SemaDeclCXX.cpp revision fb2db4657dc1e305c98d0c48fb1009a9f65b337a
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/StmtVisitor.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/AST/TypeOrdering.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include <map>
32#include <set>
33
34using namespace clang;
35
36//===----------------------------------------------------------------------===//
37// CheckDefaultArgumentVisitor
38//===----------------------------------------------------------------------===//
39
40namespace {
41  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
42  /// the default argument of a parameter to determine whether it
43  /// contains any ill-formed subexpressions. For example, this will
44  /// diagnose the use of local variables or parameters within the
45  /// default argument expression.
46  class CheckDefaultArgumentVisitor
47    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
48    Expr *DefaultArg;
49    Sema *S;
50
51  public:
52    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
53      : DefaultArg(defarg), S(s) {}
54
55    bool VisitExpr(Expr *Node);
56    bool VisitDeclRefExpr(DeclRefExpr *DRE);
57    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
58  };
59
60  /// VisitExpr - Visit all of the children of this expression.
61  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
62    bool IsInvalid = false;
63    for (Stmt::child_iterator I = Node->child_begin(),
64         E = Node->child_end(); I != E; ++I)
65      IsInvalid |= Visit(*I);
66    return IsInvalid;
67  }
68
69  /// VisitDeclRefExpr - Visit a reference to a declaration, to
70  /// determine whether this declaration can be used in the default
71  /// argument expression.
72  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
73    NamedDecl *Decl = DRE->getDecl();
74    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
75      // C++ [dcl.fct.default]p9
76      //   Default arguments are evaluated each time the function is
77      //   called. The order of evaluation of function arguments is
78      //   unspecified. Consequently, parameters of a function shall not
79      //   be used in default argument expressions, even if they are not
80      //   evaluated. Parameters of a function declared before a default
81      //   argument expression are in scope and can hide namespace and
82      //   class member names.
83      return S->Diag(DRE->getSourceRange().getBegin(),
84                     diag::err_param_default_argument_references_param)
85         << Param->getDeclName() << DefaultArg->getSourceRange();
86    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
87      // C++ [dcl.fct.default]p7
88      //   Local variables shall not be used in default argument
89      //   expressions.
90      if (VDecl->isBlockVarDecl())
91        return S->Diag(DRE->getSourceRange().getBegin(),
92                       diag::err_param_default_argument_references_local)
93          << VDecl->getDeclName() << DefaultArg->getSourceRange();
94    }
95
96    return false;
97  }
98
99  /// VisitCXXThisExpr - Visit a C++ "this" expression.
100  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
101    // C++ [dcl.fct.default]p8:
102    //   The keyword this shall not be used in a default argument of a
103    //   member function.
104    return S->Diag(ThisE->getSourceRange().getBegin(),
105                   diag::err_param_default_argument_references_this)
106               << ThisE->getSourceRange();
107  }
108}
109
110bool
111Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
112                              SourceLocation EqualLoc) {
113  if (RequireCompleteType(Param->getLocation(), Param->getType(),
114                          diag::err_typecheck_decl_incomplete_type)) {
115    Param->setInvalidDecl();
116    return true;
117  }
118
119  Expr *Arg = (Expr *)DefaultArg.get();
120
121  // C++ [dcl.fct.default]p5
122  //   A default argument expression is implicitly converted (clause
123  //   4) to the parameter type. The default argument expression has
124  //   the same semantic constraints as the initializer expression in
125  //   a declaration of a variable of the parameter type, using the
126  //   copy-initialization semantics (8.5).
127  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
128  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
129                                                           EqualLoc);
130  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
131  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
132                                          MultiExprArg(*this, (void**)&Arg, 1));
133  if (Result.isInvalid())
134    return true;
135  Arg = Result.takeAs<Expr>();
136
137  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
138
139  // Okay: add the default argument to the parameter
140  Param->setDefaultArg(Arg);
141
142  DefaultArg.release();
143
144  return false;
145}
146
147/// ActOnParamDefaultArgument - Check whether the default argument
148/// provided for a function parameter is well-formed. If so, attach it
149/// to the parameter declaration.
150void
151Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
152                                ExprArg defarg) {
153  if (!param || !defarg.get())
154    return;
155
156  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
157  UnparsedDefaultArgLocs.erase(Param);
158
159  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
160
161  // Default arguments are only permitted in C++
162  if (!getLangOptions().CPlusPlus) {
163    Diag(EqualLoc, diag::err_param_default_argument)
164      << DefaultArg->getSourceRange();
165    Param->setInvalidDecl();
166    return;
167  }
168
169  // Check that the default argument is well-formed
170  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
171  if (DefaultArgChecker.Visit(DefaultArg.get())) {
172    Param->setInvalidDecl();
173    return;
174  }
175
176  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
177}
178
179/// ActOnParamUnparsedDefaultArgument - We've seen a default
180/// argument for a function parameter, but we can't parse it yet
181/// because we're inside a class definition. Note that this default
182/// argument will be parsed later.
183void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
184                                             SourceLocation EqualLoc,
185                                             SourceLocation ArgLoc) {
186  if (!param)
187    return;
188
189  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
190  if (Param)
191    Param->setUnparsedDefaultArg();
192
193  UnparsedDefaultArgLocs[Param] = ArgLoc;
194}
195
196/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
197/// the default argument for the parameter param failed.
198void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
199  if (!param)
200    return;
201
202  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
203
204  Param->setInvalidDecl();
205
206  UnparsedDefaultArgLocs.erase(Param);
207}
208
209/// CheckExtraCXXDefaultArguments - Check for any extra default
210/// arguments in the declarator, which is not a function declaration
211/// or definition and therefore is not permitted to have default
212/// arguments. This routine should be invoked for every declarator
213/// that is not a function declaration or definition.
214void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
215  // C++ [dcl.fct.default]p3
216  //   A default argument expression shall be specified only in the
217  //   parameter-declaration-clause of a function declaration or in a
218  //   template-parameter (14.1). It shall not be specified for a
219  //   parameter pack. If it is specified in a
220  //   parameter-declaration-clause, it shall not occur within a
221  //   declarator or abstract-declarator of a parameter-declaration.
222  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
223    DeclaratorChunk &chunk = D.getTypeObject(i);
224    if (chunk.Kind == DeclaratorChunk::Function) {
225      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
226        ParmVarDecl *Param =
227          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
228        if (Param->hasUnparsedDefaultArg()) {
229          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
230          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
231            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
232          delete Toks;
233          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
234        } else if (Param->getDefaultArg()) {
235          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
236            << Param->getDefaultArg()->getSourceRange();
237          Param->setDefaultArg(0);
238        }
239      }
240    }
241  }
242}
243
244// MergeCXXFunctionDecl - Merge two declarations of the same C++
245// function, once we already know that they have the same
246// type. Subroutine of MergeFunctionDecl. Returns true if there was an
247// error, false otherwise.
248bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
249  bool Invalid = false;
250
251  // C++ [dcl.fct.default]p4:
252  //   For non-template functions, default arguments can be added in
253  //   later declarations of a function in the same
254  //   scope. Declarations in different scopes have completely
255  //   distinct sets of default arguments. That is, declarations in
256  //   inner scopes do not acquire default arguments from
257  //   declarations in outer scopes, and vice versa. In a given
258  //   function declaration, all parameters subsequent to a
259  //   parameter with a default argument shall have default
260  //   arguments supplied in this or previous declarations. A
261  //   default argument shall not be redefined by a later
262  //   declaration (not even to the same value).
263  //
264  // C++ [dcl.fct.default]p6:
265  //   Except for member functions of class templates, the default arguments
266  //   in a member function definition that appears outside of the class
267  //   definition are added to the set of default arguments provided by the
268  //   member function declaration in the class definition.
269  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
270    ParmVarDecl *OldParam = Old->getParamDecl(p);
271    ParmVarDecl *NewParam = New->getParamDecl(p);
272
273    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
274      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
275      // hint here. Alternatively, we could walk the type-source information
276      // for NewParam to find the last source location in the type... but it
277      // isn't worth the effort right now. This is the kind of test case that
278      // is hard to get right:
279
280      //   int f(int);
281      //   void g(int (*fp)(int) = f);
282      //   void g(int (*fp)(int) = &f);
283      Diag(NewParam->getLocation(),
284           diag::err_param_default_argument_redefinition)
285        << NewParam->getDefaultArgRange();
286
287      // Look for the function declaration where the default argument was
288      // actually written, which may be a declaration prior to Old.
289      for (FunctionDecl *Older = Old->getPreviousDeclaration();
290           Older; Older = Older->getPreviousDeclaration()) {
291        if (!Older->getParamDecl(p)->hasDefaultArg())
292          break;
293
294        OldParam = Older->getParamDecl(p);
295      }
296
297      Diag(OldParam->getLocation(), diag::note_previous_definition)
298        << OldParam->getDefaultArgRange();
299      Invalid = true;
300    } else if (OldParam->hasDefaultArg()) {
301      // Merge the old default argument into the new parameter.
302      // It's important to use getInit() here;  getDefaultArg()
303      // strips off any top-level CXXExprWithTemporaries.
304      NewParam->setHasInheritedDefaultArg();
305      if (OldParam->hasUninstantiatedDefaultArg())
306        NewParam->setUninstantiatedDefaultArg(
307                                      OldParam->getUninstantiatedDefaultArg());
308      else
309        NewParam->setDefaultArg(OldParam->getInit());
310    } else if (NewParam->hasDefaultArg()) {
311      if (New->getDescribedFunctionTemplate()) {
312        // Paragraph 4, quoted above, only applies to non-template functions.
313        Diag(NewParam->getLocation(),
314             diag::err_param_default_argument_template_redecl)
315          << NewParam->getDefaultArgRange();
316        Diag(Old->getLocation(), diag::note_template_prev_declaration)
317          << false;
318      } else if (New->getTemplateSpecializationKind()
319                   != TSK_ImplicitInstantiation &&
320                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
321        // C++ [temp.expr.spec]p21:
322        //   Default function arguments shall not be specified in a declaration
323        //   or a definition for one of the following explicit specializations:
324        //     - the explicit specialization of a function template;
325        //     - the explicit specialization of a member function template;
326        //     - the explicit specialization of a member function of a class
327        //       template where the class template specialization to which the
328        //       member function specialization belongs is implicitly
329        //       instantiated.
330        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
331          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
332          << New->getDeclName()
333          << NewParam->getDefaultArgRange();
334      } else if (New->getDeclContext()->isDependentContext()) {
335        // C++ [dcl.fct.default]p6 (DR217):
336        //   Default arguments for a member function of a class template shall
337        //   be specified on the initial declaration of the member function
338        //   within the class template.
339        //
340        // Reading the tea leaves a bit in DR217 and its reference to DR205
341        // leads me to the conclusion that one cannot add default function
342        // arguments for an out-of-line definition of a member function of a
343        // dependent type.
344        int WhichKind = 2;
345        if (CXXRecordDecl *Record
346              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
347          if (Record->getDescribedClassTemplate())
348            WhichKind = 0;
349          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
350            WhichKind = 1;
351          else
352            WhichKind = 2;
353        }
354
355        Diag(NewParam->getLocation(),
356             diag::err_param_default_argument_member_template_redecl)
357          << WhichKind
358          << NewParam->getDefaultArgRange();
359      }
360    }
361  }
362
363  if (CheckEquivalentExceptionSpec(Old, New))
364    Invalid = true;
365
366  return Invalid;
367}
368
369/// CheckCXXDefaultArguments - Verify that the default arguments for a
370/// function declaration are well-formed according to C++
371/// [dcl.fct.default].
372void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
373  unsigned NumParams = FD->getNumParams();
374  unsigned p;
375
376  // Find first parameter with a default argument
377  for (p = 0; p < NumParams; ++p) {
378    ParmVarDecl *Param = FD->getParamDecl(p);
379    if (Param->hasDefaultArg())
380      break;
381  }
382
383  // C++ [dcl.fct.default]p4:
384  //   In a given function declaration, all parameters
385  //   subsequent to a parameter with a default argument shall
386  //   have default arguments supplied in this or previous
387  //   declarations. A default argument shall not be redefined
388  //   by a later declaration (not even to the same value).
389  unsigned LastMissingDefaultArg = 0;
390  for (; p < NumParams; ++p) {
391    ParmVarDecl *Param = FD->getParamDecl(p);
392    if (!Param->hasDefaultArg()) {
393      if (Param->isInvalidDecl())
394        /* We already complained about this parameter. */;
395      else if (Param->getIdentifier())
396        Diag(Param->getLocation(),
397             diag::err_param_default_argument_missing_name)
398          << Param->getIdentifier();
399      else
400        Diag(Param->getLocation(),
401             diag::err_param_default_argument_missing);
402
403      LastMissingDefaultArg = p;
404    }
405  }
406
407  if (LastMissingDefaultArg > 0) {
408    // Some default arguments were missing. Clear out all of the
409    // default arguments up to (and including) the last missing
410    // default argument, so that we leave the function parameters
411    // in a semantically valid state.
412    for (p = 0; p <= LastMissingDefaultArg; ++p) {
413      ParmVarDecl *Param = FD->getParamDecl(p);
414      if (Param->hasDefaultArg()) {
415        if (!Param->hasUnparsedDefaultArg())
416          Param->getDefaultArg()->Destroy(Context);
417        Param->setDefaultArg(0);
418      }
419    }
420  }
421}
422
423/// isCurrentClassName - Determine whether the identifier II is the
424/// name of the class type currently being defined. In the case of
425/// nested classes, this will only return true if II is the name of
426/// the innermost class.
427bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
428                              const CXXScopeSpec *SS) {
429  assert(getLangOptions().CPlusPlus && "No class names in C!");
430
431  CXXRecordDecl *CurDecl;
432  if (SS && SS->isSet() && !SS->isInvalid()) {
433    DeclContext *DC = computeDeclContext(*SS, true);
434    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
435  } else
436    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
437
438  if (CurDecl && CurDecl->getIdentifier())
439    return &II == CurDecl->getIdentifier();
440  else
441    return false;
442}
443
444/// \brief Check the validity of a C++ base class specifier.
445///
446/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
447/// and returns NULL otherwise.
448CXXBaseSpecifier *
449Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
450                         SourceRange SpecifierRange,
451                         bool Virtual, AccessSpecifier Access,
452                         QualType BaseType,
453                         SourceLocation BaseLoc) {
454  // C++ [class.union]p1:
455  //   A union shall not have base classes.
456  if (Class->isUnion()) {
457    Diag(Class->getLocation(), diag::err_base_clause_on_union)
458      << SpecifierRange;
459    return 0;
460  }
461
462  if (BaseType->isDependentType())
463    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
464                                Class->getTagKind() == TTK_Class,
465                                Access, BaseType);
466
467  // Base specifiers must be record types.
468  if (!BaseType->isRecordType()) {
469    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
470    return 0;
471  }
472
473  // C++ [class.union]p1:
474  //   A union shall not be used as a base class.
475  if (BaseType->isUnionType()) {
476    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
477    return 0;
478  }
479
480  // C++ [class.derived]p2:
481  //   The class-name in a base-specifier shall not be an incompletely
482  //   defined class.
483  if (RequireCompleteType(BaseLoc, BaseType,
484                          PDiag(diag::err_incomplete_base_class)
485                            << SpecifierRange))
486    return 0;
487
488  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
489  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
490  assert(BaseDecl && "Record type has no declaration");
491  BaseDecl = BaseDecl->getDefinition();
492  assert(BaseDecl && "Base type is not incomplete, but has no definition");
493  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
494  assert(CXXBaseDecl && "Base type is not a C++ type");
495
496  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
497  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
498    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
499    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
500      << BaseType;
501    return 0;
502  }
503
504  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
505
506  // Create the base specifier.
507  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
508                              Class->getTagKind() == TTK_Class,
509                              Access, BaseType);
510}
511
512void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
513                                          const CXXRecordDecl *BaseClass,
514                                          bool BaseIsVirtual) {
515  // A class with a non-empty base class is not empty.
516  // FIXME: Standard ref?
517  if (!BaseClass->isEmpty())
518    Class->setEmpty(false);
519
520  // C++ [class.virtual]p1:
521  //   A class that [...] inherits a virtual function is called a polymorphic
522  //   class.
523  if (BaseClass->isPolymorphic())
524    Class->setPolymorphic(true);
525
526  // C++ [dcl.init.aggr]p1:
527  //   An aggregate is [...] a class with [...] no base classes [...].
528  Class->setAggregate(false);
529
530  // C++ [class]p4:
531  //   A POD-struct is an aggregate class...
532  Class->setPOD(false);
533
534  if (BaseIsVirtual) {
535    // C++ [class.ctor]p5:
536    //   A constructor is trivial if its class has no virtual base classes.
537    Class->setHasTrivialConstructor(false);
538
539    // C++ [class.copy]p6:
540    //   A copy constructor is trivial if its class has no virtual base classes.
541    Class->setHasTrivialCopyConstructor(false);
542
543    // C++ [class.copy]p11:
544    //   A copy assignment operator is trivial if its class has no virtual
545    //   base classes.
546    Class->setHasTrivialCopyAssignment(false);
547
548    // C++0x [meta.unary.prop] is_empty:
549    //    T is a class type, but not a union type, with ... no virtual base
550    //    classes
551    Class->setEmpty(false);
552  } else {
553    // C++ [class.ctor]p5:
554    //   A constructor is trivial if all the direct base classes of its
555    //   class have trivial constructors.
556    if (!BaseClass->hasTrivialConstructor())
557      Class->setHasTrivialConstructor(false);
558
559    // C++ [class.copy]p6:
560    //   A copy constructor is trivial if all the direct base classes of its
561    //   class have trivial copy constructors.
562    if (!BaseClass->hasTrivialCopyConstructor())
563      Class->setHasTrivialCopyConstructor(false);
564
565    // C++ [class.copy]p11:
566    //   A copy assignment operator is trivial if all the direct base classes
567    //   of its class have trivial copy assignment operators.
568    if (!BaseClass->hasTrivialCopyAssignment())
569      Class->setHasTrivialCopyAssignment(false);
570  }
571
572  // C++ [class.ctor]p3:
573  //   A destructor is trivial if all the direct base classes of its class
574  //   have trivial destructors.
575  if (!BaseClass->hasTrivialDestructor())
576    Class->setHasTrivialDestructor(false);
577}
578
579/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
580/// one entry in the base class list of a class specifier, for
581/// example:
582///    class foo : public bar, virtual private baz {
583/// 'public bar' and 'virtual private baz' are each base-specifiers.
584Sema::BaseResult
585Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
586                         bool Virtual, AccessSpecifier Access,
587                         TypeTy *basetype, SourceLocation BaseLoc) {
588  if (!classdecl)
589    return true;
590
591  AdjustDeclIfTemplate(classdecl);
592  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
593  if (!Class)
594    return true;
595
596  QualType BaseType = GetTypeFromParser(basetype);
597  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
598                                                      Virtual, Access,
599                                                      BaseType, BaseLoc))
600    return BaseSpec;
601
602  return true;
603}
604
605/// \brief Performs the actual work of attaching the given base class
606/// specifiers to a C++ class.
607bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
608                                unsigned NumBases) {
609 if (NumBases == 0)
610    return false;
611
612  // Used to keep track of which base types we have already seen, so
613  // that we can properly diagnose redundant direct base types. Note
614  // that the key is always the unqualified canonical type of the base
615  // class.
616  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
617
618  // Copy non-redundant base specifiers into permanent storage.
619  unsigned NumGoodBases = 0;
620  bool Invalid = false;
621  for (unsigned idx = 0; idx < NumBases; ++idx) {
622    QualType NewBaseType
623      = Context.getCanonicalType(Bases[idx]->getType());
624    NewBaseType = NewBaseType.getLocalUnqualifiedType();
625    if (!Class->hasObjectMember()) {
626      if (const RecordType *FDTTy =
627            NewBaseType.getTypePtr()->getAs<RecordType>())
628        if (FDTTy->getDecl()->hasObjectMember())
629          Class->setHasObjectMember(true);
630    }
631
632    if (KnownBaseTypes[NewBaseType]) {
633      // C++ [class.mi]p3:
634      //   A class shall not be specified as a direct base class of a
635      //   derived class more than once.
636      Diag(Bases[idx]->getSourceRange().getBegin(),
637           diag::err_duplicate_base_class)
638        << KnownBaseTypes[NewBaseType]->getType()
639        << Bases[idx]->getSourceRange();
640
641      // Delete the duplicate base class specifier; we're going to
642      // overwrite its pointer later.
643      Context.Deallocate(Bases[idx]);
644
645      Invalid = true;
646    } else {
647      // Okay, add this new base class.
648      KnownBaseTypes[NewBaseType] = Bases[idx];
649      Bases[NumGoodBases++] = Bases[idx];
650    }
651  }
652
653  // Attach the remaining base class specifiers to the derived class.
654  Class->setBases(Bases, NumGoodBases);
655
656  // Delete the remaining (good) base class specifiers, since their
657  // data has been copied into the CXXRecordDecl.
658  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
659    Context.Deallocate(Bases[idx]);
660
661  return Invalid;
662}
663
664/// ActOnBaseSpecifiers - Attach the given base specifiers to the
665/// class, after checking whether there are any duplicate base
666/// classes.
667void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
668                               unsigned NumBases) {
669  if (!ClassDecl || !Bases || !NumBases)
670    return;
671
672  AdjustDeclIfTemplate(ClassDecl);
673  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
674                       (CXXBaseSpecifier**)(Bases), NumBases);
675}
676
677static CXXRecordDecl *GetClassForType(QualType T) {
678  if (const RecordType *RT = T->getAs<RecordType>())
679    return cast<CXXRecordDecl>(RT->getDecl());
680  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
681    return ICT->getDecl();
682  else
683    return 0;
684}
685
686/// \brief Determine whether the type \p Derived is a C++ class that is
687/// derived from the type \p Base.
688bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
689  if (!getLangOptions().CPlusPlus)
690    return false;
691
692  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
693  if (!DerivedRD)
694    return false;
695
696  CXXRecordDecl *BaseRD = GetClassForType(Base);
697  if (!BaseRD)
698    return false;
699
700  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
701  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
702}
703
704/// \brief Determine whether the type \p Derived is a C++ class that is
705/// derived from the type \p Base.
706bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
707  if (!getLangOptions().CPlusPlus)
708    return false;
709
710  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
711  if (!DerivedRD)
712    return false;
713
714  CXXRecordDecl *BaseRD = GetClassForType(Base);
715  if (!BaseRD)
716    return false;
717
718  return DerivedRD->isDerivedFrom(BaseRD, Paths);
719}
720
721void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
722                              CXXBaseSpecifierArray &BasePathArray) {
723  assert(BasePathArray.empty() && "Base path array must be empty!");
724  assert(Paths.isRecordingPaths() && "Must record paths!");
725
726  const CXXBasePath &Path = Paths.front();
727
728  // We first go backward and check if we have a virtual base.
729  // FIXME: It would be better if CXXBasePath had the base specifier for
730  // the nearest virtual base.
731  unsigned Start = 0;
732  for (unsigned I = Path.size(); I != 0; --I) {
733    if (Path[I - 1].Base->isVirtual()) {
734      Start = I - 1;
735      break;
736    }
737  }
738
739  // Now add all bases.
740  for (unsigned I = Start, E = Path.size(); I != E; ++I)
741    BasePathArray.push_back(Path[I].Base);
742}
743
744/// \brief Determine whether the given base path includes a virtual
745/// base class.
746bool Sema::BasePathInvolvesVirtualBase(const CXXBaseSpecifierArray &BasePath) {
747  for (CXXBaseSpecifierArray::iterator B = BasePath.begin(),
748                                    BEnd = BasePath.end();
749       B != BEnd; ++B)
750    if ((*B)->isVirtual())
751      return true;
752
753  return false;
754}
755
756/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
757/// conversion (where Derived and Base are class types) is
758/// well-formed, meaning that the conversion is unambiguous (and
759/// that all of the base classes are accessible). Returns true
760/// and emits a diagnostic if the code is ill-formed, returns false
761/// otherwise. Loc is the location where this routine should point to
762/// if there is an error, and Range is the source range to highlight
763/// if there is an error.
764bool
765Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
766                                   unsigned InaccessibleBaseID,
767                                   unsigned AmbigiousBaseConvID,
768                                   SourceLocation Loc, SourceRange Range,
769                                   DeclarationName Name,
770                                   CXXBaseSpecifierArray *BasePath) {
771  // First, determine whether the path from Derived to Base is
772  // ambiguous. This is slightly more expensive than checking whether
773  // the Derived to Base conversion exists, because here we need to
774  // explore multiple paths to determine if there is an ambiguity.
775  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
776                     /*DetectVirtual=*/false);
777  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
778  assert(DerivationOkay &&
779         "Can only be used with a derived-to-base conversion");
780  (void)DerivationOkay;
781
782  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
783    if (InaccessibleBaseID) {
784      // Check that the base class can be accessed.
785      switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
786                                   InaccessibleBaseID)) {
787        case AR_inaccessible:
788          return true;
789        case AR_accessible:
790        case AR_dependent:
791        case AR_delayed:
792          break;
793      }
794    }
795
796    // Build a base path if necessary.
797    if (BasePath)
798      BuildBasePathArray(Paths, *BasePath);
799    return false;
800  }
801
802  // We know that the derived-to-base conversion is ambiguous, and
803  // we're going to produce a diagnostic. Perform the derived-to-base
804  // search just one more time to compute all of the possible paths so
805  // that we can print them out. This is more expensive than any of
806  // the previous derived-to-base checks we've done, but at this point
807  // performance isn't as much of an issue.
808  Paths.clear();
809  Paths.setRecordingPaths(true);
810  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
811  assert(StillOkay && "Can only be used with a derived-to-base conversion");
812  (void)StillOkay;
813
814  // Build up a textual representation of the ambiguous paths, e.g.,
815  // D -> B -> A, that will be used to illustrate the ambiguous
816  // conversions in the diagnostic. We only print one of the paths
817  // to each base class subobject.
818  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
819
820  Diag(Loc, AmbigiousBaseConvID)
821  << Derived << Base << PathDisplayStr << Range << Name;
822  return true;
823}
824
825bool
826Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
827                                   SourceLocation Loc, SourceRange Range,
828                                   CXXBaseSpecifierArray *BasePath,
829                                   bool IgnoreAccess) {
830  return CheckDerivedToBaseConversion(Derived, Base,
831                                      IgnoreAccess ? 0
832                                       : diag::err_upcast_to_inaccessible_base,
833                                      diag::err_ambiguous_derived_to_base_conv,
834                                      Loc, Range, DeclarationName(),
835                                      BasePath);
836}
837
838
839/// @brief Builds a string representing ambiguous paths from a
840/// specific derived class to different subobjects of the same base
841/// class.
842///
843/// This function builds a string that can be used in error messages
844/// to show the different paths that one can take through the
845/// inheritance hierarchy to go from the derived class to different
846/// subobjects of a base class. The result looks something like this:
847/// @code
848/// struct D -> struct B -> struct A
849/// struct D -> struct C -> struct A
850/// @endcode
851std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
852  std::string PathDisplayStr;
853  std::set<unsigned> DisplayedPaths;
854  for (CXXBasePaths::paths_iterator Path = Paths.begin();
855       Path != Paths.end(); ++Path) {
856    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
857      // We haven't displayed a path to this particular base
858      // class subobject yet.
859      PathDisplayStr += "\n    ";
860      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
861      for (CXXBasePath::const_iterator Element = Path->begin();
862           Element != Path->end(); ++Element)
863        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
864    }
865  }
866
867  return PathDisplayStr;
868}
869
870//===----------------------------------------------------------------------===//
871// C++ class member Handling
872//===----------------------------------------------------------------------===//
873
874/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
875/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
876/// bitfield width if there is one and 'InitExpr' specifies the initializer if
877/// any.
878Sema::DeclPtrTy
879Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
880                               MultiTemplateParamsArg TemplateParameterLists,
881                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
882                               bool Deleted) {
883  const DeclSpec &DS = D.getDeclSpec();
884  DeclarationName Name = GetNameForDeclarator(D);
885  Expr *BitWidth = static_cast<Expr*>(BW);
886  Expr *Init = static_cast<Expr*>(InitExpr);
887  SourceLocation Loc = D.getIdentifierLoc();
888
889  bool isFunc = D.isFunctionDeclarator();
890
891  assert(!DS.isFriendSpecified());
892
893  // C++ 9.2p6: A member shall not be declared to have automatic storage
894  // duration (auto, register) or with the extern storage-class-specifier.
895  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
896  // data members and cannot be applied to names declared const or static,
897  // and cannot be applied to reference members.
898  switch (DS.getStorageClassSpec()) {
899    case DeclSpec::SCS_unspecified:
900    case DeclSpec::SCS_typedef:
901    case DeclSpec::SCS_static:
902      // FALL THROUGH.
903      break;
904    case DeclSpec::SCS_mutable:
905      if (isFunc) {
906        if (DS.getStorageClassSpecLoc().isValid())
907          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
908        else
909          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
910
911        // FIXME: It would be nicer if the keyword was ignored only for this
912        // declarator. Otherwise we could get follow-up errors.
913        D.getMutableDeclSpec().ClearStorageClassSpecs();
914      } else {
915        QualType T = GetTypeForDeclarator(D, S);
916        diag::kind err = static_cast<diag::kind>(0);
917        if (T->isReferenceType())
918          err = diag::err_mutable_reference;
919        else if (T.isConstQualified())
920          err = diag::err_mutable_const;
921        if (err != 0) {
922          if (DS.getStorageClassSpecLoc().isValid())
923            Diag(DS.getStorageClassSpecLoc(), err);
924          else
925            Diag(DS.getThreadSpecLoc(), err);
926          // FIXME: It would be nicer if the keyword was ignored only for this
927          // declarator. Otherwise we could get follow-up errors.
928          D.getMutableDeclSpec().ClearStorageClassSpecs();
929        }
930      }
931      break;
932    default:
933      if (DS.getStorageClassSpecLoc().isValid())
934        Diag(DS.getStorageClassSpecLoc(),
935             diag::err_storageclass_invalid_for_member);
936      else
937        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
938      D.getMutableDeclSpec().ClearStorageClassSpecs();
939  }
940
941  if (!isFunc &&
942      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
943      D.getNumTypeObjects() == 0) {
944    // Check also for this case:
945    //
946    // typedef int f();
947    // f a;
948    //
949    QualType TDType = GetTypeFromParser(DS.getTypeRep());
950    isFunc = TDType->isFunctionType();
951  }
952
953  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
954                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
955                      !isFunc);
956
957  Decl *Member;
958  if (isInstField) {
959    // FIXME: Check for template parameters!
960    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
961                         AS);
962    assert(Member && "HandleField never returns null");
963  } else {
964    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
965               .getAs<Decl>();
966    if (!Member) {
967      if (BitWidth) DeleteExpr(BitWidth);
968      return DeclPtrTy();
969    }
970
971    // Non-instance-fields can't have a bitfield.
972    if (BitWidth) {
973      if (Member->isInvalidDecl()) {
974        // don't emit another diagnostic.
975      } else if (isa<VarDecl>(Member)) {
976        // C++ 9.6p3: A bit-field shall not be a static member.
977        // "static member 'A' cannot be a bit-field"
978        Diag(Loc, diag::err_static_not_bitfield)
979          << Name << BitWidth->getSourceRange();
980      } else if (isa<TypedefDecl>(Member)) {
981        // "typedef member 'x' cannot be a bit-field"
982        Diag(Loc, diag::err_typedef_not_bitfield)
983          << Name << BitWidth->getSourceRange();
984      } else {
985        // A function typedef ("typedef int f(); f a;").
986        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
987        Diag(Loc, diag::err_not_integral_type_bitfield)
988          << Name << cast<ValueDecl>(Member)->getType()
989          << BitWidth->getSourceRange();
990      }
991
992      DeleteExpr(BitWidth);
993      BitWidth = 0;
994      Member->setInvalidDecl();
995    }
996
997    Member->setAccess(AS);
998
999    // If we have declared a member function template, set the access of the
1000    // templated declaration as well.
1001    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
1002      FunTmpl->getTemplatedDecl()->setAccess(AS);
1003  }
1004
1005  assert((Name || isInstField) && "No identifier for non-field ?");
1006
1007  if (Init)
1008    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
1009  if (Deleted) // FIXME: Source location is not very good.
1010    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
1011
1012  if (isInstField) {
1013    FieldCollector->Add(cast<FieldDecl>(Member));
1014    return DeclPtrTy();
1015  }
1016  return DeclPtrTy::make(Member);
1017}
1018
1019/// \brief Find the direct and/or virtual base specifiers that
1020/// correspond to the given base type, for use in base initialization
1021/// within a constructor.
1022static bool FindBaseInitializer(Sema &SemaRef,
1023                                CXXRecordDecl *ClassDecl,
1024                                QualType BaseType,
1025                                const CXXBaseSpecifier *&DirectBaseSpec,
1026                                const CXXBaseSpecifier *&VirtualBaseSpec) {
1027  // First, check for a direct base class.
1028  DirectBaseSpec = 0;
1029  for (CXXRecordDecl::base_class_const_iterator Base
1030         = ClassDecl->bases_begin();
1031       Base != ClassDecl->bases_end(); ++Base) {
1032    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
1033      // We found a direct base of this type. That's what we're
1034      // initializing.
1035      DirectBaseSpec = &*Base;
1036      break;
1037    }
1038  }
1039
1040  // Check for a virtual base class.
1041  // FIXME: We might be able to short-circuit this if we know in advance that
1042  // there are no virtual bases.
1043  VirtualBaseSpec = 0;
1044  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
1045    // We haven't found a base yet; search the class hierarchy for a
1046    // virtual base class.
1047    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1048                       /*DetectVirtual=*/false);
1049    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
1050                              BaseType, Paths)) {
1051      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1052           Path != Paths.end(); ++Path) {
1053        if (Path->back().Base->isVirtual()) {
1054          VirtualBaseSpec = Path->back().Base;
1055          break;
1056        }
1057      }
1058    }
1059  }
1060
1061  return DirectBaseSpec || VirtualBaseSpec;
1062}
1063
1064/// ActOnMemInitializer - Handle a C++ member initializer.
1065Sema::MemInitResult
1066Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1067                          Scope *S,
1068                          CXXScopeSpec &SS,
1069                          IdentifierInfo *MemberOrBase,
1070                          TypeTy *TemplateTypeTy,
1071                          SourceLocation IdLoc,
1072                          SourceLocation LParenLoc,
1073                          ExprTy **Args, unsigned NumArgs,
1074                          SourceLocation *CommaLocs,
1075                          SourceLocation RParenLoc) {
1076  if (!ConstructorD)
1077    return true;
1078
1079  AdjustDeclIfTemplate(ConstructorD);
1080
1081  CXXConstructorDecl *Constructor
1082    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1083  if (!Constructor) {
1084    // The user wrote a constructor initializer on a function that is
1085    // not a C++ constructor. Ignore the error for now, because we may
1086    // have more member initializers coming; we'll diagnose it just
1087    // once in ActOnMemInitializers.
1088    return true;
1089  }
1090
1091  CXXRecordDecl *ClassDecl = Constructor->getParent();
1092
1093  // C++ [class.base.init]p2:
1094  //   Names in a mem-initializer-id are looked up in the scope of the
1095  //   constructor’s class and, if not found in that scope, are looked
1096  //   up in the scope containing the constructor’s
1097  //   definition. [Note: if the constructor’s class contains a member
1098  //   with the same name as a direct or virtual base class of the
1099  //   class, a mem-initializer-id naming the member or base class and
1100  //   composed of a single identifier refers to the class member. A
1101  //   mem-initializer-id for the hidden base class may be specified
1102  //   using a qualified name. ]
1103  if (!SS.getScopeRep() && !TemplateTypeTy) {
1104    // Look for a member, first.
1105    FieldDecl *Member = 0;
1106    DeclContext::lookup_result Result
1107      = ClassDecl->lookup(MemberOrBase);
1108    if (Result.first != Result.second)
1109      Member = dyn_cast<FieldDecl>(*Result.first);
1110
1111    // FIXME: Handle members of an anonymous union.
1112
1113    if (Member)
1114      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1115                                    LParenLoc, RParenLoc);
1116  }
1117  // It didn't name a member, so see if it names a class.
1118  QualType BaseType;
1119  TypeSourceInfo *TInfo = 0;
1120
1121  if (TemplateTypeTy) {
1122    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1123  } else {
1124    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1125    LookupParsedName(R, S, &SS);
1126
1127    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1128    if (!TyD) {
1129      if (R.isAmbiguous()) return true;
1130
1131      // We don't want access-control diagnostics here.
1132      R.suppressDiagnostics();
1133
1134      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1135        bool NotUnknownSpecialization = false;
1136        DeclContext *DC = computeDeclContext(SS, false);
1137        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1138          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1139
1140        if (!NotUnknownSpecialization) {
1141          // When the scope specifier can refer to a member of an unknown
1142          // specialization, we take it as a type name.
1143          BaseType = CheckTypenameType(ETK_None,
1144                                       (NestedNameSpecifier *)SS.getScopeRep(),
1145                                       *MemberOrBase, SourceLocation(),
1146                                       SS.getRange(), IdLoc);
1147          if (BaseType.isNull())
1148            return true;
1149
1150          R.clear();
1151        }
1152      }
1153
1154      // If no results were found, try to correct typos.
1155      if (R.empty() && BaseType.isNull() &&
1156          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1157          R.isSingleResult()) {
1158        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1159          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1160            // We have found a non-static data member with a similar
1161            // name to what was typed; complain and initialize that
1162            // member.
1163            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1164              << MemberOrBase << true << R.getLookupName()
1165              << FixItHint::CreateReplacement(R.getNameLoc(),
1166                                              R.getLookupName().getAsString());
1167            Diag(Member->getLocation(), diag::note_previous_decl)
1168              << Member->getDeclName();
1169
1170            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1171                                          LParenLoc, RParenLoc);
1172          }
1173        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1174          const CXXBaseSpecifier *DirectBaseSpec;
1175          const CXXBaseSpecifier *VirtualBaseSpec;
1176          if (FindBaseInitializer(*this, ClassDecl,
1177                                  Context.getTypeDeclType(Type),
1178                                  DirectBaseSpec, VirtualBaseSpec)) {
1179            // We have found a direct or virtual base class with a
1180            // similar name to what was typed; complain and initialize
1181            // that base class.
1182            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1183              << MemberOrBase << false << R.getLookupName()
1184              << FixItHint::CreateReplacement(R.getNameLoc(),
1185                                              R.getLookupName().getAsString());
1186
1187            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1188                                                             : VirtualBaseSpec;
1189            Diag(BaseSpec->getSourceRange().getBegin(),
1190                 diag::note_base_class_specified_here)
1191              << BaseSpec->getType()
1192              << BaseSpec->getSourceRange();
1193
1194            TyD = Type;
1195          }
1196        }
1197      }
1198
1199      if (!TyD && BaseType.isNull()) {
1200        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1201          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1202        return true;
1203      }
1204    }
1205
1206    if (BaseType.isNull()) {
1207      BaseType = Context.getTypeDeclType(TyD);
1208      if (SS.isSet()) {
1209        NestedNameSpecifier *Qualifier =
1210          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1211
1212        // FIXME: preserve source range information
1213        BaseType = Context.getElaboratedType(ETK_None, Qualifier, BaseType);
1214      }
1215    }
1216  }
1217
1218  if (!TInfo)
1219    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1220
1221  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1222                              LParenLoc, RParenLoc, ClassDecl);
1223}
1224
1225/// Checks an initializer expression for use of uninitialized fields, such as
1226/// containing the field that is being initialized. Returns true if there is an
1227/// uninitialized field was used an updates the SourceLocation parameter; false
1228/// otherwise.
1229static bool InitExprContainsUninitializedFields(const Stmt* S,
1230                                                const FieldDecl* LhsField,
1231                                                SourceLocation* L) {
1232  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1233  if (ME) {
1234    const NamedDecl* RhsField = ME->getMemberDecl();
1235    if (RhsField == LhsField) {
1236      // Initializing a field with itself. Throw a warning.
1237      // But wait; there are exceptions!
1238      // Exception #1:  The field may not belong to this record.
1239      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1240      const Expr* base = ME->getBase();
1241      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1242        // Even though the field matches, it does not belong to this record.
1243        return false;
1244      }
1245      // None of the exceptions triggered; return true to indicate an
1246      // uninitialized field was used.
1247      *L = ME->getMemberLoc();
1248      return true;
1249    }
1250  }
1251  bool found = false;
1252  for (Stmt::const_child_iterator it = S->child_begin();
1253       it != S->child_end() && found == false;
1254       ++it) {
1255    if (isa<CallExpr>(S)) {
1256      // Do not descend into function calls or constructors, as the use
1257      // of an uninitialized field may be valid. One would have to inspect
1258      // the contents of the function/ctor to determine if it is safe or not.
1259      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1260      // may be safe, depending on what the function/ctor does.
1261      continue;
1262    }
1263    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1264  }
1265  return found;
1266}
1267
1268Sema::MemInitResult
1269Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1270                             unsigned NumArgs, SourceLocation IdLoc,
1271                             SourceLocation LParenLoc,
1272                             SourceLocation RParenLoc) {
1273  // Diagnose value-uses of fields to initialize themselves, e.g.
1274  //   foo(foo)
1275  // where foo is not also a parameter to the constructor.
1276  // TODO: implement -Wuninitialized and fold this into that framework.
1277  for (unsigned i = 0; i < NumArgs; ++i) {
1278    SourceLocation L;
1279    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1280      // FIXME: Return true in the case when other fields are used before being
1281      // uninitialized. For example, let this field be the i'th field. When
1282      // initializing the i'th field, throw a warning if any of the >= i'th
1283      // fields are used, as they are not yet initialized.
1284      // Right now we are only handling the case where the i'th field uses
1285      // itself in its initializer.
1286      Diag(L, diag::warn_field_is_uninit);
1287    }
1288  }
1289
1290  bool HasDependentArg = false;
1291  for (unsigned i = 0; i < NumArgs; i++)
1292    HasDependentArg |= Args[i]->isTypeDependent();
1293
1294  QualType FieldType = Member->getType();
1295  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1296    FieldType = Array->getElementType();
1297  if (FieldType->isDependentType() || HasDependentArg) {
1298    // Can't check initialization for a member of dependent type or when
1299    // any of the arguments are type-dependent expressions.
1300    OwningExprResult Init
1301      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1302                                          RParenLoc));
1303
1304    // Erase any temporaries within this evaluation context; we're not
1305    // going to track them in the AST, since we'll be rebuilding the
1306    // ASTs during template instantiation.
1307    ExprTemporaries.erase(
1308              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1309                          ExprTemporaries.end());
1310
1311    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1312                                                    LParenLoc,
1313                                                    Init.takeAs<Expr>(),
1314                                                    RParenLoc);
1315
1316  }
1317
1318  if (Member->isInvalidDecl())
1319    return true;
1320
1321  // Initialize the member.
1322  InitializedEntity MemberEntity =
1323    InitializedEntity::InitializeMember(Member, 0);
1324  InitializationKind Kind =
1325    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1326
1327  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1328
1329  OwningExprResult MemberInit =
1330    InitSeq.Perform(*this, MemberEntity, Kind,
1331                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1332  if (MemberInit.isInvalid())
1333    return true;
1334
1335  // C++0x [class.base.init]p7:
1336  //   The initialization of each base and member constitutes a
1337  //   full-expression.
1338  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1339  if (MemberInit.isInvalid())
1340    return true;
1341
1342  // If we are in a dependent context, template instantiation will
1343  // perform this type-checking again. Just save the arguments that we
1344  // received in a ParenListExpr.
1345  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1346  // of the information that we have about the member
1347  // initializer. However, deconstructing the ASTs is a dicey process,
1348  // and this approach is far more likely to get the corner cases right.
1349  if (CurContext->isDependentContext()) {
1350    // Bump the reference count of all of the arguments.
1351    for (unsigned I = 0; I != NumArgs; ++I)
1352      Args[I]->Retain();
1353
1354    OwningExprResult Init
1355      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1356                                          RParenLoc));
1357    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1358                                                    LParenLoc,
1359                                                    Init.takeAs<Expr>(),
1360                                                    RParenLoc);
1361  }
1362
1363  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1364                                                  LParenLoc,
1365                                                  MemberInit.takeAs<Expr>(),
1366                                                  RParenLoc);
1367}
1368
1369Sema::MemInitResult
1370Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1371                           Expr **Args, unsigned NumArgs,
1372                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1373                           CXXRecordDecl *ClassDecl) {
1374  bool HasDependentArg = false;
1375  for (unsigned i = 0; i < NumArgs; i++)
1376    HasDependentArg |= Args[i]->isTypeDependent();
1377
1378  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
1379  if (BaseType->isDependentType() || HasDependentArg) {
1380    // Can't check initialization for a base of dependent type or when
1381    // any of the arguments are type-dependent expressions.
1382    OwningExprResult BaseInit
1383      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1384                                          RParenLoc));
1385
1386    // Erase any temporaries within this evaluation context; we're not
1387    // going to track them in the AST, since we'll be rebuilding the
1388    // ASTs during template instantiation.
1389    ExprTemporaries.erase(
1390              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1391                          ExprTemporaries.end());
1392
1393    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1394                                                    /*IsVirtual=*/false,
1395                                                    LParenLoc,
1396                                                    BaseInit.takeAs<Expr>(),
1397                                                    RParenLoc);
1398  }
1399
1400  if (!BaseType->isRecordType())
1401    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1402             << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1403
1404  // C++ [class.base.init]p2:
1405  //   [...] Unless the mem-initializer-id names a nonstatic data
1406  //   member of the constructor’s class or a direct or virtual base
1407  //   of that class, the mem-initializer is ill-formed. A
1408  //   mem-initializer-list can initialize a base class using any
1409  //   name that denotes that base class type.
1410
1411  // Check for direct and virtual base classes.
1412  const CXXBaseSpecifier *DirectBaseSpec = 0;
1413  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1414  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1415                      VirtualBaseSpec);
1416
1417  // C++ [base.class.init]p2:
1418  //   If a mem-initializer-id is ambiguous because it designates both
1419  //   a direct non-virtual base class and an inherited virtual base
1420  //   class, the mem-initializer is ill-formed.
1421  if (DirectBaseSpec && VirtualBaseSpec)
1422    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1423      << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
1424  // C++ [base.class.init]p2:
1425  // Unless the mem-initializer-id names a nonstatic data membeer of the
1426  // constructor's class ot a direst or virtual base of that class, the
1427  // mem-initializer is ill-formed.
1428  if (!DirectBaseSpec && !VirtualBaseSpec)
1429    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1430      << BaseType << Context.getTypeDeclType(ClassDecl)
1431      << BaseTInfo->getTypeLoc().getLocalSourceRange();
1432
1433  CXXBaseSpecifier *BaseSpec
1434    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1435  if (!BaseSpec)
1436    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1437
1438  // Initialize the base.
1439  InitializedEntity BaseEntity =
1440    InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
1441  InitializationKind Kind =
1442    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1443
1444  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1445
1446  OwningExprResult BaseInit =
1447    InitSeq.Perform(*this, BaseEntity, Kind,
1448                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1449  if (BaseInit.isInvalid())
1450    return true;
1451
1452  // C++0x [class.base.init]p7:
1453  //   The initialization of each base and member constitutes a
1454  //   full-expression.
1455  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1456  if (BaseInit.isInvalid())
1457    return true;
1458
1459  // If we are in a dependent context, template instantiation will
1460  // perform this type-checking again. Just save the arguments that we
1461  // received in a ParenListExpr.
1462  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1463  // of the information that we have about the base
1464  // initializer. However, deconstructing the ASTs is a dicey process,
1465  // and this approach is far more likely to get the corner cases right.
1466  if (CurContext->isDependentContext()) {
1467    // Bump the reference count of all of the arguments.
1468    for (unsigned I = 0; I != NumArgs; ++I)
1469      Args[I]->Retain();
1470
1471    OwningExprResult Init
1472      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1473                                          RParenLoc));
1474    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1475                                                    BaseSpec->isVirtual(),
1476                                                    LParenLoc,
1477                                                    Init.takeAs<Expr>(),
1478                                                    RParenLoc);
1479  }
1480
1481  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1482                                                  BaseSpec->isVirtual(),
1483                                                  LParenLoc,
1484                                                  BaseInit.takeAs<Expr>(),
1485                                                  RParenLoc);
1486}
1487
1488/// ImplicitInitializerKind - How an implicit base or member initializer should
1489/// initialize its base or member.
1490enum ImplicitInitializerKind {
1491  IIK_Default,
1492  IIK_Copy,
1493  IIK_Move
1494};
1495
1496static bool
1497BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1498                             ImplicitInitializerKind ImplicitInitKind,
1499                             CXXBaseSpecifier *BaseSpec,
1500                             bool IsInheritedVirtualBase,
1501                             CXXBaseOrMemberInitializer *&CXXBaseInit) {
1502  InitializedEntity InitEntity
1503    = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
1504                                        IsInheritedVirtualBase);
1505
1506  Sema::OwningExprResult BaseInit(SemaRef);
1507
1508  switch (ImplicitInitKind) {
1509  case IIK_Default: {
1510    InitializationKind InitKind
1511      = InitializationKind::CreateDefault(Constructor->getLocation());
1512    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1513    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1514                               Sema::MultiExprArg(SemaRef, 0, 0));
1515    break;
1516  }
1517
1518  case IIK_Copy: {
1519    ParmVarDecl *Param = Constructor->getParamDecl(0);
1520    QualType ParamType = Param->getType().getNonReferenceType();
1521
1522    Expr *CopyCtorArg =
1523      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1524                          Constructor->getLocation(), ParamType, 0);
1525
1526    // Cast to the base class to avoid ambiguities.
1527    QualType ArgTy =
1528      SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
1529                                       ParamType.getQualifiers());
1530    SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
1531                              CastExpr::CK_UncheckedDerivedToBase,
1532                              /*isLvalue=*/true,
1533                              CXXBaseSpecifierArray(BaseSpec));
1534
1535    InitializationKind InitKind
1536      = InitializationKind::CreateDirect(Constructor->getLocation(),
1537                                         SourceLocation(), SourceLocation());
1538    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind,
1539                                   &CopyCtorArg, 1);
1540    BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind,
1541                               Sema::MultiExprArg(SemaRef,
1542                                                  (void**)&CopyCtorArg, 1));
1543    break;
1544  }
1545
1546  case IIK_Move:
1547    assert(false && "Unhandled initializer kind!");
1548  }
1549
1550  BaseInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1551  if (BaseInit.isInvalid())
1552    return true;
1553
1554  CXXBaseInit =
1555    new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1556               SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
1557                                                        SourceLocation()),
1558                                             BaseSpec->isVirtual(),
1559                                             SourceLocation(),
1560                                             BaseInit.takeAs<Expr>(),
1561                                             SourceLocation());
1562
1563  return false;
1564}
1565
1566static bool
1567BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
1568                               ImplicitInitializerKind ImplicitInitKind,
1569                               FieldDecl *Field,
1570                               CXXBaseOrMemberInitializer *&CXXMemberInit) {
1571  if (Field->isInvalidDecl())
1572    return true;
1573
1574  if (ImplicitInitKind == IIK_Copy) {
1575    SourceLocation Loc = Constructor->getLocation();
1576    ParmVarDecl *Param = Constructor->getParamDecl(0);
1577    QualType ParamType = Param->getType().getNonReferenceType();
1578
1579    Expr *MemberExprBase =
1580      DeclRefExpr::Create(SemaRef.Context, 0, SourceRange(), Param,
1581                          Loc, ParamType, 0);
1582
1583    // Build a reference to this field within the parameter.
1584    CXXScopeSpec SS;
1585    LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
1586                              Sema::LookupMemberName);
1587    MemberLookup.addDecl(Field, AS_public);
1588    MemberLookup.resolveKind();
1589    Sema::OwningExprResult CopyCtorArg
1590      = SemaRef.BuildMemberReferenceExpr(SemaRef.Owned(MemberExprBase),
1591                                         ParamType, Loc,
1592                                         /*IsArrow=*/false,
1593                                         SS,
1594                                         /*FirstQualifierInScope=*/0,
1595                                         MemberLookup,
1596                                         /*TemplateArgs=*/0);
1597    if (CopyCtorArg.isInvalid())
1598      return true;
1599
1600    // When the field we are copying is an array, create index variables for
1601    // each dimension of the array. We use these index variables to subscript
1602    // the source array, and other clients (e.g., CodeGen) will perform the
1603    // necessary iteration with these index variables.
1604    llvm::SmallVector<VarDecl *, 4> IndexVariables;
1605    QualType BaseType = Field->getType();
1606    QualType SizeType = SemaRef.Context.getSizeType();
1607    while (const ConstantArrayType *Array
1608                          = SemaRef.Context.getAsConstantArrayType(BaseType)) {
1609      // Create the iteration variable for this array index.
1610      IdentifierInfo *IterationVarName = 0;
1611      {
1612        llvm::SmallString<8> Str;
1613        llvm::raw_svector_ostream OS(Str);
1614        OS << "__i" << IndexVariables.size();
1615        IterationVarName = &SemaRef.Context.Idents.get(OS.str());
1616      }
1617      VarDecl *IterationVar
1618        = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc,
1619                          IterationVarName, SizeType,
1620                        SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
1621                          VarDecl::None, VarDecl::None);
1622      IndexVariables.push_back(IterationVar);
1623
1624      // Create a reference to the iteration variable.
1625      Sema::OwningExprResult IterationVarRef
1626        = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, Loc);
1627      assert(!IterationVarRef.isInvalid() &&
1628             "Reference to invented variable cannot fail!");
1629
1630      // Subscript the array with this iteration variable.
1631      CopyCtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(move(CopyCtorArg),
1632                                                            Loc,
1633                                                          move(IterationVarRef),
1634                                                            Loc);
1635      if (CopyCtorArg.isInvalid())
1636        return true;
1637
1638      BaseType = Array->getElementType();
1639    }
1640
1641    // Construct the entity that we will be initializing. For an array, this
1642    // will be first element in the array, which may require several levels
1643    // of array-subscript entities.
1644    llvm::SmallVector<InitializedEntity, 4> Entities;
1645    Entities.reserve(1 + IndexVariables.size());
1646    Entities.push_back(InitializedEntity::InitializeMember(Field));
1647    for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
1648      Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
1649                                                              0,
1650                                                              Entities.back()));
1651
1652    // Direct-initialize to use the copy constructor.
1653    InitializationKind InitKind =
1654      InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
1655
1656    Expr *CopyCtorArgE = CopyCtorArg.takeAs<Expr>();
1657    InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind,
1658                                   &CopyCtorArgE, 1);
1659
1660    Sema::OwningExprResult MemberInit
1661      = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
1662                        Sema::MultiExprArg(SemaRef, (void**)&CopyCtorArgE, 1));
1663    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1664    if (MemberInit.isInvalid())
1665      return true;
1666
1667    CXXMemberInit
1668      = CXXBaseOrMemberInitializer::Create(SemaRef.Context, Field, Loc, Loc,
1669                                           MemberInit.takeAs<Expr>(), Loc,
1670                                           IndexVariables.data(),
1671                                           IndexVariables.size());
1672    return false;
1673  }
1674
1675  assert(ImplicitInitKind == IIK_Default && "Unhandled implicit init kind!");
1676
1677  QualType FieldBaseElementType =
1678    SemaRef.Context.getBaseElementType(Field->getType());
1679
1680  if (FieldBaseElementType->isRecordType()) {
1681    InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
1682    InitializationKind InitKind =
1683      InitializationKind::CreateDefault(Constructor->getLocation());
1684
1685    InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, 0, 0);
1686    Sema::OwningExprResult MemberInit =
1687      InitSeq.Perform(SemaRef, InitEntity, InitKind,
1688                      Sema::MultiExprArg(SemaRef, 0, 0));
1689    MemberInit = SemaRef.MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1690    if (MemberInit.isInvalid())
1691      return true;
1692
1693    CXXMemberInit =
1694      new (SemaRef.Context) CXXBaseOrMemberInitializer(SemaRef.Context,
1695                                                       Field, SourceLocation(),
1696                                                       SourceLocation(),
1697                                                      MemberInit.takeAs<Expr>(),
1698                                                       SourceLocation());
1699    return false;
1700  }
1701
1702  if (FieldBaseElementType->isReferenceType()) {
1703    SemaRef.Diag(Constructor->getLocation(),
1704                 diag::err_uninitialized_member_in_ctor)
1705    << (int)Constructor->isImplicit()
1706    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1707    << 0 << Field->getDeclName();
1708    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1709    return true;
1710  }
1711
1712  if (FieldBaseElementType.isConstQualified()) {
1713    SemaRef.Diag(Constructor->getLocation(),
1714                 diag::err_uninitialized_member_in_ctor)
1715    << (int)Constructor->isImplicit()
1716    << SemaRef.Context.getTagDeclType(Constructor->getParent())
1717    << 1 << Field->getDeclName();
1718    SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
1719    return true;
1720  }
1721
1722  // Nothing to initialize.
1723  CXXMemberInit = 0;
1724  return false;
1725}
1726
1727namespace {
1728struct BaseAndFieldInfo {
1729  Sema &S;
1730  CXXConstructorDecl *Ctor;
1731  bool AnyErrorsInInits;
1732  ImplicitInitializerKind IIK;
1733  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1734  llvm::SmallVector<CXXBaseOrMemberInitializer*, 8> AllToInit;
1735
1736  BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
1737    : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
1738    // FIXME: Handle implicit move constructors.
1739    if (Ctor->isImplicit() && Ctor->isCopyConstructor())
1740      IIK = IIK_Copy;
1741    else
1742      IIK = IIK_Default;
1743  }
1744};
1745}
1746
1747static bool CollectFieldInitializer(BaseAndFieldInfo &Info,
1748                                    FieldDecl *Top, FieldDecl *Field) {
1749
1750  // Overwhelmingly common case:  we have a direct initializer for this field.
1751  if (CXXBaseOrMemberInitializer *Init = Info.AllBaseFields.lookup(Field)) {
1752    Info.AllToInit.push_back(Init);
1753
1754    if (Field != Top) {
1755      Init->setMember(Top);
1756      Init->setAnonUnionMember(Field);
1757    }
1758    return false;
1759  }
1760
1761  if (Info.IIK == IIK_Default && Field->isAnonymousStructOrUnion()) {
1762    const RecordType *FieldClassType = Field->getType()->getAs<RecordType>();
1763    assert(FieldClassType && "anonymous struct/union without record type");
1764
1765    // Walk through the members, tying in any initializers for fields
1766    // we find.  The earlier semantic checks should prevent redundant
1767    // initialization of union members, given the requirement that
1768    // union members never have non-trivial default constructors.
1769
1770    // TODO: in C++0x, it might be legal to have union members with
1771    // non-trivial default constructors in unions.  Revise this
1772    // implementation then with the appropriate semantics.
1773    CXXRecordDecl *FieldClassDecl
1774      = cast<CXXRecordDecl>(FieldClassType->getDecl());
1775    for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1776           EA = FieldClassDecl->field_end(); FA != EA; FA++)
1777      if (CollectFieldInitializer(Info, Top, *FA))
1778        return true;
1779  }
1780
1781  // Don't try to build an implicit initializer if there were semantic
1782  // errors in any of the initializers (and therefore we might be
1783  // missing some that the user actually wrote).
1784  if (Info.AnyErrorsInInits)
1785    return false;
1786
1787  CXXBaseOrMemberInitializer *Init = 0;
1788  if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field, Init))
1789    return true;
1790
1791  // If the member doesn't need to be initialized, Init will still be null.
1792  if (!Init) return false;
1793
1794  Info.AllToInit.push_back(Init);
1795  if (Top != Field) {
1796    Init->setMember(Top);
1797    Init->setAnonUnionMember(Field);
1798  }
1799  return false;
1800}
1801
1802bool
1803Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1804                                  CXXBaseOrMemberInitializer **Initializers,
1805                                  unsigned NumInitializers,
1806                                  bool AnyErrors) {
1807  if (Constructor->getDeclContext()->isDependentContext()) {
1808    // Just store the initializers as written, they will be checked during
1809    // instantiation.
1810    if (NumInitializers > 0) {
1811      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1812      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1813        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1814      memcpy(baseOrMemberInitializers, Initializers,
1815             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1816      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1817    }
1818
1819    return false;
1820  }
1821
1822  BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
1823
1824  // We need to build the initializer AST according to order of construction
1825  // and not what user specified in the Initializers list.
1826  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1827  if (!ClassDecl)
1828    return true;
1829
1830  bool HadError = false;
1831
1832  for (unsigned i = 0; i < NumInitializers; i++) {
1833    CXXBaseOrMemberInitializer *Member = Initializers[i];
1834
1835    if (Member->isBaseInitializer())
1836      Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1837    else
1838      Info.AllBaseFields[Member->getMember()] = Member;
1839  }
1840
1841  // Keep track of the direct virtual bases.
1842  llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
1843  for (CXXRecordDecl::base_class_iterator I = ClassDecl->bases_begin(),
1844       E = ClassDecl->bases_end(); I != E; ++I) {
1845    if (I->isVirtual())
1846      DirectVBases.insert(I);
1847  }
1848
1849  // Push virtual bases before others.
1850  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1851       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1852
1853    if (CXXBaseOrMemberInitializer *Value
1854        = Info.AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1855      Info.AllToInit.push_back(Value);
1856    } else if (!AnyErrors) {
1857      bool IsInheritedVirtualBase = !DirectVBases.count(VBase);
1858      CXXBaseOrMemberInitializer *CXXBaseInit;
1859      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1860                                       VBase, IsInheritedVirtualBase,
1861                                       CXXBaseInit)) {
1862        HadError = true;
1863        continue;
1864      }
1865
1866      Info.AllToInit.push_back(CXXBaseInit);
1867    }
1868  }
1869
1870  // Non-virtual bases.
1871  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1872       E = ClassDecl->bases_end(); Base != E; ++Base) {
1873    // Virtuals are in the virtual base list and already constructed.
1874    if (Base->isVirtual())
1875      continue;
1876
1877    if (CXXBaseOrMemberInitializer *Value
1878          = Info.AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1879      Info.AllToInit.push_back(Value);
1880    } else if (!AnyErrors) {
1881      CXXBaseOrMemberInitializer *CXXBaseInit;
1882      if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
1883                                       Base, /*IsInheritedVirtualBase=*/false,
1884                                       CXXBaseInit)) {
1885        HadError = true;
1886        continue;
1887      }
1888
1889      Info.AllToInit.push_back(CXXBaseInit);
1890    }
1891  }
1892
1893  // Fields.
1894  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1895       E = ClassDecl->field_end(); Field != E; ++Field)
1896    if (CollectFieldInitializer(Info, *Field, *Field))
1897      HadError = true;
1898
1899  NumInitializers = Info.AllToInit.size();
1900  if (NumInitializers > 0) {
1901    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1902    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1903      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1904    memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
1905           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1906    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1907
1908    // Constructors implicitly reference the base and member
1909    // destructors.
1910    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1911                                           Constructor->getParent());
1912  }
1913
1914  return HadError;
1915}
1916
1917static void *GetKeyForTopLevelField(FieldDecl *Field) {
1918  // For anonymous unions, use the class declaration as the key.
1919  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1920    if (RT->getDecl()->isAnonymousStructOrUnion())
1921      return static_cast<void *>(RT->getDecl());
1922  }
1923  return static_cast<void *>(Field);
1924}
1925
1926static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1927  return Context.getCanonicalType(BaseType).getTypePtr();
1928}
1929
1930static void *GetKeyForMember(ASTContext &Context,
1931                             CXXBaseOrMemberInitializer *Member,
1932                             bool MemberMaybeAnon = false) {
1933  if (!Member->isMemberInitializer())
1934    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1935
1936  // For fields injected into the class via declaration of an anonymous union,
1937  // use its anonymous union class declaration as the unique key.
1938  FieldDecl *Field = Member->getMember();
1939
1940  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1941  // data member of the class. Data member used in the initializer list is
1942  // in AnonUnionMember field.
1943  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1944    Field = Member->getAnonUnionMember();
1945
1946  // If the field is a member of an anonymous struct or union, our key
1947  // is the anonymous record decl that's a direct child of the class.
1948  RecordDecl *RD = Field->getParent();
1949  if (RD->isAnonymousStructOrUnion()) {
1950    while (true) {
1951      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1952      if (Parent->isAnonymousStructOrUnion())
1953        RD = Parent;
1954      else
1955        break;
1956    }
1957
1958    return static_cast<void *>(RD);
1959  }
1960
1961  return static_cast<void *>(Field);
1962}
1963
1964static void
1965DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1966                                  const CXXConstructorDecl *Constructor,
1967                                  CXXBaseOrMemberInitializer **Inits,
1968                                  unsigned NumInits) {
1969  if (Constructor->getDeclContext()->isDependentContext())
1970    return;
1971
1972  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1973        == Diagnostic::Ignored)
1974    return;
1975
1976  // Build the list of bases and members in the order that they'll
1977  // actually be initialized.  The explicit initializers should be in
1978  // this same order but may be missing things.
1979  llvm::SmallVector<const void*, 32> IdealInitKeys;
1980
1981  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1982
1983  // 1. Virtual bases.
1984  for (CXXRecordDecl::base_class_const_iterator VBase =
1985       ClassDecl->vbases_begin(),
1986       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1987    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1988
1989  // 2. Non-virtual bases.
1990  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1991       E = ClassDecl->bases_end(); Base != E; ++Base) {
1992    if (Base->isVirtual())
1993      continue;
1994    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1995  }
1996
1997  // 3. Direct fields.
1998  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1999       E = ClassDecl->field_end(); Field != E; ++Field)
2000    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
2001
2002  unsigned NumIdealInits = IdealInitKeys.size();
2003  unsigned IdealIndex = 0;
2004
2005  CXXBaseOrMemberInitializer *PrevInit = 0;
2006  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
2007    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
2008    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
2009
2010    // Scan forward to try to find this initializer in the idealized
2011    // initializers list.
2012    for (; IdealIndex != NumIdealInits; ++IdealIndex)
2013      if (InitKey == IdealInitKeys[IdealIndex])
2014        break;
2015
2016    // If we didn't find this initializer, it must be because we
2017    // scanned past it on a previous iteration.  That can only
2018    // happen if we're out of order;  emit a warning.
2019    if (IdealIndex == NumIdealInits && PrevInit) {
2020      Sema::SemaDiagnosticBuilder D =
2021        SemaRef.Diag(PrevInit->getSourceLocation(),
2022                     diag::warn_initializer_out_of_order);
2023
2024      if (PrevInit->isMemberInitializer())
2025        D << 0 << PrevInit->getMember()->getDeclName();
2026      else
2027        D << 1 << PrevInit->getBaseClassInfo()->getType();
2028
2029      if (Init->isMemberInitializer())
2030        D << 0 << Init->getMember()->getDeclName();
2031      else
2032        D << 1 << Init->getBaseClassInfo()->getType();
2033
2034      // Move back to the initializer's location in the ideal list.
2035      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
2036        if (InitKey == IdealInitKeys[IdealIndex])
2037          break;
2038
2039      assert(IdealIndex != NumIdealInits &&
2040             "initializer not found in initializer list");
2041    }
2042
2043    PrevInit = Init;
2044  }
2045}
2046
2047namespace {
2048bool CheckRedundantInit(Sema &S,
2049                        CXXBaseOrMemberInitializer *Init,
2050                        CXXBaseOrMemberInitializer *&PrevInit) {
2051  if (!PrevInit) {
2052    PrevInit = Init;
2053    return false;
2054  }
2055
2056  if (FieldDecl *Field = Init->getMember())
2057    S.Diag(Init->getSourceLocation(),
2058           diag::err_multiple_mem_initialization)
2059      << Field->getDeclName()
2060      << Init->getSourceRange();
2061  else {
2062    Type *BaseClass = Init->getBaseClass();
2063    assert(BaseClass && "neither field nor base");
2064    S.Diag(Init->getSourceLocation(),
2065           diag::err_multiple_base_initialization)
2066      << QualType(BaseClass, 0)
2067      << Init->getSourceRange();
2068  }
2069  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
2070    << 0 << PrevInit->getSourceRange();
2071
2072  return true;
2073}
2074
2075typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
2076typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
2077
2078bool CheckRedundantUnionInit(Sema &S,
2079                             CXXBaseOrMemberInitializer *Init,
2080                             RedundantUnionMap &Unions) {
2081  FieldDecl *Field = Init->getMember();
2082  RecordDecl *Parent = Field->getParent();
2083  if (!Parent->isAnonymousStructOrUnion())
2084    return false;
2085
2086  NamedDecl *Child = Field;
2087  do {
2088    if (Parent->isUnion()) {
2089      UnionEntry &En = Unions[Parent];
2090      if (En.first && En.first != Child) {
2091        S.Diag(Init->getSourceLocation(),
2092               diag::err_multiple_mem_union_initialization)
2093          << Field->getDeclName()
2094          << Init->getSourceRange();
2095        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
2096          << 0 << En.second->getSourceRange();
2097        return true;
2098      } else if (!En.first) {
2099        En.first = Child;
2100        En.second = Init;
2101      }
2102    }
2103
2104    Child = Parent;
2105    Parent = cast<RecordDecl>(Parent->getDeclContext());
2106  } while (Parent->isAnonymousStructOrUnion());
2107
2108  return false;
2109}
2110}
2111
2112/// ActOnMemInitializers - Handle the member initializers for a constructor.
2113void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
2114                                SourceLocation ColonLoc,
2115                                MemInitTy **meminits, unsigned NumMemInits,
2116                                bool AnyErrors) {
2117  if (!ConstructorDecl)
2118    return;
2119
2120  AdjustDeclIfTemplate(ConstructorDecl);
2121
2122  CXXConstructorDecl *Constructor
2123    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
2124
2125  if (!Constructor) {
2126    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
2127    return;
2128  }
2129
2130  CXXBaseOrMemberInitializer **MemInits =
2131    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
2132
2133  // Mapping for the duplicate initializers check.
2134  // For member initializers, this is keyed with a FieldDecl*.
2135  // For base initializers, this is keyed with a Type*.
2136  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
2137
2138  // Mapping for the inconsistent anonymous-union initializers check.
2139  RedundantUnionMap MemberUnions;
2140
2141  bool HadError = false;
2142  for (unsigned i = 0; i < NumMemInits; i++) {
2143    CXXBaseOrMemberInitializer *Init = MemInits[i];
2144
2145    if (Init->isMemberInitializer()) {
2146      FieldDecl *Field = Init->getMember();
2147      if (CheckRedundantInit(*this, Init, Members[Field]) ||
2148          CheckRedundantUnionInit(*this, Init, MemberUnions))
2149        HadError = true;
2150    } else {
2151      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
2152      if (CheckRedundantInit(*this, Init, Members[Key]))
2153        HadError = true;
2154    }
2155  }
2156
2157  if (HadError)
2158    return;
2159
2160  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
2161
2162  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
2163}
2164
2165void
2166Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
2167                                             CXXRecordDecl *ClassDecl) {
2168  // Ignore dependent contexts.
2169  if (ClassDecl->isDependentContext())
2170    return;
2171
2172  // FIXME: all the access-control diagnostics are positioned on the
2173  // field/base declaration.  That's probably good; that said, the
2174  // user might reasonably want to know why the destructor is being
2175  // emitted, and we currently don't say.
2176
2177  // Non-static data members.
2178  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
2179       E = ClassDecl->field_end(); I != E; ++I) {
2180    FieldDecl *Field = *I;
2181    if (Field->isInvalidDecl())
2182      continue;
2183    QualType FieldType = Context.getBaseElementType(Field->getType());
2184
2185    const RecordType* RT = FieldType->getAs<RecordType>();
2186    if (!RT)
2187      continue;
2188
2189    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2190    if (FieldClassDecl->hasTrivialDestructor())
2191      continue;
2192
2193    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
2194    CheckDestructorAccess(Field->getLocation(), Dtor,
2195                          PDiag(diag::err_access_dtor_field)
2196                            << Field->getDeclName()
2197                            << FieldType);
2198
2199    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2200  }
2201
2202  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
2203
2204  // Bases.
2205  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
2206       E = ClassDecl->bases_end(); Base != E; ++Base) {
2207    // Bases are always records in a well-formed non-dependent class.
2208    const RecordType *RT = Base->getType()->getAs<RecordType>();
2209
2210    // Remember direct virtual bases.
2211    if (Base->isVirtual())
2212      DirectVirtualBases.insert(RT);
2213
2214    // Ignore trivial destructors.
2215    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2216    if (BaseClassDecl->hasTrivialDestructor())
2217      continue;
2218
2219    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2220
2221    // FIXME: caret should be on the start of the class name
2222    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
2223                          PDiag(diag::err_access_dtor_base)
2224                            << Base->getType()
2225                            << Base->getSourceRange());
2226
2227    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2228  }
2229
2230  // Virtual bases.
2231  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
2232       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
2233
2234    // Bases are always records in a well-formed non-dependent class.
2235    const RecordType *RT = VBase->getType()->getAs<RecordType>();
2236
2237    // Ignore direct virtual bases.
2238    if (DirectVirtualBases.count(RT))
2239      continue;
2240
2241    // Ignore trivial destructors.
2242    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
2243    if (BaseClassDecl->hasTrivialDestructor())
2244      continue;
2245
2246    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
2247    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
2248                          PDiag(diag::err_access_dtor_vbase)
2249                            << VBase->getType());
2250
2251    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
2252  }
2253}
2254
2255void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
2256  if (!CDtorDecl)
2257    return;
2258
2259  if (CXXConstructorDecl *Constructor
2260      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
2261    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
2262}
2263
2264bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2265                                  unsigned DiagID, AbstractDiagSelID SelID,
2266                                  const CXXRecordDecl *CurrentRD) {
2267  if (SelID == -1)
2268    return RequireNonAbstractType(Loc, T,
2269                                  PDiag(DiagID), CurrentRD);
2270  else
2271    return RequireNonAbstractType(Loc, T,
2272                                  PDiag(DiagID) << SelID, CurrentRD);
2273}
2274
2275bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2276                                  const PartialDiagnostic &PD,
2277                                  const CXXRecordDecl *CurrentRD) {
2278  if (!getLangOptions().CPlusPlus)
2279    return false;
2280
2281  if (const ArrayType *AT = Context.getAsArrayType(T))
2282    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2283                                  CurrentRD);
2284
2285  if (const PointerType *PT = T->getAs<PointerType>()) {
2286    // Find the innermost pointer type.
2287    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2288      PT = T;
2289
2290    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2291      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2292  }
2293
2294  const RecordType *RT = T->getAs<RecordType>();
2295  if (!RT)
2296    return false;
2297
2298  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2299
2300  if (CurrentRD && CurrentRD != RD)
2301    return false;
2302
2303  // FIXME: is this reasonable?  It matches current behavior, but....
2304  if (!RD->getDefinition())
2305    return false;
2306
2307  if (!RD->isAbstract())
2308    return false;
2309
2310  Diag(Loc, PD) << RD->getDeclName();
2311
2312  // Check if we've already emitted the list of pure virtual functions for this
2313  // class.
2314  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2315    return true;
2316
2317  CXXFinalOverriderMap FinalOverriders;
2318  RD->getFinalOverriders(FinalOverriders);
2319
2320  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2321                                   MEnd = FinalOverriders.end();
2322       M != MEnd;
2323       ++M) {
2324    for (OverridingMethods::iterator SO = M->second.begin(),
2325                                  SOEnd = M->second.end();
2326         SO != SOEnd; ++SO) {
2327      // C++ [class.abstract]p4:
2328      //   A class is abstract if it contains or inherits at least one
2329      //   pure virtual function for which the final overrider is pure
2330      //   virtual.
2331
2332      //
2333      if (SO->second.size() != 1)
2334        continue;
2335
2336      if (!SO->second.front().Method->isPure())
2337        continue;
2338
2339      Diag(SO->second.front().Method->getLocation(),
2340           diag::note_pure_virtual_function)
2341        << SO->second.front().Method->getDeclName();
2342    }
2343  }
2344
2345  if (!PureVirtualClassDiagSet)
2346    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2347  PureVirtualClassDiagSet->insert(RD);
2348
2349  return true;
2350}
2351
2352namespace {
2353  class AbstractClassUsageDiagnoser
2354    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2355    Sema &SemaRef;
2356    CXXRecordDecl *AbstractClass;
2357
2358    bool VisitDeclContext(const DeclContext *DC) {
2359      bool Invalid = false;
2360
2361      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2362           E = DC->decls_end(); I != E; ++I)
2363        Invalid |= Visit(*I);
2364
2365      return Invalid;
2366    }
2367
2368  public:
2369    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2370      : SemaRef(SemaRef), AbstractClass(ac) {
2371        Visit(SemaRef.Context.getTranslationUnitDecl());
2372    }
2373
2374    bool VisitFunctionDecl(const FunctionDecl *FD) {
2375      if (FD->isThisDeclarationADefinition()) {
2376        // No need to do the check if we're in a definition, because it requires
2377        // that the return/param types are complete.
2378        // because that requires
2379        return VisitDeclContext(FD);
2380      }
2381
2382      // Check the return type.
2383      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2384      bool Invalid =
2385        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2386                                       diag::err_abstract_type_in_decl,
2387                                       Sema::AbstractReturnType,
2388                                       AbstractClass);
2389
2390      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2391           E = FD->param_end(); I != E; ++I) {
2392        const ParmVarDecl *VD = *I;
2393        Invalid |=
2394          SemaRef.RequireNonAbstractType(VD->getLocation(),
2395                                         VD->getOriginalType(),
2396                                         diag::err_abstract_type_in_decl,
2397                                         Sema::AbstractParamType,
2398                                         AbstractClass);
2399      }
2400
2401      return Invalid;
2402    }
2403
2404    bool VisitDecl(const Decl* D) {
2405      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2406        return VisitDeclContext(DC);
2407
2408      return false;
2409    }
2410  };
2411}
2412
2413/// \brief Perform semantic checks on a class definition that has been
2414/// completing, introducing implicitly-declared members, checking for
2415/// abstract types, etc.
2416void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2417  if (!Record || Record->isInvalidDecl())
2418    return;
2419
2420  if (!Record->isDependentType())
2421    AddImplicitlyDeclaredMembersToClass(S, Record);
2422
2423  if (Record->isInvalidDecl())
2424    return;
2425
2426  // Set access bits correctly on the directly-declared conversions.
2427  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2428  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2429    Convs->setAccess(I, (*I)->getAccess());
2430
2431  // Determine whether we need to check for final overriders. We do
2432  // this either when there are virtual base classes (in which case we
2433  // may end up finding multiple final overriders for a given virtual
2434  // function) or any of the base classes is abstract (in which case
2435  // we might detect that this class is abstract).
2436  bool CheckFinalOverriders = false;
2437  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2438      !Record->isDependentType()) {
2439    if (Record->getNumVBases())
2440      CheckFinalOverriders = true;
2441    else if (!Record->isAbstract()) {
2442      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2443                                                 BEnd = Record->bases_end();
2444           B != BEnd; ++B) {
2445        CXXRecordDecl *BaseDecl
2446          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2447        if (BaseDecl->isAbstract()) {
2448          CheckFinalOverriders = true;
2449          break;
2450        }
2451      }
2452    }
2453  }
2454
2455  if (CheckFinalOverriders) {
2456    CXXFinalOverriderMap FinalOverriders;
2457    Record->getFinalOverriders(FinalOverriders);
2458
2459    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2460                                     MEnd = FinalOverriders.end();
2461         M != MEnd; ++M) {
2462      for (OverridingMethods::iterator SO = M->second.begin(),
2463                                    SOEnd = M->second.end();
2464           SO != SOEnd; ++SO) {
2465        assert(SO->second.size() > 0 &&
2466               "All virtual functions have overridding virtual functions");
2467        if (SO->second.size() == 1) {
2468          // C++ [class.abstract]p4:
2469          //   A class is abstract if it contains or inherits at least one
2470          //   pure virtual function for which the final overrider is pure
2471          //   virtual.
2472          if (SO->second.front().Method->isPure())
2473            Record->setAbstract(true);
2474          continue;
2475        }
2476
2477        // C++ [class.virtual]p2:
2478        //   In a derived class, if a virtual member function of a base
2479        //   class subobject has more than one final overrider the
2480        //   program is ill-formed.
2481        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2482          << (NamedDecl *)M->first << Record;
2483        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2484        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2485                                                 OMEnd = SO->second.end();
2486             OM != OMEnd; ++OM)
2487          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2488            << (NamedDecl *)M->first << OM->Method->getParent();
2489
2490        Record->setInvalidDecl();
2491      }
2492    }
2493  }
2494
2495  if (Record->isAbstract() && !Record->isInvalidDecl())
2496    (void)AbstractClassUsageDiagnoser(*this, Record);
2497
2498  // If this is not an aggregate type and has no user-declared constructor,
2499  // complain about any non-static data members of reference or const scalar
2500  // type, since they will never get initializers.
2501  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2502      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2503    bool Complained = false;
2504    for (RecordDecl::field_iterator F = Record->field_begin(),
2505                                 FEnd = Record->field_end();
2506         F != FEnd; ++F) {
2507      if (F->getType()->isReferenceType() ||
2508          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2509        if (!Complained) {
2510          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2511            << Record->getTagKind() << Record;
2512          Complained = true;
2513        }
2514
2515        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2516          << F->getType()->isReferenceType()
2517          << F->getDeclName();
2518      }
2519    }
2520  }
2521
2522  if (Record->isDynamicClass())
2523    DynamicClasses.push_back(Record);
2524}
2525
2526void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2527                                             DeclPtrTy TagDecl,
2528                                             SourceLocation LBrac,
2529                                             SourceLocation RBrac,
2530                                             AttributeList *AttrList) {
2531  if (!TagDecl)
2532    return;
2533
2534  AdjustDeclIfTemplate(TagDecl);
2535
2536  ActOnFields(S, RLoc, TagDecl,
2537              (DeclPtrTy*)FieldCollector->getCurFields(),
2538              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2539
2540  CheckCompletedCXXClass(S,
2541                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2542}
2543
2544/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2545/// special functions, such as the default constructor, copy
2546/// constructor, or destructor, to the given C++ class (C++
2547/// [special]p1).  This routine can only be executed just before the
2548/// definition of the class is complete.
2549///
2550/// The scope, if provided, is the class scope.
2551void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2552                                               CXXRecordDecl *ClassDecl) {
2553  CanQualType ClassType
2554    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2555
2556  // FIXME: Implicit declarations have exception specifications, which are
2557  // the union of the specifications of the implicitly called functions.
2558
2559  if (!ClassDecl->hasUserDeclaredConstructor()) {
2560    // C++ [class.ctor]p5:
2561    //   A default constructor for a class X is a constructor of class X
2562    //   that can be called without an argument. If there is no
2563    //   user-declared constructor for class X, a default constructor is
2564    //   implicitly declared. An implicitly-declared default constructor
2565    //   is an inline public member of its class.
2566    DeclarationName Name
2567      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2568    CXXConstructorDecl *DefaultCon =
2569      CXXConstructorDecl::Create(Context, ClassDecl,
2570                                 ClassDecl->getLocation(), Name,
2571                                 Context.getFunctionType(Context.VoidTy,
2572                                                         0, 0, false, 0,
2573                                                         /*FIXME*/false, false,
2574                                                         0, 0,
2575                                                       FunctionType::ExtInfo()),
2576                                 /*TInfo=*/0,
2577                                 /*isExplicit=*/false,
2578                                 /*isInline=*/true,
2579                                 /*isImplicitlyDeclared=*/true);
2580    DefaultCon->setAccess(AS_public);
2581    DefaultCon->setImplicit();
2582    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2583    if (S)
2584      PushOnScopeChains(DefaultCon, S, true);
2585    else
2586      ClassDecl->addDecl(DefaultCon);
2587  }
2588
2589  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2590    // C++ [class.copy]p4:
2591    //   If the class definition does not explicitly declare a copy
2592    //   constructor, one is declared implicitly.
2593
2594    // C++ [class.copy]p5:
2595    //   The implicitly-declared copy constructor for a class X will
2596    //   have the form
2597    //
2598    //       X::X(const X&)
2599    //
2600    //   if
2601    bool HasConstCopyConstructor = true;
2602
2603    //     -- each direct or virtual base class B of X has a copy
2604    //        constructor whose first parameter is of type const B& or
2605    //        const volatile B&, and
2606    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2607         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2608      const CXXRecordDecl *BaseClassDecl
2609        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2610      HasConstCopyConstructor
2611        = BaseClassDecl->hasConstCopyConstructor(Context);
2612    }
2613
2614    //     -- for all the nonstatic data members of X that are of a
2615    //        class type M (or array thereof), each such class type
2616    //        has a copy constructor whose first parameter is of type
2617    //        const M& or const volatile M&.
2618    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2619         HasConstCopyConstructor && Field != ClassDecl->field_end();
2620         ++Field) {
2621      QualType FieldType = (*Field)->getType();
2622      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2623        FieldType = Array->getElementType();
2624      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2625        const CXXRecordDecl *FieldClassDecl
2626          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2627        HasConstCopyConstructor
2628          = FieldClassDecl->hasConstCopyConstructor(Context);
2629      }
2630    }
2631
2632    //   Otherwise, the implicitly declared copy constructor will have
2633    //   the form
2634    //
2635    //       X::X(X&)
2636    QualType ArgType = ClassType;
2637    if (HasConstCopyConstructor)
2638      ArgType = ArgType.withConst();
2639    ArgType = Context.getLValueReferenceType(ArgType);
2640
2641    //   An implicitly-declared copy constructor is an inline public
2642    //   member of its class.
2643    DeclarationName Name
2644      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2645    CXXConstructorDecl *CopyConstructor
2646      = CXXConstructorDecl::Create(Context, ClassDecl,
2647                                   ClassDecl->getLocation(), Name,
2648                                   Context.getFunctionType(Context.VoidTy,
2649                                                           &ArgType, 1,
2650                                                           false, 0,
2651                                               /*FIXME: hasExceptionSpec*/false,
2652                                                           false, 0, 0,
2653                                                       FunctionType::ExtInfo()),
2654                                   /*TInfo=*/0,
2655                                   /*isExplicit=*/false,
2656                                   /*isInline=*/true,
2657                                   /*isImplicitlyDeclared=*/true);
2658    CopyConstructor->setAccess(AS_public);
2659    CopyConstructor->setImplicit();
2660    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2661
2662    // Add the parameter to the constructor.
2663    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2664                                                 ClassDecl->getLocation(),
2665                                                 /*IdentifierInfo=*/0,
2666                                                 ArgType, /*TInfo=*/0,
2667                                                 VarDecl::None,
2668                                                 VarDecl::None, 0);
2669    CopyConstructor->setParams(&FromParam, 1);
2670    if (S)
2671      PushOnScopeChains(CopyConstructor, S, true);
2672    else
2673      ClassDecl->addDecl(CopyConstructor);
2674  }
2675
2676  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2677    // Note: The following rules are largely analoguous to the copy
2678    // constructor rules. Note that virtual bases are not taken into account
2679    // for determining the argument type of the operator. Note also that
2680    // operators taking an object instead of a reference are allowed.
2681    //
2682    // C++ [class.copy]p10:
2683    //   If the class definition does not explicitly declare a copy
2684    //   assignment operator, one is declared implicitly.
2685    //   The implicitly-defined copy assignment operator for a class X
2686    //   will have the form
2687    //
2688    //       X& X::operator=(const X&)
2689    //
2690    //   if
2691    bool HasConstCopyAssignment = true;
2692
2693    //       -- each direct base class B of X has a copy assignment operator
2694    //          whose parameter is of type const B&, const volatile B& or B,
2695    //          and
2696    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2697         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2698      assert(!Base->getType()->isDependentType() &&
2699            "Cannot generate implicit members for class with dependent bases.");
2700      const CXXRecordDecl *BaseClassDecl
2701        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2702      const CXXMethodDecl *MD = 0;
2703      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2704                                                                     MD);
2705    }
2706
2707    //       -- for all the nonstatic data members of X that are of a class
2708    //          type M (or array thereof), each such class type has a copy
2709    //          assignment operator whose parameter is of type const M&,
2710    //          const volatile M& or M.
2711    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2712         HasConstCopyAssignment && Field != ClassDecl->field_end();
2713         ++Field) {
2714      QualType FieldType = (*Field)->getType();
2715      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2716        FieldType = Array->getElementType();
2717      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2718        const CXXRecordDecl *FieldClassDecl
2719          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2720        const CXXMethodDecl *MD = 0;
2721        HasConstCopyAssignment
2722          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2723      }
2724    }
2725
2726    //   Otherwise, the implicitly declared copy assignment operator will
2727    //   have the form
2728    //
2729    //       X& X::operator=(X&)
2730    QualType ArgType = ClassType;
2731    QualType RetType = Context.getLValueReferenceType(ArgType);
2732    if (HasConstCopyAssignment)
2733      ArgType = ArgType.withConst();
2734    ArgType = Context.getLValueReferenceType(ArgType);
2735
2736    //   An implicitly-declared copy assignment operator is an inline public
2737    //   member of its class.
2738    DeclarationName Name =
2739      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2740    CXXMethodDecl *CopyAssignment =
2741      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2742                            Context.getFunctionType(RetType, &ArgType, 1,
2743                                                    false, 0,
2744                                              /*FIXME: hasExceptionSpec*/false,
2745                                                    false, 0, 0,
2746                                                    FunctionType::ExtInfo()),
2747                            /*TInfo=*/0, /*isStatic=*/false,
2748                            /*StorageClassAsWritten=*/FunctionDecl::None,
2749                            /*isInline=*/true);
2750    CopyAssignment->setAccess(AS_public);
2751    CopyAssignment->setImplicit();
2752    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2753    CopyAssignment->setCopyAssignment(true);
2754
2755    // Add the parameter to the operator.
2756    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2757                                                 ClassDecl->getLocation(),
2758                                                 /*Id=*/0,
2759                                                 ArgType, /*TInfo=*/0,
2760                                                 VarDecl::None,
2761                                                 VarDecl::None, 0);
2762    CopyAssignment->setParams(&FromParam, 1);
2763
2764    // Don't call addedAssignmentOperator. There is no way to distinguish an
2765    // implicit from an explicit assignment operator.
2766    if (S)
2767      PushOnScopeChains(CopyAssignment, S, true);
2768    else
2769      ClassDecl->addDecl(CopyAssignment);
2770    AddOverriddenMethods(ClassDecl, CopyAssignment);
2771  }
2772
2773  if (!ClassDecl->hasUserDeclaredDestructor()) {
2774    // C++ [class.dtor]p2:
2775    //   If a class has no user-declared destructor, a destructor is
2776    //   declared implicitly. An implicitly-declared destructor is an
2777    //   inline public member of its class.
2778    QualType Ty = Context.getFunctionType(Context.VoidTy,
2779                                          0, 0, false, 0,
2780                                          /*FIXME: hasExceptionSpec*/false,
2781                                          false, 0, 0, FunctionType::ExtInfo());
2782
2783    DeclarationName Name
2784      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2785    CXXDestructorDecl *Destructor
2786      = CXXDestructorDecl::Create(Context, ClassDecl,
2787                                  ClassDecl->getLocation(), Name, Ty,
2788                                  /*isInline=*/true,
2789                                  /*isImplicitlyDeclared=*/true);
2790    Destructor->setAccess(AS_public);
2791    Destructor->setImplicit();
2792    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2793    if (S)
2794      PushOnScopeChains(Destructor, S, true);
2795    else
2796      ClassDecl->addDecl(Destructor);
2797
2798    // This could be uniqued if it ever proves significant.
2799    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2800
2801    AddOverriddenMethods(ClassDecl, Destructor);
2802  }
2803}
2804
2805void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2806  Decl *D = TemplateD.getAs<Decl>();
2807  if (!D)
2808    return;
2809
2810  TemplateParameterList *Params = 0;
2811  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2812    Params = Template->getTemplateParameters();
2813  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2814           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2815    Params = PartialSpec->getTemplateParameters();
2816  else
2817    return;
2818
2819  for (TemplateParameterList::iterator Param = Params->begin(),
2820                                    ParamEnd = Params->end();
2821       Param != ParamEnd; ++Param) {
2822    NamedDecl *Named = cast<NamedDecl>(*Param);
2823    if (Named->getDeclName()) {
2824      S->AddDecl(DeclPtrTy::make(Named));
2825      IdResolver.AddDecl(Named);
2826    }
2827  }
2828}
2829
2830void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2831  if (!RecordD) return;
2832  AdjustDeclIfTemplate(RecordD);
2833  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2834  PushDeclContext(S, Record);
2835}
2836
2837void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2838  if (!RecordD) return;
2839  PopDeclContext();
2840}
2841
2842/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2843/// parsing a top-level (non-nested) C++ class, and we are now
2844/// parsing those parts of the given Method declaration that could
2845/// not be parsed earlier (C++ [class.mem]p2), such as default
2846/// arguments. This action should enter the scope of the given
2847/// Method declaration as if we had just parsed the qualified method
2848/// name. However, it should not bring the parameters into scope;
2849/// that will be performed by ActOnDelayedCXXMethodParameter.
2850void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2851}
2852
2853/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2854/// C++ method declaration. We're (re-)introducing the given
2855/// function parameter into scope for use in parsing later parts of
2856/// the method declaration. For example, we could see an
2857/// ActOnParamDefaultArgument event for this parameter.
2858void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2859  if (!ParamD)
2860    return;
2861
2862  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2863
2864  // If this parameter has an unparsed default argument, clear it out
2865  // to make way for the parsed default argument.
2866  if (Param->hasUnparsedDefaultArg())
2867    Param->setDefaultArg(0);
2868
2869  S->AddDecl(DeclPtrTy::make(Param));
2870  if (Param->getDeclName())
2871    IdResolver.AddDecl(Param);
2872}
2873
2874/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2875/// processing the delayed method declaration for Method. The method
2876/// declaration is now considered finished. There may be a separate
2877/// ActOnStartOfFunctionDef action later (not necessarily
2878/// immediately!) for this method, if it was also defined inside the
2879/// class body.
2880void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2881  if (!MethodD)
2882    return;
2883
2884  AdjustDeclIfTemplate(MethodD);
2885
2886  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2887
2888  // Now that we have our default arguments, check the constructor
2889  // again. It could produce additional diagnostics or affect whether
2890  // the class has implicitly-declared destructors, among other
2891  // things.
2892  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2893    CheckConstructor(Constructor);
2894
2895  // Check the default arguments, which we may have added.
2896  if (!Method->isInvalidDecl())
2897    CheckCXXDefaultArguments(Method);
2898}
2899
2900/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2901/// the well-formedness of the constructor declarator @p D with type @p
2902/// R. If there are any errors in the declarator, this routine will
2903/// emit diagnostics and set the invalid bit to true.  In any case, the type
2904/// will be updated to reflect a well-formed type for the constructor and
2905/// returned.
2906QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2907                                          FunctionDecl::StorageClass &SC) {
2908  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2909
2910  // C++ [class.ctor]p3:
2911  //   A constructor shall not be virtual (10.3) or static (9.4). A
2912  //   constructor can be invoked for a const, volatile or const
2913  //   volatile object. A constructor shall not be declared const,
2914  //   volatile, or const volatile (9.3.2).
2915  if (isVirtual) {
2916    if (!D.isInvalidType())
2917      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2918        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2919        << SourceRange(D.getIdentifierLoc());
2920    D.setInvalidType();
2921  }
2922  if (SC == FunctionDecl::Static) {
2923    if (!D.isInvalidType())
2924      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2925        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2926        << SourceRange(D.getIdentifierLoc());
2927    D.setInvalidType();
2928    SC = FunctionDecl::None;
2929  }
2930
2931  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2932  if (FTI.TypeQuals != 0) {
2933    if (FTI.TypeQuals & Qualifiers::Const)
2934      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2935        << "const" << SourceRange(D.getIdentifierLoc());
2936    if (FTI.TypeQuals & Qualifiers::Volatile)
2937      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2938        << "volatile" << SourceRange(D.getIdentifierLoc());
2939    if (FTI.TypeQuals & Qualifiers::Restrict)
2940      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2941        << "restrict" << SourceRange(D.getIdentifierLoc());
2942  }
2943
2944  // Rebuild the function type "R" without any type qualifiers (in
2945  // case any of the errors above fired) and with "void" as the
2946  // return type, since constructors don't have return types. We
2947  // *always* have to do this, because GetTypeForDeclarator will
2948  // put in a result type of "int" when none was specified.
2949  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2950  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2951                                 Proto->getNumArgs(),
2952                                 Proto->isVariadic(), 0,
2953                                 Proto->hasExceptionSpec(),
2954                                 Proto->hasAnyExceptionSpec(),
2955                                 Proto->getNumExceptions(),
2956                                 Proto->exception_begin(),
2957                                 Proto->getExtInfo());
2958}
2959
2960/// CheckConstructor - Checks a fully-formed constructor for
2961/// well-formedness, issuing any diagnostics required. Returns true if
2962/// the constructor declarator is invalid.
2963void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2964  CXXRecordDecl *ClassDecl
2965    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2966  if (!ClassDecl)
2967    return Constructor->setInvalidDecl();
2968
2969  // C++ [class.copy]p3:
2970  //   A declaration of a constructor for a class X is ill-formed if
2971  //   its first parameter is of type (optionally cv-qualified) X and
2972  //   either there are no other parameters or else all other
2973  //   parameters have default arguments.
2974  if (!Constructor->isInvalidDecl() &&
2975      ((Constructor->getNumParams() == 1) ||
2976       (Constructor->getNumParams() > 1 &&
2977        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2978      Constructor->getTemplateSpecializationKind()
2979                                              != TSK_ImplicitInstantiation) {
2980    QualType ParamType = Constructor->getParamDecl(0)->getType();
2981    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2982    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2983      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2984      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2985        << FixItHint::CreateInsertion(ParamLoc, " const &");
2986
2987      // FIXME: Rather that making the constructor invalid, we should endeavor
2988      // to fix the type.
2989      Constructor->setInvalidDecl();
2990    }
2991  }
2992
2993  // Notify the class that we've added a constructor.  In principle we
2994  // don't need to do this for out-of-line declarations; in practice
2995  // we only instantiate the most recent declaration of a method, so
2996  // we have to call this for everything but friends.
2997  if (!Constructor->getFriendObjectKind())
2998    ClassDecl->addedConstructor(Context, Constructor);
2999}
3000
3001/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
3002/// issuing any diagnostics required. Returns true on error.
3003bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
3004  CXXRecordDecl *RD = Destructor->getParent();
3005
3006  if (Destructor->isVirtual()) {
3007    SourceLocation Loc;
3008
3009    if (!Destructor->isImplicit())
3010      Loc = Destructor->getLocation();
3011    else
3012      Loc = RD->getLocation();
3013
3014    // If we have a virtual destructor, look up the deallocation function
3015    FunctionDecl *OperatorDelete = 0;
3016    DeclarationName Name =
3017    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
3018    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
3019      return true;
3020
3021    Destructor->setOperatorDelete(OperatorDelete);
3022  }
3023
3024  return false;
3025}
3026
3027static inline bool
3028FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
3029  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3030          FTI.ArgInfo[0].Param &&
3031          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
3032}
3033
3034/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
3035/// the well-formednes of the destructor declarator @p D with type @p
3036/// R. If there are any errors in the declarator, this routine will
3037/// emit diagnostics and set the declarator to invalid.  Even if this happens,
3038/// will be updated to reflect a well-formed type for the destructor and
3039/// returned.
3040QualType Sema::CheckDestructorDeclarator(Declarator &D,
3041                                         FunctionDecl::StorageClass& SC) {
3042  // C++ [class.dtor]p1:
3043  //   [...] A typedef-name that names a class is a class-name
3044  //   (7.1.3); however, a typedef-name that names a class shall not
3045  //   be used as the identifier in the declarator for a destructor
3046  //   declaration.
3047  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
3048  if (isa<TypedefType>(DeclaratorType)) {
3049    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
3050      << DeclaratorType;
3051    D.setInvalidType();
3052  }
3053
3054  // C++ [class.dtor]p2:
3055  //   A destructor is used to destroy objects of its class type. A
3056  //   destructor takes no parameters, and no return type can be
3057  //   specified for it (not even void). The address of a destructor
3058  //   shall not be taken. A destructor shall not be static. A
3059  //   destructor can be invoked for a const, volatile or const
3060  //   volatile object. A destructor shall not be declared const,
3061  //   volatile or const volatile (9.3.2).
3062  if (SC == FunctionDecl::Static) {
3063    if (!D.isInvalidType())
3064      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
3065        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3066        << SourceRange(D.getIdentifierLoc());
3067    SC = FunctionDecl::None;
3068    D.setInvalidType();
3069  }
3070  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3071    // Destructors don't have return types, but the parser will
3072    // happily parse something like:
3073    //
3074    //   class X {
3075    //     float ~X();
3076    //   };
3077    //
3078    // The return type will be eliminated later.
3079    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
3080      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3081      << SourceRange(D.getIdentifierLoc());
3082  }
3083
3084  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3085  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
3086    if (FTI.TypeQuals & Qualifiers::Const)
3087      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3088        << "const" << SourceRange(D.getIdentifierLoc());
3089    if (FTI.TypeQuals & Qualifiers::Volatile)
3090      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3091        << "volatile" << SourceRange(D.getIdentifierLoc());
3092    if (FTI.TypeQuals & Qualifiers::Restrict)
3093      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
3094        << "restrict" << SourceRange(D.getIdentifierLoc());
3095    D.setInvalidType();
3096  }
3097
3098  // Make sure we don't have any parameters.
3099  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
3100    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
3101
3102    // Delete the parameters.
3103    FTI.freeArgs();
3104    D.setInvalidType();
3105  }
3106
3107  // Make sure the destructor isn't variadic.
3108  if (FTI.isVariadic) {
3109    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
3110    D.setInvalidType();
3111  }
3112
3113  // Rebuild the function type "R" without any type qualifiers or
3114  // parameters (in case any of the errors above fired) and with
3115  // "void" as the return type, since destructors don't have return
3116  // types. We *always* have to do this, because GetTypeForDeclarator
3117  // will put in a result type of "int" when none was specified.
3118  // FIXME: Exceptions!
3119  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
3120                                 false, false, 0, 0, FunctionType::ExtInfo());
3121}
3122
3123/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
3124/// well-formednes of the conversion function declarator @p D with
3125/// type @p R. If there are any errors in the declarator, this routine
3126/// will emit diagnostics and return true. Otherwise, it will return
3127/// false. Either way, the type @p R will be updated to reflect a
3128/// well-formed type for the conversion operator.
3129void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
3130                                     FunctionDecl::StorageClass& SC) {
3131  // C++ [class.conv.fct]p1:
3132  //   Neither parameter types nor return type can be specified. The
3133  //   type of a conversion function (8.3.5) is "function taking no
3134  //   parameter returning conversion-type-id."
3135  if (SC == FunctionDecl::Static) {
3136    if (!D.isInvalidType())
3137      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
3138        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
3139        << SourceRange(D.getIdentifierLoc());
3140    D.setInvalidType();
3141    SC = FunctionDecl::None;
3142  }
3143
3144  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
3145
3146  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
3147    // Conversion functions don't have return types, but the parser will
3148    // happily parse something like:
3149    //
3150    //   class X {
3151    //     float operator bool();
3152    //   };
3153    //
3154    // The return type will be changed later anyway.
3155    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
3156      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3157      << SourceRange(D.getIdentifierLoc());
3158    D.setInvalidType();
3159  }
3160
3161  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
3162
3163  // Make sure we don't have any parameters.
3164  if (Proto->getNumArgs() > 0) {
3165    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
3166
3167    // Delete the parameters.
3168    D.getTypeObject(0).Fun.freeArgs();
3169    D.setInvalidType();
3170  } else if (Proto->isVariadic()) {
3171    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
3172    D.setInvalidType();
3173  }
3174
3175  // Diagnose "&operator bool()" and other such nonsense.  This
3176  // is actually a gcc extension which we don't support.
3177  if (Proto->getResultType() != ConvType) {
3178    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
3179      << Proto->getResultType();
3180    D.setInvalidType();
3181    ConvType = Proto->getResultType();
3182  }
3183
3184  // C++ [class.conv.fct]p4:
3185  //   The conversion-type-id shall not represent a function type nor
3186  //   an array type.
3187  if (ConvType->isArrayType()) {
3188    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
3189    ConvType = Context.getPointerType(ConvType);
3190    D.setInvalidType();
3191  } else if (ConvType->isFunctionType()) {
3192    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
3193    ConvType = Context.getPointerType(ConvType);
3194    D.setInvalidType();
3195  }
3196
3197  // Rebuild the function type "R" without any parameters (in case any
3198  // of the errors above fired) and with the conversion type as the
3199  // return type.
3200  if (D.isInvalidType()) {
3201    R = Context.getFunctionType(ConvType, 0, 0, false,
3202                                Proto->getTypeQuals(),
3203                                Proto->hasExceptionSpec(),
3204                                Proto->hasAnyExceptionSpec(),
3205                                Proto->getNumExceptions(),
3206                                Proto->exception_begin(),
3207                                Proto->getExtInfo());
3208  }
3209
3210  // C++0x explicit conversion operators.
3211  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
3212    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3213         diag::warn_explicit_conversion_functions)
3214      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
3215}
3216
3217/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
3218/// the declaration of the given C++ conversion function. This routine
3219/// is responsible for recording the conversion function in the C++
3220/// class, if possible.
3221Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
3222  assert(Conversion && "Expected to receive a conversion function declaration");
3223
3224  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
3225
3226  // Make sure we aren't redeclaring the conversion function.
3227  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
3228
3229  // C++ [class.conv.fct]p1:
3230  //   [...] A conversion function is never used to convert a
3231  //   (possibly cv-qualified) object to the (possibly cv-qualified)
3232  //   same object type (or a reference to it), to a (possibly
3233  //   cv-qualified) base class of that type (or a reference to it),
3234  //   or to (possibly cv-qualified) void.
3235  // FIXME: Suppress this warning if the conversion function ends up being a
3236  // virtual function that overrides a virtual function in a base class.
3237  QualType ClassType
3238    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
3239  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
3240    ConvType = ConvTypeRef->getPointeeType();
3241  if (ConvType->isRecordType()) {
3242    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
3243    if (ConvType == ClassType)
3244      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
3245        << ClassType;
3246    else if (IsDerivedFrom(ClassType, ConvType))
3247      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
3248        <<  ClassType << ConvType;
3249  } else if (ConvType->isVoidType()) {
3250    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
3251      << ClassType << ConvType;
3252  }
3253
3254  if (Conversion->getPrimaryTemplate()) {
3255    // ignore specializations
3256  } else if (Conversion->getPreviousDeclaration()) {
3257    if (FunctionTemplateDecl *ConversionTemplate
3258                                  = Conversion->getDescribedFunctionTemplate()) {
3259      if (ClassDecl->replaceConversion(
3260                                   ConversionTemplate->getPreviousDeclaration(),
3261                                       ConversionTemplate))
3262        return DeclPtrTy::make(ConversionTemplate);
3263    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
3264                                            Conversion))
3265      return DeclPtrTy::make(Conversion);
3266    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
3267  } else if (FunctionTemplateDecl *ConversionTemplate
3268               = Conversion->getDescribedFunctionTemplate())
3269    ClassDecl->addConversionFunction(ConversionTemplate);
3270  else
3271    ClassDecl->addConversionFunction(Conversion);
3272
3273  return DeclPtrTy::make(Conversion);
3274}
3275
3276//===----------------------------------------------------------------------===//
3277// Namespace Handling
3278//===----------------------------------------------------------------------===//
3279
3280/// ActOnStartNamespaceDef - This is called at the start of a namespace
3281/// definition.
3282Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3283                                             SourceLocation IdentLoc,
3284                                             IdentifierInfo *II,
3285                                             SourceLocation LBrace,
3286                                             AttributeList *AttrList) {
3287  NamespaceDecl *Namespc =
3288      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3289  Namespc->setLBracLoc(LBrace);
3290
3291  Scope *DeclRegionScope = NamespcScope->getParent();
3292
3293  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3294
3295  if (II) {
3296    // C++ [namespace.def]p2:
3297    // The identifier in an original-namespace-definition shall not have been
3298    // previously defined in the declarative region in which the
3299    // original-namespace-definition appears. The identifier in an
3300    // original-namespace-definition is the name of the namespace. Subsequently
3301    // in that declarative region, it is treated as an original-namespace-name.
3302
3303    NamedDecl *PrevDecl
3304      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3305                         ForRedeclaration);
3306
3307    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3308      // This is an extended namespace definition.
3309      // Attach this namespace decl to the chain of extended namespace
3310      // definitions.
3311      OrigNS->setNextNamespace(Namespc);
3312      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3313
3314      // Remove the previous declaration from the scope.
3315      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3316        IdResolver.RemoveDecl(OrigNS);
3317        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3318      }
3319    } else if (PrevDecl) {
3320      // This is an invalid name redefinition.
3321      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3322       << Namespc->getDeclName();
3323      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3324      Namespc->setInvalidDecl();
3325      // Continue on to push Namespc as current DeclContext and return it.
3326    } else if (II->isStr("std") &&
3327               CurContext->getLookupContext()->isTranslationUnit()) {
3328      // This is the first "real" definition of the namespace "std", so update
3329      // our cache of the "std" namespace to point at this definition.
3330      if (StdNamespace) {
3331        // We had already defined a dummy namespace "std". Link this new
3332        // namespace definition to the dummy namespace "std".
3333        StdNamespace->setNextNamespace(Namespc);
3334        StdNamespace->setLocation(IdentLoc);
3335        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3336      }
3337
3338      // Make our StdNamespace cache point at the first real definition of the
3339      // "std" namespace.
3340      StdNamespace = Namespc;
3341    }
3342
3343    PushOnScopeChains(Namespc, DeclRegionScope);
3344  } else {
3345    // Anonymous namespaces.
3346    assert(Namespc->isAnonymousNamespace());
3347
3348    // Link the anonymous namespace into its parent.
3349    NamespaceDecl *PrevDecl;
3350    DeclContext *Parent = CurContext->getLookupContext();
3351    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3352      PrevDecl = TU->getAnonymousNamespace();
3353      TU->setAnonymousNamespace(Namespc);
3354    } else {
3355      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3356      PrevDecl = ND->getAnonymousNamespace();
3357      ND->setAnonymousNamespace(Namespc);
3358    }
3359
3360    // Link the anonymous namespace with its previous declaration.
3361    if (PrevDecl) {
3362      assert(PrevDecl->isAnonymousNamespace());
3363      assert(!PrevDecl->getNextNamespace());
3364      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3365      PrevDecl->setNextNamespace(Namespc);
3366    }
3367
3368    CurContext->addDecl(Namespc);
3369
3370    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3371    //   behaves as if it were replaced by
3372    //     namespace unique { /* empty body */ }
3373    //     using namespace unique;
3374    //     namespace unique { namespace-body }
3375    //   where all occurrences of 'unique' in a translation unit are
3376    //   replaced by the same identifier and this identifier differs
3377    //   from all other identifiers in the entire program.
3378
3379    // We just create the namespace with an empty name and then add an
3380    // implicit using declaration, just like the standard suggests.
3381    //
3382    // CodeGen enforces the "universally unique" aspect by giving all
3383    // declarations semantically contained within an anonymous
3384    // namespace internal linkage.
3385
3386    if (!PrevDecl) {
3387      UsingDirectiveDecl* UD
3388        = UsingDirectiveDecl::Create(Context, CurContext,
3389                                     /* 'using' */ LBrace,
3390                                     /* 'namespace' */ SourceLocation(),
3391                                     /* qualifier */ SourceRange(),
3392                                     /* NNS */ NULL,
3393                                     /* identifier */ SourceLocation(),
3394                                     Namespc,
3395                                     /* Ancestor */ CurContext);
3396      UD->setImplicit();
3397      CurContext->addDecl(UD);
3398    }
3399  }
3400
3401  // Although we could have an invalid decl (i.e. the namespace name is a
3402  // redefinition), push it as current DeclContext and try to continue parsing.
3403  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3404  // for the namespace has the declarations that showed up in that particular
3405  // namespace definition.
3406  PushDeclContext(NamespcScope, Namespc);
3407  return DeclPtrTy::make(Namespc);
3408}
3409
3410/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3411/// is a namespace alias, returns the namespace it points to.
3412static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3413  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3414    return AD->getNamespace();
3415  return dyn_cast_or_null<NamespaceDecl>(D);
3416}
3417
3418/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3419/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3420void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3421  Decl *Dcl = D.getAs<Decl>();
3422  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3423  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3424  Namespc->setRBracLoc(RBrace);
3425  PopDeclContext();
3426}
3427
3428Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3429                                          SourceLocation UsingLoc,
3430                                          SourceLocation NamespcLoc,
3431                                          CXXScopeSpec &SS,
3432                                          SourceLocation IdentLoc,
3433                                          IdentifierInfo *NamespcName,
3434                                          AttributeList *AttrList) {
3435  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3436  assert(NamespcName && "Invalid NamespcName.");
3437  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3438  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3439
3440  UsingDirectiveDecl *UDir = 0;
3441
3442  // Lookup namespace name.
3443  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3444  LookupParsedName(R, S, &SS);
3445  if (R.isAmbiguous())
3446    return DeclPtrTy();
3447
3448  if (!R.empty()) {
3449    NamedDecl *Named = R.getFoundDecl();
3450    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3451        && "expected namespace decl");
3452    // C++ [namespace.udir]p1:
3453    //   A using-directive specifies that the names in the nominated
3454    //   namespace can be used in the scope in which the
3455    //   using-directive appears after the using-directive. During
3456    //   unqualified name lookup (3.4.1), the names appear as if they
3457    //   were declared in the nearest enclosing namespace which
3458    //   contains both the using-directive and the nominated
3459    //   namespace. [Note: in this context, "contains" means "contains
3460    //   directly or indirectly". ]
3461
3462    // Find enclosing context containing both using-directive and
3463    // nominated namespace.
3464    NamespaceDecl *NS = getNamespaceDecl(Named);
3465    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3466    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3467      CommonAncestor = CommonAncestor->getParent();
3468
3469    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3470                                      SS.getRange(),
3471                                      (NestedNameSpecifier *)SS.getScopeRep(),
3472                                      IdentLoc, Named, CommonAncestor);
3473    PushUsingDirective(S, UDir);
3474  } else {
3475    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3476  }
3477
3478  // FIXME: We ignore attributes for now.
3479  delete AttrList;
3480  return DeclPtrTy::make(UDir);
3481}
3482
3483void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3484  // If scope has associated entity, then using directive is at namespace
3485  // or translation unit scope. We add UsingDirectiveDecls, into
3486  // it's lookup structure.
3487  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3488    Ctx->addDecl(UDir);
3489  else
3490    // Otherwise it is block-sope. using-directives will affect lookup
3491    // only to the end of scope.
3492    S->PushUsingDirective(DeclPtrTy::make(UDir));
3493}
3494
3495
3496Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3497                                            AccessSpecifier AS,
3498                                            bool HasUsingKeyword,
3499                                            SourceLocation UsingLoc,
3500                                            CXXScopeSpec &SS,
3501                                            UnqualifiedId &Name,
3502                                            AttributeList *AttrList,
3503                                            bool IsTypeName,
3504                                            SourceLocation TypenameLoc) {
3505  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3506
3507  switch (Name.getKind()) {
3508  case UnqualifiedId::IK_Identifier:
3509  case UnqualifiedId::IK_OperatorFunctionId:
3510  case UnqualifiedId::IK_LiteralOperatorId:
3511  case UnqualifiedId::IK_ConversionFunctionId:
3512    break;
3513
3514  case UnqualifiedId::IK_ConstructorName:
3515  case UnqualifiedId::IK_ConstructorTemplateId:
3516    // C++0x inherited constructors.
3517    if (getLangOptions().CPlusPlus0x) break;
3518
3519    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3520      << SS.getRange();
3521    return DeclPtrTy();
3522
3523  case UnqualifiedId::IK_DestructorName:
3524    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3525      << SS.getRange();
3526    return DeclPtrTy();
3527
3528  case UnqualifiedId::IK_TemplateId:
3529    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3530      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3531    return DeclPtrTy();
3532  }
3533
3534  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3535  if (!TargetName)
3536    return DeclPtrTy();
3537
3538  // Warn about using declarations.
3539  // TODO: store that the declaration was written without 'using' and
3540  // talk about access decls instead of using decls in the
3541  // diagnostics.
3542  if (!HasUsingKeyword) {
3543    UsingLoc = Name.getSourceRange().getBegin();
3544
3545    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3546      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3547  }
3548
3549  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3550                                        Name.getSourceRange().getBegin(),
3551                                        TargetName, AttrList,
3552                                        /* IsInstantiation */ false,
3553                                        IsTypeName, TypenameLoc);
3554  if (UD)
3555    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3556
3557  return DeclPtrTy::make(UD);
3558}
3559
3560/// Determines whether to create a using shadow decl for a particular
3561/// decl, given the set of decls existing prior to this using lookup.
3562bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3563                                const LookupResult &Previous) {
3564  // Diagnose finding a decl which is not from a base class of the
3565  // current class.  We do this now because there are cases where this
3566  // function will silently decide not to build a shadow decl, which
3567  // will pre-empt further diagnostics.
3568  //
3569  // We don't need to do this in C++0x because we do the check once on
3570  // the qualifier.
3571  //
3572  // FIXME: diagnose the following if we care enough:
3573  //   struct A { int foo; };
3574  //   struct B : A { using A::foo; };
3575  //   template <class T> struct C : A {};
3576  //   template <class T> struct D : C<T> { using B::foo; } // <---
3577  // This is invalid (during instantiation) in C++03 because B::foo
3578  // resolves to the using decl in B, which is not a base class of D<T>.
3579  // We can't diagnose it immediately because C<T> is an unknown
3580  // specialization.  The UsingShadowDecl in D<T> then points directly
3581  // to A::foo, which will look well-formed when we instantiate.
3582  // The right solution is to not collapse the shadow-decl chain.
3583  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3584    DeclContext *OrigDC = Orig->getDeclContext();
3585
3586    // Handle enums and anonymous structs.
3587    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3588    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3589    while (OrigRec->isAnonymousStructOrUnion())
3590      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3591
3592    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3593      if (OrigDC == CurContext) {
3594        Diag(Using->getLocation(),
3595             diag::err_using_decl_nested_name_specifier_is_current_class)
3596          << Using->getNestedNameRange();
3597        Diag(Orig->getLocation(), diag::note_using_decl_target);
3598        return true;
3599      }
3600
3601      Diag(Using->getNestedNameRange().getBegin(),
3602           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3603        << Using->getTargetNestedNameDecl()
3604        << cast<CXXRecordDecl>(CurContext)
3605        << Using->getNestedNameRange();
3606      Diag(Orig->getLocation(), diag::note_using_decl_target);
3607      return true;
3608    }
3609  }
3610
3611  if (Previous.empty()) return false;
3612
3613  NamedDecl *Target = Orig;
3614  if (isa<UsingShadowDecl>(Target))
3615    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3616
3617  // If the target happens to be one of the previous declarations, we
3618  // don't have a conflict.
3619  //
3620  // FIXME: but we might be increasing its access, in which case we
3621  // should redeclare it.
3622  NamedDecl *NonTag = 0, *Tag = 0;
3623  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3624         I != E; ++I) {
3625    NamedDecl *D = (*I)->getUnderlyingDecl();
3626    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3627      return false;
3628
3629    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3630  }
3631
3632  if (Target->isFunctionOrFunctionTemplate()) {
3633    FunctionDecl *FD;
3634    if (isa<FunctionTemplateDecl>(Target))
3635      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3636    else
3637      FD = cast<FunctionDecl>(Target);
3638
3639    NamedDecl *OldDecl = 0;
3640    switch (CheckOverload(FD, Previous, OldDecl)) {
3641    case Ovl_Overload:
3642      return false;
3643
3644    case Ovl_NonFunction:
3645      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3646      break;
3647
3648    // We found a decl with the exact signature.
3649    case Ovl_Match:
3650      if (isa<UsingShadowDecl>(OldDecl)) {
3651        // Silently ignore the possible conflict.
3652        return false;
3653      }
3654
3655      // If we're in a record, we want to hide the target, so we
3656      // return true (without a diagnostic) to tell the caller not to
3657      // build a shadow decl.
3658      if (CurContext->isRecord())
3659        return true;
3660
3661      // If we're not in a record, this is an error.
3662      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3663      break;
3664    }
3665
3666    Diag(Target->getLocation(), diag::note_using_decl_target);
3667    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3668    return true;
3669  }
3670
3671  // Target is not a function.
3672
3673  if (isa<TagDecl>(Target)) {
3674    // No conflict between a tag and a non-tag.
3675    if (!Tag) return false;
3676
3677    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3678    Diag(Target->getLocation(), diag::note_using_decl_target);
3679    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3680    return true;
3681  }
3682
3683  // No conflict between a tag and a non-tag.
3684  if (!NonTag) return false;
3685
3686  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3687  Diag(Target->getLocation(), diag::note_using_decl_target);
3688  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3689  return true;
3690}
3691
3692/// Builds a shadow declaration corresponding to a 'using' declaration.
3693UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3694                                            UsingDecl *UD,
3695                                            NamedDecl *Orig) {
3696
3697  // If we resolved to another shadow declaration, just coalesce them.
3698  NamedDecl *Target = Orig;
3699  if (isa<UsingShadowDecl>(Target)) {
3700    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3701    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3702  }
3703
3704  UsingShadowDecl *Shadow
3705    = UsingShadowDecl::Create(Context, CurContext,
3706                              UD->getLocation(), UD, Target);
3707  UD->addShadowDecl(Shadow);
3708
3709  if (S)
3710    PushOnScopeChains(Shadow, S);
3711  else
3712    CurContext->addDecl(Shadow);
3713  Shadow->setAccess(UD->getAccess());
3714
3715  // Register it as a conversion if appropriate.
3716  if (Shadow->getDeclName().getNameKind()
3717        == DeclarationName::CXXConversionFunctionName)
3718    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3719
3720  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3721    Shadow->setInvalidDecl();
3722
3723  return Shadow;
3724}
3725
3726/// Hides a using shadow declaration.  This is required by the current
3727/// using-decl implementation when a resolvable using declaration in a
3728/// class is followed by a declaration which would hide or override
3729/// one or more of the using decl's targets; for example:
3730///
3731///   struct Base { void foo(int); };
3732///   struct Derived : Base {
3733///     using Base::foo;
3734///     void foo(int);
3735///   };
3736///
3737/// The governing language is C++03 [namespace.udecl]p12:
3738///
3739///   When a using-declaration brings names from a base class into a
3740///   derived class scope, member functions in the derived class
3741///   override and/or hide member functions with the same name and
3742///   parameter types in a base class (rather than conflicting).
3743///
3744/// There are two ways to implement this:
3745///   (1) optimistically create shadow decls when they're not hidden
3746///       by existing declarations, or
3747///   (2) don't create any shadow decls (or at least don't make them
3748///       visible) until we've fully parsed/instantiated the class.
3749/// The problem with (1) is that we might have to retroactively remove
3750/// a shadow decl, which requires several O(n) operations because the
3751/// decl structures are (very reasonably) not designed for removal.
3752/// (2) avoids this but is very fiddly and phase-dependent.
3753void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3754  if (Shadow->getDeclName().getNameKind() ==
3755        DeclarationName::CXXConversionFunctionName)
3756    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3757
3758  // Remove it from the DeclContext...
3759  Shadow->getDeclContext()->removeDecl(Shadow);
3760
3761  // ...and the scope, if applicable...
3762  if (S) {
3763    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3764    IdResolver.RemoveDecl(Shadow);
3765  }
3766
3767  // ...and the using decl.
3768  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3769
3770  // TODO: complain somehow if Shadow was used.  It shouldn't
3771  // be possible for this to happen, because...?
3772}
3773
3774/// Builds a using declaration.
3775///
3776/// \param IsInstantiation - Whether this call arises from an
3777///   instantiation of an unresolved using declaration.  We treat
3778///   the lookup differently for these declarations.
3779NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3780                                       SourceLocation UsingLoc,
3781                                       CXXScopeSpec &SS,
3782                                       SourceLocation IdentLoc,
3783                                       DeclarationName Name,
3784                                       AttributeList *AttrList,
3785                                       bool IsInstantiation,
3786                                       bool IsTypeName,
3787                                       SourceLocation TypenameLoc) {
3788  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3789  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3790
3791  // FIXME: We ignore attributes for now.
3792  delete AttrList;
3793
3794  if (SS.isEmpty()) {
3795    Diag(IdentLoc, diag::err_using_requires_qualname);
3796    return 0;
3797  }
3798
3799  // Do the redeclaration lookup in the current scope.
3800  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3801                        ForRedeclaration);
3802  Previous.setHideTags(false);
3803  if (S) {
3804    LookupName(Previous, S);
3805
3806    // It is really dumb that we have to do this.
3807    LookupResult::Filter F = Previous.makeFilter();
3808    while (F.hasNext()) {
3809      NamedDecl *D = F.next();
3810      if (!isDeclInScope(D, CurContext, S))
3811        F.erase();
3812    }
3813    F.done();
3814  } else {
3815    assert(IsInstantiation && "no scope in non-instantiation");
3816    assert(CurContext->isRecord() && "scope not record in instantiation");
3817    LookupQualifiedName(Previous, CurContext);
3818  }
3819
3820  NestedNameSpecifier *NNS =
3821    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3822
3823  // Check for invalid redeclarations.
3824  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3825    return 0;
3826
3827  // Check for bad qualifiers.
3828  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3829    return 0;
3830
3831  DeclContext *LookupContext = computeDeclContext(SS);
3832  NamedDecl *D;
3833  if (!LookupContext) {
3834    if (IsTypeName) {
3835      // FIXME: not all declaration name kinds are legal here
3836      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3837                                              UsingLoc, TypenameLoc,
3838                                              SS.getRange(), NNS,
3839                                              IdentLoc, Name);
3840    } else {
3841      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3842                                           UsingLoc, SS.getRange(), NNS,
3843                                           IdentLoc, Name);
3844    }
3845  } else {
3846    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3847                          SS.getRange(), UsingLoc, NNS, Name,
3848                          IsTypeName);
3849  }
3850  D->setAccess(AS);
3851  CurContext->addDecl(D);
3852
3853  if (!LookupContext) return D;
3854  UsingDecl *UD = cast<UsingDecl>(D);
3855
3856  if (RequireCompleteDeclContext(SS, LookupContext)) {
3857    UD->setInvalidDecl();
3858    return UD;
3859  }
3860
3861  // Look up the target name.
3862
3863  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3864
3865  // Unlike most lookups, we don't always want to hide tag
3866  // declarations: tag names are visible through the using declaration
3867  // even if hidden by ordinary names, *except* in a dependent context
3868  // where it's important for the sanity of two-phase lookup.
3869  if (!IsInstantiation)
3870    R.setHideTags(false);
3871
3872  LookupQualifiedName(R, LookupContext);
3873
3874  if (R.empty()) {
3875    Diag(IdentLoc, diag::err_no_member)
3876      << Name << LookupContext << SS.getRange();
3877    UD->setInvalidDecl();
3878    return UD;
3879  }
3880
3881  if (R.isAmbiguous()) {
3882    UD->setInvalidDecl();
3883    return UD;
3884  }
3885
3886  if (IsTypeName) {
3887    // If we asked for a typename and got a non-type decl, error out.
3888    if (!R.getAsSingle<TypeDecl>()) {
3889      Diag(IdentLoc, diag::err_using_typename_non_type);
3890      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3891        Diag((*I)->getUnderlyingDecl()->getLocation(),
3892             diag::note_using_decl_target);
3893      UD->setInvalidDecl();
3894      return UD;
3895    }
3896  } else {
3897    // If we asked for a non-typename and we got a type, error out,
3898    // but only if this is an instantiation of an unresolved using
3899    // decl.  Otherwise just silently find the type name.
3900    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3901      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3902      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3903      UD->setInvalidDecl();
3904      return UD;
3905    }
3906  }
3907
3908  // C++0x N2914 [namespace.udecl]p6:
3909  // A using-declaration shall not name a namespace.
3910  if (R.getAsSingle<NamespaceDecl>()) {
3911    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3912      << SS.getRange();
3913    UD->setInvalidDecl();
3914    return UD;
3915  }
3916
3917  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3918    if (!CheckUsingShadowDecl(UD, *I, Previous))
3919      BuildUsingShadowDecl(S, UD, *I);
3920  }
3921
3922  return UD;
3923}
3924
3925/// Checks that the given using declaration is not an invalid
3926/// redeclaration.  Note that this is checking only for the using decl
3927/// itself, not for any ill-formedness among the UsingShadowDecls.
3928bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3929                                       bool isTypeName,
3930                                       const CXXScopeSpec &SS,
3931                                       SourceLocation NameLoc,
3932                                       const LookupResult &Prev) {
3933  // C++03 [namespace.udecl]p8:
3934  // C++0x [namespace.udecl]p10:
3935  //   A using-declaration is a declaration and can therefore be used
3936  //   repeatedly where (and only where) multiple declarations are
3937  //   allowed.
3938  //
3939  // That's in non-member contexts.
3940  if (!CurContext->getLookupContext()->isRecord())
3941    return false;
3942
3943  NestedNameSpecifier *Qual
3944    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3945
3946  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3947    NamedDecl *D = *I;
3948
3949    bool DTypename;
3950    NestedNameSpecifier *DQual;
3951    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3952      DTypename = UD->isTypeName();
3953      DQual = UD->getTargetNestedNameDecl();
3954    } else if (UnresolvedUsingValueDecl *UD
3955                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3956      DTypename = false;
3957      DQual = UD->getTargetNestedNameSpecifier();
3958    } else if (UnresolvedUsingTypenameDecl *UD
3959                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3960      DTypename = true;
3961      DQual = UD->getTargetNestedNameSpecifier();
3962    } else continue;
3963
3964    // using decls differ if one says 'typename' and the other doesn't.
3965    // FIXME: non-dependent using decls?
3966    if (isTypeName != DTypename) continue;
3967
3968    // using decls differ if they name different scopes (but note that
3969    // template instantiation can cause this check to trigger when it
3970    // didn't before instantiation).
3971    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3972        Context.getCanonicalNestedNameSpecifier(DQual))
3973      continue;
3974
3975    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3976    Diag(D->getLocation(), diag::note_using_decl) << 1;
3977    return true;
3978  }
3979
3980  return false;
3981}
3982
3983
3984/// Checks that the given nested-name qualifier used in a using decl
3985/// in the current context is appropriately related to the current
3986/// scope.  If an error is found, diagnoses it and returns true.
3987bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3988                                   const CXXScopeSpec &SS,
3989                                   SourceLocation NameLoc) {
3990  DeclContext *NamedContext = computeDeclContext(SS);
3991
3992  if (!CurContext->isRecord()) {
3993    // C++03 [namespace.udecl]p3:
3994    // C++0x [namespace.udecl]p8:
3995    //   A using-declaration for a class member shall be a member-declaration.
3996
3997    // If we weren't able to compute a valid scope, it must be a
3998    // dependent class scope.
3999    if (!NamedContext || NamedContext->isRecord()) {
4000      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
4001        << SS.getRange();
4002      return true;
4003    }
4004
4005    // Otherwise, everything is known to be fine.
4006    return false;
4007  }
4008
4009  // The current scope is a record.
4010
4011  // If the named context is dependent, we can't decide much.
4012  if (!NamedContext) {
4013    // FIXME: in C++0x, we can diagnose if we can prove that the
4014    // nested-name-specifier does not refer to a base class, which is
4015    // still possible in some cases.
4016
4017    // Otherwise we have to conservatively report that things might be
4018    // okay.
4019    return false;
4020  }
4021
4022  if (!NamedContext->isRecord()) {
4023    // Ideally this would point at the last name in the specifier,
4024    // but we don't have that level of source info.
4025    Diag(SS.getRange().getBegin(),
4026         diag::err_using_decl_nested_name_specifier_is_not_class)
4027      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
4028    return true;
4029  }
4030
4031  if (getLangOptions().CPlusPlus0x) {
4032    // C++0x [namespace.udecl]p3:
4033    //   In a using-declaration used as a member-declaration, the
4034    //   nested-name-specifier shall name a base class of the class
4035    //   being defined.
4036
4037    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
4038                                 cast<CXXRecordDecl>(NamedContext))) {
4039      if (CurContext == NamedContext) {
4040        Diag(NameLoc,
4041             diag::err_using_decl_nested_name_specifier_is_current_class)
4042          << SS.getRange();
4043        return true;
4044      }
4045
4046      Diag(SS.getRange().getBegin(),
4047           diag::err_using_decl_nested_name_specifier_is_not_base_class)
4048        << (NestedNameSpecifier*) SS.getScopeRep()
4049        << cast<CXXRecordDecl>(CurContext)
4050        << SS.getRange();
4051      return true;
4052    }
4053
4054    return false;
4055  }
4056
4057  // C++03 [namespace.udecl]p4:
4058  //   A using-declaration used as a member-declaration shall refer
4059  //   to a member of a base class of the class being defined [etc.].
4060
4061  // Salient point: SS doesn't have to name a base class as long as
4062  // lookup only finds members from base classes.  Therefore we can
4063  // diagnose here only if we can prove that that can't happen,
4064  // i.e. if the class hierarchies provably don't intersect.
4065
4066  // TODO: it would be nice if "definitely valid" results were cached
4067  // in the UsingDecl and UsingShadowDecl so that these checks didn't
4068  // need to be repeated.
4069
4070  struct UserData {
4071    llvm::DenseSet<const CXXRecordDecl*> Bases;
4072
4073    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
4074      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4075      Data->Bases.insert(Base);
4076      return true;
4077    }
4078
4079    bool hasDependentBases(const CXXRecordDecl *Class) {
4080      return !Class->forallBases(collect, this);
4081    }
4082
4083    /// Returns true if the base is dependent or is one of the
4084    /// accumulated base classes.
4085    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
4086      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
4087      return !Data->Bases.count(Base);
4088    }
4089
4090    bool mightShareBases(const CXXRecordDecl *Class) {
4091      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
4092    }
4093  };
4094
4095  UserData Data;
4096
4097  // Returns false if we find a dependent base.
4098  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
4099    return false;
4100
4101  // Returns false if the class has a dependent base or if it or one
4102  // of its bases is present in the base set of the current context.
4103  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
4104    return false;
4105
4106  Diag(SS.getRange().getBegin(),
4107       diag::err_using_decl_nested_name_specifier_is_not_base_class)
4108    << (NestedNameSpecifier*) SS.getScopeRep()
4109    << cast<CXXRecordDecl>(CurContext)
4110    << SS.getRange();
4111
4112  return true;
4113}
4114
4115Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
4116                                             SourceLocation NamespaceLoc,
4117                                             SourceLocation AliasLoc,
4118                                             IdentifierInfo *Alias,
4119                                             CXXScopeSpec &SS,
4120                                             SourceLocation IdentLoc,
4121                                             IdentifierInfo *Ident) {
4122
4123  // Lookup the namespace name.
4124  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
4125  LookupParsedName(R, S, &SS);
4126
4127  // Check if we have a previous declaration with the same name.
4128  NamedDecl *PrevDecl
4129    = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
4130                       ForRedeclaration);
4131  if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
4132    PrevDecl = 0;
4133
4134  if (PrevDecl) {
4135    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
4136      // We already have an alias with the same name that points to the same
4137      // namespace, so don't create a new one.
4138      // FIXME: At some point, we'll want to create the (redundant)
4139      // declaration to maintain better source information.
4140      if (!R.isAmbiguous() && !R.empty() &&
4141          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
4142        return DeclPtrTy();
4143    }
4144
4145    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
4146      diag::err_redefinition_different_kind;
4147    Diag(AliasLoc, DiagID) << Alias;
4148    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4149    return DeclPtrTy();
4150  }
4151
4152  if (R.isAmbiguous())
4153    return DeclPtrTy();
4154
4155  if (R.empty()) {
4156    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
4157    return DeclPtrTy();
4158  }
4159
4160  NamespaceAliasDecl *AliasDecl =
4161    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
4162                               Alias, SS.getRange(),
4163                               (NestedNameSpecifier *)SS.getScopeRep(),
4164                               IdentLoc, R.getFoundDecl());
4165
4166  PushOnScopeChains(AliasDecl, S);
4167  return DeclPtrTy::make(AliasDecl);
4168}
4169
4170namespace {
4171  /// \brief Scoped object used to handle the state changes required in Sema
4172  /// to implicitly define the body of a C++ member function;
4173  class ImplicitlyDefinedFunctionScope {
4174    Sema &S;
4175    DeclContext *PreviousContext;
4176
4177  public:
4178    ImplicitlyDefinedFunctionScope(Sema &S, CXXMethodDecl *Method)
4179      : S(S), PreviousContext(S.CurContext)
4180    {
4181      S.CurContext = Method;
4182      S.PushFunctionScope();
4183      S.PushExpressionEvaluationContext(Sema::PotentiallyEvaluated);
4184    }
4185
4186    ~ImplicitlyDefinedFunctionScope() {
4187      S.PopExpressionEvaluationContext();
4188      S.PopFunctionOrBlockScope();
4189      S.CurContext = PreviousContext;
4190    }
4191  };
4192}
4193
4194void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
4195                                            CXXConstructorDecl *Constructor) {
4196  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
4197          !Constructor->isUsed()) &&
4198    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
4199
4200  CXXRecordDecl *ClassDecl = Constructor->getParent();
4201  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
4202
4203  ImplicitlyDefinedFunctionScope Scope(*this, Constructor);
4204  ErrorTrap Trap(*this);
4205  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false) ||
4206      Trap.hasErrorOccurred()) {
4207    Diag(CurrentLocation, diag::note_member_synthesized_at)
4208      << CXXConstructor << Context.getTagDeclType(ClassDecl);
4209    Constructor->setInvalidDecl();
4210  } else {
4211    Constructor->setUsed();
4212    MarkVTableUsed(CurrentLocation, ClassDecl);
4213  }
4214}
4215
4216void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
4217                                    CXXDestructorDecl *Destructor) {
4218  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
4219         "DefineImplicitDestructor - call it for implicit default dtor");
4220  CXXRecordDecl *ClassDecl = Destructor->getParent();
4221  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
4222
4223  if (Destructor->isInvalidDecl())
4224    return;
4225
4226  ImplicitlyDefinedFunctionScope Scope(*this, Destructor);
4227
4228  ErrorTrap Trap(*this);
4229  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4230                                         Destructor->getParent());
4231
4232  if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
4233    Diag(CurrentLocation, diag::note_member_synthesized_at)
4234      << CXXDestructor << Context.getTagDeclType(ClassDecl);
4235
4236    Destructor->setInvalidDecl();
4237    return;
4238  }
4239
4240  Destructor->setUsed();
4241  MarkVTableUsed(CurrentLocation, ClassDecl);
4242}
4243
4244/// \brief Builds a statement that copies the given entity from \p From to
4245/// \c To.
4246///
4247/// This routine is used to copy the members of a class with an
4248/// implicitly-declared copy assignment operator. When the entities being
4249/// copied are arrays, this routine builds for loops to copy them.
4250///
4251/// \param S The Sema object used for type-checking.
4252///
4253/// \param Loc The location where the implicit copy is being generated.
4254///
4255/// \param T The type of the expressions being copied. Both expressions must
4256/// have this type.
4257///
4258/// \param To The expression we are copying to.
4259///
4260/// \param From The expression we are copying from.
4261///
4262/// \param CopyingBaseSubobject Whether we're copying a base subobject.
4263/// Otherwise, it's a non-static member subobject.
4264///
4265/// \param Depth Internal parameter recording the depth of the recursion.
4266///
4267/// \returns A statement or a loop that copies the expressions.
4268static Sema::OwningStmtResult
4269BuildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
4270                      Sema::OwningExprResult To, Sema::OwningExprResult From,
4271                      bool CopyingBaseSubobject, unsigned Depth = 0) {
4272  typedef Sema::OwningStmtResult OwningStmtResult;
4273  typedef Sema::OwningExprResult OwningExprResult;
4274
4275  // C++0x [class.copy]p30:
4276  //   Each subobject is assigned in the manner appropriate to its type:
4277  //
4278  //     - if the subobject is of class type, the copy assignment operator
4279  //       for the class is used (as if by explicit qualification; that is,
4280  //       ignoring any possible virtual overriding functions in more derived
4281  //       classes);
4282  if (const RecordType *RecordTy = T->getAs<RecordType>()) {
4283    CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4284
4285    // Look for operator=.
4286    DeclarationName Name
4287      = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
4288    LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
4289    S.LookupQualifiedName(OpLookup, ClassDecl, false);
4290
4291    // Filter out any result that isn't a copy-assignment operator.
4292    LookupResult::Filter F = OpLookup.makeFilter();
4293    while (F.hasNext()) {
4294      NamedDecl *D = F.next();
4295      if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
4296        if (Method->isCopyAssignmentOperator())
4297          continue;
4298
4299      F.erase();
4300    }
4301    F.done();
4302
4303    // Suppress the protected check (C++ [class.protected]) for each of the
4304    // assignment operators we found. This strange dance is required when
4305    // we're assigning via a base classes's copy-assignment operator. To
4306    // ensure that we're getting the right base class subobject (without
4307    // ambiguities), we need to cast "this" to that subobject type; to
4308    // ensure that we don't go through the virtual call mechanism, we need
4309    // to qualify the operator= name with the base class (see below). However,
4310    // this means that if the base class has a protected copy assignment
4311    // operator, the protected member access check will fail. So, we
4312    // rewrite "protected" access to "public" access in this case, since we
4313    // know by construction that we're calling from a derived class.
4314    if (CopyingBaseSubobject) {
4315      for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
4316           L != LEnd; ++L) {
4317        if (L.getAccess() == AS_protected)
4318          L.setAccess(AS_public);
4319      }
4320    }
4321
4322    // Create the nested-name-specifier that will be used to qualify the
4323    // reference to operator=; this is required to suppress the virtual
4324    // call mechanism.
4325    CXXScopeSpec SS;
4326    SS.setRange(Loc);
4327    SS.setScopeRep(NestedNameSpecifier::Create(S.Context, 0, false,
4328                                               T.getTypePtr()));
4329
4330    // Create the reference to operator=.
4331    OwningExprResult OpEqualRef
4332      = S.BuildMemberReferenceExpr(move(To), T, Loc, /*isArrow=*/false, SS,
4333                                   /*FirstQualifierInScope=*/0, OpLookup,
4334                                   /*TemplateArgs=*/0,
4335                                   /*SuppressQualifierCheck=*/true);
4336    if (OpEqualRef.isInvalid())
4337      return S.StmtError();
4338
4339    // Build the call to the assignment operator.
4340    Expr *FromE = From.takeAs<Expr>();
4341    OwningExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/0,
4342                                                      OpEqualRef.takeAs<Expr>(),
4343                                                        Loc, &FromE, 1, 0, Loc);
4344    if (Call.isInvalid())
4345      return S.StmtError();
4346
4347    return S.Owned(Call.takeAs<Stmt>());
4348  }
4349
4350  //     - if the subobject is of scalar type, the built-in assignment
4351  //       operator is used.
4352  const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
4353  if (!ArrayTy) {
4354    OwningExprResult Assignment = S.CreateBuiltinBinOp(Loc,
4355                                                       BinaryOperator::Assign,
4356                                                       To.takeAs<Expr>(),
4357                                                       From.takeAs<Expr>());
4358    if (Assignment.isInvalid())
4359      return S.StmtError();
4360
4361    return S.Owned(Assignment.takeAs<Stmt>());
4362  }
4363
4364  //     - if the subobject is an array, each element is assigned, in the
4365  //       manner appropriate to the element type;
4366
4367  // Construct a loop over the array bounds, e.g.,
4368  //
4369  //   for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
4370  //
4371  // that will copy each of the array elements.
4372  QualType SizeType = S.Context.getSizeType();
4373
4374  // Create the iteration variable.
4375  IdentifierInfo *IterationVarName = 0;
4376  {
4377    llvm::SmallString<8> Str;
4378    llvm::raw_svector_ostream OS(Str);
4379    OS << "__i" << Depth;
4380    IterationVarName = &S.Context.Idents.get(OS.str());
4381  }
4382  VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc,
4383                                          IterationVarName, SizeType,
4384                            S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
4385                                          VarDecl::None, VarDecl::None);
4386
4387  // Initialize the iteration variable to zero.
4388  llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
4389  IterationVar->setInit(new (S.Context) IntegerLiteral(Zero, SizeType, Loc));
4390
4391  // Create a reference to the iteration variable; we'll use this several
4392  // times throughout.
4393  Expr *IterationVarRef
4394    = S.BuildDeclRefExpr(IterationVar, SizeType, Loc).takeAs<Expr>();
4395  assert(IterationVarRef && "Reference to invented variable cannot fail!");
4396
4397  // Create the DeclStmt that holds the iteration variable.
4398  Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
4399
4400  // Create the comparison against the array bound.
4401  llvm::APInt Upper = ArrayTy->getSize();
4402  Upper.zextOrTrunc(S.Context.getTypeSize(SizeType));
4403  OwningExprResult Comparison
4404    = S.Owned(new (S.Context) BinaryOperator(IterationVarRef->Retain(),
4405                           new (S.Context) IntegerLiteral(Upper, SizeType, Loc),
4406                                    BinaryOperator::NE, S.Context.BoolTy, Loc));
4407
4408  // Create the pre-increment of the iteration variable.
4409  OwningExprResult Increment
4410    = S.Owned(new (S.Context) UnaryOperator(IterationVarRef->Retain(),
4411                                            UnaryOperator::PreInc,
4412                                            SizeType, Loc));
4413
4414  // Subscript the "from" and "to" expressions with the iteration variable.
4415  From = S.CreateBuiltinArraySubscriptExpr(move(From), Loc,
4416                                           S.Owned(IterationVarRef->Retain()),
4417                                           Loc);
4418  To = S.CreateBuiltinArraySubscriptExpr(move(To), Loc,
4419                                         S.Owned(IterationVarRef->Retain()),
4420                                         Loc);
4421  assert(!From.isInvalid() && "Builtin subscripting can't fail!");
4422  assert(!To.isInvalid() && "Builtin subscripting can't fail!");
4423
4424  // Build the copy for an individual element of the array.
4425  OwningStmtResult Copy = BuildSingleCopyAssign(S, Loc,
4426                                                ArrayTy->getElementType(),
4427                                                move(To), move(From),
4428                                                CopyingBaseSubobject, Depth+1);
4429  if (Copy.isInvalid()) {
4430    InitStmt->Destroy(S.Context);
4431    return S.StmtError();
4432  }
4433
4434  // Construct the loop that copies all elements of this array.
4435  return S.ActOnForStmt(Loc, Loc, S.Owned(InitStmt),
4436                        S.MakeFullExpr(Comparison),
4437                        Sema::DeclPtrTy(),
4438                        S.MakeFullExpr(Increment),
4439                        Loc, move(Copy));
4440}
4441
4442void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
4443                                        CXXMethodDecl *CopyAssignOperator) {
4444  assert((CopyAssignOperator->isImplicit() &&
4445          CopyAssignOperator->isOverloadedOperator() &&
4446          CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
4447          !CopyAssignOperator->isUsed()) &&
4448         "DefineImplicitCopyAssignment called for wrong function");
4449
4450  CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
4451
4452  if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
4453    CopyAssignOperator->setInvalidDecl();
4454    return;
4455  }
4456
4457  CopyAssignOperator->setUsed();
4458
4459  ImplicitlyDefinedFunctionScope Scope(*this, CopyAssignOperator);
4460  ErrorTrap Trap(*this);
4461
4462  // C++0x [class.copy]p30:
4463  //   The implicitly-defined or explicitly-defaulted copy assignment operator
4464  //   for a non-union class X performs memberwise copy assignment of its
4465  //   subobjects. The direct base classes of X are assigned first, in the
4466  //   order of their declaration in the base-specifier-list, and then the
4467  //   immediate non-static data members of X are assigned, in the order in
4468  //   which they were declared in the class definition.
4469
4470  // The statements that form the synthesized function body.
4471  ASTOwningVector<&ActionBase::DeleteStmt> Statements(*this);
4472
4473  // The parameter for the "other" object, which we are copying from.
4474  ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
4475  Qualifiers OtherQuals = Other->getType().getQualifiers();
4476  QualType OtherRefType = Other->getType();
4477  if (const LValueReferenceType *OtherRef
4478                                = OtherRefType->getAs<LValueReferenceType>()) {
4479    OtherRefType = OtherRef->getPointeeType();
4480    OtherQuals = OtherRefType.getQualifiers();
4481  }
4482
4483  // Our location for everything implicitly-generated.
4484  SourceLocation Loc = CopyAssignOperator->getLocation();
4485
4486  // Construct a reference to the "other" object. We'll be using this
4487  // throughout the generated ASTs.
4488  Expr *OtherRef = BuildDeclRefExpr(Other, OtherRefType, Loc).takeAs<Expr>();
4489  assert(OtherRef && "Reference to parameter cannot fail!");
4490
4491  // Construct the "this" pointer. We'll be using this throughout the generated
4492  // ASTs.
4493  Expr *This = ActOnCXXThis(Loc).takeAs<Expr>();
4494  assert(This && "Reference to this cannot fail!");
4495
4496  // Assign base classes.
4497  bool Invalid = false;
4498  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
4499       E = ClassDecl->bases_end(); Base != E; ++Base) {
4500    // Form the assignment:
4501    //   static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
4502    QualType BaseType = Base->getType().getUnqualifiedType();
4503    CXXRecordDecl *BaseClassDecl = 0;
4504    if (const RecordType *BaseRecordT = BaseType->getAs<RecordType>())
4505      BaseClassDecl = cast<CXXRecordDecl>(BaseRecordT->getDecl());
4506    else {
4507      Invalid = true;
4508      continue;
4509    }
4510
4511    // Construct the "from" expression, which is an implicit cast to the
4512    // appropriately-qualified base type.
4513    Expr *From = OtherRef->Retain();
4514    ImpCastExprToType(From, Context.getQualifiedType(BaseType, OtherQuals),
4515                      CastExpr::CK_UncheckedDerivedToBase, /*isLvalue=*/true,
4516                      CXXBaseSpecifierArray(Base));
4517
4518    // Dereference "this".
4519    OwningExprResult To = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4520                                               Owned(This->Retain()));
4521
4522    // Implicitly cast "this" to the appropriately-qualified base type.
4523    Expr *ToE = To.takeAs<Expr>();
4524    ImpCastExprToType(ToE,
4525                      Context.getCVRQualifiedType(BaseType,
4526                                      CopyAssignOperator->getTypeQualifiers()),
4527                      CastExpr::CK_UncheckedDerivedToBase,
4528                      /*isLvalue=*/true, CXXBaseSpecifierArray(Base));
4529    To = Owned(ToE);
4530
4531    // Build the copy.
4532    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, BaseType,
4533                                                  move(To), Owned(From),
4534                                                /*CopyingBaseSubobject=*/true);
4535    if (Copy.isInvalid()) {
4536      Diag(CurrentLocation, diag::note_member_synthesized_at)
4537        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4538      CopyAssignOperator->setInvalidDecl();
4539      return;
4540    }
4541
4542    // Success! Record the copy.
4543    Statements.push_back(Copy.takeAs<Expr>());
4544  }
4545
4546  // \brief Reference to the __builtin_memcpy function.
4547  Expr *BuiltinMemCpyRef = 0;
4548
4549  // Assign non-static members.
4550  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4551                                  FieldEnd = ClassDecl->field_end();
4552       Field != FieldEnd; ++Field) {
4553    // Check for members of reference type; we can't copy those.
4554    if (Field->getType()->isReferenceType()) {
4555      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4556        << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
4557      Diag(Field->getLocation(), diag::note_declared_at);
4558      Diag(CurrentLocation, diag::note_member_synthesized_at)
4559        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4560      Invalid = true;
4561      continue;
4562    }
4563
4564    // Check for members of const-qualified, non-class type.
4565    QualType BaseType = Context.getBaseElementType(Field->getType());
4566    if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
4567      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
4568        << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
4569      Diag(Field->getLocation(), diag::note_declared_at);
4570      Diag(CurrentLocation, diag::note_member_synthesized_at)
4571        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4572      Invalid = true;
4573      continue;
4574    }
4575
4576    QualType FieldType = Field->getType().getNonReferenceType();
4577
4578    // Build references to the field in the object we're copying from and to.
4579    CXXScopeSpec SS; // Intentionally empty
4580    LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
4581                              LookupMemberName);
4582    MemberLookup.addDecl(*Field);
4583    MemberLookup.resolveKind();
4584    OwningExprResult From = BuildMemberReferenceExpr(Owned(OtherRef->Retain()),
4585                                                     OtherRefType,
4586                                                     Loc, /*IsArrow=*/false,
4587                                                     SS, 0, MemberLookup, 0);
4588    OwningExprResult To = BuildMemberReferenceExpr(Owned(This->Retain()),
4589                                                   This->getType(),
4590                                                   Loc, /*IsArrow=*/true,
4591                                                   SS, 0, MemberLookup, 0);
4592    assert(!From.isInvalid() && "Implicit field reference cannot fail");
4593    assert(!To.isInvalid() && "Implicit field reference cannot fail");
4594
4595    // If the field should be copied with __builtin_memcpy rather than via
4596    // explicit assignments, do so. This optimization only applies for arrays
4597    // of scalars and arrays of class type with trivial copy-assignment
4598    // operators.
4599    if (FieldType->isArrayType() &&
4600        (!BaseType->isRecordType() ||
4601         cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl())
4602           ->hasTrivialCopyAssignment())) {
4603      // Compute the size of the memory buffer to be copied.
4604      QualType SizeType = Context.getSizeType();
4605      llvm::APInt Size(Context.getTypeSize(SizeType),
4606                       Context.getTypeSizeInChars(BaseType).getQuantity());
4607      for (const ConstantArrayType *Array
4608              = Context.getAsConstantArrayType(FieldType);
4609           Array;
4610           Array = Context.getAsConstantArrayType(Array->getElementType())) {
4611        llvm::APInt ArraySize = Array->getSize();
4612        ArraySize.zextOrTrunc(Size.getBitWidth());
4613        Size *= ArraySize;
4614      }
4615
4616      // Take the address of the field references for "from" and "to".
4617      From = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(From));
4618      To = CreateBuiltinUnaryOp(Loc, UnaryOperator::AddrOf, move(To));
4619
4620      // Create a reference to the __builtin_memcpy builtin function.
4621      if (!BuiltinMemCpyRef) {
4622        LookupResult R(*this, &Context.Idents.get("__builtin_memcpy"), Loc,
4623                       LookupOrdinaryName);
4624        LookupName(R, TUScope, true);
4625
4626        FunctionDecl *BuiltinMemCpy = R.getAsSingle<FunctionDecl>();
4627        if (!BuiltinMemCpy) {
4628          // Something went horribly wrong earlier, and we will have complained
4629          // about it.
4630          Invalid = true;
4631          continue;
4632        }
4633
4634        BuiltinMemCpyRef = BuildDeclRefExpr(BuiltinMemCpy,
4635                                            BuiltinMemCpy->getType(),
4636                                            Loc, 0).takeAs<Expr>();
4637        assert(BuiltinMemCpyRef && "Builtin reference cannot fail");
4638      }
4639
4640      ASTOwningVector<&ActionBase::DeleteExpr> CallArgs(*this);
4641      CallArgs.push_back(To.takeAs<Expr>());
4642      CallArgs.push_back(From.takeAs<Expr>());
4643      CallArgs.push_back(new (Context) IntegerLiteral(Size, SizeType, Loc));
4644      llvm::SmallVector<SourceLocation, 4> Commas; // FIXME: Silly
4645      Commas.push_back(Loc);
4646      Commas.push_back(Loc);
4647      OwningExprResult Call = ActOnCallExpr(/*Scope=*/0,
4648                                            Owned(BuiltinMemCpyRef->Retain()),
4649                                            Loc, move_arg(CallArgs),
4650                                            Commas.data(), Loc);
4651      assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
4652      Statements.push_back(Call.takeAs<Expr>());
4653      continue;
4654    }
4655
4656    // Build the copy of this field.
4657    OwningStmtResult Copy = BuildSingleCopyAssign(*this, Loc, FieldType,
4658                                                  move(To), move(From),
4659                                              /*CopyingBaseSubobject=*/false);
4660    if (Copy.isInvalid()) {
4661      Diag(CurrentLocation, diag::note_member_synthesized_at)
4662        << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4663      CopyAssignOperator->setInvalidDecl();
4664      return;
4665    }
4666
4667    // Success! Record the copy.
4668    Statements.push_back(Copy.takeAs<Stmt>());
4669  }
4670
4671  if (!Invalid) {
4672    // Add a "return *this;"
4673    OwningExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UnaryOperator::Deref,
4674                                                    Owned(This->Retain()));
4675
4676    OwningStmtResult Return = ActOnReturnStmt(Loc, move(ThisObj));
4677    if (Return.isInvalid())
4678      Invalid = true;
4679    else {
4680      Statements.push_back(Return.takeAs<Stmt>());
4681
4682      if (Trap.hasErrorOccurred()) {
4683        Diag(CurrentLocation, diag::note_member_synthesized_at)
4684          << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
4685        Invalid = true;
4686      }
4687    }
4688  }
4689
4690  if (Invalid) {
4691    CopyAssignOperator->setInvalidDecl();
4692    return;
4693  }
4694
4695  OwningStmtResult Body = ActOnCompoundStmt(Loc, Loc, move_arg(Statements),
4696                                            /*isStmtExpr=*/false);
4697  assert(!Body.isInvalid() && "Compound statement creation cannot fail");
4698  CopyAssignOperator->setBody(Body.takeAs<Stmt>());
4699}
4700
4701void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4702                                   CXXConstructorDecl *CopyConstructor,
4703                                   unsigned TypeQuals) {
4704  assert((CopyConstructor->isImplicit() &&
4705          CopyConstructor->isCopyConstructor(TypeQuals) &&
4706          !CopyConstructor->isUsed()) &&
4707         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4708
4709  CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
4710  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4711
4712  ImplicitlyDefinedFunctionScope Scope(*this, CopyConstructor);
4713  ErrorTrap Trap(*this);
4714
4715  if (SetBaseOrMemberInitializers(CopyConstructor, 0, 0, /*AnyErrors=*/false) ||
4716      Trap.hasErrorOccurred()) {
4717    Diag(CurrentLocation, diag::note_member_synthesized_at)
4718      << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
4719    CopyConstructor->setInvalidDecl();
4720  }  else {
4721    CopyConstructor->setBody(ActOnCompoundStmt(CopyConstructor->getLocation(),
4722                                               CopyConstructor->getLocation(),
4723                                               MultiStmtArg(*this, 0, 0),
4724                                               /*isStmtExpr=*/false)
4725                                                              .takeAs<Stmt>());
4726  }
4727
4728  CopyConstructor->setUsed();
4729}
4730
4731Sema::OwningExprResult
4732Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4733                            CXXConstructorDecl *Constructor,
4734                            MultiExprArg ExprArgs,
4735                            bool RequiresZeroInit,
4736                            CXXConstructExpr::ConstructionKind ConstructKind) {
4737  bool Elidable = false;
4738
4739  // C++0x [class.copy]p34:
4740  //   When certain criteria are met, an implementation is allowed to
4741  //   omit the copy/move construction of a class object, even if the
4742  //   copy/move constructor and/or destructor for the object have
4743  //   side effects. [...]
4744  //     - when a temporary class object that has not been bound to a
4745  //       reference (12.2) would be copied/moved to a class object
4746  //       with the same cv-unqualified type, the copy/move operation
4747  //       can be omitted by constructing the temporary object
4748  //       directly into the target of the omitted copy/move
4749  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4750    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4751    Elidable = SubExpr->isTemporaryObject() &&
4752      Context.hasSameUnqualifiedType(SubExpr->getType(),
4753                           Context.getTypeDeclType(Constructor->getParent()));
4754  }
4755
4756  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4757                               Elidable, move(ExprArgs), RequiresZeroInit,
4758                               ConstructKind);
4759}
4760
4761/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4762/// including handling of its default argument expressions.
4763Sema::OwningExprResult
4764Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4765                            CXXConstructorDecl *Constructor, bool Elidable,
4766                            MultiExprArg ExprArgs,
4767                            bool RequiresZeroInit,
4768                            CXXConstructExpr::ConstructionKind ConstructKind) {
4769  unsigned NumExprs = ExprArgs.size();
4770  Expr **Exprs = (Expr **)ExprArgs.release();
4771
4772  MarkDeclarationReferenced(ConstructLoc, Constructor);
4773  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4774                                        Constructor, Elidable, Exprs, NumExprs,
4775                                        RequiresZeroInit, ConstructKind));
4776}
4777
4778bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4779                                        CXXConstructorDecl *Constructor,
4780                                        MultiExprArg Exprs) {
4781  OwningExprResult TempResult =
4782    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4783                          move(Exprs));
4784  if (TempResult.isInvalid())
4785    return true;
4786
4787  Expr *Temp = TempResult.takeAs<Expr>();
4788  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4789  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4790  VD->setInit(Temp);
4791
4792  return false;
4793}
4794
4795void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4796  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4797  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4798      !ClassDecl->hasTrivialDestructor() && !ClassDecl->isDependentContext()) {
4799    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4800    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4801    CheckDestructorAccess(VD->getLocation(), Destructor,
4802                          PDiag(diag::err_access_dtor_var)
4803                            << VD->getDeclName()
4804                            << VD->getType());
4805  }
4806}
4807
4808/// AddCXXDirectInitializerToDecl - This action is called immediately after
4809/// ActOnDeclarator, when a C++ direct initializer is present.
4810/// e.g: "int x(1);"
4811void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4812                                         SourceLocation LParenLoc,
4813                                         MultiExprArg Exprs,
4814                                         SourceLocation *CommaLocs,
4815                                         SourceLocation RParenLoc) {
4816  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4817  Decl *RealDecl = Dcl.getAs<Decl>();
4818
4819  // If there is no declaration, there was an error parsing it.  Just ignore
4820  // the initializer.
4821  if (RealDecl == 0)
4822    return;
4823
4824  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4825  if (!VDecl) {
4826    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4827    RealDecl->setInvalidDecl();
4828    return;
4829  }
4830
4831  // We will represent direct-initialization similarly to copy-initialization:
4832  //    int x(1);  -as-> int x = 1;
4833  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4834  //
4835  // Clients that want to distinguish between the two forms, can check for
4836  // direct initializer using VarDecl::hasCXXDirectInitializer().
4837  // A major benefit is that clients that don't particularly care about which
4838  // exactly form was it (like the CodeGen) can handle both cases without
4839  // special case code.
4840
4841  // C++ 8.5p11:
4842  // The form of initialization (using parentheses or '=') is generally
4843  // insignificant, but does matter when the entity being initialized has a
4844  // class type.
4845  QualType DeclInitType = VDecl->getType();
4846  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4847    DeclInitType = Context.getBaseElementType(Array);
4848
4849  if (!VDecl->getType()->isDependentType() &&
4850      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4851                          diag::err_typecheck_decl_incomplete_type)) {
4852    VDecl->setInvalidDecl();
4853    return;
4854  }
4855
4856  // The variable can not have an abstract class type.
4857  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4858                             diag::err_abstract_type_in_decl,
4859                             AbstractVariableType))
4860    VDecl->setInvalidDecl();
4861
4862  const VarDecl *Def;
4863  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4864    Diag(VDecl->getLocation(), diag::err_redefinition)
4865    << VDecl->getDeclName();
4866    Diag(Def->getLocation(), diag::note_previous_definition);
4867    VDecl->setInvalidDecl();
4868    return;
4869  }
4870
4871  // If either the declaration has a dependent type or if any of the
4872  // expressions is type-dependent, we represent the initialization
4873  // via a ParenListExpr for later use during template instantiation.
4874  if (VDecl->getType()->isDependentType() ||
4875      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4876    // Let clients know that initialization was done with a direct initializer.
4877    VDecl->setCXXDirectInitializer(true);
4878
4879    // Store the initialization expressions as a ParenListExpr.
4880    unsigned NumExprs = Exprs.size();
4881    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4882                                               (Expr **)Exprs.release(),
4883                                               NumExprs, RParenLoc));
4884    return;
4885  }
4886
4887  // Capture the variable that is being initialized and the style of
4888  // initialization.
4889  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4890
4891  // FIXME: Poor source location information.
4892  InitializationKind Kind
4893    = InitializationKind::CreateDirect(VDecl->getLocation(),
4894                                       LParenLoc, RParenLoc);
4895
4896  InitializationSequence InitSeq(*this, Entity, Kind,
4897                                 (Expr**)Exprs.get(), Exprs.size());
4898  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4899  if (Result.isInvalid()) {
4900    VDecl->setInvalidDecl();
4901    return;
4902  }
4903
4904  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4905  VDecl->setInit(Result.takeAs<Expr>());
4906  VDecl->setCXXDirectInitializer(true);
4907
4908  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4909    FinalizeVarWithDestructor(VDecl, Record);
4910}
4911
4912/// \brief Given a constructor and the set of arguments provided for the
4913/// constructor, convert the arguments and add any required default arguments
4914/// to form a proper call to this constructor.
4915///
4916/// \returns true if an error occurred, false otherwise.
4917bool
4918Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4919                              MultiExprArg ArgsPtr,
4920                              SourceLocation Loc,
4921                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4922  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4923  unsigned NumArgs = ArgsPtr.size();
4924  Expr **Args = (Expr **)ArgsPtr.get();
4925
4926  const FunctionProtoType *Proto
4927    = Constructor->getType()->getAs<FunctionProtoType>();
4928  assert(Proto && "Constructor without a prototype?");
4929  unsigned NumArgsInProto = Proto->getNumArgs();
4930
4931  // If too few arguments are available, we'll fill in the rest with defaults.
4932  if (NumArgs < NumArgsInProto)
4933    ConvertedArgs.reserve(NumArgsInProto);
4934  else
4935    ConvertedArgs.reserve(NumArgs);
4936
4937  VariadicCallType CallType =
4938    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4939  llvm::SmallVector<Expr *, 8> AllArgs;
4940  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4941                                        Proto, 0, Args, NumArgs, AllArgs,
4942                                        CallType);
4943  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4944    ConvertedArgs.push_back(AllArgs[i]);
4945  return Invalid;
4946}
4947
4948static inline bool
4949CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4950                                       const FunctionDecl *FnDecl) {
4951  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4952  if (isa<NamespaceDecl>(DC)) {
4953    return SemaRef.Diag(FnDecl->getLocation(),
4954                        diag::err_operator_new_delete_declared_in_namespace)
4955      << FnDecl->getDeclName();
4956  }
4957
4958  if (isa<TranslationUnitDecl>(DC) &&
4959      FnDecl->getStorageClass() == FunctionDecl::Static) {
4960    return SemaRef.Diag(FnDecl->getLocation(),
4961                        diag::err_operator_new_delete_declared_static)
4962      << FnDecl->getDeclName();
4963  }
4964
4965  return false;
4966}
4967
4968static inline bool
4969CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4970                            CanQualType ExpectedResultType,
4971                            CanQualType ExpectedFirstParamType,
4972                            unsigned DependentParamTypeDiag,
4973                            unsigned InvalidParamTypeDiag) {
4974  QualType ResultType =
4975    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4976
4977  // Check that the result type is not dependent.
4978  if (ResultType->isDependentType())
4979    return SemaRef.Diag(FnDecl->getLocation(),
4980                        diag::err_operator_new_delete_dependent_result_type)
4981    << FnDecl->getDeclName() << ExpectedResultType;
4982
4983  // Check that the result type is what we expect.
4984  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4985    return SemaRef.Diag(FnDecl->getLocation(),
4986                        diag::err_operator_new_delete_invalid_result_type)
4987    << FnDecl->getDeclName() << ExpectedResultType;
4988
4989  // A function template must have at least 2 parameters.
4990  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4991    return SemaRef.Diag(FnDecl->getLocation(),
4992                      diag::err_operator_new_delete_template_too_few_parameters)
4993        << FnDecl->getDeclName();
4994
4995  // The function decl must have at least 1 parameter.
4996  if (FnDecl->getNumParams() == 0)
4997    return SemaRef.Diag(FnDecl->getLocation(),
4998                        diag::err_operator_new_delete_too_few_parameters)
4999      << FnDecl->getDeclName();
5000
5001  // Check the the first parameter type is not dependent.
5002  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5003  if (FirstParamType->isDependentType())
5004    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
5005      << FnDecl->getDeclName() << ExpectedFirstParamType;
5006
5007  // Check that the first parameter type is what we expect.
5008  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
5009      ExpectedFirstParamType)
5010    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
5011    << FnDecl->getDeclName() << ExpectedFirstParamType;
5012
5013  return false;
5014}
5015
5016static bool
5017CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5018  // C++ [basic.stc.dynamic.allocation]p1:
5019  //   A program is ill-formed if an allocation function is declared in a
5020  //   namespace scope other than global scope or declared static in global
5021  //   scope.
5022  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5023    return true;
5024
5025  CanQualType SizeTy =
5026    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
5027
5028  // C++ [basic.stc.dynamic.allocation]p1:
5029  //  The return type shall be void*. The first parameter shall have type
5030  //  std::size_t.
5031  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
5032                                  SizeTy,
5033                                  diag::err_operator_new_dependent_param_type,
5034                                  diag::err_operator_new_param_type))
5035    return true;
5036
5037  // C++ [basic.stc.dynamic.allocation]p1:
5038  //  The first parameter shall not have an associated default argument.
5039  if (FnDecl->getParamDecl(0)->hasDefaultArg())
5040    return SemaRef.Diag(FnDecl->getLocation(),
5041                        diag::err_operator_new_default_arg)
5042      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
5043
5044  return false;
5045}
5046
5047static bool
5048CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
5049  // C++ [basic.stc.dynamic.deallocation]p1:
5050  //   A program is ill-formed if deallocation functions are declared in a
5051  //   namespace scope other than global scope or declared static in global
5052  //   scope.
5053  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
5054    return true;
5055
5056  // C++ [basic.stc.dynamic.deallocation]p2:
5057  //   Each deallocation function shall return void and its first parameter
5058  //   shall be void*.
5059  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
5060                                  SemaRef.Context.VoidPtrTy,
5061                                 diag::err_operator_delete_dependent_param_type,
5062                                 diag::err_operator_delete_param_type))
5063    return true;
5064
5065  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
5066  if (FirstParamType->isDependentType())
5067    return SemaRef.Diag(FnDecl->getLocation(),
5068                        diag::err_operator_delete_dependent_param_type)
5069    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5070
5071  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
5072      SemaRef.Context.VoidPtrTy)
5073    return SemaRef.Diag(FnDecl->getLocation(),
5074                        diag::err_operator_delete_param_type)
5075      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
5076
5077  return false;
5078}
5079
5080/// CheckOverloadedOperatorDeclaration - Check whether the declaration
5081/// of this overloaded operator is well-formed. If so, returns false;
5082/// otherwise, emits appropriate diagnostics and returns true.
5083bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
5084  assert(FnDecl && FnDecl->isOverloadedOperator() &&
5085         "Expected an overloaded operator declaration");
5086
5087  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
5088
5089  // C++ [over.oper]p5:
5090  //   The allocation and deallocation functions, operator new,
5091  //   operator new[], operator delete and operator delete[], are
5092  //   described completely in 3.7.3. The attributes and restrictions
5093  //   found in the rest of this subclause do not apply to them unless
5094  //   explicitly stated in 3.7.3.
5095  if (Op == OO_Delete || Op == OO_Array_Delete)
5096    return CheckOperatorDeleteDeclaration(*this, FnDecl);
5097
5098  if (Op == OO_New || Op == OO_Array_New)
5099    return CheckOperatorNewDeclaration(*this, FnDecl);
5100
5101  // C++ [over.oper]p6:
5102  //   An operator function shall either be a non-static member
5103  //   function or be a non-member function and have at least one
5104  //   parameter whose type is a class, a reference to a class, an
5105  //   enumeration, or a reference to an enumeration.
5106  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
5107    if (MethodDecl->isStatic())
5108      return Diag(FnDecl->getLocation(),
5109                  diag::err_operator_overload_static) << FnDecl->getDeclName();
5110  } else {
5111    bool ClassOrEnumParam = false;
5112    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
5113                                   ParamEnd = FnDecl->param_end();
5114         Param != ParamEnd; ++Param) {
5115      QualType ParamType = (*Param)->getType().getNonReferenceType();
5116      if (ParamType->isDependentType() || ParamType->isRecordType() ||
5117          ParamType->isEnumeralType()) {
5118        ClassOrEnumParam = true;
5119        break;
5120      }
5121    }
5122
5123    if (!ClassOrEnumParam)
5124      return Diag(FnDecl->getLocation(),
5125                  diag::err_operator_overload_needs_class_or_enum)
5126        << FnDecl->getDeclName();
5127  }
5128
5129  // C++ [over.oper]p8:
5130  //   An operator function cannot have default arguments (8.3.6),
5131  //   except where explicitly stated below.
5132  //
5133  // Only the function-call operator allows default arguments
5134  // (C++ [over.call]p1).
5135  if (Op != OO_Call) {
5136    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
5137         Param != FnDecl->param_end(); ++Param) {
5138      if ((*Param)->hasDefaultArg())
5139        return Diag((*Param)->getLocation(),
5140                    diag::err_operator_overload_default_arg)
5141          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
5142    }
5143  }
5144
5145  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
5146    { false, false, false }
5147#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
5148    , { Unary, Binary, MemberOnly }
5149#include "clang/Basic/OperatorKinds.def"
5150  };
5151
5152  bool CanBeUnaryOperator = OperatorUses[Op][0];
5153  bool CanBeBinaryOperator = OperatorUses[Op][1];
5154  bool MustBeMemberOperator = OperatorUses[Op][2];
5155
5156  // C++ [over.oper]p8:
5157  //   [...] Operator functions cannot have more or fewer parameters
5158  //   than the number required for the corresponding operator, as
5159  //   described in the rest of this subclause.
5160  unsigned NumParams = FnDecl->getNumParams()
5161                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
5162  if (Op != OO_Call &&
5163      ((NumParams == 1 && !CanBeUnaryOperator) ||
5164       (NumParams == 2 && !CanBeBinaryOperator) ||
5165       (NumParams < 1) || (NumParams > 2))) {
5166    // We have the wrong number of parameters.
5167    unsigned ErrorKind;
5168    if (CanBeUnaryOperator && CanBeBinaryOperator) {
5169      ErrorKind = 2;  // 2 -> unary or binary.
5170    } else if (CanBeUnaryOperator) {
5171      ErrorKind = 0;  // 0 -> unary
5172    } else {
5173      assert(CanBeBinaryOperator &&
5174             "All non-call overloaded operators are unary or binary!");
5175      ErrorKind = 1;  // 1 -> binary
5176    }
5177
5178    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
5179      << FnDecl->getDeclName() << NumParams << ErrorKind;
5180  }
5181
5182  // Overloaded operators other than operator() cannot be variadic.
5183  if (Op != OO_Call &&
5184      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
5185    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
5186      << FnDecl->getDeclName();
5187  }
5188
5189  // Some operators must be non-static member functions.
5190  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
5191    return Diag(FnDecl->getLocation(),
5192                diag::err_operator_overload_must_be_member)
5193      << FnDecl->getDeclName();
5194  }
5195
5196  // C++ [over.inc]p1:
5197  //   The user-defined function called operator++ implements the
5198  //   prefix and postfix ++ operator. If this function is a member
5199  //   function with no parameters, or a non-member function with one
5200  //   parameter of class or enumeration type, it defines the prefix
5201  //   increment operator ++ for objects of that type. If the function
5202  //   is a member function with one parameter (which shall be of type
5203  //   int) or a non-member function with two parameters (the second
5204  //   of which shall be of type int), it defines the postfix
5205  //   increment operator ++ for objects of that type.
5206  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
5207    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
5208    bool ParamIsInt = false;
5209    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
5210      ParamIsInt = BT->getKind() == BuiltinType::Int;
5211
5212    if (!ParamIsInt)
5213      return Diag(LastParam->getLocation(),
5214                  diag::err_operator_overload_post_incdec_must_be_int)
5215        << LastParam->getType() << (Op == OO_MinusMinus);
5216  }
5217
5218  // Notify the class if it got an assignment operator.
5219  if (Op == OO_Equal) {
5220    // Would have returned earlier otherwise.
5221    assert(isa<CXXMethodDecl>(FnDecl) &&
5222      "Overloaded = not member, but not filtered.");
5223    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
5224    Method->getParent()->addedAssignmentOperator(Context, Method);
5225  }
5226
5227  return false;
5228}
5229
5230/// CheckLiteralOperatorDeclaration - Check whether the declaration
5231/// of this literal operator function is well-formed. If so, returns
5232/// false; otherwise, emits appropriate diagnostics and returns true.
5233bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
5234  DeclContext *DC = FnDecl->getDeclContext();
5235  Decl::Kind Kind = DC->getDeclKind();
5236  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
5237      Kind != Decl::LinkageSpec) {
5238    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
5239      << FnDecl->getDeclName();
5240    return true;
5241  }
5242
5243  bool Valid = false;
5244
5245  // template <char...> type operator "" name() is the only valid template
5246  // signature, and the only valid signature with no parameters.
5247  if (FnDecl->param_size() == 0) {
5248    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
5249      // Must have only one template parameter
5250      TemplateParameterList *Params = TpDecl->getTemplateParameters();
5251      if (Params->size() == 1) {
5252        NonTypeTemplateParmDecl *PmDecl =
5253          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
5254
5255        // The template parameter must be a char parameter pack.
5256        // FIXME: This test will always fail because non-type parameter packs
5257        //   have not been implemented.
5258        if (PmDecl && PmDecl->isTemplateParameterPack() &&
5259            Context.hasSameType(PmDecl->getType(), Context.CharTy))
5260          Valid = true;
5261      }
5262    }
5263  } else {
5264    // Check the first parameter
5265    FunctionDecl::param_iterator Param = FnDecl->param_begin();
5266
5267    QualType T = (*Param)->getType();
5268
5269    // unsigned long long int, long double, and any character type are allowed
5270    // as the only parameters.
5271    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
5272        Context.hasSameType(T, Context.LongDoubleTy) ||
5273        Context.hasSameType(T, Context.CharTy) ||
5274        Context.hasSameType(T, Context.WCharTy) ||
5275        Context.hasSameType(T, Context.Char16Ty) ||
5276        Context.hasSameType(T, Context.Char32Ty)) {
5277      if (++Param == FnDecl->param_end())
5278        Valid = true;
5279      goto FinishedParams;
5280    }
5281
5282    // Otherwise it must be a pointer to const; let's strip those qualifiers.
5283    const PointerType *PT = T->getAs<PointerType>();
5284    if (!PT)
5285      goto FinishedParams;
5286    T = PT->getPointeeType();
5287    if (!T.isConstQualified())
5288      goto FinishedParams;
5289    T = T.getUnqualifiedType();
5290
5291    // Move on to the second parameter;
5292    ++Param;
5293
5294    // If there is no second parameter, the first must be a const char *
5295    if (Param == FnDecl->param_end()) {
5296      if (Context.hasSameType(T, Context.CharTy))
5297        Valid = true;
5298      goto FinishedParams;
5299    }
5300
5301    // const char *, const wchar_t*, const char16_t*, and const char32_t*
5302    // are allowed as the first parameter to a two-parameter function
5303    if (!(Context.hasSameType(T, Context.CharTy) ||
5304          Context.hasSameType(T, Context.WCharTy) ||
5305          Context.hasSameType(T, Context.Char16Ty) ||
5306          Context.hasSameType(T, Context.Char32Ty)))
5307      goto FinishedParams;
5308
5309    // The second and final parameter must be an std::size_t
5310    T = (*Param)->getType().getUnqualifiedType();
5311    if (Context.hasSameType(T, Context.getSizeType()) &&
5312        ++Param == FnDecl->param_end())
5313      Valid = true;
5314  }
5315
5316  // FIXME: This diagnostic is absolutely terrible.
5317FinishedParams:
5318  if (!Valid) {
5319    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
5320      << FnDecl->getDeclName();
5321    return true;
5322  }
5323
5324  return false;
5325}
5326
5327/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
5328/// linkage specification, including the language and (if present)
5329/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
5330/// the location of the language string literal, which is provided
5331/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
5332/// the '{' brace. Otherwise, this linkage specification does not
5333/// have any braces.
5334Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
5335                                                     SourceLocation ExternLoc,
5336                                                     SourceLocation LangLoc,
5337                                                     llvm::StringRef Lang,
5338                                                     SourceLocation LBraceLoc) {
5339  LinkageSpecDecl::LanguageIDs Language;
5340  if (Lang == "\"C\"")
5341    Language = LinkageSpecDecl::lang_c;
5342  else if (Lang == "\"C++\"")
5343    Language = LinkageSpecDecl::lang_cxx;
5344  else {
5345    Diag(LangLoc, diag::err_bad_language);
5346    return DeclPtrTy();
5347  }
5348
5349  // FIXME: Add all the various semantics of linkage specifications
5350
5351  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
5352                                               LangLoc, Language,
5353                                               LBraceLoc.isValid());
5354  CurContext->addDecl(D);
5355  PushDeclContext(S, D);
5356  return DeclPtrTy::make(D);
5357}
5358
5359/// ActOnFinishLinkageSpecification - Completely the definition of
5360/// the C++ linkage specification LinkageSpec. If RBraceLoc is
5361/// valid, it's the position of the closing '}' brace in a linkage
5362/// specification that uses braces.
5363Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
5364                                                      DeclPtrTy LinkageSpec,
5365                                                      SourceLocation RBraceLoc) {
5366  if (LinkageSpec)
5367    PopDeclContext();
5368  return LinkageSpec;
5369}
5370
5371/// \brief Perform semantic analysis for the variable declaration that
5372/// occurs within a C++ catch clause, returning the newly-created
5373/// variable.
5374VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
5375                                         TypeSourceInfo *TInfo,
5376                                         IdentifierInfo *Name,
5377                                         SourceLocation Loc,
5378                                         SourceRange Range) {
5379  bool Invalid = false;
5380
5381  // Arrays and functions decay.
5382  if (ExDeclType->isArrayType())
5383    ExDeclType = Context.getArrayDecayedType(ExDeclType);
5384  else if (ExDeclType->isFunctionType())
5385    ExDeclType = Context.getPointerType(ExDeclType);
5386
5387  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
5388  // The exception-declaration shall not denote a pointer or reference to an
5389  // incomplete type, other than [cv] void*.
5390  // N2844 forbids rvalue references.
5391  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
5392    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
5393    Invalid = true;
5394  }
5395
5396  // GCC allows catching pointers and references to incomplete types
5397  // as an extension; so do we, but we warn by default.
5398
5399  QualType BaseType = ExDeclType;
5400  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
5401  unsigned DK = diag::err_catch_incomplete;
5402  bool IncompleteCatchIsInvalid = true;
5403  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
5404    BaseType = Ptr->getPointeeType();
5405    Mode = 1;
5406    DK = diag::ext_catch_incomplete_ptr;
5407    IncompleteCatchIsInvalid = false;
5408  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
5409    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
5410    BaseType = Ref->getPointeeType();
5411    Mode = 2;
5412    DK = diag::ext_catch_incomplete_ref;
5413    IncompleteCatchIsInvalid = false;
5414  }
5415  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
5416      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
5417      IncompleteCatchIsInvalid)
5418    Invalid = true;
5419
5420  if (!Invalid && !ExDeclType->isDependentType() &&
5421      RequireNonAbstractType(Loc, ExDeclType,
5422                             diag::err_abstract_type_in_decl,
5423                             AbstractVariableType))
5424    Invalid = true;
5425
5426  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
5427                                    Name, ExDeclType, TInfo, VarDecl::None,
5428                                    VarDecl::None);
5429  ExDecl->setExceptionVariable(true);
5430
5431  if (!Invalid) {
5432    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
5433      // C++ [except.handle]p16:
5434      //   The object declared in an exception-declaration or, if the
5435      //   exception-declaration does not specify a name, a temporary (12.2) is
5436      //   copy-initialized (8.5) from the exception object. [...]
5437      //   The object is destroyed when the handler exits, after the destruction
5438      //   of any automatic objects initialized within the handler.
5439      //
5440      // We just pretend to initialize the object with itself, then make sure
5441      // it can be destroyed later.
5442      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
5443      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
5444                                            Loc, ExDeclType, 0);
5445      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
5446                                                               SourceLocation());
5447      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
5448      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5449                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
5450      if (Result.isInvalid())
5451        Invalid = true;
5452      else
5453        FinalizeVarWithDestructor(ExDecl, RecordTy);
5454    }
5455  }
5456
5457  if (Invalid)
5458    ExDecl->setInvalidDecl();
5459
5460  return ExDecl;
5461}
5462
5463/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
5464/// handler.
5465Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
5466  TypeSourceInfo *TInfo = 0;
5467  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
5468
5469  bool Invalid = D.isInvalidType();
5470  IdentifierInfo *II = D.getIdentifier();
5471  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
5472                                             LookupOrdinaryName,
5473                                             ForRedeclaration)) {
5474    // The scope should be freshly made just for us. There is just no way
5475    // it contains any previous declaration.
5476    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
5477    if (PrevDecl->isTemplateParameter()) {
5478      // Maybe we will complain about the shadowed template parameter.
5479      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5480    }
5481  }
5482
5483  if (D.getCXXScopeSpec().isSet() && !Invalid) {
5484    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
5485      << D.getCXXScopeSpec().getRange();
5486    Invalid = true;
5487  }
5488
5489  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
5490                                              D.getIdentifier(),
5491                                              D.getIdentifierLoc(),
5492                                            D.getDeclSpec().getSourceRange());
5493
5494  if (Invalid)
5495    ExDecl->setInvalidDecl();
5496
5497  // Add the exception declaration into this scope.
5498  if (II)
5499    PushOnScopeChains(ExDecl, S);
5500  else
5501    CurContext->addDecl(ExDecl);
5502
5503  ProcessDeclAttributes(S, ExDecl, D);
5504  return DeclPtrTy::make(ExDecl);
5505}
5506
5507Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
5508                                                   ExprArg assertexpr,
5509                                                   ExprArg assertmessageexpr) {
5510  Expr *AssertExpr = (Expr *)assertexpr.get();
5511  StringLiteral *AssertMessage =
5512    cast<StringLiteral>((Expr *)assertmessageexpr.get());
5513
5514  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
5515    llvm::APSInt Value(32);
5516    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
5517      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
5518        AssertExpr->getSourceRange();
5519      return DeclPtrTy();
5520    }
5521
5522    if (Value == 0) {
5523      Diag(AssertLoc, diag::err_static_assert_failed)
5524        << AssertMessage->getString() << AssertExpr->getSourceRange();
5525    }
5526  }
5527
5528  assertexpr.release();
5529  assertmessageexpr.release();
5530  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
5531                                        AssertExpr, AssertMessage);
5532
5533  CurContext->addDecl(Decl);
5534  return DeclPtrTy::make(Decl);
5535}
5536
5537/// \brief Perform semantic analysis of the given friend type declaration.
5538///
5539/// \returns A friend declaration that.
5540FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
5541                                      TypeSourceInfo *TSInfo) {
5542  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
5543
5544  QualType T = TSInfo->getType();
5545  SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
5546
5547  if (!getLangOptions().CPlusPlus0x) {
5548    // C++03 [class.friend]p2:
5549    //   An elaborated-type-specifier shall be used in a friend declaration
5550    //   for a class.*
5551    //
5552    //   * The class-key of the elaborated-type-specifier is required.
5553    if (!ActiveTemplateInstantiations.empty()) {
5554      // Do not complain about the form of friend template types during
5555      // template instantiation; we will already have complained when the
5556      // template was declared.
5557    } else if (!T->isElaboratedTypeSpecifier()) {
5558      // If we evaluated the type to a record type, suggest putting
5559      // a tag in front.
5560      if (const RecordType *RT = T->getAs<RecordType>()) {
5561        RecordDecl *RD = RT->getDecl();
5562
5563        std::string InsertionText = std::string(" ") + RD->getKindName();
5564
5565        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
5566          << (unsigned) RD->getTagKind()
5567          << T
5568          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
5569                                        InsertionText);
5570      } else {
5571        Diag(FriendLoc, diag::ext_nonclass_type_friend)
5572          << T
5573          << SourceRange(FriendLoc, TypeRange.getEnd());
5574      }
5575    } else if (T->getAs<EnumType>()) {
5576      Diag(FriendLoc, diag::ext_enum_friend)
5577        << T
5578        << SourceRange(FriendLoc, TypeRange.getEnd());
5579    }
5580  }
5581
5582  // C++0x [class.friend]p3:
5583  //   If the type specifier in a friend declaration designates a (possibly
5584  //   cv-qualified) class type, that class is declared as a friend; otherwise,
5585  //   the friend declaration is ignored.
5586
5587  // FIXME: C++0x has some syntactic restrictions on friend type declarations
5588  // in [class.friend]p3 that we do not implement.
5589
5590  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
5591}
5592
5593/// Handle a friend type declaration.  This works in tandem with
5594/// ActOnTag.
5595///
5596/// Notes on friend class templates:
5597///
5598/// We generally treat friend class declarations as if they were
5599/// declaring a class.  So, for example, the elaborated type specifier
5600/// in a friend declaration is required to obey the restrictions of a
5601/// class-head (i.e. no typedefs in the scope chain), template
5602/// parameters are required to match up with simple template-ids, &c.
5603/// However, unlike when declaring a template specialization, it's
5604/// okay to refer to a template specialization without an empty
5605/// template parameter declaration, e.g.
5606///   friend class A<T>::B<unsigned>;
5607/// We permit this as a special case; if there are any template
5608/// parameters present at all, require proper matching, i.e.
5609///   template <> template <class T> friend class A<int>::B;
5610Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
5611                                          MultiTemplateParamsArg TempParams) {
5612  SourceLocation Loc = DS.getSourceRange().getBegin();
5613
5614  assert(DS.isFriendSpecified());
5615  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5616
5617  // Try to convert the decl specifier to a type.  This works for
5618  // friend templates because ActOnTag never produces a ClassTemplateDecl
5619  // for a TUK_Friend.
5620  Declarator TheDeclarator(DS, Declarator::MemberContext);
5621  TypeSourceInfo *TSI;
5622  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
5623  if (TheDeclarator.isInvalidType())
5624    return DeclPtrTy();
5625
5626  if (!TSI)
5627    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
5628
5629  // This is definitely an error in C++98.  It's probably meant to
5630  // be forbidden in C++0x, too, but the specification is just
5631  // poorly written.
5632  //
5633  // The problem is with declarations like the following:
5634  //   template <T> friend A<T>::foo;
5635  // where deciding whether a class C is a friend or not now hinges
5636  // on whether there exists an instantiation of A that causes
5637  // 'foo' to equal C.  There are restrictions on class-heads
5638  // (which we declare (by fiat) elaborated friend declarations to
5639  // be) that makes this tractable.
5640  //
5641  // FIXME: handle "template <> friend class A<T>;", which
5642  // is possibly well-formed?  Who even knows?
5643  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5644    Diag(Loc, diag::err_tagless_friend_type_template)
5645      << DS.getSourceRange();
5646    return DeclPtrTy();
5647  }
5648
5649  // C++98 [class.friend]p1: A friend of a class is a function
5650  //   or class that is not a member of the class . . .
5651  // This is fixed in DR77, which just barely didn't make the C++03
5652  // deadline.  It's also a very silly restriction that seriously
5653  // affects inner classes and which nobody else seems to implement;
5654  // thus we never diagnose it, not even in -pedantic.
5655  //
5656  // But note that we could warn about it: it's always useless to
5657  // friend one of your own members (it's not, however, worthless to
5658  // friend a member of an arbitrary specialization of your template).
5659
5660  Decl *D;
5661  if (unsigned NumTempParamLists = TempParams.size())
5662    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5663                                   NumTempParamLists,
5664                                 (TemplateParameterList**) TempParams.release(),
5665                                   TSI,
5666                                   DS.getFriendSpecLoc());
5667  else
5668    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5669
5670  if (!D)
5671    return DeclPtrTy();
5672
5673  D->setAccess(AS_public);
5674  CurContext->addDecl(D);
5675
5676  return DeclPtrTy::make(D);
5677}
5678
5679Sema::DeclPtrTy
5680Sema::ActOnFriendFunctionDecl(Scope *S,
5681                              Declarator &D,
5682                              bool IsDefinition,
5683                              MultiTemplateParamsArg TemplateParams) {
5684  const DeclSpec &DS = D.getDeclSpec();
5685
5686  assert(DS.isFriendSpecified());
5687  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5688
5689  SourceLocation Loc = D.getIdentifierLoc();
5690  TypeSourceInfo *TInfo = 0;
5691  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5692
5693  // C++ [class.friend]p1
5694  //   A friend of a class is a function or class....
5695  // Note that this sees through typedefs, which is intended.
5696  // It *doesn't* see through dependent types, which is correct
5697  // according to [temp.arg.type]p3:
5698  //   If a declaration acquires a function type through a
5699  //   type dependent on a template-parameter and this causes
5700  //   a declaration that does not use the syntactic form of a
5701  //   function declarator to have a function type, the program
5702  //   is ill-formed.
5703  if (!T->isFunctionType()) {
5704    Diag(Loc, diag::err_unexpected_friend);
5705
5706    // It might be worthwhile to try to recover by creating an
5707    // appropriate declaration.
5708    return DeclPtrTy();
5709  }
5710
5711  // C++ [namespace.memdef]p3
5712  //  - If a friend declaration in a non-local class first declares a
5713  //    class or function, the friend class or function is a member
5714  //    of the innermost enclosing namespace.
5715  //  - The name of the friend is not found by simple name lookup
5716  //    until a matching declaration is provided in that namespace
5717  //    scope (either before or after the class declaration granting
5718  //    friendship).
5719  //  - If a friend function is called, its name may be found by the
5720  //    name lookup that considers functions from namespaces and
5721  //    classes associated with the types of the function arguments.
5722  //  - When looking for a prior declaration of a class or a function
5723  //    declared as a friend, scopes outside the innermost enclosing
5724  //    namespace scope are not considered.
5725
5726  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5727  DeclarationName Name = GetNameForDeclarator(D);
5728  assert(Name);
5729
5730  // The context we found the declaration in, or in which we should
5731  // create the declaration.
5732  DeclContext *DC;
5733
5734  // FIXME: handle local classes
5735
5736  // Recover from invalid scope qualifiers as if they just weren't there.
5737  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5738                        ForRedeclaration);
5739  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5740    DC = computeDeclContext(ScopeQual);
5741
5742    // FIXME: handle dependent contexts
5743    if (!DC) return DeclPtrTy();
5744    if (RequireCompleteDeclContext(ScopeQual, DC)) return DeclPtrTy();
5745
5746    LookupQualifiedName(Previous, DC);
5747
5748    // If searching in that context implicitly found a declaration in
5749    // a different context, treat it like it wasn't found at all.
5750    // TODO: better diagnostics for this case.  Suggesting the right
5751    // qualified scope would be nice...
5752    // FIXME: getRepresentativeDecl() is not right here at all
5753    if (Previous.empty() ||
5754        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5755      D.setInvalidType();
5756      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5757      return DeclPtrTy();
5758    }
5759
5760    // C++ [class.friend]p1: A friend of a class is a function or
5761    //   class that is not a member of the class . . .
5762    if (DC->Equals(CurContext))
5763      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5764
5765  // Otherwise walk out to the nearest namespace scope looking for matches.
5766  } else {
5767    // TODO: handle local class contexts.
5768
5769    DC = CurContext;
5770    while (true) {
5771      // Skip class contexts.  If someone can cite chapter and verse
5772      // for this behavior, that would be nice --- it's what GCC and
5773      // EDG do, and it seems like a reasonable intent, but the spec
5774      // really only says that checks for unqualified existing
5775      // declarations should stop at the nearest enclosing namespace,
5776      // not that they should only consider the nearest enclosing
5777      // namespace.
5778      while (DC->isRecord())
5779        DC = DC->getParent();
5780
5781      LookupQualifiedName(Previous, DC);
5782
5783      // TODO: decide what we think about using declarations.
5784      if (!Previous.empty())
5785        break;
5786
5787      if (DC->isFileContext()) break;
5788      DC = DC->getParent();
5789    }
5790
5791    // C++ [class.friend]p1: A friend of a class is a function or
5792    //   class that is not a member of the class . . .
5793    // C++0x changes this for both friend types and functions.
5794    // Most C++ 98 compilers do seem to give an error here, so
5795    // we do, too.
5796    if (!Previous.empty() && DC->Equals(CurContext)
5797        && !getLangOptions().CPlusPlus0x)
5798      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5799  }
5800
5801  if (DC->isFileContext()) {
5802    // This implies that it has to be an operator or function.
5803    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5804        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5805        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5806      Diag(Loc, diag::err_introducing_special_friend) <<
5807        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5808         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5809      return DeclPtrTy();
5810    }
5811  }
5812
5813  bool Redeclaration = false;
5814  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5815                                          move(TemplateParams),
5816                                          IsDefinition,
5817                                          Redeclaration);
5818  if (!ND) return DeclPtrTy();
5819
5820  assert(ND->getDeclContext() == DC);
5821  assert(ND->getLexicalDeclContext() == CurContext);
5822
5823  // Add the function declaration to the appropriate lookup tables,
5824  // adjusting the redeclarations list as necessary.  We don't
5825  // want to do this yet if the friending class is dependent.
5826  //
5827  // Also update the scope-based lookup if the target context's
5828  // lookup context is in lexical scope.
5829  if (!CurContext->isDependentContext()) {
5830    DC = DC->getLookupContext();
5831    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5832    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5833      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5834  }
5835
5836  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5837                                       D.getIdentifierLoc(), ND,
5838                                       DS.getFriendSpecLoc());
5839  FrD->setAccess(AS_public);
5840  CurContext->addDecl(FrD);
5841
5842  return DeclPtrTy::make(ND);
5843}
5844
5845void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5846  AdjustDeclIfTemplate(dcl);
5847
5848  Decl *Dcl = dcl.getAs<Decl>();
5849  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5850  if (!Fn) {
5851    Diag(DelLoc, diag::err_deleted_non_function);
5852    return;
5853  }
5854  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5855    Diag(DelLoc, diag::err_deleted_decl_not_first);
5856    Diag(Prev->getLocation(), diag::note_previous_declaration);
5857    // If the declaration wasn't the first, we delete the function anyway for
5858    // recovery.
5859  }
5860  Fn->setDeleted();
5861}
5862
5863static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5864  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5865       ++CI) {
5866    Stmt *SubStmt = *CI;
5867    if (!SubStmt)
5868      continue;
5869    if (isa<ReturnStmt>(SubStmt))
5870      Self.Diag(SubStmt->getSourceRange().getBegin(),
5871           diag::err_return_in_constructor_handler);
5872    if (!isa<Expr>(SubStmt))
5873      SearchForReturnInStmt(Self, SubStmt);
5874  }
5875}
5876
5877void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5878  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5879    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5880    SearchForReturnInStmt(*this, Handler);
5881  }
5882}
5883
5884bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5885                                             const CXXMethodDecl *Old) {
5886  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5887  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5888
5889  if (Context.hasSameType(NewTy, OldTy) ||
5890      NewTy->isDependentType() || OldTy->isDependentType())
5891    return false;
5892
5893  // Check if the return types are covariant
5894  QualType NewClassTy, OldClassTy;
5895
5896  /// Both types must be pointers or references to classes.
5897  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5898    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5899      NewClassTy = NewPT->getPointeeType();
5900      OldClassTy = OldPT->getPointeeType();
5901    }
5902  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5903    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5904      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5905        NewClassTy = NewRT->getPointeeType();
5906        OldClassTy = OldRT->getPointeeType();
5907      }
5908    }
5909  }
5910
5911  // The return types aren't either both pointers or references to a class type.
5912  if (NewClassTy.isNull()) {
5913    Diag(New->getLocation(),
5914         diag::err_different_return_type_for_overriding_virtual_function)
5915      << New->getDeclName() << NewTy << OldTy;
5916    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5917
5918    return true;
5919  }
5920
5921  // C++ [class.virtual]p6:
5922  //   If the return type of D::f differs from the return type of B::f, the
5923  //   class type in the return type of D::f shall be complete at the point of
5924  //   declaration of D::f or shall be the class type D.
5925  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5926    if (!RT->isBeingDefined() &&
5927        RequireCompleteType(New->getLocation(), NewClassTy,
5928                            PDiag(diag::err_covariant_return_incomplete)
5929                              << New->getDeclName()))
5930    return true;
5931  }
5932
5933  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5934    // Check if the new class derives from the old class.
5935    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5936      Diag(New->getLocation(),
5937           diag::err_covariant_return_not_derived)
5938      << New->getDeclName() << NewTy << OldTy;
5939      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5940      return true;
5941    }
5942
5943    // Check if we the conversion from derived to base is valid.
5944    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5945                    diag::err_covariant_return_inaccessible_base,
5946                    diag::err_covariant_return_ambiguous_derived_to_base_conv,
5947                    // FIXME: Should this point to the return type?
5948                    New->getLocation(), SourceRange(), New->getDeclName(), 0)) {
5949      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5950      return true;
5951    }
5952  }
5953
5954  // The qualifiers of the return types must be the same.
5955  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5956    Diag(New->getLocation(),
5957         diag::err_covariant_return_type_different_qualifications)
5958    << New->getDeclName() << NewTy << OldTy;
5959    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5960    return true;
5961  };
5962
5963
5964  // The new class type must have the same or less qualifiers as the old type.
5965  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5966    Diag(New->getLocation(),
5967         diag::err_covariant_return_type_class_type_more_qualified)
5968    << New->getDeclName() << NewTy << OldTy;
5969    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5970    return true;
5971  };
5972
5973  return false;
5974}
5975
5976bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5977                                             const CXXMethodDecl *Old)
5978{
5979  if (Old->hasAttr<FinalAttr>()) {
5980    Diag(New->getLocation(), diag::err_final_function_overridden)
5981      << New->getDeclName();
5982    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5983    return true;
5984  }
5985
5986  return false;
5987}
5988
5989/// \brief Mark the given method pure.
5990///
5991/// \param Method the method to be marked pure.
5992///
5993/// \param InitRange the source range that covers the "0" initializer.
5994bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5995  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5996    Method->setPure();
5997
5998    // A class is abstract if at least one function is pure virtual.
5999    Method->getParent()->setAbstract(true);
6000    return false;
6001  }
6002
6003  if (!Method->isInvalidDecl())
6004    Diag(Method->getLocation(), diag::err_non_virtual_pure)
6005      << Method->getDeclName() << InitRange;
6006  return true;
6007}
6008
6009/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
6010/// an initializer for the out-of-line declaration 'Dcl'.  The scope
6011/// is a fresh scope pushed for just this purpose.
6012///
6013/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
6014/// static data member of class X, names should be looked up in the scope of
6015/// class X.
6016void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6017  // If there is no declaration, there was an error parsing it.
6018  Decl *D = Dcl.getAs<Decl>();
6019  if (D == 0) return;
6020
6021  // We should only get called for declarations with scope specifiers, like:
6022  //   int foo::bar;
6023  assert(D->isOutOfLine());
6024  EnterDeclaratorContext(S, D->getDeclContext());
6025}
6026
6027/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
6028/// initializer for the out-of-line declaration 'Dcl'.
6029void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
6030  // If there is no declaration, there was an error parsing it.
6031  Decl *D = Dcl.getAs<Decl>();
6032  if (D == 0) return;
6033
6034  assert(D->isOutOfLine());
6035  ExitDeclaratorContext(S);
6036}
6037
6038/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
6039/// C++ if/switch/while/for statement.
6040/// e.g: "if (int x = f()) {...}"
6041Action::DeclResult
6042Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
6043  // C++ 6.4p2:
6044  // The declarator shall not specify a function or an array.
6045  // The type-specifier-seq shall not contain typedef and shall not declare a
6046  // new class or enumeration.
6047  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
6048         "Parser allowed 'typedef' as storage class of condition decl.");
6049
6050  TypeSourceInfo *TInfo = 0;
6051  TagDecl *OwnedTag = 0;
6052  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
6053
6054  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
6055                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
6056                              // would be created and CXXConditionDeclExpr wants a VarDecl.
6057    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
6058      << D.getSourceRange();
6059    return DeclResult();
6060  } else if (OwnedTag && OwnedTag->isDefinition()) {
6061    // The type-specifier-seq shall not declare a new class or enumeration.
6062    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
6063  }
6064
6065  DeclPtrTy Dcl = ActOnDeclarator(S, D);
6066  if (!Dcl)
6067    return DeclResult();
6068
6069  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
6070  VD->setDeclaredInCondition(true);
6071  return Dcl;
6072}
6073
6074void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
6075                          bool DefinitionRequired) {
6076  // Ignore any vtable uses in unevaluated operands or for classes that do
6077  // not have a vtable.
6078  if (!Class->isDynamicClass() || Class->isDependentContext() ||
6079      CurContext->isDependentContext() ||
6080      ExprEvalContexts.back().Context == Unevaluated)
6081    return;
6082
6083  // Try to insert this class into the map.
6084  Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6085  std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
6086    Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
6087  if (!Pos.second) {
6088    Pos.first->second = Pos.first->second || DefinitionRequired;
6089    return;
6090  }
6091
6092  // Local classes need to have their virtual members marked
6093  // immediately. For all other classes, we mark their virtual members
6094  // at the end of the translation unit.
6095  if (Class->isLocalClass())
6096    MarkVirtualMembersReferenced(Loc, Class);
6097  else
6098    VTableUses.push_back(std::make_pair(Class, Loc));
6099}
6100
6101bool Sema::DefineUsedVTables() {
6102  // If any dynamic classes have their key function defined within
6103  // this translation unit, then those vtables are considered "used" and must
6104  // be emitted.
6105  for (unsigned I = 0, N = DynamicClasses.size(); I != N; ++I) {
6106    if (const CXXMethodDecl *KeyFunction
6107                             = Context.getKeyFunction(DynamicClasses[I])) {
6108      const FunctionDecl *Definition = 0;
6109      if (KeyFunction->getBody(Definition))
6110        MarkVTableUsed(Definition->getLocation(), DynamicClasses[I], true);
6111    }
6112  }
6113
6114  if (VTableUses.empty())
6115    return false;
6116
6117  // Note: The VTableUses vector could grow as a result of marking
6118  // the members of a class as "used", so we check the size each
6119  // time through the loop and prefer indices (with are stable) to
6120  // iterators (which are not).
6121  for (unsigned I = 0; I != VTableUses.size(); ++I) {
6122    CXXRecordDecl *Class
6123      = cast_or_null<CXXRecordDecl>(VTableUses[I].first)->getDefinition();
6124    if (!Class)
6125      continue;
6126
6127    SourceLocation Loc = VTableUses[I].second;
6128
6129    // If this class has a key function, but that key function is
6130    // defined in another translation unit, we don't need to emit the
6131    // vtable even though we're using it.
6132    const CXXMethodDecl *KeyFunction = Context.getKeyFunction(Class);
6133    if (KeyFunction && !KeyFunction->getBody()) {
6134      switch (KeyFunction->getTemplateSpecializationKind()) {
6135      case TSK_Undeclared:
6136      case TSK_ExplicitSpecialization:
6137      case TSK_ExplicitInstantiationDeclaration:
6138        // The key function is in another translation unit.
6139        continue;
6140
6141      case TSK_ExplicitInstantiationDefinition:
6142      case TSK_ImplicitInstantiation:
6143        // We will be instantiating the key function.
6144        break;
6145      }
6146    } else if (!KeyFunction) {
6147      // If we have a class with no key function that is the subject
6148      // of an explicit instantiation declaration, suppress the
6149      // vtable; it will live with the explicit instantiation
6150      // definition.
6151      bool IsExplicitInstantiationDeclaration
6152        = Class->getTemplateSpecializationKind()
6153                                      == TSK_ExplicitInstantiationDeclaration;
6154      for (TagDecl::redecl_iterator R = Class->redecls_begin(),
6155                                 REnd = Class->redecls_end();
6156           R != REnd; ++R) {
6157        TemplateSpecializationKind TSK
6158          = cast<CXXRecordDecl>(*R)->getTemplateSpecializationKind();
6159        if (TSK == TSK_ExplicitInstantiationDeclaration)
6160          IsExplicitInstantiationDeclaration = true;
6161        else if (TSK == TSK_ExplicitInstantiationDefinition) {
6162          IsExplicitInstantiationDeclaration = false;
6163          break;
6164        }
6165      }
6166
6167      if (IsExplicitInstantiationDeclaration)
6168        continue;
6169    }
6170
6171    // Mark all of the virtual members of this class as referenced, so
6172    // that we can build a vtable. Then, tell the AST consumer that a
6173    // vtable for this class is required.
6174    MarkVirtualMembersReferenced(Loc, Class);
6175    CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
6176    Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
6177
6178    // Optionally warn if we're emitting a weak vtable.
6179    if (Class->getLinkage() == ExternalLinkage &&
6180        Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
6181      if (!KeyFunction || (KeyFunction->getBody() && KeyFunction->isInlined()))
6182        Diag(Class->getLocation(), diag::warn_weak_vtable) << Class;
6183    }
6184  }
6185  VTableUses.clear();
6186
6187  return true;
6188}
6189
6190void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
6191                                        const CXXRecordDecl *RD) {
6192  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
6193       e = RD->method_end(); i != e; ++i) {
6194    CXXMethodDecl *MD = *i;
6195
6196    // C++ [basic.def.odr]p2:
6197    //   [...] A virtual member function is used if it is not pure. [...]
6198    if (MD->isVirtual() && !MD->isPure())
6199      MarkDeclarationReferenced(Loc, MD);
6200  }
6201
6202  // Only classes that have virtual bases need a VTT.
6203  if (RD->getNumVBases() == 0)
6204    return;
6205
6206  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
6207           e = RD->bases_end(); i != e; ++i) {
6208    const CXXRecordDecl *Base =
6209        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
6210    if (i->isVirtual())
6211      continue;
6212    if (Base->getNumVBases() == 0)
6213      continue;
6214    MarkVirtualMembersReferenced(Loc, Base);
6215  }
6216}
6217
6218/// SetIvarInitializers - This routine builds initialization ASTs for the
6219/// Objective-C implementation whose ivars need be initialized.
6220void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
6221  if (!getLangOptions().CPlusPlus)
6222    return;
6223  if (const ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
6224    llvm::SmallVector<ObjCIvarDecl*, 8> ivars;
6225    CollectIvarsToConstructOrDestruct(OID, ivars);
6226    if (ivars.empty())
6227      return;
6228    llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
6229    for (unsigned i = 0; i < ivars.size(); i++) {
6230      FieldDecl *Field = ivars[i];
6231      if (Field->isInvalidDecl())
6232        continue;
6233
6234      CXXBaseOrMemberInitializer *Member;
6235      InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
6236      InitializationKind InitKind =
6237        InitializationKind::CreateDefault(ObjCImplementation->getLocation());
6238
6239      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
6240      Sema::OwningExprResult MemberInit =
6241        InitSeq.Perform(*this, InitEntity, InitKind,
6242                        Sema::MultiExprArg(*this, 0, 0));
6243      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
6244      // Note, MemberInit could actually come back empty if no initialization
6245      // is required (e.g., because it would call a trivial default constructor)
6246      if (!MemberInit.get() || MemberInit.isInvalid())
6247        continue;
6248
6249      Member =
6250        new (Context) CXXBaseOrMemberInitializer(Context,
6251                                                 Field, SourceLocation(),
6252                                                 SourceLocation(),
6253                                                 MemberInit.takeAs<Expr>(),
6254                                                 SourceLocation());
6255      AllToInit.push_back(Member);
6256
6257      // Be sure that the destructor is accessible and is marked as referenced.
6258      if (const RecordType *RecordTy
6259                  = Context.getBaseElementType(Field->getType())
6260                                                        ->getAs<RecordType>()) {
6261                    CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
6262        if (CXXDestructorDecl *Destructor
6263              = const_cast<CXXDestructorDecl*>(RD->getDestructor(Context))) {
6264          MarkDeclarationReferenced(Field->getLocation(), Destructor);
6265          CheckDestructorAccess(Field->getLocation(), Destructor,
6266                            PDiag(diag::err_access_dtor_ivar)
6267                              << Context.getBaseElementType(Field->getType()));
6268        }
6269      }
6270    }
6271    ObjCImplementation->setIvarInitializers(Context,
6272                                            AllToInit.data(), AllToInit.size());
6273  }
6274}
6275