    }
4307  }
4308}
4309
4310/// \brief Perform semantic checks on a class definition that has been
4311/// completing, introducing implicitly-declared members, checking for
4312/// abstract types, etc.
4313void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4314  if (!Record)
4315    return;
4316
4317  if (Record->isAbstract() && !Record->isInvalidDecl()) {
4318    AbstractUsageInfo Info(*this, Record);
4319    CheckAbstractClassUsage(Info, Record);
4320  }
4321
4322  // If this is not an aggregate type and has no user-declared constructor,
4323  // complain about any non-static data members of reference or const scalar
4324  // type, since they will never get initializers.
4325  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4326      !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4327      !Record->isLambda()) {
4328    bool Complained = false;
4329    for (RecordDecl::field_iterator F = Record->field_begin(),
4330                                 FEnd = Record->field_end();
4331         F != FEnd; ++F) {
4332      if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4333        continue;
4334
4335      if (F->getType()->isReferenceType() ||
4336          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4337        if (!Complained) {
4338          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4339            << Record->getTagKind() << Record;
4340          Complained = true;
4341        }
4342
4343        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4344          << F->getType()->isReferenceType()
4345          << F->getDeclName();
4346      }
4347    }
4348  }
4349
4350  if (Record->isDynamicClass() && !Record->isDependentType())
4351    DynamicClasses.push_back(Record);
4352
4353  if (Record->getIdentifier()) {
4354    // C++ [class.mem]p13:
4355    //   If T is the name of a class, then each of the following shall have a
4356    //   name different from T:
4357    //     - every member of every anonymous union that is a member of class T.
4358    //
4359    // C++ [class.mem]p14:
4360    //   In addition, if class T has a user-declared constructor (12.1), every
4361    //   non-static data member of class T shall have a name different from T.
4362    DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4363    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4364         ++I) {
4365      NamedDecl *D = *I;
4366      if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4367          isa<IndirectFieldDecl>(D)) {
4368        Diag(D->getLocation(), diag::err_member_name_of_class)
4369          << D->getDeclName();
4370        break;
4371      }
4372    }
4373  }
4374
4375  // Warn if the class has virtual methods but non-virtual public destructor.
4376  if (Record->isPolymorphic() && !Record->isDependentType()) {
4377    CXXDestructorDecl *dtor = Record->getDestructor();
4378    if (!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public))
4379      Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4380           diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4381  }
4382
4383  if (Record->isAbstract() && Record->hasAttr<FinalAttr>()) {
4384    Diag(Record->getLocation(), diag::warn_abstract_final_class);
4385    DiagnoseAbstractType(Record);
4386  }
4387
4388  if (!Record->isDependentType()) {
4389    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4390                                     MEnd = Record->method_end();
4391         M != MEnd; ++M) {
4392      // See if a method overloads virtual methods in a base
4393      // class without overriding any.
4394      if (!M->isStatic())
4395        DiagnoseHiddenVirtualMethods(*M);
4396
4397      // Check whether the explicitly-defaulted special members are valid.
4398      if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4399        CheckExplicitlyDefaultedSpecialMember(*M);
4400
4401      // For an explicitly defaulted or deleted special member, we defer
4402      // determining triviality until the class is complete. That time is now!
4403      if (!M->isImplicit() && !M->isUserProvided()) {
4404        CXXSpecialMember CSM = getSpecialMember(*M);
4405        if (CSM != CXXInvalid) {
4406          M->setTrivial(SpecialMemberIsTrivial(*M, CSM));
4407
4408          // Inform the class that we've finished declaring this member.
4409          Record->finishedDefaultedOrDeletedMember(*M);
4410        }
4411      }
4412    }
4413  }
4414
4415  // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4416  // function that is not a constructor declares that member function to be
4417  // const. [...] The class of which that function is a member shall be
4418  // a literal type.
4419  //
4420  // If the class has virtual bases, any constexpr members will already have
4421  // been diagnosed by the checks performed on the member declaration, so
4422  // suppress this (less useful) diagnostic.
4423  //
4424  // We delay this until we know whether an explicitly-defaulted (or deleted)
4425  // destructor for the class is trivial.
4426  if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4427      !Record->isLiteral() && !Record->getNumVBases()) {
4428    for (CXXRecordDecl::method_iterator M = Record->method_begin(),
4429                                     MEnd = Record->method_end();
4430         M != MEnd; ++M) {
4431      if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(*M)) {
4432        switch (Record->getTemplateSpecializationKind()) {
4433        case TSK_ImplicitInstantiation:
4434        case TSK_ExplicitInstantiationDeclaration:
4435        case TSK_ExplicitInstantiationDefinition:
4436          // If a template instantiates to a non-literal type, but its members
4437          // instantiate to constexpr functions, the template is technically
4438          // ill-formed, but we allow it for sanity.
4439          continue;
4440
4441        case TSK_Undeclared:
4442        case TSK_ExplicitSpecialization:
4443          RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4444                             diag::err_constexpr_method_non_literal);
4445          break;
4446        }
4447
4448        // Only produce one error per class.
4449        break;
4450      }
4451    }
4452  }
4453
4454  // Declare inheriting constructors. We do this eagerly here because:
4455  // - The standard requires an eager diagnostic for conflicting inheriting
4456  //   constructors from different classes.
4457  // - The lazy declaration of the other implicit constructors is so as to not
4458  //   waste space and performance on classes that are not meant to be
4459  //   instantiated (e.g. meta-functions). This doesn't apply to classes that
4460  //   have inheriting constructors.
4461  DeclareInheritingConstructors(Record);
4462}
4463
4464/// Is the special member function which would be selected to perform the
4465/// specified operation on the specified class type a constexpr constructor?
4466static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4467                                     Sema::CXXSpecialMember CSM,
4468                                     bool ConstArg) {
4469  Sema::SpecialMemberOverloadResult *SMOR =
4470      S.LookupSpecialMember(ClassDecl, CSM, ConstArg,
4471                            false, false, false, false);
4472  if (!SMOR || !SMOR->getMethod())
4473    // A constructor we wouldn't select can't be "involved in initializing"
4474    // anything.
4475    return true;
4476  return SMOR->getMethod()->isConstexpr();
4477}
4478
4479/// Determine whether the specified special member function would be constexpr
4480/// if it were implicitly defined.
4481static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4482                                              Sema::CXXSpecialMember CSM,
4483                                              bool ConstArg) {
4484  if (!S.getLangOpts().CPlusPlus11)
4485    return false;
4486
4487  // C++11 [dcl.constexpr]p4:
4488  // In the definition of a constexpr constructor [...]
4489  bool Ctor = true;
4490  switch (CSM) {
4491  case Sema::CXXDefaultConstructor:
4492    // Since default constructor lookup is essentially trivial (and cannot
4493    // involve, for instance, template instantiation), we compute whether a
4494    // defaulted default constructor is constexpr directly within CXXRecordDecl.
4495    //
4496    // This is important for performance; we need to know whether the default
4497    // constructor is constexpr to determine whether the type is a literal type.
4498    return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4499
4500  case Sema::CXXCopyConstructor:
4501  case Sema::CXXMoveConstructor:
4502    // For copy or move constructors, we need to perform overload resolution.
4503    break;
4504
4505  case Sema::CXXCopyAssignment:
4506  case Sema::CXXMoveAssignment:
4507    if (!S.getLangOpts().CPlusPlus1y)
4508      return false;
4509    // In C++1y, we need to perform overload resolution.
4510    Ctor = false;
4511    break;
4512
4513  case Sema::CXXDestructor:
4514  case Sema::CXXInvalid:
4515    return false;
4516  }
4517
4518  //   -- if the class is a non-empty union, or for each non-empty anonymous
4519  //      union member of a non-union class, exactly one non-static data member
4520  //      shall be initialized; [DR1359]
4521  //
4522  // If we squint, this is guaranteed, since exactly one non-static data member
4523  // will be initialized (if the constructor isn't deleted), we just don't know
4524  // which one.
4525  if (Ctor && ClassDecl->isUnion())
4526    return true;
4527
4528  //   -- the class shall not have any virtual base classes;
4529  if (Ctor && ClassDecl->getNumVBases())
4530    return false;
4531
4532  // C++1y [class.copy]p26:
4533  //   -- [the class] is a literal type, and
4534  if (!Ctor && !ClassDecl->isLiteral())
4535    return false;
4536
4537  //   -- every constructor involved in initializing [...] base class
4538  //      sub-objects shall be a constexpr constructor;
4539  //   -- the assignment operator selected to copy/move each direct base
4540  //      class is a constexpr function, and
4541  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
4542                                       BEnd = ClassDecl->bases_end();
4543       B != BEnd; ++B) {
4544    const RecordType *BaseType = B->getType()->getAs<RecordType>();
4545    if (!BaseType) continue;
4546
4547    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4548    if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, ConstArg))
4549      return false;
4550  }
4551
4552  //   -- every constructor involved in initializing non-static data members
4553  //      [...] shall be a constexpr constructor;
4554  //   -- every non-static data member and base class sub-object shall be
4555  //      initialized
4556  //   -- for each non-stastic data member of X that is of class type (or array
4557  //      thereof), the assignment operator selected to copy/move that member is
4558  //      a constexpr function
4559  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
4560                               FEnd = ClassDecl->field_end();
4561       F != FEnd; ++F) {
4562    if (F->isInvalidDecl())
4563      continue;
4564    if (const RecordType *RecordTy =
4565            S.Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
4566      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4567      if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM, ConstArg))
4568        return false;
4569    }
4570  }
4571
4572  // All OK, it's constexpr!
4573  return true;
4574}
4575
4576static Sema::ImplicitExceptionSpecification
4577computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4578  switch (S.getSpecialMember(MD)) {
4579  case Sema::CXXDefaultConstructor:
4580    return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4581  case Sema::CXXCopyConstructor:
4582    return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4583  case Sema::CXXCopyAssignment:
4584    return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4585  case Sema::CXXMoveConstructor:
4586    return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4587  case Sema::CXXMoveAssignment:
4588    return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4589  case Sema::CXXDestructor:
4590    return S.ComputeDefaultedDtorExceptionSpec(MD);
4591  case Sema::CXXInvalid:
4592    break;
4593  }
4594  assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4595         "only special members have implicit exception specs");
4596  return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4597}
4598
4599static void
4600updateExceptionSpec(Sema &S, FunctionDecl *FD, const FunctionProtoType *FPT,
4601                    const Sema::ImplicitExceptionSpecification &ExceptSpec) {
4602  FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4603  ExceptSpec.getEPI(EPI);
4604  FD->setType(S.Context.getFunctionType(FPT->getResultType(),
4605                                        FPT->getArgTypes(), EPI));
4606}
4607
4608static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
4609                                                            CXXMethodDecl *MD) {
4610  FunctionProtoType::ExtProtoInfo EPI;
4611
4612  // Build an exception specification pointing back at this member.
4613  EPI.ExceptionSpecType = EST_Unevaluated;
4614  EPI.ExceptionSpecDecl = MD;
4615
4616  // Set the calling convention to the default for C++ instance methods.
4617  EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
4618      S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4619                                            /*IsCXXMethod=*/true));
4620  return EPI;
4621}
4622
4623void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4624  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4625  if (FPT->getExceptionSpecType() != EST_Unevaluated)
4626    return;
4627
4628  // Evaluate the exception specification.
4629  ImplicitExceptionSpecification ExceptSpec =
4630      computeImplicitExceptionSpec(*this, Loc, MD);
4631
4632  // Update the type of the special member to use it.
4633  updateExceptionSpec(*this, MD, FPT, ExceptSpec);
4634
4635  // A user-provided destructor can be defined outside the class. When that
4636  // happens, be sure to update the exception specification on both
4637  // declarations.
4638  const FunctionProtoType *CanonicalFPT =
4639    MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4640  if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4641    updateExceptionSpec(*this, MD->getCanonicalDecl(),
4642                        CanonicalFPT, ExceptSpec);
4643}
4644
4645void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4646  CXXRecordDecl *RD = MD->getParent();
4647  CXXSpecialMember CSM = getSpecialMember(MD);
4648
4649  assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4650         "not an explicitly-defaulted special member");
4651
4652  // Whether this was the first-declared instance of the constructor.
4653  // This affects whether we implicitly add an exception spec and constexpr.
4654  bool First = MD == MD->getCanonicalDecl();
4655
4656  bool HadError = false;
4657
4658  // C++11 [dcl.fct.def.default]p1:
4659  //   A function that is explicitly defaulted shall
4660  //     -- be a special member function (checked elsewhere),
4661  //     -- have the same type (except for ref-qualifiers, and except that a
4662  //        copy operation can take a non-const reference) as an implicit
4663  //        declaration, and
4664  //     -- not have default arguments.
4665  unsigned ExpectedParams = 1;
4666  if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4667    ExpectedParams = 0;
4668  if (MD->getNumParams() != ExpectedParams) {
4669    // This also checks for default arguments: a copy or move constructor with a
4670    // default argument is classified as a default constructor, and assignment
4671    // operations and destructors can't have default arguments.
4672    Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4673      << CSM << MD->getSourceRange();
4674    HadError = true;
4675  } else if (MD->isVariadic()) {
4676    Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4677      << CSM << MD->getSourceRange();
4678    HadError = true;
4679  }
4680
4681  const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4682
4683  bool CanHaveConstParam = false;
4684  if (CSM == CXXCopyConstructor)
4685    CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4686  else if (CSM == CXXCopyAssignment)
4687    CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4688
4689  QualType ReturnType = Context.VoidTy;
4690  if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4691    // Check for return type matching.
4692    ReturnType = Type->getResultType();
4693    QualType ExpectedReturnType =
4694        Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4695    if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4696      Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4697        << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4698      HadError = true;
4699    }
4700
4701    // A defaulted special member cannot have cv-qualifiers.
4702    if (Type->getTypeQuals()) {
4703      Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4704        << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4705      HadError = true;
4706    }
4707  }
4708
4709  // Check for parameter type matching.
4710  QualType ArgType = ExpectedParams ? Type->getArgType(0) : QualType();
4711  bool HasConstParam = false;
4712  if (ExpectedParams && ArgType->isReferenceType()) {
4713    // Argument must be reference to possibly-const T.
4714    QualType ReferentType = ArgType->getPointeeType();
4715    HasConstParam = ReferentType.isConstQualified();
4716
4717    if (ReferentType.isVolatileQualified()) {
4718      Diag(MD->getLocation(),
4719           diag::err_defaulted_special_member_volatile_param) << CSM;
4720      HadError = true;
4721    }
4722
4723    if (HasConstParam && !CanHaveConstParam) {
4724      if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4725        Diag(MD->getLocation(),
4726             diag::err_defaulted_special_member_copy_const_param)
4727          << (CSM == CXXCopyAssignment);
4728        // FIXME: Explain why this special member can't be const.
4729      } else {
4730        Diag(MD->getLocation(),
4731             diag::err_defaulted_special_member_move_const_param)
4732          << (CSM == CXXMoveAssignment);
4733      }
4734      HadError = true;
4735    }
4736  } else if (ExpectedParams) {
4737    // A copy assignment operator can take its argument by value, but a
4738    // defaulted one cannot.
4739    assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4740    Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4741    HadError = true;
4742  }
4743
4744  // C++11 [dcl.fct.def.default]p2:
4745  //   An explicitly-defaulted function may be declared constexpr only if it
4746  //   would have been implicitly declared as constexpr,
4747  // Do not apply this rule to members of class templates, since core issue 1358
4748  // makes such functions always instantiate to constexpr functions. For
4749  // functions which cannot be constexpr (for non-constructors in C++11 and for
4750  // destructors in C++1y), this is checked elsewhere.
4751  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4752                                                     HasConstParam);
4753  if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4754                                 : isa<CXXConstructorDecl>(MD)) &&
4755      MD->isConstexpr() && !Constexpr &&
4756      MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4757    Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4758    // FIXME: Explain why the special member can't be constexpr.
4759    HadError = true;
4760  }
4761
4762  //   and may have an explicit exception-specification only if it is compatible
4763  //   with the exception-specification on the implicit declaration.
4764  if (Type->hasExceptionSpec()) {
4765    // Delay the check if this is the first declaration of the special member,
4766    // since we may not have parsed some necessary in-class initializers yet.
4767    if (First) {
4768      // If the exception specification needs to be instantiated, do so now,
4769      // before we clobber it with an EST_Unevaluated specification below.
4770      if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4771        InstantiateExceptionSpec(MD->getLocStart(), MD);
4772        Type = MD->getType()->getAs<FunctionProtoType>();
4773      }
4774      DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4775    } else
4776      CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4777  }
4778
4779  //   If a function is explicitly defaulted on its first declaration,
4780  if (First) {
4781    //  -- it is implicitly considered to be constexpr if the implicit
4782    //     definition would be,
4783    MD->setConstexpr(Constexpr);
4784
4785    //  -- it is implicitly considered to have the same exception-specification
4786    //     as if it had been implicitly declared,
4787    FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4788    EPI.ExceptionSpecType = EST_Unevaluated;
4789    EPI.ExceptionSpecDecl = MD;
4790    MD->setType(Context.getFunctionType(ReturnType,
4791                                        ArrayRef<QualType>(&ArgType,
4792                                                           ExpectedParams),
4793                                        EPI));
4794  }
4795
4796  if (ShouldDeleteSpecialMember(MD, CSM)) {
4797    if (First) {
4798      SetDeclDeleted(MD, MD->getLocation());
4799    } else {
4800      // C++11 [dcl.fct.def.default]p4:
4801      //   [For a] user-provided explicitly-defaulted function [...] if such a
4802      //   function is implicitly defined as deleted, the program is ill-formed.
4803      Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
4804      HadError = true;
4805    }
4806  }
4807
4808  if (HadError)
4809    MD->setInvalidDecl();
4810}
4811
4812/// Check whether the exception specification provided for an
4813/// explicitly-defaulted special member matches the exception specification
4814/// that would have been generated for an implicit special member, per
4815/// C++11 [dcl.fct.def.default]p2.
4816void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
4817    CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
4818  // Compute the implicit exception specification.
4819  CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4820                                                       /*IsCXXMethod=*/true);
4821  FunctionProtoType::ExtProtoInfo EPI(CC);
4822  computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
4823  const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
4824    Context.getFunctionType(Context.VoidTy, None, EPI));
4825
4826  // Ensure that it matches.
4827  CheckEquivalentExceptionSpec(
4828    PDiag(diag::err_incorrect_defaulted_exception_spec)
4829      << getSpecialMember(MD), PDiag(),
4830    ImplicitType, SourceLocation(),
4831    SpecifiedType, MD->getLocation());
4832}
4833
4834void Sema::CheckDelayedExplicitlyDefaultedMemberExceptionSpecs() {
4835  for (unsigned I = 0, N = DelayedDefaultedMemberExceptionSpecs.size();
4836       I != N; ++I)
4837    CheckExplicitlyDefaultedMemberExceptionSpec(
4838      DelayedDefaultedMemberExceptionSpecs[I].first,
4839      DelayedDefaultedMemberExceptionSpecs[I].second);
4840
4841  DelayedDefaultedMemberExceptionSpecs.clear();
4842}
4843
4844namespace {
4845struct SpecialMemberDeletionInfo {
4846  Sema &S;
4847  CXXMethodDecl *MD;
4848  Sema::CXXSpecialMember CSM;
4849  bool Diagnose;
4850
4851  // Properties of the special member, computed for convenience.
4852  bool IsConstructor, IsAssignment, IsMove, ConstArg, VolatileArg;
4853  SourceLocation Loc;
4854
4855  bool AllFieldsAreConst;
4856
4857  SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
4858                            Sema::CXXSpecialMember CSM, bool Diagnose)
4859    : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
4860      IsConstructor(false), IsAssignment(false), IsMove(false),
4861      ConstArg(false), VolatileArg(false), Loc(MD->getLocation()),
4862      AllFieldsAreConst(true) {
4863    switch (CSM) {
4864      case Sema::CXXDefaultConstructor:
4865      case Sema::CXXCopyConstructor:
4866        IsConstructor = true;
4867        break;
4868      case Sema::CXXMoveConstructor:
4869        IsConstructor = true;
4870        IsMove = true;
4871        break;
4872      case Sema::CXXCopyAssignment:
4873        IsAssignment = true;
4874        break;
4875      case Sema::CXXMoveAssignment:
4876        IsAssignment = true;
4877        IsMove = true;
4878        break;
4879      case Sema::CXXDestructor:
4880        break;
4881      case Sema::CXXInvalid:
4882        llvm_unreachable("invalid special member kind");
4883    }
4884
4885    if (MD->getNumParams()) {
4886      ConstArg = MD->getParamDecl(0)->getType().isConstQualified();
4887      VolatileArg = MD->getParamDecl(0)->getType().isVolatileQualified();
4888    }
4889  }
4890
4891  bool inUnion() const { return MD->getParent()->isUnion(); }
4892
4893  /// Look up the corresponding special member in the given class.
4894  Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
4895                                              unsigned Quals) {
4896    unsigned TQ = MD->getTypeQualifiers();
4897    // cv-qualifiers on class members don't affect default ctor / dtor calls.
4898    if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4899      Quals = 0;
4900    return S.LookupSpecialMember(Class, CSM,
4901                                 ConstArg || (Quals & Qualifiers::Const),
4902                                 VolatileArg || (Quals & Qualifiers::Volatile),
4903                                 MD->getRefQualifier() == RQ_RValue,
4904                                 TQ & Qualifiers::Const,
4905                                 TQ & Qualifiers::Volatile);
4906  }
4907
4908  typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
4909
4910  bool shouldDeleteForBase(CXXBaseSpecifier *Base);
4911  bool shouldDeleteForField(FieldDecl *FD);
4912  bool shouldDeleteForAllConstMembers();
4913
4914  bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
4915                                     unsigned Quals);
4916  bool shouldDeleteForSubobjectCall(Subobject Subobj,
4917                                    Sema::SpecialMemberOverloadResult *SMOR,
4918                                    bool IsDtorCallInCtor);
4919
4920  bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
4921};
4922}
4923
4924/// Is the given special member inaccessible when used on the given
4925/// sub-object.
4926bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
4927                                             CXXMethodDecl *target) {
4928  /// If we're operating on a base class, the object type is the
4929  /// type of this special member.
4930  QualType objectTy;
4931  AccessSpecifier access = target->getAccess();
4932  if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
4933    objectTy = S.Context.getTypeDeclType(MD->getParent());
4934    access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
4935
4936  // If we're operating on a field, the object type is the type of the field.
4937  } else {
4938    objectTy = S.Context.getTypeDeclType(target->getParent());
4939  }
4940
4941  return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
4942}
4943
4944/// Check whether we should delete a special member due to the implicit
4945/// definition containing a call to a special member of a subobject.
4946bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
4947    Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
4948    bool IsDtorCallInCtor) {
4949  CXXMethodDecl *Decl = SMOR->getMethod();
4950  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
4951
4952  int DiagKind = -1;
4953
4954  if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
4955    DiagKind = !Decl ? 0 : 1;
4956  else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
4957    DiagKind = 2;
4958  else if (!isAccessible(Subobj, Decl))
4959    DiagKind = 3;
4960  else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
4961           !Decl->isTrivial()) {
4962    // A member of a union must have a trivial corresponding special member.
4963    // As a weird special case, a destructor call from a union's constructor
4964    // must be accessible and non-deleted, but need not be trivial. Such a
4965    // destructor is never actually called, but is semantically checked as
4966    // if it were.
4967    DiagKind = 4;
4968  }
4969
4970  if (DiagKind == -1)
4971    return false;
4972
4973  if (Diagnose) {
4974    if (Field) {
4975      S.Diag(Field->getLocation(),
4976             diag::note_deleted_special_member_class_subobject)
4977        << CSM << MD->getParent() << /*IsField*/true
4978        << Field << DiagKind << IsDtorCallInCtor;
4979    } else {
4980      CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
4981      S.Diag(Base->getLocStart(),
4982             diag::note_deleted_special_member_class_subobject)
4983        << CSM << MD->getParent() << /*IsField*/false
4984        << Base->getType() << DiagKind << IsDtorCallInCtor;
4985    }
4986
4987    if (DiagKind == 1)
4988      S.NoteDeletedFunction(Decl);
4989    // FIXME: Explain inaccessibility if DiagKind == 3.
4990  }
4991
4992  return true;
4993}
4994
4995/// Check whether we should delete a special member function due to having a
4996/// direct or virtual base class or non-static data member of class type M.
4997bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
4998    CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
4999  FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5000
5001  // C++11 [class.ctor]p5:
5002  // -- any direct or virtual base class, or non-static data member with no
5003  //    brace-or-equal-initializer, has class type M (or array thereof) and
5004  //    either M has no default constructor or overload resolution as applied
5005  //    to M's default constructor results in an ambiguity or in a function
5006  //    that is deleted or inaccessible
5007  // C++11 [class.copy]p11, C++11 [class.copy]p23:
5008  // -- a direct or virtual base class B that cannot be copied/moved because
5009  //    overload resolution, as applied to B's corresponding special member,
5010  //    results in an ambiguity or a function that is deleted or inaccessible
5011  //    from the defaulted special member
5012  // C++11 [class.dtor]p5:
5013  // -- any direct or virtual base class [...] has a type with a destructor
5014  //    that is deleted or inaccessible
5015  if (!(CSM == Sema::CXXDefaultConstructor &&
5016        Field && Field->hasInClassInitializer()) &&
5017      shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals), false))
5018    return true;
5019
5020  // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5021  // -- any direct or virtual base class or non-static data member has a
5022  //    type with a destructor that is deleted or inaccessible
5023  if (IsConstructor) {
5024    Sema::SpecialMemberOverloadResult *SMOR =
5025        S.LookupSpecialMember(Class, Sema::CXXDestructor,
5026                              false, false, false, false, false);
5027    if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5028      return true;
5029  }
5030
5031  return false;
5032}
5033
5034/// Check whether we should delete a special member function due to the class
5035/// having a particular direct or virtual base class.
5036bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5037  CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5038  return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5039}
5040
5041/// Check whether we should delete a special member function due to the class
5042/// having a particular non-static data member.
5043bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5044  QualType FieldType = S.Context.getBaseElementType(FD->getType());
5045  CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5046
5047  if (CSM == Sema::CXXDefaultConstructor) {
5048    // For a default constructor, all references must be initialized in-class
5049    // and, if a union, it must have a non-const member.
5050    if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5051      if (Diagnose)
5052        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5053          << MD->getParent() << FD << FieldType << /*Reference*/0;
5054      return true;
5055    }
5056    // C++11 [class.ctor]p5: any non-variant non-static data member of
5057    // const-qualified type (or array thereof) with no
5058    // brace-or-equal-initializer does not have a user-provided default
5059    // constructor.
5060    if (!inUnion() && FieldType.isConstQualified() &&
5061        !FD->hasInClassInitializer() &&
5062        (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5063      if (Diagnose)
5064        S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5065          << MD->getParent() << FD << FD->getType() << /*Const*/1;
5066      return true;
5067    }
5068
5069    if (inUnion() && !FieldType.isConstQualified())
5070      AllFieldsAreConst = false;
5071  } else if (CSM == Sema::CXXCopyConstructor) {
5072    // For a copy constructor, data members must not be of rvalue reference
5073    // type.
5074    if (FieldType->isRValueReferenceType()) {
5075      if (Diagnose)
5076        S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5077          << MD->getParent() << FD << FieldType;
5078      return true;
5079    }
5080  } else if (IsAssignment) {
5081    // For an assignment operator, data members must not be of reference type.
5082    if (FieldType->isReferenceType()) {
5083      if (Diagnose)
5084        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5085          << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5086      return true;
5087    }
5088    if (!FieldRecord && FieldType.isConstQualified()) {
5089      // C++11 [class.copy]p23:
5090      // -- a non-static data member of const non-class type (or array thereof)
5091      if (Diagnose)
5092        S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5093          << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5094      return true;
5095    }
5096  }
5097
5098  if (FieldRecord) {
5099    // Some additional restrictions exist on the variant members.
5100    if (!inUnion() && FieldRecord->isUnion() &&
5101        FieldRecord->isAnonymousStructOrUnion()) {
5102      bool AllVariantFieldsAreConst = true;
5103
5104      // FIXME: Handle anonymous unions declared within anonymous unions.
5105      for (CXXRecordDecl::field_iterator UI = FieldRecord->field_begin(),
5106                                         UE = FieldRecord->field_end();
5107           UI != UE; ++UI) {
5108        QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5109
5110        if (!UnionFieldType.isConstQualified())
5111          AllVariantFieldsAreConst = false;
5112
5113        CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5114        if (UnionFieldRecord &&
5115            shouldDeleteForClassSubobject(UnionFieldRecord, *UI,
5116                                          UnionFieldType.getCVRQualifiers()))
5117          return true;
5118      }
5119
5120      // At least one member in each anonymous union must be non-const
5121      if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5122          FieldRecord->field_begin() != FieldRecord->field_end()) {
5123        if (Diagnose)
5124          S.Diag(FieldRecord->getLocation(),
5125                 diag::note_deleted_default_ctor_all_const)
5126            << MD->getParent() << /*anonymous union*/1;
5127        return true;
5128      }
5129
5130      // Don't check the implicit member of the anonymous union type.
5131      // This is technically non-conformant, but sanity demands it.
5132      return false;
5133    }
5134
5135    if (shouldDeleteForClassSubobject(FieldRecord, FD,
5136                                      FieldType.getCVRQualifiers()))
5137      return true;
5138  }
5139
5140  return false;
5141}
5142
5143/// C++11 [class.ctor] p5:
5144///   A defaulted default constructor for a class X is defined as deleted if
5145/// X is a union and all of its variant members are of const-qualified type.
5146bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5147  // This is a silly definition, because it gives an empty union a deleted
5148  // default constructor. Don't do that.
5149  if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5150      (MD->getParent()->field_begin() != MD->getParent()->field_end())) {
5151    if (Diagnose)
5152      S.Diag(MD->getParent()->getLocation(),
5153             diag::note_deleted_default_ctor_all_const)
5154        << MD->getParent() << /*not anonymous union*/0;
5155    return true;
5156  }
5157  return false;
5158}
5159
5160/// Determine whether a defaulted special member function should be defined as
5161/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5162/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
5163bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5164                                     bool Diagnose) {
5165  if (MD->isInvalidDecl())
5166    return false;
5167  CXXRecordDecl *RD = MD->getParent();
5168  assert(!RD->isDependentType() && "do deletion after instantiation");
5169  if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5170    return false;
5171
5172  // C++11 [expr.lambda.prim]p19:
5173  //   The closure type associated with a lambda-expression has a
5174  //   deleted (8.4.3) default constructor and a deleted copy
5175  //   assignment operator.
5176  if (RD->isLambda() &&
5177      (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5178    if (Diagnose)
5179      Diag(RD->getLocation(), diag::note_lambda_decl);
5180    return true;
5181  }
5182
5183  // For an anonymous struct or union, the copy and assignment special members
5184  // will never be used, so skip the check. For an anonymous union declared at
5185  // namespace scope, the constructor and destructor are used.
5186  if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5187      RD->isAnonymousStructOrUnion())
5188    return false;
5189
5190  // C++11 [class.copy]p7, p18:
5191  //   If the class definition declares a move constructor or move assignment
5192  //   operator, an implicitly declared copy constructor or copy assignment
5193  //   operator is defined as deleted.
5194  if (MD->isImplicit() &&
5195      (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5196    CXXMethodDecl *UserDeclaredMove = 0;
5197
5198    // In Microsoft mode, a user-declared move only causes the deletion of the
5199    // corresponding copy operation, not both copy operations.
5200    if (RD->hasUserDeclaredMoveConstructor() &&
5201        (!getLangOpts().MicrosoftMode || CSM == CXXCopyConstructor)) {
5202      if (!Diagnose) return true;
5203
5204      // Find any user-declared move constructor.
5205      for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
5206                                        E = RD->ctor_end(); I != E; ++I) {
5207        if (I->isMoveConstructor()) {
5208          UserDeclaredMove = *I;
5209          break;
5210        }
5211      }
5212      assert(UserDeclaredMove);
5213    } else if (RD->hasUserDeclaredMoveAssignment() &&
5214               (!getLangOpts().MicrosoftMode || CSM == CXXCopyAssignment)) {
5215      if (!Diagnose) return true;
5216
5217      // Find any user-declared move assignment operator.
5218      for (CXXRecordDecl::method_iterator I = RD->method_begin(),
5219                                          E = RD->method_end(); I != E; ++I) {
5220        if (I->isMoveAssignmentOperator()) {
5221          UserDeclaredMove = *I;
5222          break;
5223        }
5224      }
5225      assert(UserDeclaredMove);
5226    }
5227
5228    if (UserDeclaredMove) {
5229      Diag(UserDeclaredMove->getLocation(),
5230           diag::note_deleted_copy_user_declared_move)
5231        << (CSM == CXXCopyAssignment) << RD
5232        << UserDeclaredMove->isMoveAssignmentOperator();
5233      return true;
5234    }
5235  }
5236
5237  // Do access control from the special member function
5238  ContextRAII MethodContext(*this, MD);
5239
5240  // C++11 [class.dtor]p5:
5241  // -- for a virtual destructor, lookup of the non-array deallocation function
5242  //    results in an ambiguity or in a function that is deleted or inaccessible
5243  if (CSM == CXXDestructor && MD->isVirtual()) {
5244    FunctionDecl *OperatorDelete = 0;
5245    DeclarationName Name =
5246      Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5247    if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5248                                 OperatorDelete, false)) {
5249      if (Diagnose)
5250        Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5251      return true;
5252    }
5253  }
5254
5255  SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5256
5257  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5258                                          BE = RD->bases_end(); BI != BE; ++BI)
5259    if (!BI->isVirtual() &&
5260        SMI.shouldDeleteForBase(BI))
5261      return true;
5262
5263  // Per DR1611, do not consider virtual bases of constructors of abstract
5264  // classes, since we are not going to construct them.
5265  if (!RD->isAbstract() || !SMI.IsConstructor) {
5266    for (CXXRecordDecl::base_class_iterator BI = RD->vbases_begin(),
5267                                            BE = RD->vbases_end();
5268         BI != BE; ++BI)
5269      if (SMI.shouldDeleteForBase(BI))
5270        return true;
5271  }
5272
5273  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5274                                     FE = RD->field_end(); FI != FE; ++FI)
5275    if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5276        SMI.shouldDeleteForField(*FI))
5277      return true;
5278
5279  if (SMI.shouldDeleteForAllConstMembers())
5280    return true;
5281
5282  return false;
5283}
5284
5285/// Perform lookup for a special member of the specified kind, and determine
5286/// whether it is trivial. If the triviality can be determined without the
5287/// lookup, skip it. This is intended for use when determining whether a
5288/// special member of a containing object is trivial, and thus does not ever
5289/// perform overload resolution for default constructors.
5290///
5291/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5292/// member that was most likely to be intended to be trivial, if any.
5293static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5294                                     Sema::CXXSpecialMember CSM, unsigned Quals,
5295                                     CXXMethodDecl **Selected) {
5296  if (Selected)
5297    *Selected = 0;
5298
5299  switch (CSM) {
5300  case Sema::CXXInvalid:
5301    llvm_unreachable("not a special member");
5302
5303  case Sema::CXXDefaultConstructor:
5304    // C++11 [class.ctor]p5:
5305    //   A default constructor is trivial if:
5306    //    - all the [direct subobjects] have trivial default constructors
5307    //
5308    // Note, no overload resolution is performed in this case.
5309    if (RD->hasTrivialDefaultConstructor())
5310      return true;
5311
5312    if (Selected) {
5313      // If there's a default constructor which could have been trivial, dig it
5314      // out. Otherwise, if there's any user-provided default constructor, point
5315      // to that as an example of why there's not a trivial one.
5316      CXXConstructorDecl *DefCtor = 0;
5317      if (RD->needsImplicitDefaultConstructor())
5318        S.DeclareImplicitDefaultConstructor(RD);
5319      for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(),
5320                                        CE = RD->ctor_end(); CI != CE; ++CI) {
5321        if (!CI->isDefaultConstructor())
5322          continue;
5323        DefCtor = *CI;
5324        if (!DefCtor->isUserProvided())
5325          break;
5326      }
5327
5328      *Selected = DefCtor;
5329    }
5330
5331    return false;
5332
5333  case Sema::CXXDestructor:
5334    // C++11 [class.dtor]p5:
5335    //   A destructor is trivial if:
5336    //    - all the direct [subobjects] have trivial destructors
5337    if (RD->hasTrivialDestructor())
5338      return true;
5339
5340    if (Selected) {
5341      if (RD->needsImplicitDestructor())
5342        S.DeclareImplicitDestructor(RD);
5343      *Selected = RD->getDestructor();
5344    }
5345
5346    return false;
5347
5348  case Sema::CXXCopyConstructor:
5349    // C++11 [class.copy]p12:
5350    //   A copy constructor is trivial if:
5351    //    - the constructor selected to copy each direct [subobject] is trivial
5352    if (RD->hasTrivialCopyConstructor()) {
5353      if (Quals == Qualifiers::Const)
5354        // We must either select the trivial copy constructor or reach an
5355        // ambiguity; no need to actually perform overload resolution.
5356        return true;
5357    } else if (!Selected) {
5358      return false;
5359    }
5360    // In C++98, we are not supposed to perform overload resolution here, but we
5361    // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5362    // cases like B as having a non-trivial copy constructor:
5363    //   struct A { template<typename T> A(T&); };
5364    //   struct B { mutable A a; };
5365    goto NeedOverloadResolution;
5366
5367  case Sema::CXXCopyAssignment:
5368    // C++11 [class.copy]p25:
5369    //   A copy assignment operator is trivial if:
5370    //    - the assignment operator selected to copy each direct [subobject] is
5371    //      trivial
5372    if (RD->hasTrivialCopyAssignment()) {
5373      if (Quals == Qualifiers::Const)
5374        return true;
5375    } else if (!Selected) {
5376      return false;
5377    }
5378    // In C++98, we are not supposed to perform overload resolution here, but we
5379    // treat that as a language defect.
5380    goto NeedOverloadResolution;
5381
5382  case Sema::CXXMoveConstructor:
5383  case Sema::CXXMoveAssignment:
5384  NeedOverloadResolution:
5385    Sema::SpecialMemberOverloadResult *SMOR =
5386      S.LookupSpecialMember(RD, CSM,
5387                            Quals & Qualifiers::Const,
5388                            Quals & Qualifiers::Volatile,
5389                            /*RValueThis*/false, /*ConstThis*/false,
5390                            /*VolatileThis*/false);
5391
5392    // The standard doesn't describe how to behave if the lookup is ambiguous.
5393    // We treat it as not making the member non-trivial, just like the standard
5394    // mandates for the default constructor. This should rarely matter, because
5395    // the member will also be deleted.
5396    if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5397      return true;
5398
5399    if (!SMOR->getMethod()) {
5400      assert(SMOR->getKind() ==
5401             Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5402      return false;
5403    }
5404
5405    // We deliberately don't check if we found a deleted special member. We're
5406    // not supposed to!
5407    if (Selected)
5408      *Selected = SMOR->getMethod();
5409    return SMOR->getMethod()->isTrivial();
5410  }
5411
5412  llvm_unreachable("unknown special method kind");
5413}
5414
5415static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5416  for (CXXRecordDecl::ctor_iterator CI = RD->ctor_begin(), CE = RD->ctor_end();
5417       CI != CE; ++CI)
5418    if (!CI->isImplicit())
5419      return *CI;
5420
5421  // Look for constructor templates.
5422  typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5423  for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5424    if (CXXConstructorDecl *CD =
5425          dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5426      return CD;
5427  }
5428
5429  return 0;
5430}
5431
5432/// The kind of subobject we are checking for triviality. The values of this
5433/// enumeration are used in diagnostics.
5434enum TrivialSubobjectKind {
5435  /// The subobject is a base class.
5436  TSK_BaseClass,
5437  /// The subobject is a non-static data member.
5438  TSK_Field,
5439  /// The object is actually the complete object.
5440  TSK_CompleteObject
5441};
5442
5443/// Check whether the special member selected for a given type would be trivial.
5444static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5445                                      QualType SubType,
5446                                      Sema::CXXSpecialMember CSM,
5447                                      TrivialSubobjectKind Kind,
5448                                      bool Diagnose) {
5449  CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5450  if (!SubRD)
5451    return true;
5452
5453  CXXMethodDecl *Selected;
5454  if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5455                               Diagnose ? &Selected : 0))
5456    return true;
5457
5458  if (Diagnose) {
5459    if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5460      S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5461        << Kind << SubType.getUnqualifiedType();
5462      if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5463        S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5464    } else if (!Selected)
5465      S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5466        << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5467    else if (Selected->isUserProvided()) {
5468      if (Kind == TSK_CompleteObject)
5469        S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5470          << Kind << SubType.getUnqualifiedType() << CSM;
5471      else {
5472        S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5473          << Kind << SubType.getUnqualifiedType() << CSM;
5474        S.Diag(Selected->getLocation(), diag::note_declared_at);
5475      }
5476    } else {
5477      if (Kind != TSK_CompleteObject)
5478        S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5479          << Kind << SubType.getUnqualifiedType() << CSM;
5480
5481      // Explain why the defaulted or deleted special member isn't trivial.
5482      S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5483    }
5484  }
5485
5486  return false;
5487}
5488
5489/// Check whether the members of a class type allow a special member to be
5490/// trivial.
5491static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5492                                     Sema::CXXSpecialMember CSM,
5493                                     bool ConstArg, bool Diagnose) {
5494  for (CXXRecordDecl::field_iterator FI = RD->field_begin(),
5495                                     FE = RD->field_end(); FI != FE; ++FI) {
5496    if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5497      continue;
5498
5499    QualType FieldType = S.Context.getBaseElementType(FI->getType());
5500
5501    // Pretend anonymous struct or union members are members of this class.
5502    if (FI->isAnonymousStructOrUnion()) {
5503      if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5504                                    CSM, ConstArg, Diagnose))
5505        return false;
5506      continue;
5507    }
5508
5509    // C++11 [class.ctor]p5:
5510    //   A default constructor is trivial if [...]
5511    //    -- no non-static data member of its class has a
5512    //       brace-or-equal-initializer
5513    if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5514      if (Diagnose)
5515        S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << *FI;
5516      return false;
5517    }
5518
5519    // Objective C ARC 4.3.5:
5520    //   [...] nontrivally ownership-qualified types are [...] not trivially
5521    //   default constructible, copy constructible, move constructible, copy
5522    //   assignable, move assignable, or destructible [...]
5523    if (S.getLangOpts().ObjCAutoRefCount &&
5524        FieldType.hasNonTrivialObjCLifetime()) {
5525      if (Diagnose)
5526        S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5527          << RD << FieldType.getObjCLifetime();
5528      return false;
5529    }
5530
5531    if (ConstArg && !FI->isMutable())
5532      FieldType.addConst();
5533    if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, CSM,
5534                                   TSK_Field, Diagnose))
5535      return false;
5536  }
5537
5538  return true;
5539}
5540
5541/// Diagnose why the specified class does not have a trivial special member of
5542/// the given kind.
5543void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5544  QualType Ty = Context.getRecordType(RD);
5545  if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)
5546    Ty.addConst();
5547
5548  checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, CSM,
5549                            TSK_CompleteObject, /*Diagnose*/true);
5550}
5551
5552/// Determine whether a defaulted or deleted special member function is trivial,
5553/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5554/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
5555bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5556                                  bool Diagnose) {
5557  assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5558
5559  CXXRecordDecl *RD = MD->getParent();
5560
5561  bool ConstArg = false;
5562
5563  // C++11 [class.copy]p12, p25:
5564  //   A [special member] is trivial if its declared parameter type is the same
5565  //   as if it had been implicitly declared [...]
5566  switch (CSM) {
5567  case CXXDefaultConstructor:
5568  case CXXDestructor:
5569    // Trivial default constructors and destructors cannot have parameters.
5570    break;
5571
5572  case CXXCopyConstructor:
5573  case CXXCopyAssignment: {
5574    // Trivial copy operations always have const, non-volatile parameter types.
5575    ConstArg = true;
5576    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5577    const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5578    if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5579      if (Diagnose)
5580        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5581          << Param0->getSourceRange() << Param0->getType()
5582          << Context.getLValueReferenceType(
5583               Context.getRecordType(RD).withConst());
5584      return false;
5585    }
5586    break;
5587  }
5588
5589  case CXXMoveConstructor:
5590  case CXXMoveAssignment: {
5591    // Trivial move operations always have non-cv-qualified parameters.
5592    const ParmVarDecl *Param0 = MD->getParamDecl(0);
5593    const RValueReferenceType *RT =
5594      Param0->getType()->getAs<RValueReferenceType>();
5595    if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5596      if (Diagnose)
5597        Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5598          << Param0->getSourceRange() << Param0->getType()
5599          << Context.getRValueReferenceType(Context.getRecordType(RD));
5600      return false;
5601    }
5602    break;
5603  }
5604
5605  case CXXInvalid:
5606    llvm_unreachable("not a special member");
5607  }
5608
5609  // FIXME: We require that the parameter-declaration-clause is equivalent to
5610  // that of an implicit declaration, not just that the declared parameter type
5611  // matches, in order to prevent absuridities like a function simultaneously
5612  // being a trivial copy constructor and a non-trivial default constructor.
5613  // This issue has not yet been assigned a core issue number.
5614  if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5615    if (Diagnose)
5616      Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5617           diag::note_nontrivial_default_arg)
5618        << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5619    return false;
5620  }
5621  if (MD->isVariadic()) {
5622    if (Diagnose)
5623      Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5624    return false;
5625  }
5626
5627  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5628  //   A copy/move [constructor or assignment operator] is trivial if
5629  //    -- the [member] selected to copy/move each direct base class subobject
5630  //       is trivial
5631  //
5632  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5633  //   A [default constructor or destructor] is trivial if
5634  //    -- all the direct base classes have trivial [default constructors or
5635  //       destructors]
5636  for (CXXRecordDecl::base_class_iterator BI = RD->bases_begin(),
5637                                          BE = RD->bases_end(); BI != BE; ++BI)
5638    if (!checkTrivialSubobjectCall(*this, BI->getLocStart(),
5639                                   ConstArg ? BI->getType().withConst()
5640                                            : BI->getType(),
5641                                   CSM, TSK_BaseClass, Diagnose))
5642      return false;
5643
5644  // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5645  //   A copy/move [constructor or assignment operator] for a class X is
5646  //   trivial if
5647  //    -- for each non-static data member of X that is of class type (or array
5648  //       thereof), the constructor selected to copy/move that member is
5649  //       trivial
5650  //
5651  // C++11 [class.copy]p12, C++11 [class.copy]p25:
5652  //   A [default constructor or destructor] is trivial if
5653  //    -- for all of the non-static data members of its class that are of class
5654  //       type (or array thereof), each such class has a trivial [default
5655  //       constructor or destructor]
5656  if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5657    return false;
5658
5659  // C++11 [class.dtor]p5:
5660  //   A destructor is trivial if [...]
5661  //    -- the destructor is not virtual
5662  if (CSM == CXXDestructor && MD->isVirtual()) {
5663    if (Diagnose)
5664      Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5665    return false;
5666  }
5667
5668  // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5669  //   A [special member] for class X is trivial if [...]
5670  //    -- class X has no virtual functions and no virtual base classes
5671  if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5672    if (!Diagnose)
5673      return false;
5674
5675    if (RD->getNumVBases()) {
5676      // Check for virtual bases. We already know that the corresponding
5677      // member in all bases is trivial, so vbases must all be direct.
5678      CXXBaseSpecifier &BS = *RD->vbases_begin();
5679      assert(BS.isVirtual());
5680      Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5681      return false;
5682    }
5683
5684    // Must have a virtual method.
5685    for (CXXRecordDecl::method_iterator MI = RD->method_begin(),
5686                                        ME = RD->method_end(); MI != ME; ++MI) {
5687      if (MI->isVirtual()) {
5688        SourceLocation MLoc = MI->getLocStart();
5689        Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5690        return false;
5691      }
5692    }
5693
5694    llvm_unreachable("dynamic class with no vbases and no virtual functions");
5695  }
5696
5697  // Looks like it's trivial!
5698  return true;
5699}
5700
5701/// \brief Data used with FindHiddenVirtualMethod
5702namespace {
5703  struct FindHiddenVirtualMethodData {
5704    Sema *S;
5705    CXXMethodDecl *Method;
5706    llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5707    SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5708  };
5709}
5710
5711/// \brief Check whether any most overriden method from MD in Methods
5712static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5713                   const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5714  if (MD->size_overridden_methods() == 0)
5715    return Methods.count(MD->getCanonicalDecl());
5716  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5717                                      E = MD->end_overridden_methods();
5718       I != E; ++I)
5719    if (CheckMostOverridenMethods(*I, Methods))
5720      return true;
5721  return false;
5722}
5723
5724/// \brief Member lookup function that determines whether a given C++
5725/// method overloads virtual methods in a base class without overriding any,
5726/// to be used with CXXRecordDecl::lookupInBases().
5727static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5728                                    CXXBasePath &Path,
5729                                    void *UserData) {
5730  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5731
5732  FindHiddenVirtualMethodData &Data
5733    = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5734
5735  DeclarationName Name = Data.Method->getDeclName();
5736  assert(Name.getNameKind() == DeclarationName::Identifier);
5737
5738  bool foundSameNameMethod = false;
5739  SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5740  for (Path.Decls = BaseRecord->lookup(Name);
5741       !Path.Decls.empty();
5742       Path.Decls = Path.Decls.slice(1)) {
5743    NamedDecl *D = Path.Decls.front();
5744    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5745      MD = MD->getCanonicalDecl();
5746      foundSameNameMethod = true;
5747      // Interested only in hidden virtual methods.
5748      if (!MD->isVirtual())
5749        continue;
5750      // If the method we are checking overrides a method from its base
5751      // don't warn about the other overloaded methods.
5752      if (!Data.S->IsOverload(Data.Method, MD, false))
5753        return true;
5754      // Collect the overload only if its hidden.
5755      if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5756        overloadedMethods.push_back(MD);
5757    }
5758  }
5759
5760  if (foundSameNameMethod)
5761    Data.OverloadedMethods.append(overloadedMethods.begin(),
5762                                   overloadedMethods.end());
5763  return foundSameNameMethod;
5764}
5765
5766/// \brief Add the most overriden methods from MD to Methods
5767static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5768                         llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5769  if (MD->size_overridden_methods() == 0)
5770    Methods.insert(MD->getCanonicalDecl());
5771  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5772                                      E = MD->end_overridden_methods();
5773       I != E; ++I)
5774    AddMostOverridenMethods(*I, Methods);
5775}
5776
5777/// \brief Check if a method overloads virtual methods in a base class without
5778/// overriding any.
5779void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
5780                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5781  if (!MD->getDeclName().isIdentifier())
5782    return;
5783
5784  CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5785                     /*bool RecordPaths=*/false,
5786                     /*bool DetectVirtual=*/false);
5787  FindHiddenVirtualMethodData Data;
5788  Data.Method = MD;
5789  Data.S = this;
5790
5791  // Keep the base methods that were overriden or introduced in the subclass
5792  // by 'using' in a set. A base method not in this set is hidden.
5793  CXXRecordDecl *DC = MD->getParent();
5794  DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5795  for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5796    NamedDecl *ND = *I;
5797    if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5798      ND = shad->getTargetDecl();
5799    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5800      AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5801  }
5802
5803  if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
5804    OverloadedMethods = Data.OverloadedMethods;
5805}
5806
5807void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
5808                          SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5809  for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
5810    CXXMethodDecl *overloadedMD = OverloadedMethods[i];
5811    PartialDiagnostic PD = PDiag(
5812         diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
5813    HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
5814    Diag(overloadedMD->getLocation(), PD);
5815  }
5816}
5817
5818/// \brief Diagnose methods which overload virtual methods in a base class
5819/// without overriding any.
5820void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
5821  if (MD->isInvalidDecl())
5822    return;
5823
5824  if (Diags.getDiagnosticLevel(diag::warn_overloaded_virtual,
5825                               MD->getLocation()) == DiagnosticsEngine::Ignored)
5826    return;
5827
5828  SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5829  FindHiddenVirtualMethods(MD, OverloadedMethods);
5830  if (!OverloadedMethods.empty()) {
5831    Diag(MD->getLocation(), diag::warn_overloaded_virtual)
5832      << MD << (OverloadedMethods.size() > 1);
5833
5834    NoteHiddenVirtualMethods(MD, OverloadedMethods);
5835  }
5836}
5837
5838void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
5839                                             Decl *TagDecl,
5840                                             SourceLocation LBrac,
5841                                             SourceLocation RBrac,
5842                                             AttributeList *AttrList) {
5843  if (!TagDecl)
5844    return;
5845
5846  AdjustDeclIfTemplate(TagDecl);
5847
5848  for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5849    if (l->getKind() != AttributeList::AT_Visibility)
5850      continue;
5851    l->setInvalid();
5852    Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
5853      l->getName();
5854  }
5855
5856  ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
5857              // strict aliasing violation!
5858              reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
5859              FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
5860
5861  CheckCompletedCXXClass(
5862                        dyn_cast_or_null<CXXRecordDecl>(TagDecl));
5863}
5864
5865/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
5866/// special functions, such as the default constructor, copy
5867/// constructor, or destructor, to the given C++ class (C++
5868/// [special]p1).  This routine can only be executed just before the
5869/// definition of the class is complete.
5870void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
5871  if (!ClassDecl->hasUserDeclaredConstructor())
5872    ++ASTContext::NumImplicitDefaultConstructors;
5873
5874  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
5875    ++ASTContext::NumImplicitCopyConstructors;
5876
5877    // If the properties or semantics of the copy constructor couldn't be
5878    // determined while the class was being declared, force a declaration
5879    // of it now.
5880    if (ClassDecl->needsOverloadResolutionForCopyConstructor())
5881      DeclareImplicitCopyConstructor(ClassDecl);
5882  }
5883
5884  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
5885    ++ASTContext::NumImplicitMoveConstructors;
5886
5887    if (ClassDecl->needsOverloadResolutionForMoveConstructor())
5888      DeclareImplicitMoveConstructor(ClassDecl);
5889  }
5890
5891  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
5892    ++ASTContext::NumImplicitCopyAssignmentOperators;
5893
5894    // If we have a dynamic class, then the copy assignment operator may be
5895    // virtual, so we have to declare it immediately. This ensures that, e.g.,
5896    // it shows up in the right place in the vtable and that we diagnose
5897    // problems with the implicit exception specification.
5898    if (ClassDecl->isDynamicClass() ||
5899        ClassDecl->needsOverloadResolutionForCopyAssignment())
5900      DeclareImplicitCopyAssignment(ClassDecl);
5901  }
5902
5903  if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
5904    ++ASTContext::NumImplicitMoveAssignmentOperators;
5905
5906    // Likewise for the move assignment operator.
5907    if (ClassDecl->isDynamicClass() ||
5908        ClassDecl->needsOverloadResolutionForMoveAssignment())
5909      DeclareImplicitMoveAssignment(ClassDecl);
5910  }
5911
5912  if (!ClassDecl->hasUserDeclaredDestructor()) {
5913    ++ASTContext::NumImplicitDestructors;
5914
5915    // If we have a dynamic class, then the destructor may be virtual, so we
5916    // have to declare the destructor immediately. This ensures that, e.g., it
5917    // shows up in the right place in the vtable and that we diagnose problems
5918    // with the implicit exception specification.
5919    if (ClassDecl->isDynamicClass() ||
5920        ClassDecl->needsOverloadResolutionForDestructor())
5921      DeclareImplicitDestructor(ClassDecl);
5922  }
5923}
5924
5925void Sema::ActOnReenterDeclaratorTemplateScope(Scope *S, DeclaratorDecl *D) {
5926  if (!D)
5927    return;
5928
5929  int NumParamList = D->getNumTemplateParameterLists();
5930  for (int i = 0; i < NumParamList; i++) {
5931    TemplateParameterList* Params = D->getTemplateParameterList(i);
5932    for (TemplateParameterList::iterator Param = Params->begin(),
5933                                      ParamEnd = Params->end();
5934          Param != ParamEnd; ++Param) {
5935      NamedDecl *Named = cast<NamedDecl>(*Param);
5936      if (Named->getDeclName()) {
5937        S->AddDecl(Named);
5938        IdResolver.AddDecl(Named);
5939      }
5940    }
5941  }
5942}
5943
5944void Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
5945  if (!D)
5946    return;
5947
5948  TemplateParameterList *Params = 0;
5949  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
5950    Params = Template->getTemplateParameters();
5951  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
5952           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
5953    Params = PartialSpec->getTemplateParameters();
5954  else
5955    return;
5956
5957  for (TemplateParameterList::iterator Param = Params->begin(),
5958                                    ParamEnd = Params->end();
5959       Param != ParamEnd; ++Param) {
5960    NamedDecl *Named = cast<NamedDecl>(*Param);
5961    if (Named->getDeclName()) {
5962      S->AddDecl(Named);
5963      IdResolver.AddDecl(Named);
5964    }
5965  }
5966}
5967
5968void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5969  if (!RecordD) return;
5970  AdjustDeclIfTemplate(RecordD);
5971  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
5972  PushDeclContext(S, Record);
5973}
5974
5975void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
5976  if (!RecordD) return;
5977  PopDeclContext();
5978}
5979
5980/// ActOnStartDelayedCXXMethodDeclaration - We have completed
5981/// parsing a top-level (non-nested) C++ class, and we are now
5982/// parsing those parts of the given Method declaration that could
5983/// not be parsed earlier (C++ [class.mem]p2), such as default
5984/// arguments. This action should enter the scope of the given
5985/// Method declaration as if we had just parsed the qualified method
5986/// name. However, it should not bring the parameters into scope;
5987/// that will be performed by ActOnDelayedCXXMethodParameter.
5988void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
5989}
5990
5991/// ActOnDelayedCXXMethodParameter - We've already started a delayed
5992/// C++ method declaration. We're (re-)introducing the given
5993/// function parameter into scope for use in parsing later parts of
5994/// the method declaration. For example, we could see an
5995/// ActOnParamDefaultArgument event for this parameter.
5996void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
5997  if (!ParamD)
5998    return;
5999
6000  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6001
6002  // If this parameter has an unparsed default argument, clear it out
6003  // to make way for the parsed default argument.
6004  if (Param->hasUnparsedDefaultArg())
6005    Param->setDefaultArg(0);
6006
6007  S->AddDecl(Param);
6008  if (Param->getDeclName())
6009    IdResolver.AddDecl(Param);
6010}
6011
6012/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6013/// processing the delayed method declaration for Method. The method
6014/// declaration is now considered finished. There may be a separate
6015/// ActOnStartOfFunctionDef action later (not necessarily
6016/// immediately!) for this method, if it was also defined inside the
6017/// class body.
6018void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6019  if (!MethodD)
6020    return;
6021
6022  AdjustDeclIfTemplate(MethodD);
6023
6024  FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6025
6026  // Now that we have our default arguments, check the constructor
6027  // again. It could produce additional diagnostics or affect whether
6028  // the class has implicitly-declared destructors, among other
6029  // things.
6030  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6031    CheckConstructor(Constructor);
6032
6033  // Check the default arguments, which we may have added.
6034  if (!Method->isInvalidDecl())
6035    CheckCXXDefaultArguments(Method);
6036}
6037
6038/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6039/// the well-formedness of the constructor declarator @p D with type @p
6040/// R. If there are any errors in the declarator, this routine will
6041/// emit diagnostics and set the invalid bit to true.  In any case, the type
6042/// will be updated to reflect a well-formed type for the constructor and
6043/// returned.
6044QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6045                                          StorageClass &SC) {
6046  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6047
6048  // C++ [class.ctor]p3:
6049  //   A constructor shall not be virtual (10.3) or static (9.4). A
6050  //   constructor can be invoked for a const, volatile or const
6051  //   volatile object. A constructor shall not be declared const,
6052  //   volatile, or const volatile (9.3.2).
6053  if (isVirtual) {
6054    if (!D.isInvalidType())
6055      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6056        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6057        << SourceRange(D.getIdentifierLoc());
6058    D.setInvalidType();
6059  }
6060  if (SC == SC_Static) {
6061    if (!D.isInvalidType())
6062      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6063        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6064        << SourceRange(D.getIdentifierLoc());
6065    D.setInvalidType();
6066    SC = SC_None;
6067  }
6068
6069  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6070  if (FTI.TypeQuals != 0) {
6071    if (FTI.TypeQuals & Qualifiers::Const)
6072      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6073        << "const" << SourceRange(D.getIdentifierLoc());
6074    if (FTI.TypeQuals & Qualifiers::Volatile)
6075      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6076        << "volatile" << SourceRange(D.getIdentifierLoc());
6077    if (FTI.TypeQuals & Qualifiers::Restrict)
6078      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6079        << "restrict" << SourceRange(D.getIdentifierLoc());
6080    D.setInvalidType();
6081  }
6082
6083  // C++0x [class.ctor]p4:
6084  //   A constructor shall not be declared with a ref-qualifier.
6085  if (FTI.hasRefQualifier()) {
6086    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6087      << FTI.RefQualifierIsLValueRef
6088      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6089    D.setInvalidType();
6090  }
6091
6092  // Rebuild the function type "R" without any type qualifiers (in
6093  // case any of the errors above fired) and with "void" as the
6094  // return type, since constructors don't have return types.
6095  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6096  if (Proto->getResultType() == Context.VoidTy && !D.isInvalidType())
6097    return R;
6098
6099  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6100  EPI.TypeQuals = 0;
6101  EPI.RefQualifier = RQ_None;
6102
6103  return Context.getFunctionType(Context.VoidTy, Proto->getArgTypes(), EPI);
6104}
6105
6106/// CheckConstructor - Checks a fully-formed constructor for
6107/// well-formedness, issuing any diagnostics required. Returns true if
6108/// the constructor declarator is invalid.
6109void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6110  CXXRecordDecl *ClassDecl
6111    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6112  if (!ClassDecl)
6113    return Constructor->setInvalidDecl();
6114
6115  // C++ [class.copy]p3:
6116  //   A declaration of a constructor for a class X is ill-formed if
6117  //   its first parameter is of type (optionally cv-qualified) X and
6118  //   either there are no other parameters or else all other
6119  //   parameters have default arguments.
6120  if (!Constructor->isInvalidDecl() &&
6121      ((Constructor->getNumParams() == 1) ||
6122       (Constructor->getNumParams() > 1 &&
6123        Constructor->getParamDecl(1)->hasDefaultArg())) &&
6124      Constructor->getTemplateSpecializationKind()
6125                                              != TSK_ImplicitInstantiation) {
6126    QualType ParamType = Constructor->getParamDecl(0)->getType();
6127    QualType ClassTy = Context.getTagDeclType(ClassDecl);
6128    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6129      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6130      const char *ConstRef
6131        = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6132                                                        : " const &";
6133      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6134        << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6135
6136      // FIXME: Rather that making the constructor invalid, we should endeavor
6137      // to fix the type.
6138      Constructor->setInvalidDecl();
6139    }
6140  }
6141}
6142
6143/// CheckDestructor - Checks a fully-formed destructor definition for
6144/// well-formedness, issuing any diagnostics required.  Returns true
6145/// on error.
6146bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6147  CXXRecordDecl *RD = Destructor->getParent();
6148
6149  if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6150    SourceLocation Loc;
6151
6152    if (!Destructor->isImplicit())
6153      Loc = Destructor->getLocation();
6154    else
6155      Loc = RD->getLocation();
6156
6157    // If we have a virtual destructor, look up the deallocation function
6158    FunctionDecl *OperatorDelete = 0;
6159    DeclarationName Name =
6160    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6161    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6162      return true;
6163
6164    MarkFunctionReferenced(Loc, OperatorDelete);
6165
6166    Destructor->setOperatorDelete(OperatorDelete);
6167  }
6168
6169  return false;
6170}
6171
6172static inline bool
6173FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
6174  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6175          FTI.ArgInfo[0].Param &&
6176          cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType());
6177}
6178
6179/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6180/// the well-formednes of the destructor declarator @p D with type @p
6181/// R. If there are any errors in the declarator, this routine will
6182/// emit diagnostics and set the declarator to invalid.  Even if this happens,
6183/// will be updated to reflect a well-formed type for the destructor and
6184/// returned.
6185QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6186                                         StorageClass& SC) {
6187  // C++ [class.dtor]p1:
6188  //   [...] A typedef-name that names a class is a class-name
6189  //   (7.1.3); however, a typedef-name that names a class shall not
6190  //   be used as the identifier in the declarator for a destructor
6191  //   declaration.
6192  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6193  if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6194    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6195      << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6196  else if (const TemplateSpecializationType *TST =
6197             DeclaratorType->getAs<TemplateSpecializationType>())
6198    if (TST->isTypeAlias())
6199      Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6200        << DeclaratorType << 1;
6201
6202  // C++ [class.dtor]p2:
6203  //   A destructor is used to destroy objects of its class type. A
6204  //   destructor takes no parameters, and no return type can be
6205  //   specified for it (not even void). The address of a destructor
6206  //   shall not be taken. A destructor shall not be static. A
6207  //   destructor can be invoked for a const, volatile or const
6208  //   volatile object. A destructor shall not be declared const,
6209  //   volatile or const volatile (9.3.2).
6210  if (SC == SC_Static) {
6211    if (!D.isInvalidType())
6212      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6213        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6214        << SourceRange(D.getIdentifierLoc())
6215        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6216
6217    SC = SC_None;
6218  }
6219  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6220    // Destructors don't have return types, but the parser will
6221    // happily parse something like:
6222    //
6223    //   class X {
6224    //     float ~X();
6225    //   };
6226    //
6227    // The return type will be eliminated later.
6228    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6229      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6230      << SourceRange(D.getIdentifierLoc());
6231  }
6232
6233  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6234  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6235    if (FTI.TypeQuals & Qualifiers::Const)
6236      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6237        << "const" << SourceRange(D.getIdentifierLoc());
6238    if (FTI.TypeQuals & Qualifiers::Volatile)
6239      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6240        << "volatile" << SourceRange(D.getIdentifierLoc());
6241    if (FTI.TypeQuals & Qualifiers::Restrict)
6242      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6243        << "restrict" << SourceRange(D.getIdentifierLoc());
6244    D.setInvalidType();
6245  }
6246
6247  // C++0x [class.dtor]p2:
6248  //   A destructor shall not be declared with a ref-qualifier.
6249  if (FTI.hasRefQualifier()) {
6250    Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6251      << FTI.RefQualifierIsLValueRef
6252      << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6253    D.setInvalidType();
6254  }
6255
6256  // Make sure we don't have any parameters.
6257  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
6258    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6259
6260    // Delete the parameters.
6261    FTI.freeArgs();
6262    D.setInvalidType();
6263  }
6264
6265  // Make sure the destructor isn't variadic.
6266  if (FTI.isVariadic) {
6267    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6268    D.setInvalidType();
6269  }
6270
6271  // Rebuild the function type "R" without any type qualifiers or
6272  // parameters (in case any of the errors above fired) and with
6273  // "void" as the return type, since destructors don't have return
6274  // types.
6275  if (!D.isInvalidType())
6276    return R;
6277
6278  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6279  FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6280  EPI.Variadic = false;
6281  EPI.TypeQuals = 0;
6282  EPI.RefQualifier = RQ_None;
6283  return Context.getFunctionType(Context.VoidTy, None, EPI);
6284}
6285
6286/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6287/// well-formednes of the conversion function declarator @p D with
6288/// type @p R. If there are any errors in the declarator, this routine
6289/// will emit diagnostics and return true. Otherwise, it will return
6290/// false. Either way, the type @p R will be updated to reflect a
6291/// well-formed type for the conversion operator.
6292void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6293                                     StorageClass& SC) {
6294  // C++ [class.conv.fct]p1:
6295  //   Neither parameter types nor return type can be specified. The
6296  //   type of a conversion function (8.3.5) is "function taking no
6297  //   parameter returning conversion-type-id."
6298  if (SC == SC_Static) {
6299    if (!D.isInvalidType())
6300      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6301        << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6302        << D.getName().getSourceRange();
6303    D.setInvalidType();
6304    SC = SC_None;
6305  }
6306
6307  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6308
6309  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6310    // Conversion functions don't have return types, but the parser will
6311    // happily parse something like:
6312    //
6313    //   class X {
6314    //     float operator bool();
6315    //   };
6316    //
6317    // The return type will be changed later anyway.
6318    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6319      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6320      << SourceRange(D.getIdentifierLoc());
6321    D.setInvalidType();
6322  }
6323
6324  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6325
6326  // Make sure we don't have any parameters.
6327  if (Proto->getNumArgs() > 0) {
6328    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6329
6330    // Delete the parameters.
6331    D.getFunctionTypeInfo().freeArgs();
6332    D.setInvalidType();
6333  } else if (Proto->isVariadic()) {
6334    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6335    D.setInvalidType();
6336  }
6337
6338  // Diagnose "&operator bool()" and other such nonsense.  This
6339  // is actually a gcc extension which we don't support.
6340  if (Proto->getResultType() != ConvType) {
6341    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6342      << Proto->getResultType();
6343    D.setInvalidType();
6344    ConvType = Proto->getResultType();
6345  }
6346
6347  // C++ [class.conv.fct]p4:
6348  //   The conversion-type-id shall not represent a function type nor
6349  //   an array type.
6350  if (ConvType->isArrayType()) {
6351    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6352    ConvType = Context.getPointerType(ConvType);
6353    D.setInvalidType();
6354  } else if (ConvType->isFunctionType()) {
6355    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6356    ConvType = Context.getPointerType(ConvType);
6357    D.setInvalidType();
6358  }
6359
6360  // Rebuild the function type "R" without any parameters (in case any
6361  // of the errors above fired) and with the conversion type as the
6362  // return type.
6363  if (D.isInvalidType())
6364    R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6365
6366  // C++0x explicit conversion operators.
6367  if (D.getDeclSpec().isExplicitSpecified())
6368    Diag(D.getDeclSpec().getExplicitSpecLoc(),
6369         getLangOpts().CPlusPlus11 ?
6370           diag::warn_cxx98_compat_explicit_conversion_functions :
6371           diag::ext_explicit_conversion_functions)
6372      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6373}
6374
6375/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6376/// the declaration of the given C++ conversion function. This routine
6377/// is responsible for recording the conversion function in the C++
6378/// class, if possible.
6379Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6380  assert(Conversion && "Expected to receive a conversion function declaration");
6381
6382  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6383
6384  // Make sure we aren't redeclaring the conversion function.
6385  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6386
6387  // C++ [class.conv.fct]p1:
6388  //   [...] A conversion function is never used to convert a
6389  //   (possibly cv-qualified) object to the (possibly cv-qualified)
6390  //   same object type (or a reference to it), to a (possibly
6391  //   cv-qualified) base class of that type (or a reference to it),
6392  //   or to (possibly cv-qualified) void.
6393  // FIXME: Suppress this warning if the conversion function ends up being a
6394  // virtual function that overrides a virtual function in a base class.
6395  QualType ClassType
6396    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6397  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6398    ConvType = ConvTypeRef->getPointeeType();
6399  if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6400      Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6401    /* Suppress diagnostics for instantiations. */;
6402  else if (ConvType->isRecordType()) {
6403    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6404    if (ConvType == ClassType)
6405      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6406        << ClassType;
6407    else if (IsDerivedFrom(ClassType, ConvType))
6408      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6409        <<  ClassType << ConvType;
6410  } else if (ConvType->isVoidType()) {
6411    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6412      << ClassType << ConvType;
6413  }
6414
6415  if (FunctionTemplateDecl *ConversionTemplate
6416                                = Conversion->getDescribedFunctionTemplate())
6417    return ConversionTemplate;
6418
6419  return Conversion;
6420}
6421
6422//===----------------------------------------------------------------------===//
6423// Namespace Handling
6424//===----------------------------------------------------------------------===//
6425
6426/// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6427/// reopened.
6428static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6429                                            SourceLocation Loc,
6430                                            IdentifierInfo *II, bool *IsInline,
6431                                            NamespaceDecl *PrevNS) {
6432  assert(*IsInline != PrevNS->isInline());
6433
6434  // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6435  // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6436  // inline namespaces, with the intention of bringing names into namespace std.
6437  //
6438  // We support this just well enough to get that case working; this is not
6439  // sufficient to support reopening namespaces as inline in general.
6440  if (*IsInline && II && II->getName().startswith("__atomic") &&
6441      S.getSourceManager().isInSystemHeader(Loc)) {
6442    // Mark all prior declarations of the namespace as inline.
6443    for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6444         NS = NS->getPreviousDecl())
6445      NS->setInline(*IsInline);
6446    // Patch up the lookup table for the containing namespace. This isn't really
6447    // correct, but it's good enough for this particular case.
6448    for (DeclContext::decl_iterator I = PrevNS->decls_begin(),
6449                                    E = PrevNS->decls_end(); I != E; ++I)
6450      if (NamedDecl *ND = dyn_cast<NamedDecl>(*I))
6451        PrevNS->getParent()->makeDeclVisibleInContext(ND);
6452    return;
6453  }
6454
6455  if (PrevNS->isInline())
6456    // The user probably just forgot the 'inline', so suggest that it
6457    // be added back.
6458    S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6459      << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6460  else
6461    S.Diag(Loc, diag::err_inline_namespace_mismatch)
6462      << IsInline;
6463
6464  S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6465  *IsInline = PrevNS->isInline();
6466}
6467
6468/// ActOnStartNamespaceDef - This is called at the start of a namespace
6469/// definition.
6470Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6471                                   SourceLocation InlineLoc,
6472                                   SourceLocation NamespaceLoc,
6473                                   SourceLocation IdentLoc,
6474                                   IdentifierInfo *II,
6475                                   SourceLocation LBrace,
6476                                   AttributeList *AttrList) {
6477  SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6478  // For anonymous namespace, take the location of the left brace.
6479  SourceLocation Loc = II ? IdentLoc : LBrace;
6480  bool IsInline = InlineLoc.isValid();
6481  bool IsInvalid = false;
6482  bool IsStd = false;
6483  bool AddToKnown = false;
6484  Scope *DeclRegionScope = NamespcScope->getParent();
6485
6486  NamespaceDecl *PrevNS = 0;
6487  if (II) {
6488    // C++ [namespace.def]p2:
6489    //   The identifier in an original-namespace-definition shall not
6490    //   have been previously defined in the declarative region in
6491    //   which the original-namespace-definition appears. The
6492    //   identifier in an original-namespace-definition is the name of
6493    //   the namespace. Subsequently in that declarative region, it is
6494    //   treated as an original-namespace-name.
6495    //
6496    // Since namespace names are unique in their scope, and we don't
6497    // look through using directives, just look for any ordinary names.
6498
6499    const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6500    Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6501    Decl::IDNS_Namespace;
6502    NamedDecl *PrevDecl = 0;
6503    DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6504    for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6505         ++I) {
6506      if ((*I)->getIdentifierNamespace() & IDNS) {
6507        PrevDecl = *I;
6508        break;
6509      }
6510    }
6511
6512    PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6513
6514    if (PrevNS) {
6515      // This is an extended namespace definition.
6516      if (IsInline != PrevNS->isInline())
6517        DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6518                                        &IsInline, PrevNS);
6519    } else if (PrevDecl) {
6520      // This is an invalid name redefinition.
6521      Diag(Loc, diag::err_redefinition_different_kind)
6522        << II;
6523      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6524      IsInvalid = true;
6525      // Continue on to push Namespc as current DeclContext and return it.
6526    } else if (II->isStr("std") &&
6527               CurContext->getRedeclContext()->isTranslationUnit()) {
6528      // This is the first "real" definition of the namespace "std", so update
6529      // our cache of the "std" namespace to point at this definition.
6530      PrevNS = getStdNamespace();
6531      IsStd = true;
6532      AddToKnown = !IsInline;
6533    } else {
6534      // We've seen this namespace for the first time.
6535      AddToKnown = !IsInline;
6536    }
6537  } else {
6538    // Anonymous namespaces.
6539
6540    // Determine whether the parent already has an anonymous namespace.
6541    DeclContext *Parent = CurContext->getRedeclContext();
6542    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6543      PrevNS = TU->getAnonymousNamespace();
6544    } else {
6545      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6546      PrevNS = ND->getAnonymousNamespace();
6547    }
6548
6549    if (PrevNS && IsInline != PrevNS->isInline())
6550      DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6551                                      &IsInline, PrevNS);
6552  }
6553
6554  NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6555                                                 StartLoc, Loc, II, PrevNS);
6556  if (IsInvalid)
6557    Namespc->setInvalidDecl();
6558
6559  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6560
6561  // FIXME: Should we be merging attributes?
6562  if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6563    PushNamespaceVisibilityAttr(Attr, Loc);
6564
6565  if (IsStd)
6566    StdNamespace = Namespc;
6567  if (AddToKnown)
6568    KnownNamespaces[Namespc] = false;
6569
6570  if (II) {
6571    PushOnScopeChains(Namespc, DeclRegionScope);
6572  } else {
6573    // Link the anonymous namespace into its parent.
6574    DeclContext *Parent = CurContext->getRedeclContext();
6575    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6576      TU->setAnonymousNamespace(Namespc);
6577    } else {
6578      cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6579    }
6580
6581    CurContext->addDecl(Namespc);
6582
6583    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
6584    //   behaves as if it were replaced by
6585    //     namespace unique { /* empty body */ }
6586    //     using namespace unique;
6587    //     namespace unique { namespace-body }
6588    //   where all occurrences of 'unique' in a translation unit are
6589    //   replaced by the same identifier and this identifier differs
6590    //   from all other identifiers in the entire program.
6591
6592    // We just create the namespace with an empty name and then add an
6593    // implicit using declaration, just like the standard suggests.
6594    //
6595    // CodeGen enforces the "universally unique" aspect by giving all
6596    // declarations semantically contained within an anonymous
6597    // namespace internal linkage.
6598
6599    if (!PrevNS) {
6600      UsingDirectiveDecl* UD
6601        = UsingDirectiveDecl::Create(Context, Parent,
6602                                     /* 'using' */ LBrace,
6603                                     /* 'namespace' */ SourceLocation(),
6604                                     /* qualifier */ NestedNameSpecifierLoc(),
6605                                     /* identifier */ SourceLocation(),
6606                                     Namespc,
6607                                     /* Ancestor */ Parent);
6608      UD->setImplicit();
6609      Parent->addDecl(UD);
6610    }
6611  }
6612
6613  ActOnDocumentableDecl(Namespc);
6614
6615  // Although we could have an invalid decl (i.e. the namespace name is a
6616  // redefinition), push it as current DeclContext and try to continue parsing.
6617  // FIXME: We should be able to push Namespc here, so that the each DeclContext
6618  // for the namespace has the declarations that showed up in that particular
6619  // namespace definition.
6620  PushDeclContext(NamespcScope, Namespc);
6621  return Namespc;
6622}
6623
6624/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6625/// is a namespace alias, returns the namespace it points to.
6626static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6627  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6628    return AD->getNamespace();
6629  return dyn_cast_or_null<NamespaceDecl>(D);
6630}
6631
6632/// ActOnFinishNamespaceDef - This callback is called after a namespace is
6633/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
6634void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6635  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6636  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6637  Namespc->setRBraceLoc(RBrace);
6638  PopDeclContext();
6639  if (Namespc->hasAttr<VisibilityAttr>())
6640    PopPragmaVisibility(true, RBrace);
6641}
6642
6643CXXRecordDecl *Sema::getStdBadAlloc() const {
6644  return cast_or_null<CXXRecordDecl>(
6645                                  StdBadAlloc.get(Context.getExternalSource()));
6646}
6647
6648NamespaceDecl *Sema::getStdNamespace() const {
6649  return cast_or_null<NamespaceDecl>(
6650                                 StdNamespace.get(Context.getExternalSource()));
6651}
6652
6653/// \brief Retrieve the special "std" namespace, which may require us to
6654/// implicitly define the namespace.
6655NamespaceDecl *Sema::getOrCreateStdNamespace() {
6656  if (!StdNamespace) {
6657    // The "std" namespace has not yet been defined, so build one implicitly.
6658    StdNamespace = NamespaceDecl::Create(Context,
6659                                         Context.getTranslationUnitDecl(),
6660                                         /*Inline=*/false,
6661                                         SourceLocation(), SourceLocation(),
6662                                         &PP.getIdentifierTable().get("std"),
6663                                         /*PrevDecl=*/0);
6664    getStdNamespace()->setImplicit(true);
6665  }
6666
6667  return getStdNamespace();
6668}
6669
6670bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6671  assert(getLangOpts().CPlusPlus &&
6672         "Looking for std::initializer_list outside of C++.");
6673
6674  // We're looking for implicit instantiations of
6675  // template <typename E> class std::initializer_list.
6676
6677  if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6678    return false;
6679
6680  ClassTemplateDecl *Template = 0;
6681  const TemplateArgument *Arguments = 0;
6682
6683  if (const RecordType *RT = Ty->getAs<RecordType>()) {
6684
6685    ClassTemplateSpecializationDecl *Specialization =
6686        dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6687    if (!Specialization)
6688      return false;
6689
6690    Template = Specialization->getSpecializedTemplate();
6691    Arguments = Specialization->getTemplateArgs().data();
6692  } else if (const TemplateSpecializationType *TST =
6693                 Ty->getAs<TemplateSpecializationType>()) {
6694    Template = dyn_cast_or_null<ClassTemplateDecl>(
6695        TST->getTemplateName().getAsTemplateDecl());
6696    Arguments = TST->getArgs();
6697  }
6698  if (!Template)
6699    return false;
6700
6701  if (!StdInitializerList) {
6702    // Haven't recognized std::initializer_list yet, maybe this is it.
6703    CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6704    if (TemplateClass->getIdentifier() !=
6705            &PP.getIdentifierTable().get("initializer_list") ||
6706        !getStdNamespace()->InEnclosingNamespaceSetOf(
6707            TemplateClass->getDeclContext()))
6708      return false;
6709    // This is a template called std::initializer_list, but is it the right
6710    // template?
6711    TemplateParameterList *Params = Template->getTemplateParameters();
6712    if (Params->getMinRequiredArguments() != 1)
6713      return false;
6714    if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6715      return false;
6716
6717    // It's the right template.
6718    StdInitializerList = Template;
6719  }
6720
6721  if (Template != StdInitializerList)
6722    return false;
6723
6724  // This is an instance of std::initializer_list. Find the argument type.
6725  if (Element)
6726    *Element = Arguments[0].getAsType();
6727  return true;
6728}
6729
6730static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6731  NamespaceDecl *Std = S.getStdNamespace();
6732  if (!Std) {
6733    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6734    return 0;
6735  }
6736
6737  LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6738                      Loc, Sema::LookupOrdinaryName);
6739  if (!S.LookupQualifiedName(Result, Std)) {
6740    S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6741    return 0;
6742  }
6743  ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6744  if (!Template) {
6745    Result.suppressDiagnostics();
6746    // We found something weird. Complain about the first thing we found.
6747    NamedDecl *Found = *Result.begin();
6748    S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6749    return 0;
6750  }
6751
6752  // We found some template called std::initializer_list. Now verify that it's
6753  // correct.
6754  TemplateParameterList *Params = Template->getTemplateParameters();
6755  if (Params->getMinRequiredArguments() != 1 ||
6756      !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6757    S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6758    return 0;
6759  }
6760
6761  return Template;
6762}
6763
6764QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6765  if (!StdInitializerList) {
6766    StdInitializerList = LookupStdInitializerList(*this, Loc);
6767    if (!StdInitializerList)
6768      return QualType();
6769  }
6770
6771  TemplateArgumentListInfo Args(Loc, Loc);
6772  Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
6773                                       Context.getTrivialTypeSourceInfo(Element,
6774                                                                        Loc)));
6775  return Context.getCanonicalType(
6776      CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
6777}
6778
6779bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
6780  // C++ [dcl.init.list]p2:
6781  //   A constructor is an initializer-list constructor if its first parameter
6782  //   is of type std::initializer_list<E> or reference to possibly cv-qualified
6783  //   std::initializer_list<E> for some type E, and either there are no other
6784  //   parameters or else all other parameters have default arguments.
6785  if (Ctor->getNumParams() < 1 ||
6786      (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
6787    return false;
6788
6789  QualType ArgType = Ctor->getParamDecl(0)->getType();
6790  if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
6791    ArgType = RT->getPointeeType().getUnqualifiedType();
6792
6793  return isStdInitializerList(ArgType, 0);
6794}
6795
6796/// \brief Determine whether a using statement is in a context where it will be
6797/// apply in all contexts.
6798static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
6799  switch (CurContext->getDeclKind()) {
6800    case Decl::TranslationUnit:
6801      return true;
6802    case Decl::LinkageSpec:
6803      return IsUsingDirectiveInToplevelContext(CurContext->getParent());
6804    default:
6805      return false;
6806  }
6807}
6808
6809namespace {
6810
6811// Callback to only accept typo corrections that are namespaces.
6812class NamespaceValidatorCCC : public CorrectionCandidateCallback {
6813public:
6814  bool ValidateCandidate(const TypoCorrection &candidate) LLVM_OVERRIDE {
6815    if (NamedDecl *ND = candidate.getCorrectionDecl())
6816      return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
6817    return false;
6818  }
6819};
6820
6821}
6822
6823static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
6824                                       CXXScopeSpec &SS,
6825                                       SourceLocation IdentLoc,
6826                                       IdentifierInfo *Ident) {
6827  NamespaceValidatorCCC Validator;
6828  R.clear();
6829  if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
6830                                               R.getLookupKind(), Sc, &SS,
6831                                               Validator)) {
6832    if (DeclContext *DC = S.computeDeclContext(SS, false)) {
6833      std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
6834      bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
6835                              Ident->getName().equals(CorrectedStr);
6836      S.diagnoseTypo(Corrected,
6837                     S.PDiag(diag::err_using_directive_member_suggest)
6838                       << Ident << DC << DroppedSpecifier << SS.getRange(),
6839                     S.PDiag(diag::note_namespace_defined_here));
6840    } else {
6841      S.diagnoseTypo(Corrected,
6842                     S.PDiag(diag::err_using_directive_suggest) << Ident,
6843                     S.PDiag(diag::note_namespace_defined_here));
6844    }
6845    R.addDecl(Corrected.getCorrectionDecl());
6846    return true;
6847  }
6848  return false;
6849}
6850
6851Decl *Sema::ActOnUsingDirective(Scope *S,
6852                                          SourceLocation UsingLoc,
6853                                          SourceLocation NamespcLoc,
6854                                          CXXScopeSpec &SS,
6855                                          SourceLocation IdentLoc,
6856                                          IdentifierInfo *NamespcName,
6857                                          AttributeList *AttrList) {
6858  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
6859  assert(NamespcName && "Invalid NamespcName.");
6860  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
6861
6862  // This can only happen along a recovery path.
6863  while (S->getFlags() & Scope::TemplateParamScope)
6864    S = S->getParent();
6865  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6866
6867  UsingDirectiveDecl *UDir = 0;
6868  NestedNameSpecifier *Qualifier = 0;
6869  if (SS.isSet())
6870    Qualifier = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
6871
6872  // Lookup namespace name.
6873  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
6874  LookupParsedName(R, S, &SS);
6875  if (R.isAmbiguous())
6876    return 0;
6877
6878  if (R.empty()) {
6879    R.clear();
6880    // Allow "using namespace std;" or "using namespace ::std;" even if
6881    // "std" hasn't been defined yet, for GCC compatibility.
6882    if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
6883        NamespcName->isStr("std")) {
6884      Diag(IdentLoc, diag::ext_using_undefined_std);
6885      R.addDecl(getOrCreateStdNamespace());
6886      R.resolveKind();
6887    }
6888    // Otherwise, attempt typo correction.
6889    else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
6890  }
6891
6892  if (!R.empty()) {
6893    NamedDecl *Named = R.getFoundDecl();
6894    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
6895        && "expected namespace decl");
6896    // C++ [namespace.udir]p1:
6897    //   A using-directive specifies that the names in the nominated
6898    //   namespace can be used in the scope in which the
6899    //   using-directive appears after the using-directive. During
6900    //   unqualified name lookup (3.4.1), the names appear as if they
6901    //   were declared in the nearest enclosing namespace which
6902    //   contains both the using-directive and the nominated
6903    //   namespace. [Note: in this context, "contains" means "contains
6904    //   directly or indirectly". ]
6905
6906    // Find enclosing context containing both using-directive and
6907    // nominated namespace.
6908    NamespaceDecl *NS = getNamespaceDecl(Named);
6909    DeclContext *CommonAncestor = cast<DeclContext>(NS);
6910    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
6911      CommonAncestor = CommonAncestor->getParent();
6912
6913    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
6914                                      SS.getWithLocInContext(Context),
6915                                      IdentLoc, Named, CommonAncestor);
6916
6917    if (IsUsingDirectiveInToplevelContext(CurContext) &&
6918        !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
6919      Diag(IdentLoc, diag::warn_using_directive_in_header);
6920    }
6921
6922    PushUsingDirective(S, UDir);
6923  } else {
6924    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
6925  }
6926
6927  if (UDir)
6928    ProcessDeclAttributeList(S, UDir, AttrList);
6929
6930  return UDir;
6931}
6932
6933void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
6934  // If the scope has an associated entity and the using directive is at
6935  // namespace or translation unit scope, add the UsingDirectiveDecl into
6936  // its lookup structure so qualified name lookup can find it.
6937  DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
6938  if (Ctx && !Ctx->isFunctionOrMethod())
6939    Ctx->addDecl(UDir);
6940  else
6941    // Otherwise, it is at block sope. The using-directives will affect lookup
6942    // only to the end of the scope.
6943    S->PushUsingDirective(UDir);
6944}
6945
6946
6947Decl *Sema::ActOnUsingDeclaration(Scope *S,
6948                                  AccessSpecifier AS,
6949                                  bool HasUsingKeyword,
6950                                  SourceLocation UsingLoc,
6951                                  CXXScopeSpec &SS,
6952                                  UnqualifiedId &Name,
6953                                  AttributeList *AttrList,
6954                                  bool HasTypenameKeyword,
6955                                  SourceLocation TypenameLoc) {
6956  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
6957
6958  switch (Name.getKind()) {
6959  case UnqualifiedId::IK_ImplicitSelfParam:
6960  case UnqualifiedId::IK_Identifier:
6961  case UnqualifiedId::IK_OperatorFunctionId:
6962  case UnqualifiedId::IK_LiteralOperatorId:
6963  case UnqualifiedId::IK_ConversionFunctionId:
6964    break;
6965
6966  case UnqualifiedId::IK_ConstructorName:
6967  case UnqualifiedId::IK_ConstructorTemplateId:
6968    // C++11 inheriting constructors.
6969    Diag(Name.getLocStart(),
6970         getLangOpts().CPlusPlus11 ?
6971           diag::warn_cxx98_compat_using_decl_constructor :
6972           diag::err_using_decl_constructor)
6973      << SS.getRange();
6974
6975    if (getLangOpts().CPlusPlus11) break;
6976
6977    return 0;
6978
6979  case UnqualifiedId::IK_DestructorName:
6980    Diag(Name.getLocStart(), diag::err_using_decl_destructor)
6981      << SS.getRange();
6982    return 0;
6983
6984  case UnqualifiedId::IK_TemplateId:
6985    Diag(Name.getLocStart(), diag::err_using_decl_template_id)
6986      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
6987    return 0;
6988  }
6989
6990  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6991  DeclarationName TargetName = TargetNameInfo.getName();
6992  if (!TargetName)
6993    return 0;
6994
6995  // Warn about access declarations.
6996  if (!HasUsingKeyword) {
6997    Diag(Name.getLocStart(),
6998         getLangOpts().CPlusPlus11 ? diag::err_access_decl
6999                                   : diag::warn_access_decl_deprecated)
7000      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7001  }
7002
7003  if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7004      DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7005    return 0;
7006
7007  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7008                                        TargetNameInfo, AttrList,
7009                                        /* IsInstantiation */ false,
7010                                        HasTypenameKeyword, TypenameLoc);
7011  if (UD)
7012    PushOnScopeChains(UD, S, /*AddToContext*/ false);
7013
7014  return UD;
7015}
7016
7017/// \brief Determine whether a using declaration considers the given
7018/// declarations as "equivalent", e.g., if they are redeclarations of
7019/// the same entity or are both typedefs of the same type.
7020static bool
7021IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2,
7022                         bool &SuppressRedeclaration) {
7023  if (D1->getCanonicalDecl() == D2->getCanonicalDecl()) {
7024    SuppressRedeclaration = false;
7025    return true;
7026  }
7027
7028  if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7029    if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2)) {
7030      SuppressRedeclaration = true;
7031      return Context.hasSameType(TD1->getUnderlyingType(),
7032                                 TD2->getUnderlyingType());
7033    }
7034
7035  return false;
7036}
7037
7038
7039/// Determines whether to create a using shadow decl for a particular
7040/// decl, given the set of decls existing prior to this using lookup.
7041bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7042                                const LookupResult &Previous) {
7043  // Diagnose finding a decl which is not from a base class of the
7044  // current class.  We do this now because there are cases where this
7045  // function will silently decide not to build a shadow decl, which
7046  // will pre-empt further diagnostics.
7047  //
7048  // We don't need to do this in C++0x because we do the check once on
7049  // the qualifier.
7050  //
7051  // FIXME: diagnose the following if we care enough:
7052  //   struct A { int foo; };
7053  //   struct B : A { using A::foo; };
7054  //   template <class T> struct C : A {};
7055  //   template <class T> struct D : C<T> { using B::foo; } // <---
7056  // This is invalid (during instantiation) in C++03 because B::foo
7057  // resolves to the using decl in B, which is not a base class of D<T>.
7058  // We can't diagnose it immediately because C<T> is an unknown
7059  // specialization.  The UsingShadowDecl in D<T> then points directly
7060  // to A::foo, which will look well-formed when we instantiate.
7061  // The right solution is to not collapse the shadow-decl chain.
7062  if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7063    DeclContext *OrigDC = Orig->getDeclContext();
7064
7065    // Handle enums and anonymous structs.
7066    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7067    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7068    while (OrigRec->isAnonymousStructOrUnion())
7069      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7070
7071    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7072      if (OrigDC == CurContext) {
7073        Diag(Using->getLocation(),
7074             diag::err_using_decl_nested_name_specifier_is_current_class)
7075          << Using->getQualifierLoc().getSourceRange();
7076        Diag(Orig->getLocation(), diag::note_using_decl_target);
7077        return true;
7078      }
7079
7080      Diag(Using->getQualifierLoc().getBeginLoc(),
7081           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7082        << Using->getQualifier()
7083        << cast<CXXRecordDecl>(CurContext)
7084        << Using->getQualifierLoc().getSourceRange();
7085      Diag(Orig->getLocation(), diag::note_using_decl_target);
7086      return true;
7087    }
7088  }
7089
7090  if (Previous.empty()) return false;
7091
7092  NamedDecl *Target = Orig;
7093  if (isa<UsingShadowDecl>(Target))
7094    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7095
7096  // If the target happens to be one of the previous declarations, we
7097  // don't have a conflict.
7098  //
7099  // FIXME: but we might be increasing its access, in which case we
7100  // should redeclare it.
7101  NamedDecl *NonTag = 0, *Tag = 0;
7102  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7103         I != E; ++I) {
7104    NamedDecl *D = (*I)->getUnderlyingDecl();
7105    bool Result;
7106    if (IsEquivalentForUsingDecl(Context, D, Target, Result))
7107      return Result;
7108
7109    (isa<TagDecl>(D) ? Tag : NonTag) = D;
7110  }
7111
7112  if (Target->isFunctionOrFunctionTemplate()) {
7113    FunctionDecl *FD;
7114    if (isa<FunctionTemplateDecl>(Target))
7115      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
7116    else
7117      FD = cast<FunctionDecl>(Target);
7118
7119    NamedDecl *OldDecl = 0;
7120    switch (CheckOverload(0, FD, Previous, OldDecl, /*IsForUsingDecl*/ true)) {
7121    case Ovl_Overload:
7122      return false;
7123
7124    case Ovl_NonFunction:
7125      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7126      break;
7127
7128    // We found a decl with the exact signature.
7129    case Ovl_Match:
7130      // If we're in a record, we want to hide the target, so we
7131      // return true (without a diagnostic) to tell the caller not to
7132      // build a shadow decl.
7133      if (CurContext->isRecord())
7134        return true;
7135
7136      // If we're not in a record, this is an error.
7137      Diag(Using->getLocation(), diag::err_using_decl_conflict);
7138      break;
7139    }
7140
7141    Diag(Target->getLocation(), diag::note_using_decl_target);
7142    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7143    return true;
7144  }
7145
7146  // Target is not a function.
7147
7148  if (isa<TagDecl>(Target)) {
7149    // No conflict between a tag and a non-tag.
7150    if (!Tag) return false;
7151
7152    Diag(Using->getLocation(), diag::err_using_decl_conflict);
7153    Diag(Target->getLocation(), diag::note_using_decl_target);
7154    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7155    return true;
7156  }
7157
7158  // No conflict between a tag and a non-tag.
7159  if (!NonTag) return false;
7160
7161  Diag(Using->getLocation(), diag::err_using_decl_conflict);
7162  Diag(Target->getLocation(), diag::note_using_decl_target);
7163  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7164  return true;
7165}
7166
7167/// Builds a shadow declaration corresponding to a 'using' declaration.
7168UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7169                                            UsingDecl *UD,
7170                                            NamedDecl *Orig) {
7171
7172  // If we resolved to another shadow declaration, just coalesce them.
7173  NamedDecl *Target = Orig;
7174  if (isa<UsingShadowDecl>(Target)) {
7175    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7176    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7177  }
7178
7179  UsingShadowDecl *Shadow
7180    = UsingShadowDecl::Create(Context, CurContext,
7181                              UD->getLocation(), UD, Target);
7182  UD->addShadowDecl(Shadow);
7183
7184  Shadow->setAccess(UD->getAccess());
7185  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7186    Shadow->setInvalidDecl();
7187
7188  if (S)
7189    PushOnScopeChains(Shadow, S);
7190  else
7191    CurContext->addDecl(Shadow);
7192
7193
7194  return Shadow;
7195}
7196
7197/// Hides a using shadow declaration.  This is required by the current
7198/// using-decl implementation when a resolvable using declaration in a
7199/// class is followed by a declaration which would hide or override
7200/// one or more of the using decl's targets; for example:
7201///
7202///   struct Base { void foo(int); };
7203///   struct Derived : Base {
7204///     using Base::foo;
7205///     void foo(int);
7206///   };
7207///
7208/// The governing language is C++03 [namespace.udecl]p12:
7209///
7210///   When a using-declaration brings names from a base class into a
7211///   derived class scope, member functions in the derived class
7212///   override and/or hide member functions with the same name and
7213///   parameter types in a base class (rather than conflicting).
7214///
7215/// There are two ways to implement this:
7216///   (1) optimistically create shadow decls when they're not hidden
7217///       by existing declarations, or
7218///   (2) don't create any shadow decls (or at least don't make them
7219///       visible) until we've fully parsed/instantiated the class.
7220/// The problem with (1) is that we might have to retroactively remove
7221/// a shadow decl, which requires several O(n) operations because the
7222/// decl structures are (very reasonably) not designed for removal.
7223/// (2) avoids this but is very fiddly and phase-dependent.
7224void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7225  if (Shadow->getDeclName().getNameKind() ==
7226        DeclarationName::CXXConversionFunctionName)
7227    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7228
7229  // Remove it from the DeclContext...
7230  Shadow->getDeclContext()->removeDecl(Shadow);
7231
7232  // ...and the scope, if applicable...
7233  if (S) {
7234    S->RemoveDecl(Shadow);
7235    IdResolver.RemoveDecl(Shadow);
7236  }
7237
7238  // ...and the using decl.
7239  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7240
7241  // TODO: complain somehow if Shadow was used.  It shouldn't
7242  // be possible for this to happen, because...?
7243}
7244
7245namespace {
7246class UsingValidatorCCC : public CorrectionCandidateCallback {
7247public:
7248  UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation)
7249      : HasTypenameKeyword(HasTypenameKeyword),
7250        IsInstantiation(IsInstantiation) {}
7251
7252  bool ValidateCandidate(const TypoCorrection &Candidate) LLVM_OVERRIDE {
7253    NamedDecl *ND = Candidate.getCorrectionDecl();
7254
7255    // Keywords are not valid here.
7256    if (!ND || isa<NamespaceDecl>(ND))
7257      return false;
7258
7259    // Completely unqualified names are invalid for a 'using' declaration.
7260    if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7261      return false;
7262
7263    if (isa<TypeDecl>(ND))
7264      return HasTypenameKeyword || !IsInstantiation;
7265
7266    return !HasTypenameKeyword;
7267  }
7268
7269private:
7270  bool HasTypenameKeyword;
7271  bool IsInstantiation;
7272};
7273} // end anonymous namespace
7274
7275/// Builds a using declaration.
7276///
7277/// \param IsInstantiation - Whether this call arises from an
7278///   instantiation of an unresolved using declaration.  We treat
7279///   the lookup differently for these declarations.
7280NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7281                                       SourceLocation UsingLoc,
7282                                       CXXScopeSpec &SS,
7283                                       const DeclarationNameInfo &NameInfo,
7284                                       AttributeList *AttrList,
7285                                       bool IsInstantiation,
7286                                       bool HasTypenameKeyword,
7287                                       SourceLocation TypenameLoc) {
7288  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7289  SourceLocation IdentLoc = NameInfo.getLoc();
7290  assert(IdentLoc.isValid() && "Invalid TargetName location.");
7291
7292  // FIXME: We ignore attributes for now.
7293
7294  if (SS.isEmpty()) {
7295    Diag(IdentLoc, diag::err_using_requires_qualname);
7296    return 0;
7297  }
7298
7299  // Do the redeclaration lookup in the current scope.
7300  LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7301                        ForRedeclaration);
7302  Previous.setHideTags(false);
7303  if (S) {
7304    LookupName(Previous, S);
7305
7306    // It is really dumb that we have to do this.
7307    LookupResult::Filter F = Previous.makeFilter();
7308    while (F.hasNext()) {
7309      NamedDecl *D = F.next();
7310      if (!isDeclInScope(D, CurContext, S))
7311        F.erase();
7312    }
7313    F.done();
7314  } else {
7315    assert(IsInstantiation && "no scope in non-instantiation");
7316    assert(CurContext->isRecord() && "scope not record in instantiation");
7317    LookupQualifiedName(Previous, CurContext);
7318  }
7319
7320  // Check for invalid redeclarations.
7321  if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7322                                  SS, IdentLoc, Previous))
7323    return 0;
7324
7325  // Check for bad qualifiers.
7326  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
7327    return 0;
7328
7329  DeclContext *LookupContext = computeDeclContext(SS);
7330  NamedDecl *D;
7331  NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7332  if (!LookupContext) {
7333    if (HasTypenameKeyword) {
7334      // FIXME: not all declaration name kinds are legal here
7335      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7336                                              UsingLoc, TypenameLoc,
7337                                              QualifierLoc,
7338                                              IdentLoc, NameInfo.getName());
7339    } else {
7340      D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7341                                           QualifierLoc, NameInfo);
7342    }
7343  } else {
7344    D = UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc,
7345                          NameInfo, HasTypenameKeyword);
7346  }
7347  D->setAccess(AS);
7348  CurContext->addDecl(D);
7349
7350  if (!LookupContext) return D;
7351  UsingDecl *UD = cast<UsingDecl>(D);
7352
7353  if (RequireCompleteDeclContext(SS, LookupContext)) {
7354    UD->setInvalidDecl();
7355    return UD;
7356  }
7357
7358  // The normal rules do not apply to inheriting constructor declarations.
7359  if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7360    if (CheckInheritingConstructorUsingDecl(UD))
7361      UD->setInvalidDecl();
7362    return UD;
7363  }
7364
7365  // Otherwise, look up the target name.
7366
7367  LookupResult R(*this, NameInfo, LookupOrdinaryName);
7368
7369  // Unlike most lookups, we don't always want to hide tag
7370  // declarations: tag names are visible through the using declaration
7371  // even if hidden by ordinary names, *except* in a dependent context
7372  // where it's important for the sanity of two-phase lookup.
7373  if (!IsInstantiation)
7374    R.setHideTags(false);
7375
7376  // For the purposes of this lookup, we have a base object type
7377  // equal to that of the current context.
7378  if (CurContext->isRecord()) {
7379    R.setBaseObjectType(
7380                   Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7381  }
7382
7383  LookupQualifiedName(R, LookupContext);
7384
7385  // Try to correct typos if possible.
7386  if (R.empty()) {
7387    UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation);
7388    if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7389                                               R.getLookupKind(), S, &SS, CCC)){
7390      // We reject any correction for which ND would be NULL.
7391      NamedDecl *ND = Corrected.getCorrectionDecl();
7392      R.setLookupName(Corrected.getCorrection());
7393      R.addDecl(ND);
7394      // We reject candidates where DroppedSpecifier == true, hence the
7395      // literal '0' below.
7396      diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
7397                                << NameInfo.getName() << LookupContext << 0
7398                                << SS.getRange());
7399    } else {
7400      Diag(IdentLoc, diag::err_no_member)
7401        << NameInfo.getName() << LookupContext << SS.getRange();
7402      UD->setInvalidDecl();
7403      return UD;
7404    }
7405  }
7406
7407  if (R.isAmbiguous()) {
7408    UD->setInvalidDecl();
7409    return UD;
7410  }
7411
7412  if (HasTypenameKeyword) {
7413    // If we asked for a typename and got a non-type decl, error out.
7414    if (!R.getAsSingle<TypeDecl>()) {
7415      Diag(IdentLoc, diag::err_using_typename_non_type);
7416      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7417        Diag((*I)->getUnderlyingDecl()->getLocation(),
7418             diag::note_using_decl_target);
7419      UD->setInvalidDecl();
7420      return UD;
7421    }
7422  } else {
7423    // If we asked for a non-typename and we got a type, error out,
7424    // but only if this is an instantiation of an unresolved using
7425    // decl.  Otherwise just silently find the type name.
7426    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7427      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7428      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7429      UD->setInvalidDecl();
7430      return UD;
7431    }
7432  }
7433
7434  // C++0x N2914 [namespace.udecl]p6:
7435  // A using-declaration shall not name a namespace.
7436  if (R.getAsSingle<NamespaceDecl>()) {
7437    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7438      << SS.getRange();
7439    UD->setInvalidDecl();
7440    return UD;
7441  }
7442
7443  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7444    if (!CheckUsingShadowDecl(UD, *I, Previous))
7445      BuildUsingShadowDecl(S, UD, *I);
7446  }
7447
7448  return UD;
7449}
7450
7451/// Additional checks for a using declaration referring to a constructor name.
7452bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7453  assert(!UD->hasTypename() && "expecting a constructor name");
7454
7455  const Type *SourceType = UD->getQualifier()->getAsType();
7456  assert(SourceType &&
7457         "Using decl naming constructor doesn't have type in scope spec.");
7458  CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7459
7460  // Check whether the named type is a direct base class.
7461  CanQualType CanonicalSourceType = SourceType->getCanonicalTypeUnqualified();
7462  CXXRecordDecl::base_class_iterator BaseIt, BaseE;
7463  for (BaseIt = TargetClass->bases_begin(), BaseE = TargetClass->bases_end();
7464       BaseIt != BaseE; ++BaseIt) {
7465    CanQualType BaseType = BaseIt->getType()->getCanonicalTypeUnqualified();
7466    if (CanonicalSourceType == BaseType)
7467      break;
7468    if (BaseIt->getType()->isDependentType())
7469      break;
7470  }
7471
7472  if (BaseIt == BaseE) {
7473    // Did not find SourceType in the bases.
7474    Diag(UD->getUsingLoc(),
7475         diag::err_using_decl_constructor_not_in_direct_base)
7476      << UD->getNameInfo().getSourceRange()
7477      << QualType(SourceType, 0) << TargetClass;
7478    return true;
7479  }
7480
7481  if (!CurContext->isDependentContext())
7482    BaseIt->setInheritConstructors();
7483
7484  return false;
7485}
7486
7487/// Checks that the given using declaration is not an invalid
7488/// redeclaration.  Note that this is checking only for the using decl
7489/// itself, not for any ill-formedness among the UsingShadowDecls.
7490bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7491                                       bool HasTypenameKeyword,
7492                                       const CXXScopeSpec &SS,
7493                                       SourceLocation NameLoc,
7494                                       const LookupResult &Prev) {
7495  // C++03 [namespace.udecl]p8:
7496  // C++0x [namespace.udecl]p10:
7497  //   A using-declaration is a declaration and can therefore be used
7498  //   repeatedly where (and only where) multiple declarations are
7499  //   allowed.
7500  //
7501  // That's in non-member contexts.
7502  if (!CurContext->getRedeclContext()->isRecord())
7503    return false;
7504
7505  NestedNameSpecifier *Qual
7506    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
7507
7508  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7509    NamedDecl *D = *I;
7510
7511    bool DTypename;
7512    NestedNameSpecifier *DQual;
7513    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7514      DTypename = UD->hasTypename();
7515      DQual = UD->getQualifier();
7516    } else if (UnresolvedUsingValueDecl *UD
7517                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7518      DTypename = false;
7519      DQual = UD->getQualifier();
7520    } else if (UnresolvedUsingTypenameDecl *UD
7521                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7522      DTypename = true;
7523      DQual = UD->getQualifier();
7524    } else continue;
7525
7526    // using decls differ if one says 'typename' and the other doesn't.
7527    // FIXME: non-dependent using decls?
7528    if (HasTypenameKeyword != DTypename) continue;
7529
7530    // using decls differ if they name different scopes (but note that
7531    // template instantiation can cause this check to trigger when it
7532    // didn't before instantiation).
7533    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7534        Context.getCanonicalNestedNameSpecifier(DQual))
7535      continue;
7536
7537    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7538    Diag(D->getLocation(), diag::note_using_decl) << 1;
7539    return true;
7540  }
7541
7542  return false;
7543}
7544
7545
7546/// Checks that the given nested-name qualifier used in a using decl
7547/// in the current context is appropriately related to the current
7548/// scope.  If an error is found, diagnoses it and returns true.
7549bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7550                                   const CXXScopeSpec &SS,
7551                                   SourceLocation NameLoc) {
7552  DeclContext *NamedContext = computeDeclContext(SS);
7553
7554  if (!CurContext->isRecord()) {
7555    // C++03 [namespace.udecl]p3:
7556    // C++0x [namespace.udecl]p8:
7557    //   A using-declaration for a class member shall be a member-declaration.
7558
7559    // If we weren't able to compute a valid scope, it must be a
7560    // dependent class scope.
7561    if (!NamedContext || NamedContext->isRecord()) {
7562      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7563        << SS.getRange();
7564      return true;
7565    }
7566
7567    // Otherwise, everything is known to be fine.
7568    return false;
7569  }
7570
7571  // The current scope is a record.
7572
7573  // If the named context is dependent, we can't decide much.
7574  if (!NamedContext) {
7575    // FIXME: in C++0x, we can diagnose if we can prove that the
7576    // nested-name-specifier does not refer to a base class, which is
7577    // still possible in some cases.
7578
7579    // Otherwise we have to conservatively report that things might be
7580    // okay.
7581    return false;
7582  }
7583
7584  if (!NamedContext->isRecord()) {
7585    // Ideally this would point at the last name in the specifier,
7586    // but we don't have that level of source info.
7587    Diag(SS.getRange().getBegin(),
7588         diag::err_using_decl_nested_name_specifier_is_not_class)
7589      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
7590    return true;
7591  }
7592
7593  if (!NamedContext->isDependentContext() &&
7594      RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7595    return true;
7596
7597  if (getLangOpts().CPlusPlus11) {
7598    // C++0x [namespace.udecl]p3:
7599    //   In a using-declaration used as a member-declaration, the
7600    //   nested-name-specifier shall name a base class of the class
7601    //   being defined.
7602
7603    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7604                                 cast<CXXRecordDecl>(NamedContext))) {
7605      if (CurContext == NamedContext) {
7606        Diag(NameLoc,
7607             diag::err_using_decl_nested_name_specifier_is_current_class)
7608          << SS.getRange();
7609        return true;
7610      }
7611
7612      Diag(SS.getRange().getBegin(),
7613           diag::err_using_decl_nested_name_specifier_is_not_base_class)
7614        << (NestedNameSpecifier*) SS.getScopeRep()
7615        << cast<CXXRecordDecl>(CurContext)
7616        << SS.getRange();
7617      return true;
7618    }
7619
7620    return false;
7621  }
7622
7623  // C++03 [namespace.udecl]p4:
7624  //   A using-declaration used as a member-declaration shall refer
7625  //   to a member of a base class of the class being defined [etc.].
7626
7627  // Salient point: SS doesn't have to name a base class as long as
7628  // lookup only finds members from base classes.  Therefore we can
7629  // diagnose here only if we can prove that that can't happen,
7630  // i.e. if the class hierarchies provably don't intersect.
7631
7632  // TODO: it would be nice if "definitely valid" results were cached
7633  // in the UsingDecl and UsingShadowDecl so that these checks didn't
7634  // need to be repeated.
7635
7636  struct UserData {
7637    llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7638
7639    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
7640      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7641      Data->Bases.insert(Base);
7642      return true;
7643    }
7644
7645    bool hasDependentBases(const CXXRecordDecl *Class) {
7646      return !Class->forallBases(collect, this);
7647    }
7648
7649    /// Returns true if the base is dependent or is one of the
7650    /// accumulated base classes.
7651    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
7652      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
7653      return !Data->Bases.count(Base);
7654    }
7655
7656    bool mightShareBases(const CXXRecordDecl *Class) {
7657      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
7658    }
7659  };
7660
7661  UserData Data;
7662
7663  // Returns false if we find a dependent base.
7664  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
7665    return false;
7666
7667  // Returns false if the class has a dependent base or if it or one
7668  // of its bases is present in the base set of the current context.
7669  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
7670    return false;
7671
7672  Diag(SS.getRange().getBegin(),
7673       diag::err_using_decl_nested_name_specifier_is_not_base_class)
7674    << (NestedNameSpecifier*) SS.getScopeRep()
7675    << cast<CXXRecordDecl>(CurContext)
7676    << SS.getRange();
7677
7678  return true;
7679}
7680
7681Decl *Sema::ActOnAliasDeclaration(Scope *S,
7682                                  AccessSpecifier AS,
7683                                  MultiTemplateParamsArg TemplateParamLists,
7684                                  SourceLocation UsingLoc,
7685                                  UnqualifiedId &Name,
7686                                  AttributeList *AttrList,
7687                                  TypeResult Type) {
7688  // Skip up to the relevant declaration scope.
7689  while (S->getFlags() & Scope::TemplateParamScope)
7690    S = S->getParent();
7691  assert((S->getFlags() & Scope::DeclScope) &&
7692         "got alias-declaration outside of declaration scope");
7693
7694  if (Type.isInvalid())
7695    return 0;
7696
7697  bool Invalid = false;
7698  DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
7699  TypeSourceInfo *TInfo = 0;
7700  GetTypeFromParser(Type.get(), &TInfo);
7701
7702  if (DiagnoseClassNameShadow(CurContext, NameInfo))
7703    return 0;
7704
7705  if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
7706                                      UPPC_DeclarationType)) {
7707    Invalid = true;
7708    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
7709                                             TInfo->getTypeLoc().getBeginLoc());
7710  }
7711
7712  LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
7713  LookupName(Previous, S);
7714
7715  // Warn about shadowing the name of a template parameter.
7716  if (Previous.isSingleResult() &&
7717      Previous.getFoundDecl()->isTemplateParameter()) {
7718    DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
7719    Previous.clear();
7720  }
7721
7722  assert(Name.Kind == UnqualifiedId::IK_Identifier &&
7723         "name in alias declaration must be an identifier");
7724  TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
7725                                               Name.StartLocation,
7726                                               Name.Identifier, TInfo);
7727
7728  NewTD->setAccess(AS);
7729
7730  if (Invalid)
7731    NewTD->setInvalidDecl();
7732
7733  ProcessDeclAttributeList(S, NewTD, AttrList);
7734
7735  CheckTypedefForVariablyModifiedType(S, NewTD);
7736  Invalid |= NewTD->isInvalidDecl();
7737
7738  bool Redeclaration = false;
7739
7740  NamedDecl *NewND;
7741  if (TemplateParamLists.size()) {
7742    TypeAliasTemplateDecl *OldDecl = 0;
7743    TemplateParameterList *OldTemplateParams = 0;
7744
7745    if (TemplateParamLists.size() != 1) {
7746      Diag(UsingLoc, diag::err_alias_template_extra_headers)
7747        << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
7748         TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
7749    }
7750    TemplateParameterList *TemplateParams = TemplateParamLists[0];
7751
7752    // Only consider previous declarations in the same scope.
7753    FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
7754                         /*ExplicitInstantiationOrSpecialization*/false);
7755    if (!Previous.empty()) {
7756      Redeclaration = true;
7757
7758      OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
7759      if (!OldDecl && !Invalid) {
7760        Diag(UsingLoc, diag::err_redefinition_different_kind)
7761          << Name.Identifier;
7762
7763        NamedDecl *OldD = Previous.getRepresentativeDecl();
7764        if (OldD->getLocation().isValid())
7765          Diag(OldD->getLocation(), diag::note_previous_definition);
7766
7767        Invalid = true;
7768      }
7769
7770      if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
7771        if (TemplateParameterListsAreEqual(TemplateParams,
7772                                           OldDecl->getTemplateParameters(),
7773                                           /*Complain=*/true,
7774                                           TPL_TemplateMatch))
7775          OldTemplateParams = OldDecl->getTemplateParameters();
7776        else
7777          Invalid = true;
7778
7779        TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
7780        if (!Invalid &&
7781            !Context.hasSameType(OldTD->getUnderlyingType(),
7782                                 NewTD->getUnderlyingType())) {
7783          // FIXME: The C++0x standard does not clearly say this is ill-formed,
7784          // but we can't reasonably accept it.
7785          Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
7786            << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
7787          if (OldTD->getLocation().isValid())
7788            Diag(OldTD->getLocation(), diag::note_previous_definition);
7789          Invalid = true;
7790        }
7791      }
7792    }
7793
7794    // Merge any previous default template arguments into our parameters,
7795    // and check the parameter list.
7796    if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
7797                                   TPC_TypeAliasTemplate))
7798      return 0;
7799
7800    TypeAliasTemplateDecl *NewDecl =
7801      TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
7802                                    Name.Identifier, TemplateParams,
7803                                    NewTD);
7804
7805    NewDecl->setAccess(AS);
7806
7807    if (Invalid)
7808      NewDecl->setInvalidDecl();
7809    else if (OldDecl)
7810      NewDecl->setPreviousDeclaration(OldDecl);
7811
7812    NewND = NewDecl;
7813  } else {
7814    ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
7815    NewND = NewTD;
7816  }
7817
7818  if (!Redeclaration)
7819    PushOnScopeChains(NewND, S);
7820
7821  ActOnDocumentableDecl(NewND);
7822  return NewND;
7823}
7824
7825Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
7826                                             SourceLocation NamespaceLoc,
7827                                             SourceLocation AliasLoc,
7828                                             IdentifierInfo *Alias,
7829                                             CXXScopeSpec &SS,
7830                                             SourceLocation IdentLoc,
7831                                             IdentifierInfo *Ident) {
7832
7833  // Lookup the namespace name.
7834  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
7835  LookupParsedName(R, S, &SS);
7836
7837  // Check if we have a previous declaration with the same name.
7838  NamedDecl *PrevDecl
7839    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
7840                       ForRedeclaration);
7841  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
7842    PrevDecl = 0;
7843
7844  if (PrevDecl) {
7845    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
7846      // We already have an alias with the same name that points to the same
7847      // namespace, so don't create a new one.
7848      // FIXME: At some point, we'll want to create the (redundant)
7849      // declaration to maintain better source information.
7850      if (!R.isAmbiguous() && !R.empty() &&
7851          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
7852        return 0;
7853    }
7854
7855    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
7856      diag::err_redefinition_different_kind;
7857    Diag(AliasLoc, DiagID) << Alias;
7858    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7859    return 0;
7860  }
7861
7862  if (R.isAmbiguous())
7863    return 0;
7864
7865  if (R.empty()) {
7866    if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
7867      Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7868      return 0;
7869    }
7870  }
7871
7872  NamespaceAliasDecl *AliasDecl =
7873    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
7874                               Alias, SS.getWithLocInContext(Context),
7875                               IdentLoc, R.getFoundDecl());
7876
7877  PushOnScopeChains(AliasDecl, S);
7878  return AliasDecl;
7879}
7880
7881Sema::ImplicitExceptionSpecification
7882Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
7883                                               CXXMethodDecl *MD) {
7884  CXXRecordDecl *ClassDecl = MD->getParent();
7885
7886  // C++ [except.spec]p14:
7887  //   An implicitly declared special member function (Clause 12) shall have an
7888  //   exception-specification. [...]
7889  ImplicitExceptionSpecification ExceptSpec(*this);
7890  if (ClassDecl->isInvalidDecl())
7891    return ExceptSpec;
7892
7893  // Direct base-class constructors.
7894  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7895                                       BEnd = ClassDecl->bases_end();
7896       B != BEnd; ++B) {
7897    if (B->isVirtual()) // Handled below.
7898      continue;
7899
7900    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7901      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7902      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7903      // If this is a deleted function, add it anyway. This might be conformant
7904      // with the standard. This might not. I'm not sure. It might not matter.
7905      if (Constructor)
7906        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7907    }
7908  }
7909
7910  // Virtual base-class constructors.
7911  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
7912                                       BEnd = ClassDecl->vbases_end();
7913       B != BEnd; ++B) {
7914    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7915      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7916      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7917      // If this is a deleted function, add it anyway. This might be conformant
7918      // with the standard. This might not. I'm not sure. It might not matter.
7919      if (Constructor)
7920        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7921    }
7922  }
7923
7924  // Field constructors.
7925  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
7926                               FEnd = ClassDecl->field_end();
7927       F != FEnd; ++F) {
7928    if (F->hasInClassInitializer()) {
7929      if (Expr *E = F->getInClassInitializer())
7930        ExceptSpec.CalledExpr(E);
7931      else if (!F->isInvalidDecl())
7932        // DR1351:
7933        //   If the brace-or-equal-initializer of a non-static data member
7934        //   invokes a defaulted default constructor of its class or of an
7935        //   enclosing class in a potentially evaluated subexpression, the
7936        //   program is ill-formed.
7937        //
7938        // This resolution is unworkable: the exception specification of the
7939        // default constructor can be needed in an unevaluated context, in
7940        // particular, in the operand of a noexcept-expression, and we can be
7941        // unable to compute an exception specification for an enclosed class.
7942        //
7943        // We do not allow an in-class initializer to require the evaluation
7944        // of the exception specification for any in-class initializer whose
7945        // definition is not lexically complete.
7946        Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
7947    } else if (const RecordType *RecordTy
7948              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
7949      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
7950      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
7951      // If this is a deleted function, add it anyway. This might be conformant
7952      // with the standard. This might not. I'm not sure. It might not matter.
7953      // In particular, the problem is that this function never gets called. It
7954      // might just be ill-formed because this function attempts to refer to
7955      // a deleted function here.
7956      if (Constructor)
7957        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
7958    }
7959  }
7960
7961  return ExceptSpec;
7962}
7963
7964Sema::ImplicitExceptionSpecification
7965Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
7966  CXXRecordDecl *ClassDecl = CD->getParent();
7967
7968  // C++ [except.spec]p14:
7969  //   An inheriting constructor [...] shall have an exception-specification. [...]
7970  ImplicitExceptionSpecification ExceptSpec(*this);
7971  if (ClassDecl->isInvalidDecl())
7972    return ExceptSpec;
7973
7974  // Inherited constructor.
7975  const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
7976  const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
7977  // FIXME: Copying or moving the parameters could add extra exceptions to the
7978  // set, as could the default arguments for the inherited constructor. This
7979  // will be addressed when we implement the resolution of core issue 1351.
7980  ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
7981
7982  // Direct base-class constructors.
7983  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
7984                                       BEnd = ClassDecl->bases_end();
7985       B != BEnd; ++B) {
7986    if (B->isVirtual()) // Handled below.
7987      continue;
7988
7989    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
7990      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
7991      if (BaseClassDecl == InheritedDecl)
7992        continue;
7993      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
7994      if (Constructor)
7995        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
7996    }
7997  }
7998
7999  // Virtual base-class constructors.
8000  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8001                                       BEnd = ClassDecl->vbases_end();
8002       B != BEnd; ++B) {
8003    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
8004      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8005      if (BaseClassDecl == InheritedDecl)
8006        continue;
8007      CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8008      if (Constructor)
8009        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
8010    }
8011  }
8012
8013  // Field constructors.
8014  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8015                               FEnd = ClassDecl->field_end();
8016       F != FEnd; ++F) {
8017    if (F->hasInClassInitializer()) {
8018      if (Expr *E = F->getInClassInitializer())
8019        ExceptSpec.CalledExpr(E);
8020      else if (!F->isInvalidDecl())
8021        Diag(CD->getLocation(),
8022             diag::err_in_class_initializer_references_def_ctor) << CD;
8023    } else if (const RecordType *RecordTy
8024              = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8025      CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8026      CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8027      if (Constructor)
8028        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8029    }
8030  }
8031
8032  return ExceptSpec;
8033}
8034
8035namespace {
8036/// RAII object to register a special member as being currently declared.
8037struct DeclaringSpecialMember {
8038  Sema &S;
8039  Sema::SpecialMemberDecl D;
8040  bool WasAlreadyBeingDeclared;
8041
8042  DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8043    : S(S), D(RD, CSM) {
8044    WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
8045    if (WasAlreadyBeingDeclared)
8046      // This almost never happens, but if it does, ensure that our cache
8047      // doesn't contain a stale result.
8048      S.SpecialMemberCache.clear();
8049
8050    // FIXME: Register a note to be produced if we encounter an error while
8051    // declaring the special member.
8052  }
8053  ~DeclaringSpecialMember() {
8054    if (!WasAlreadyBeingDeclared)
8055      S.SpecialMembersBeingDeclared.erase(D);
8056  }
8057
8058  /// \brief Are we already trying to declare this special member?
8059  bool isAlreadyBeingDeclared() const {
8060    return WasAlreadyBeingDeclared;
8061  }
8062};
8063}
8064
8065CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8066                                                     CXXRecordDecl *ClassDecl) {
8067  // C++ [class.ctor]p5:
8068  //   A default constructor for a class X is a constructor of class X
8069  //   that can be called without an argument. If there is no
8070  //   user-declared constructor for class X, a default constructor is
8071  //   implicitly declared. An implicitly-declared default constructor
8072  //   is an inline public member of its class.
8073  assert(ClassDecl->needsImplicitDefaultConstructor() &&
8074         "Should not build implicit default constructor!");
8075
8076  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8077  if (DSM.isAlreadyBeingDeclared())
8078    return 0;
8079
8080  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8081                                                     CXXDefaultConstructor,
8082                                                     false);
8083
8084  // Create the actual constructor declaration.
8085  CanQualType ClassType
8086    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8087  SourceLocation ClassLoc = ClassDecl->getLocation();
8088  DeclarationName Name
8089    = Context.DeclarationNames.getCXXConstructorName(ClassType);
8090  DeclarationNameInfo NameInfo(Name, ClassLoc);
8091  CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8092      Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(), /*TInfo=*/0,
8093      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
8094      Constexpr);
8095  DefaultCon->setAccess(AS_public);
8096  DefaultCon->setDefaulted();
8097  DefaultCon->setImplicit();
8098
8099  // Build an exception specification pointing back at this constructor.
8100  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8101  DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8102
8103  // We don't need to use SpecialMemberIsTrivial here; triviality for default
8104  // constructors is easy to compute.
8105  DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8106
8107  if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8108    SetDeclDeleted(DefaultCon, ClassLoc);
8109
8110  // Note that we have declared this constructor.
8111  ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8112
8113  if (Scope *S = getScopeForContext(ClassDecl))
8114    PushOnScopeChains(DefaultCon, S, false);
8115  ClassDecl->addDecl(DefaultCon);
8116
8117  return DefaultCon;
8118}
8119
8120void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8121                                            CXXConstructorDecl *Constructor) {
8122  assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8123          !Constructor->doesThisDeclarationHaveABody() &&
8124          !Constructor->isDeleted()) &&
8125    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8126
8127  CXXRecordDecl *ClassDecl = Constructor->getParent();
8128  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8129
8130  SynthesizedFunctionScope Scope(*this, Constructor);
8131  DiagnosticErrorTrap Trap(Diags);
8132  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8133      Trap.hasErrorOccurred()) {
8134    Diag(CurrentLocation, diag::note_member_synthesized_at)
8135      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8136    Constructor->setInvalidDecl();
8137    return;
8138  }
8139
8140  SourceLocation Loc = Constructor->getLocation();
8141  Constructor->setBody(new (Context) CompoundStmt(Loc));
8142
8143  Constructor->markUsed(Context);
8144  MarkVTableUsed(CurrentLocation, ClassDecl);
8145
8146  if (ASTMutationListener *L = getASTMutationListener()) {
8147    L->CompletedImplicitDefinition(Constructor);
8148  }
8149}
8150
8151void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8152  // Check that any explicitly-defaulted methods have exception specifications
8153  // compatible with their implicit exception specifications.
8154  CheckDelayedExplicitlyDefaultedMemberExceptionSpecs();
8155
8156  // Once all the member initializers are processed, perform checks to see if
8157  // any unintialized use is happeneing.
8158  if (getDiagnostics().getDiagnosticLevel(diag::warn_field_is_uninit,
8159                                          D->getLocation())
8160      == DiagnosticsEngine::Ignored)
8161    return;
8162
8163  CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
8164  if (!RD) return;
8165
8166  // Holds fields that are uninitialized.
8167  llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
8168
8169  // In the beginning, every field is uninitialized.
8170  for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
8171       I != E; ++I) {
8172    if (FieldDecl *FD = dyn_cast<FieldDecl>(*I)) {
8173      UninitializedFields.insert(FD);
8174    } else if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I)) {
8175      UninitializedFields.insert(IFD->getAnonField());
8176    }
8177  }
8178
8179  for (DeclContext::decl_iterator I = RD->decls_begin(), E = RD->decls_end();
8180       I != E; ++I) {
8181    FieldDecl *FD = dyn_cast<FieldDecl>(*I);
8182    if (!FD)
8183      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*I))
8184        FD = IFD->getAnonField();
8185
8186    if (!FD)
8187      continue;
8188
8189    Expr *InitExpr = FD->getInClassInitializer();
8190    if (!InitExpr) {
8191      // Uninitialized reference types will give an error.
8192      // Record types with an initializer are default initialized.
8193      QualType FieldType = FD->getType();
8194      if (FieldType->isReferenceType() || FieldType->isRecordType())
8195        UninitializedFields.erase(FD);
8196      continue;
8197    }
8198
8199    CheckInitExprContainsUninitializedFields(
8200        *this, InitExpr, FD, UninitializedFields,
8201        UninitializedFields.count(FD)/*WarnOnSelfReference*/);
8202
8203    UninitializedFields.erase(FD);
8204  }
8205}
8206
8207namespace {
8208/// Information on inheriting constructors to declare.
8209class InheritingConstructorInfo {
8210public:
8211  InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8212      : SemaRef(SemaRef), Derived(Derived) {
8213    // Mark the constructors that we already have in the derived class.
8214    //
8215    // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8216    //   unless there is a user-declared constructor with the same signature in
8217    //   the class where the using-declaration appears.
8218    visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8219  }
8220
8221  void inheritAll(CXXRecordDecl *RD) {
8222    visitAll(RD, &InheritingConstructorInfo::inherit);
8223  }
8224
8225private:
8226  /// Information about an inheriting constructor.
8227  struct InheritingConstructor {
8228    InheritingConstructor()
8229      : DeclaredInDerived(false), BaseCtor(0), DerivedCtor(0) {}
8230
8231    /// If \c true, a constructor with this signature is already declared
8232    /// in the derived class.
8233    bool DeclaredInDerived;
8234
8235    /// The constructor which is inherited.
8236    const CXXConstructorDecl *BaseCtor;
8237
8238    /// The derived constructor we declared.
8239    CXXConstructorDecl *DerivedCtor;
8240  };
8241
8242  /// Inheriting constructors with a given canonical type. There can be at
8243  /// most one such non-template constructor, and any number of templated
8244  /// constructors.
8245  struct InheritingConstructorsForType {
8246    InheritingConstructor NonTemplate;
8247    SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
8248        Templates;
8249
8250    InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
8251      if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
8252        TemplateParameterList *ParamList = FTD->getTemplateParameters();
8253        for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8254          if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8255                                               false, S.TPL_TemplateMatch))
8256            return Templates[I].second;
8257        Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8258        return Templates.back().second;
8259      }
8260
8261      return NonTemplate;
8262    }
8263  };
8264
8265  /// Get or create the inheriting constructor record for a constructor.
8266  InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8267                                  QualType CtorType) {
8268    return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8269        .getEntry(SemaRef, Ctor);
8270  }
8271
8272  typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8273
8274  /// Process all constructors for a class.
8275  void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8276    for (CXXRecordDecl::ctor_iterator CtorIt = RD->ctor_begin(),
8277                                      CtorE = RD->ctor_end();
8278         CtorIt != CtorE; ++CtorIt)
8279      (this->*Callback)(*CtorIt);
8280    for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8281             I(RD->decls_begin()), E(RD->decls_end());
8282         I != E; ++I) {
8283      const FunctionDecl *FD = (*I)->getTemplatedDecl();
8284      if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8285        (this->*Callback)(CD);
8286    }
8287  }
8288
8289  /// Note that a constructor (or constructor template) was declared in Derived.
8290  void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8291    getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8292  }
8293
8294  /// Inherit a single constructor.
8295  void inherit(const CXXConstructorDecl *Ctor) {
8296    const FunctionProtoType *CtorType =
8297        Ctor->getType()->castAs<FunctionProtoType>();
8298    ArrayRef<QualType> ArgTypes(CtorType->getArgTypes());
8299    FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8300
8301    SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8302
8303    // Core issue (no number yet): the ellipsis is always discarded.
8304    if (EPI.Variadic) {
8305      SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8306      SemaRef.Diag(Ctor->getLocation(),
8307                   diag::note_using_decl_constructor_ellipsis);
8308      EPI.Variadic = false;
8309    }
8310
8311    // Declare a constructor for each number of parameters.
8312    //
8313    // C++11 [class.inhctor]p1:
8314    //   The candidate set of inherited constructors from the class X named in
8315    //   the using-declaration consists of [... modulo defects ...] for each
8316    //   constructor or constructor template of X, the set of constructors or
8317    //   constructor templates that results from omitting any ellipsis parameter
8318    //   specification and successively omitting parameters with a default
8319    //   argument from the end of the parameter-type-list
8320    unsigned MinParams = minParamsToInherit(Ctor);
8321    unsigned Params = Ctor->getNumParams();
8322    if (Params >= MinParams) {
8323      do
8324        declareCtor(UsingLoc, Ctor,
8325                    SemaRef.Context.getFunctionType(
8326                        Ctor->getResultType(), ArgTypes.slice(0, Params), EPI));
8327      while (Params > MinParams &&
8328             Ctor->getParamDecl(--Params)->hasDefaultArg());
8329    }
8330  }
8331
8332  /// Find the using-declaration which specified that we should inherit the
8333  /// constructors of \p Base.
8334  SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8335    // No fancy lookup required; just look for the base constructor name
8336    // directly within the derived class.
8337    ASTContext &Context = SemaRef.Context;
8338    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8339        Context.getCanonicalType(Context.getRecordType(Base)));
8340    DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8341    return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8342  }
8343
8344  unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8345    // C++11 [class.inhctor]p3:
8346    //   [F]or each constructor template in the candidate set of inherited
8347    //   constructors, a constructor template is implicitly declared
8348    if (Ctor->getDescribedFunctionTemplate())
8349      return 0;
8350
8351    //   For each non-template constructor in the candidate set of inherited
8352    //   constructors other than a constructor having no parameters or a
8353    //   copy/move constructor having a single parameter, a constructor is
8354    //   implicitly declared [...]
8355    if (Ctor->getNumParams() == 0)
8356      return 1;
8357    if (Ctor->isCopyOrMoveConstructor())
8358      return 2;
8359
8360    // Per discussion on core reflector, never inherit a constructor which
8361    // would become a default, copy, or move constructor of Derived either.
8362    const ParmVarDecl *PD = Ctor->getParamDecl(0);
8363    const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8364    return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8365  }
8366
8367  /// Declare a single inheriting constructor, inheriting the specified
8368  /// constructor, with the given type.
8369  void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8370                   QualType DerivedType) {
8371    InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8372
8373    // C++11 [class.inhctor]p3:
8374    //   ... a constructor is implicitly declared with the same constructor
8375    //   characteristics unless there is a user-declared constructor with
8376    //   the same signature in the class where the using-declaration appears
8377    if (Entry.DeclaredInDerived)
8378      return;
8379
8380    // C++11 [class.inhctor]p7:
8381    //   If two using-declarations declare inheriting constructors with the
8382    //   same signature, the program is ill-formed
8383    if (Entry.DerivedCtor) {
8384      if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8385        // Only diagnose this once per constructor.
8386        if (Entry.DerivedCtor->isInvalidDecl())
8387          return;
8388        Entry.DerivedCtor->setInvalidDecl();
8389
8390        SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8391        SemaRef.Diag(BaseCtor->getLocation(),
8392                     diag::note_using_decl_constructor_conflict_current_ctor);
8393        SemaRef.Diag(Entry.BaseCtor->getLocation(),
8394                     diag::note_using_decl_constructor_conflict_previous_ctor);
8395        SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8396                     diag::note_using_decl_constructor_conflict_previous_using);
8397      } else {
8398        // Core issue (no number): if the same inheriting constructor is
8399        // produced by multiple base class constructors from the same base
8400        // class, the inheriting constructor is defined as deleted.
8401        SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8402      }
8403
8404      return;
8405    }
8406
8407    ASTContext &Context = SemaRef.Context;
8408    DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8409        Context.getCanonicalType(Context.getRecordType(Derived)));
8410    DeclarationNameInfo NameInfo(Name, UsingLoc);
8411
8412    TemplateParameterList *TemplateParams = 0;
8413    if (const FunctionTemplateDecl *FTD =
8414            BaseCtor->getDescribedFunctionTemplate()) {
8415      TemplateParams = FTD->getTemplateParameters();
8416      // We're reusing template parameters from a different DeclContext. This
8417      // is questionable at best, but works out because the template depth in
8418      // both places is guaranteed to be 0.
8419      // FIXME: Rebuild the template parameters in the new context, and
8420      // transform the function type to refer to them.
8421    }
8422
8423    // Build type source info pointing at the using-declaration. This is
8424    // required by template instantiation.
8425    TypeSourceInfo *TInfo =
8426        Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8427    FunctionProtoTypeLoc ProtoLoc =
8428        TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8429
8430    CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8431        Context, Derived, UsingLoc, NameInfo, DerivedType,
8432        TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8433        /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8434
8435    // Build an unevaluated exception specification for this constructor.
8436    const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8437    FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8438    EPI.ExceptionSpecType = EST_Unevaluated;
8439    EPI.ExceptionSpecDecl = DerivedCtor;
8440    DerivedCtor->setType(Context.getFunctionType(FPT->getResultType(),
8441                                                 FPT->getArgTypes(), EPI));
8442
8443    // Build the parameter declarations.
8444    SmallVector<ParmVarDecl *, 16> ParamDecls;
8445    for (unsigned I = 0, N = FPT->getNumArgs(); I != N; ++I) {
8446      TypeSourceInfo *TInfo =
8447          Context.getTrivialTypeSourceInfo(FPT->getArgType(I), UsingLoc);
8448      ParmVarDecl *PD = ParmVarDecl::Create(
8449          Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/0,
8450          FPT->getArgType(I), TInfo, SC_None, /*DefaultArg=*/0);
8451      PD->setScopeInfo(0, I);
8452      PD->setImplicit();
8453      ParamDecls.push_back(PD);
8454      ProtoLoc.setArg(I, PD);
8455    }
8456
8457    // Set up the new constructor.
8458    DerivedCtor->setAccess(BaseCtor->getAccess());
8459    DerivedCtor->setParams(ParamDecls);
8460    DerivedCtor->setInheritedConstructor(BaseCtor);
8461    if (BaseCtor->isDeleted())
8462      SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8463
8464    // If this is a constructor template, build the template declaration.
8465    if (TemplateParams) {
8466      FunctionTemplateDecl *DerivedTemplate =
8467          FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8468                                       TemplateParams, DerivedCtor);
8469      DerivedTemplate->setAccess(BaseCtor->getAccess());
8470      DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8471      Derived->addDecl(DerivedTemplate);
8472    } else {
8473      Derived->addDecl(DerivedCtor);
8474    }
8475
8476    Entry.BaseCtor = BaseCtor;
8477    Entry.DerivedCtor = DerivedCtor;
8478  }
8479
8480  Sema &SemaRef;
8481  CXXRecordDecl *Derived;
8482  typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8483  MapType Map;
8484};
8485}
8486
8487void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8488  // Defer declaring the inheriting constructors until the class is
8489  // instantiated.
8490  if (ClassDecl->isDependentContext())
8491    return;
8492
8493  // Find base classes from which we might inherit constructors.
8494  SmallVector<CXXRecordDecl*, 4> InheritedBases;
8495  for (CXXRecordDecl::base_class_iterator BaseIt = ClassDecl->bases_begin(),
8496                                          BaseE = ClassDecl->bases_end();
8497       BaseIt != BaseE; ++BaseIt)
8498    if (BaseIt->getInheritConstructors())
8499      InheritedBases.push_back(BaseIt->getType()->getAsCXXRecordDecl());
8500
8501  // Go no further if we're not inheriting any constructors.
8502  if (InheritedBases.empty())
8503    return;
8504
8505  // Declare the inherited constructors.
8506  InheritingConstructorInfo ICI(*this, ClassDecl);
8507  for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8508    ICI.inheritAll(InheritedBases[I]);
8509}
8510
8511void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8512                                       CXXConstructorDecl *Constructor) {
8513  CXXRecordDecl *ClassDecl = Constructor->getParent();
8514  assert(Constructor->getInheritedConstructor() &&
8515         !Constructor->doesThisDeclarationHaveABody() &&
8516         !Constructor->isDeleted());
8517
8518  SynthesizedFunctionScope Scope(*this, Constructor);
8519  DiagnosticErrorTrap Trap(Diags);
8520  if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8521      Trap.hasErrorOccurred()) {
8522    Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8523      << Context.getTagDeclType(ClassDecl);
8524    Constructor->setInvalidDecl();
8525    return;
8526  }
8527
8528  SourceLocation Loc = Constructor->getLocation();
8529  Constructor->setBody(new (Context) CompoundStmt(Loc));
8530
8531  Constructor->markUsed(Context);
8532  MarkVTableUsed(CurrentLocation, ClassDecl);
8533
8534  if (ASTMutationListener *L = getASTMutationListener()) {
8535    L->CompletedImplicitDefinition(Constructor);
8536  }
8537}
8538
8539
8540Sema::ImplicitExceptionSpecification
8541Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8542  CXXRecordDecl *ClassDecl = MD->getParent();
8543
8544  // C++ [except.spec]p14:
8545  //   An implicitly declared special member function (Clause 12) shall have
8546  //   an exception-specification.
8547  ImplicitExceptionSpecification ExceptSpec(*this);
8548  if (ClassDecl->isInvalidDecl())
8549    return ExceptSpec;
8550
8551  // Direct base-class destructors.
8552  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
8553                                       BEnd = ClassDecl->bases_end();
8554       B != BEnd; ++B) {
8555    if (B->isVirtual()) // Handled below.
8556      continue;
8557
8558    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8559      ExceptSpec.CalledDecl(B->getLocStart(),
8560                   LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8561  }
8562
8563  // Virtual base-class destructors.
8564  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
8565                                       BEnd = ClassDecl->vbases_end();
8566       B != BEnd; ++B) {
8567    if (const RecordType *BaseType = B->getType()->getAs<RecordType>())
8568      ExceptSpec.CalledDecl(B->getLocStart(),
8569                  LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8570  }
8571
8572  // Field destructors.
8573  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
8574                               FEnd = ClassDecl->field_end();
8575       F != FEnd; ++F) {
8576    if (const RecordType *RecordTy
8577        = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8578      ExceptSpec.CalledDecl(F->getLocation(),
8579                  LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8580  }
8581
8582  return ExceptSpec;
8583}
8584
8585CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8586  // C++ [class.dtor]p2:
8587  //   If a class has no user-declared destructor, a destructor is
8588  //   declared implicitly. An implicitly-declared destructor is an
8589  //   inline public member of its class.
8590  assert(ClassDecl->needsImplicitDestructor());
8591
8592  DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8593  if (DSM.isAlreadyBeingDeclared())
8594    return 0;
8595
8596  // Create the actual destructor declaration.
8597  CanQualType ClassType
8598    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8599  SourceLocation ClassLoc = ClassDecl->getLocation();
8600  DeclarationName Name
8601    = Context.DeclarationNames.getCXXDestructorName(ClassType);
8602  DeclarationNameInfo NameInfo(Name, ClassLoc);
8603  CXXDestructorDecl *Destructor
8604      = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8605                                  QualType(), 0, /*isInline=*/true,
8606                                  /*isImplicitlyDeclared=*/true);
8607  Destructor->setAccess(AS_public);
8608  Destructor->setDefaulted();
8609  Destructor->setImplicit();
8610
8611  // Build an exception specification pointing back at this destructor.
8612  FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
8613  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8614
8615  AddOverriddenMethods(ClassDecl, Destructor);
8616
8617  // We don't need to use SpecialMemberIsTrivial here; triviality for
8618  // destructors is easy to compute.
8619  Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8620
8621  if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8622    SetDeclDeleted(Destructor, ClassLoc);
8623
8624  // Note that we have declared this destructor.
8625  ++ASTContext::NumImplicitDestructorsDeclared;
8626
8627  // Introduce this destructor into its scope.
8628  if (Scope *S = getScopeForContext(ClassDecl))
8629    PushOnScopeChains(Destructor, S, false);
8630  ClassDecl->addDecl(Destructor);
8631
8632  return Destructor;
8633}
8634
8635void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8636                                    CXXDestructorDecl *Destructor) {
8637  assert((Destructor->isDefaulted() &&
8638          !Destructor->doesThisDeclarationHaveABody() &&
8639          !Destructor->isDeleted()) &&
8640         "DefineImplicitDestructor - call it for implicit default dtor");
8641  CXXRecordDecl *ClassDecl = Destructor->getParent();
8642  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8643
8644  if (Destructor->isInvalidDecl())
8645    return;
8646
8647  SynthesizedFunctionScope Scope(*this, Destructor);
8648
8649  DiagnosticErrorTrap Trap(Diags);
8650  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8651                                         Destructor->getParent());
8652
8653  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8654    Diag(CurrentLocation, diag::note_member_synthesized_at)
8655      << CXXDestructor << Context.getTagDeclType(ClassDecl);
8656
8657    Destructor->setInvalidDecl();
8658    return;
8659  }
8660
8661  SourceLocation Loc = Destructor->getLocation();
8662  Destructor->setBody(new (Context) CompoundStmt(Loc));
8663  Destructor->markUsed(Context);
8664  MarkVTableUsed(CurrentLocation, ClassDecl);
8665
8666  if (ASTMutationListener *L = getASTMutationListener()) {
8667    L->CompletedImplicitDefinition(Destructor);
8668  }
8669}
8670
8671/// \brief Perform any semantic analysis which needs to be delayed until all
8672/// pending class member declarations have been parsed.
8673void Sema::ActOnFinishCXXMemberDecls() {
8674  // If the context is an invalid C++ class, just suppress these checks.
8675  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8676    if (Record->isInvalidDecl()) {
8677      DelayedDestructorExceptionSpecChecks.clear();
8678      return;
8679    }
8680  }
8681
8682  // Perform any deferred checking of exception specifications for virtual
8683  // destructors.
8684  for (unsigned i = 0, e = DelayedDestructorExceptionSpecChecks.size();
8685       i != e; ++i) {
8686    const CXXDestructorDecl *Dtor =
8687        DelayedDestructorExceptionSpecChecks[i].first;
8688    assert(!Dtor->getParent()->isDependentType() &&
8689           "Should not ever add destructors of templates into the list.");
8690    CheckOverridingFunctionExceptionSpec(Dtor,
8691        DelayedDestructorExceptionSpecChecks[i].second);
8692  }
8693  DelayedDestructorExceptionSpecChecks.clear();
8694}
8695
8696void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8697                                         CXXDestructorDecl *Destructor) {
8698  assert(getLangOpts().CPlusPlus11 &&
8699         "adjusting dtor exception specs was introduced in c++11");
8700
8701  // C++11 [class.dtor]p3:
8702  //   A declaration of a destructor that does not have an exception-
8703  //   specification is implicitly considered to have the same exception-
8704  //   specification as an implicit declaration.
8705  const FunctionProtoType *DtorType = Destructor->getType()->
8706                                        getAs<FunctionProtoType>();
8707  if (DtorType->hasExceptionSpec())
8708    return;
8709
8710  // Replace the destructor's type, building off the existing one. Fortunately,
8711  // the only thing of interest in the destructor type is its extended info.
8712  // The return and arguments are fixed.
8713  FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8714  EPI.ExceptionSpecType = EST_Unevaluated;
8715  EPI.ExceptionSpecDecl = Destructor;
8716  Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8717
8718  // FIXME: If the destructor has a body that could throw, and the newly created
8719  // spec doesn't allow exceptions, we should emit a warning, because this
8720  // change in behavior can break conforming C++03 programs at runtime.
8721  // However, we don't have a body or an exception specification yet, so it
8722  // needs to be done somewhere else.
8723}
8724
8725namespace {
8726/// \brief An abstract base class for all helper classes used in building the
8727//  copy/move operators. These classes serve as factory functions and help us
8728//  avoid using the same Expr* in the AST twice.
8729class ExprBuilder {
8730  ExprBuilder(const ExprBuilder&) LLVM_DELETED_FUNCTION;
8731  ExprBuilder &operator=(const ExprBuilder&) LLVM_DELETED_FUNCTION;
8732
8733protected:
8734  static Expr *assertNotNull(Expr *E) {
8735    assert(E && "Expression construction must not fail.");
8736    return E;
8737  }
8738
8739public:
8740  ExprBuilder() {}
8741  virtual ~ExprBuilder() {}
8742
8743  virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
8744};
8745
8746class RefBuilder: public ExprBuilder {
8747  VarDecl *Var;
8748  QualType VarType;
8749
8750public:
8751  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8752    return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).take());
8753  }
8754
8755  RefBuilder(VarDecl *Var, QualType VarType)
8756      : Var(Var), VarType(VarType) {}
8757};
8758
8759class ThisBuilder: public ExprBuilder {
8760public:
8761  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8762    return assertNotNull(S.ActOnCXXThis(Loc).takeAs<Expr>());
8763  }
8764};
8765
8766class CastBuilder: public ExprBuilder {
8767  const ExprBuilder &Builder;
8768  QualType Type;
8769  ExprValueKind Kind;
8770  const CXXCastPath &Path;
8771
8772public:
8773  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8774    return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
8775                                             CK_UncheckedDerivedToBase, Kind,
8776                                             &Path).take());
8777  }
8778
8779  CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
8780              const CXXCastPath &Path)
8781      : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
8782};
8783
8784class DerefBuilder: public ExprBuilder {
8785  const ExprBuilder &Builder;
8786
8787public:
8788  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8789    return assertNotNull(
8790        S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).take());
8791  }
8792
8793  DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8794};
8795
8796class MemberBuilder: public ExprBuilder {
8797  const ExprBuilder &Builder;
8798  QualType Type;
8799  CXXScopeSpec SS;
8800  bool IsArrow;
8801  LookupResult &MemberLookup;
8802
8803public:
8804  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8805    return assertNotNull(S.BuildMemberReferenceExpr(
8806        Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(), 0,
8807        MemberLookup, 0).take());
8808  }
8809
8810  MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
8811                LookupResult &MemberLookup)
8812      : Builder(Builder), Type(Type), IsArrow(IsArrow),
8813        MemberLookup(MemberLookup) {}
8814};
8815
8816class MoveCastBuilder: public ExprBuilder {
8817  const ExprBuilder &Builder;
8818
8819public:
8820  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8821    return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
8822  }
8823
8824  MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8825};
8826
8827class LvalueConvBuilder: public ExprBuilder {
8828  const ExprBuilder &Builder;
8829
8830public:
8831  virtual Expr *build(Sema &S, SourceLocation Loc) const LLVM_OVERRIDE {
8832    return assertNotNull(
8833        S.DefaultLvalueConversion(Builder.build(S, Loc)).take());
8834  }
8835
8836  LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
8837};
8838
8839class SubscriptBuilder: public ExprBuilder {
8840  const ExprBuilder &Base;
8841  const ExprBuilder &Index;
8842
8843public:
8844  virtual Expr *build(Sema &S, SourceLocation Loc) const
8845      LLVM_OVERRIDE {
8846    return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
8847        Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).take());
8848  }
8849
8850  SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
8851      : Base(Base), Index(Index) {}
8852};
8853
8854} // end anonymous namespace
8855
8856/// When generating a defaulted copy or move assignment operator, if a field
8857/// should be copied with __builtin_memcpy rather than via explicit assignments,
8858/// do so. This optimization only applies for arrays of scalars, and for arrays
8859/// of class type where the selected copy/move-assignment operator is trivial.
8860static StmtResult
8861buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
8862                           const ExprBuilder &ToB, const ExprBuilder &FromB) {
8863  // Compute the size of the memory buffer to be copied.
8864  QualType SizeType = S.Context.getSizeType();
8865  llvm::APInt Size(S.Context.getTypeSize(SizeType),
8866                   S.Context.getTypeSizeInChars(T).getQuantity());
8867
8868  // Take the address of the field references for "from" and "to". We
8869  // directly construct UnaryOperators here because semantic analysis
8870  // does not permit us to take the address of an xvalue.
8871  Expr *From = FromB.build(S, Loc);
8872  From = new (S.Context) UnaryOperator(From, UO_AddrOf,
8873                         S.Context.getPointerType(From->getType()),
8874                         VK_RValue, OK_Ordinary, Loc);
8875  Expr *To = ToB.build(S, Loc);
8876  To = new (S.Context) UnaryOperator(To, UO_AddrOf,
8877                       S.Context.getPointerType(To->getType()),
8878                       VK_RValue, OK_Ordinary, Loc);
8879
8880  const Type *E = T->getBaseElementTypeUnsafe();
8881  bool NeedsCollectableMemCpy =
8882    E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
8883
8884  // Create a reference to the __builtin_objc_memmove_collectable function
8885  StringRef MemCpyName = NeedsCollectableMemCpy ?
8886    "__builtin_objc_memmove_collectable" :
8887    "__builtin_memcpy";
8888  LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
8889                 Sema::LookupOrdinaryName);
8890  S.LookupName(R, S.TUScope, true);
8891
8892  FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
8893  if (!MemCpy)
8894    // Something went horribly wrong earlier, and we will have complained
8895    // about it.
8896    return StmtError();
8897
8898  ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
8899                                            VK_RValue, Loc, 0);
8900  assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
8901
8902  Expr *CallArgs[] = {
8903    To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
8904  };
8905  ExprResult Call = S.ActOnCallExpr(/*Scope=*/0, MemCpyRef.take(),
8906                                    Loc, CallArgs, Loc);
8907
8908  assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
8909  return S.Owned(Call.takeAs<Stmt>());
8910}
8911
8912/// \brief Builds a statement that copies/moves the given entity from \p From to
8913/// \c To.
8914///
8915/// This routine is used to copy/move the members of a class with an
8916/// implicitly-declared copy/move assignment operator. When the entities being
8917/// copied are arrays, this routine builds for loops to copy them.
8918///
8919/// \param S The Sema object used for type-checking.
8920///
8921/// \param Loc The location where the implicit copy/move is being generated.
8922///
8923/// \param T The type of the expressions being copied/moved. Both expressions
8924/// must have this type.
8925///
8926/// \param To The expression we are copying/moving to.
8927///
8928/// \param From The expression we are copying/moving from.
8929///
8930/// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
8931/// Otherwise, it's a non-static member subobject.
8932///
8933/// \param Copying Whether we're copying or moving.
8934///
8935/// \param Depth Internal parameter recording the depth of the recursion.
8936///
8937/// \returns A statement or a loop that copies the expressions, or StmtResult(0)
8938/// if a memcpy should be used instead.
8939static StmtResult
8940buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
8941                                 const ExprBuilder &To, const ExprBuilder &From,
8942                                 bool CopyingBaseSubobject, bool Copying,
8943                                 unsigned Depth = 0) {
8944  // C++11 [class.copy]p28:
8945  //   Each subobject is assigned in the manner appropriate to its type:
8946  //
8947  //     - if the subobject is of class type, as if by a call to operator= with
8948  //       the subobject as the object expression and the corresponding
8949  //       subobject of x as a single function argument (as if by explicit
8950  //       qualification; that is, ignoring any possible virtual overriding
8951  //       functions in more derived classes);
8952  //
8953  // C++03 [class.copy]p13:
8954  //     - if the subobject is of class type, the copy assignment operator for
8955  //       the class is used (as if by explicit qualification; that is,
8956  //       ignoring any possible virtual overriding functions in more derived
8957  //       classes);
8958  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
8959    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8960
8961    // Look for operator=.
8962    DeclarationName Name
8963      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
8964    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
8965    S.LookupQualifiedName(OpLookup, ClassDecl, false);
8966
8967    // Prior to C++11, filter out any result that isn't a copy/move-assignment
8968    // operator.
8969    if (!S.getLangOpts().CPlusPlus11) {
8970      LookupResult::Filter F = OpLookup.makeFilter();
8971      while (F.hasNext()) {
8972        NamedDecl *D = F.next();
8973        if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
8974          if (Method->isCopyAssignmentOperator() ||
8975              (!Copying && Method->isMoveAssignmentOperator()))
8976            continue;
8977
8978        F.erase();
8979      }
8980      F.done();
8981    }
8982
8983    // Suppress the protected check (C++ [class.protected]) for each of the
8984    // assignment operators we found. This strange dance is required when
8985    // we're assigning via a base classes's copy-assignment operator. To
8986    // ensure that we're getting the right base class subobject (without
8987    // ambiguities), we need to cast "this" to that subobject type; to
8988    // ensure that we don't go through the virtual call mechanism, we need
8989    // to qualify the operator= name with the base class (see below). However,
8990    // this means that if the base class has a protected copy assignment
8991    // operator, the protected member access check will fail. So, we
8992    // rewrite "protected" access to "public" access in this case, since we
8993    // know by construction that we're calling from a derived class.
8994    if (CopyingBaseSubobject) {
8995      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
8996           L != LEnd; ++L) {
8997        if (L.getAccess() == AS_protected)
8998          L.setAccess(AS_public);
8999      }
9000    }
9001
9002    // Create the nested-name-specifier that will be used to qualify the
9003    // reference to operator=; this is required to suppress the virtual
9004    // call mechanism.
9005    CXXScopeSpec SS;
9006    const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
9007    SS.MakeTrivial(S.Context,
9008                   NestedNameSpecifier::Create(S.Context, 0, false,
9009                                               CanonicalT),
9010                   Loc);
9011
9012    // Create the reference to operator=.
9013    ExprResult OpEqualRef
9014      = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
9015                                   SS, /*TemplateKWLoc=*/SourceLocation(),
9016                                   /*FirstQualifierInScope=*/0,
9017                                   OpLookup,
9018                                   /*TemplateArgs=*/0,
9019                                   /*SuppressQualifierCheck=*/true);
9020    if (OpEqualRef.isInvalid())
9021      return StmtError();
9022
9023    // Build the call to the assignment operator.
9024
9025    Expr *FromInst = From.build(S, Loc);
9026    ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
9027                                                  OpEqualRef.takeAs<Expr>(),
9028                                                  Loc, FromInst, Loc);
9029    if (Call.isInvalid())
9030      return StmtError();
9031
9032    // If we built a call to a trivial 'operator=' while copying an array,
9033    // bail out. We'll replace the whole shebang with a memcpy.
9034    CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9035    if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9036      return StmtResult((Stmt*)0);
9037
9038    // Convert to an expression-statement, and clean up any produced
9039    // temporaries.
9040    return S.ActOnExprStmt(Call);
9041  }
9042
9043  //     - if the subobject is of scalar type, the built-in assignment
9044  //       operator is used.
9045  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9046  if (!ArrayTy) {
9047    ExprResult Assignment = S.CreateBuiltinBinOp(
9048        Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9049    if (Assignment.isInvalid())
9050      return StmtError();
9051    return S.ActOnExprStmt(Assignment);
9052  }
9053
9054  //     - if the subobject is an array, each element is assigned, in the
9055  //       manner appropriate to the element type;
9056
9057  // Construct a loop over the array bounds, e.g.,
9058  //
9059  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9060  //
9061  // that will copy each of the array elements.
9062  QualType SizeType = S.Context.getSizeType();
9063
9064  // Create the iteration variable.
9065  IdentifierInfo *IterationVarName = 0;
9066  {
9067    SmallString<8> Str;
9068    llvm::raw_svector_ostream OS(Str);
9069    OS << "__i" << Depth;
9070    IterationVarName = &S.Context.Idents.get(OS.str());
9071  }
9072  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9073                                          IterationVarName, SizeType,
9074                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9075                                          SC_None);
9076
9077  // Initialize the iteration variable to zero.
9078  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9079  IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9080
9081  // Creates a reference to the iteration variable.
9082  RefBuilder IterationVarRef(IterationVar, SizeType);
9083  LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9084
9085  // Create the DeclStmt that holds the iteration variable.
9086  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9087
9088  // Subscript the "from" and "to" expressions with the iteration variable.
9089  SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9090  MoveCastBuilder FromIndexMove(FromIndexCopy);
9091  const ExprBuilder *FromIndex;
9092  if (Copying)
9093    FromIndex = &FromIndexCopy;
9094  else
9095    FromIndex = &FromIndexMove;
9096
9097  SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9098
9099  // Build the copy/move for an individual element of the array.
9100  StmtResult Copy =
9101    buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9102                                     ToIndex, *FromIndex, CopyingBaseSubobject,
9103                                     Copying, Depth + 1);
9104  // Bail out if copying fails or if we determined that we should use memcpy.
9105  if (Copy.isInvalid() || !Copy.get())
9106    return Copy;
9107
9108  // Create the comparison against the array bound.
9109  llvm::APInt Upper
9110    = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9111  Expr *Comparison
9112    = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9113                     IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9114                                     BO_NE, S.Context.BoolTy,
9115                                     VK_RValue, OK_Ordinary, Loc, false);
9116
9117  // Create the pre-increment of the iteration variable.
9118  Expr *Increment
9119    = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9120                                    SizeType, VK_LValue, OK_Ordinary, Loc);
9121
9122  // Construct the loop that copies all elements of this array.
9123  return S.ActOnForStmt(Loc, Loc, InitStmt,
9124                        S.MakeFullExpr(Comparison),
9125                        0, S.MakeFullDiscardedValueExpr(Increment),
9126                        Loc, Copy.take());
9127}
9128
9129static StmtResult
9130buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9131                      const ExprBuilder &To, const ExprBuilder &From,
9132                      bool CopyingBaseSubobject, bool Copying) {
9133  // Maybe we should use a memcpy?
9134  if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9135      T.isTriviallyCopyableType(S.Context))
9136    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9137
9138  StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9139                                                     CopyingBaseSubobject,
9140                                                     Copying, 0));
9141
9142  // If we ended up picking a trivial assignment operator for an array of a
9143  // non-trivially-copyable class type, just emit a memcpy.
9144  if (!Result.isInvalid() && !Result.get())
9145    return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9146
9147  return Result;
9148}
9149
9150Sema::ImplicitExceptionSpecification
9151Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9152  CXXRecordDecl *ClassDecl = MD->getParent();
9153
9154  ImplicitExceptionSpecification ExceptSpec(*this);
9155  if (ClassDecl->isInvalidDecl())
9156    return ExceptSpec;
9157
9158  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9159  assert(T->getNumArgs() == 1 && "not a copy assignment op");
9160  unsigned ArgQuals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
9161
9162  // C++ [except.spec]p14:
9163  //   An implicitly declared special member function (Clause 12) shall have an
9164  //   exception-specification. [...]
9165
9166  // It is unspecified whether or not an implicit copy assignment operator
9167  // attempts to deduplicate calls to assignment operators of virtual bases are
9168  // made. As such, this exception specification is effectively unspecified.
9169  // Based on a similar decision made for constness in C++0x, we're erring on
9170  // the side of assuming such calls to be made regardless of whether they
9171  // actually happen.
9172  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9173                                       BaseEnd = ClassDecl->bases_end();
9174       Base != BaseEnd; ++Base) {
9175    if (Base->isVirtual())
9176      continue;
9177
9178    CXXRecordDecl *BaseClassDecl
9179      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9180    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9181                                                            ArgQuals, false, 0))
9182      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
9183  }
9184
9185  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9186                                       BaseEnd = ClassDecl->vbases_end();
9187       Base != BaseEnd; ++Base) {
9188    CXXRecordDecl *BaseClassDecl
9189      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9190    if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9191                                                            ArgQuals, false, 0))
9192      ExceptSpec.CalledDecl(Base->getLocStart(), CopyAssign);
9193  }
9194
9195  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9196                                  FieldEnd = ClassDecl->field_end();
9197       Field != FieldEnd;
9198       ++Field) {
9199    QualType FieldType = Context.getBaseElementType(Field->getType());
9200    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9201      if (CXXMethodDecl *CopyAssign =
9202          LookupCopyingAssignment(FieldClassDecl,
9203                                  ArgQuals | FieldType.getCVRQualifiers(),
9204                                  false, 0))
9205        ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
9206    }
9207  }
9208
9209  return ExceptSpec;
9210}
9211
9212CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
9213  // Note: The following rules are largely analoguous to the copy
9214  // constructor rules. Note that virtual bases are not taken into account
9215  // for determining the argument type of the operator. Note also that
9216  // operators taking an object instead of a reference are allowed.
9217  assert(ClassDecl->needsImplicitCopyAssignment());
9218
9219  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
9220  if (DSM.isAlreadyBeingDeclared())
9221    return 0;
9222
9223  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9224  QualType RetType = Context.getLValueReferenceType(ArgType);
9225  bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
9226  if (Const)
9227    ArgType = ArgType.withConst();
9228  ArgType = Context.getLValueReferenceType(ArgType);
9229
9230  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9231                                                     CXXCopyAssignment,
9232                                                     Const);
9233
9234  //   An implicitly-declared copy assignment operator is an inline public
9235  //   member of its class.
9236  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9237  SourceLocation ClassLoc = ClassDecl->getLocation();
9238  DeclarationNameInfo NameInfo(Name, ClassLoc);
9239  CXXMethodDecl *CopyAssignment =
9240      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9241                            /*TInfo=*/ 0, /*StorageClass=*/ SC_None,
9242                            /*isInline=*/ true, Constexpr, SourceLocation());
9243  CopyAssignment->setAccess(AS_public);
9244  CopyAssignment->setDefaulted();
9245  CopyAssignment->setImplicit();
9246
9247  // Build an exception specification pointing back at this member.
9248  FunctionProtoType::ExtProtoInfo EPI =
9249      getImplicitMethodEPI(*this, CopyAssignment);
9250  CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9251
9252  // Add the parameter to the operator.
9253  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
9254                                               ClassLoc, ClassLoc, /*Id=*/0,
9255                                               ArgType, /*TInfo=*/0,
9256                                               SC_None, 0);
9257  CopyAssignment->setParams(FromParam);
9258
9259  AddOverriddenMethods(ClassDecl, CopyAssignment);
9260
9261  CopyAssignment->setTrivial(
9262    ClassDecl->needsOverloadResolutionForCopyAssignment()
9263      ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
9264      : ClassDecl->hasTrivialCopyAssignment());
9265
9266  // C++11 [class.copy]p19:
9267  //   ....  If the class definition does not explicitly declare a copy
9268  //   assignment operator, there is no user-declared move constructor, and
9269  //   there is no user-declared move assignment operator, a copy assignment
9270  //   operator is implicitly declared as defaulted.
9271  if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
9272    SetDeclDeleted(CopyAssignment, ClassLoc);
9273
9274  // Note that we have added this copy-assignment operator.
9275  ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
9276
9277  if (Scope *S = getScopeForContext(ClassDecl))
9278    PushOnScopeChains(CopyAssignment, S, false);
9279  ClassDecl->addDecl(CopyAssignment);
9280
9281  return CopyAssignment;
9282}
9283
9284/// Diagnose an implicit copy operation for a class which is odr-used, but
9285/// which is deprecated because the class has a user-declared copy constructor,
9286/// copy assignment operator, or destructor.
9287static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
9288                                            SourceLocation UseLoc) {
9289  assert(CopyOp->isImplicit());
9290
9291  CXXRecordDecl *RD = CopyOp->getParent();
9292  CXXMethodDecl *UserDeclaredOperation = 0;
9293
9294  // In Microsoft mode, assignment operations don't affect constructors and
9295  // vice versa.
9296  if (RD->hasUserDeclaredDestructor()) {
9297    UserDeclaredOperation = RD->getDestructor();
9298  } else if (!isa<CXXConstructorDecl>(CopyOp) &&
9299             RD->hasUserDeclaredCopyConstructor() &&
9300             !S.getLangOpts().MicrosoftMode) {
9301    // Find any user-declared copy constructor.
9302    for (CXXRecordDecl::ctor_iterator I = RD->ctor_begin(),
9303                                      E = RD->ctor_end(); I != E; ++I) {
9304      if (I->isCopyConstructor()) {
9305        UserDeclaredOperation = *I;
9306        break;
9307      }
9308    }
9309    assert(UserDeclaredOperation);
9310  } else if (isa<CXXConstructorDecl>(CopyOp) &&
9311             RD->hasUserDeclaredCopyAssignment() &&
9312             !S.getLangOpts().MicrosoftMode) {
9313    // Find any user-declared move assignment operator.
9314    for (CXXRecordDecl::method_iterator I = RD->method_begin(),
9315                                        E = RD->method_end(); I != E; ++I) {
9316      if (I->isCopyAssignmentOperator()) {
9317        UserDeclaredOperation = *I;
9318        break;
9319      }
9320    }
9321    assert(UserDeclaredOperation);
9322  }
9323
9324  if (UserDeclaredOperation) {
9325    S.Diag(UserDeclaredOperation->getLocation(),
9326         diag::warn_deprecated_copy_operation)
9327      << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
9328      << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
9329    S.Diag(UseLoc, diag::note_member_synthesized_at)
9330      << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
9331                                          : Sema::CXXCopyAssignment)
9332      << RD;
9333  }
9334}
9335
9336void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
9337                                        CXXMethodDecl *CopyAssignOperator) {
9338  assert((CopyAssignOperator->isDefaulted() &&
9339          CopyAssignOperator->isOverloadedOperator() &&
9340          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
9341          !CopyAssignOperator->doesThisDeclarationHaveABody() &&
9342          !CopyAssignOperator->isDeleted()) &&
9343         "DefineImplicitCopyAssignment called for wrong function");
9344
9345  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
9346
9347  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
9348    CopyAssignOperator->setInvalidDecl();
9349    return;
9350  }
9351
9352  // C++11 [class.copy]p18:
9353  //   The [definition of an implicitly declared copy assignment operator] is
9354  //   deprecated if the class has a user-declared copy constructor or a
9355  //   user-declared destructor.
9356  if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
9357    diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
9358
9359  CopyAssignOperator->markUsed(Context);
9360
9361  SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
9362  DiagnosticErrorTrap Trap(Diags);
9363
9364  // C++0x [class.copy]p30:
9365  //   The implicitly-defined or explicitly-defaulted copy assignment operator
9366  //   for a non-union class X performs memberwise copy assignment of its
9367  //   subobjects. The direct base classes of X are assigned first, in the
9368  //   order of their declaration in the base-specifier-list, and then the
9369  //   immediate non-static data members of X are assigned, in the order in
9370  //   which they were declared in the class definition.
9371
9372  // The statements that form the synthesized function body.
9373  SmallVector<Stmt*, 8> Statements;
9374
9375  // The parameter for the "other" object, which we are copying from.
9376  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
9377  Qualifiers OtherQuals = Other->getType().getQualifiers();
9378  QualType OtherRefType = Other->getType();
9379  if (const LValueReferenceType *OtherRef
9380                                = OtherRefType->getAs<LValueReferenceType>()) {
9381    OtherRefType = OtherRef->getPointeeType();
9382    OtherQuals = OtherRefType.getQualifiers();
9383  }
9384
9385  // Our location for everything implicitly-generated.
9386  SourceLocation Loc = CopyAssignOperator->getLocation();
9387
9388  // Builds a DeclRefExpr for the "other" object.
9389  RefBuilder OtherRef(Other, OtherRefType);
9390
9391  // Builds the "this" pointer.
9392  ThisBuilder This;
9393
9394  // Assign base classes.
9395  bool Invalid = false;
9396  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9397       E = ClassDecl->bases_end(); Base != E; ++Base) {
9398    // Form the assignment:
9399    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9400    QualType BaseType = Base->getType().getUnqualifiedType();
9401    if (!BaseType->isRecordType()) {
9402      Invalid = true;
9403      continue;
9404    }
9405
9406    CXXCastPath BasePath;
9407    BasePath.push_back(Base);
9408
9409    // Construct the "from" expression, which is an implicit cast to the
9410    // appropriately-qualified base type.
9411    CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
9412                     VK_LValue, BasePath);
9413
9414    // Dereference "this".
9415    DerefBuilder DerefThis(This);
9416    CastBuilder To(DerefThis,
9417                   Context.getCVRQualifiedType(
9418                       BaseType, CopyAssignOperator->getTypeQualifiers()),
9419                   VK_LValue, BasePath);
9420
9421    // Build the copy.
9422    StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9423                                            To, From,
9424                                            /*CopyingBaseSubobject=*/true,
9425                                            /*Copying=*/true);
9426    if (Copy.isInvalid()) {
9427      Diag(CurrentLocation, diag::note_member_synthesized_at)
9428        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9429      CopyAssignOperator->setInvalidDecl();
9430      return;
9431    }
9432
9433    // Success! Record the copy.
9434    Statements.push_back(Copy.takeAs<Expr>());
9435  }
9436
9437  // Assign non-static members.
9438  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9439                                  FieldEnd = ClassDecl->field_end();
9440       Field != FieldEnd; ++Field) {
9441    if (Field->isUnnamedBitfield())
9442      continue;
9443
9444    if (Field->isInvalidDecl()) {
9445      Invalid = true;
9446      continue;
9447    }
9448
9449    // Check for members of reference type; we can't copy those.
9450    if (Field->getType()->isReferenceType()) {
9451      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9452        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9453      Diag(Field->getLocation(), diag::note_declared_at);
9454      Diag(CurrentLocation, diag::note_member_synthesized_at)
9455        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9456      Invalid = true;
9457      continue;
9458    }
9459
9460    // Check for members of const-qualified, non-class type.
9461    QualType BaseType = Context.getBaseElementType(Field->getType());
9462    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9463      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9464        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9465      Diag(Field->getLocation(), diag::note_declared_at);
9466      Diag(CurrentLocation, diag::note_member_synthesized_at)
9467        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9468      Invalid = true;
9469      continue;
9470    }
9471
9472    // Suppress assigning zero-width bitfields.
9473    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9474      continue;
9475
9476    QualType FieldType = Field->getType().getNonReferenceType();
9477    if (FieldType->isIncompleteArrayType()) {
9478      assert(ClassDecl->hasFlexibleArrayMember() &&
9479             "Incomplete array type is not valid");
9480      continue;
9481    }
9482
9483    // Build references to the field in the object we're copying from and to.
9484    CXXScopeSpec SS; // Intentionally empty
9485    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9486                              LookupMemberName);
9487    MemberLookup.addDecl(*Field);
9488    MemberLookup.resolveKind();
9489
9490    MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
9491
9492    MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
9493
9494    // Build the copy of this field.
9495    StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9496                                            To, From,
9497                                            /*CopyingBaseSubobject=*/false,
9498                                            /*Copying=*/true);
9499    if (Copy.isInvalid()) {
9500      Diag(CurrentLocation, diag::note_member_synthesized_at)
9501        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9502      CopyAssignOperator->setInvalidDecl();
9503      return;
9504    }
9505
9506    // Success! Record the copy.
9507    Statements.push_back(Copy.takeAs<Stmt>());
9508  }
9509
9510  if (!Invalid) {
9511    // Add a "return *this;"
9512    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
9513
9514    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9515    if (Return.isInvalid())
9516      Invalid = true;
9517    else {
9518      Statements.push_back(Return.takeAs<Stmt>());
9519
9520      if (Trap.hasErrorOccurred()) {
9521        Diag(CurrentLocation, diag::note_member_synthesized_at)
9522          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9523        Invalid = true;
9524      }
9525    }
9526  }
9527
9528  if (Invalid) {
9529    CopyAssignOperator->setInvalidDecl();
9530    return;
9531  }
9532
9533  StmtResult Body;
9534  {
9535    CompoundScopeRAII CompoundScope(*this);
9536    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9537                             /*isStmtExpr=*/false);
9538    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9539  }
9540  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
9541
9542  if (ASTMutationListener *L = getASTMutationListener()) {
9543    L->CompletedImplicitDefinition(CopyAssignOperator);
9544  }
9545}
9546
9547Sema::ImplicitExceptionSpecification
9548Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9549  CXXRecordDecl *ClassDecl = MD->getParent();
9550
9551  ImplicitExceptionSpecification ExceptSpec(*this);
9552  if (ClassDecl->isInvalidDecl())
9553    return ExceptSpec;
9554
9555  // C++0x [except.spec]p14:
9556  //   An implicitly declared special member function (Clause 12) shall have an
9557  //   exception-specification. [...]
9558
9559  // It is unspecified whether or not an implicit move assignment operator
9560  // attempts to deduplicate calls to assignment operators of virtual bases are
9561  // made. As such, this exception specification is effectively unspecified.
9562  // Based on a similar decision made for constness in C++0x, we're erring on
9563  // the side of assuming such calls to be made regardless of whether they
9564  // actually happen.
9565  // Note that a move constructor is not implicitly declared when there are
9566  // virtual bases, but it can still be user-declared and explicitly defaulted.
9567  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9568                                       BaseEnd = ClassDecl->bases_end();
9569       Base != BaseEnd; ++Base) {
9570    if (Base->isVirtual())
9571      continue;
9572
9573    CXXRecordDecl *BaseClassDecl
9574      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9575    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9576                                                           0, false, 0))
9577      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9578  }
9579
9580  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9581                                       BaseEnd = ClassDecl->vbases_end();
9582       Base != BaseEnd; ++Base) {
9583    CXXRecordDecl *BaseClassDecl
9584      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9585    if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9586                                                           0, false, 0))
9587      ExceptSpec.CalledDecl(Base->getLocStart(), MoveAssign);
9588  }
9589
9590  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9591                                  FieldEnd = ClassDecl->field_end();
9592       Field != FieldEnd;
9593       ++Field) {
9594    QualType FieldType = Context.getBaseElementType(Field->getType());
9595    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9596      if (CXXMethodDecl *MoveAssign =
9597              LookupMovingAssignment(FieldClassDecl,
9598                                     FieldType.getCVRQualifiers(),
9599                                     false, 0))
9600        ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9601    }
9602  }
9603
9604  return ExceptSpec;
9605}
9606
9607/// Determine whether the class type has any direct or indirect virtual base
9608/// classes which have a non-trivial move assignment operator.
9609static bool
9610hasVirtualBaseWithNonTrivialMoveAssignment(Sema &S, CXXRecordDecl *ClassDecl) {
9611  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9612                                          BaseEnd = ClassDecl->vbases_end();
9613       Base != BaseEnd; ++Base) {
9614    CXXRecordDecl *BaseClass =
9615        cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
9616
9617    // Try to declare the move assignment. If it would be deleted, then the
9618    // class does not have a non-trivial move assignment.
9619    if (BaseClass->needsImplicitMoveAssignment())
9620      S.DeclareImplicitMoveAssignment(BaseClass);
9621
9622    if (BaseClass->hasNonTrivialMoveAssignment())
9623      return true;
9624  }
9625
9626  return false;
9627}
9628
9629/// Determine whether the given type either has a move constructor or is
9630/// trivially copyable.
9631static bool
9632hasMoveOrIsTriviallyCopyable(Sema &S, QualType Type, bool IsConstructor) {
9633  Type = S.Context.getBaseElementType(Type);
9634
9635  // FIXME: Technically, non-trivially-copyable non-class types, such as
9636  // reference types, are supposed to return false here, but that appears
9637  // to be a standard defect.
9638  CXXRecordDecl *ClassDecl = Type->getAsCXXRecordDecl();
9639  if (!ClassDecl || !ClassDecl->getDefinition() || ClassDecl->isInvalidDecl())
9640    return true;
9641
9642  if (Type.isTriviallyCopyableType(S.Context))
9643    return true;
9644
9645  if (IsConstructor) {
9646    // FIXME: Need this because otherwise hasMoveConstructor isn't guaranteed to
9647    // give the right answer.
9648    if (ClassDecl->needsImplicitMoveConstructor())
9649      S.DeclareImplicitMoveConstructor(ClassDecl);
9650    return ClassDecl->hasMoveConstructor();
9651  }
9652
9653  // FIXME: Need this because otherwise hasMoveAssignment isn't guaranteed to
9654  // give the right answer.
9655  if (ClassDecl->needsImplicitMoveAssignment())
9656    S.DeclareImplicitMoveAssignment(ClassDecl);
9657  return ClassDecl->hasMoveAssignment();
9658}
9659
9660/// Determine whether all non-static data members and direct or virtual bases
9661/// of class \p ClassDecl have either a move operation, or are trivially
9662/// copyable.
9663static bool subobjectsHaveMoveOrTrivialCopy(Sema &S, CXXRecordDecl *ClassDecl,
9664                                            bool IsConstructor) {
9665  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9666                                          BaseEnd = ClassDecl->bases_end();
9667       Base != BaseEnd; ++Base) {
9668    if (Base->isVirtual())
9669      continue;
9670
9671    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9672      return false;
9673  }
9674
9675  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
9676                                          BaseEnd = ClassDecl->vbases_end();
9677       Base != BaseEnd; ++Base) {
9678    if (!hasMoveOrIsTriviallyCopyable(S, Base->getType(), IsConstructor))
9679      return false;
9680  }
9681
9682  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9683                                     FieldEnd = ClassDecl->field_end();
9684       Field != FieldEnd; ++Field) {
9685    if (!hasMoveOrIsTriviallyCopyable(S, Field->getType(), IsConstructor))
9686      return false;
9687  }
9688
9689  return true;
9690}
9691
9692CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9693  // C++11 [class.copy]p20:
9694  //   If the definition of a class X does not explicitly declare a move
9695  //   assignment operator, one will be implicitly declared as defaulted
9696  //   if and only if:
9697  //
9698  //   - [first 4 bullets]
9699  assert(ClassDecl->needsImplicitMoveAssignment());
9700
9701  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9702  if (DSM.isAlreadyBeingDeclared())
9703    return 0;
9704
9705  // [Checked after we build the declaration]
9706  //   - the move assignment operator would not be implicitly defined as
9707  //     deleted,
9708
9709  // [DR1402]:
9710  //   - X has no direct or indirect virtual base class with a non-trivial
9711  //     move assignment operator, and
9712  //   - each of X's non-static data members and direct or virtual base classes
9713  //     has a type that either has a move assignment operator or is trivially
9714  //     copyable.
9715  if (hasVirtualBaseWithNonTrivialMoveAssignment(*this, ClassDecl) ||
9716      !subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl,/*Constructor*/false)) {
9717    ClassDecl->setFailedImplicitMoveAssignment();
9718    return 0;
9719  }
9720
9721  // Note: The following rules are largely analoguous to the move
9722  // constructor rules.
9723
9724  QualType ArgType = Context.getTypeDeclType(ClassDecl);
9725  QualType RetType = Context.getLValueReferenceType(ArgType);
9726  ArgType = Context.getRValueReferenceType(ArgType);
9727
9728  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9729                                                     CXXMoveAssignment,
9730                                                     false);
9731
9732  //   An implicitly-declared move assignment operator is an inline public
9733  //   member of its class.
9734  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9735  SourceLocation ClassLoc = ClassDecl->getLocation();
9736  DeclarationNameInfo NameInfo(Name, ClassLoc);
9737  CXXMethodDecl *MoveAssignment =
9738      CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9739                            /*TInfo=*/0, /*StorageClass=*/SC_None,
9740                            /*isInline=*/true, Constexpr, SourceLocation());
9741  MoveAssignment->setAccess(AS_public);
9742  MoveAssignment->setDefaulted();
9743  MoveAssignment->setImplicit();
9744
9745  // Build an exception specification pointing back at this member.
9746  FunctionProtoType::ExtProtoInfo EPI =
9747      getImplicitMethodEPI(*this, MoveAssignment);
9748  MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9749
9750  // Add the parameter to the operator.
9751  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9752                                               ClassLoc, ClassLoc, /*Id=*/0,
9753                                               ArgType, /*TInfo=*/0,
9754                                               SC_None, 0);
9755  MoveAssignment->setParams(FromParam);
9756
9757  AddOverriddenMethods(ClassDecl, MoveAssignment);
9758
9759  MoveAssignment->setTrivial(
9760    ClassDecl->needsOverloadResolutionForMoveAssignment()
9761      ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9762      : ClassDecl->hasTrivialMoveAssignment());
9763
9764  // C++0x [class.copy]p9:
9765  //   If the definition of a class X does not explicitly declare a move
9766  //   assignment operator, one will be implicitly declared as defaulted if and
9767  //   only if:
9768  //   [...]
9769  //   - the move assignment operator would not be implicitly defined as
9770  //     deleted.
9771  if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9772    // Cache this result so that we don't try to generate this over and over
9773    // on every lookup, leaking memory and wasting time.
9774    ClassDecl->setFailedImplicitMoveAssignment();
9775    return 0;
9776  }
9777
9778  // Note that we have added this copy-assignment operator.
9779  ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9780
9781  if (Scope *S = getScopeForContext(ClassDecl))
9782    PushOnScopeChains(MoveAssignment, S, false);
9783  ClassDecl->addDecl(MoveAssignment);
9784
9785  return MoveAssignment;
9786}
9787
9788void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
9789                                        CXXMethodDecl *MoveAssignOperator) {
9790  assert((MoveAssignOperator->isDefaulted() &&
9791          MoveAssignOperator->isOverloadedOperator() &&
9792          MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
9793          !MoveAssignOperator->doesThisDeclarationHaveABody() &&
9794          !MoveAssignOperator->isDeleted()) &&
9795         "DefineImplicitMoveAssignment called for wrong function");
9796
9797  CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
9798
9799  if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
9800    MoveAssignOperator->setInvalidDecl();
9801    return;
9802  }
9803
9804  MoveAssignOperator->markUsed(Context);
9805
9806  SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
9807  DiagnosticErrorTrap Trap(Diags);
9808
9809  // C++0x [class.copy]p28:
9810  //   The implicitly-defined or move assignment operator for a non-union class
9811  //   X performs memberwise move assignment of its subobjects. The direct base
9812  //   classes of X are assigned first, in the order of their declaration in the
9813  //   base-specifier-list, and then the immediate non-static data members of X
9814  //   are assigned, in the order in which they were declared in the class
9815  //   definition.
9816
9817  // The statements that form the synthesized function body.
9818  SmallVector<Stmt*, 8> Statements;
9819
9820  // The parameter for the "other" object, which we are move from.
9821  ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
9822  QualType OtherRefType = Other->getType()->
9823      getAs<RValueReferenceType>()->getPointeeType();
9824  assert(!OtherRefType.getQualifiers() &&
9825         "Bad argument type of defaulted move assignment");
9826
9827  // Our location for everything implicitly-generated.
9828  SourceLocation Loc = MoveAssignOperator->getLocation();
9829
9830  // Builds a reference to the "other" object.
9831  RefBuilder OtherRef(Other, OtherRefType);
9832  // Cast to rvalue.
9833  MoveCastBuilder MoveOther(OtherRef);
9834
9835  // Builds the "this" pointer.
9836  ThisBuilder This;
9837
9838  // Assign base classes.
9839  bool Invalid = false;
9840  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
9841       E = ClassDecl->bases_end(); Base != E; ++Base) {
9842    // Form the assignment:
9843    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
9844    QualType BaseType = Base->getType().getUnqualifiedType();
9845    if (!BaseType->isRecordType()) {
9846      Invalid = true;
9847      continue;
9848    }
9849
9850    CXXCastPath BasePath;
9851    BasePath.push_back(Base);
9852
9853    // Construct the "from" expression, which is an implicit cast to the
9854    // appropriately-qualified base type.
9855    CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
9856
9857    // Dereference "this".
9858    DerefBuilder DerefThis(This);
9859
9860    // Implicitly cast "this" to the appropriately-qualified base type.
9861    CastBuilder To(DerefThis,
9862                   Context.getCVRQualifiedType(
9863                       BaseType, MoveAssignOperator->getTypeQualifiers()),
9864                   VK_LValue, BasePath);
9865
9866    // Build the move.
9867    StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
9868                                            To, From,
9869                                            /*CopyingBaseSubobject=*/true,
9870                                            /*Copying=*/false);
9871    if (Move.isInvalid()) {
9872      Diag(CurrentLocation, diag::note_member_synthesized_at)
9873        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9874      MoveAssignOperator->setInvalidDecl();
9875      return;
9876    }
9877
9878    // Success! Record the move.
9879    Statements.push_back(Move.takeAs<Expr>());
9880  }
9881
9882  // Assign non-static members.
9883  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
9884                                  FieldEnd = ClassDecl->field_end();
9885       Field != FieldEnd; ++Field) {
9886    if (Field->isUnnamedBitfield())
9887      continue;
9888
9889    if (Field->isInvalidDecl()) {
9890      Invalid = true;
9891      continue;
9892    }
9893
9894    // Check for members of reference type; we can't move those.
9895    if (Field->getType()->isReferenceType()) {
9896      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9897        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9898      Diag(Field->getLocation(), diag::note_declared_at);
9899      Diag(CurrentLocation, diag::note_member_synthesized_at)
9900        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9901      Invalid = true;
9902      continue;
9903    }
9904
9905    // Check for members of const-qualified, non-class type.
9906    QualType BaseType = Context.getBaseElementType(Field->getType());
9907    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9908      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9909        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9910      Diag(Field->getLocation(), diag::note_declared_at);
9911      Diag(CurrentLocation, diag::note_member_synthesized_at)
9912        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9913      Invalid = true;
9914      continue;
9915    }
9916
9917    // Suppress assigning zero-width bitfields.
9918    if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9919      continue;
9920
9921    QualType FieldType = Field->getType().getNonReferenceType();
9922    if (FieldType->isIncompleteArrayType()) {
9923      assert(ClassDecl->hasFlexibleArrayMember() &&
9924             "Incomplete array type is not valid");
9925      continue;
9926    }
9927
9928    // Build references to the field in the object we're copying from and to.
9929    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9930                              LookupMemberName);
9931    MemberLookup.addDecl(*Field);
9932    MemberLookup.resolveKind();
9933    MemberBuilder From(MoveOther, OtherRefType,
9934                       /*IsArrow=*/false, MemberLookup);
9935    MemberBuilder To(This, getCurrentThisType(),
9936                     /*IsArrow=*/true, MemberLookup);
9937
9938    assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
9939        "Member reference with rvalue base must be rvalue except for reference "
9940        "members, which aren't allowed for move assignment.");
9941
9942    // Build the move of this field.
9943    StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
9944                                            To, From,
9945                                            /*CopyingBaseSubobject=*/false,
9946                                            /*Copying=*/false);
9947    if (Move.isInvalid()) {
9948      Diag(CurrentLocation, diag::note_member_synthesized_at)
9949        << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9950      MoveAssignOperator->setInvalidDecl();
9951      return;
9952    }
9953
9954    // Success! Record the copy.
9955    Statements.push_back(Move.takeAs<Stmt>());
9956  }
9957
9958  if (!Invalid) {
9959    // Add a "return *this;"
9960    ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
9961
9962    StmtResult Return = ActOnReturnStmt(Loc, ThisObj.get());
9963    if (Return.isInvalid())
9964      Invalid = true;
9965    else {
9966      Statements.push_back(Return.takeAs<Stmt>());
9967
9968      if (Trap.hasErrorOccurred()) {
9969        Diag(CurrentLocation, diag::note_member_synthesized_at)
9970          << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
9971        Invalid = true;
9972      }
9973    }
9974  }
9975
9976  if (Invalid) {
9977    MoveAssignOperator->setInvalidDecl();
9978    return;
9979  }
9980
9981  StmtResult Body;
9982  {
9983    CompoundScopeRAII CompoundScope(*this);
9984    Body = ActOnCompoundStmt(Loc, Loc, Statements,
9985                             /*isStmtExpr=*/false);
9986    assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9987  }
9988  MoveAssignOperator->setBody(Body.takeAs<Stmt>());
9989
9990  if (ASTMutationListener *L = getASTMutationListener()) {
9991    L->CompletedImplicitDefinition(MoveAssignOperator);
9992  }
9993}
9994
9995Sema::ImplicitExceptionSpecification
9996Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
9997  CXXRecordDecl *ClassDecl = MD->getParent();
9998
9999  ImplicitExceptionSpecification ExceptSpec(*this);
10000  if (ClassDecl->isInvalidDecl())
10001    return ExceptSpec;
10002
10003  const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
10004  assert(T->getNumArgs() >= 1 && "not a copy ctor");
10005  unsigned Quals = T->getArgType(0).getNonReferenceType().getCVRQualifiers();
10006
10007  // C++ [except.spec]p14:
10008  //   An implicitly declared special member function (Clause 12) shall have an
10009  //   exception-specification. [...]
10010  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
10011                                       BaseEnd = ClassDecl->bases_end();
10012       Base != BaseEnd;
10013       ++Base) {
10014    // Virtual bases are handled below.
10015    if (Base->isVirtual())
10016      continue;
10017
10018    CXXRecordDecl *BaseClassDecl
10019      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
10020    if (CXXConstructorDecl *CopyConstructor =
10021          LookupCopyingConstructor(BaseClassDecl, Quals))
10022      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
10023  }
10024  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->vbases_begin(),
10025                                       BaseEnd = ClassDecl->vbases_end();
10026       Base != BaseEnd;
10027       ++Base) {
10028    CXXRecordDecl *BaseClassDecl
10029      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
10030    if (CXXConstructorDecl *CopyConstructor =
10031          LookupCopyingConstructor(BaseClassDecl, Quals))
10032      ExceptSpec.CalledDecl(Base->getLocStart(), CopyConstructor);
10033  }
10034  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
10035                                  FieldEnd = ClassDecl->field_end();
10036       Field != FieldEnd;
10037       ++Field) {
10038    QualType FieldType = Context.getBaseElementType(Field->getType());
10039    if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10040      if (CXXConstructorDecl *CopyConstructor =
10041              LookupCopyingConstructor(FieldClassDecl,
10042                                       Quals | FieldType.getCVRQualifiers()))
10043      ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
10044    }
10045  }
10046
10047  return ExceptSpec;
10048}
10049
10050CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10051                                                    CXXRecordDecl *ClassDecl) {
10052  // C++ [class.copy]p4:
10053  //   If the class definition does not explicitly declare a copy
10054  //   constructor, one is declared implicitly.
10055  assert(ClassDecl->needsImplicitCopyConstructor());
10056
10057  DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10058  if (DSM.isAlreadyBeingDeclared())
10059    return 0;
10060
10061  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10062  QualType ArgType = ClassType;
10063  bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10064  if (Const)
10065    ArgType = ArgType.withConst();
10066  ArgType = Context.getLValueReferenceType(ArgType);
10067
10068  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10069                                                     CXXCopyConstructor,
10070                                                     Const);
10071
10072  DeclarationName Name
10073    = Context.DeclarationNames.getCXXConstructorName(
10074                                           Context.getCanonicalType(ClassType));
10075  SourceLocation ClassLoc = ClassDecl->getLocation();
10076  DeclarationNameInfo NameInfo(Name, ClassLoc);
10077
10078  //   An implicitly-declared copy constructor is an inline public
10079  //   member of its class.
10080  CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10081      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
10082      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10083      Constexpr);
10084  CopyConstructor->setAccess(AS_public);
10085  CopyConstructor->setDefaulted();
10086
10087  // Build an exception specification pointing back at this member.
10088  FunctionProtoType::ExtProtoInfo EPI =
10089      getImplicitMethodEPI(*this, CopyConstructor);
10090  CopyConstructor->setType(
10091      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10092
10093  // Add the parameter to the constructor.
10094  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10095                                               ClassLoc, ClassLoc,
10096                                               /*IdentifierInfo=*/0,
10097                                               ArgType, /*TInfo=*/0,
10098                                               SC_None, 0);
10099  CopyConstructor->setParams(FromParam);
10100
10101  CopyConstructor->setTrivial(
10102    ClassDecl->needsOverloadResolutionForCopyConstructor()
10103      ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10104      : ClassDecl->hasTrivialCopyConstructor());
10105
10106  // C++11 [class.copy]p8:
10107  //   ... If the class definition does not explicitly declare a copy
10108  //   constructor, there is no user-declared move constructor, and there is no
10109  //   user-declared move assignment operator, a copy constructor is implicitly
10110  //   declared as defaulted.
10111  if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10112    SetDeclDeleted(CopyConstructor, ClassLoc);
10113
10114  // Note that we have declared this constructor.
10115  ++ASTContext::NumImplicitCopyConstructorsDeclared;
10116
10117  if (Scope *S = getScopeForContext(ClassDecl))
10118    PushOnScopeChains(CopyConstructor, S, false);
10119  ClassDecl->addDecl(CopyConstructor);
10120
10121  return CopyConstructor;
10122}
10123
10124void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10125                                   CXXConstructorDecl *CopyConstructor) {
10126  assert((CopyConstructor->isDefaulted() &&
10127          CopyConstructor->isCopyConstructor() &&
10128          !CopyConstructor->doesThisDeclarationHaveABody() &&
10129          !CopyConstructor->isDeleted()) &&
10130         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10131
10132  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10133  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10134
10135  // C++11 [class.copy]p7:
10136  //   The [definition of an implicitly declared copy constructor] is
10137  //   deprecated if the class has a user-declared copy assignment operator
10138  //   or a user-declared destructor.
10139  if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10140    diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10141
10142  SynthesizedFunctionScope Scope(*this, CopyConstructor);
10143  DiagnosticErrorTrap Trap(Diags);
10144
10145  if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10146      Trap.hasErrorOccurred()) {
10147    Diag(CurrentLocation, diag::note_member_synthesized_at)
10148      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10149    CopyConstructor->setInvalidDecl();
10150  }  else {
10151    Sema::CompoundScopeRAII CompoundScope(*this);
10152    CopyConstructor->setBody(ActOnCompoundStmt(
10153        CopyConstructor->getLocation(), CopyConstructor->getLocation(), None,
10154        /*isStmtExpr=*/ false).takeAs<Stmt>());
10155  }
10156
10157  CopyConstructor->markUsed(Context);
10158  if (ASTMutationListener *L = getASTMutationListener()) {
10159    L->CompletedImplicitDefinition(CopyConstructor);
10160  }
10161}
10162
10163Sema::ImplicitExceptionSpecification
10164Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10165  CXXRecordDecl *ClassDecl = MD->getParent();
10166
10167  // C++ [except.spec]p14:
10168  //   An implicitly declared special member function (Clause 12) shall have an
10169  //   exception-specification. [...]
10170  ImplicitExceptionSpecification ExceptSpec(*this);
10171  if (ClassDecl->isInvalidDecl())
10172    return ExceptSpec;
10173
10174  // Direct base-class constructors.
10175  for (CXXRecordDecl::base_class_iterator B = ClassDecl->bases_begin(),
10176                                       BEnd = ClassDecl->bases_end();
10177       B != BEnd; ++B) {
10178    if (B->isVirtual()) // Handled below.
10179      continue;
10180
10181    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
10182      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10183      CXXConstructorDecl *Constructor =
10184          LookupMovingConstructor(BaseClassDecl, 0);
10185      // If this is a deleted function, add it anyway. This might be conformant
10186      // with the standard. This might not. I'm not sure. It might not matter.
10187      if (Constructor)
10188        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
10189    }
10190  }
10191
10192  // Virtual base-class constructors.
10193  for (CXXRecordDecl::base_class_iterator B = ClassDecl->vbases_begin(),
10194                                       BEnd = ClassDecl->vbases_end();
10195       B != BEnd; ++B) {
10196    if (const RecordType *BaseType = B->getType()->getAs<RecordType>()) {
10197      CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10198      CXXConstructorDecl *Constructor =
10199          LookupMovingConstructor(BaseClassDecl, 0);
10200      // If this is a deleted function, add it anyway. This might be conformant
10201      // with the standard. This might not. I'm not sure. It might not matter.
10202      if (Constructor)
10203        ExceptSpec.CalledDecl(B->getLocStart(), Constructor);
10204    }
10205  }
10206
10207  // Field constructors.
10208  for (RecordDecl::field_iterator F = ClassDecl->field_begin(),
10209                               FEnd = ClassDecl->field_end();
10210       F != FEnd; ++F) {
10211    QualType FieldType = Context.getBaseElementType(F->getType());
10212    if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
10213      CXXConstructorDecl *Constructor =
10214          LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
10215      // If this is a deleted function, add it anyway. This might be conformant
10216      // with the standard. This might not. I'm not sure. It might not matter.
10217      // In particular, the problem is that this function never gets called. It
10218      // might just be ill-formed because this function attempts to refer to
10219      // a deleted function here.
10220      if (Constructor)
10221        ExceptSpec.CalledDecl(F->getLocation(), Constructor);
10222    }
10223  }
10224
10225  return ExceptSpec;
10226}
10227
10228CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
10229                                                    CXXRecordDecl *ClassDecl) {
10230  // C++11 [class.copy]p9:
10231  //   If the definition of a class X does not explicitly declare a move
10232  //   constructor, one will be implicitly declared as defaulted if and only if:
10233  //
10234  //   - [first 4 bullets]
10235  assert(ClassDecl->needsImplicitMoveConstructor());
10236
10237  DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
10238  if (DSM.isAlreadyBeingDeclared())
10239    return 0;
10240
10241  // [Checked after we build the declaration]
10242  //   - the move assignment operator would not be implicitly defined as
10243  //     deleted,
10244
10245  // [DR1402]:
10246  //   - each of X's non-static data members and direct or virtual base classes
10247  //     has a type that either has a move constructor or is trivially copyable.
10248  if (!subobjectsHaveMoveOrTrivialCopy(*this, ClassDecl, /*Constructor*/true)) {
10249    ClassDecl->setFailedImplicitMoveConstructor();
10250    return 0;
10251  }
10252
10253  QualType ClassType = Context.getTypeDeclType(ClassDecl);
10254  QualType ArgType = Context.getRValueReferenceType(ClassType);
10255
10256  bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10257                                                     CXXMoveConstructor,
10258                                                     false);
10259
10260  DeclarationName Name
10261    = Context.DeclarationNames.getCXXConstructorName(
10262                                           Context.getCanonicalType(ClassType));
10263  SourceLocation ClassLoc = ClassDecl->getLocation();
10264  DeclarationNameInfo NameInfo(Name, ClassLoc);
10265
10266  // C++11 [class.copy]p11:
10267  //   An implicitly-declared copy/move constructor is an inline public
10268  //   member of its class.
10269  CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
10270      Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/0,
10271      /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10272      Constexpr);
10273  MoveConstructor->setAccess(AS_public);
10274  MoveConstructor->setDefaulted();
10275
10276  // Build an exception specification pointing back at this member.
10277  FunctionProtoType::ExtProtoInfo EPI =
10278      getImplicitMethodEPI(*this, MoveConstructor);
10279  MoveConstructor->setType(
10280      Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10281
10282  // Add the parameter to the constructor.
10283  ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
10284                                               ClassLoc, ClassLoc,
10285                                               /*IdentifierInfo=*/0,
10286                                               ArgType, /*TInfo=*/0,
10287                                               SC_None, 0);
10288  MoveConstructor->setParams(FromParam);
10289
10290  MoveConstructor->setTrivial(
10291    ClassDecl->needsOverloadResolutionForMoveConstructor()
10292      ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
10293      : ClassDecl->hasTrivialMoveConstructor());
10294
10295  // C++0x [class.copy]p9:
10296  //   If the definition of a class X does not explicitly declare a move
10297  //   constructor, one will be implicitly declared as defaulted if and only if:
10298  //   [...]
10299  //   - the move constructor would not be implicitly defined as deleted.
10300  if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
10301    // Cache this result so that we don't try to generate this over and over
10302    // on every lookup, leaking memory and wasting time.
10303    ClassDecl->setFailedImplicitMoveConstructor();
10304    return 0;
10305  }
10306
10307  // Note that we have declared this constructor.
10308  ++ASTContext::NumImplicitMoveConstructorsDeclared;
10309
10310  if (Scope *S = getScopeForContext(ClassDecl))
10311    PushOnScopeChains(MoveConstructor, S, false);
10312  ClassDecl->addDecl(MoveConstructor);
10313
10314  return MoveConstructor;
10315}
10316
10317void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
10318                                   CXXConstructorDecl *MoveConstructor) {
10319  assert((MoveConstructor->isDefaulted() &&
10320          MoveConstructor->isMoveConstructor() &&
10321          !MoveConstructor->doesThisDeclarationHaveABody() &&
10322          !MoveConstructor->isDeleted()) &&
10323         "DefineImplicitMoveConstructor - call it for implicit move ctor");
10324
10325  CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
10326  assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
10327
10328  SynthesizedFunctionScope Scope(*this, MoveConstructor);
10329  DiagnosticErrorTrap Trap(Diags);
10330
10331  if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
10332      Trap.hasErrorOccurred()) {
10333    Diag(CurrentLocation, diag::note_member_synthesized_at)
10334      << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
10335    MoveConstructor->setInvalidDecl();
10336  }  else {
10337    Sema::CompoundScopeRAII CompoundScope(*this);
10338    MoveConstructor->setBody(ActOnCompoundStmt(
10339        MoveConstructor->getLocation(), MoveConstructor->getLocation(), None,
10340        /*isStmtExpr=*/ false).takeAs<Stmt>());
10341  }
10342
10343  MoveConstructor->markUsed(Context);
10344
10345  if (ASTMutationListener *L = getASTMutationListener()) {
10346    L->CompletedImplicitDefinition(MoveConstructor);
10347  }
10348}
10349
10350bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10351  return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10352}
10353
10354/// \brief Mark the call operator of the given lambda closure type as "used".
10355static void markLambdaCallOperatorUsed(Sema &S, CXXRecordDecl *Lambda) {
10356  CXXMethodDecl *CallOperator
10357    = cast<CXXMethodDecl>(
10358        Lambda->lookup(
10359          S.Context.DeclarationNames.getCXXOperatorName(OO_Call)).front());
10360  CallOperator->setReferenced();
10361  CallOperator->markUsed(S.Context);
10362}
10363
10364void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10365       SourceLocation CurrentLocation,
10366       CXXConversionDecl *Conv)
10367{
10368  CXXRecordDecl *LambdaClass = Conv->getParent();
10369
10370  // Make sure that the lambda call operator is marked used.
10371  markLambdaCallOperatorUsed(*this, LambdaClass);
10372
10373  Conv->markUsed(Context);
10374
10375  SynthesizedFunctionScope Scope(*this, Conv);
10376  DiagnosticErrorTrap Trap(Diags);
10377
10378  // Return the address of the __invoke function.
10379
10380  CXXMethodDecl *Invoke = LambdaClass->getLambdaStaticInvoker();
10381  Expr *FunctionRef = BuildDeclRefExpr(Invoke, Invoke->getType(),
10382                                       VK_LValue, Conv->getLocation()).take();
10383  assert(FunctionRef && "Can't refer to lambda static invoker function?");
10384  Stmt *Return = ActOnReturnStmt(Conv->getLocation(), FunctionRef).take();
10385  Conv->setBody(new (Context) CompoundStmt(Context, Return,
10386                                           Conv->getLocation(),
10387                                           Conv->getLocation()));
10388
10389  // Fill in the static invoker function with a dummy implementation.
10390  // IR generation will fill in the actual details.
10391  Invoke->markUsed(Context);
10392  Invoke->setReferenced();
10393  Invoke->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10394
10395  if (ASTMutationListener *L = getASTMutationListener()) {
10396    L->CompletedImplicitDefinition(Conv);
10397    L->CompletedImplicitDefinition(Invoke);
10398  }
10399}
10400
10401void Sema::DefineImplicitLambdaToBlockPointerConversion(
10402       SourceLocation CurrentLocation,
10403       CXXConversionDecl *Conv)
10404{
10405  Conv->markUsed(Context);
10406
10407  SynthesizedFunctionScope Scope(*this, Conv);
10408  DiagnosticErrorTrap Trap(Diags);
10409
10410  // Copy-initialize the lambda object as needed to capture it.
10411  Expr *This = ActOnCXXThis(CurrentLocation).take();
10412  Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).take();
10413
10414  ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10415                                                        Conv->getLocation(),
10416                                                        Conv, DerefThis);
10417
10418  // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10419  // behavior.  Note that only the general conversion function does this
10420  // (since it's unusable otherwise); in the case where we inline the
10421  // block literal, it has block literal lifetime semantics.
10422  if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10423    BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10424                                          CK_CopyAndAutoreleaseBlockObject,
10425                                          BuildBlock.get(), 0, VK_RValue);
10426
10427  if (BuildBlock.isInvalid()) {
10428    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10429    Conv->setInvalidDecl();
10430    return;
10431  }
10432
10433  // Create the return statement that returns the block from the conversion
10434  // function.
10435  StmtResult Return = ActOnReturnStmt(Conv->getLocation(), BuildBlock.get());
10436  if (Return.isInvalid()) {
10437    Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10438    Conv->setInvalidDecl();
10439    return;
10440  }
10441
10442  // Set the body of the conversion function.
10443  Stmt *ReturnS = Return.take();
10444  Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10445                                           Conv->getLocation(),
10446                                           Conv->getLocation()));
10447
10448  // We're done; notify the mutation listener, if any.
10449  if (ASTMutationListener *L = getASTMutationListener()) {
10450    L->CompletedImplicitDefinition(Conv);
10451  }
10452}
10453
10454/// \brief Determine whether the given list arguments contains exactly one
10455/// "real" (non-default) argument.
10456static bool hasOneRealArgument(MultiExprArg Args) {
10457  switch (Args.size()) {
10458  case 0:
10459    return false;
10460
10461  default:
10462    if (!Args[1]->isDefaultArgument())
10463      return false;
10464
10465    // fall through
10466  case 1:
10467    return !Args[0]->isDefaultArgument();
10468  }
10469
10470  return false;
10471}
10472
10473ExprResult
10474Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10475                            CXXConstructorDecl *Constructor,
10476                            MultiExprArg ExprArgs,
10477                            bool HadMultipleCandidates,
10478                            bool IsListInitialization,
10479                            bool RequiresZeroInit,
10480                            unsigned ConstructKind,
10481                            SourceRange ParenRange) {
10482  bool Elidable = false;
10483
10484  // C++0x [class.copy]p34:
10485  //   When certain criteria are met, an implementation is allowed to
10486  //   omit the copy/move construction of a class object, even if the
10487  //   copy/move constructor and/or destructor for the object have
10488  //   side effects. [...]
10489  //     - when a temporary class object that has not been bound to a
10490  //       reference (12.2) would be copied/moved to a class object
10491  //       with the same cv-unqualified type, the copy/move operation
10492  //       can be omitted by constructing the temporary object
10493  //       directly into the target of the omitted copy/move
10494  if (ConstructKind == CXXConstructExpr::CK_Complete &&
10495      Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10496    Expr *SubExpr = ExprArgs[0];
10497    Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10498  }
10499
10500  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10501                               Elidable, ExprArgs, HadMultipleCandidates,
10502                               IsListInitialization, RequiresZeroInit,
10503                               ConstructKind, ParenRange);
10504}
10505
10506/// BuildCXXConstructExpr - Creates a complete call to a constructor,
10507/// including handling of its default argument expressions.
10508ExprResult
10509Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10510                            CXXConstructorDecl *Constructor, bool Elidable,
10511                            MultiExprArg ExprArgs,
10512                            bool HadMultipleCandidates,
10513                            bool IsListInitialization,
10514                            bool RequiresZeroInit,
10515                            unsigned ConstructKind,
10516                            SourceRange ParenRange) {
10517  MarkFunctionReferenced(ConstructLoc, Constructor);
10518  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
10519                                        Constructor, Elidable, ExprArgs,
10520                                        HadMultipleCandidates,
10521                                        IsListInitialization, RequiresZeroInit,
10522              static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10523                                        ParenRange));
10524}
10525
10526void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10527  if (VD->isInvalidDecl()) return;
10528
10529  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10530  if (ClassDecl->isInvalidDecl()) return;
10531  if (ClassDecl->hasIrrelevantDestructor()) return;
10532  if (ClassDecl->isDependentContext()) return;
10533
10534  CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10535  MarkFunctionReferenced(VD->getLocation(), Destructor);
10536  CheckDestructorAccess(VD->getLocation(), Destructor,
10537                        PDiag(diag::err_access_dtor_var)
10538                        << VD->getDeclName()
10539                        << VD->getType());
10540  DiagnoseUseOfDecl(Destructor, VD->getLocation());
10541
10542  if (!VD->hasGlobalStorage()) return;
10543
10544  // Emit warning for non-trivial dtor in global scope (a real global,
10545  // class-static, function-static).
10546  Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10547
10548  // TODO: this should be re-enabled for static locals by !CXAAtExit
10549  if (!VD->isStaticLocal())
10550    Diag(VD->getLocation(), diag::warn_global_destructor);
10551}
10552
10553/// \brief Given a constructor and the set of arguments provided for the
10554/// constructor, convert the arguments and add any required default arguments
10555/// to form a proper call to this constructor.
10556///
10557/// \returns true if an error occurred, false otherwise.
10558bool
10559Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10560                              MultiExprArg ArgsPtr,
10561                              SourceLocation Loc,
10562                              SmallVectorImpl<Expr*> &ConvertedArgs,
10563                              bool AllowExplicit,
10564                              bool IsListInitialization) {
10565  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10566  unsigned NumArgs = ArgsPtr.size();
10567  Expr **Args = ArgsPtr.data();
10568
10569  const FunctionProtoType *Proto
10570    = Constructor->getType()->getAs<FunctionProtoType>();
10571  assert(Proto && "Constructor without a prototype?");
10572  unsigned NumArgsInProto = Proto->getNumArgs();
10573
10574  // If too few arguments are available, we'll fill in the rest with defaults.
10575  if (NumArgs < NumArgsInProto)
10576    ConvertedArgs.reserve(NumArgsInProto);
10577  else
10578    ConvertedArgs.reserve(NumArgs);
10579
10580  VariadicCallType CallType =
10581    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10582  SmallVector<Expr *, 8> AllArgs;
10583  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10584                                        Proto, 0,
10585                                        llvm::makeArrayRef(Args, NumArgs),
10586                                        AllArgs,
10587                                        CallType, AllowExplicit,
10588                                        IsListInitialization);
10589  ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10590
10591  DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10592
10593  CheckConstructorCall(Constructor,
10594                       llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10595                                                        AllArgs.size()),
10596                       Proto, Loc);
10597
10598  return Invalid;
10599}
10600
10601static inline bool
10602CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10603                                       const FunctionDecl *FnDecl) {
10604  const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10605  if (isa<NamespaceDecl>(DC)) {
10606    return SemaRef.Diag(FnDecl->getLocation(),
10607                        diag::err_operator_new_delete_declared_in_namespace)
10608      << FnDecl->getDeclName();
10609  }
10610
10611  if (isa<TranslationUnitDecl>(DC) &&
10612      FnDecl->getStorageClass() == SC_Static) {
10613    return SemaRef.Diag(FnDecl->getLocation(),
10614                        diag::err_operator_new_delete_declared_static)
10615      << FnDecl->getDeclName();
10616  }
10617
10618  return false;
10619}
10620
10621static inline bool
10622CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10623                            CanQualType ExpectedResultType,
10624                            CanQualType ExpectedFirstParamType,
10625                            unsigned DependentParamTypeDiag,
10626                            unsigned InvalidParamTypeDiag) {
10627  QualType ResultType =
10628    FnDecl->getType()->getAs<FunctionType>()->getResultType();
10629
10630  // Check that the result type is not dependent.
10631  if (ResultType->isDependentType())
10632    return SemaRef.Diag(FnDecl->getLocation(),
10633                        diag::err_operator_new_delete_dependent_result_type)
10634    << FnDecl->getDeclName() << ExpectedResultType;
10635
10636  // Check that the result type is what we expect.
10637  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10638    return SemaRef.Diag(FnDecl->getLocation(),
10639                        diag::err_operator_new_delete_invalid_result_type)
10640    << FnDecl->getDeclName() << ExpectedResultType;
10641
10642  // A function template must have at least 2 parameters.
10643  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10644    return SemaRef.Diag(FnDecl->getLocation(),
10645                      diag::err_operator_new_delete_template_too_few_parameters)
10646        << FnDecl->getDeclName();
10647
10648  // The function decl must have at least 1 parameter.
10649  if (FnDecl->getNumParams() == 0)
10650    return SemaRef.Diag(FnDecl->getLocation(),
10651                        diag::err_operator_new_delete_too_few_parameters)
10652      << FnDecl->getDeclName();
10653
10654  // Check the first parameter type is not dependent.
10655  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10656  if (FirstParamType->isDependentType())
10657    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10658      << FnDecl->getDeclName() << ExpectedFirstParamType;
10659
10660  // Check that the first parameter type is what we expect.
10661  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10662      ExpectedFirstParamType)
10663    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10664    << FnDecl->getDeclName() << ExpectedFirstParamType;
10665
10666  return false;
10667}
10668
10669static bool
10670CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10671  // C++ [basic.stc.dynamic.allocation]p1:
10672  //   A program is ill-formed if an allocation function is declared in a
10673  //   namespace scope other than global scope or declared static in global
10674  //   scope.
10675  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10676    return true;
10677
10678  CanQualType SizeTy =
10679    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10680
10681  // C++ [basic.stc.dynamic.allocation]p1:
10682  //  The return type shall be void*. The first parameter shall have type
10683  //  std::size_t.
10684  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10685                                  SizeTy,
10686                                  diag::err_operator_new_dependent_param_type,
10687                                  diag::err_operator_new_param_type))
10688    return true;
10689
10690  // C++ [basic.stc.dynamic.allocation]p1:
10691  //  The first parameter shall not have an associated default argument.
10692  if (FnDecl->getParamDecl(0)->hasDefaultArg())
10693    return SemaRef.Diag(FnDecl->getLocation(),
10694                        diag::err_operator_new_default_arg)
10695      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10696
10697  return false;
10698}
10699
10700static bool
10701CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10702  // C++ [basic.stc.dynamic.deallocation]p1:
10703  //   A program is ill-formed if deallocation functions are declared in a
10704  //   namespace scope other than global scope or declared static in global
10705  //   scope.
10706  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10707    return true;
10708
10709  // C++ [basic.stc.dynamic.deallocation]p2:
10710  //   Each deallocation function shall return void and its first parameter
10711  //   shall be void*.
10712  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10713                                  SemaRef.Context.VoidPtrTy,
10714                                 diag::err_operator_delete_dependent_param_type,
10715                                 diag::err_operator_delete_param_type))
10716    return true;
10717
10718  return false;
10719}
10720
10721/// CheckOverloadedOperatorDeclaration - Check whether the declaration
10722/// of this overloaded operator is well-formed. If so, returns false;
10723/// otherwise, emits appropriate diagnostics and returns true.
10724bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10725  assert(FnDecl && FnDecl->isOverloadedOperator() &&
10726         "Expected an overloaded operator declaration");
10727
10728  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10729
10730  // C++ [over.oper]p5:
10731  //   The allocation and deallocation functions, operator new,
10732  //   operator new[], operator delete and operator delete[], are
10733  //   described completely in 3.7.3. The attributes and restrictions
10734  //   found in the rest of this subclause do not apply to them unless
10735  //   explicitly stated in 3.7.3.
10736  if (Op == OO_Delete || Op == OO_Array_Delete)
10737    return CheckOperatorDeleteDeclaration(*this, FnDecl);
10738
10739  if (Op == OO_New || Op == OO_Array_New)
10740    return CheckOperatorNewDeclaration(*this, FnDecl);
10741
10742  // C++ [over.oper]p6:
10743  //   An operator function shall either be a non-static member
10744  //   function or be a non-member function and have at least one
10745  //   parameter whose type is a class, a reference to a class, an
10746  //   enumeration, or a reference to an enumeration.
10747  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10748    if (MethodDecl->isStatic())
10749      return Diag(FnDecl->getLocation(),
10750                  diag::err_operator_overload_static) << FnDecl->getDeclName();
10751  } else {
10752    bool ClassOrEnumParam = false;
10753    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10754                                   ParamEnd = FnDecl->param_end();
10755         Param != ParamEnd; ++Param) {
10756      QualType ParamType = (*Param)->getType().getNonReferenceType();
10757      if (ParamType->isDependentType() || ParamType->isRecordType() ||
10758          ParamType->isEnumeralType()) {
10759        ClassOrEnumParam = true;
10760        break;
10761      }
10762    }
10763
10764    if (!ClassOrEnumParam)
10765      return Diag(FnDecl->getLocation(),
10766                  diag::err_operator_overload_needs_class_or_enum)
10767        << FnDecl->getDeclName();
10768  }
10769
10770  // C++ [over.oper]p8:
10771  //   An operator function cannot have default arguments (8.3.6),
10772  //   except where explicitly stated below.
10773  //
10774  // Only the function-call operator allows default arguments
10775  // (C++ [over.call]p1).
10776  if (Op != OO_Call) {
10777    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
10778         Param != FnDecl->param_end(); ++Param) {
10779      if ((*Param)->hasDefaultArg())
10780        return Diag((*Param)->getLocation(),
10781                    diag::err_operator_overload_default_arg)
10782          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
10783    }
10784  }
10785
10786  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
10787    { false, false, false }
10788#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
10789    , { Unary, Binary, MemberOnly }
10790#include "clang/Basic/OperatorKinds.def"
10791  };
10792
10793  bool CanBeUnaryOperator = OperatorUses[Op][0];
10794  bool CanBeBinaryOperator = OperatorUses[Op][1];
10795  bool MustBeMemberOperator = OperatorUses[Op][2];
10796
10797  // C++ [over.oper]p8:
10798  //   [...] Operator functions cannot have more or fewer parameters
10799  //   than the number required for the corresponding operator, as
10800  //   described in the rest of this subclause.
10801  unsigned NumParams = FnDecl->getNumParams()
10802                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
10803  if (Op != OO_Call &&
10804      ((NumParams == 1 && !CanBeUnaryOperator) ||
10805       (NumParams == 2 && !CanBeBinaryOperator) ||
10806       (NumParams < 1) || (NumParams > 2))) {
10807    // We have the wrong number of parameters.
10808    unsigned ErrorKind;
10809    if (CanBeUnaryOperator && CanBeBinaryOperator) {
10810      ErrorKind = 2;  // 2 -> unary or binary.
10811    } else if (CanBeUnaryOperator) {
10812      ErrorKind = 0;  // 0 -> unary
10813    } else {
10814      assert(CanBeBinaryOperator &&
10815             "All non-call overloaded operators are unary or binary!");
10816      ErrorKind = 1;  // 1 -> binary
10817    }
10818
10819    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
10820      << FnDecl->getDeclName() << NumParams << ErrorKind;
10821  }
10822
10823  // Overloaded operators other than operator() cannot be variadic.
10824  if (Op != OO_Call &&
10825      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
10826    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
10827      << FnDecl->getDeclName();
10828  }
10829
10830  // Some operators must be non-static member functions.
10831  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
10832    return Diag(FnDecl->getLocation(),
10833                diag::err_operator_overload_must_be_member)
10834      << FnDecl->getDeclName();
10835  }
10836
10837  // C++ [over.inc]p1:
10838  //   The user-defined function called operator++ implements the
10839  //   prefix and postfix ++ operator. If this function is a member
10840  //   function with no parameters, or a non-member function with one
10841  //   parameter of class or enumeration type, it defines the prefix
10842  //   increment operator ++ for objects of that type. If the function
10843  //   is a member function with one parameter (which shall be of type
10844  //   int) or a non-member function with two parameters (the second
10845  //   of which shall be of type int), it defines the postfix
10846  //   increment operator ++ for objects of that type.
10847  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
10848    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
10849    bool ParamIsInt = false;
10850    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
10851      ParamIsInt = BT->getKind() == BuiltinType::Int;
10852
10853    if (!ParamIsInt)
10854      return Diag(LastParam->getLocation(),
10855                  diag::err_operator_overload_post_incdec_must_be_int)
10856        << LastParam->getType() << (Op == OO_MinusMinus);
10857  }
10858
10859  return false;
10860}
10861
10862/// CheckLiteralOperatorDeclaration - Check whether the declaration
10863/// of this literal operator function is well-formed. If so, returns
10864/// false; otherwise, emits appropriate diagnostics and returns true.
10865bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
10866  if (isa<CXXMethodDecl>(FnDecl)) {
10867    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
10868      << FnDecl->getDeclName();
10869    return true;
10870  }
10871
10872  if (FnDecl->isExternC()) {
10873    Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
10874    return true;
10875  }
10876
10877  bool Valid = false;
10878
10879  // This might be the definition of a literal operator template.
10880  FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
10881  // This might be a specialization of a literal operator template.
10882  if (!TpDecl)
10883    TpDecl = FnDecl->getPrimaryTemplate();
10884
10885  // template <char...> type operator "" name() is the only valid template
10886  // signature, and the only valid signature with no parameters.
10887  if (TpDecl) {
10888    if (FnDecl->param_size() == 0) {
10889      // Must have only one template parameter
10890      TemplateParameterList *Params = TpDecl->getTemplateParameters();
10891      if (Params->size() == 1) {
10892        NonTypeTemplateParmDecl *PmDecl =
10893          dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
10894
10895        // The template parameter must be a char parameter pack.
10896        if (PmDecl && PmDecl->isTemplateParameterPack() &&
10897            Context.hasSameType(PmDecl->getType(), Context.CharTy))
10898          Valid = true;
10899      }
10900    }
10901  } else if (FnDecl->param_size()) {
10902    // Check the first parameter
10903    FunctionDecl::param_iterator Param = FnDecl->param_begin();
10904
10905    QualType T = (*Param)->getType().getUnqualifiedType();
10906
10907    // unsigned long long int, long double, and any character type are allowed
10908    // as the only parameters.
10909    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
10910        Context.hasSameType(T, Context.LongDoubleTy) ||
10911        Context.hasSameType(T, Context.CharTy) ||
10912        Context.hasSameType(T, Context.WideCharTy) ||
10913        Context.hasSameType(T, Context.Char16Ty) ||
10914        Context.hasSameType(T, Context.Char32Ty)) {
10915      if (++Param == FnDecl->param_end())
10916        Valid = true;
10917      goto FinishedParams;
10918    }
10919
10920    // Otherwise it must be a pointer to const; let's strip those qualifiers.
10921    const PointerType *PT = T->getAs<PointerType>();
10922    if (!PT)
10923      goto FinishedParams;
10924    T = PT->getPointeeType();
10925    if (!T.isConstQualified() || T.isVolatileQualified())
10926      goto FinishedParams;
10927    T = T.getUnqualifiedType();
10928
10929    // Move on to the second parameter;
10930    ++Param;
10931
10932    // If there is no second parameter, the first must be a const char *
10933    if (Param == FnDecl->param_end()) {
10934      if (Context.hasSameType(T, Context.CharTy))
10935        Valid = true;
10936      goto FinishedParams;
10937    }
10938
10939    // const char *, const wchar_t*, const char16_t*, and const char32_t*
10940    // are allowed as the first parameter to a two-parameter function
10941    if (!(Context.hasSameType(T, Context.CharTy) ||
10942          Context.hasSameType(T, Context.WideCharTy) ||
10943          Context.hasSameType(T, Context.Char16Ty) ||
10944          Context.hasSameType(T, Context.Char32Ty)))
10945      goto FinishedParams;
10946
10947    // The second and final parameter must be an std::size_t
10948    T = (*Param)->getType().getUnqualifiedType();
10949    if (Context.hasSameType(T, Context.getSizeType()) &&
10950        ++Param == FnDecl->param_end())
10951      Valid = true;
10952  }
10953
10954  // FIXME: This diagnostic is absolutely terrible.
10955FinishedParams:
10956  if (!Valid) {
10957    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
10958      << FnDecl->getDeclName();
10959    return true;
10960  }
10961
10962  // A parameter-declaration-clause containing a default argument is not
10963  // equivalent to any of the permitted forms.
10964  for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
10965                                    ParamEnd = FnDecl->param_end();
10966       Param != ParamEnd; ++Param) {
10967    if ((*Param)->hasDefaultArg()) {
10968      Diag((*Param)->getDefaultArgRange().getBegin(),
10969           diag::err_literal_operator_default_argument)
10970        << (*Param)->getDefaultArgRange();
10971      break;
10972    }
10973  }
10974
10975  StringRef LiteralName
10976    = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
10977  if (LiteralName[0] != '_') {
10978    // C++11 [usrlit.suffix]p1:
10979    //   Literal suffix identifiers that do not start with an underscore
10980    //   are reserved for future standardization.
10981    Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
10982      << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
10983  }
10984
10985  return false;
10986}
10987
10988/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
10989/// linkage specification, including the language and (if present)
10990/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
10991/// the location of the language string literal, which is provided
10992/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
10993/// the '{' brace. Otherwise, this linkage specification does not
10994/// have any braces.
10995Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
10996                                           SourceLocation LangLoc,
10997                                           StringRef Lang,
10998                                           SourceLocation LBraceLoc) {
10999  LinkageSpecDecl::LanguageIDs Language;
11000  if (Lang == "\"C\"")
11001    Language = LinkageSpecDecl::lang_c;
11002  else if (Lang == "\"C++\"")
11003    Language = LinkageSpecDecl::lang_cxx;
11004  else {
11005    Diag(LangLoc, diag::err_bad_language);
11006    return 0;
11007  }
11008
11009  // FIXME: Add all the various semantics of linkage specifications
11010
11011  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
11012                                               ExternLoc, LangLoc, Language,
11013                                               LBraceLoc.isValid());
11014  CurContext->addDecl(D);
11015  PushDeclContext(S, D);
11016  return D;
11017}
11018
11019/// ActOnFinishLinkageSpecification - Complete the definition of
11020/// the C++ linkage specification LinkageSpec. If RBraceLoc is
11021/// valid, it's the position of the closing '}' brace in a linkage
11022/// specification that uses braces.
11023Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11024                                            Decl *LinkageSpec,
11025                                            SourceLocation RBraceLoc) {
11026  if (LinkageSpec) {
11027    if (RBraceLoc.isValid()) {
11028      LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11029      LSDecl->setRBraceLoc(RBraceLoc);
11030    }
11031    PopDeclContext();
11032  }
11033  return LinkageSpec;
11034}
11035
11036Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11037                                  AttributeList *AttrList,
11038                                  SourceLocation SemiLoc) {
11039  Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11040  // Attribute declarations appertain to empty declaration so we handle
11041  // them here.
11042  if (AttrList)
11043    ProcessDeclAttributeList(S, ED, AttrList);
11044
11045  CurContext->addDecl(ED);
11046  return ED;
11047}
11048
11049/// \brief Perform semantic analysis for the variable declaration that
11050/// occurs within a C++ catch clause, returning the newly-created
11051/// variable.
11052VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11053                                         TypeSourceInfo *TInfo,
11054                                         SourceLocation StartLoc,
11055                                         SourceLocation Loc,
11056                                         IdentifierInfo *Name) {
11057  bool Invalid = false;
11058  QualType ExDeclType = TInfo->getType();
11059
11060  // Arrays and functions decay.
11061  if (ExDeclType->isArrayType())
11062    ExDeclType = Context.getArrayDecayedType(ExDeclType);
11063  else if (ExDeclType->isFunctionType())
11064    ExDeclType = Context.getPointerType(ExDeclType);
11065
11066  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11067  // The exception-declaration shall not denote a pointer or reference to an
11068  // incomplete type, other than [cv] void*.
11069  // N2844 forbids rvalue references.
11070  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11071    Diag(Loc, diag::err_catch_rvalue_ref);
11072    Invalid = true;
11073  }
11074
11075  QualType BaseType = ExDeclType;
11076  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11077  unsigned DK = diag::err_catch_incomplete;
11078  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11079    BaseType = Ptr->getPointeeType();
11080    Mode = 1;
11081    DK = diag::err_catch_incomplete_ptr;
11082  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11083    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11084    BaseType = Ref->getPointeeType();
11085    Mode = 2;
11086    DK = diag::err_catch_incomplete_ref;
11087  }
11088  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11089      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11090    Invalid = true;
11091
11092  if (!Invalid && !ExDeclType->isDependentType() &&
11093      RequireNonAbstractType(Loc, ExDeclType,
11094                             diag::err_abstract_type_in_decl,
11095                             AbstractVariableType))
11096    Invalid = true;
11097
11098  // Only the non-fragile NeXT runtime currently supports C++ catches
11099  // of ObjC types, and no runtime supports catching ObjC types by value.
11100  if (!Invalid && getLangOpts().ObjC1) {
11101    QualType T = ExDeclType;
11102    if (const ReferenceType *RT = T->getAs<ReferenceType>())
11103      T = RT->getPointeeType();
11104
11105    if (T->isObjCObjectType()) {
11106      Diag(Loc, diag::err_objc_object_catch);
11107      Invalid = true;
11108    } else if (T->isObjCObjectPointerType()) {
11109      // FIXME: should this be a test for macosx-fragile specifically?
11110      if (getLangOpts().ObjCRuntime.isFragile())
11111        Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
11112    }
11113  }
11114
11115  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
11116                                    ExDeclType, TInfo, SC_None);
11117  ExDecl->setExceptionVariable(true);
11118
11119  // In ARC, infer 'retaining' for variables of retainable type.
11120  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
11121    Invalid = true;
11122
11123  if (!Invalid && !ExDeclType->isDependentType()) {
11124    if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
11125      // Insulate this from anything else we might currently be parsing.
11126      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11127
11128      // C++ [except.handle]p16:
11129      //   The object declared in an exception-declaration or, if the
11130      //   exception-declaration does not specify a name, a temporary (12.2) is
11131      //   copy-initialized (8.5) from the exception object. [...]
11132      //   The object is destroyed when the handler exits, after the destruction
11133      //   of any automatic objects initialized within the handler.
11134      //
11135      // We just pretend to initialize the object with itself, then make sure
11136      // it can be destroyed later.
11137      QualType initType = ExDeclType;
11138
11139      InitializedEntity entity =
11140        InitializedEntity::InitializeVariable(ExDecl);
11141      InitializationKind initKind =
11142        InitializationKind::CreateCopy(Loc, SourceLocation());
11143
11144      Expr *opaqueValue =
11145        new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
11146      InitializationSequence sequence(*this, entity, initKind, opaqueValue);
11147      ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
11148      if (result.isInvalid())
11149        Invalid = true;
11150      else {
11151        // If the constructor used was non-trivial, set this as the
11152        // "initializer".
11153        CXXConstructExpr *construct = result.takeAs<CXXConstructExpr>();
11154        if (!construct->getConstructor()->isTrivial()) {
11155          Expr *init = MaybeCreateExprWithCleanups(construct);
11156          ExDecl->setInit(init);
11157        }
11158
11159        // And make sure it's destructable.
11160        FinalizeVarWithDestructor(ExDecl, recordType);
11161      }
11162    }
11163  }
11164
11165  if (Invalid)
11166    ExDecl->setInvalidDecl();
11167
11168  return ExDecl;
11169}
11170
11171/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
11172/// handler.
11173Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
11174  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11175  bool Invalid = D.isInvalidType();
11176
11177  // Check for unexpanded parameter packs.
11178  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11179                                      UPPC_ExceptionType)) {
11180    TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
11181                                             D.getIdentifierLoc());
11182    Invalid = true;
11183  }
11184
11185  IdentifierInfo *II = D.getIdentifier();
11186  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
11187                                             LookupOrdinaryName,
11188                                             ForRedeclaration)) {
11189    // The scope should be freshly made just for us. There is just no way
11190    // it contains any previous declaration.
11191    assert(!S->isDeclScope(PrevDecl));
11192    if (PrevDecl->isTemplateParameter()) {
11193      // Maybe we will complain about the shadowed template parameter.
11194      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11195      PrevDecl = 0;
11196    }
11197  }
11198
11199  if (D.getCXXScopeSpec().isSet() && !Invalid) {
11200    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
11201      << D.getCXXScopeSpec().getRange();
11202    Invalid = true;
11203  }
11204
11205  VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
11206                                              D.getLocStart(),
11207                                              D.getIdentifierLoc(),
11208                                              D.getIdentifier());
11209  if (Invalid)
11210    ExDecl->setInvalidDecl();
11211
11212  // Add the exception declaration into this scope.
11213  if (II)
11214    PushOnScopeChains(ExDecl, S);
11215  else
11216    CurContext->addDecl(ExDecl);
11217
11218  ProcessDeclAttributes(S, ExDecl, D);
11219  return ExDecl;
11220}
11221
11222Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11223                                         Expr *AssertExpr,
11224                                         Expr *AssertMessageExpr,
11225                                         SourceLocation RParenLoc) {
11226  StringLiteral *AssertMessage = cast<StringLiteral>(AssertMessageExpr);
11227
11228  if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
11229    return 0;
11230
11231  return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
11232                                      AssertMessage, RParenLoc, false);
11233}
11234
11235Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11236                                         Expr *AssertExpr,
11237                                         StringLiteral *AssertMessage,
11238                                         SourceLocation RParenLoc,
11239                                         bool Failed) {
11240  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
11241      !Failed) {
11242    // In a static_assert-declaration, the constant-expression shall be a
11243    // constant expression that can be contextually converted to bool.
11244    ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
11245    if (Converted.isInvalid())
11246      Failed = true;
11247
11248    llvm::APSInt Cond;
11249    if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
11250          diag::err_static_assert_expression_is_not_constant,
11251          /*AllowFold=*/false).isInvalid())
11252      Failed = true;
11253
11254    if (!Failed && !Cond) {
11255      SmallString<256> MsgBuffer;
11256      llvm::raw_svector_ostream Msg(MsgBuffer);
11257      AssertMessage->printPretty(Msg, 0, getPrintingPolicy());
11258      Diag(StaticAssertLoc, diag::err_static_assert_failed)
11259        << Msg.str() << AssertExpr->getSourceRange();
11260      Failed = true;
11261    }
11262  }
11263
11264  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
11265                                        AssertExpr, AssertMessage, RParenLoc,
11266                                        Failed);
11267
11268  CurContext->addDecl(Decl);
11269  return Decl;
11270}
11271
11272/// \brief Perform semantic analysis of the given friend type declaration.
11273///
11274/// \returns A friend declaration that.
11275FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
11276                                      SourceLocation FriendLoc,
11277                                      TypeSourceInfo *TSInfo) {
11278  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
11279
11280  QualType T = TSInfo->getType();
11281  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
11282
11283  // C++03 [class.friend]p2:
11284  //   An elaborated-type-specifier shall be used in a friend declaration
11285  //   for a class.*
11286  //
11287  //   * The class-key of the elaborated-type-specifier is required.
11288  if (!ActiveTemplateInstantiations.empty()) {
11289    // Do not complain about the form of friend template types during
11290    // template instantiation; we will already have complained when the
11291    // template was declared.
11292  } else {
11293    if (!T->isElaboratedTypeSpecifier()) {
11294      // If we evaluated the type to a record type, suggest putting
11295      // a tag in front.
11296      if (const RecordType *RT = T->getAs<RecordType>()) {
11297        RecordDecl *RD = RT->getDecl();
11298
11299        std::string InsertionText = std::string(" ") + RD->getKindName();
11300
11301        Diag(TypeRange.getBegin(),
11302             getLangOpts().CPlusPlus11 ?
11303               diag::warn_cxx98_compat_unelaborated_friend_type :
11304               diag::ext_unelaborated_friend_type)
11305          << (unsigned) RD->getTagKind()
11306          << T
11307          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
11308                                        InsertionText);
11309      } else {
11310        Diag(FriendLoc,
11311             getLangOpts().CPlusPlus11 ?
11312               diag::warn_cxx98_compat_nonclass_type_friend :
11313               diag::ext_nonclass_type_friend)
11314          << T
11315          << TypeRange;
11316      }
11317    } else if (T->getAs<EnumType>()) {
11318      Diag(FriendLoc,
11319           getLangOpts().CPlusPlus11 ?
11320             diag::warn_cxx98_compat_enum_friend :
11321             diag::ext_enum_friend)
11322        << T
11323        << TypeRange;
11324    }
11325
11326    // C++11 [class.friend]p3:
11327    //   A friend declaration that does not declare a function shall have one
11328    //   of the following forms:
11329    //     friend elaborated-type-specifier ;
11330    //     friend simple-type-specifier ;
11331    //     friend typename-specifier ;
11332    if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
11333      Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
11334  }
11335
11336  //   If the type specifier in a friend declaration designates a (possibly
11337  //   cv-qualified) class type, that class is declared as a friend; otherwise,
11338  //   the friend declaration is ignored.
11339  return FriendDecl::Create(Context, CurContext, LocStart, TSInfo, FriendLoc);
11340}
11341
11342/// Handle a friend tag declaration where the scope specifier was
11343/// templated.
11344Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
11345                                    unsigned TagSpec, SourceLocation TagLoc,
11346                                    CXXScopeSpec &SS,
11347                                    IdentifierInfo *Name,
11348                                    SourceLocation NameLoc,
11349                                    AttributeList *Attr,
11350                                    MultiTemplateParamsArg TempParamLists) {
11351  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11352
11353  bool isExplicitSpecialization = false;
11354  bool Invalid = false;
11355
11356  if (TemplateParameterList *TemplateParams =
11357          MatchTemplateParametersToScopeSpecifier(
11358              TagLoc, NameLoc, SS, TempParamLists, /*friend*/ true,
11359              isExplicitSpecialization, Invalid)) {
11360    if (TemplateParams->size() > 0) {
11361      // This is a declaration of a class template.
11362      if (Invalid)
11363        return 0;
11364
11365      return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11366                                SS, Name, NameLoc, Attr,
11367                                TemplateParams, AS_public,
11368                                /*ModulePrivateLoc=*/SourceLocation(),
11369                                TempParamLists.size() - 1,
11370                                TempParamLists.data()).take();
11371    } else {
11372      // The "template<>" header is extraneous.
11373      Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11374        << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11375      isExplicitSpecialization = true;
11376    }
11377  }
11378
11379  if (Invalid) return 0;
11380
11381  bool isAllExplicitSpecializations = true;
11382  for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11383    if (TempParamLists[I]->size()) {
11384      isAllExplicitSpecializations = false;
11385      break;
11386    }
11387  }
11388
11389  // FIXME: don't ignore attributes.
11390
11391  // If it's explicit specializations all the way down, just forget
11392  // about the template header and build an appropriate non-templated
11393  // friend.  TODO: for source fidelity, remember the headers.
11394  if (isAllExplicitSpecializations) {
11395    if (SS.isEmpty()) {
11396      bool Owned = false;
11397      bool IsDependent = false;
11398      return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11399                      Attr, AS_public,
11400                      /*ModulePrivateLoc=*/SourceLocation(),
11401                      MultiTemplateParamsArg(), Owned, IsDependent,
11402                      /*ScopedEnumKWLoc=*/SourceLocation(),
11403                      /*ScopedEnumUsesClassTag=*/false,
11404                      /*UnderlyingType=*/TypeResult());
11405    }
11406
11407    NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11408    ElaboratedTypeKeyword Keyword
11409      = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11410    QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11411                                   *Name, NameLoc);
11412    if (T.isNull())
11413      return 0;
11414
11415    TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11416    if (isa<DependentNameType>(T)) {
11417      DependentNameTypeLoc TL =
11418          TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11419      TL.setElaboratedKeywordLoc(TagLoc);
11420      TL.setQualifierLoc(QualifierLoc);
11421      TL.setNameLoc(NameLoc);
11422    } else {
11423      ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11424      TL.setElaboratedKeywordLoc(TagLoc);
11425      TL.setQualifierLoc(QualifierLoc);
11426      TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11427    }
11428
11429    FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11430                                            TSI, FriendLoc, TempParamLists);
11431    Friend->setAccess(AS_public);
11432    CurContext->addDecl(Friend);
11433    return Friend;
11434  }
11435
11436  assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11437
11438
11439
11440  // Handle the case of a templated-scope friend class.  e.g.
11441  //   template <class T> class A<T>::B;
11442  // FIXME: we don't support these right now.
11443  ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11444  QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11445  TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11446  DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11447  TL.setElaboratedKeywordLoc(TagLoc);
11448  TL.setQualifierLoc(SS.getWithLocInContext(Context));
11449  TL.setNameLoc(NameLoc);
11450
11451  FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11452                                          TSI, FriendLoc, TempParamLists);
11453  Friend->setAccess(AS_public);
11454  Friend->setUnsupportedFriend(true);
11455  CurContext->addDecl(Friend);
11456  return Friend;
11457}
11458
11459
11460/// Handle a friend type declaration.  This works in tandem with
11461/// ActOnTag.
11462///
11463/// Notes on friend class templates:
11464///
11465/// We generally treat friend class declarations as if they were
11466/// declaring a class.  So, for example, the elaborated type specifier
11467/// in a friend declaration is required to obey the restrictions of a
11468/// class-head (i.e. no typedefs in the scope chain), template
11469/// parameters are required to match up with simple template-ids, &c.
11470/// However, unlike when declaring a template specialization, it's
11471/// okay to refer to a template specialization without an empty
11472/// template parameter declaration, e.g.
11473///   friend class A<T>::B<unsigned>;
11474/// We permit this as a special case; if there are any template
11475/// parameters present at all, require proper matching, i.e.
11476///   template <> template \<class T> friend class A<int>::B;
11477Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11478                                MultiTemplateParamsArg TempParams) {
11479  SourceLocation Loc = DS.getLocStart();
11480
11481  assert(DS.isFriendSpecified());
11482  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11483
11484  // Try to convert the decl specifier to a type.  This works for
11485  // friend templates because ActOnTag never produces a ClassTemplateDecl
11486  // for a TUK_Friend.
11487  Declarator TheDeclarator(DS, Declarator::MemberContext);
11488  TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11489  QualType T = TSI->getType();
11490  if (TheDeclarator.isInvalidType())
11491    return 0;
11492
11493  if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11494    return 0;
11495
11496  // This is definitely an error in C++98.  It's probably meant to
11497  // be forbidden in C++0x, too, but the specification is just
11498  // poorly written.
11499  //
11500  // The problem is with declarations like the following:
11501  //   template <T> friend A<T>::foo;
11502  // where deciding whether a class C is a friend or not now hinges
11503  // on whether there exists an instantiation of A that causes
11504  // 'foo' to equal C.  There are restrictions on class-heads
11505  // (which we declare (by fiat) elaborated friend declarations to
11506  // be) that makes this tractable.
11507  //
11508  // FIXME: handle "template <> friend class A<T>;", which
11509  // is possibly well-formed?  Who even knows?
11510  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11511    Diag(Loc, diag::err_tagless_friend_type_template)
11512      << DS.getSourceRange();
11513    return 0;
11514  }
11515
11516  // C++98 [class.friend]p1: A friend of a class is a function
11517  //   or class that is not a member of the class . . .
11518  // This is fixed in DR77, which just barely didn't make the C++03
11519  // deadline.  It's also a very silly restriction that seriously
11520  // affects inner classes and which nobody else seems to implement;
11521  // thus we never diagnose it, not even in -pedantic.
11522  //
11523  // But note that we could warn about it: it's always useless to
11524  // friend one of your own members (it's not, however, worthless to
11525  // friend a member of an arbitrary specialization of your template).
11526
11527  Decl *D;
11528  if (unsigned NumTempParamLists = TempParams.size())
11529    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11530                                   NumTempParamLists,
11531                                   TempParams.data(),
11532                                   TSI,
11533                                   DS.getFriendSpecLoc());
11534  else
11535    D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11536
11537  if (!D)
11538    return 0;
11539
11540  D->setAccess(AS_public);
11541  CurContext->addDecl(D);
11542
11543  return D;
11544}
11545
11546NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11547                                        MultiTemplateParamsArg TemplateParams) {
11548  const DeclSpec &DS = D.getDeclSpec();
11549
11550  assert(DS.isFriendSpecified());
11551  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11552
11553  SourceLocation Loc = D.getIdentifierLoc();
11554  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11555
11556  // C++ [class.friend]p1
11557  //   A friend of a class is a function or class....
11558  // Note that this sees through typedefs, which is intended.
11559  // It *doesn't* see through dependent types, which is correct
11560  // according to [temp.arg.type]p3:
11561  //   If a declaration acquires a function type through a
11562  //   type dependent on a template-parameter and this causes
11563  //   a declaration that does not use the syntactic form of a
11564  //   function declarator to have a function type, the program
11565  //   is ill-formed.
11566  if (!TInfo->getType()->isFunctionType()) {
11567    Diag(Loc, diag::err_unexpected_friend);
11568
11569    // It might be worthwhile to try to recover by creating an
11570    // appropriate declaration.
11571    return 0;
11572  }
11573
11574  // C++ [namespace.memdef]p3
11575  //  - If a friend declaration in a non-local class first declares a
11576  //    class or function, the friend class or function is a member
11577  //    of the innermost enclosing namespace.
11578  //  - The name of the friend is not found by simple name lookup
11579  //    until a matching declaration is provided in that namespace
11580  //    scope (either before or after the class declaration granting
11581  //    friendship).
11582  //  - If a friend function is called, its name may be found by the
11583  //    name lookup that considers functions from namespaces and
11584  //    classes associated with the types of the function arguments.
11585  //  - When looking for a prior declaration of a class or a function
11586  //    declared as a friend, scopes outside the innermost enclosing
11587  //    namespace scope are not considered.
11588
11589  CXXScopeSpec &SS = D.getCXXScopeSpec();
11590  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11591  DeclarationName Name = NameInfo.getName();
11592  assert(Name);
11593
11594  // Check for unexpanded parameter packs.
11595  if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11596      DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11597      DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11598    return 0;
11599
11600  // The context we found the declaration in, or in which we should
11601  // create the declaration.
11602  DeclContext *DC;
11603  Scope *DCScope = S;
11604  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11605                        ForRedeclaration);
11606
11607  // There are five cases here.
11608  //   - There's no scope specifier and we're in a local class. Only look
11609  //     for functions declared in the immediately-enclosing block scope.
11610  // We recover from invalid scope qualifiers as if they just weren't there.
11611  FunctionDecl *FunctionContainingLocalClass = 0;
11612  if ((SS.isInvalid() || !SS.isSet()) &&
11613      (FunctionContainingLocalClass =
11614           cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
11615    // C++11 [class.friend]p11:
11616    //   If a friend declaration appears in a local class and the name
11617    //   specified is an unqualified name, a prior declaration is
11618    //   looked up without considering scopes that are outside the
11619    //   innermost enclosing non-class scope. For a friend function
11620    //   declaration, if there is no prior declaration, the program is
11621    //   ill-formed.
11622
11623    // Find the innermost enclosing non-class scope. This is the block
11624    // scope containing the local class definition (or for a nested class,
11625    // the outer local class).
11626    DCScope = S->getFnParent();
11627
11628    // Look up the function name in the scope.
11629    Previous.clear(LookupLocalFriendName);
11630    LookupName(Previous, S, /*AllowBuiltinCreation*/false);
11631
11632    if (!Previous.empty()) {
11633      // All possible previous declarations must have the same context:
11634      // either they were declared at block scope or they are members of
11635      // one of the enclosing local classes.
11636      DC = Previous.getRepresentativeDecl()->getDeclContext();
11637    } else {
11638      // This is ill-formed, but provide the context that we would have
11639      // declared the function in, if we were permitted to, for error recovery.
11640      DC = FunctionContainingLocalClass;
11641    }
11642    adjustContextForLocalExternDecl(DC);
11643
11644    // C++ [class.friend]p6:
11645    //   A function can be defined in a friend declaration of a class if and
11646    //   only if the class is a non-local class (9.8), the function name is
11647    //   unqualified, and the function has namespace scope.
11648    if (D.isFunctionDefinition()) {
11649      Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11650    }
11651
11652  //   - There's no scope specifier, in which case we just go to the
11653  //     appropriate scope and look for a function or function template
11654  //     there as appropriate.
11655  } else if (SS.isInvalid() || !SS.isSet()) {
11656    // C++11 [namespace.memdef]p3:
11657    //   If the name in a friend declaration is neither qualified nor
11658    //   a template-id and the declaration is a function or an
11659    //   elaborated-type-specifier, the lookup to determine whether
11660    //   the entity has been previously declared shall not consider
11661    //   any scopes outside the innermost enclosing namespace.
11662    bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11663
11664    // Find the appropriate context according to the above.
11665    DC = CurContext;
11666
11667    // Skip class contexts.  If someone can cite chapter and verse
11668    // for this behavior, that would be nice --- it's what GCC and
11669    // EDG do, and it seems like a reasonable intent, but the spec
11670    // really only says that checks for unqualified existing
11671    // declarations should stop at the nearest enclosing namespace,
11672    // not that they should only consider the nearest enclosing
11673    // namespace.
11674    while (DC->isRecord())
11675      DC = DC->getParent();
11676
11677    DeclContext *LookupDC = DC;
11678    while (LookupDC->isTransparentContext())
11679      LookupDC = LookupDC->getParent();
11680
11681    while (true) {
11682      LookupQualifiedName(Previous, LookupDC);
11683
11684      if (!Previous.empty()) {
11685        DC = LookupDC;
11686        break;
11687      }
11688
11689      if (isTemplateId) {
11690        if (isa<TranslationUnitDecl>(LookupDC)) break;
11691      } else {
11692        if (LookupDC->isFileContext()) break;
11693      }
11694      LookupDC = LookupDC->getParent();
11695    }
11696
11697    DCScope = getScopeForDeclContext(S, DC);
11698
11699  //   - There's a non-dependent scope specifier, in which case we
11700  //     compute it and do a previous lookup there for a function
11701  //     or function template.
11702  } else if (!SS.getScopeRep()->isDependent()) {
11703    DC = computeDeclContext(SS);
11704    if (!DC) return 0;
11705
11706    if (RequireCompleteDeclContext(SS, DC)) return 0;
11707
11708    LookupQualifiedName(Previous, DC);
11709
11710    // Ignore things found implicitly in the wrong scope.
11711    // TODO: better diagnostics for this case.  Suggesting the right
11712    // qualified scope would be nice...
11713    LookupResult::Filter F = Previous.makeFilter();
11714    while (F.hasNext()) {
11715      NamedDecl *D = F.next();
11716      if (!DC->InEnclosingNamespaceSetOf(
11717              D->getDeclContext()->getRedeclContext()))
11718        F.erase();
11719    }
11720    F.done();
11721
11722    if (Previous.empty()) {
11723      D.setInvalidType();
11724      Diag(Loc, diag::err_qualified_friend_not_found)
11725          << Name << TInfo->getType();
11726      return 0;
11727    }
11728
11729    // C++ [class.friend]p1: A friend of a class is a function or
11730    //   class that is not a member of the class . . .
11731    if (DC->Equals(CurContext))
11732      Diag(DS.getFriendSpecLoc(),
11733           getLangOpts().CPlusPlus11 ?
11734             diag::warn_cxx98_compat_friend_is_member :
11735             diag::err_friend_is_member);
11736
11737    if (D.isFunctionDefinition()) {
11738      // C++ [class.friend]p6:
11739      //   A function can be defined in a friend declaration of a class if and
11740      //   only if the class is a non-local class (9.8), the function name is
11741      //   unqualified, and the function has namespace scope.
11742      SemaDiagnosticBuilder DB
11743        = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
11744
11745      DB << SS.getScopeRep();
11746      if (DC->isFileContext())
11747        DB << FixItHint::CreateRemoval(SS.getRange());
11748      SS.clear();
11749    }
11750
11751  //   - There's a scope specifier that does not match any template
11752  //     parameter lists, in which case we use some arbitrary context,
11753  //     create a method or method template, and wait for instantiation.
11754  //   - There's a scope specifier that does match some template
11755  //     parameter lists, which we don't handle right now.
11756  } else {
11757    if (D.isFunctionDefinition()) {
11758      // C++ [class.friend]p6:
11759      //   A function can be defined in a friend declaration of a class if and
11760      //   only if the class is a non-local class (9.8), the function name is
11761      //   unqualified, and the function has namespace scope.
11762      Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
11763        << SS.getScopeRep();
11764    }
11765
11766    DC = CurContext;
11767    assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
11768  }
11769
11770  if (!DC->isRecord()) {
11771    // This implies that it has to be an operator or function.
11772    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
11773        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
11774        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
11775      Diag(Loc, diag::err_introducing_special_friend) <<
11776        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
11777         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
11778      return 0;
11779    }
11780  }
11781
11782  // FIXME: This is an egregious hack to cope with cases where the scope stack
11783  // does not contain the declaration context, i.e., in an out-of-line
11784  // definition of a class.
11785  Scope FakeDCScope(S, Scope::DeclScope, Diags);
11786  if (!DCScope) {
11787    FakeDCScope.setEntity(DC);
11788    DCScope = &FakeDCScope;
11789  }
11790
11791  bool AddToScope = true;
11792  NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
11793                                          TemplateParams, AddToScope);
11794  if (!ND) return 0;
11795
11796  assert(ND->getLexicalDeclContext() == CurContext);
11797
11798  // If we performed typo correction, we might have added a scope specifier
11799  // and changed the decl context.
11800  DC = ND->getDeclContext();
11801
11802  // Add the function declaration to the appropriate lookup tables,
11803  // adjusting the redeclarations list as necessary.  We don't
11804  // want to do this yet if the friending class is dependent.
11805  //
11806  // Also update the scope-based lookup if the target context's
11807  // lookup context is in lexical scope.
11808  if (!CurContext->isDependentContext()) {
11809    DC = DC->getRedeclContext();
11810    DC->makeDeclVisibleInContext(ND);
11811    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11812      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
11813  }
11814
11815  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
11816                                       D.getIdentifierLoc(), ND,
11817                                       DS.getFriendSpecLoc());
11818  FrD->setAccess(AS_public);
11819  CurContext->addDecl(FrD);
11820
11821  if (ND->isInvalidDecl()) {
11822    FrD->setInvalidDecl();
11823  } else {
11824    if (DC->isRecord()) CheckFriendAccess(ND);
11825
11826    FunctionDecl *FD;
11827    if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
11828      FD = FTD->getTemplatedDecl();
11829    else
11830      FD = cast<FunctionDecl>(ND);
11831
11832    // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
11833    // default argument expression, that declaration shall be a definition
11834    // and shall be the only declaration of the function or function
11835    // template in the translation unit.
11836    if (functionDeclHasDefaultArgument(FD)) {
11837      if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
11838        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
11839        Diag(OldFD->getLocation(), diag::note_previous_declaration);
11840      } else if (!D.isFunctionDefinition())
11841        Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
11842    }
11843
11844    // Mark templated-scope function declarations as unsupported.
11845    if (FD->getNumTemplateParameterLists())
11846      FrD->setUnsupportedFriend(true);
11847  }
11848
11849  return ND;
11850}
11851
11852void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
11853  AdjustDeclIfTemplate(Dcl);
11854
11855  FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
11856  if (!Fn) {
11857    Diag(DelLoc, diag::err_deleted_non_function);
11858    return;
11859  }
11860
11861  if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
11862    // Don't consider the implicit declaration we generate for explicit
11863    // specializations. FIXME: Do not generate these implicit declarations.
11864    if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization
11865        || Prev->getPreviousDecl()) && !Prev->isDefined()) {
11866      Diag(DelLoc, diag::err_deleted_decl_not_first);
11867      Diag(Prev->getLocation(), diag::note_previous_declaration);
11868    }
11869    // If the declaration wasn't the first, we delete the function anyway for
11870    // recovery.
11871    Fn = Fn->getCanonicalDecl();
11872  }
11873
11874  if (Fn->isDeleted())
11875    return;
11876
11877  // See if we're deleting a function which is already known to override a
11878  // non-deleted virtual function.
11879  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
11880    bool IssuedDiagnostic = false;
11881    for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
11882                                        E = MD->end_overridden_methods();
11883         I != E; ++I) {
11884      if (!(*MD->begin_overridden_methods())->isDeleted()) {
11885        if (!IssuedDiagnostic) {
11886          Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
11887          IssuedDiagnostic = true;
11888        }
11889        Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
11890      }
11891    }
11892  }
11893
11894  Fn->setDeletedAsWritten();
11895}
11896
11897void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
11898  CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
11899
11900  if (MD) {
11901    if (MD->getParent()->isDependentType()) {
11902      MD->setDefaulted();
11903      MD->setExplicitlyDefaulted();
11904      return;
11905    }
11906
11907    CXXSpecialMember Member = getSpecialMember(MD);
11908    if (Member == CXXInvalid) {
11909      if (!MD->isInvalidDecl())
11910        Diag(DefaultLoc, diag::err_default_special_members);
11911      return;
11912    }
11913
11914    MD->setDefaulted();
11915    MD->setExplicitlyDefaulted();
11916
11917    // If this definition appears within the record, do the checking when
11918    // the record is complete.
11919    const FunctionDecl *Primary = MD;
11920    if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
11921      // Find the uninstantiated declaration that actually had the '= default'
11922      // on it.
11923      Pattern->isDefined(Primary);
11924
11925    // If the method was defaulted on its first declaration, we will have
11926    // already performed the checking in CheckCompletedCXXClass. Such a
11927    // declaration doesn't trigger an implicit definition.
11928    if (Primary == Primary->getCanonicalDecl())
11929      return;
11930
11931    CheckExplicitlyDefaultedSpecialMember(MD);
11932
11933    // The exception specification is needed because we are defining the
11934    // function.
11935    ResolveExceptionSpec(DefaultLoc,
11936                         MD->getType()->castAs<FunctionProtoType>());
11937
11938    if (MD->isInvalidDecl())
11939      return;
11940
11941    switch (Member) {
11942    case CXXDefaultConstructor:
11943      DefineImplicitDefaultConstructor(DefaultLoc,
11944                                       cast<CXXConstructorDecl>(MD));
11945      break;
11946    case CXXCopyConstructor:
11947      DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11948      break;
11949    case CXXCopyAssignment:
11950      DefineImplicitCopyAssignment(DefaultLoc, MD);
11951      break;
11952    case CXXDestructor:
11953      DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
11954      break;
11955    case CXXMoveConstructor:
11956      DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
11957      break;
11958    case CXXMoveAssignment:
11959      DefineImplicitMoveAssignment(DefaultLoc, MD);
11960      break;
11961    case CXXInvalid:
11962      llvm_unreachable("Invalid special member.");
11963    }
11964  } else {
11965    Diag(DefaultLoc, diag::err_default_special_members);
11966  }
11967}
11968
11969static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
11970  for (Stmt::child_range CI = S->children(); CI; ++CI) {
11971    Stmt *SubStmt = *CI;
11972    if (!SubStmt)
11973      continue;
11974    if (isa<ReturnStmt>(SubStmt))
11975      Self.Diag(SubStmt->getLocStart(),
11976           diag::err_return_in_constructor_handler);
11977    if (!isa<Expr>(SubStmt))
11978      SearchForReturnInStmt(Self, SubStmt);
11979  }
11980}
11981
11982void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
11983  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
11984    CXXCatchStmt *Handler = TryBlock->getHandler(I);
11985    SearchForReturnInStmt(*this, Handler);
11986  }
11987}
11988
11989bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
11990                                             const CXXMethodDecl *Old) {
11991  const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
11992  const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
11993
11994  CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
11995
11996  // If the calling conventions match, everything is fine
11997  if (NewCC == OldCC)
11998    return false;
11999
12000  Diag(New->getLocation(),
12001       diag::err_conflicting_overriding_cc_attributes)
12002    << New->getDeclName() << New->getType() << Old->getType();
12003  Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12004  return true;
12005}
12006
12007bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
12008                                             const CXXMethodDecl *Old) {
12009  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
12010  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
12011
12012  if (Context.hasSameType(NewTy, OldTy) ||
12013      NewTy->isDependentType() || OldTy->isDependentType())
12014    return false;
12015
12016  // Check if the return types are covariant
12017  QualType NewClassTy, OldClassTy;
12018
12019  /// Both types must be pointers or references to classes.
12020  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12021    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12022      NewClassTy = NewPT->getPointeeType();
12023      OldClassTy = OldPT->getPointeeType();
12024    }
12025  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12026    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12027      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12028        NewClassTy = NewRT->getPointeeType();
12029        OldClassTy = OldRT->getPointeeType();
12030      }
12031    }
12032  }
12033
12034  // The return types aren't either both pointers or references to a class type.
12035  if (NewClassTy.isNull()) {
12036    Diag(New->getLocation(),
12037         diag::err_different_return_type_for_overriding_virtual_function)
12038      << New->getDeclName() << NewTy << OldTy;
12039    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12040
12041    return true;
12042  }
12043
12044  // C++ [class.virtual]p6:
12045  //   If the return type of D::f differs from the return type of B::f, the
12046  //   class type in the return type of D::f shall be complete at the point of
12047  //   declaration of D::f or shall be the class type D.
12048  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12049    if (!RT->isBeingDefined() &&
12050        RequireCompleteType(New->getLocation(), NewClassTy,
12051                            diag::err_covariant_return_incomplete,
12052                            New->getDeclName()))
12053    return true;
12054  }
12055
12056  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
12057    // Check if the new class derives from the old class.
12058    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
12059      Diag(New->getLocation(),
12060           diag::err_covariant_return_not_derived)
12061      << New->getDeclName() << NewTy << OldTy;
12062      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12063      return true;
12064    }
12065
12066    // Check if we the conversion from derived to base is valid.
12067    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
12068                    diag::err_covariant_return_inaccessible_base,
12069                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
12070                    // FIXME: Should this point to the return type?
12071                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
12072      // FIXME: this note won't trigger for delayed access control
12073      // diagnostics, and it's impossible to get an undelayed error
12074      // here from access control during the original parse because
12075      // the ParsingDeclSpec/ParsingDeclarator are still in scope.
12076      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12077      return true;
12078    }
12079  }
12080
12081  // The qualifiers of the return types must be the same.
12082  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
12083    Diag(New->getLocation(),
12084         diag::err_covariant_return_type_different_qualifications)
12085    << New->getDeclName() << NewTy << OldTy;
12086    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12087    return true;
12088  };
12089
12090
12091  // The new class type must have the same or less qualifiers as the old type.
12092  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
12093    Diag(New->getLocation(),
12094         diag::err_covariant_return_type_class_type_more_qualified)
12095    << New->getDeclName() << NewTy << OldTy;
12096    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12097    return true;
12098  };
12099
12100  return false;
12101}
12102
12103/// \brief Mark the given method pure.
12104///
12105/// \param Method the method to be marked pure.
12106///
12107/// \param InitRange the source range that covers the "0" initializer.
12108bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
12109  SourceLocation EndLoc = InitRange.getEnd();
12110  if (EndLoc.isValid())
12111    Method->setRangeEnd(EndLoc);
12112
12113  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
12114    Method->setPure();
12115    return false;
12116  }
12117
12118  if (!Method->isInvalidDecl())
12119    Diag(Method->getLocation(), diag::err_non_virtual_pure)
12120      << Method->getDeclName() << InitRange;
12121  return true;
12122}
12123
12124/// \brief Determine whether the given declaration is a static data member.
12125static bool isStaticDataMember(const Decl *D) {
12126  if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
12127    return Var->isStaticDataMember();
12128
12129  return false;
12130}
12131
12132/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
12133/// an initializer for the out-of-line declaration 'Dcl'.  The scope
12134/// is a fresh scope pushed for just this purpose.
12135///
12136/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
12137/// static data member of class X, names should be looked up in the scope of
12138/// class X.
12139void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
12140  // If there is no declaration, there was an error parsing it.
12141  if (D == 0 || D->isInvalidDecl()) return;
12142
12143  // We should only get called for declarations with scope specifiers, like:
12144  //   int foo::bar;
12145  assert(D->isOutOfLine());
12146  EnterDeclaratorContext(S, D->getDeclContext());
12147
12148  // If we are parsing the initializer for a static data member, push a
12149  // new expression evaluation context that is associated with this static
12150  // data member.
12151  if (isStaticDataMember(D))
12152    PushExpressionEvaluationContext(PotentiallyEvaluated, D);
12153}
12154
12155/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
12156/// initializer for the out-of-line declaration 'D'.
12157void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
12158  // If there is no declaration, there was an error parsing it.
12159  if (D == 0 || D->isInvalidDecl()) return;
12160
12161  if (isStaticDataMember(D))
12162    PopExpressionEvaluationContext();
12163
12164  assert(D->isOutOfLine());
12165  ExitDeclaratorContext(S);
12166}
12167
12168/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
12169/// C++ if/switch/while/for statement.
12170/// e.g: "if (int x = f()) {...}"
12171DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
12172  // C++ 6.4p2:
12173  // The declarator shall not specify a function or an array.
12174  // The type-specifier-seq shall not contain typedef and shall not declare a
12175  // new class or enumeration.
12176  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
12177         "Parser allowed 'typedef' as storage class of condition decl.");
12178
12179  Decl *Dcl = ActOnDeclarator(S, D);
12180  if (!Dcl)
12181    return true;
12182
12183  if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
12184    Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
12185      << D.getSourceRange();
12186    return true;
12187  }
12188
12189  return Dcl;
12190}
12191
12192void Sema::LoadExternalVTableUses() {
12193  if (!ExternalSource)
12194    return;
12195
12196  SmallVector<ExternalVTableUse, 4> VTables;
12197  ExternalSource->ReadUsedVTables(VTables);
12198  SmallVector<VTableUse, 4> NewUses;
12199  for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
12200    llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
12201      = VTablesUsed.find(VTables[I].Record);
12202    // Even if a definition wasn't required before, it may be required now.
12203    if (Pos != VTablesUsed.end()) {
12204      if (!Pos->second && VTables[I].DefinitionRequired)
12205        Pos->second = true;
12206      continue;
12207    }
12208
12209    VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
12210    NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
12211  }
12212
12213  VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
12214}
12215
12216void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
12217                          bool DefinitionRequired) {
12218  // Ignore any vtable uses in unevaluated operands or for classes that do
12219  // not have a vtable.
12220  if (!Class->isDynamicClass() || Class->isDependentContext() ||
12221      CurContext->isDependentContext() || isUnevaluatedContext())
12222    return;
12223
12224  // Try to insert this class into the map.
12225  LoadExternalVTableUses();
12226  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12227  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
12228    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
12229  if (!Pos.second) {
12230    // If we already had an entry, check to see if we are promoting this vtable
12231    // to required a definition. If so, we need to reappend to the VTableUses
12232    // list, since we may have already processed the first entry.
12233    if (DefinitionRequired && !Pos.first->second) {
12234      Pos.first->second = true;
12235    } else {
12236      // Otherwise, we can early exit.
12237      return;
12238    }
12239  }
12240
12241  // Local classes need to have their virtual members marked
12242  // immediately. For all other classes, we mark their virtual members
12243  // at the end of the translation unit.
12244  if (Class->isLocalClass())
12245    MarkVirtualMembersReferenced(Loc, Class);
12246  else
12247    VTableUses.push_back(std::make_pair(Class, Loc));
12248}
12249
12250bool Sema::DefineUsedVTables() {
12251  LoadExternalVTableUses();
12252  if (VTableUses.empty())
12253    return false;
12254
12255  // Note: The VTableUses vector could grow as a result of marking
12256  // the members of a class as "used", so we check the size each
12257  // time through the loop and prefer indices (which are stable) to
12258  // iterators (which are not).
12259  bool DefinedAnything = false;
12260  for (unsigned I = 0; I != VTableUses.size(); ++I) {
12261    CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
12262    if (!Class)
12263      continue;
12264
12265    SourceLocation Loc = VTableUses[I].second;
12266
12267    bool DefineVTable = true;
12268
12269    // If this class has a key function, but that key function is
12270    // defined in another translation unit, we don't need to emit the
12271    // vtable even though we're using it.
12272    const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
12273    if (KeyFunction && !KeyFunction->hasBody()) {
12274      // The key function is in another translation unit.
12275      DefineVTable = false;
12276      TemplateSpecializationKind TSK =
12277          KeyFunction->getTemplateSpecializationKind();
12278      assert(TSK != TSK_ExplicitInstantiationDefinition &&
12279             TSK != TSK_ImplicitInstantiation &&
12280             "Instantiations don't have key functions");
12281      (void)TSK;
12282    } else if (!KeyFunction) {
12283      // If we have a class with no key function that is the subject
12284      // of an explicit instantiation declaration, suppress the
12285      // vtable; it will live with the explicit instantiation
12286      // definition.
12287      bool IsExplicitInstantiationDeclaration
12288        = Class->getTemplateSpecializationKind()
12289                                      == TSK_ExplicitInstantiationDeclaration;
12290      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
12291                                 REnd = Class->redecls_end();
12292           R != REnd; ++R) {
12293        TemplateSpecializationKind TSK
12294          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
12295        if (TSK == TSK_ExplicitInstantiationDeclaration)
12296          IsExplicitInstantiationDeclaration = true;
12297        else if (TSK == TSK_ExplicitInstantiationDefinition) {
12298          IsExplicitInstantiationDeclaration = false;
12299          break;
12300        }
12301      }
12302
12303      if (IsExplicitInstantiationDeclaration)
12304        DefineVTable = false;
12305    }
12306
12307    // The exception specifications for all virtual members may be needed even
12308    // if we are not providing an authoritative form of the vtable in this TU.
12309    // We may choose to emit it available_externally anyway.
12310    if (!DefineVTable) {
12311      MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
12312      continue;
12313    }
12314
12315    // Mark all of the virtual members of this class as referenced, so
12316    // that we can build a vtable. Then, tell the AST consumer that a
12317    // vtable for this class is required.
12318    DefinedAnything = true;
12319    MarkVirtualMembersReferenced(Loc, Class);
12320    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12321    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
12322
12323    // Optionally warn if we're emitting a weak vtable.
12324    if (Class->isExternallyVisible() &&
12325        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
12326      const FunctionDecl *KeyFunctionDef = 0;
12327      if (!KeyFunction ||
12328          (KeyFunction->hasBody(KeyFunctionDef) &&
12329           KeyFunctionDef->isInlined()))
12330        Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
12331             TSK_ExplicitInstantiationDefinition
12332             ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12333          << Class;
12334    }
12335  }
12336  VTableUses.clear();
12337
12338  return DefinedAnything;
12339}
12340
12341void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12342                                                 const CXXRecordDecl *RD) {
12343  for (CXXRecordDecl::method_iterator I = RD->method_begin(),
12344                                      E = RD->method_end(); I != E; ++I)
12345    if ((*I)->isVirtual() && !(*I)->isPure())
12346      ResolveExceptionSpec(Loc, (*I)->getType()->castAs<FunctionProtoType>());
12347}
12348
12349void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12350                                        const CXXRecordDecl *RD) {
12351  // Mark all functions which will appear in RD's vtable as used.
12352  CXXFinalOverriderMap FinalOverriders;
12353  RD->getFinalOverriders(FinalOverriders);
12354  for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12355                                            E = FinalOverriders.end();
12356       I != E; ++I) {
12357    for (OverridingMethods::const_iterator OI = I->second.begin(),
12358                                           OE = I->second.end();
12359         OI != OE; ++OI) {
12360      assert(OI->second.size() > 0 && "no final overrider");
12361      CXXMethodDecl *Overrider = OI->second.front().Method;
12362
12363      // C++ [basic.def.odr]p2:
12364      //   [...] A virtual member function is used if it is not pure. [...]
12365      if (!Overrider->isPure())
12366        MarkFunctionReferenced(Loc, Overrider);
12367    }
12368  }
12369
12370  // Only classes that have virtual bases need a VTT.
12371  if (RD->getNumVBases() == 0)
12372    return;
12373
12374  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
12375           e = RD->bases_end(); i != e; ++i) {
12376    const CXXRecordDecl *Base =
12377        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
12378    if (Base->getNumVBases() == 0)
12379      continue;
12380    MarkVirtualMembersReferenced(Loc, Base);
12381  }
12382}
12383
12384/// SetIvarInitializers - This routine builds initialization ASTs for the
12385/// Objective-C implementation whose ivars need be initialized.
12386void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12387  if (!getLangOpts().CPlusPlus)
12388    return;
12389  if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12390    SmallVector<ObjCIvarDecl*, 8> ivars;
12391    CollectIvarsToConstructOrDestruct(OID, ivars);
12392    if (ivars.empty())
12393      return;
12394    SmallVector<CXXCtorInitializer*, 32> AllToInit;
12395    for (unsigned i = 0; i < ivars.size(); i++) {
12396      FieldDecl *Field = ivars[i];
12397      if (Field->isInvalidDecl())
12398        continue;
12399
12400      CXXCtorInitializer *Member;
12401      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12402      InitializationKind InitKind =
12403        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12404
12405      InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12406      ExprResult MemberInit =
12407        InitSeq.Perform(*this, InitEntity, InitKind, None);
12408      MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12409      // Note, MemberInit could actually come back empty if no initialization
12410      // is required (e.g., because it would call a trivial default constructor)
12411      if (!MemberInit.get() || MemberInit.isInvalid())
12412        continue;
12413
12414      Member =
12415        new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12416                                         SourceLocation(),
12417                                         MemberInit.takeAs<Expr>(),
12418                                         SourceLocation());
12419      AllToInit.push_back(Member);
12420
12421      // Be sure that the destructor is accessible and is marked as referenced.
12422      if (const RecordType *RecordTy
12423                  = Context.getBaseElementType(Field->getType())
12424                                                        ->getAs<RecordType>()) {
12425                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12426        if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12427          MarkFunctionReferenced(Field->getLocation(), Destructor);
12428          CheckDestructorAccess(Field->getLocation(), Destructor,
12429                            PDiag(diag::err_access_dtor_ivar)
12430                              << Context.getBaseElementType(Field->getType()));
12431        }
12432      }
12433    }
12434    ObjCImplementation->setIvarInitializers(Context,
12435                                            AllToInit.data(), AllToInit.size());
12436  }
12437}
12438
12439static
12440void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12441                           llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12442                           llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12443                           llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12444                           Sema &S) {
12445  if (Ctor->isInvalidDecl())
12446    return;
12447
12448  CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12449
12450  // Target may not be determinable yet, for instance if this is a dependent
12451  // call in an uninstantiated template.
12452  if (Target) {
12453    const FunctionDecl *FNTarget = 0;
12454    (void)Target->hasBody(FNTarget);
12455    Target = const_cast<CXXConstructorDecl*>(
12456      cast_or_null<CXXConstructorDecl>(FNTarget));
12457  }
12458
12459  CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12460                     // Avoid dereferencing a null pointer here.
12461                     *TCanonical = Target ? Target->getCanonicalDecl() : 0;
12462
12463  if (!Current.insert(Canonical))
12464    return;
12465
12466  // We know that beyond here, we aren't chaining into a cycle.
12467  if (!Target || !Target->isDelegatingConstructor() ||
12468      Target->isInvalidDecl() || Valid.count(TCanonical)) {
12469    Valid.insert(Current.begin(), Current.end());
12470    Current.clear();
12471  // We've hit a cycle.
12472  } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12473             Current.count(TCanonical)) {
12474    // If we haven't diagnosed this cycle yet, do so now.
12475    if (!Invalid.count(TCanonical)) {
12476      S.Diag((*Ctor->init_begin())->getSourceLocation(),
12477             diag::warn_delegating_ctor_cycle)
12478        << Ctor;
12479
12480      // Don't add a note for a function delegating directly to itself.
12481      if (TCanonical != Canonical)
12482        S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12483
12484      CXXConstructorDecl *C = Target;
12485      while (C->getCanonicalDecl() != Canonical) {
12486        const FunctionDecl *FNTarget = 0;
12487        (void)C->getTargetConstructor()->hasBody(FNTarget);
12488        assert(FNTarget && "Ctor cycle through bodiless function");
12489
12490        C = const_cast<CXXConstructorDecl*>(
12491          cast<CXXConstructorDecl>(FNTarget));
12492        S.Diag(C->getLocation(), diag::note_which_delegates_to);
12493      }
12494    }
12495
12496    Invalid.insert(Current.begin(), Current.end());
12497    Current.clear();
12498  } else {
12499    DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12500  }
12501}
12502
12503
12504void Sema::CheckDelegatingCtorCycles() {
12505  llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12506
12507  for (DelegatingCtorDeclsType::iterator
12508         I = DelegatingCtorDecls.begin(ExternalSource),
12509         E = DelegatingCtorDecls.end();
12510       I != E; ++I)
12511    DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12512
12513  for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
12514                                                         CE = Invalid.end();
12515       CI != CE; ++CI)
12516    (*CI)->setInvalidDecl();
12517}
12518
12519namespace {
12520  /// \brief AST visitor that finds references to the 'this' expression.
12521  class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12522    Sema &S;
12523
12524  public:
12525    explicit FindCXXThisExpr(Sema &S) : S(S) { }
12526
12527    bool VisitCXXThisExpr(CXXThisExpr *E) {
12528      S.Diag(E->getLocation(), diag::err_this_static_member_func)
12529        << E->isImplicit();
12530      return false;
12531    }
12532  };
12533}
12534
12535bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12536  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12537  if (!TSInfo)
12538    return false;
12539
12540  TypeLoc TL = TSInfo->getTypeLoc();
12541  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12542  if (!ProtoTL)
12543    return false;
12544
12545  // C++11 [expr.prim.general]p3:
12546  //   [The expression this] shall not appear before the optional
12547  //   cv-qualifier-seq and it shall not appear within the declaration of a
12548  //   static member function (although its type and value category are defined
12549  //   within a static member function as they are within a non-static member
12550  //   function). [ Note: this is because declaration matching does not occur
12551  //  until the complete declarator is known. - end note ]
12552  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12553  FindCXXThisExpr Finder(*this);
12554
12555  // If the return type came after the cv-qualifier-seq, check it now.
12556  if (Proto->hasTrailingReturn() &&
12557      !Finder.TraverseTypeLoc(ProtoTL.getResultLoc()))
12558    return true;
12559
12560  // Check the exception specification.
12561  if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12562    return true;
12563
12564  return checkThisInStaticMemberFunctionAttributes(Method);
12565}
12566
12567bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12568  TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12569  if (!TSInfo)
12570    return false;
12571
12572  TypeLoc TL = TSInfo->getTypeLoc();
12573  FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12574  if (!ProtoTL)
12575    return false;
12576
12577  const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12578  FindCXXThisExpr Finder(*this);
12579
12580  switch (Proto->getExceptionSpecType()) {
12581  case EST_Uninstantiated:
12582  case EST_Unevaluated:
12583  case EST_BasicNoexcept:
12584  case EST_DynamicNone:
12585  case EST_MSAny:
12586  case EST_None:
12587    break;
12588
12589  case EST_ComputedNoexcept:
12590    if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12591      return true;
12592
12593  case EST_Dynamic:
12594    for (FunctionProtoType::exception_iterator E = Proto->exception_begin(),
12595         EEnd = Proto->exception_end();
12596         E != EEnd; ++E) {
12597      if (!Finder.TraverseType(*E))
12598        return true;
12599    }
12600    break;
12601  }
12602
12603  return false;
12604}
12605
12606bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12607  FindCXXThisExpr Finder(*this);
12608
12609  // Check attributes.
12610  for (Decl::attr_iterator A = Method->attr_begin(), AEnd = Method->attr_end();
12611       A != AEnd; ++A) {
12612    // FIXME: This should be emitted by tblgen.
12613    Expr *Arg = 0;
12614    ArrayRef<Expr *> Args;
12615    if (GuardedByAttr *G = dyn_cast<GuardedByAttr>(*A))
12616      Arg = G->getArg();
12617    else if (PtGuardedByAttr *G = dyn_cast<PtGuardedByAttr>(*A))
12618      Arg = G->getArg();
12619    else if (AcquiredAfterAttr *AA = dyn_cast<AcquiredAfterAttr>(*A))
12620      Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12621    else if (AcquiredBeforeAttr *AB = dyn_cast<AcquiredBeforeAttr>(*A))
12622      Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12623    else if (ExclusiveLockFunctionAttr *ELF
12624               = dyn_cast<ExclusiveLockFunctionAttr>(*A))
12625      Args = ArrayRef<Expr *>(ELF->args_begin(), ELF->args_size());
12626    else if (SharedLockFunctionAttr *SLF
12627               = dyn_cast<SharedLockFunctionAttr>(*A))
12628      Args = ArrayRef<Expr *>(SLF->args_begin(), SLF->args_size());
12629    else if (ExclusiveTrylockFunctionAttr *ETLF
12630               = dyn_cast<ExclusiveTrylockFunctionAttr>(*A)) {
12631      Arg = ETLF->getSuccessValue();
12632      Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12633    } else if (SharedTrylockFunctionAttr *STLF
12634                 = dyn_cast<SharedTrylockFunctionAttr>(*A)) {
12635      Arg = STLF->getSuccessValue();
12636      Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12637    } else if (UnlockFunctionAttr *UF = dyn_cast<UnlockFunctionAttr>(*A))
12638      Args = ArrayRef<Expr *>(UF->args_begin(), UF->args_size());
12639    else if (LockReturnedAttr *LR = dyn_cast<LockReturnedAttr>(*A))
12640      Arg = LR->getArg();
12641    else if (LocksExcludedAttr *LE = dyn_cast<LocksExcludedAttr>(*A))
12642      Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12643    else if (ExclusiveLocksRequiredAttr *ELR
12644               = dyn_cast<ExclusiveLocksRequiredAttr>(*A))
12645      Args = ArrayRef<Expr *>(ELR->args_begin(), ELR->args_size());
12646    else if (SharedLocksRequiredAttr *SLR
12647               = dyn_cast<SharedLocksRequiredAttr>(*A))
12648      Args = ArrayRef<Expr *>(SLR->args_begin(), SLR->args_size());
12649
12650    if (Arg && !Finder.TraverseStmt(Arg))
12651      return true;
12652
12653    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12654      if (!Finder.TraverseStmt(Args[I]))
12655        return true;
12656    }
12657  }
12658
12659  return false;
12660}
12661
12662void
12663Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12664                                  ArrayRef<ParsedType> DynamicExceptions,
12665                                  ArrayRef<SourceRange> DynamicExceptionRanges,
12666                                  Expr *NoexceptExpr,
12667                                  SmallVectorImpl<QualType> &Exceptions,
12668                                  FunctionProtoType::ExtProtoInfo &EPI) {
12669  Exceptions.clear();
12670  EPI.ExceptionSpecType = EST;
12671  if (EST == EST_Dynamic) {
12672    Exceptions.reserve(DynamicExceptions.size());
12673    for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12674      // FIXME: Preserve type source info.
12675      QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12676
12677      SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12678      collectUnexpandedParameterPacks(ET, Unexpanded);
12679      if (!Unexpanded.empty()) {
12680        DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12681                                         UPPC_ExceptionType,
12682                                         Unexpanded);
12683        continue;
12684      }
12685
12686      // Check that the type is valid for an exception spec, and
12687      // drop it if not.
12688      if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12689        Exceptions.push_back(ET);
12690    }
12691    EPI.NumExceptions = Exceptions.size();
12692    EPI.Exceptions = Exceptions.data();
12693    return;
12694  }
12695
12696  if (EST == EST_ComputedNoexcept) {
12697    // If an error occurred, there's no expression here.
12698    if (NoexceptExpr) {
12699      assert((NoexceptExpr->isTypeDependent() ||
12700              NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
12701              Context.BoolTy) &&
12702             "Parser should have made sure that the expression is boolean");
12703      if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
12704        EPI.ExceptionSpecType = EST_BasicNoexcept;
12705        return;
12706      }
12707
12708      if (!NoexceptExpr->isValueDependent())
12709        NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, 0,
12710                         diag::err_noexcept_needs_constant_expression,
12711                         /*AllowFold*/ false).take();
12712      EPI.NoexceptExpr = NoexceptExpr;
12713    }
12714    return;
12715  }
12716}
12717
12718/// IdentifyCUDATarget - Determine the CUDA compilation target for this function
12719Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
12720  // Implicitly declared functions (e.g. copy constructors) are
12721  // __host__ __device__
12722  if (D->isImplicit())
12723    return CFT_HostDevice;
12724
12725  if (D->hasAttr<CUDAGlobalAttr>())
12726    return CFT_Global;
12727
12728  if (D->hasAttr<CUDADeviceAttr>()) {
12729    if (D->hasAttr<CUDAHostAttr>())
12730      return CFT_HostDevice;
12731    return CFT_Device;
12732  }
12733
12734  return CFT_Host;
12735}
12736
12737bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
12738                           CUDAFunctionTarget CalleeTarget) {
12739  // CUDA B.1.1 "The __device__ qualifier declares a function that is...
12740  // Callable from the device only."
12741  if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
12742    return true;
12743
12744  // CUDA B.1.2 "The __global__ qualifier declares a function that is...
12745  // Callable from the host only."
12746  // CUDA B.1.3 "The __host__ qualifier declares a function that is...
12747  // Callable from the host only."
12748  if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
12749      (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
12750    return true;
12751
12752  if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
12753    return true;
12754
12755  return false;
12756}
12757
12758/// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
12759///
12760MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
12761                                       SourceLocation DeclStart,
12762                                       Declarator &D, Expr *BitWidth,
12763                                       InClassInitStyle InitStyle,
12764                                       AccessSpecifier AS,
12765                                       AttributeList *MSPropertyAttr) {
12766  IdentifierInfo *II = D.getIdentifier();
12767  if (!II) {
12768    Diag(DeclStart, diag::err_anonymous_property);
12769    return NULL;
12770  }
12771  SourceLocation Loc = D.getIdentifierLoc();
12772
12773  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12774  QualType T = TInfo->getType();
12775  if (getLangOpts().CPlusPlus) {
12776    CheckExtraCXXDefaultArguments(D);
12777
12778    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
12779                                        UPPC_DataMemberType)) {
12780      D.setInvalidType();
12781      T = Context.IntTy;
12782      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
12783    }
12784  }
12785
12786  DiagnoseFunctionSpecifiers(D.getDeclSpec());
12787
12788  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
12789    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
12790         diag::err_invalid_thread)
12791      << DeclSpec::getSpecifierName(TSCS);
12792
12793  // Check to see if this name was declared as a member previously
12794  NamedDecl *PrevDecl = 0;
12795  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
12796  LookupName(Previous, S);
12797  switch (Previous.getResultKind()) {
12798  case LookupResult::Found:
12799  case LookupResult::FoundUnresolvedValue:
12800    PrevDecl = Previous.getAsSingle<NamedDecl>();
12801    break;
12802
12803  case LookupResult::FoundOverloaded:
12804    PrevDecl = Previous.getRepresentativeDecl();
12805    break;
12806
12807  case LookupResult::NotFound:
12808  case LookupResult::NotFoundInCurrentInstantiation:
12809  case LookupResult::Ambiguous:
12810    break;
12811  }
12812
12813  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12814    // Maybe we will complain about the shadowed template parameter.
12815    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12816    // Just pretend that we didn't see the previous declaration.
12817    PrevDecl = 0;
12818  }
12819
12820  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
12821    PrevDecl = 0;
12822
12823  SourceLocation TSSL = D.getLocStart();
12824  MSPropertyDecl *NewPD;
12825  const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
12826  NewPD = new (Context) MSPropertyDecl(Record, Loc,
12827                                       II, T, TInfo, TSSL,
12828                                       Data.GetterId, Data.SetterId);
12829  ProcessDeclAttributes(TUScope, NewPD, D);
12830  NewPD->setAccess(AS);
12831
12832  if (NewPD->isInvalidDecl())
12833    Record->setInvalidDecl();
12834
12835  if (D.getDeclSpec().isModulePrivateSpecified())
12836    NewPD->setModulePrivate();
12837
12838  if (NewPD->isInvalidDecl() && PrevDecl) {
12839    // Don't introduce NewFD into scope; there's already something
12840    // with the same name in the same scope.
12841  } else if (II) {
12842    PushOnScopeChains(NewPD, S);
12843  } else
12844    Record->addDecl(NewPD);
12845
12846  return NewPD;
12847}
12848