SemaDeclCXX.cpp revision fe891e194e27f77ff564c5a19abf09b6e03afdba
1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/RecordLayout.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclVisitor.h"
22#include "clang/AST/TypeLoc.h"
23#include "clang/AST/TypeOrdering.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30#include <map>
31#include <set>
32
33using namespace clang;
34
35//===----------------------------------------------------------------------===//
36// CheckDefaultArgumentVisitor
37//===----------------------------------------------------------------------===//
38
39namespace {
40  /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
41  /// the default argument of a parameter to determine whether it
42  /// contains any ill-formed subexpressions. For example, this will
43  /// diagnose the use of local variables or parameters within the
44  /// default argument expression.
45  class CheckDefaultArgumentVisitor
46    : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
47    Expr *DefaultArg;
48    Sema *S;
49
50  public:
51    CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
52      : DefaultArg(defarg), S(s) {}
53
54    bool VisitExpr(Expr *Node);
55    bool VisitDeclRefExpr(DeclRefExpr *DRE);
56    bool VisitCXXThisExpr(CXXThisExpr *ThisE);
57  };
58
59  /// VisitExpr - Visit all of the children of this expression.
60  bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
61    bool IsInvalid = false;
62    for (Stmt::child_iterator I = Node->child_begin(),
63         E = Node->child_end(); I != E; ++I)
64      IsInvalid |= Visit(*I);
65    return IsInvalid;
66  }
67
68  /// VisitDeclRefExpr - Visit a reference to a declaration, to
69  /// determine whether this declaration can be used in the default
70  /// argument expression.
71  bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
72    NamedDecl *Decl = DRE->getDecl();
73    if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
74      // C++ [dcl.fct.default]p9
75      //   Default arguments are evaluated each time the function is
76      //   called. The order of evaluation of function arguments is
77      //   unspecified. Consequently, parameters of a function shall not
78      //   be used in default argument expressions, even if they are not
79      //   evaluated. Parameters of a function declared before a default
80      //   argument expression are in scope and can hide namespace and
81      //   class member names.
82      return S->Diag(DRE->getSourceRange().getBegin(),
83                     diag::err_param_default_argument_references_param)
84         << Param->getDeclName() << DefaultArg->getSourceRange();
85    } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
86      // C++ [dcl.fct.default]p7
87      //   Local variables shall not be used in default argument
88      //   expressions.
89      if (VDecl->isBlockVarDecl())
90        return S->Diag(DRE->getSourceRange().getBegin(),
91                       diag::err_param_default_argument_references_local)
92          << VDecl->getDeclName() << DefaultArg->getSourceRange();
93    }
94
95    return false;
96  }
97
98  /// VisitCXXThisExpr - Visit a C++ "this" expression.
99  bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
100    // C++ [dcl.fct.default]p8:
101    //   The keyword this shall not be used in a default argument of a
102    //   member function.
103    return S->Diag(ThisE->getSourceRange().getBegin(),
104                   diag::err_param_default_argument_references_this)
105               << ThisE->getSourceRange();
106  }
107}
108
109bool
110Sema::SetParamDefaultArgument(ParmVarDecl *Param, ExprArg DefaultArg,
111                              SourceLocation EqualLoc) {
112  if (RequireCompleteType(Param->getLocation(), Param->getType(),
113                          diag::err_typecheck_decl_incomplete_type)) {
114    Param->setInvalidDecl();
115    return true;
116  }
117
118  Expr *Arg = (Expr *)DefaultArg.get();
119
120  // C++ [dcl.fct.default]p5
121  //   A default argument expression is implicitly converted (clause
122  //   4) to the parameter type. The default argument expression has
123  //   the same semantic constraints as the initializer expression in
124  //   a declaration of a variable of the parameter type, using the
125  //   copy-initialization semantics (8.5).
126  InitializedEntity Entity = InitializedEntity::InitializeParameter(Param);
127  InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
128                                                           EqualLoc);
129  InitializationSequence InitSeq(*this, Entity, Kind, &Arg, 1);
130  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
131                                          MultiExprArg(*this, (void**)&Arg, 1));
132  if (Result.isInvalid())
133    return true;
134  Arg = Result.takeAs<Expr>();
135
136  Arg = MaybeCreateCXXExprWithTemporaries(Arg);
137
138  // Okay: add the default argument to the parameter
139  Param->setDefaultArg(Arg);
140
141  DefaultArg.release();
142
143  return false;
144}
145
146/// ActOnParamDefaultArgument - Check whether the default argument
147/// provided for a function parameter is well-formed. If so, attach it
148/// to the parameter declaration.
149void
150Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc,
151                                ExprArg defarg) {
152  if (!param || !defarg.get())
153    return;
154
155  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
156  UnparsedDefaultArgLocs.erase(Param);
157
158  ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>());
159
160  // Default arguments are only permitted in C++
161  if (!getLangOptions().CPlusPlus) {
162    Diag(EqualLoc, diag::err_param_default_argument)
163      << DefaultArg->getSourceRange();
164    Param->setInvalidDecl();
165    return;
166  }
167
168  // Check that the default argument is well-formed
169  CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this);
170  if (DefaultArgChecker.Visit(DefaultArg.get())) {
171    Param->setInvalidDecl();
172    return;
173  }
174
175  SetParamDefaultArgument(Param, move(DefaultArg), EqualLoc);
176}
177
178/// ActOnParamUnparsedDefaultArgument - We've seen a default
179/// argument for a function parameter, but we can't parse it yet
180/// because we're inside a class definition. Note that this default
181/// argument will be parsed later.
182void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
183                                             SourceLocation EqualLoc,
184                                             SourceLocation ArgLoc) {
185  if (!param)
186    return;
187
188  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
189  if (Param)
190    Param->setUnparsedDefaultArg();
191
192  UnparsedDefaultArgLocs[Param] = ArgLoc;
193}
194
195/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
196/// the default argument for the parameter param failed.
197void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) {
198  if (!param)
199    return;
200
201  ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>());
202
203  Param->setInvalidDecl();
204
205  UnparsedDefaultArgLocs.erase(Param);
206}
207
208/// CheckExtraCXXDefaultArguments - Check for any extra default
209/// arguments in the declarator, which is not a function declaration
210/// or definition and therefore is not permitted to have default
211/// arguments. This routine should be invoked for every declarator
212/// that is not a function declaration or definition.
213void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
214  // C++ [dcl.fct.default]p3
215  //   A default argument expression shall be specified only in the
216  //   parameter-declaration-clause of a function declaration or in a
217  //   template-parameter (14.1). It shall not be specified for a
218  //   parameter pack. If it is specified in a
219  //   parameter-declaration-clause, it shall not occur within a
220  //   declarator or abstract-declarator of a parameter-declaration.
221  for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
222    DeclaratorChunk &chunk = D.getTypeObject(i);
223    if (chunk.Kind == DeclaratorChunk::Function) {
224      for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) {
225        ParmVarDecl *Param =
226          cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>());
227        if (Param->hasUnparsedDefaultArg()) {
228          CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens;
229          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
230            << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation());
231          delete Toks;
232          chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0;
233        } else if (Param->getDefaultArg()) {
234          Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
235            << Param->getDefaultArg()->getSourceRange();
236          Param->setDefaultArg(0);
237        }
238      }
239    }
240  }
241}
242
243// MergeCXXFunctionDecl - Merge two declarations of the same C++
244// function, once we already know that they have the same
245// type. Subroutine of MergeFunctionDecl. Returns true if there was an
246// error, false otherwise.
247bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) {
248  bool Invalid = false;
249
250  // C++ [dcl.fct.default]p4:
251  //   For non-template functions, default arguments can be added in
252  //   later declarations of a function in the same
253  //   scope. Declarations in different scopes have completely
254  //   distinct sets of default arguments. That is, declarations in
255  //   inner scopes do not acquire default arguments from
256  //   declarations in outer scopes, and vice versa. In a given
257  //   function declaration, all parameters subsequent to a
258  //   parameter with a default argument shall have default
259  //   arguments supplied in this or previous declarations. A
260  //   default argument shall not be redefined by a later
261  //   declaration (not even to the same value).
262  //
263  // C++ [dcl.fct.default]p6:
264  //   Except for member functions of class templates, the default arguments
265  //   in a member function definition that appears outside of the class
266  //   definition are added to the set of default arguments provided by the
267  //   member function declaration in the class definition.
268  for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
269    ParmVarDecl *OldParam = Old->getParamDecl(p);
270    ParmVarDecl *NewParam = New->getParamDecl(p);
271
272    if (OldParam->hasDefaultArg() && NewParam->hasDefaultArg()) {
273      // FIXME: If we knew where the '=' was, we could easily provide a fix-it
274      // hint here. Alternatively, we could walk the type-source information
275      // for NewParam to find the last source location in the type... but it
276      // isn't worth the effort right now. This is the kind of test case that
277      // is hard to get right:
278
279      //   int f(int);
280      //   void g(int (*fp)(int) = f);
281      //   void g(int (*fp)(int) = &f);
282      Diag(NewParam->getLocation(),
283           diag::err_param_default_argument_redefinition)
284        << NewParam->getDefaultArgRange();
285
286      // Look for the function declaration where the default argument was
287      // actually written, which may be a declaration prior to Old.
288      for (FunctionDecl *Older = Old->getPreviousDeclaration();
289           Older; Older = Older->getPreviousDeclaration()) {
290        if (!Older->getParamDecl(p)->hasDefaultArg())
291          break;
292
293        OldParam = Older->getParamDecl(p);
294      }
295
296      Diag(OldParam->getLocation(), diag::note_previous_definition)
297        << OldParam->getDefaultArgRange();
298      Invalid = true;
299    } else if (OldParam->hasDefaultArg()) {
300      // Merge the old default argument into the new parameter
301      NewParam->setHasInheritedDefaultArg();
302      if (OldParam->hasUninstantiatedDefaultArg())
303        NewParam->setUninstantiatedDefaultArg(
304                                      OldParam->getUninstantiatedDefaultArg());
305      else
306        NewParam->setDefaultArg(OldParam->getDefaultArg());
307    } else if (NewParam->hasDefaultArg()) {
308      if (New->getDescribedFunctionTemplate()) {
309        // Paragraph 4, quoted above, only applies to non-template functions.
310        Diag(NewParam->getLocation(),
311             diag::err_param_default_argument_template_redecl)
312          << NewParam->getDefaultArgRange();
313        Diag(Old->getLocation(), diag::note_template_prev_declaration)
314          << false;
315      } else if (New->getTemplateSpecializationKind()
316                   != TSK_ImplicitInstantiation &&
317                 New->getTemplateSpecializationKind() != TSK_Undeclared) {
318        // C++ [temp.expr.spec]p21:
319        //   Default function arguments shall not be specified in a declaration
320        //   or a definition for one of the following explicit specializations:
321        //     - the explicit specialization of a function template;
322        //     - the explicit specialization of a member function template;
323        //     - the explicit specialization of a member function of a class
324        //       template where the class template specialization to which the
325        //       member function specialization belongs is implicitly
326        //       instantiated.
327        Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
328          << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
329          << New->getDeclName()
330          << NewParam->getDefaultArgRange();
331      } else if (New->getDeclContext()->isDependentContext()) {
332        // C++ [dcl.fct.default]p6 (DR217):
333        //   Default arguments for a member function of a class template shall
334        //   be specified on the initial declaration of the member function
335        //   within the class template.
336        //
337        // Reading the tea leaves a bit in DR217 and its reference to DR205
338        // leads me to the conclusion that one cannot add default function
339        // arguments for an out-of-line definition of a member function of a
340        // dependent type.
341        int WhichKind = 2;
342        if (CXXRecordDecl *Record
343              = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
344          if (Record->getDescribedClassTemplate())
345            WhichKind = 0;
346          else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
347            WhichKind = 1;
348          else
349            WhichKind = 2;
350        }
351
352        Diag(NewParam->getLocation(),
353             diag::err_param_default_argument_member_template_redecl)
354          << WhichKind
355          << NewParam->getDefaultArgRange();
356      }
357    }
358  }
359
360  if (CheckEquivalentExceptionSpec(Old, New))
361    Invalid = true;
362
363  return Invalid;
364}
365
366/// CheckCXXDefaultArguments - Verify that the default arguments for a
367/// function declaration are well-formed according to C++
368/// [dcl.fct.default].
369void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
370  unsigned NumParams = FD->getNumParams();
371  unsigned p;
372
373  // Find first parameter with a default argument
374  for (p = 0; p < NumParams; ++p) {
375    ParmVarDecl *Param = FD->getParamDecl(p);
376    if (Param->hasDefaultArg())
377      break;
378  }
379
380  // C++ [dcl.fct.default]p4:
381  //   In a given function declaration, all parameters
382  //   subsequent to a parameter with a default argument shall
383  //   have default arguments supplied in this or previous
384  //   declarations. A default argument shall not be redefined
385  //   by a later declaration (not even to the same value).
386  unsigned LastMissingDefaultArg = 0;
387  for (; p < NumParams; ++p) {
388    ParmVarDecl *Param = FD->getParamDecl(p);
389    if (!Param->hasDefaultArg()) {
390      if (Param->isInvalidDecl())
391        /* We already complained about this parameter. */;
392      else if (Param->getIdentifier())
393        Diag(Param->getLocation(),
394             diag::err_param_default_argument_missing_name)
395          << Param->getIdentifier();
396      else
397        Diag(Param->getLocation(),
398             diag::err_param_default_argument_missing);
399
400      LastMissingDefaultArg = p;
401    }
402  }
403
404  if (LastMissingDefaultArg > 0) {
405    // Some default arguments were missing. Clear out all of the
406    // default arguments up to (and including) the last missing
407    // default argument, so that we leave the function parameters
408    // in a semantically valid state.
409    for (p = 0; p <= LastMissingDefaultArg; ++p) {
410      ParmVarDecl *Param = FD->getParamDecl(p);
411      if (Param->hasDefaultArg()) {
412        if (!Param->hasUnparsedDefaultArg())
413          Param->getDefaultArg()->Destroy(Context);
414        Param->setDefaultArg(0);
415      }
416    }
417  }
418}
419
420/// isCurrentClassName - Determine whether the identifier II is the
421/// name of the class type currently being defined. In the case of
422/// nested classes, this will only return true if II is the name of
423/// the innermost class.
424bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
425                              const CXXScopeSpec *SS) {
426  assert(getLangOptions().CPlusPlus && "No class names in C!");
427
428  CXXRecordDecl *CurDecl;
429  if (SS && SS->isSet() && !SS->isInvalid()) {
430    DeclContext *DC = computeDeclContext(*SS, true);
431    CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
432  } else
433    CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
434
435  if (CurDecl && CurDecl->getIdentifier())
436    return &II == CurDecl->getIdentifier();
437  else
438    return false;
439}
440
441/// \brief Check the validity of a C++ base class specifier.
442///
443/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
444/// and returns NULL otherwise.
445CXXBaseSpecifier *
446Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
447                         SourceRange SpecifierRange,
448                         bool Virtual, AccessSpecifier Access,
449                         QualType BaseType,
450                         SourceLocation BaseLoc) {
451  // C++ [class.union]p1:
452  //   A union shall not have base classes.
453  if (Class->isUnion()) {
454    Diag(Class->getLocation(), diag::err_base_clause_on_union)
455      << SpecifierRange;
456    return 0;
457  }
458
459  if (BaseType->isDependentType())
460    return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
461                                Class->getTagKind() == RecordDecl::TK_class,
462                                Access, BaseType);
463
464  // Base specifiers must be record types.
465  if (!BaseType->isRecordType()) {
466    Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
467    return 0;
468  }
469
470  // C++ [class.union]p1:
471  //   A union shall not be used as a base class.
472  if (BaseType->isUnionType()) {
473    Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
474    return 0;
475  }
476
477  // C++ [class.derived]p2:
478  //   The class-name in a base-specifier shall not be an incompletely
479  //   defined class.
480  if (RequireCompleteType(BaseLoc, BaseType,
481                          PDiag(diag::err_incomplete_base_class)
482                            << SpecifierRange))
483    return 0;
484
485  // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
486  RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
487  assert(BaseDecl && "Record type has no declaration");
488  BaseDecl = BaseDecl->getDefinition();
489  assert(BaseDecl && "Base type is not incomplete, but has no definition");
490  CXXRecordDecl * CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
491  assert(CXXBaseDecl && "Base type is not a C++ type");
492
493  // C++0x CWG Issue #817 indicates that [[final]] classes shouldn't be bases.
494  if (CXXBaseDecl->hasAttr<FinalAttr>()) {
495    Diag(BaseLoc, diag::err_final_base) << BaseType.getAsString();
496    Diag(CXXBaseDecl->getLocation(), diag::note_previous_decl)
497      << BaseType;
498    return 0;
499  }
500
501  SetClassDeclAttributesFromBase(Class, CXXBaseDecl, Virtual);
502
503  // Create the base specifier.
504  // FIXME: Allocate via ASTContext?
505  return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
506                              Class->getTagKind() == RecordDecl::TK_class,
507                              Access, BaseType);
508}
509
510void Sema::SetClassDeclAttributesFromBase(CXXRecordDecl *Class,
511                                          const CXXRecordDecl *BaseClass,
512                                          bool BaseIsVirtual) {
513  // A class with a non-empty base class is not empty.
514  // FIXME: Standard ref?
515  if (!BaseClass->isEmpty())
516    Class->setEmpty(false);
517
518  // C++ [class.virtual]p1:
519  //   A class that [...] inherits a virtual function is called a polymorphic
520  //   class.
521  if (BaseClass->isPolymorphic())
522    Class->setPolymorphic(true);
523
524  // C++ [dcl.init.aggr]p1:
525  //   An aggregate is [...] a class with [...] no base classes [...].
526  Class->setAggregate(false);
527
528  // C++ [class]p4:
529  //   A POD-struct is an aggregate class...
530  Class->setPOD(false);
531
532  if (BaseIsVirtual) {
533    // C++ [class.ctor]p5:
534    //   A constructor is trivial if its class has no virtual base classes.
535    Class->setHasTrivialConstructor(false);
536
537    // C++ [class.copy]p6:
538    //   A copy constructor is trivial if its class has no virtual base classes.
539    Class->setHasTrivialCopyConstructor(false);
540
541    // C++ [class.copy]p11:
542    //   A copy assignment operator is trivial if its class has no virtual
543    //   base classes.
544    Class->setHasTrivialCopyAssignment(false);
545
546    // C++0x [meta.unary.prop] is_empty:
547    //    T is a class type, but not a union type, with ... no virtual base
548    //    classes
549    Class->setEmpty(false);
550  } else {
551    // C++ [class.ctor]p5:
552    //   A constructor is trivial if all the direct base classes of its
553    //   class have trivial constructors.
554    if (!BaseClass->hasTrivialConstructor())
555      Class->setHasTrivialConstructor(false);
556
557    // C++ [class.copy]p6:
558    //   A copy constructor is trivial if all the direct base classes of its
559    //   class have trivial copy constructors.
560    if (!BaseClass->hasTrivialCopyConstructor())
561      Class->setHasTrivialCopyConstructor(false);
562
563    // C++ [class.copy]p11:
564    //   A copy assignment operator is trivial if all the direct base classes
565    //   of its class have trivial copy assignment operators.
566    if (!BaseClass->hasTrivialCopyAssignment())
567      Class->setHasTrivialCopyAssignment(false);
568  }
569
570  // C++ [class.ctor]p3:
571  //   A destructor is trivial if all the direct base classes of its class
572  //   have trivial destructors.
573  if (!BaseClass->hasTrivialDestructor())
574    Class->setHasTrivialDestructor(false);
575}
576
577/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
578/// one entry in the base class list of a class specifier, for
579/// example:
580///    class foo : public bar, virtual private baz {
581/// 'public bar' and 'virtual private baz' are each base-specifiers.
582Sema::BaseResult
583Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange,
584                         bool Virtual, AccessSpecifier Access,
585                         TypeTy *basetype, SourceLocation BaseLoc) {
586  if (!classdecl)
587    return true;
588
589  AdjustDeclIfTemplate(classdecl);
590  CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl.getAs<Decl>());
591  if (!Class)
592    return true;
593
594  QualType BaseType = GetTypeFromParser(basetype);
595  if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
596                                                      Virtual, Access,
597                                                      BaseType, BaseLoc))
598    return BaseSpec;
599
600  return true;
601}
602
603/// \brief Performs the actual work of attaching the given base class
604/// specifiers to a C++ class.
605bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
606                                unsigned NumBases) {
607 if (NumBases == 0)
608    return false;
609
610  // Used to keep track of which base types we have already seen, so
611  // that we can properly diagnose redundant direct base types. Note
612  // that the key is always the unqualified canonical type of the base
613  // class.
614  std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
615
616  // Copy non-redundant base specifiers into permanent storage.
617  unsigned NumGoodBases = 0;
618  bool Invalid = false;
619  for (unsigned idx = 0; idx < NumBases; ++idx) {
620    QualType NewBaseType
621      = Context.getCanonicalType(Bases[idx]->getType());
622    NewBaseType = NewBaseType.getLocalUnqualifiedType();
623
624    if (KnownBaseTypes[NewBaseType]) {
625      // C++ [class.mi]p3:
626      //   A class shall not be specified as a direct base class of a
627      //   derived class more than once.
628      Diag(Bases[idx]->getSourceRange().getBegin(),
629           diag::err_duplicate_base_class)
630        << KnownBaseTypes[NewBaseType]->getType()
631        << Bases[idx]->getSourceRange();
632
633      // Delete the duplicate base class specifier; we're going to
634      // overwrite its pointer later.
635      Context.Deallocate(Bases[idx]);
636
637      Invalid = true;
638    } else {
639      // Okay, add this new base class.
640      KnownBaseTypes[NewBaseType] = Bases[idx];
641      Bases[NumGoodBases++] = Bases[idx];
642    }
643  }
644
645  // Attach the remaining base class specifiers to the derived class.
646  Class->setBases(Bases, NumGoodBases);
647
648  // Delete the remaining (good) base class specifiers, since their
649  // data has been copied into the CXXRecordDecl.
650  for (unsigned idx = 0; idx < NumGoodBases; ++idx)
651    Context.Deallocate(Bases[idx]);
652
653  return Invalid;
654}
655
656/// ActOnBaseSpecifiers - Attach the given base specifiers to the
657/// class, after checking whether there are any duplicate base
658/// classes.
659void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
660                               unsigned NumBases) {
661  if (!ClassDecl || !Bases || !NumBases)
662    return;
663
664  AdjustDeclIfTemplate(ClassDecl);
665  AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()),
666                       (CXXBaseSpecifier**)(Bases), NumBases);
667}
668
669static CXXRecordDecl *GetClassForType(QualType T) {
670  if (const RecordType *RT = T->getAs<RecordType>())
671    return cast<CXXRecordDecl>(RT->getDecl());
672  else if (const InjectedClassNameType *ICT = T->getAs<InjectedClassNameType>())
673    return ICT->getDecl();
674  else
675    return 0;
676}
677
678/// \brief Determine whether the type \p Derived is a C++ class that is
679/// derived from the type \p Base.
680bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
681  if (!getLangOptions().CPlusPlus)
682    return false;
683
684  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
685  if (!DerivedRD)
686    return false;
687
688  CXXRecordDecl *BaseRD = GetClassForType(Base);
689  if (!BaseRD)
690    return false;
691
692  // FIXME: instantiate DerivedRD if necessary.  We need a PoI for this.
693  return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
694}
695
696/// \brief Determine whether the type \p Derived is a C++ class that is
697/// derived from the type \p Base.
698bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
699  if (!getLangOptions().CPlusPlus)
700    return false;
701
702  CXXRecordDecl *DerivedRD = GetClassForType(Derived);
703  if (!DerivedRD)
704    return false;
705
706  CXXRecordDecl *BaseRD = GetClassForType(Base);
707  if (!BaseRD)
708    return false;
709
710  return DerivedRD->isDerivedFrom(BaseRD, Paths);
711}
712
713/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
714/// conversion (where Derived and Base are class types) is
715/// well-formed, meaning that the conversion is unambiguous (and
716/// that all of the base classes are accessible). Returns true
717/// and emits a diagnostic if the code is ill-formed, returns false
718/// otherwise. Loc is the location where this routine should point to
719/// if there is an error, and Range is the source range to highlight
720/// if there is an error.
721bool
722Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
723                                   unsigned InaccessibleBaseID,
724                                   unsigned AmbigiousBaseConvID,
725                                   SourceLocation Loc, SourceRange Range,
726                                   DeclarationName Name) {
727  // First, determine whether the path from Derived to Base is
728  // ambiguous. This is slightly more expensive than checking whether
729  // the Derived to Base conversion exists, because here we need to
730  // explore multiple paths to determine if there is an ambiguity.
731  CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
732                     /*DetectVirtual=*/false);
733  bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
734  assert(DerivationOkay &&
735         "Can only be used with a derived-to-base conversion");
736  (void)DerivationOkay;
737
738  if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
739    if (!InaccessibleBaseID)
740      return false;
741
742    // Check that the base class can be accessed.
743    switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
744                                 InaccessibleBaseID)) {
745    case AR_accessible: return false;
746    case AR_inaccessible: return true;
747    case AR_dependent: return false;
748    case AR_delayed: return false;
749    }
750  }
751
752  // We know that the derived-to-base conversion is ambiguous, and
753  // we're going to produce a diagnostic. Perform the derived-to-base
754  // search just one more time to compute all of the possible paths so
755  // that we can print them out. This is more expensive than any of
756  // the previous derived-to-base checks we've done, but at this point
757  // performance isn't as much of an issue.
758  Paths.clear();
759  Paths.setRecordingPaths(true);
760  bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
761  assert(StillOkay && "Can only be used with a derived-to-base conversion");
762  (void)StillOkay;
763
764  // Build up a textual representation of the ambiguous paths, e.g.,
765  // D -> B -> A, that will be used to illustrate the ambiguous
766  // conversions in the diagnostic. We only print one of the paths
767  // to each base class subobject.
768  std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
769
770  Diag(Loc, AmbigiousBaseConvID)
771  << Derived << Base << PathDisplayStr << Range << Name;
772  return true;
773}
774
775bool
776Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
777                                   SourceLocation Loc, SourceRange Range,
778                                   bool IgnoreAccess) {
779  return CheckDerivedToBaseConversion(Derived, Base,
780                                      IgnoreAccess ? 0
781                                       : diag::err_upcast_to_inaccessible_base,
782                                      diag::err_ambiguous_derived_to_base_conv,
783                                      Loc, Range, DeclarationName());
784}
785
786
787/// @brief Builds a string representing ambiguous paths from a
788/// specific derived class to different subobjects of the same base
789/// class.
790///
791/// This function builds a string that can be used in error messages
792/// to show the different paths that one can take through the
793/// inheritance hierarchy to go from the derived class to different
794/// subobjects of a base class. The result looks something like this:
795/// @code
796/// struct D -> struct B -> struct A
797/// struct D -> struct C -> struct A
798/// @endcode
799std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
800  std::string PathDisplayStr;
801  std::set<unsigned> DisplayedPaths;
802  for (CXXBasePaths::paths_iterator Path = Paths.begin();
803       Path != Paths.end(); ++Path) {
804    if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
805      // We haven't displayed a path to this particular base
806      // class subobject yet.
807      PathDisplayStr += "\n    ";
808      PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
809      for (CXXBasePath::const_iterator Element = Path->begin();
810           Element != Path->end(); ++Element)
811        PathDisplayStr += " -> " + Element->Base->getType().getAsString();
812    }
813  }
814
815  return PathDisplayStr;
816}
817
818//===----------------------------------------------------------------------===//
819// C++ class member Handling
820//===----------------------------------------------------------------------===//
821
822/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
823/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
824/// bitfield width if there is one and 'InitExpr' specifies the initializer if
825/// any.
826Sema::DeclPtrTy
827Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
828                               MultiTemplateParamsArg TemplateParameterLists,
829                               ExprTy *BW, ExprTy *InitExpr, bool IsDefinition,
830                               bool Deleted) {
831  const DeclSpec &DS = D.getDeclSpec();
832  DeclarationName Name = GetNameForDeclarator(D);
833  Expr *BitWidth = static_cast<Expr*>(BW);
834  Expr *Init = static_cast<Expr*>(InitExpr);
835  SourceLocation Loc = D.getIdentifierLoc();
836
837  bool isFunc = D.isFunctionDeclarator();
838
839  assert(!DS.isFriendSpecified());
840
841  // C++ 9.2p6: A member shall not be declared to have automatic storage
842  // duration (auto, register) or with the extern storage-class-specifier.
843  // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
844  // data members and cannot be applied to names declared const or static,
845  // and cannot be applied to reference members.
846  switch (DS.getStorageClassSpec()) {
847    case DeclSpec::SCS_unspecified:
848    case DeclSpec::SCS_typedef:
849    case DeclSpec::SCS_static:
850      // FALL THROUGH.
851      break;
852    case DeclSpec::SCS_mutable:
853      if (isFunc) {
854        if (DS.getStorageClassSpecLoc().isValid())
855          Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
856        else
857          Diag(DS.getThreadSpecLoc(), diag::err_mutable_function);
858
859        // FIXME: It would be nicer if the keyword was ignored only for this
860        // declarator. Otherwise we could get follow-up errors.
861        D.getMutableDeclSpec().ClearStorageClassSpecs();
862      } else {
863        QualType T = GetTypeForDeclarator(D, S);
864        diag::kind err = static_cast<diag::kind>(0);
865        if (T->isReferenceType())
866          err = diag::err_mutable_reference;
867        else if (T.isConstQualified())
868          err = diag::err_mutable_const;
869        if (err != 0) {
870          if (DS.getStorageClassSpecLoc().isValid())
871            Diag(DS.getStorageClassSpecLoc(), err);
872          else
873            Diag(DS.getThreadSpecLoc(), err);
874          // FIXME: It would be nicer if the keyword was ignored only for this
875          // declarator. Otherwise we could get follow-up errors.
876          D.getMutableDeclSpec().ClearStorageClassSpecs();
877        }
878      }
879      break;
880    default:
881      if (DS.getStorageClassSpecLoc().isValid())
882        Diag(DS.getStorageClassSpecLoc(),
883             diag::err_storageclass_invalid_for_member);
884      else
885        Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member);
886      D.getMutableDeclSpec().ClearStorageClassSpecs();
887  }
888
889  if (!isFunc &&
890      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename &&
891      D.getNumTypeObjects() == 0) {
892    // Check also for this case:
893    //
894    // typedef int f();
895    // f a;
896    //
897    QualType TDType = GetTypeFromParser(DS.getTypeRep());
898    isFunc = TDType->isFunctionType();
899  }
900
901  bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
902                       DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
903                      !isFunc);
904
905  Decl *Member;
906  if (isInstField) {
907    // FIXME: Check for template parameters!
908    Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth,
909                         AS);
910    assert(Member && "HandleField never returns null");
911  } else {
912    Member = HandleDeclarator(S, D, move(TemplateParameterLists), IsDefinition)
913               .getAs<Decl>();
914    if (!Member) {
915      if (BitWidth) DeleteExpr(BitWidth);
916      return DeclPtrTy();
917    }
918
919    // Non-instance-fields can't have a bitfield.
920    if (BitWidth) {
921      if (Member->isInvalidDecl()) {
922        // don't emit another diagnostic.
923      } else if (isa<VarDecl>(Member)) {
924        // C++ 9.6p3: A bit-field shall not be a static member.
925        // "static member 'A' cannot be a bit-field"
926        Diag(Loc, diag::err_static_not_bitfield)
927          << Name << BitWidth->getSourceRange();
928      } else if (isa<TypedefDecl>(Member)) {
929        // "typedef member 'x' cannot be a bit-field"
930        Diag(Loc, diag::err_typedef_not_bitfield)
931          << Name << BitWidth->getSourceRange();
932      } else {
933        // A function typedef ("typedef int f(); f a;").
934        // C++ 9.6p3: A bit-field shall have integral or enumeration type.
935        Diag(Loc, diag::err_not_integral_type_bitfield)
936          << Name << cast<ValueDecl>(Member)->getType()
937          << BitWidth->getSourceRange();
938      }
939
940      DeleteExpr(BitWidth);
941      BitWidth = 0;
942      Member->setInvalidDecl();
943    }
944
945    Member->setAccess(AS);
946
947    // If we have declared a member function template, set the access of the
948    // templated declaration as well.
949    if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
950      FunTmpl->getTemplatedDecl()->setAccess(AS);
951  }
952
953  assert((Name || isInstField) && "No identifier for non-field ?");
954
955  if (Init)
956    AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false);
957  if (Deleted) // FIXME: Source location is not very good.
958    SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin());
959
960  if (isInstField) {
961    FieldCollector->Add(cast<FieldDecl>(Member));
962    return DeclPtrTy();
963  }
964  return DeclPtrTy::make(Member);
965}
966
967/// \brief Find the direct and/or virtual base specifiers that
968/// correspond to the given base type, for use in base initialization
969/// within a constructor.
970static bool FindBaseInitializer(Sema &SemaRef,
971                                CXXRecordDecl *ClassDecl,
972                                QualType BaseType,
973                                const CXXBaseSpecifier *&DirectBaseSpec,
974                                const CXXBaseSpecifier *&VirtualBaseSpec) {
975  // First, check for a direct base class.
976  DirectBaseSpec = 0;
977  for (CXXRecordDecl::base_class_const_iterator Base
978         = ClassDecl->bases_begin();
979       Base != ClassDecl->bases_end(); ++Base) {
980    if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base->getType())) {
981      // We found a direct base of this type. That's what we're
982      // initializing.
983      DirectBaseSpec = &*Base;
984      break;
985    }
986  }
987
988  // Check for a virtual base class.
989  // FIXME: We might be able to short-circuit this if we know in advance that
990  // there are no virtual bases.
991  VirtualBaseSpec = 0;
992  if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
993    // We haven't found a base yet; search the class hierarchy for a
994    // virtual base class.
995    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
996                       /*DetectVirtual=*/false);
997    if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
998                              BaseType, Paths)) {
999      for (CXXBasePaths::paths_iterator Path = Paths.begin();
1000           Path != Paths.end(); ++Path) {
1001        if (Path->back().Base->isVirtual()) {
1002          VirtualBaseSpec = Path->back().Base;
1003          break;
1004        }
1005      }
1006    }
1007  }
1008
1009  return DirectBaseSpec || VirtualBaseSpec;
1010}
1011
1012/// ActOnMemInitializer - Handle a C++ member initializer.
1013Sema::MemInitResult
1014Sema::ActOnMemInitializer(DeclPtrTy ConstructorD,
1015                          Scope *S,
1016                          CXXScopeSpec &SS,
1017                          IdentifierInfo *MemberOrBase,
1018                          TypeTy *TemplateTypeTy,
1019                          SourceLocation IdLoc,
1020                          SourceLocation LParenLoc,
1021                          ExprTy **Args, unsigned NumArgs,
1022                          SourceLocation *CommaLocs,
1023                          SourceLocation RParenLoc) {
1024  if (!ConstructorD)
1025    return true;
1026
1027  AdjustDeclIfTemplate(ConstructorD);
1028
1029  CXXConstructorDecl *Constructor
1030    = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>());
1031  if (!Constructor) {
1032    // The user wrote a constructor initializer on a function that is
1033    // not a C++ constructor. Ignore the error for now, because we may
1034    // have more member initializers coming; we'll diagnose it just
1035    // once in ActOnMemInitializers.
1036    return true;
1037  }
1038
1039  CXXRecordDecl *ClassDecl = Constructor->getParent();
1040
1041  // C++ [class.base.init]p2:
1042  //   Names in a mem-initializer-id are looked up in the scope of the
1043  //   constructor’s class and, if not found in that scope, are looked
1044  //   up in the scope containing the constructor’s
1045  //   definition. [Note: if the constructor’s class contains a member
1046  //   with the same name as a direct or virtual base class of the
1047  //   class, a mem-initializer-id naming the member or base class and
1048  //   composed of a single identifier refers to the class member. A
1049  //   mem-initializer-id for the hidden base class may be specified
1050  //   using a qualified name. ]
1051  if (!SS.getScopeRep() && !TemplateTypeTy) {
1052    // Look for a member, first.
1053    FieldDecl *Member = 0;
1054    DeclContext::lookup_result Result
1055      = ClassDecl->lookup(MemberOrBase);
1056    if (Result.first != Result.second)
1057      Member = dyn_cast<FieldDecl>(*Result.first);
1058
1059    // FIXME: Handle members of an anonymous union.
1060
1061    if (Member)
1062      return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1063                                    LParenLoc, RParenLoc);
1064  }
1065  // It didn't name a member, so see if it names a class.
1066  QualType BaseType;
1067  TypeSourceInfo *TInfo = 0;
1068
1069  if (TemplateTypeTy) {
1070    BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
1071  } else {
1072    LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
1073    LookupParsedName(R, S, &SS);
1074
1075    TypeDecl *TyD = R.getAsSingle<TypeDecl>();
1076    if (!TyD) {
1077      if (R.isAmbiguous()) return true;
1078
1079      // We don't want access-control diagnostics here.
1080      R.suppressDiagnostics();
1081
1082      if (SS.isSet() && isDependentScopeSpecifier(SS)) {
1083        bool NotUnknownSpecialization = false;
1084        DeclContext *DC = computeDeclContext(SS, false);
1085        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
1086          NotUnknownSpecialization = !Record->hasAnyDependentBases();
1087
1088        if (!NotUnknownSpecialization) {
1089          // When the scope specifier can refer to a member of an unknown
1090          // specialization, we take it as a type name.
1091          BaseType = CheckTypenameType((NestedNameSpecifier *)SS.getScopeRep(),
1092                                       *MemberOrBase, SS.getRange());
1093          if (BaseType.isNull())
1094            return true;
1095
1096          R.clear();
1097        }
1098      }
1099
1100      // If no results were found, try to correct typos.
1101      if (R.empty() && BaseType.isNull() &&
1102          CorrectTypo(R, S, &SS, ClassDecl, 0, CTC_NoKeywords) &&
1103          R.isSingleResult()) {
1104        if (FieldDecl *Member = R.getAsSingle<FieldDecl>()) {
1105          if (Member->getDeclContext()->getLookupContext()->Equals(ClassDecl)) {
1106            // We have found a non-static data member with a similar
1107            // name to what was typed; complain and initialize that
1108            // member.
1109            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1110              << MemberOrBase << true << R.getLookupName()
1111              << FixItHint::CreateReplacement(R.getNameLoc(),
1112                                              R.getLookupName().getAsString());
1113            Diag(Member->getLocation(), diag::note_previous_decl)
1114              << Member->getDeclName();
1115
1116            return BuildMemberInitializer(Member, (Expr**)Args, NumArgs, IdLoc,
1117                                          LParenLoc, RParenLoc);
1118          }
1119        } else if (TypeDecl *Type = R.getAsSingle<TypeDecl>()) {
1120          const CXXBaseSpecifier *DirectBaseSpec;
1121          const CXXBaseSpecifier *VirtualBaseSpec;
1122          if (FindBaseInitializer(*this, ClassDecl,
1123                                  Context.getTypeDeclType(Type),
1124                                  DirectBaseSpec, VirtualBaseSpec)) {
1125            // We have found a direct or virtual base class with a
1126            // similar name to what was typed; complain and initialize
1127            // that base class.
1128            Diag(R.getNameLoc(), diag::err_mem_init_not_member_or_class_suggest)
1129              << MemberOrBase << false << R.getLookupName()
1130              << FixItHint::CreateReplacement(R.getNameLoc(),
1131                                              R.getLookupName().getAsString());
1132
1133            const CXXBaseSpecifier *BaseSpec = DirectBaseSpec? DirectBaseSpec
1134                                                             : VirtualBaseSpec;
1135            Diag(BaseSpec->getSourceRange().getBegin(),
1136                 diag::note_base_class_specified_here)
1137              << BaseSpec->getType()
1138              << BaseSpec->getSourceRange();
1139
1140            TyD = Type;
1141          }
1142        }
1143      }
1144
1145      if (!TyD && BaseType.isNull()) {
1146        Diag(IdLoc, diag::err_mem_init_not_member_or_class)
1147          << MemberOrBase << SourceRange(IdLoc, RParenLoc);
1148        return true;
1149      }
1150    }
1151
1152    if (BaseType.isNull()) {
1153      BaseType = Context.getTypeDeclType(TyD);
1154      if (SS.isSet()) {
1155        NestedNameSpecifier *Qualifier =
1156          static_cast<NestedNameSpecifier*>(SS.getScopeRep());
1157
1158        // FIXME: preserve source range information
1159        BaseType = Context.getQualifiedNameType(Qualifier, BaseType);
1160      }
1161    }
1162  }
1163
1164  if (!TInfo)
1165    TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
1166
1167  return BuildBaseInitializer(BaseType, TInfo, (Expr **)Args, NumArgs,
1168                              LParenLoc, RParenLoc, ClassDecl);
1169}
1170
1171/// Checks an initializer expression for use of uninitialized fields, such as
1172/// containing the field that is being initialized. Returns true if there is an
1173/// uninitialized field was used an updates the SourceLocation parameter; false
1174/// otherwise.
1175static bool InitExprContainsUninitializedFields(const Stmt* S,
1176                                                const FieldDecl* LhsField,
1177                                                SourceLocation* L) {
1178  const MemberExpr* ME = dyn_cast<MemberExpr>(S);
1179  if (ME) {
1180    const NamedDecl* RhsField = ME->getMemberDecl();
1181    if (RhsField == LhsField) {
1182      // Initializing a field with itself. Throw a warning.
1183      // But wait; there are exceptions!
1184      // Exception #1:  The field may not belong to this record.
1185      // e.g. Foo(const Foo& rhs) : A(rhs.A) {}
1186      const Expr* base = ME->getBase();
1187      if (base != NULL && !isa<CXXThisExpr>(base->IgnoreParenCasts())) {
1188        // Even though the field matches, it does not belong to this record.
1189        return false;
1190      }
1191      // None of the exceptions triggered; return true to indicate an
1192      // uninitialized field was used.
1193      *L = ME->getMemberLoc();
1194      return true;
1195    }
1196  }
1197  bool found = false;
1198  for (Stmt::const_child_iterator it = S->child_begin();
1199       it != S->child_end() && found == false;
1200       ++it) {
1201    if (isa<CallExpr>(S)) {
1202      // Do not descend into function calls or constructors, as the use
1203      // of an uninitialized field may be valid. One would have to inspect
1204      // the contents of the function/ctor to determine if it is safe or not.
1205      // i.e. Pass-by-value is never safe, but pass-by-reference and pointers
1206      // may be safe, depending on what the function/ctor does.
1207      continue;
1208    }
1209    found = InitExprContainsUninitializedFields(*it, LhsField, L);
1210  }
1211  return found;
1212}
1213
1214Sema::MemInitResult
1215Sema::BuildMemberInitializer(FieldDecl *Member, Expr **Args,
1216                             unsigned NumArgs, SourceLocation IdLoc,
1217                             SourceLocation LParenLoc,
1218                             SourceLocation RParenLoc) {
1219  // Diagnose value-uses of fields to initialize themselves, e.g.
1220  //   foo(foo)
1221  // where foo is not also a parameter to the constructor.
1222  // TODO: implement -Wuninitialized and fold this into that framework.
1223  for (unsigned i = 0; i < NumArgs; ++i) {
1224    SourceLocation L;
1225    if (InitExprContainsUninitializedFields(Args[i], Member, &L)) {
1226      // FIXME: Return true in the case when other fields are used before being
1227      // uninitialized. For example, let this field be the i'th field. When
1228      // initializing the i'th field, throw a warning if any of the >= i'th
1229      // fields are used, as they are not yet initialized.
1230      // Right now we are only handling the case where the i'th field uses
1231      // itself in its initializer.
1232      Diag(L, diag::warn_field_is_uninit);
1233    }
1234  }
1235
1236  bool HasDependentArg = false;
1237  for (unsigned i = 0; i < NumArgs; i++)
1238    HasDependentArg |= Args[i]->isTypeDependent();
1239
1240  QualType FieldType = Member->getType();
1241  if (const ArrayType *Array = Context.getAsArrayType(FieldType))
1242    FieldType = Array->getElementType();
1243  ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
1244  if (FieldType->isDependentType() || HasDependentArg) {
1245    // Can't check initialization for a member of dependent type or when
1246    // any of the arguments are type-dependent expressions.
1247    OwningExprResult Init
1248      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1249                                          RParenLoc));
1250
1251    // Erase any temporaries within this evaluation context; we're not
1252    // going to track them in the AST, since we'll be rebuilding the
1253    // ASTs during template instantiation.
1254    ExprTemporaries.erase(
1255              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1256                          ExprTemporaries.end());
1257
1258    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1259                                                    LParenLoc,
1260                                                    Init.takeAs<Expr>(),
1261                                                    RParenLoc);
1262
1263  }
1264
1265  if (Member->isInvalidDecl())
1266    return true;
1267
1268  // Initialize the member.
1269  InitializedEntity MemberEntity =
1270    InitializedEntity::InitializeMember(Member, 0);
1271  InitializationKind Kind =
1272    InitializationKind::CreateDirect(IdLoc, LParenLoc, RParenLoc);
1273
1274  InitializationSequence InitSeq(*this, MemberEntity, Kind, Args, NumArgs);
1275
1276  OwningExprResult MemberInit =
1277    InitSeq.Perform(*this, MemberEntity, Kind,
1278                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1279  if (MemberInit.isInvalid())
1280    return true;
1281
1282  // C++0x [class.base.init]p7:
1283  //   The initialization of each base and member constitutes a
1284  //   full-expression.
1285  MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1286  if (MemberInit.isInvalid())
1287    return true;
1288
1289  // If we are in a dependent context, template instantiation will
1290  // perform this type-checking again. Just save the arguments that we
1291  // received in a ParenListExpr.
1292  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1293  // of the information that we have about the member
1294  // initializer. However, deconstructing the ASTs is a dicey process,
1295  // and this approach is far more likely to get the corner cases right.
1296  if (CurContext->isDependentContext()) {
1297    // Bump the reference count of all of the arguments.
1298    for (unsigned I = 0; I != NumArgs; ++I)
1299      Args[I]->Retain();
1300
1301    OwningExprResult Init
1302      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1303                                          RParenLoc));
1304    return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1305                                                    LParenLoc,
1306                                                    Init.takeAs<Expr>(),
1307                                                    RParenLoc);
1308  }
1309
1310  return new (Context) CXXBaseOrMemberInitializer(Context, Member, IdLoc,
1311                                                  LParenLoc,
1312                                                  MemberInit.takeAs<Expr>(),
1313                                                  RParenLoc);
1314}
1315
1316Sema::MemInitResult
1317Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
1318                           Expr **Args, unsigned NumArgs,
1319                           SourceLocation LParenLoc, SourceLocation RParenLoc,
1320                           CXXRecordDecl *ClassDecl) {
1321  bool HasDependentArg = false;
1322  for (unsigned i = 0; i < NumArgs; i++)
1323    HasDependentArg |= Args[i]->isTypeDependent();
1324
1325  SourceLocation BaseLoc = BaseTInfo->getTypeLoc().getSourceRange().getBegin();
1326  if (BaseType->isDependentType() || HasDependentArg) {
1327    // Can't check initialization for a base of dependent type or when
1328    // any of the arguments are type-dependent expressions.
1329    OwningExprResult BaseInit
1330      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1331                                          RParenLoc));
1332
1333    // Erase any temporaries within this evaluation context; we're not
1334    // going to track them in the AST, since we'll be rebuilding the
1335    // ASTs during template instantiation.
1336    ExprTemporaries.erase(
1337              ExprTemporaries.begin() + ExprEvalContexts.back().NumTemporaries,
1338                          ExprTemporaries.end());
1339
1340    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1341                                                    /*IsVirtual=*/false,
1342                                                    LParenLoc,
1343                                                    BaseInit.takeAs<Expr>(),
1344                                                    RParenLoc);
1345  }
1346
1347  if (!BaseType->isRecordType())
1348    return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
1349             << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1350
1351  // C++ [class.base.init]p2:
1352  //   [...] Unless the mem-initializer-id names a nonstatic data
1353  //   member of the constructor’s class or a direct or virtual base
1354  //   of that class, the mem-initializer is ill-formed. A
1355  //   mem-initializer-list can initialize a base class using any
1356  //   name that denotes that base class type.
1357
1358  // Check for direct and virtual base classes.
1359  const CXXBaseSpecifier *DirectBaseSpec = 0;
1360  const CXXBaseSpecifier *VirtualBaseSpec = 0;
1361  FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
1362                      VirtualBaseSpec);
1363
1364  // C++ [base.class.init]p2:
1365  //   If a mem-initializer-id is ambiguous because it designates both
1366  //   a direct non-virtual base class and an inherited virtual base
1367  //   class, the mem-initializer is ill-formed.
1368  if (DirectBaseSpec && VirtualBaseSpec)
1369    return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
1370      << BaseType << BaseTInfo->getTypeLoc().getSourceRange();
1371  // C++ [base.class.init]p2:
1372  // Unless the mem-initializer-id names a nonstatic data membeer of the
1373  // constructor's class ot a direst or virtual base of that class, the
1374  // mem-initializer is ill-formed.
1375  if (!DirectBaseSpec && !VirtualBaseSpec)
1376    return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
1377      << BaseType << ClassDecl->getNameAsCString()
1378      << BaseTInfo->getTypeLoc().getSourceRange();
1379
1380  CXXBaseSpecifier *BaseSpec
1381    = const_cast<CXXBaseSpecifier *>(DirectBaseSpec);
1382  if (!BaseSpec)
1383    BaseSpec = const_cast<CXXBaseSpecifier *>(VirtualBaseSpec);
1384
1385  // Initialize the base.
1386  InitializedEntity BaseEntity =
1387    InitializedEntity::InitializeBase(Context, BaseSpec);
1388  InitializationKind Kind =
1389    InitializationKind::CreateDirect(BaseLoc, LParenLoc, RParenLoc);
1390
1391  InitializationSequence InitSeq(*this, BaseEntity, Kind, Args, NumArgs);
1392
1393  OwningExprResult BaseInit =
1394    InitSeq.Perform(*this, BaseEntity, Kind,
1395                    MultiExprArg(*this, (void**)Args, NumArgs), 0);
1396  if (BaseInit.isInvalid())
1397    return true;
1398
1399  // C++0x [class.base.init]p7:
1400  //   The initialization of each base and member constitutes a
1401  //   full-expression.
1402  BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1403  if (BaseInit.isInvalid())
1404    return true;
1405
1406  // If we are in a dependent context, template instantiation will
1407  // perform this type-checking again. Just save the arguments that we
1408  // received in a ParenListExpr.
1409  // FIXME: This isn't quite ideal, since our ASTs don't capture all
1410  // of the information that we have about the base
1411  // initializer. However, deconstructing the ASTs is a dicey process,
1412  // and this approach is far more likely to get the corner cases right.
1413  if (CurContext->isDependentContext()) {
1414    // Bump the reference count of all of the arguments.
1415    for (unsigned I = 0; I != NumArgs; ++I)
1416      Args[I]->Retain();
1417
1418    OwningExprResult Init
1419      = Owned(new (Context) ParenListExpr(Context, LParenLoc, Args, NumArgs,
1420                                          RParenLoc));
1421    return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1422                                                    BaseSpec->isVirtual(),
1423                                                    LParenLoc,
1424                                                    Init.takeAs<Expr>(),
1425                                                    RParenLoc);
1426  }
1427
1428  return new (Context) CXXBaseOrMemberInitializer(Context, BaseTInfo,
1429                                                  BaseSpec->isVirtual(),
1430                                                  LParenLoc,
1431                                                  BaseInit.takeAs<Expr>(),
1432                                                  RParenLoc);
1433}
1434
1435bool
1436Sema::SetBaseOrMemberInitializers(CXXConstructorDecl *Constructor,
1437                                  CXXBaseOrMemberInitializer **Initializers,
1438                                  unsigned NumInitializers,
1439                                  bool AnyErrors) {
1440  if (Constructor->getDeclContext()->isDependentContext()) {
1441    // Just store the initializers as written, they will be checked during
1442    // instantiation.
1443    if (NumInitializers > 0) {
1444      Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1445      CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1446        new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1447      memcpy(baseOrMemberInitializers, Initializers,
1448             NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1449      Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1450    }
1451
1452    return false;
1453  }
1454
1455  // We need to build the initializer AST according to order of construction
1456  // and not what user specified in the Initializers list.
1457  CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
1458  if (!ClassDecl)
1459    return true;
1460
1461  llvm::SmallVector<CXXBaseOrMemberInitializer*, 32> AllToInit;
1462  llvm::DenseMap<const void *, CXXBaseOrMemberInitializer*> AllBaseFields;
1463  bool HadError = false;
1464
1465  for (unsigned i = 0; i < NumInitializers; i++) {
1466    CXXBaseOrMemberInitializer *Member = Initializers[i];
1467
1468    if (Member->isBaseInitializer())
1469      AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
1470    else
1471      AllBaseFields[Member->getMember()] = Member;
1472  }
1473
1474  llvm::SmallVector<CXXBaseSpecifier *, 4> BasesToDefaultInit;
1475
1476  // Push virtual bases before others.
1477  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1478       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1479
1480    if (CXXBaseOrMemberInitializer *Value
1481        = AllBaseFields.lookup(VBase->getType()->getAs<RecordType>())) {
1482      AllToInit.push_back(Value);
1483    } else if (!AnyErrors) {
1484      InitializedEntity InitEntity
1485        = InitializedEntity::InitializeBase(Context, VBase);
1486      InitializationKind InitKind
1487        = InitializationKind::CreateDefault(Constructor->getLocation());
1488      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1489      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1490                                                  MultiExprArg(*this, 0, 0));
1491      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1492      if (BaseInit.isInvalid()) {
1493        HadError = true;
1494        continue;
1495      }
1496
1497      CXXBaseOrMemberInitializer *CXXBaseInit =
1498        new (Context) CXXBaseOrMemberInitializer(Context,
1499                           Context.getTrivialTypeSourceInfo(VBase->getType(),
1500                                                            SourceLocation()),
1501                                                 /*IsVirtual=*/true,
1502                                                 SourceLocation(),
1503                                                 BaseInit.takeAs<Expr>(),
1504                                                 SourceLocation());
1505      AllToInit.push_back(CXXBaseInit);
1506    }
1507  }
1508
1509  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1510       E = ClassDecl->bases_end(); Base != E; ++Base) {
1511    // Virtuals are in the virtual base list and already constructed.
1512    if (Base->isVirtual())
1513      continue;
1514
1515    if (CXXBaseOrMemberInitializer *Value
1516          = AllBaseFields.lookup(Base->getType()->getAs<RecordType>())) {
1517      AllToInit.push_back(Value);
1518    } else if (!AnyErrors) {
1519      InitializedEntity InitEntity
1520        = InitializedEntity::InitializeBase(Context, Base);
1521      InitializationKind InitKind
1522        = InitializationKind::CreateDefault(Constructor->getLocation());
1523      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1524      OwningExprResult BaseInit = InitSeq.Perform(*this, InitEntity, InitKind,
1525                                                  MultiExprArg(*this, 0, 0));
1526      BaseInit = MaybeCreateCXXExprWithTemporaries(move(BaseInit));
1527      if (BaseInit.isInvalid()) {
1528        HadError = true;
1529        continue;
1530      }
1531
1532      CXXBaseOrMemberInitializer *CXXBaseInit =
1533        new (Context) CXXBaseOrMemberInitializer(Context,
1534                           Context.getTrivialTypeSourceInfo(Base->getType(),
1535                                                            SourceLocation()),
1536                                                 /*IsVirtual=*/false,
1537                                                 SourceLocation(),
1538                                                 BaseInit.takeAs<Expr>(),
1539                                                 SourceLocation());
1540      AllToInit.push_back(CXXBaseInit);
1541    }
1542  }
1543
1544  // non-static data members.
1545  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1546       E = ClassDecl->field_end(); Field != E; ++Field) {
1547    if ((*Field)->isAnonymousStructOrUnion()) {
1548      if (const RecordType *FieldClassType =
1549          Field->getType()->getAs<RecordType>()) {
1550        CXXRecordDecl *FieldClassDecl
1551          = cast<CXXRecordDecl>(FieldClassType->getDecl());
1552        for (RecordDecl::field_iterator FA = FieldClassDecl->field_begin(),
1553            EA = FieldClassDecl->field_end(); FA != EA; FA++) {
1554          if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*FA)) {
1555            // 'Member' is the anonymous union field and 'AnonUnionMember' is
1556            // set to the anonymous union data member used in the initializer
1557            // list.
1558            Value->setMember(*Field);
1559            Value->setAnonUnionMember(*FA);
1560            AllToInit.push_back(Value);
1561            break;
1562          }
1563        }
1564      }
1565      continue;
1566    }
1567    if (CXXBaseOrMemberInitializer *Value = AllBaseFields.lookup(*Field)) {
1568      AllToInit.push_back(Value);
1569      continue;
1570    }
1571
1572    if ((*Field)->getType()->isDependentType() || AnyErrors)
1573      continue;
1574
1575    QualType FT = Context.getBaseElementType((*Field)->getType());
1576    if (FT->getAs<RecordType>()) {
1577      InitializedEntity InitEntity
1578        = InitializedEntity::InitializeMember(*Field);
1579      InitializationKind InitKind
1580        = InitializationKind::CreateDefault(Constructor->getLocation());
1581
1582      InitializationSequence InitSeq(*this, InitEntity, InitKind, 0, 0);
1583      OwningExprResult MemberInit = InitSeq.Perform(*this, InitEntity, InitKind,
1584                                                    MultiExprArg(*this, 0, 0));
1585      MemberInit = MaybeCreateCXXExprWithTemporaries(move(MemberInit));
1586      if (MemberInit.isInvalid()) {
1587        HadError = true;
1588        continue;
1589      }
1590
1591      // Don't attach synthesized member initializers in a dependent
1592      // context; they'll be regenerated a template instantiation
1593      // time.
1594      if (CurContext->isDependentContext())
1595        continue;
1596
1597      CXXBaseOrMemberInitializer *Member =
1598        new (Context) CXXBaseOrMemberInitializer(Context,
1599                                                 *Field, SourceLocation(),
1600                                                 SourceLocation(),
1601                                                 MemberInit.takeAs<Expr>(),
1602                                                 SourceLocation());
1603
1604      AllToInit.push_back(Member);
1605    }
1606    else if (FT->isReferenceType()) {
1607      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1608        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1609        << 0 << (*Field)->getDeclName();
1610      Diag((*Field)->getLocation(), diag::note_declared_at);
1611      HadError = true;
1612    }
1613    else if (FT.isConstQualified()) {
1614      Diag(Constructor->getLocation(), diag::err_uninitialized_member_in_ctor)
1615        << (int)Constructor->isImplicit() << Context.getTagDeclType(ClassDecl)
1616        << 1 << (*Field)->getDeclName();
1617      Diag((*Field)->getLocation(), diag::note_declared_at);
1618      HadError = true;
1619    }
1620  }
1621
1622  NumInitializers = AllToInit.size();
1623  if (NumInitializers > 0) {
1624    Constructor->setNumBaseOrMemberInitializers(NumInitializers);
1625    CXXBaseOrMemberInitializer **baseOrMemberInitializers =
1626      new (Context) CXXBaseOrMemberInitializer*[NumInitializers];
1627    memcpy(baseOrMemberInitializers, AllToInit.data(),
1628           NumInitializers * sizeof(CXXBaseOrMemberInitializer*));
1629    Constructor->setBaseOrMemberInitializers(baseOrMemberInitializers);
1630
1631    // Constructors implicitly reference the base and member
1632    // destructors.
1633    MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
1634                                           Constructor->getParent());
1635  }
1636
1637  return HadError;
1638}
1639
1640static void *GetKeyForTopLevelField(FieldDecl *Field) {
1641  // For anonymous unions, use the class declaration as the key.
1642  if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
1643    if (RT->getDecl()->isAnonymousStructOrUnion())
1644      return static_cast<void *>(RT->getDecl());
1645  }
1646  return static_cast<void *>(Field);
1647}
1648
1649static void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
1650  return Context.getCanonicalType(BaseType).getTypePtr();
1651}
1652
1653static void *GetKeyForMember(ASTContext &Context,
1654                             CXXBaseOrMemberInitializer *Member,
1655                             bool MemberMaybeAnon = false) {
1656  if (!Member->isMemberInitializer())
1657    return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
1658
1659  // For fields injected into the class via declaration of an anonymous union,
1660  // use its anonymous union class declaration as the unique key.
1661  FieldDecl *Field = Member->getMember();
1662
1663  // After SetBaseOrMemberInitializers call, Field is the anonymous union
1664  // data member of the class. Data member used in the initializer list is
1665  // in AnonUnionMember field.
1666  if (MemberMaybeAnon && Field->isAnonymousStructOrUnion())
1667    Field = Member->getAnonUnionMember();
1668
1669  // If the field is a member of an anonymous struct or union, our key
1670  // is the anonymous record decl that's a direct child of the class.
1671  RecordDecl *RD = Field->getParent();
1672  if (RD->isAnonymousStructOrUnion()) {
1673    while (true) {
1674      RecordDecl *Parent = cast<RecordDecl>(RD->getDeclContext());
1675      if (Parent->isAnonymousStructOrUnion())
1676        RD = Parent;
1677      else
1678        break;
1679    }
1680
1681    return static_cast<void *>(RD);
1682  }
1683
1684  return static_cast<void *>(Field);
1685}
1686
1687static void
1688DiagnoseBaseOrMemInitializerOrder(Sema &SemaRef,
1689                                  const CXXConstructorDecl *Constructor,
1690                                  CXXBaseOrMemberInitializer **Inits,
1691                                  unsigned NumInits) {
1692  if (Constructor->getDeclContext()->isDependentContext())
1693    return;
1694
1695  if (SemaRef.Diags.getDiagnosticLevel(diag::warn_initializer_out_of_order)
1696        == Diagnostic::Ignored)
1697    return;
1698
1699  // Build the list of bases and members in the order that they'll
1700  // actually be initialized.  The explicit initializers should be in
1701  // this same order but may be missing things.
1702  llvm::SmallVector<const void*, 32> IdealInitKeys;
1703
1704  const CXXRecordDecl *ClassDecl = Constructor->getParent();
1705
1706  // 1. Virtual bases.
1707  for (CXXRecordDecl::base_class_const_iterator VBase =
1708       ClassDecl->vbases_begin(),
1709       E = ClassDecl->vbases_end(); VBase != E; ++VBase)
1710    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase->getType()));
1711
1712  // 2. Non-virtual bases.
1713  for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(),
1714       E = ClassDecl->bases_end(); Base != E; ++Base) {
1715    if (Base->isVirtual())
1716      continue;
1717    IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base->getType()));
1718  }
1719
1720  // 3. Direct fields.
1721  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
1722       E = ClassDecl->field_end(); Field != E; ++Field)
1723    IdealInitKeys.push_back(GetKeyForTopLevelField(*Field));
1724
1725  unsigned NumIdealInits = IdealInitKeys.size();
1726  unsigned IdealIndex = 0;
1727
1728  CXXBaseOrMemberInitializer *PrevInit = 0;
1729  for (unsigned InitIndex = 0; InitIndex != NumInits; ++InitIndex) {
1730    CXXBaseOrMemberInitializer *Init = Inits[InitIndex];
1731    void *InitKey = GetKeyForMember(SemaRef.Context, Init, true);
1732
1733    // Scan forward to try to find this initializer in the idealized
1734    // initializers list.
1735    for (; IdealIndex != NumIdealInits; ++IdealIndex)
1736      if (InitKey == IdealInitKeys[IdealIndex])
1737        break;
1738
1739    // If we didn't find this initializer, it must be because we
1740    // scanned past it on a previous iteration.  That can only
1741    // happen if we're out of order;  emit a warning.
1742    if (IdealIndex == NumIdealInits) {
1743      assert(PrevInit && "initializer not found in initializer list");
1744
1745      Sema::SemaDiagnosticBuilder D =
1746        SemaRef.Diag(PrevInit->getSourceLocation(),
1747                     diag::warn_initializer_out_of_order);
1748
1749      if (PrevInit->isMemberInitializer())
1750        D << 0 << PrevInit->getMember()->getDeclName();
1751      else
1752        D << 1 << PrevInit->getBaseClassInfo()->getType();
1753
1754      if (Init->isMemberInitializer())
1755        D << 0 << Init->getMember()->getDeclName();
1756      else
1757        D << 1 << Init->getBaseClassInfo()->getType();
1758
1759      // Move back to the initializer's location in the ideal list.
1760      for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
1761        if (InitKey == IdealInitKeys[IdealIndex])
1762          break;
1763
1764      assert(IdealIndex != NumIdealInits &&
1765             "initializer not found in initializer list");
1766    }
1767
1768    PrevInit = Init;
1769  }
1770}
1771
1772namespace {
1773bool CheckRedundantInit(Sema &S,
1774                        CXXBaseOrMemberInitializer *Init,
1775                        CXXBaseOrMemberInitializer *&PrevInit) {
1776  if (!PrevInit) {
1777    PrevInit = Init;
1778    return false;
1779  }
1780
1781  if (FieldDecl *Field = Init->getMember())
1782    S.Diag(Init->getSourceLocation(),
1783           diag::err_multiple_mem_initialization)
1784      << Field->getDeclName()
1785      << Init->getSourceRange();
1786  else {
1787    Type *BaseClass = Init->getBaseClass();
1788    assert(BaseClass && "neither field nor base");
1789    S.Diag(Init->getSourceLocation(),
1790           diag::err_multiple_base_initialization)
1791      << QualType(BaseClass, 0)
1792      << Init->getSourceRange();
1793  }
1794  S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
1795    << 0 << PrevInit->getSourceRange();
1796
1797  return true;
1798}
1799
1800typedef std::pair<NamedDecl *, CXXBaseOrMemberInitializer *> UnionEntry;
1801typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
1802
1803bool CheckRedundantUnionInit(Sema &S,
1804                             CXXBaseOrMemberInitializer *Init,
1805                             RedundantUnionMap &Unions) {
1806  FieldDecl *Field = Init->getMember();
1807  RecordDecl *Parent = Field->getParent();
1808  if (!Parent->isAnonymousStructOrUnion())
1809    return false;
1810
1811  NamedDecl *Child = Field;
1812  do {
1813    if (Parent->isUnion()) {
1814      UnionEntry &En = Unions[Parent];
1815      if (En.first && En.first != Child) {
1816        S.Diag(Init->getSourceLocation(),
1817               diag::err_multiple_mem_union_initialization)
1818          << Field->getDeclName()
1819          << Init->getSourceRange();
1820        S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
1821          << 0 << En.second->getSourceRange();
1822        return true;
1823      } else if (!En.first) {
1824        En.first = Child;
1825        En.second = Init;
1826      }
1827    }
1828
1829    Child = Parent;
1830    Parent = cast<RecordDecl>(Parent->getDeclContext());
1831  } while (Parent->isAnonymousStructOrUnion());
1832
1833  return false;
1834}
1835}
1836
1837/// ActOnMemInitializers - Handle the member initializers for a constructor.
1838void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl,
1839                                SourceLocation ColonLoc,
1840                                MemInitTy **meminits, unsigned NumMemInits,
1841                                bool AnyErrors) {
1842  if (!ConstructorDecl)
1843    return;
1844
1845  AdjustDeclIfTemplate(ConstructorDecl);
1846
1847  CXXConstructorDecl *Constructor
1848    = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>());
1849
1850  if (!Constructor) {
1851    Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
1852    return;
1853  }
1854
1855  CXXBaseOrMemberInitializer **MemInits =
1856    reinterpret_cast<CXXBaseOrMemberInitializer **>(meminits);
1857
1858  // Mapping for the duplicate initializers check.
1859  // For member initializers, this is keyed with a FieldDecl*.
1860  // For base initializers, this is keyed with a Type*.
1861  llvm::DenseMap<void*, CXXBaseOrMemberInitializer *> Members;
1862
1863  // Mapping for the inconsistent anonymous-union initializers check.
1864  RedundantUnionMap MemberUnions;
1865
1866  bool HadError = false;
1867  for (unsigned i = 0; i < NumMemInits; i++) {
1868    CXXBaseOrMemberInitializer *Init = MemInits[i];
1869
1870    if (Init->isMemberInitializer()) {
1871      FieldDecl *Field = Init->getMember();
1872      if (CheckRedundantInit(*this, Init, Members[Field]) ||
1873          CheckRedundantUnionInit(*this, Init, MemberUnions))
1874        HadError = true;
1875    } else {
1876      void *Key = GetKeyForBase(Context, QualType(Init->getBaseClass(), 0));
1877      if (CheckRedundantInit(*this, Init, Members[Key]))
1878        HadError = true;
1879    }
1880  }
1881
1882  if (HadError)
1883    return;
1884
1885  DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits, NumMemInits);
1886
1887  SetBaseOrMemberInitializers(Constructor, MemInits, NumMemInits, AnyErrors);
1888}
1889
1890void
1891Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
1892                                             CXXRecordDecl *ClassDecl) {
1893  // Ignore dependent contexts.
1894  if (ClassDecl->isDependentContext())
1895    return;
1896
1897  // FIXME: all the access-control diagnostics are positioned on the
1898  // field/base declaration.  That's probably good; that said, the
1899  // user might reasonably want to know why the destructor is being
1900  // emitted, and we currently don't say.
1901
1902  // Non-static data members.
1903  for (CXXRecordDecl::field_iterator I = ClassDecl->field_begin(),
1904       E = ClassDecl->field_end(); I != E; ++I) {
1905    FieldDecl *Field = *I;
1906
1907    QualType FieldType = Context.getBaseElementType(Field->getType());
1908
1909    const RecordType* RT = FieldType->getAs<RecordType>();
1910    if (!RT)
1911      continue;
1912
1913    CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1914    if (FieldClassDecl->hasTrivialDestructor())
1915      continue;
1916
1917    CXXDestructorDecl *Dtor = FieldClassDecl->getDestructor(Context);
1918    CheckDestructorAccess(Field->getLocation(), Dtor,
1919                          PDiag(diag::err_access_dtor_field)
1920                            << Field->getDeclName()
1921                            << FieldType);
1922
1923    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1924  }
1925
1926  llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
1927
1928  // Bases.
1929  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
1930       E = ClassDecl->bases_end(); Base != E; ++Base) {
1931    // Bases are always records in a well-formed non-dependent class.
1932    const RecordType *RT = Base->getType()->getAs<RecordType>();
1933
1934    // Remember direct virtual bases.
1935    if (Base->isVirtual())
1936      DirectVirtualBases.insert(RT);
1937
1938    // Ignore trivial destructors.
1939    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1940    if (BaseClassDecl->hasTrivialDestructor())
1941      continue;
1942
1943    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1944
1945    // FIXME: caret should be on the start of the class name
1946    CheckDestructorAccess(Base->getSourceRange().getBegin(), Dtor,
1947                          PDiag(diag::err_access_dtor_base)
1948                            << Base->getType()
1949                            << Base->getSourceRange());
1950
1951    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1952  }
1953
1954  // Virtual bases.
1955  for (CXXRecordDecl::base_class_iterator VBase = ClassDecl->vbases_begin(),
1956       E = ClassDecl->vbases_end(); VBase != E; ++VBase) {
1957
1958    // Bases are always records in a well-formed non-dependent class.
1959    const RecordType *RT = VBase->getType()->getAs<RecordType>();
1960
1961    // Ignore direct virtual bases.
1962    if (DirectVirtualBases.count(RT))
1963      continue;
1964
1965    // Ignore trivial destructors.
1966    CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1967    if (BaseClassDecl->hasTrivialDestructor())
1968      continue;
1969
1970    CXXDestructorDecl *Dtor = BaseClassDecl->getDestructor(Context);
1971    CheckDestructorAccess(ClassDecl->getLocation(), Dtor,
1972                          PDiag(diag::err_access_dtor_vbase)
1973                            << VBase->getType());
1974
1975    MarkDeclarationReferenced(Location, const_cast<CXXDestructorDecl*>(Dtor));
1976  }
1977}
1978
1979void Sema::ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {
1980  if (!CDtorDecl)
1981    return;
1982
1983  if (CXXConstructorDecl *Constructor
1984      = dyn_cast<CXXConstructorDecl>(CDtorDecl.getAs<Decl>()))
1985    SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false);
1986}
1987
1988bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
1989                                  unsigned DiagID, AbstractDiagSelID SelID,
1990                                  const CXXRecordDecl *CurrentRD) {
1991  if (SelID == -1)
1992    return RequireNonAbstractType(Loc, T,
1993                                  PDiag(DiagID), CurrentRD);
1994  else
1995    return RequireNonAbstractType(Loc, T,
1996                                  PDiag(DiagID) << SelID, CurrentRD);
1997}
1998
1999bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
2000                                  const PartialDiagnostic &PD,
2001                                  const CXXRecordDecl *CurrentRD) {
2002  if (!getLangOptions().CPlusPlus)
2003    return false;
2004
2005  if (const ArrayType *AT = Context.getAsArrayType(T))
2006    return RequireNonAbstractType(Loc, AT->getElementType(), PD,
2007                                  CurrentRD);
2008
2009  if (const PointerType *PT = T->getAs<PointerType>()) {
2010    // Find the innermost pointer type.
2011    while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
2012      PT = T;
2013
2014    if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
2015      return RequireNonAbstractType(Loc, AT->getElementType(), PD, CurrentRD);
2016  }
2017
2018  const RecordType *RT = T->getAs<RecordType>();
2019  if (!RT)
2020    return false;
2021
2022  const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2023
2024  if (CurrentRD && CurrentRD != RD)
2025    return false;
2026
2027  // FIXME: is this reasonable?  It matches current behavior, but....
2028  if (!RD->getDefinition())
2029    return false;
2030
2031  if (!RD->isAbstract())
2032    return false;
2033
2034  Diag(Loc, PD) << RD->getDeclName();
2035
2036  // Check if we've already emitted the list of pure virtual functions for this
2037  // class.
2038  if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
2039    return true;
2040
2041  CXXFinalOverriderMap FinalOverriders;
2042  RD->getFinalOverriders(FinalOverriders);
2043
2044  for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2045                                   MEnd = FinalOverriders.end();
2046       M != MEnd;
2047       ++M) {
2048    for (OverridingMethods::iterator SO = M->second.begin(),
2049                                  SOEnd = M->second.end();
2050         SO != SOEnd; ++SO) {
2051      // C++ [class.abstract]p4:
2052      //   A class is abstract if it contains or inherits at least one
2053      //   pure virtual function for which the final overrider is pure
2054      //   virtual.
2055
2056      //
2057      if (SO->second.size() != 1)
2058        continue;
2059
2060      if (!SO->second.front().Method->isPure())
2061        continue;
2062
2063      Diag(SO->second.front().Method->getLocation(),
2064           diag::note_pure_virtual_function)
2065        << SO->second.front().Method->getDeclName();
2066    }
2067  }
2068
2069  if (!PureVirtualClassDiagSet)
2070    PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
2071  PureVirtualClassDiagSet->insert(RD);
2072
2073  return true;
2074}
2075
2076namespace {
2077  class AbstractClassUsageDiagnoser
2078    : public DeclVisitor<AbstractClassUsageDiagnoser, bool> {
2079    Sema &SemaRef;
2080    CXXRecordDecl *AbstractClass;
2081
2082    bool VisitDeclContext(const DeclContext *DC) {
2083      bool Invalid = false;
2084
2085      for (CXXRecordDecl::decl_iterator I = DC->decls_begin(),
2086           E = DC->decls_end(); I != E; ++I)
2087        Invalid |= Visit(*I);
2088
2089      return Invalid;
2090    }
2091
2092  public:
2093    AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac)
2094      : SemaRef(SemaRef), AbstractClass(ac) {
2095        Visit(SemaRef.Context.getTranslationUnitDecl());
2096    }
2097
2098    bool VisitFunctionDecl(const FunctionDecl *FD) {
2099      if (FD->isThisDeclarationADefinition()) {
2100        // No need to do the check if we're in a definition, because it requires
2101        // that the return/param types are complete.
2102        // because that requires
2103        return VisitDeclContext(FD);
2104      }
2105
2106      // Check the return type.
2107      QualType RTy = FD->getType()->getAs<FunctionType>()->getResultType();
2108      bool Invalid =
2109        SemaRef.RequireNonAbstractType(FD->getLocation(), RTy,
2110                                       diag::err_abstract_type_in_decl,
2111                                       Sema::AbstractReturnType,
2112                                       AbstractClass);
2113
2114      for (FunctionDecl::param_const_iterator I = FD->param_begin(),
2115           E = FD->param_end(); I != E; ++I) {
2116        const ParmVarDecl *VD = *I;
2117        Invalid |=
2118          SemaRef.RequireNonAbstractType(VD->getLocation(),
2119                                         VD->getOriginalType(),
2120                                         diag::err_abstract_type_in_decl,
2121                                         Sema::AbstractParamType,
2122                                         AbstractClass);
2123      }
2124
2125      return Invalid;
2126    }
2127
2128    bool VisitDecl(const Decl* D) {
2129      if (const DeclContext *DC = dyn_cast<DeclContext>(D))
2130        return VisitDeclContext(DC);
2131
2132      return false;
2133    }
2134  };
2135}
2136
2137/// \brief Perform semantic checks on a class definition that has been
2138/// completing, introducing implicitly-declared members, checking for
2139/// abstract types, etc.
2140void Sema::CheckCompletedCXXClass(Scope *S, CXXRecordDecl *Record) {
2141  if (!Record || Record->isInvalidDecl())
2142    return;
2143
2144  if (!Record->isDependentType())
2145    AddImplicitlyDeclaredMembersToClass(S, Record);
2146
2147  if (Record->isInvalidDecl())
2148    return;
2149
2150  // Set access bits correctly on the directly-declared conversions.
2151  UnresolvedSetImpl *Convs = Record->getConversionFunctions();
2152  for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end(); I != E; ++I)
2153    Convs->setAccess(I, (*I)->getAccess());
2154
2155  // Determine whether we need to check for final overriders. We do
2156  // this either when there are virtual base classes (in which case we
2157  // may end up finding multiple final overriders for a given virtual
2158  // function) or any of the base classes is abstract (in which case
2159  // we might detect that this class is abstract).
2160  bool CheckFinalOverriders = false;
2161  if (Record->isPolymorphic() && !Record->isInvalidDecl() &&
2162      !Record->isDependentType()) {
2163    if (Record->getNumVBases())
2164      CheckFinalOverriders = true;
2165    else if (!Record->isAbstract()) {
2166      for (CXXRecordDecl::base_class_const_iterator B = Record->bases_begin(),
2167                                                 BEnd = Record->bases_end();
2168           B != BEnd; ++B) {
2169        CXXRecordDecl *BaseDecl
2170          = cast<CXXRecordDecl>(B->getType()->getAs<RecordType>()->getDecl());
2171        if (BaseDecl->isAbstract()) {
2172          CheckFinalOverriders = true;
2173          break;
2174        }
2175      }
2176    }
2177  }
2178
2179  if (CheckFinalOverriders) {
2180    CXXFinalOverriderMap FinalOverriders;
2181    Record->getFinalOverriders(FinalOverriders);
2182
2183    for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
2184                                     MEnd = FinalOverriders.end();
2185         M != MEnd; ++M) {
2186      for (OverridingMethods::iterator SO = M->second.begin(),
2187                                    SOEnd = M->second.end();
2188           SO != SOEnd; ++SO) {
2189        assert(SO->second.size() > 0 &&
2190               "All virtual functions have overridding virtual functions");
2191        if (SO->second.size() == 1) {
2192          // C++ [class.abstract]p4:
2193          //   A class is abstract if it contains or inherits at least one
2194          //   pure virtual function for which the final overrider is pure
2195          //   virtual.
2196          if (SO->second.front().Method->isPure())
2197            Record->setAbstract(true);
2198          continue;
2199        }
2200
2201        // C++ [class.virtual]p2:
2202        //   In a derived class, if a virtual member function of a base
2203        //   class subobject has more than one final overrider the
2204        //   program is ill-formed.
2205        Diag(Record->getLocation(), diag::err_multiple_final_overriders)
2206          << (NamedDecl *)M->first << Record;
2207        Diag(M->first->getLocation(), diag::note_overridden_virtual_function);
2208        for (OverridingMethods::overriding_iterator OM = SO->second.begin(),
2209                                                 OMEnd = SO->second.end();
2210             OM != OMEnd; ++OM)
2211          Diag(OM->Method->getLocation(), diag::note_final_overrider)
2212            << (NamedDecl *)M->first << OM->Method->getParent();
2213
2214        Record->setInvalidDecl();
2215      }
2216    }
2217  }
2218
2219  if (Record->isAbstract() && !Record->isInvalidDecl())
2220    (void)AbstractClassUsageDiagnoser(*this, Record);
2221
2222  // If this is not an aggregate type and has no user-declared constructor,
2223  // complain about any non-static data members of reference or const scalar
2224  // type, since they will never get initializers.
2225  if (!Record->isInvalidDecl() && !Record->isDependentType() &&
2226      !Record->isAggregate() && !Record->hasUserDeclaredConstructor()) {
2227    bool Complained = false;
2228    for (RecordDecl::field_iterator F = Record->field_begin(),
2229                                 FEnd = Record->field_end();
2230         F != FEnd; ++F) {
2231      if (F->getType()->isReferenceType() ||
2232          (F->getType().isConstQualified() && F->getType()->isScalarType())) {
2233        if (!Complained) {
2234          Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
2235            << Record->getTagKind() << Record;
2236          Complained = true;
2237        }
2238
2239        Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
2240          << F->getType()->isReferenceType()
2241          << F->getDeclName();
2242      }
2243    }
2244  }
2245}
2246
2247void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
2248                                             DeclPtrTy TagDecl,
2249                                             SourceLocation LBrac,
2250                                             SourceLocation RBrac,
2251                                             AttributeList *AttrList) {
2252  if (!TagDecl)
2253    return;
2254
2255  AdjustDeclIfTemplate(TagDecl);
2256
2257  ActOnFields(S, RLoc, TagDecl,
2258              (DeclPtrTy*)FieldCollector->getCurFields(),
2259              FieldCollector->getCurNumFields(), LBrac, RBrac, AttrList);
2260
2261  CheckCompletedCXXClass(S,
2262                      dyn_cast_or_null<CXXRecordDecl>(TagDecl.getAs<Decl>()));
2263}
2264
2265/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
2266/// special functions, such as the default constructor, copy
2267/// constructor, or destructor, to the given C++ class (C++
2268/// [special]p1).  This routine can only be executed just before the
2269/// definition of the class is complete.
2270///
2271/// The scope, if provided, is the class scope.
2272void Sema::AddImplicitlyDeclaredMembersToClass(Scope *S,
2273                                               CXXRecordDecl *ClassDecl) {
2274  CanQualType ClassType
2275    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2276
2277  // FIXME: Implicit declarations have exception specifications, which are
2278  // the union of the specifications of the implicitly called functions.
2279
2280  if (!ClassDecl->hasUserDeclaredConstructor()) {
2281    // C++ [class.ctor]p5:
2282    //   A default constructor for a class X is a constructor of class X
2283    //   that can be called without an argument. If there is no
2284    //   user-declared constructor for class X, a default constructor is
2285    //   implicitly declared. An implicitly-declared default constructor
2286    //   is an inline public member of its class.
2287    DeclarationName Name
2288      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2289    CXXConstructorDecl *DefaultCon =
2290      CXXConstructorDecl::Create(Context, ClassDecl,
2291                                 ClassDecl->getLocation(), Name,
2292                                 Context.getFunctionType(Context.VoidTy,
2293                                                         0, 0, false, 0,
2294                                                         /*FIXME*/false, false,
2295                                                         0, 0,
2296                                                       FunctionType::ExtInfo()),
2297                                 /*TInfo=*/0,
2298                                 /*isExplicit=*/false,
2299                                 /*isInline=*/true,
2300                                 /*isImplicitlyDeclared=*/true);
2301    DefaultCon->setAccess(AS_public);
2302    DefaultCon->setImplicit();
2303    DefaultCon->setTrivial(ClassDecl->hasTrivialConstructor());
2304    if (S)
2305      PushOnScopeChains(DefaultCon, S, true);
2306    else
2307      ClassDecl->addDecl(DefaultCon);
2308  }
2309
2310  if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
2311    // C++ [class.copy]p4:
2312    //   If the class definition does not explicitly declare a copy
2313    //   constructor, one is declared implicitly.
2314
2315    // C++ [class.copy]p5:
2316    //   The implicitly-declared copy constructor for a class X will
2317    //   have the form
2318    //
2319    //       X::X(const X&)
2320    //
2321    //   if
2322    bool HasConstCopyConstructor = true;
2323
2324    //     -- each direct or virtual base class B of X has a copy
2325    //        constructor whose first parameter is of type const B& or
2326    //        const volatile B&, and
2327    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2328         HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) {
2329      const CXXRecordDecl *BaseClassDecl
2330        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2331      HasConstCopyConstructor
2332        = BaseClassDecl->hasConstCopyConstructor(Context);
2333    }
2334
2335    //     -- for all the nonstatic data members of X that are of a
2336    //        class type M (or array thereof), each such class type
2337    //        has a copy constructor whose first parameter is of type
2338    //        const M& or const volatile M&.
2339    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2340         HasConstCopyConstructor && Field != ClassDecl->field_end();
2341         ++Field) {
2342      QualType FieldType = (*Field)->getType();
2343      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2344        FieldType = Array->getElementType();
2345      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2346        const CXXRecordDecl *FieldClassDecl
2347          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2348        HasConstCopyConstructor
2349          = FieldClassDecl->hasConstCopyConstructor(Context);
2350      }
2351    }
2352
2353    //   Otherwise, the implicitly declared copy constructor will have
2354    //   the form
2355    //
2356    //       X::X(X&)
2357    QualType ArgType = ClassType;
2358    if (HasConstCopyConstructor)
2359      ArgType = ArgType.withConst();
2360    ArgType = Context.getLValueReferenceType(ArgType);
2361
2362    //   An implicitly-declared copy constructor is an inline public
2363    //   member of its class.
2364    DeclarationName Name
2365      = Context.DeclarationNames.getCXXConstructorName(ClassType);
2366    CXXConstructorDecl *CopyConstructor
2367      = CXXConstructorDecl::Create(Context, ClassDecl,
2368                                   ClassDecl->getLocation(), Name,
2369                                   Context.getFunctionType(Context.VoidTy,
2370                                                           &ArgType, 1,
2371                                                           false, 0,
2372                                                           /*FIXME:*/false,
2373                                                           false, 0, 0,
2374                                                       FunctionType::ExtInfo()),
2375                                   /*TInfo=*/0,
2376                                   /*isExplicit=*/false,
2377                                   /*isInline=*/true,
2378                                   /*isImplicitlyDeclared=*/true);
2379    CopyConstructor->setAccess(AS_public);
2380    CopyConstructor->setImplicit();
2381    CopyConstructor->setTrivial(ClassDecl->hasTrivialCopyConstructor());
2382
2383    // Add the parameter to the constructor.
2384    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
2385                                                 ClassDecl->getLocation(),
2386                                                 /*IdentifierInfo=*/0,
2387                                                 ArgType, /*TInfo=*/0,
2388                                                 VarDecl::None, 0);
2389    CopyConstructor->setParams(&FromParam, 1);
2390    if (S)
2391      PushOnScopeChains(CopyConstructor, S, true);
2392    else
2393      ClassDecl->addDecl(CopyConstructor);
2394  }
2395
2396  if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
2397    // Note: The following rules are largely analoguous to the copy
2398    // constructor rules. Note that virtual bases are not taken into account
2399    // for determining the argument type of the operator. Note also that
2400    // operators taking an object instead of a reference are allowed.
2401    //
2402    // C++ [class.copy]p10:
2403    //   If the class definition does not explicitly declare a copy
2404    //   assignment operator, one is declared implicitly.
2405    //   The implicitly-defined copy assignment operator for a class X
2406    //   will have the form
2407    //
2408    //       X& X::operator=(const X&)
2409    //
2410    //   if
2411    bool HasConstCopyAssignment = true;
2412
2413    //       -- each direct base class B of X has a copy assignment operator
2414    //          whose parameter is of type const B&, const volatile B& or B,
2415    //          and
2416    for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
2417         HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) {
2418      assert(!Base->getType()->isDependentType() &&
2419            "Cannot generate implicit members for class with dependent bases.");
2420      const CXXRecordDecl *BaseClassDecl
2421        = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
2422      const CXXMethodDecl *MD = 0;
2423      HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context,
2424                                                                     MD);
2425    }
2426
2427    //       -- for all the nonstatic data members of X that are of a class
2428    //          type M (or array thereof), each such class type has a copy
2429    //          assignment operator whose parameter is of type const M&,
2430    //          const volatile M& or M.
2431    for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin();
2432         HasConstCopyAssignment && Field != ClassDecl->field_end();
2433         ++Field) {
2434      QualType FieldType = (*Field)->getType();
2435      if (const ArrayType *Array = Context.getAsArrayType(FieldType))
2436        FieldType = Array->getElementType();
2437      if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
2438        const CXXRecordDecl *FieldClassDecl
2439          = cast<CXXRecordDecl>(FieldClassType->getDecl());
2440        const CXXMethodDecl *MD = 0;
2441        HasConstCopyAssignment
2442          = FieldClassDecl->hasConstCopyAssignment(Context, MD);
2443      }
2444    }
2445
2446    //   Otherwise, the implicitly declared copy assignment operator will
2447    //   have the form
2448    //
2449    //       X& X::operator=(X&)
2450    QualType ArgType = ClassType;
2451    QualType RetType = Context.getLValueReferenceType(ArgType);
2452    if (HasConstCopyAssignment)
2453      ArgType = ArgType.withConst();
2454    ArgType = Context.getLValueReferenceType(ArgType);
2455
2456    //   An implicitly-declared copy assignment operator is an inline public
2457    //   member of its class.
2458    DeclarationName Name =
2459      Context.DeclarationNames.getCXXOperatorName(OO_Equal);
2460    CXXMethodDecl *CopyAssignment =
2461      CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name,
2462                            Context.getFunctionType(RetType, &ArgType, 1,
2463                                                    false, 0,
2464                                                    /*FIXME:*/false,
2465                                                    false, 0, 0,
2466                                                    FunctionType::ExtInfo()),
2467                            /*TInfo=*/0, /*isStatic=*/false, /*isInline=*/true);
2468    CopyAssignment->setAccess(AS_public);
2469    CopyAssignment->setImplicit();
2470    CopyAssignment->setTrivial(ClassDecl->hasTrivialCopyAssignment());
2471    CopyAssignment->setCopyAssignment(true);
2472
2473    // Add the parameter to the operator.
2474    ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
2475                                                 ClassDecl->getLocation(),
2476                                                 /*IdentifierInfo=*/0,
2477                                                 ArgType, /*TInfo=*/0,
2478                                                 VarDecl::None, 0);
2479    CopyAssignment->setParams(&FromParam, 1);
2480
2481    // Don't call addedAssignmentOperator. There is no way to distinguish an
2482    // implicit from an explicit assignment operator.
2483    if (S)
2484      PushOnScopeChains(CopyAssignment, S, true);
2485    else
2486      ClassDecl->addDecl(CopyAssignment);
2487    AddOverriddenMethods(ClassDecl, CopyAssignment);
2488  }
2489
2490  if (!ClassDecl->hasUserDeclaredDestructor()) {
2491    // C++ [class.dtor]p2:
2492    //   If a class has no user-declared destructor, a destructor is
2493    //   declared implicitly. An implicitly-declared destructor is an
2494    //   inline public member of its class.
2495    QualType Ty = Context.getFunctionType(Context.VoidTy,
2496                                          0, 0, false, 0,
2497                                          /*FIXME:*/false,
2498                                          false, 0, 0, FunctionType::ExtInfo());
2499
2500    DeclarationName Name
2501      = Context.DeclarationNames.getCXXDestructorName(ClassType);
2502    CXXDestructorDecl *Destructor
2503      = CXXDestructorDecl::Create(Context, ClassDecl,
2504                                  ClassDecl->getLocation(), Name, Ty,
2505                                  /*isInline=*/true,
2506                                  /*isImplicitlyDeclared=*/true);
2507    Destructor->setAccess(AS_public);
2508    Destructor->setImplicit();
2509    Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
2510    if (S)
2511      PushOnScopeChains(Destructor, S, true);
2512    else
2513      ClassDecl->addDecl(Destructor);
2514
2515    // This could be uniqued if it ever proves significant.
2516    Destructor->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(Ty));
2517
2518    AddOverriddenMethods(ClassDecl, Destructor);
2519  }
2520}
2521
2522void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) {
2523  Decl *D = TemplateD.getAs<Decl>();
2524  if (!D)
2525    return;
2526
2527  TemplateParameterList *Params = 0;
2528  if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D))
2529    Params = Template->getTemplateParameters();
2530  else if (ClassTemplatePartialSpecializationDecl *PartialSpec
2531           = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
2532    Params = PartialSpec->getTemplateParameters();
2533  else
2534    return;
2535
2536  for (TemplateParameterList::iterator Param = Params->begin(),
2537                                    ParamEnd = Params->end();
2538       Param != ParamEnd; ++Param) {
2539    NamedDecl *Named = cast<NamedDecl>(*Param);
2540    if (Named->getDeclName()) {
2541      S->AddDecl(DeclPtrTy::make(Named));
2542      IdResolver.AddDecl(Named);
2543    }
2544  }
2545}
2546
2547void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2548  if (!RecordD) return;
2549  AdjustDeclIfTemplate(RecordD);
2550  CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD.getAs<Decl>());
2551  PushDeclContext(S, Record);
2552}
2553
2554void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, DeclPtrTy RecordD) {
2555  if (!RecordD) return;
2556  PopDeclContext();
2557}
2558
2559/// ActOnStartDelayedCXXMethodDeclaration - We have completed
2560/// parsing a top-level (non-nested) C++ class, and we are now
2561/// parsing those parts of the given Method declaration that could
2562/// not be parsed earlier (C++ [class.mem]p2), such as default
2563/// arguments. This action should enter the scope of the given
2564/// Method declaration as if we had just parsed the qualified method
2565/// name. However, it should not bring the parameters into scope;
2566/// that will be performed by ActOnDelayedCXXMethodParameter.
2567void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2568}
2569
2570/// ActOnDelayedCXXMethodParameter - We've already started a delayed
2571/// C++ method declaration. We're (re-)introducing the given
2572/// function parameter into scope for use in parsing later parts of
2573/// the method declaration. For example, we could see an
2574/// ActOnParamDefaultArgument event for this parameter.
2575void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) {
2576  if (!ParamD)
2577    return;
2578
2579  ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>());
2580
2581  // If this parameter has an unparsed default argument, clear it out
2582  // to make way for the parsed default argument.
2583  if (Param->hasUnparsedDefaultArg())
2584    Param->setDefaultArg(0);
2585
2586  S->AddDecl(DeclPtrTy::make(Param));
2587  if (Param->getDeclName())
2588    IdResolver.AddDecl(Param);
2589}
2590
2591/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
2592/// processing the delayed method declaration for Method. The method
2593/// declaration is now considered finished. There may be a separate
2594/// ActOnStartOfFunctionDef action later (not necessarily
2595/// immediately!) for this method, if it was also defined inside the
2596/// class body.
2597void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) {
2598  if (!MethodD)
2599    return;
2600
2601  AdjustDeclIfTemplate(MethodD);
2602
2603  FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>());
2604
2605  // Now that we have our default arguments, check the constructor
2606  // again. It could produce additional diagnostics or affect whether
2607  // the class has implicitly-declared destructors, among other
2608  // things.
2609  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
2610    CheckConstructor(Constructor);
2611
2612  // Check the default arguments, which we may have added.
2613  if (!Method->isInvalidDecl())
2614    CheckCXXDefaultArguments(Method);
2615}
2616
2617/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
2618/// the well-formedness of the constructor declarator @p D with type @p
2619/// R. If there are any errors in the declarator, this routine will
2620/// emit diagnostics and set the invalid bit to true.  In any case, the type
2621/// will be updated to reflect a well-formed type for the constructor and
2622/// returned.
2623QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
2624                                          FunctionDecl::StorageClass &SC) {
2625  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2626
2627  // C++ [class.ctor]p3:
2628  //   A constructor shall not be virtual (10.3) or static (9.4). A
2629  //   constructor can be invoked for a const, volatile or const
2630  //   volatile object. A constructor shall not be declared const,
2631  //   volatile, or const volatile (9.3.2).
2632  if (isVirtual) {
2633    if (!D.isInvalidType())
2634      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2635        << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
2636        << SourceRange(D.getIdentifierLoc());
2637    D.setInvalidType();
2638  }
2639  if (SC == FunctionDecl::Static) {
2640    if (!D.isInvalidType())
2641      Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
2642        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2643        << SourceRange(D.getIdentifierLoc());
2644    D.setInvalidType();
2645    SC = FunctionDecl::None;
2646  }
2647
2648  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2649  if (FTI.TypeQuals != 0) {
2650    if (FTI.TypeQuals & Qualifiers::Const)
2651      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2652        << "const" << SourceRange(D.getIdentifierLoc());
2653    if (FTI.TypeQuals & Qualifiers::Volatile)
2654      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2655        << "volatile" << SourceRange(D.getIdentifierLoc());
2656    if (FTI.TypeQuals & Qualifiers::Restrict)
2657      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
2658        << "restrict" << SourceRange(D.getIdentifierLoc());
2659  }
2660
2661  // Rebuild the function type "R" without any type qualifiers (in
2662  // case any of the errors above fired) and with "void" as the
2663  // return type, since constructors don't have return types. We
2664  // *always* have to do this, because GetTypeForDeclarator will
2665  // put in a result type of "int" when none was specified.
2666  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2667  return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
2668                                 Proto->getNumArgs(),
2669                                 Proto->isVariadic(), 0,
2670                                 Proto->hasExceptionSpec(),
2671                                 Proto->hasAnyExceptionSpec(),
2672                                 Proto->getNumExceptions(),
2673                                 Proto->exception_begin(),
2674                                 Proto->getExtInfo());
2675}
2676
2677/// CheckConstructor - Checks a fully-formed constructor for
2678/// well-formedness, issuing any diagnostics required. Returns true if
2679/// the constructor declarator is invalid.
2680void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
2681  CXXRecordDecl *ClassDecl
2682    = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
2683  if (!ClassDecl)
2684    return Constructor->setInvalidDecl();
2685
2686  // C++ [class.copy]p3:
2687  //   A declaration of a constructor for a class X is ill-formed if
2688  //   its first parameter is of type (optionally cv-qualified) X and
2689  //   either there are no other parameters or else all other
2690  //   parameters have default arguments.
2691  if (!Constructor->isInvalidDecl() &&
2692      ((Constructor->getNumParams() == 1) ||
2693       (Constructor->getNumParams() > 1 &&
2694        Constructor->getParamDecl(1)->hasDefaultArg())) &&
2695      Constructor->getTemplateSpecializationKind()
2696                                              != TSK_ImplicitInstantiation) {
2697    QualType ParamType = Constructor->getParamDecl(0)->getType();
2698    QualType ClassTy = Context.getTagDeclType(ClassDecl);
2699    if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
2700      SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
2701      Diag(ParamLoc, diag::err_constructor_byvalue_arg)
2702        << FixItHint::CreateInsertion(ParamLoc, " const &");
2703
2704      // FIXME: Rather that making the constructor invalid, we should endeavor
2705      // to fix the type.
2706      Constructor->setInvalidDecl();
2707    }
2708  }
2709
2710  // Notify the class that we've added a constructor.  In principle we
2711  // don't need to do this for out-of-line declarations; in practice
2712  // we only instantiate the most recent declaration of a method, so
2713  // we have to call this for everything but friends.
2714  if (!Constructor->getFriendObjectKind())
2715    ClassDecl->addedConstructor(Context, Constructor);
2716}
2717
2718/// CheckDestructor - Checks a fully-formed destructor for well-formedness,
2719/// issuing any diagnostics required. Returns true on error.
2720bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
2721  CXXRecordDecl *RD = Destructor->getParent();
2722
2723  if (Destructor->isVirtual()) {
2724    SourceLocation Loc;
2725
2726    if (!Destructor->isImplicit())
2727      Loc = Destructor->getLocation();
2728    else
2729      Loc = RD->getLocation();
2730
2731    // If we have a virtual destructor, look up the deallocation function
2732    FunctionDecl *OperatorDelete = 0;
2733    DeclarationName Name =
2734    Context.DeclarationNames.getCXXOperatorName(OO_Delete);
2735    if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
2736      return true;
2737
2738    Destructor->setOperatorDelete(OperatorDelete);
2739  }
2740
2741  return false;
2742}
2743
2744static inline bool
2745FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) {
2746  return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2747          FTI.ArgInfo[0].Param &&
2748          FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType());
2749}
2750
2751/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
2752/// the well-formednes of the destructor declarator @p D with type @p
2753/// R. If there are any errors in the declarator, this routine will
2754/// emit diagnostics and set the declarator to invalid.  Even if this happens,
2755/// will be updated to reflect a well-formed type for the destructor and
2756/// returned.
2757QualType Sema::CheckDestructorDeclarator(Declarator &D,
2758                                         FunctionDecl::StorageClass& SC) {
2759  // C++ [class.dtor]p1:
2760  //   [...] A typedef-name that names a class is a class-name
2761  //   (7.1.3); however, a typedef-name that names a class shall not
2762  //   be used as the identifier in the declarator for a destructor
2763  //   declaration.
2764  QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
2765  if (isa<TypedefType>(DeclaratorType)) {
2766    Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
2767      << DeclaratorType;
2768    D.setInvalidType();
2769  }
2770
2771  // C++ [class.dtor]p2:
2772  //   A destructor is used to destroy objects of its class type. A
2773  //   destructor takes no parameters, and no return type can be
2774  //   specified for it (not even void). The address of a destructor
2775  //   shall not be taken. A destructor shall not be static. A
2776  //   destructor can be invoked for a const, volatile or const
2777  //   volatile object. A destructor shall not be declared const,
2778  //   volatile or const volatile (9.3.2).
2779  if (SC == FunctionDecl::Static) {
2780    if (!D.isInvalidType())
2781      Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
2782        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2783        << SourceRange(D.getIdentifierLoc());
2784    SC = FunctionDecl::None;
2785    D.setInvalidType();
2786  }
2787  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2788    // Destructors don't have return types, but the parser will
2789    // happily parse something like:
2790    //
2791    //   class X {
2792    //     float ~X();
2793    //   };
2794    //
2795    // The return type will be eliminated later.
2796    Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
2797      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2798      << SourceRange(D.getIdentifierLoc());
2799  }
2800
2801  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2802  if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
2803    if (FTI.TypeQuals & Qualifiers::Const)
2804      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2805        << "const" << SourceRange(D.getIdentifierLoc());
2806    if (FTI.TypeQuals & Qualifiers::Volatile)
2807      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2808        << "volatile" << SourceRange(D.getIdentifierLoc());
2809    if (FTI.TypeQuals & Qualifiers::Restrict)
2810      Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
2811        << "restrict" << SourceRange(D.getIdentifierLoc());
2812    D.setInvalidType();
2813  }
2814
2815  // Make sure we don't have any parameters.
2816  if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) {
2817    Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
2818
2819    // Delete the parameters.
2820    FTI.freeArgs();
2821    D.setInvalidType();
2822  }
2823
2824  // Make sure the destructor isn't variadic.
2825  if (FTI.isVariadic) {
2826    Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
2827    D.setInvalidType();
2828  }
2829
2830  // Rebuild the function type "R" without any type qualifiers or
2831  // parameters (in case any of the errors above fired) and with
2832  // "void" as the return type, since destructors don't have return
2833  // types. We *always* have to do this, because GetTypeForDeclarator
2834  // will put in a result type of "int" when none was specified.
2835  // FIXME: Exceptions!
2836  return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0,
2837                                 false, false, 0, 0, FunctionType::ExtInfo());
2838}
2839
2840/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
2841/// well-formednes of the conversion function declarator @p D with
2842/// type @p R. If there are any errors in the declarator, this routine
2843/// will emit diagnostics and return true. Otherwise, it will return
2844/// false. Either way, the type @p R will be updated to reflect a
2845/// well-formed type for the conversion operator.
2846void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
2847                                     FunctionDecl::StorageClass& SC) {
2848  // C++ [class.conv.fct]p1:
2849  //   Neither parameter types nor return type can be specified. The
2850  //   type of a conversion function (8.3.5) is "function taking no
2851  //   parameter returning conversion-type-id."
2852  if (SC == FunctionDecl::Static) {
2853    if (!D.isInvalidType())
2854      Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
2855        << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
2856        << SourceRange(D.getIdentifierLoc());
2857    D.setInvalidType();
2858    SC = FunctionDecl::None;
2859  }
2860
2861  QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
2862
2863  if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
2864    // Conversion functions don't have return types, but the parser will
2865    // happily parse something like:
2866    //
2867    //   class X {
2868    //     float operator bool();
2869    //   };
2870    //
2871    // The return type will be changed later anyway.
2872    Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
2873      << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2874      << SourceRange(D.getIdentifierLoc());
2875    D.setInvalidType();
2876  }
2877
2878  const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
2879
2880  // Make sure we don't have any parameters.
2881  if (Proto->getNumArgs() > 0) {
2882    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
2883
2884    // Delete the parameters.
2885    D.getTypeObject(0).Fun.freeArgs();
2886    D.setInvalidType();
2887  } else if (Proto->isVariadic()) {
2888    Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
2889    D.setInvalidType();
2890  }
2891
2892  // Diagnose "&operator bool()" and other such nonsense.  This
2893  // is actually a gcc extension which we don't support.
2894  if (Proto->getResultType() != ConvType) {
2895    Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
2896      << Proto->getResultType();
2897    D.setInvalidType();
2898    ConvType = Proto->getResultType();
2899  }
2900
2901  // C++ [class.conv.fct]p4:
2902  //   The conversion-type-id shall not represent a function type nor
2903  //   an array type.
2904  if (ConvType->isArrayType()) {
2905    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
2906    ConvType = Context.getPointerType(ConvType);
2907    D.setInvalidType();
2908  } else if (ConvType->isFunctionType()) {
2909    Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
2910    ConvType = Context.getPointerType(ConvType);
2911    D.setInvalidType();
2912  }
2913
2914  // Rebuild the function type "R" without any parameters (in case any
2915  // of the errors above fired) and with the conversion type as the
2916  // return type.
2917  if (D.isInvalidType()) {
2918    R = Context.getFunctionType(ConvType, 0, 0, false,
2919                                Proto->getTypeQuals(),
2920                                Proto->hasExceptionSpec(),
2921                                Proto->hasAnyExceptionSpec(),
2922                                Proto->getNumExceptions(),
2923                                Proto->exception_begin(),
2924                                Proto->getExtInfo());
2925  }
2926
2927  // C++0x explicit conversion operators.
2928  if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x)
2929    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2930         diag::warn_explicit_conversion_functions)
2931      << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
2932}
2933
2934/// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
2935/// the declaration of the given C++ conversion function. This routine
2936/// is responsible for recording the conversion function in the C++
2937/// class, if possible.
2938Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
2939  assert(Conversion && "Expected to receive a conversion function declaration");
2940
2941  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
2942
2943  // Make sure we aren't redeclaring the conversion function.
2944  QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
2945
2946  // C++ [class.conv.fct]p1:
2947  //   [...] A conversion function is never used to convert a
2948  //   (possibly cv-qualified) object to the (possibly cv-qualified)
2949  //   same object type (or a reference to it), to a (possibly
2950  //   cv-qualified) base class of that type (or a reference to it),
2951  //   or to (possibly cv-qualified) void.
2952  // FIXME: Suppress this warning if the conversion function ends up being a
2953  // virtual function that overrides a virtual function in a base class.
2954  QualType ClassType
2955    = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
2956  if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
2957    ConvType = ConvTypeRef->getPointeeType();
2958  if (ConvType->isRecordType()) {
2959    ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
2960    if (ConvType == ClassType)
2961      Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
2962        << ClassType;
2963    else if (IsDerivedFrom(ClassType, ConvType))
2964      Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
2965        <<  ClassType << ConvType;
2966  } else if (ConvType->isVoidType()) {
2967    Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
2968      << ClassType << ConvType;
2969  }
2970
2971  if (Conversion->getPrimaryTemplate()) {
2972    // ignore specializations
2973  } else if (Conversion->getPreviousDeclaration()) {
2974    if (FunctionTemplateDecl *ConversionTemplate
2975                                  = Conversion->getDescribedFunctionTemplate()) {
2976      if (ClassDecl->replaceConversion(
2977                                   ConversionTemplate->getPreviousDeclaration(),
2978                                       ConversionTemplate))
2979        return DeclPtrTy::make(ConversionTemplate);
2980    } else if (ClassDecl->replaceConversion(Conversion->getPreviousDeclaration(),
2981                                            Conversion))
2982      return DeclPtrTy::make(Conversion);
2983    assert(Conversion->isInvalidDecl() && "Conversion should not get here.");
2984  } else if (FunctionTemplateDecl *ConversionTemplate
2985               = Conversion->getDescribedFunctionTemplate())
2986    ClassDecl->addConversionFunction(ConversionTemplate);
2987  else
2988    ClassDecl->addConversionFunction(Conversion);
2989
2990  return DeclPtrTy::make(Conversion);
2991}
2992
2993//===----------------------------------------------------------------------===//
2994// Namespace Handling
2995//===----------------------------------------------------------------------===//
2996
2997/// ActOnStartNamespaceDef - This is called at the start of a namespace
2998/// definition.
2999Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
3000                                             SourceLocation IdentLoc,
3001                                             IdentifierInfo *II,
3002                                             SourceLocation LBrace,
3003                                             AttributeList *AttrList) {
3004  NamespaceDecl *Namespc =
3005      NamespaceDecl::Create(Context, CurContext, IdentLoc, II);
3006  Namespc->setLBracLoc(LBrace);
3007
3008  Scope *DeclRegionScope = NamespcScope->getParent();
3009
3010  ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
3011
3012  if (II) {
3013    // C++ [namespace.def]p2:
3014    // The identifier in an original-namespace-definition shall not have been
3015    // previously defined in the declarative region in which the
3016    // original-namespace-definition appears. The identifier in an
3017    // original-namespace-definition is the name of the namespace. Subsequently
3018    // in that declarative region, it is treated as an original-namespace-name.
3019
3020    NamedDecl *PrevDecl
3021      = LookupSingleName(DeclRegionScope, II, IdentLoc, LookupOrdinaryName,
3022                         ForRedeclaration);
3023
3024    if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) {
3025      // This is an extended namespace definition.
3026      // Attach this namespace decl to the chain of extended namespace
3027      // definitions.
3028      OrigNS->setNextNamespace(Namespc);
3029      Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace());
3030
3031      // Remove the previous declaration from the scope.
3032      if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) {
3033        IdResolver.RemoveDecl(OrigNS);
3034        DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS));
3035      }
3036    } else if (PrevDecl) {
3037      // This is an invalid name redefinition.
3038      Diag(Namespc->getLocation(), diag::err_redefinition_different_kind)
3039       << Namespc->getDeclName();
3040      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3041      Namespc->setInvalidDecl();
3042      // Continue on to push Namespc as current DeclContext and return it.
3043    } else if (II->isStr("std") &&
3044               CurContext->getLookupContext()->isTranslationUnit()) {
3045      // This is the first "real" definition of the namespace "std", so update
3046      // our cache of the "std" namespace to point at this definition.
3047      if (StdNamespace) {
3048        // We had already defined a dummy namespace "std". Link this new
3049        // namespace definition to the dummy namespace "std".
3050        StdNamespace->setNextNamespace(Namespc);
3051        StdNamespace->setLocation(IdentLoc);
3052        Namespc->setOriginalNamespace(StdNamespace->getOriginalNamespace());
3053      }
3054
3055      // Make our StdNamespace cache point at the first real definition of the
3056      // "std" namespace.
3057      StdNamespace = Namespc;
3058    }
3059
3060    PushOnScopeChains(Namespc, DeclRegionScope);
3061  } else {
3062    // Anonymous namespaces.
3063    assert(Namespc->isAnonymousNamespace());
3064
3065    // Link the anonymous namespace into its parent.
3066    NamespaceDecl *PrevDecl;
3067    DeclContext *Parent = CurContext->getLookupContext();
3068    if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
3069      PrevDecl = TU->getAnonymousNamespace();
3070      TU->setAnonymousNamespace(Namespc);
3071    } else {
3072      NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
3073      PrevDecl = ND->getAnonymousNamespace();
3074      ND->setAnonymousNamespace(Namespc);
3075    }
3076
3077    // Link the anonymous namespace with its previous declaration.
3078    if (PrevDecl) {
3079      assert(PrevDecl->isAnonymousNamespace());
3080      assert(!PrevDecl->getNextNamespace());
3081      Namespc->setOriginalNamespace(PrevDecl->getOriginalNamespace());
3082      PrevDecl->setNextNamespace(Namespc);
3083    }
3084
3085    CurContext->addDecl(Namespc);
3086
3087    // C++ [namespace.unnamed]p1.  An unnamed-namespace-definition
3088    //   behaves as if it were replaced by
3089    //     namespace unique { /* empty body */ }
3090    //     using namespace unique;
3091    //     namespace unique { namespace-body }
3092    //   where all occurrences of 'unique' in a translation unit are
3093    //   replaced by the same identifier and this identifier differs
3094    //   from all other identifiers in the entire program.
3095
3096    // We just create the namespace with an empty name and then add an
3097    // implicit using declaration, just like the standard suggests.
3098    //
3099    // CodeGen enforces the "universally unique" aspect by giving all
3100    // declarations semantically contained within an anonymous
3101    // namespace internal linkage.
3102
3103    if (!PrevDecl) {
3104      UsingDirectiveDecl* UD
3105        = UsingDirectiveDecl::Create(Context, CurContext,
3106                                     /* 'using' */ LBrace,
3107                                     /* 'namespace' */ SourceLocation(),
3108                                     /* qualifier */ SourceRange(),
3109                                     /* NNS */ NULL,
3110                                     /* identifier */ SourceLocation(),
3111                                     Namespc,
3112                                     /* Ancestor */ CurContext);
3113      UD->setImplicit();
3114      CurContext->addDecl(UD);
3115    }
3116  }
3117
3118  // Although we could have an invalid decl (i.e. the namespace name is a
3119  // redefinition), push it as current DeclContext and try to continue parsing.
3120  // FIXME: We should be able to push Namespc here, so that the each DeclContext
3121  // for the namespace has the declarations that showed up in that particular
3122  // namespace definition.
3123  PushDeclContext(NamespcScope, Namespc);
3124  return DeclPtrTy::make(Namespc);
3125}
3126
3127/// getNamespaceDecl - Returns the namespace a decl represents. If the decl
3128/// is a namespace alias, returns the namespace it points to.
3129static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
3130  if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
3131    return AD->getNamespace();
3132  return dyn_cast_or_null<NamespaceDecl>(D);
3133}
3134
3135/// ActOnFinishNamespaceDef - This callback is called after a namespace is
3136/// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
3137void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) {
3138  Decl *Dcl = D.getAs<Decl>();
3139  NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
3140  assert(Namespc && "Invalid parameter, expected NamespaceDecl");
3141  Namespc->setRBracLoc(RBrace);
3142  PopDeclContext();
3143}
3144
3145Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S,
3146                                          SourceLocation UsingLoc,
3147                                          SourceLocation NamespcLoc,
3148                                          CXXScopeSpec &SS,
3149                                          SourceLocation IdentLoc,
3150                                          IdentifierInfo *NamespcName,
3151                                          AttributeList *AttrList) {
3152  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3153  assert(NamespcName && "Invalid NamespcName.");
3154  assert(IdentLoc.isValid() && "Invalid NamespceName location.");
3155  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3156
3157  UsingDirectiveDecl *UDir = 0;
3158
3159  // Lookup namespace name.
3160  LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
3161  LookupParsedName(R, S, &SS);
3162  if (R.isAmbiguous())
3163    return DeclPtrTy();
3164
3165  if (!R.empty()) {
3166    NamedDecl *Named = R.getFoundDecl();
3167    assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
3168        && "expected namespace decl");
3169    // C++ [namespace.udir]p1:
3170    //   A using-directive specifies that the names in the nominated
3171    //   namespace can be used in the scope in which the
3172    //   using-directive appears after the using-directive. During
3173    //   unqualified name lookup (3.4.1), the names appear as if they
3174    //   were declared in the nearest enclosing namespace which
3175    //   contains both the using-directive and the nominated
3176    //   namespace. [Note: in this context, "contains" means "contains
3177    //   directly or indirectly". ]
3178
3179    // Find enclosing context containing both using-directive and
3180    // nominated namespace.
3181    NamespaceDecl *NS = getNamespaceDecl(Named);
3182    DeclContext *CommonAncestor = cast<DeclContext>(NS);
3183    while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
3184      CommonAncestor = CommonAncestor->getParent();
3185
3186    UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
3187                                      SS.getRange(),
3188                                      (NestedNameSpecifier *)SS.getScopeRep(),
3189                                      IdentLoc, Named, CommonAncestor);
3190    PushUsingDirective(S, UDir);
3191  } else {
3192    Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
3193  }
3194
3195  // FIXME: We ignore attributes for now.
3196  delete AttrList;
3197  return DeclPtrTy::make(UDir);
3198}
3199
3200void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
3201  // If scope has associated entity, then using directive is at namespace
3202  // or translation unit scope. We add UsingDirectiveDecls, into
3203  // it's lookup structure.
3204  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
3205    Ctx->addDecl(UDir);
3206  else
3207    // Otherwise it is block-sope. using-directives will affect lookup
3208    // only to the end of scope.
3209    S->PushUsingDirective(DeclPtrTy::make(UDir));
3210}
3211
3212
3213Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S,
3214                                            AccessSpecifier AS,
3215                                            bool HasUsingKeyword,
3216                                            SourceLocation UsingLoc,
3217                                            CXXScopeSpec &SS,
3218                                            UnqualifiedId &Name,
3219                                            AttributeList *AttrList,
3220                                            bool IsTypeName,
3221                                            SourceLocation TypenameLoc) {
3222  assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
3223
3224  switch (Name.getKind()) {
3225  case UnqualifiedId::IK_Identifier:
3226  case UnqualifiedId::IK_OperatorFunctionId:
3227  case UnqualifiedId::IK_LiteralOperatorId:
3228  case UnqualifiedId::IK_ConversionFunctionId:
3229    break;
3230
3231  case UnqualifiedId::IK_ConstructorName:
3232  case UnqualifiedId::IK_ConstructorTemplateId:
3233    // C++0x inherited constructors.
3234    if (getLangOptions().CPlusPlus0x) break;
3235
3236    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_constructor)
3237      << SS.getRange();
3238    return DeclPtrTy();
3239
3240  case UnqualifiedId::IK_DestructorName:
3241    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_destructor)
3242      << SS.getRange();
3243    return DeclPtrTy();
3244
3245  case UnqualifiedId::IK_TemplateId:
3246    Diag(Name.getSourceRange().getBegin(), diag::err_using_decl_template_id)
3247      << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
3248    return DeclPtrTy();
3249  }
3250
3251  DeclarationName TargetName = GetNameFromUnqualifiedId(Name);
3252  if (!TargetName)
3253    return DeclPtrTy();
3254
3255  // Warn about using declarations.
3256  // TODO: store that the declaration was written without 'using' and
3257  // talk about access decls instead of using decls in the
3258  // diagnostics.
3259  if (!HasUsingKeyword) {
3260    UsingLoc = Name.getSourceRange().getBegin();
3261
3262    Diag(UsingLoc, diag::warn_access_decl_deprecated)
3263      << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
3264  }
3265
3266  NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
3267                                        Name.getSourceRange().getBegin(),
3268                                        TargetName, AttrList,
3269                                        /* IsInstantiation */ false,
3270                                        IsTypeName, TypenameLoc);
3271  if (UD)
3272    PushOnScopeChains(UD, S, /*AddToContext*/ false);
3273
3274  return DeclPtrTy::make(UD);
3275}
3276
3277/// Determines whether to create a using shadow decl for a particular
3278/// decl, given the set of decls existing prior to this using lookup.
3279bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
3280                                const LookupResult &Previous) {
3281  // Diagnose finding a decl which is not from a base class of the
3282  // current class.  We do this now because there are cases where this
3283  // function will silently decide not to build a shadow decl, which
3284  // will pre-empt further diagnostics.
3285  //
3286  // We don't need to do this in C++0x because we do the check once on
3287  // the qualifier.
3288  //
3289  // FIXME: diagnose the following if we care enough:
3290  //   struct A { int foo; };
3291  //   struct B : A { using A::foo; };
3292  //   template <class T> struct C : A {};
3293  //   template <class T> struct D : C<T> { using B::foo; } // <---
3294  // This is invalid (during instantiation) in C++03 because B::foo
3295  // resolves to the using decl in B, which is not a base class of D<T>.
3296  // We can't diagnose it immediately because C<T> is an unknown
3297  // specialization.  The UsingShadowDecl in D<T> then points directly
3298  // to A::foo, which will look well-formed when we instantiate.
3299  // The right solution is to not collapse the shadow-decl chain.
3300  if (!getLangOptions().CPlusPlus0x && CurContext->isRecord()) {
3301    DeclContext *OrigDC = Orig->getDeclContext();
3302
3303    // Handle enums and anonymous structs.
3304    if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
3305    CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
3306    while (OrigRec->isAnonymousStructOrUnion())
3307      OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
3308
3309    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
3310      if (OrigDC == CurContext) {
3311        Diag(Using->getLocation(),
3312             diag::err_using_decl_nested_name_specifier_is_current_class)
3313          << Using->getNestedNameRange();
3314        Diag(Orig->getLocation(), diag::note_using_decl_target);
3315        return true;
3316      }
3317
3318      Diag(Using->getNestedNameRange().getBegin(),
3319           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3320        << Using->getTargetNestedNameDecl()
3321        << cast<CXXRecordDecl>(CurContext)
3322        << Using->getNestedNameRange();
3323      Diag(Orig->getLocation(), diag::note_using_decl_target);
3324      return true;
3325    }
3326  }
3327
3328  if (Previous.empty()) return false;
3329
3330  NamedDecl *Target = Orig;
3331  if (isa<UsingShadowDecl>(Target))
3332    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3333
3334  // If the target happens to be one of the previous declarations, we
3335  // don't have a conflict.
3336  //
3337  // FIXME: but we might be increasing its access, in which case we
3338  // should redeclare it.
3339  NamedDecl *NonTag = 0, *Tag = 0;
3340  for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
3341         I != E; ++I) {
3342    NamedDecl *D = (*I)->getUnderlyingDecl();
3343    if (D->getCanonicalDecl() == Target->getCanonicalDecl())
3344      return false;
3345
3346    (isa<TagDecl>(D) ? Tag : NonTag) = D;
3347  }
3348
3349  if (Target->isFunctionOrFunctionTemplate()) {
3350    FunctionDecl *FD;
3351    if (isa<FunctionTemplateDecl>(Target))
3352      FD = cast<FunctionTemplateDecl>(Target)->getTemplatedDecl();
3353    else
3354      FD = cast<FunctionDecl>(Target);
3355
3356    NamedDecl *OldDecl = 0;
3357    switch (CheckOverload(FD, Previous, OldDecl)) {
3358    case Ovl_Overload:
3359      return false;
3360
3361    case Ovl_NonFunction:
3362      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3363      break;
3364
3365    // We found a decl with the exact signature.
3366    case Ovl_Match:
3367      if (isa<UsingShadowDecl>(OldDecl)) {
3368        // Silently ignore the possible conflict.
3369        return false;
3370      }
3371
3372      // If we're in a record, we want to hide the target, so we
3373      // return true (without a diagnostic) to tell the caller not to
3374      // build a shadow decl.
3375      if (CurContext->isRecord())
3376        return true;
3377
3378      // If we're not in a record, this is an error.
3379      Diag(Using->getLocation(), diag::err_using_decl_conflict);
3380      break;
3381    }
3382
3383    Diag(Target->getLocation(), diag::note_using_decl_target);
3384    Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
3385    return true;
3386  }
3387
3388  // Target is not a function.
3389
3390  if (isa<TagDecl>(Target)) {
3391    // No conflict between a tag and a non-tag.
3392    if (!Tag) return false;
3393
3394    Diag(Using->getLocation(), diag::err_using_decl_conflict);
3395    Diag(Target->getLocation(), diag::note_using_decl_target);
3396    Diag(Tag->getLocation(), diag::note_using_decl_conflict);
3397    return true;
3398  }
3399
3400  // No conflict between a tag and a non-tag.
3401  if (!NonTag) return false;
3402
3403  Diag(Using->getLocation(), diag::err_using_decl_conflict);
3404  Diag(Target->getLocation(), diag::note_using_decl_target);
3405  Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
3406  return true;
3407}
3408
3409/// Builds a shadow declaration corresponding to a 'using' declaration.
3410UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
3411                                            UsingDecl *UD,
3412                                            NamedDecl *Orig) {
3413
3414  // If we resolved to another shadow declaration, just coalesce them.
3415  NamedDecl *Target = Orig;
3416  if (isa<UsingShadowDecl>(Target)) {
3417    Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
3418    assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
3419  }
3420
3421  UsingShadowDecl *Shadow
3422    = UsingShadowDecl::Create(Context, CurContext,
3423                              UD->getLocation(), UD, Target);
3424  UD->addShadowDecl(Shadow);
3425
3426  if (S)
3427    PushOnScopeChains(Shadow, S);
3428  else
3429    CurContext->addDecl(Shadow);
3430  Shadow->setAccess(UD->getAccess());
3431
3432  // Register it as a conversion if appropriate.
3433  if (Shadow->getDeclName().getNameKind()
3434        == DeclarationName::CXXConversionFunctionName)
3435    cast<CXXRecordDecl>(CurContext)->addConversionFunction(Shadow);
3436
3437  if (Orig->isInvalidDecl() || UD->isInvalidDecl())
3438    Shadow->setInvalidDecl();
3439
3440  return Shadow;
3441}
3442
3443/// Hides a using shadow declaration.  This is required by the current
3444/// using-decl implementation when a resolvable using declaration in a
3445/// class is followed by a declaration which would hide or override
3446/// one or more of the using decl's targets; for example:
3447///
3448///   struct Base { void foo(int); };
3449///   struct Derived : Base {
3450///     using Base::foo;
3451///     void foo(int);
3452///   };
3453///
3454/// The governing language is C++03 [namespace.udecl]p12:
3455///
3456///   When a using-declaration brings names from a base class into a
3457///   derived class scope, member functions in the derived class
3458///   override and/or hide member functions with the same name and
3459///   parameter types in a base class (rather than conflicting).
3460///
3461/// There are two ways to implement this:
3462///   (1) optimistically create shadow decls when they're not hidden
3463///       by existing declarations, or
3464///   (2) don't create any shadow decls (or at least don't make them
3465///       visible) until we've fully parsed/instantiated the class.
3466/// The problem with (1) is that we might have to retroactively remove
3467/// a shadow decl, which requires several O(n) operations because the
3468/// decl structures are (very reasonably) not designed for removal.
3469/// (2) avoids this but is very fiddly and phase-dependent.
3470void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
3471  if (Shadow->getDeclName().getNameKind() ==
3472        DeclarationName::CXXConversionFunctionName)
3473    cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
3474
3475  // Remove it from the DeclContext...
3476  Shadow->getDeclContext()->removeDecl(Shadow);
3477
3478  // ...and the scope, if applicable...
3479  if (S) {
3480    S->RemoveDecl(DeclPtrTy::make(static_cast<Decl*>(Shadow)));
3481    IdResolver.RemoveDecl(Shadow);
3482  }
3483
3484  // ...and the using decl.
3485  Shadow->getUsingDecl()->removeShadowDecl(Shadow);
3486
3487  // TODO: complain somehow if Shadow was used.  It shouldn't
3488  // be possible for this to happen, because...?
3489}
3490
3491/// Builds a using declaration.
3492///
3493/// \param IsInstantiation - Whether this call arises from an
3494///   instantiation of an unresolved using declaration.  We treat
3495///   the lookup differently for these declarations.
3496NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
3497                                       SourceLocation UsingLoc,
3498                                       CXXScopeSpec &SS,
3499                                       SourceLocation IdentLoc,
3500                                       DeclarationName Name,
3501                                       AttributeList *AttrList,
3502                                       bool IsInstantiation,
3503                                       bool IsTypeName,
3504                                       SourceLocation TypenameLoc) {
3505  assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
3506  assert(IdentLoc.isValid() && "Invalid TargetName location.");
3507
3508  // FIXME: We ignore attributes for now.
3509  delete AttrList;
3510
3511  if (SS.isEmpty()) {
3512    Diag(IdentLoc, diag::err_using_requires_qualname);
3513    return 0;
3514  }
3515
3516  // Do the redeclaration lookup in the current scope.
3517  LookupResult Previous(*this, Name, IdentLoc, LookupUsingDeclName,
3518                        ForRedeclaration);
3519  Previous.setHideTags(false);
3520  if (S) {
3521    LookupName(Previous, S);
3522
3523    // It is really dumb that we have to do this.
3524    LookupResult::Filter F = Previous.makeFilter();
3525    while (F.hasNext()) {
3526      NamedDecl *D = F.next();
3527      if (!isDeclInScope(D, CurContext, S))
3528        F.erase();
3529    }
3530    F.done();
3531  } else {
3532    assert(IsInstantiation && "no scope in non-instantiation");
3533    assert(CurContext->isRecord() && "scope not record in instantiation");
3534    LookupQualifiedName(Previous, CurContext);
3535  }
3536
3537  NestedNameSpecifier *NNS =
3538    static_cast<NestedNameSpecifier *>(SS.getScopeRep());
3539
3540  // Check for invalid redeclarations.
3541  if (CheckUsingDeclRedeclaration(UsingLoc, IsTypeName, SS, IdentLoc, Previous))
3542    return 0;
3543
3544  // Check for bad qualifiers.
3545  if (CheckUsingDeclQualifier(UsingLoc, SS, IdentLoc))
3546    return 0;
3547
3548  DeclContext *LookupContext = computeDeclContext(SS);
3549  NamedDecl *D;
3550  if (!LookupContext) {
3551    if (IsTypeName) {
3552      // FIXME: not all declaration name kinds are legal here
3553      D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
3554                                              UsingLoc, TypenameLoc,
3555                                              SS.getRange(), NNS,
3556                                              IdentLoc, Name);
3557    } else {
3558      D = UnresolvedUsingValueDecl::Create(Context, CurContext,
3559                                           UsingLoc, SS.getRange(), NNS,
3560                                           IdentLoc, Name);
3561    }
3562  } else {
3563    D = UsingDecl::Create(Context, CurContext, IdentLoc,
3564                          SS.getRange(), UsingLoc, NNS, Name,
3565                          IsTypeName);
3566  }
3567  D->setAccess(AS);
3568  CurContext->addDecl(D);
3569
3570  if (!LookupContext) return D;
3571  UsingDecl *UD = cast<UsingDecl>(D);
3572
3573  if (RequireCompleteDeclContext(SS)) {
3574    UD->setInvalidDecl();
3575    return UD;
3576  }
3577
3578  // Look up the target name.
3579
3580  LookupResult R(*this, Name, IdentLoc, LookupOrdinaryName);
3581
3582  // Unlike most lookups, we don't always want to hide tag
3583  // declarations: tag names are visible through the using declaration
3584  // even if hidden by ordinary names, *except* in a dependent context
3585  // where it's important for the sanity of two-phase lookup.
3586  if (!IsInstantiation)
3587    R.setHideTags(false);
3588
3589  LookupQualifiedName(R, LookupContext);
3590
3591  if (R.empty()) {
3592    Diag(IdentLoc, diag::err_no_member)
3593      << Name << LookupContext << SS.getRange();
3594    UD->setInvalidDecl();
3595    return UD;
3596  }
3597
3598  if (R.isAmbiguous()) {
3599    UD->setInvalidDecl();
3600    return UD;
3601  }
3602
3603  if (IsTypeName) {
3604    // If we asked for a typename and got a non-type decl, error out.
3605    if (!R.getAsSingle<TypeDecl>()) {
3606      Diag(IdentLoc, diag::err_using_typename_non_type);
3607      for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
3608        Diag((*I)->getUnderlyingDecl()->getLocation(),
3609             diag::note_using_decl_target);
3610      UD->setInvalidDecl();
3611      return UD;
3612    }
3613  } else {
3614    // If we asked for a non-typename and we got a type, error out,
3615    // but only if this is an instantiation of an unresolved using
3616    // decl.  Otherwise just silently find the type name.
3617    if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
3618      Diag(IdentLoc, diag::err_using_dependent_value_is_type);
3619      Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
3620      UD->setInvalidDecl();
3621      return UD;
3622    }
3623  }
3624
3625  // C++0x N2914 [namespace.udecl]p6:
3626  // A using-declaration shall not name a namespace.
3627  if (R.getAsSingle<NamespaceDecl>()) {
3628    Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
3629      << SS.getRange();
3630    UD->setInvalidDecl();
3631    return UD;
3632  }
3633
3634  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
3635    if (!CheckUsingShadowDecl(UD, *I, Previous))
3636      BuildUsingShadowDecl(S, UD, *I);
3637  }
3638
3639  return UD;
3640}
3641
3642/// Checks that the given using declaration is not an invalid
3643/// redeclaration.  Note that this is checking only for the using decl
3644/// itself, not for any ill-formedness among the UsingShadowDecls.
3645bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
3646                                       bool isTypeName,
3647                                       const CXXScopeSpec &SS,
3648                                       SourceLocation NameLoc,
3649                                       const LookupResult &Prev) {
3650  // C++03 [namespace.udecl]p8:
3651  // C++0x [namespace.udecl]p10:
3652  //   A using-declaration is a declaration and can therefore be used
3653  //   repeatedly where (and only where) multiple declarations are
3654  //   allowed.
3655  // That's only in file contexts.
3656  if (CurContext->getLookupContext()->isFileContext())
3657    return false;
3658
3659  NestedNameSpecifier *Qual
3660    = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
3661
3662  for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
3663    NamedDecl *D = *I;
3664
3665    bool DTypename;
3666    NestedNameSpecifier *DQual;
3667    if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
3668      DTypename = UD->isTypeName();
3669      DQual = UD->getTargetNestedNameDecl();
3670    } else if (UnresolvedUsingValueDecl *UD
3671                 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
3672      DTypename = false;
3673      DQual = UD->getTargetNestedNameSpecifier();
3674    } else if (UnresolvedUsingTypenameDecl *UD
3675                 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
3676      DTypename = true;
3677      DQual = UD->getTargetNestedNameSpecifier();
3678    } else continue;
3679
3680    // using decls differ if one says 'typename' and the other doesn't.
3681    // FIXME: non-dependent using decls?
3682    if (isTypeName != DTypename) continue;
3683
3684    // using decls differ if they name different scopes (but note that
3685    // template instantiation can cause this check to trigger when it
3686    // didn't before instantiation).
3687    if (Context.getCanonicalNestedNameSpecifier(Qual) !=
3688        Context.getCanonicalNestedNameSpecifier(DQual))
3689      continue;
3690
3691    Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
3692    Diag(D->getLocation(), diag::note_using_decl) << 1;
3693    return true;
3694  }
3695
3696  return false;
3697}
3698
3699
3700/// Checks that the given nested-name qualifier used in a using decl
3701/// in the current context is appropriately related to the current
3702/// scope.  If an error is found, diagnoses it and returns true.
3703bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
3704                                   const CXXScopeSpec &SS,
3705                                   SourceLocation NameLoc) {
3706  DeclContext *NamedContext = computeDeclContext(SS);
3707
3708  if (!CurContext->isRecord()) {
3709    // C++03 [namespace.udecl]p3:
3710    // C++0x [namespace.udecl]p8:
3711    //   A using-declaration for a class member shall be a member-declaration.
3712
3713    // If we weren't able to compute a valid scope, it must be a
3714    // dependent class scope.
3715    if (!NamedContext || NamedContext->isRecord()) {
3716      Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
3717        << SS.getRange();
3718      return true;
3719    }
3720
3721    // Otherwise, everything is known to be fine.
3722    return false;
3723  }
3724
3725  // The current scope is a record.
3726
3727  // If the named context is dependent, we can't decide much.
3728  if (!NamedContext) {
3729    // FIXME: in C++0x, we can diagnose if we can prove that the
3730    // nested-name-specifier does not refer to a base class, which is
3731    // still possible in some cases.
3732
3733    // Otherwise we have to conservatively report that things might be
3734    // okay.
3735    return false;
3736  }
3737
3738  if (!NamedContext->isRecord()) {
3739    // Ideally this would point at the last name in the specifier,
3740    // but we don't have that level of source info.
3741    Diag(SS.getRange().getBegin(),
3742         diag::err_using_decl_nested_name_specifier_is_not_class)
3743      << (NestedNameSpecifier*) SS.getScopeRep() << SS.getRange();
3744    return true;
3745  }
3746
3747  if (getLangOptions().CPlusPlus0x) {
3748    // C++0x [namespace.udecl]p3:
3749    //   In a using-declaration used as a member-declaration, the
3750    //   nested-name-specifier shall name a base class of the class
3751    //   being defined.
3752
3753    if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
3754                                 cast<CXXRecordDecl>(NamedContext))) {
3755      if (CurContext == NamedContext) {
3756        Diag(NameLoc,
3757             diag::err_using_decl_nested_name_specifier_is_current_class)
3758          << SS.getRange();
3759        return true;
3760      }
3761
3762      Diag(SS.getRange().getBegin(),
3763           diag::err_using_decl_nested_name_specifier_is_not_base_class)
3764        << (NestedNameSpecifier*) SS.getScopeRep()
3765        << cast<CXXRecordDecl>(CurContext)
3766        << SS.getRange();
3767      return true;
3768    }
3769
3770    return false;
3771  }
3772
3773  // C++03 [namespace.udecl]p4:
3774  //   A using-declaration used as a member-declaration shall refer
3775  //   to a member of a base class of the class being defined [etc.].
3776
3777  // Salient point: SS doesn't have to name a base class as long as
3778  // lookup only finds members from base classes.  Therefore we can
3779  // diagnose here only if we can prove that that can't happen,
3780  // i.e. if the class hierarchies provably don't intersect.
3781
3782  // TODO: it would be nice if "definitely valid" results were cached
3783  // in the UsingDecl and UsingShadowDecl so that these checks didn't
3784  // need to be repeated.
3785
3786  struct UserData {
3787    llvm::DenseSet<const CXXRecordDecl*> Bases;
3788
3789    static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
3790      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3791      Data->Bases.insert(Base);
3792      return true;
3793    }
3794
3795    bool hasDependentBases(const CXXRecordDecl *Class) {
3796      return !Class->forallBases(collect, this);
3797    }
3798
3799    /// Returns true if the base is dependent or is one of the
3800    /// accumulated base classes.
3801    static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
3802      UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
3803      return !Data->Bases.count(Base);
3804    }
3805
3806    bool mightShareBases(const CXXRecordDecl *Class) {
3807      return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
3808    }
3809  };
3810
3811  UserData Data;
3812
3813  // Returns false if we find a dependent base.
3814  if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
3815    return false;
3816
3817  // Returns false if the class has a dependent base or if it or one
3818  // of its bases is present in the base set of the current context.
3819  if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
3820    return false;
3821
3822  Diag(SS.getRange().getBegin(),
3823       diag::err_using_decl_nested_name_specifier_is_not_base_class)
3824    << (NestedNameSpecifier*) SS.getScopeRep()
3825    << cast<CXXRecordDecl>(CurContext)
3826    << SS.getRange();
3827
3828  return true;
3829}
3830
3831Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S,
3832                                             SourceLocation NamespaceLoc,
3833                                             SourceLocation AliasLoc,
3834                                             IdentifierInfo *Alias,
3835                                             CXXScopeSpec &SS,
3836                                             SourceLocation IdentLoc,
3837                                             IdentifierInfo *Ident) {
3838
3839  // Lookup the namespace name.
3840  LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
3841  LookupParsedName(R, S, &SS);
3842
3843  // Check if we have a previous declaration with the same name.
3844  if (NamedDecl *PrevDecl
3845        = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
3846                           ForRedeclaration)) {
3847    if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
3848      // We already have an alias with the same name that points to the same
3849      // namespace, so don't create a new one.
3850      // FIXME: At some point, we'll want to create the (redundant)
3851      // declaration to maintain better source information.
3852      if (!R.isAmbiguous() && !R.empty() &&
3853          AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
3854        return DeclPtrTy();
3855    }
3856
3857    unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
3858      diag::err_redefinition_different_kind;
3859    Diag(AliasLoc, DiagID) << Alias;
3860    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3861    return DeclPtrTy();
3862  }
3863
3864  if (R.isAmbiguous())
3865    return DeclPtrTy();
3866
3867  if (R.empty()) {
3868    Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange();
3869    return DeclPtrTy();
3870  }
3871
3872  NamespaceAliasDecl *AliasDecl =
3873    NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
3874                               Alias, SS.getRange(),
3875                               (NestedNameSpecifier *)SS.getScopeRep(),
3876                               IdentLoc, R.getFoundDecl());
3877
3878  PushOnScopeChains(AliasDecl, S);
3879  return DeclPtrTy::make(AliasDecl);
3880}
3881
3882void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
3883                                            CXXConstructorDecl *Constructor) {
3884  assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() &&
3885          !Constructor->isUsed()) &&
3886    "DefineImplicitDefaultConstructor - call it for implicit default ctor");
3887
3888  CXXRecordDecl *ClassDecl
3889    = cast<CXXRecordDecl>(Constructor->getDeclContext());
3890  assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
3891
3892  DeclContext *PreviousContext = CurContext;
3893  CurContext = Constructor;
3894  if (SetBaseOrMemberInitializers(Constructor, 0, 0, /*AnyErrors=*/false)) {
3895    Diag(CurrentLocation, diag::note_member_synthesized_at)
3896      << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
3897    Constructor->setInvalidDecl();
3898  } else {
3899    Constructor->setUsed();
3900  }
3901  CurContext = PreviousContext;
3902}
3903
3904void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
3905                                    CXXDestructorDecl *Destructor) {
3906  assert((Destructor->isImplicit() && !Destructor->isUsed()) &&
3907         "DefineImplicitDestructor - call it for implicit default dtor");
3908  CXXRecordDecl *ClassDecl = Destructor->getParent();
3909  assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
3910
3911  DeclContext *PreviousContext = CurContext;
3912  CurContext = Destructor;
3913
3914  MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
3915                                         Destructor->getParent());
3916
3917  // FIXME: If CheckDestructor fails, we should emit a note about where the
3918  // implicit destructor was needed.
3919  if (CheckDestructor(Destructor)) {
3920    Diag(CurrentLocation, diag::note_member_synthesized_at)
3921      << CXXDestructor << Context.getTagDeclType(ClassDecl);
3922
3923    Destructor->setInvalidDecl();
3924    CurContext = PreviousContext;
3925
3926    return;
3927  }
3928  CurContext = PreviousContext;
3929
3930  Destructor->setUsed();
3931}
3932
3933void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation,
3934                                          CXXMethodDecl *MethodDecl) {
3935  assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() &&
3936          MethodDecl->getOverloadedOperator() == OO_Equal &&
3937          !MethodDecl->isUsed()) &&
3938         "DefineImplicitOverloadedAssign - call it for implicit assignment op");
3939
3940  CXXRecordDecl *ClassDecl
3941    = cast<CXXRecordDecl>(MethodDecl->getDeclContext());
3942
3943  DeclContext *PreviousContext = CurContext;
3944  CurContext = MethodDecl;
3945
3946  // C++[class.copy] p12
3947  // Before the implicitly-declared copy assignment operator for a class is
3948  // implicitly defined, all implicitly-declared copy assignment operators
3949  // for its direct base classes and its nonstatic data members shall have
3950  // been implicitly defined.
3951  bool err = false;
3952  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(),
3953       E = ClassDecl->bases_end(); Base != E; ++Base) {
3954    CXXRecordDecl *BaseClassDecl
3955      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
3956    if (CXXMethodDecl *BaseAssignOpMethod =
3957          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3958                                  BaseClassDecl)) {
3959      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
3960                              BaseAssignOpMethod,
3961                              PDiag(diag::err_access_assign_base)
3962                                << Base->getType());
3963
3964      MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod);
3965    }
3966  }
3967  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
3968       E = ClassDecl->field_end(); Field != E; ++Field) {
3969    QualType FieldType = Context.getCanonicalType((*Field)->getType());
3970    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
3971      FieldType = Array->getElementType();
3972    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
3973      CXXRecordDecl *FieldClassDecl
3974        = cast<CXXRecordDecl>(FieldClassType->getDecl());
3975      if (CXXMethodDecl *FieldAssignOpMethod =
3976          getAssignOperatorMethod(CurrentLocation, MethodDecl->getParamDecl(0),
3977                                  FieldClassDecl)) {
3978        CheckDirectMemberAccess(Field->getLocation(),
3979                                FieldAssignOpMethod,
3980                                PDiag(diag::err_access_assign_field)
3981                                  << Field->getDeclName() << Field->getType());
3982
3983        MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod);
3984      }
3985    } else if (FieldType->isReferenceType()) {
3986      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3987      << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
3988      Diag(Field->getLocation(), diag::note_declared_at);
3989      Diag(CurrentLocation, diag::note_first_required_here);
3990      err = true;
3991    } else if (FieldType.isConstQualified()) {
3992      Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
3993      << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
3994      Diag(Field->getLocation(), diag::note_declared_at);
3995      Diag(CurrentLocation, diag::note_first_required_here);
3996      err = true;
3997    }
3998  }
3999  if (!err)
4000    MethodDecl->setUsed();
4001
4002  CurContext = PreviousContext;
4003}
4004
4005CXXMethodDecl *
4006Sema::getAssignOperatorMethod(SourceLocation CurrentLocation,
4007                              ParmVarDecl *ParmDecl,
4008                              CXXRecordDecl *ClassDecl) {
4009  QualType LHSType = Context.getTypeDeclType(ClassDecl);
4010  QualType RHSType(LHSType);
4011  // If class's assignment operator argument is const/volatile qualified,
4012  // look for operator = (const/volatile B&). Otherwise, look for
4013  // operator = (B&).
4014  RHSType = Context.getCVRQualifiedType(RHSType,
4015                                     ParmDecl->getType().getCVRQualifiers());
4016  ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl,
4017                                                           LHSType,
4018                                                           SourceLocation()));
4019  ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl,
4020                                                           RHSType,
4021                                                           CurrentLocation));
4022  Expr *Args[2] = { &*LHS, &*RHS };
4023  OverloadCandidateSet CandidateSet(CurrentLocation);
4024  AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2,
4025                              CandidateSet);
4026  OverloadCandidateSet::iterator Best;
4027  if (BestViableFunction(CandidateSet, CurrentLocation, Best) == OR_Success)
4028    return cast<CXXMethodDecl>(Best->Function);
4029  assert(false &&
4030         "getAssignOperatorMethod - copy assignment operator method not found");
4031  return 0;
4032}
4033
4034void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
4035                                   CXXConstructorDecl *CopyConstructor,
4036                                   unsigned TypeQuals) {
4037  assert((CopyConstructor->isImplicit() &&
4038          CopyConstructor->isCopyConstructor(TypeQuals) &&
4039          !CopyConstructor->isUsed()) &&
4040         "DefineImplicitCopyConstructor - call it for implicit copy ctor");
4041
4042  CXXRecordDecl *ClassDecl
4043    = cast<CXXRecordDecl>(CopyConstructor->getDeclContext());
4044  assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
4045
4046  DeclContext *PreviousContext = CurContext;
4047  CurContext = CopyConstructor;
4048
4049  // C++ [class.copy] p209
4050  // Before the implicitly-declared copy constructor for a class is
4051  // implicitly defined, all the implicitly-declared copy constructors
4052  // for its base class and its non-static data members shall have been
4053  // implicitly defined.
4054  for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin();
4055       Base != ClassDecl->bases_end(); ++Base) {
4056    CXXRecordDecl *BaseClassDecl
4057      = cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
4058    if (CXXConstructorDecl *BaseCopyCtor =
4059        BaseClassDecl->getCopyConstructor(Context, TypeQuals)) {
4060      CheckDirectMemberAccess(Base->getSourceRange().getBegin(),
4061                              BaseCopyCtor,
4062                              PDiag(diag::err_access_copy_base)
4063                                << Base->getType());
4064
4065      MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor);
4066    }
4067  }
4068  for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(),
4069                                  FieldEnd = ClassDecl->field_end();
4070       Field != FieldEnd; ++Field) {
4071    QualType FieldType = Context.getCanonicalType((*Field)->getType());
4072    if (const ArrayType *Array = Context.getAsArrayType(FieldType))
4073      FieldType = Array->getElementType();
4074    if (const RecordType *FieldClassType = FieldType->getAs<RecordType>()) {
4075      CXXRecordDecl *FieldClassDecl
4076        = cast<CXXRecordDecl>(FieldClassType->getDecl());
4077      if (CXXConstructorDecl *FieldCopyCtor =
4078          FieldClassDecl->getCopyConstructor(Context, TypeQuals)) {
4079        CheckDirectMemberAccess(Field->getLocation(),
4080                                FieldCopyCtor,
4081                                PDiag(diag::err_access_copy_field)
4082                                  << Field->getDeclName() << Field->getType());
4083
4084        MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor);
4085      }
4086    }
4087  }
4088  CopyConstructor->setUsed();
4089
4090  CurContext = PreviousContext;
4091}
4092
4093Sema::OwningExprResult
4094Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4095                            CXXConstructorDecl *Constructor,
4096                            MultiExprArg ExprArgs,
4097                            bool RequiresZeroInit,
4098                            bool BaseInitialization) {
4099  bool Elidable = false;
4100
4101  // C++0x [class.copy]p34:
4102  //   When certain criteria are met, an implementation is allowed to
4103  //   omit the copy/move construction of a class object, even if the
4104  //   copy/move constructor and/or destructor for the object have
4105  //   side effects. [...]
4106  //     - when a temporary class object that has not been bound to a
4107  //       reference (12.2) would be copied/moved to a class object
4108  //       with the same cv-unqualified type, the copy/move operation
4109  //       can be omitted by constructing the temporary object
4110  //       directly into the target of the omitted copy/move
4111  if (Constructor->isCopyConstructor() && ExprArgs.size() >= 1) {
4112    Expr *SubExpr = ((Expr **)ExprArgs.get())[0];
4113    Elidable = SubExpr->isTemporaryObject() &&
4114      Context.hasSameUnqualifiedType(SubExpr->getType(),
4115                           Context.getTypeDeclType(Constructor->getParent()));
4116  }
4117
4118  return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
4119                               Elidable, move(ExprArgs), RequiresZeroInit,
4120                               BaseInitialization);
4121}
4122
4123/// BuildCXXConstructExpr - Creates a complete call to a constructor,
4124/// including handling of its default argument expressions.
4125Sema::OwningExprResult
4126Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
4127                            CXXConstructorDecl *Constructor, bool Elidable,
4128                            MultiExprArg ExprArgs,
4129                            bool RequiresZeroInit,
4130                            bool BaseInitialization) {
4131  unsigned NumExprs = ExprArgs.size();
4132  Expr **Exprs = (Expr **)ExprArgs.release();
4133
4134  MarkDeclarationReferenced(ConstructLoc, Constructor);
4135  return Owned(CXXConstructExpr::Create(Context, DeclInitType, ConstructLoc,
4136                                        Constructor, Elidable, Exprs, NumExprs,
4137                                        RequiresZeroInit, BaseInitialization));
4138}
4139
4140bool Sema::InitializeVarWithConstructor(VarDecl *VD,
4141                                        CXXConstructorDecl *Constructor,
4142                                        MultiExprArg Exprs) {
4143  OwningExprResult TempResult =
4144    BuildCXXConstructExpr(VD->getLocation(), VD->getType(), Constructor,
4145                          move(Exprs));
4146  if (TempResult.isInvalid())
4147    return true;
4148
4149  Expr *Temp = TempResult.takeAs<Expr>();
4150  MarkDeclarationReferenced(VD->getLocation(), Constructor);
4151  Temp = MaybeCreateCXXExprWithTemporaries(Temp);
4152  VD->setInit(Temp);
4153
4154  return false;
4155}
4156
4157void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
4158  CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
4159  if (!ClassDecl->isInvalidDecl() && !VD->isInvalidDecl() &&
4160      !ClassDecl->hasTrivialDestructor()) {
4161    CXXDestructorDecl *Destructor = ClassDecl->getDestructor(Context);
4162    MarkDeclarationReferenced(VD->getLocation(), Destructor);
4163    CheckDestructorAccess(VD->getLocation(), Destructor,
4164                          PDiag(diag::err_access_dtor_var)
4165                            << VD->getDeclName()
4166                            << VD->getType());
4167  }
4168}
4169
4170/// AddCXXDirectInitializerToDecl - This action is called immediately after
4171/// ActOnDeclarator, when a C++ direct initializer is present.
4172/// e.g: "int x(1);"
4173void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
4174                                         SourceLocation LParenLoc,
4175                                         MultiExprArg Exprs,
4176                                         SourceLocation *CommaLocs,
4177                                         SourceLocation RParenLoc) {
4178  assert(Exprs.size() != 0 && Exprs.get() && "missing expressions");
4179  Decl *RealDecl = Dcl.getAs<Decl>();
4180
4181  // If there is no declaration, there was an error parsing it.  Just ignore
4182  // the initializer.
4183  if (RealDecl == 0)
4184    return;
4185
4186  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4187  if (!VDecl) {
4188    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4189    RealDecl->setInvalidDecl();
4190    return;
4191  }
4192
4193  // We will represent direct-initialization similarly to copy-initialization:
4194  //    int x(1);  -as-> int x = 1;
4195  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
4196  //
4197  // Clients that want to distinguish between the two forms, can check for
4198  // direct initializer using VarDecl::hasCXXDirectInitializer().
4199  // A major benefit is that clients that don't particularly care about which
4200  // exactly form was it (like the CodeGen) can handle both cases without
4201  // special case code.
4202
4203  // C++ 8.5p11:
4204  // The form of initialization (using parentheses or '=') is generally
4205  // insignificant, but does matter when the entity being initialized has a
4206  // class type.
4207  QualType DeclInitType = VDecl->getType();
4208  if (const ArrayType *Array = Context.getAsArrayType(DeclInitType))
4209    DeclInitType = Context.getBaseElementType(Array);
4210
4211  if (!VDecl->getType()->isDependentType() &&
4212      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
4213                          diag::err_typecheck_decl_incomplete_type)) {
4214    VDecl->setInvalidDecl();
4215    return;
4216  }
4217
4218  // The variable can not have an abstract class type.
4219  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4220                             diag::err_abstract_type_in_decl,
4221                             AbstractVariableType))
4222    VDecl->setInvalidDecl();
4223
4224  const VarDecl *Def;
4225  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4226    Diag(VDecl->getLocation(), diag::err_redefinition)
4227    << VDecl->getDeclName();
4228    Diag(Def->getLocation(), diag::note_previous_definition);
4229    VDecl->setInvalidDecl();
4230    return;
4231  }
4232
4233  // If either the declaration has a dependent type or if any of the
4234  // expressions is type-dependent, we represent the initialization
4235  // via a ParenListExpr for later use during template instantiation.
4236  if (VDecl->getType()->isDependentType() ||
4237      Expr::hasAnyTypeDependentArguments((Expr **)Exprs.get(), Exprs.size())) {
4238    // Let clients know that initialization was done with a direct initializer.
4239    VDecl->setCXXDirectInitializer(true);
4240
4241    // Store the initialization expressions as a ParenListExpr.
4242    unsigned NumExprs = Exprs.size();
4243    VDecl->setInit(new (Context) ParenListExpr(Context, LParenLoc,
4244                                               (Expr **)Exprs.release(),
4245                                               NumExprs, RParenLoc));
4246    return;
4247  }
4248
4249  // Capture the variable that is being initialized and the style of
4250  // initialization.
4251  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4252
4253  // FIXME: Poor source location information.
4254  InitializationKind Kind
4255    = InitializationKind::CreateDirect(VDecl->getLocation(),
4256                                       LParenLoc, RParenLoc);
4257
4258  InitializationSequence InitSeq(*this, Entity, Kind,
4259                                 (Expr**)Exprs.get(), Exprs.size());
4260  OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(Exprs));
4261  if (Result.isInvalid()) {
4262    VDecl->setInvalidDecl();
4263    return;
4264  }
4265
4266  Result = MaybeCreateCXXExprWithTemporaries(move(Result));
4267  VDecl->setInit(Result.takeAs<Expr>());
4268  VDecl->setCXXDirectInitializer(true);
4269
4270  if (const RecordType *Record = VDecl->getType()->getAs<RecordType>())
4271    FinalizeVarWithDestructor(VDecl, Record);
4272}
4273
4274/// \brief Given a constructor and the set of arguments provided for the
4275/// constructor, convert the arguments and add any required default arguments
4276/// to form a proper call to this constructor.
4277///
4278/// \returns true if an error occurred, false otherwise.
4279bool
4280Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
4281                              MultiExprArg ArgsPtr,
4282                              SourceLocation Loc,
4283                     ASTOwningVector<&ActionBase::DeleteExpr> &ConvertedArgs) {
4284  // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
4285  unsigned NumArgs = ArgsPtr.size();
4286  Expr **Args = (Expr **)ArgsPtr.get();
4287
4288  const FunctionProtoType *Proto
4289    = Constructor->getType()->getAs<FunctionProtoType>();
4290  assert(Proto && "Constructor without a prototype?");
4291  unsigned NumArgsInProto = Proto->getNumArgs();
4292
4293  // If too few arguments are available, we'll fill in the rest with defaults.
4294  if (NumArgs < NumArgsInProto)
4295    ConvertedArgs.reserve(NumArgsInProto);
4296  else
4297    ConvertedArgs.reserve(NumArgs);
4298
4299  VariadicCallType CallType =
4300    Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4301  llvm::SmallVector<Expr *, 8> AllArgs;
4302  bool Invalid = GatherArgumentsForCall(Loc, Constructor,
4303                                        Proto, 0, Args, NumArgs, AllArgs,
4304                                        CallType);
4305  for (unsigned i =0, size = AllArgs.size(); i < size; i++)
4306    ConvertedArgs.push_back(AllArgs[i]);
4307  return Invalid;
4308}
4309
4310static inline bool
4311CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
4312                                       const FunctionDecl *FnDecl) {
4313  const DeclContext *DC = FnDecl->getDeclContext()->getLookupContext();
4314  if (isa<NamespaceDecl>(DC)) {
4315    return SemaRef.Diag(FnDecl->getLocation(),
4316                        diag::err_operator_new_delete_declared_in_namespace)
4317      << FnDecl->getDeclName();
4318  }
4319
4320  if (isa<TranslationUnitDecl>(DC) &&
4321      FnDecl->getStorageClass() == FunctionDecl::Static) {
4322    return SemaRef.Diag(FnDecl->getLocation(),
4323                        diag::err_operator_new_delete_declared_static)
4324      << FnDecl->getDeclName();
4325  }
4326
4327  return false;
4328}
4329
4330static inline bool
4331CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
4332                            CanQualType ExpectedResultType,
4333                            CanQualType ExpectedFirstParamType,
4334                            unsigned DependentParamTypeDiag,
4335                            unsigned InvalidParamTypeDiag) {
4336  QualType ResultType =
4337    FnDecl->getType()->getAs<FunctionType>()->getResultType();
4338
4339  // Check that the result type is not dependent.
4340  if (ResultType->isDependentType())
4341    return SemaRef.Diag(FnDecl->getLocation(),
4342                        diag::err_operator_new_delete_dependent_result_type)
4343    << FnDecl->getDeclName() << ExpectedResultType;
4344
4345  // Check that the result type is what we expect.
4346  if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
4347    return SemaRef.Diag(FnDecl->getLocation(),
4348                        diag::err_operator_new_delete_invalid_result_type)
4349    << FnDecl->getDeclName() << ExpectedResultType;
4350
4351  // A function template must have at least 2 parameters.
4352  if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
4353    return SemaRef.Diag(FnDecl->getLocation(),
4354                      diag::err_operator_new_delete_template_too_few_parameters)
4355        << FnDecl->getDeclName();
4356
4357  // The function decl must have at least 1 parameter.
4358  if (FnDecl->getNumParams() == 0)
4359    return SemaRef.Diag(FnDecl->getLocation(),
4360                        diag::err_operator_new_delete_too_few_parameters)
4361      << FnDecl->getDeclName();
4362
4363  // Check the the first parameter type is not dependent.
4364  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4365  if (FirstParamType->isDependentType())
4366    return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
4367      << FnDecl->getDeclName() << ExpectedFirstParamType;
4368
4369  // Check that the first parameter type is what we expect.
4370  if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
4371      ExpectedFirstParamType)
4372    return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
4373    << FnDecl->getDeclName() << ExpectedFirstParamType;
4374
4375  return false;
4376}
4377
4378static bool
4379CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4380  // C++ [basic.stc.dynamic.allocation]p1:
4381  //   A program is ill-formed if an allocation function is declared in a
4382  //   namespace scope other than global scope or declared static in global
4383  //   scope.
4384  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4385    return true;
4386
4387  CanQualType SizeTy =
4388    SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
4389
4390  // C++ [basic.stc.dynamic.allocation]p1:
4391  //  The return type shall be void*. The first parameter shall have type
4392  //  std::size_t.
4393  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
4394                                  SizeTy,
4395                                  diag::err_operator_new_dependent_param_type,
4396                                  diag::err_operator_new_param_type))
4397    return true;
4398
4399  // C++ [basic.stc.dynamic.allocation]p1:
4400  //  The first parameter shall not have an associated default argument.
4401  if (FnDecl->getParamDecl(0)->hasDefaultArg())
4402    return SemaRef.Diag(FnDecl->getLocation(),
4403                        diag::err_operator_new_default_arg)
4404      << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
4405
4406  return false;
4407}
4408
4409static bool
4410CheckOperatorDeleteDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
4411  // C++ [basic.stc.dynamic.deallocation]p1:
4412  //   A program is ill-formed if deallocation functions are declared in a
4413  //   namespace scope other than global scope or declared static in global
4414  //   scope.
4415  if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
4416    return true;
4417
4418  // C++ [basic.stc.dynamic.deallocation]p2:
4419  //   Each deallocation function shall return void and its first parameter
4420  //   shall be void*.
4421  if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
4422                                  SemaRef.Context.VoidPtrTy,
4423                                 diag::err_operator_delete_dependent_param_type,
4424                                 diag::err_operator_delete_param_type))
4425    return true;
4426
4427  QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
4428  if (FirstParamType->isDependentType())
4429    return SemaRef.Diag(FnDecl->getLocation(),
4430                        diag::err_operator_delete_dependent_param_type)
4431    << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4432
4433  if (SemaRef.Context.getCanonicalType(FirstParamType) !=
4434      SemaRef.Context.VoidPtrTy)
4435    return SemaRef.Diag(FnDecl->getLocation(),
4436                        diag::err_operator_delete_param_type)
4437      << FnDecl->getDeclName() << SemaRef.Context.VoidPtrTy;
4438
4439  return false;
4440}
4441
4442/// CheckOverloadedOperatorDeclaration - Check whether the declaration
4443/// of this overloaded operator is well-formed. If so, returns false;
4444/// otherwise, emits appropriate diagnostics and returns true.
4445bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
4446  assert(FnDecl && FnDecl->isOverloadedOperator() &&
4447         "Expected an overloaded operator declaration");
4448
4449  OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
4450
4451  // C++ [over.oper]p5:
4452  //   The allocation and deallocation functions, operator new,
4453  //   operator new[], operator delete and operator delete[], are
4454  //   described completely in 3.7.3. The attributes and restrictions
4455  //   found in the rest of this subclause do not apply to them unless
4456  //   explicitly stated in 3.7.3.
4457  if (Op == OO_Delete || Op == OO_Array_Delete)
4458    return CheckOperatorDeleteDeclaration(*this, FnDecl);
4459
4460  if (Op == OO_New || Op == OO_Array_New)
4461    return CheckOperatorNewDeclaration(*this, FnDecl);
4462
4463  // C++ [over.oper]p6:
4464  //   An operator function shall either be a non-static member
4465  //   function or be a non-member function and have at least one
4466  //   parameter whose type is a class, a reference to a class, an
4467  //   enumeration, or a reference to an enumeration.
4468  if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
4469    if (MethodDecl->isStatic())
4470      return Diag(FnDecl->getLocation(),
4471                  diag::err_operator_overload_static) << FnDecl->getDeclName();
4472  } else {
4473    bool ClassOrEnumParam = false;
4474    for (FunctionDecl::param_iterator Param = FnDecl->param_begin(),
4475                                   ParamEnd = FnDecl->param_end();
4476         Param != ParamEnd; ++Param) {
4477      QualType ParamType = (*Param)->getType().getNonReferenceType();
4478      if (ParamType->isDependentType() || ParamType->isRecordType() ||
4479          ParamType->isEnumeralType()) {
4480        ClassOrEnumParam = true;
4481        break;
4482      }
4483    }
4484
4485    if (!ClassOrEnumParam)
4486      return Diag(FnDecl->getLocation(),
4487                  diag::err_operator_overload_needs_class_or_enum)
4488        << FnDecl->getDeclName();
4489  }
4490
4491  // C++ [over.oper]p8:
4492  //   An operator function cannot have default arguments (8.3.6),
4493  //   except where explicitly stated below.
4494  //
4495  // Only the function-call operator allows default arguments
4496  // (C++ [over.call]p1).
4497  if (Op != OO_Call) {
4498    for (FunctionDecl::param_iterator Param = FnDecl->param_begin();
4499         Param != FnDecl->param_end(); ++Param) {
4500      if ((*Param)->hasDefaultArg())
4501        return Diag((*Param)->getLocation(),
4502                    diag::err_operator_overload_default_arg)
4503          << FnDecl->getDeclName() << (*Param)->getDefaultArgRange();
4504    }
4505  }
4506
4507  static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
4508    { false, false, false }
4509#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
4510    , { Unary, Binary, MemberOnly }
4511#include "clang/Basic/OperatorKinds.def"
4512  };
4513
4514  bool CanBeUnaryOperator = OperatorUses[Op][0];
4515  bool CanBeBinaryOperator = OperatorUses[Op][1];
4516  bool MustBeMemberOperator = OperatorUses[Op][2];
4517
4518  // C++ [over.oper]p8:
4519  //   [...] Operator functions cannot have more or fewer parameters
4520  //   than the number required for the corresponding operator, as
4521  //   described in the rest of this subclause.
4522  unsigned NumParams = FnDecl->getNumParams()
4523                     + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
4524  if (Op != OO_Call &&
4525      ((NumParams == 1 && !CanBeUnaryOperator) ||
4526       (NumParams == 2 && !CanBeBinaryOperator) ||
4527       (NumParams < 1) || (NumParams > 2))) {
4528    // We have the wrong number of parameters.
4529    unsigned ErrorKind;
4530    if (CanBeUnaryOperator && CanBeBinaryOperator) {
4531      ErrorKind = 2;  // 2 -> unary or binary.
4532    } else if (CanBeUnaryOperator) {
4533      ErrorKind = 0;  // 0 -> unary
4534    } else {
4535      assert(CanBeBinaryOperator &&
4536             "All non-call overloaded operators are unary or binary!");
4537      ErrorKind = 1;  // 1 -> binary
4538    }
4539
4540    return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
4541      << FnDecl->getDeclName() << NumParams << ErrorKind;
4542  }
4543
4544  // Overloaded operators other than operator() cannot be variadic.
4545  if (Op != OO_Call &&
4546      FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
4547    return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
4548      << FnDecl->getDeclName();
4549  }
4550
4551  // Some operators must be non-static member functions.
4552  if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
4553    return Diag(FnDecl->getLocation(),
4554                diag::err_operator_overload_must_be_member)
4555      << FnDecl->getDeclName();
4556  }
4557
4558  // C++ [over.inc]p1:
4559  //   The user-defined function called operator++ implements the
4560  //   prefix and postfix ++ operator. If this function is a member
4561  //   function with no parameters, or a non-member function with one
4562  //   parameter of class or enumeration type, it defines the prefix
4563  //   increment operator ++ for objects of that type. If the function
4564  //   is a member function with one parameter (which shall be of type
4565  //   int) or a non-member function with two parameters (the second
4566  //   of which shall be of type int), it defines the postfix
4567  //   increment operator ++ for objects of that type.
4568  if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
4569    ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
4570    bool ParamIsInt = false;
4571    if (const BuiltinType *BT = LastParam->getType()->getAs<BuiltinType>())
4572      ParamIsInt = BT->getKind() == BuiltinType::Int;
4573
4574    if (!ParamIsInt)
4575      return Diag(LastParam->getLocation(),
4576                  diag::err_operator_overload_post_incdec_must_be_int)
4577        << LastParam->getType() << (Op == OO_MinusMinus);
4578  }
4579
4580  // Notify the class if it got an assignment operator.
4581  if (Op == OO_Equal) {
4582    // Would have returned earlier otherwise.
4583    assert(isa<CXXMethodDecl>(FnDecl) &&
4584      "Overloaded = not member, but not filtered.");
4585    CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl);
4586    Method->getParent()->addedAssignmentOperator(Context, Method);
4587  }
4588
4589  return false;
4590}
4591
4592/// CheckLiteralOperatorDeclaration - Check whether the declaration
4593/// of this literal operator function is well-formed. If so, returns
4594/// false; otherwise, emits appropriate diagnostics and returns true.
4595bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
4596  DeclContext *DC = FnDecl->getDeclContext();
4597  Decl::Kind Kind = DC->getDeclKind();
4598  if (Kind != Decl::TranslationUnit && Kind != Decl::Namespace &&
4599      Kind != Decl::LinkageSpec) {
4600    Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
4601      << FnDecl->getDeclName();
4602    return true;
4603  }
4604
4605  bool Valid = false;
4606
4607  // template <char...> type operator "" name() is the only valid template
4608  // signature, and the only valid signature with no parameters.
4609  if (FnDecl->param_size() == 0) {
4610    if (FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate()) {
4611      // Must have only one template parameter
4612      TemplateParameterList *Params = TpDecl->getTemplateParameters();
4613      if (Params->size() == 1) {
4614        NonTypeTemplateParmDecl *PmDecl =
4615          cast<NonTypeTemplateParmDecl>(Params->getParam(0));
4616
4617        // The template parameter must be a char parameter pack.
4618        // FIXME: This test will always fail because non-type parameter packs
4619        //   have not been implemented.
4620        if (PmDecl && PmDecl->isTemplateParameterPack() &&
4621            Context.hasSameType(PmDecl->getType(), Context.CharTy))
4622          Valid = true;
4623      }
4624    }
4625  } else {
4626    // Check the first parameter
4627    FunctionDecl::param_iterator Param = FnDecl->param_begin();
4628
4629    QualType T = (*Param)->getType();
4630
4631    // unsigned long long int, long double, and any character type are allowed
4632    // as the only parameters.
4633    if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
4634        Context.hasSameType(T, Context.LongDoubleTy) ||
4635        Context.hasSameType(T, Context.CharTy) ||
4636        Context.hasSameType(T, Context.WCharTy) ||
4637        Context.hasSameType(T, Context.Char16Ty) ||
4638        Context.hasSameType(T, Context.Char32Ty)) {
4639      if (++Param == FnDecl->param_end())
4640        Valid = true;
4641      goto FinishedParams;
4642    }
4643
4644    // Otherwise it must be a pointer to const; let's strip those qualifiers.
4645    const PointerType *PT = T->getAs<PointerType>();
4646    if (!PT)
4647      goto FinishedParams;
4648    T = PT->getPointeeType();
4649    if (!T.isConstQualified())
4650      goto FinishedParams;
4651    T = T.getUnqualifiedType();
4652
4653    // Move on to the second parameter;
4654    ++Param;
4655
4656    // If there is no second parameter, the first must be a const char *
4657    if (Param == FnDecl->param_end()) {
4658      if (Context.hasSameType(T, Context.CharTy))
4659        Valid = true;
4660      goto FinishedParams;
4661    }
4662
4663    // const char *, const wchar_t*, const char16_t*, and const char32_t*
4664    // are allowed as the first parameter to a two-parameter function
4665    if (!(Context.hasSameType(T, Context.CharTy) ||
4666          Context.hasSameType(T, Context.WCharTy) ||
4667          Context.hasSameType(T, Context.Char16Ty) ||
4668          Context.hasSameType(T, Context.Char32Ty)))
4669      goto FinishedParams;
4670
4671    // The second and final parameter must be an std::size_t
4672    T = (*Param)->getType().getUnqualifiedType();
4673    if (Context.hasSameType(T, Context.getSizeType()) &&
4674        ++Param == FnDecl->param_end())
4675      Valid = true;
4676  }
4677
4678  // FIXME: This diagnostic is absolutely terrible.
4679FinishedParams:
4680  if (!Valid) {
4681    Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
4682      << FnDecl->getDeclName();
4683    return true;
4684  }
4685
4686  return false;
4687}
4688
4689/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
4690/// linkage specification, including the language and (if present)
4691/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
4692/// the location of the language string literal, which is provided
4693/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
4694/// the '{' brace. Otherwise, this linkage specification does not
4695/// have any braces.
4696Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S,
4697                                                     SourceLocation ExternLoc,
4698                                                     SourceLocation LangLoc,
4699                                                     const char *Lang,
4700                                                     unsigned StrSize,
4701                                                     SourceLocation LBraceLoc) {
4702  LinkageSpecDecl::LanguageIDs Language;
4703  if (strncmp(Lang, "\"C\"", StrSize) == 0)
4704    Language = LinkageSpecDecl::lang_c;
4705  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
4706    Language = LinkageSpecDecl::lang_cxx;
4707  else {
4708    Diag(LangLoc, diag::err_bad_language);
4709    return DeclPtrTy();
4710  }
4711
4712  // FIXME: Add all the various semantics of linkage specifications
4713
4714  LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext,
4715                                               LangLoc, Language,
4716                                               LBraceLoc.isValid());
4717  CurContext->addDecl(D);
4718  PushDeclContext(S, D);
4719  return DeclPtrTy::make(D);
4720}
4721
4722/// ActOnFinishLinkageSpecification - Completely the definition of
4723/// the C++ linkage specification LinkageSpec. If RBraceLoc is
4724/// valid, it's the position of the closing '}' brace in a linkage
4725/// specification that uses braces.
4726Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S,
4727                                                      DeclPtrTy LinkageSpec,
4728                                                      SourceLocation RBraceLoc) {
4729  if (LinkageSpec)
4730    PopDeclContext();
4731  return LinkageSpec;
4732}
4733
4734/// \brief Perform semantic analysis for the variable declaration that
4735/// occurs within a C++ catch clause, returning the newly-created
4736/// variable.
4737VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType,
4738                                         TypeSourceInfo *TInfo,
4739                                         IdentifierInfo *Name,
4740                                         SourceLocation Loc,
4741                                         SourceRange Range) {
4742  bool Invalid = false;
4743
4744  // Arrays and functions decay.
4745  if (ExDeclType->isArrayType())
4746    ExDeclType = Context.getArrayDecayedType(ExDeclType);
4747  else if (ExDeclType->isFunctionType())
4748    ExDeclType = Context.getPointerType(ExDeclType);
4749
4750  // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
4751  // The exception-declaration shall not denote a pointer or reference to an
4752  // incomplete type, other than [cv] void*.
4753  // N2844 forbids rvalue references.
4754  if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
4755    Diag(Loc, diag::err_catch_rvalue_ref) << Range;
4756    Invalid = true;
4757  }
4758
4759  // GCC allows catching pointers and references to incomplete types
4760  // as an extension; so do we, but we warn by default.
4761
4762  QualType BaseType = ExDeclType;
4763  int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
4764  unsigned DK = diag::err_catch_incomplete;
4765  bool IncompleteCatchIsInvalid = true;
4766  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
4767    BaseType = Ptr->getPointeeType();
4768    Mode = 1;
4769    DK = diag::ext_catch_incomplete_ptr;
4770    IncompleteCatchIsInvalid = false;
4771  } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
4772    // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
4773    BaseType = Ref->getPointeeType();
4774    Mode = 2;
4775    DK = diag::ext_catch_incomplete_ref;
4776    IncompleteCatchIsInvalid = false;
4777  }
4778  if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
4779      !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK) &&
4780      IncompleteCatchIsInvalid)
4781    Invalid = true;
4782
4783  if (!Invalid && !ExDeclType->isDependentType() &&
4784      RequireNonAbstractType(Loc, ExDeclType,
4785                             diag::err_abstract_type_in_decl,
4786                             AbstractVariableType))
4787    Invalid = true;
4788
4789  VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc,
4790                                    Name, ExDeclType, TInfo, VarDecl::None);
4791
4792  if (!Invalid) {
4793    if (const RecordType *RecordTy = ExDeclType->getAs<RecordType>()) {
4794      // C++ [except.handle]p16:
4795      //   The object declared in an exception-declaration or, if the
4796      //   exception-declaration does not specify a name, a temporary (12.2) is
4797      //   copy-initialized (8.5) from the exception object. [...]
4798      //   The object is destroyed when the handler exits, after the destruction
4799      //   of any automatic objects initialized within the handler.
4800      //
4801      // We just pretend to initialize the object with itself, then make sure
4802      // it can be destroyed later.
4803      InitializedEntity Entity = InitializedEntity::InitializeVariable(ExDecl);
4804      Expr *ExDeclRef = DeclRefExpr::Create(Context, 0, SourceRange(), ExDecl,
4805                                            Loc, ExDeclType, 0);
4806      InitializationKind Kind = InitializationKind::CreateCopy(Loc,
4807                                                               SourceLocation());
4808      InitializationSequence InitSeq(*this, Entity, Kind, &ExDeclRef, 1);
4809      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4810                                    MultiExprArg(*this, (void**)&ExDeclRef, 1));
4811      if (Result.isInvalid())
4812        Invalid = true;
4813      else
4814        FinalizeVarWithDestructor(ExDecl, RecordTy);
4815    }
4816  }
4817
4818  if (Invalid)
4819    ExDecl->setInvalidDecl();
4820
4821  return ExDecl;
4822}
4823
4824/// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
4825/// handler.
4826Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
4827  TypeSourceInfo *TInfo = 0;
4828  QualType ExDeclType = GetTypeForDeclarator(D, S, &TInfo);
4829
4830  bool Invalid = D.isInvalidType();
4831  IdentifierInfo *II = D.getIdentifier();
4832  if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
4833                                             LookupOrdinaryName,
4834                                             ForRedeclaration)) {
4835    // The scope should be freshly made just for us. There is just no way
4836    // it contains any previous declaration.
4837    assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl)));
4838    if (PrevDecl->isTemplateParameter()) {
4839      // Maybe we will complain about the shadowed template parameter.
4840      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4841    }
4842  }
4843
4844  if (D.getCXXScopeSpec().isSet() && !Invalid) {
4845    Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
4846      << D.getCXXScopeSpec().getRange();
4847    Invalid = true;
4848  }
4849
4850  VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, TInfo,
4851                                              D.getIdentifier(),
4852                                              D.getIdentifierLoc(),
4853                                            D.getDeclSpec().getSourceRange());
4854
4855  if (Invalid)
4856    ExDecl->setInvalidDecl();
4857
4858  // Add the exception declaration into this scope.
4859  if (II)
4860    PushOnScopeChains(ExDecl, S);
4861  else
4862    CurContext->addDecl(ExDecl);
4863
4864  ProcessDeclAttributes(S, ExDecl, D);
4865  return DeclPtrTy::make(ExDecl);
4866}
4867
4868Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
4869                                                   ExprArg assertexpr,
4870                                                   ExprArg assertmessageexpr) {
4871  Expr *AssertExpr = (Expr *)assertexpr.get();
4872  StringLiteral *AssertMessage =
4873    cast<StringLiteral>((Expr *)assertmessageexpr.get());
4874
4875  if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) {
4876    llvm::APSInt Value(32);
4877    if (!AssertExpr->isIntegerConstantExpr(Value, Context)) {
4878      Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) <<
4879        AssertExpr->getSourceRange();
4880      return DeclPtrTy();
4881    }
4882
4883    if (Value == 0) {
4884      Diag(AssertLoc, diag::err_static_assert_failed)
4885        << AssertMessage->getString() << AssertExpr->getSourceRange();
4886    }
4887  }
4888
4889  assertexpr.release();
4890  assertmessageexpr.release();
4891  Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc,
4892                                        AssertExpr, AssertMessage);
4893
4894  CurContext->addDecl(Decl);
4895  return DeclPtrTy::make(Decl);
4896}
4897
4898/// \brief Perform semantic analysis of the given friend type declaration.
4899///
4900/// \returns A friend declaration that.
4901FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation FriendLoc,
4902                                      TypeSourceInfo *TSInfo) {
4903  assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
4904
4905  QualType T = TSInfo->getType();
4906  SourceRange TypeRange = TSInfo->getTypeLoc().getSourceRange();
4907
4908  if (!getLangOptions().CPlusPlus0x) {
4909    // C++03 [class.friend]p2:
4910    //   An elaborated-type-specifier shall be used in a friend declaration
4911    //   for a class.*
4912    //
4913    //   * The class-key of the elaborated-type-specifier is required.
4914    if (!ActiveTemplateInstantiations.empty()) {
4915      // Do not complain about the form of friend template types during
4916      // template instantiation; we will already have complained when the
4917      // template was declared.
4918    } else if (!T->isElaboratedTypeSpecifier()) {
4919      // If we evaluated the type to a record type, suggest putting
4920      // a tag in front.
4921      if (const RecordType *RT = T->getAs<RecordType>()) {
4922        RecordDecl *RD = RT->getDecl();
4923
4924        std::string InsertionText = std::string(" ") + RD->getKindName();
4925
4926        Diag(TypeRange.getBegin(), diag::ext_unelaborated_friend_type)
4927          << (unsigned) RD->getTagKind()
4928          << T
4929          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
4930                                        InsertionText);
4931      } else {
4932        Diag(FriendLoc, diag::ext_nonclass_type_friend)
4933          << T
4934          << SourceRange(FriendLoc, TypeRange.getEnd());
4935      }
4936    } else if (T->getAs<EnumType>()) {
4937      Diag(FriendLoc, diag::ext_enum_friend)
4938        << T
4939        << SourceRange(FriendLoc, TypeRange.getEnd());
4940    }
4941  }
4942
4943  // C++0x [class.friend]p3:
4944  //   If the type specifier in a friend declaration designates a (possibly
4945  //   cv-qualified) class type, that class is declared as a friend; otherwise,
4946  //   the friend declaration is ignored.
4947
4948  // FIXME: C++0x has some syntactic restrictions on friend type declarations
4949  // in [class.friend]p3 that we do not implement.
4950
4951  return FriendDecl::Create(Context, CurContext, FriendLoc, TSInfo, FriendLoc);
4952}
4953
4954/// Handle a friend type declaration.  This works in tandem with
4955/// ActOnTag.
4956///
4957/// Notes on friend class templates:
4958///
4959/// We generally treat friend class declarations as if they were
4960/// declaring a class.  So, for example, the elaborated type specifier
4961/// in a friend declaration is required to obey the restrictions of a
4962/// class-head (i.e. no typedefs in the scope chain), template
4963/// parameters are required to match up with simple template-ids, &c.
4964/// However, unlike when declaring a template specialization, it's
4965/// okay to refer to a template specialization without an empty
4966/// template parameter declaration, e.g.
4967///   friend class A<T>::B<unsigned>;
4968/// We permit this as a special case; if there are any template
4969/// parameters present at all, require proper matching, i.e.
4970///   template <> template <class T> friend class A<int>::B;
4971Sema::DeclPtrTy Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
4972                                          MultiTemplateParamsArg TempParams) {
4973  SourceLocation Loc = DS.getSourceRange().getBegin();
4974
4975  assert(DS.isFriendSpecified());
4976  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
4977
4978  // Try to convert the decl specifier to a type.  This works for
4979  // friend templates because ActOnTag never produces a ClassTemplateDecl
4980  // for a TUK_Friend.
4981  Declarator TheDeclarator(DS, Declarator::MemberContext);
4982  TypeSourceInfo *TSI;
4983  QualType T = GetTypeForDeclarator(TheDeclarator, S, &TSI);
4984  if (TheDeclarator.isInvalidType())
4985    return DeclPtrTy();
4986
4987  if (!TSI)
4988    TSI = Context.getTrivialTypeSourceInfo(T, DS.getSourceRange().getBegin());
4989
4990  // This is definitely an error in C++98.  It's probably meant to
4991  // be forbidden in C++0x, too, but the specification is just
4992  // poorly written.
4993  //
4994  // The problem is with declarations like the following:
4995  //   template <T> friend A<T>::foo;
4996  // where deciding whether a class C is a friend or not now hinges
4997  // on whether there exists an instantiation of A that causes
4998  // 'foo' to equal C.  There are restrictions on class-heads
4999  // (which we declare (by fiat) elaborated friend declarations to
5000  // be) that makes this tractable.
5001  //
5002  // FIXME: handle "template <> friend class A<T>;", which
5003  // is possibly well-formed?  Who even knows?
5004  if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
5005    Diag(Loc, diag::err_tagless_friend_type_template)
5006      << DS.getSourceRange();
5007    return DeclPtrTy();
5008  }
5009
5010  // C++98 [class.friend]p1: A friend of a class is a function
5011  //   or class that is not a member of the class . . .
5012  // This is fixed in DR77, which just barely didn't make the C++03
5013  // deadline.  It's also a very silly restriction that seriously
5014  // affects inner classes and which nobody else seems to implement;
5015  // thus we never diagnose it, not even in -pedantic.
5016  //
5017  // But note that we could warn about it: it's always useless to
5018  // friend one of your own members (it's not, however, worthless to
5019  // friend a member of an arbitrary specialization of your template).
5020
5021  Decl *D;
5022  if (unsigned NumTempParamLists = TempParams.size())
5023    D = FriendTemplateDecl::Create(Context, CurContext, Loc,
5024                                   NumTempParamLists,
5025                                 (TemplateParameterList**) TempParams.release(),
5026                                   TSI,
5027                                   DS.getFriendSpecLoc());
5028  else
5029    D = CheckFriendTypeDecl(DS.getFriendSpecLoc(), TSI);
5030
5031  if (!D)
5032    return DeclPtrTy();
5033
5034  D->setAccess(AS_public);
5035  CurContext->addDecl(D);
5036
5037  return DeclPtrTy::make(D);
5038}
5039
5040Sema::DeclPtrTy
5041Sema::ActOnFriendFunctionDecl(Scope *S,
5042                              Declarator &D,
5043                              bool IsDefinition,
5044                              MultiTemplateParamsArg TemplateParams) {
5045  const DeclSpec &DS = D.getDeclSpec();
5046
5047  assert(DS.isFriendSpecified());
5048  assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
5049
5050  SourceLocation Loc = D.getIdentifierLoc();
5051  TypeSourceInfo *TInfo = 0;
5052  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5053
5054  // C++ [class.friend]p1
5055  //   A friend of a class is a function or class....
5056  // Note that this sees through typedefs, which is intended.
5057  // It *doesn't* see through dependent types, which is correct
5058  // according to [temp.arg.type]p3:
5059  //   If a declaration acquires a function type through a
5060  //   type dependent on a template-parameter and this causes
5061  //   a declaration that does not use the syntactic form of a
5062  //   function declarator to have a function type, the program
5063  //   is ill-formed.
5064  if (!T->isFunctionType()) {
5065    Diag(Loc, diag::err_unexpected_friend);
5066
5067    // It might be worthwhile to try to recover by creating an
5068    // appropriate declaration.
5069    return DeclPtrTy();
5070  }
5071
5072  // C++ [namespace.memdef]p3
5073  //  - If a friend declaration in a non-local class first declares a
5074  //    class or function, the friend class or function is a member
5075  //    of the innermost enclosing namespace.
5076  //  - The name of the friend is not found by simple name lookup
5077  //    until a matching declaration is provided in that namespace
5078  //    scope (either before or after the class declaration granting
5079  //    friendship).
5080  //  - If a friend function is called, its name may be found by the
5081  //    name lookup that considers functions from namespaces and
5082  //    classes associated with the types of the function arguments.
5083  //  - When looking for a prior declaration of a class or a function
5084  //    declared as a friend, scopes outside the innermost enclosing
5085  //    namespace scope are not considered.
5086
5087  CXXScopeSpec &ScopeQual = D.getCXXScopeSpec();
5088  DeclarationName Name = GetNameForDeclarator(D);
5089  assert(Name);
5090
5091  // The context we found the declaration in, or in which we should
5092  // create the declaration.
5093  DeclContext *DC;
5094
5095  // FIXME: handle local classes
5096
5097  // Recover from invalid scope qualifiers as if they just weren't there.
5098  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
5099                        ForRedeclaration);
5100  if (!ScopeQual.isInvalid() && ScopeQual.isSet()) {
5101    // FIXME: RequireCompleteDeclContext
5102    DC = computeDeclContext(ScopeQual);
5103
5104    // FIXME: handle dependent contexts
5105    if (!DC) return DeclPtrTy();
5106
5107    LookupQualifiedName(Previous, DC);
5108
5109    // If searching in that context implicitly found a declaration in
5110    // a different context, treat it like it wasn't found at all.
5111    // TODO: better diagnostics for this case.  Suggesting the right
5112    // qualified scope would be nice...
5113    // FIXME: getRepresentativeDecl() is not right here at all
5114    if (Previous.empty() ||
5115        !Previous.getRepresentativeDecl()->getDeclContext()->Equals(DC)) {
5116      D.setInvalidType();
5117      Diag(Loc, diag::err_qualified_friend_not_found) << Name << T;
5118      return DeclPtrTy();
5119    }
5120
5121    // C++ [class.friend]p1: A friend of a class is a function or
5122    //   class that is not a member of the class . . .
5123    if (DC->Equals(CurContext))
5124      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5125
5126  // Otherwise walk out to the nearest namespace scope looking for matches.
5127  } else {
5128    // TODO: handle local class contexts.
5129
5130    DC = CurContext;
5131    while (true) {
5132      // Skip class contexts.  If someone can cite chapter and verse
5133      // for this behavior, that would be nice --- it's what GCC and
5134      // EDG do, and it seems like a reasonable intent, but the spec
5135      // really only says that checks for unqualified existing
5136      // declarations should stop at the nearest enclosing namespace,
5137      // not that they should only consider the nearest enclosing
5138      // namespace.
5139      while (DC->isRecord())
5140        DC = DC->getParent();
5141
5142      LookupQualifiedName(Previous, DC);
5143
5144      // TODO: decide what we think about using declarations.
5145      if (!Previous.empty())
5146        break;
5147
5148      if (DC->isFileContext()) break;
5149      DC = DC->getParent();
5150    }
5151
5152    // C++ [class.friend]p1: A friend of a class is a function or
5153    //   class that is not a member of the class . . .
5154    // C++0x changes this for both friend types and functions.
5155    // Most C++ 98 compilers do seem to give an error here, so
5156    // we do, too.
5157    if (!Previous.empty() && DC->Equals(CurContext)
5158        && !getLangOptions().CPlusPlus0x)
5159      Diag(DS.getFriendSpecLoc(), diag::err_friend_is_member);
5160  }
5161
5162  if (DC->isFileContext()) {
5163    // This implies that it has to be an operator or function.
5164    if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
5165        D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
5166        D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
5167      Diag(Loc, diag::err_introducing_special_friend) <<
5168        (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
5169         D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
5170      return DeclPtrTy();
5171    }
5172  }
5173
5174  bool Redeclaration = false;
5175  NamedDecl *ND = ActOnFunctionDeclarator(S, D, DC, T, TInfo, Previous,
5176                                          move(TemplateParams),
5177                                          IsDefinition,
5178                                          Redeclaration);
5179  if (!ND) return DeclPtrTy();
5180
5181  assert(ND->getDeclContext() == DC);
5182  assert(ND->getLexicalDeclContext() == CurContext);
5183
5184  // Add the function declaration to the appropriate lookup tables,
5185  // adjusting the redeclarations list as necessary.  We don't
5186  // want to do this yet if the friending class is dependent.
5187  //
5188  // Also update the scope-based lookup if the target context's
5189  // lookup context is in lexical scope.
5190  if (!CurContext->isDependentContext()) {
5191    DC = DC->getLookupContext();
5192    DC->makeDeclVisibleInContext(ND, /* Recoverable=*/ false);
5193    if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5194      PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
5195  }
5196
5197  FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
5198                                       D.getIdentifierLoc(), ND,
5199                                       DS.getFriendSpecLoc());
5200  FrD->setAccess(AS_public);
5201  CurContext->addDecl(FrD);
5202
5203  return DeclPtrTy::make(ND);
5204}
5205
5206void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) {
5207  AdjustDeclIfTemplate(dcl);
5208
5209  Decl *Dcl = dcl.getAs<Decl>();
5210  FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl);
5211  if (!Fn) {
5212    Diag(DelLoc, diag::err_deleted_non_function);
5213    return;
5214  }
5215  if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) {
5216    Diag(DelLoc, diag::err_deleted_decl_not_first);
5217    Diag(Prev->getLocation(), diag::note_previous_declaration);
5218    // If the declaration wasn't the first, we delete the function anyway for
5219    // recovery.
5220  }
5221  Fn->setDeleted();
5222}
5223
5224static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
5225  for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E;
5226       ++CI) {
5227    Stmt *SubStmt = *CI;
5228    if (!SubStmt)
5229      continue;
5230    if (isa<ReturnStmt>(SubStmt))
5231      Self.Diag(SubStmt->getSourceRange().getBegin(),
5232           diag::err_return_in_constructor_handler);
5233    if (!isa<Expr>(SubStmt))
5234      SearchForReturnInStmt(Self, SubStmt);
5235  }
5236}
5237
5238void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
5239  for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
5240    CXXCatchStmt *Handler = TryBlock->getHandler(I);
5241    SearchForReturnInStmt(*this, Handler);
5242  }
5243}
5244
5245bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
5246                                             const CXXMethodDecl *Old) {
5247  QualType NewTy = New->getType()->getAs<FunctionType>()->getResultType();
5248  QualType OldTy = Old->getType()->getAs<FunctionType>()->getResultType();
5249
5250  if (Context.hasSameType(NewTy, OldTy) ||
5251      NewTy->isDependentType() || OldTy->isDependentType())
5252    return false;
5253
5254  // Check if the return types are covariant
5255  QualType NewClassTy, OldClassTy;
5256
5257  /// Both types must be pointers or references to classes.
5258  if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
5259    if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
5260      NewClassTy = NewPT->getPointeeType();
5261      OldClassTy = OldPT->getPointeeType();
5262    }
5263  } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
5264    if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
5265      if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
5266        NewClassTy = NewRT->getPointeeType();
5267        OldClassTy = OldRT->getPointeeType();
5268      }
5269    }
5270  }
5271
5272  // The return types aren't either both pointers or references to a class type.
5273  if (NewClassTy.isNull()) {
5274    Diag(New->getLocation(),
5275         diag::err_different_return_type_for_overriding_virtual_function)
5276      << New->getDeclName() << NewTy << OldTy;
5277    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5278
5279    return true;
5280  }
5281
5282  // C++ [class.virtual]p6:
5283  //   If the return type of D::f differs from the return type of B::f, the
5284  //   class type in the return type of D::f shall be complete at the point of
5285  //   declaration of D::f or shall be the class type D.
5286  if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
5287    if (!RT->isBeingDefined() &&
5288        RequireCompleteType(New->getLocation(), NewClassTy,
5289                            PDiag(diag::err_covariant_return_incomplete)
5290                              << New->getDeclName()))
5291    return true;
5292  }
5293
5294  if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
5295    // Check if the new class derives from the old class.
5296    if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
5297      Diag(New->getLocation(),
5298           diag::err_covariant_return_not_derived)
5299      << New->getDeclName() << NewTy << OldTy;
5300      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5301      return true;
5302    }
5303
5304    // Check if we the conversion from derived to base is valid.
5305    if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy,
5306                      diag::err_covariant_return_inaccessible_base,
5307                      diag::err_covariant_return_ambiguous_derived_to_base_conv,
5308                      // FIXME: Should this point to the return type?
5309                      New->getLocation(), SourceRange(), New->getDeclName())) {
5310      Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5311      return true;
5312    }
5313  }
5314
5315  // The qualifiers of the return types must be the same.
5316  if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
5317    Diag(New->getLocation(),
5318         diag::err_covariant_return_type_different_qualifications)
5319    << New->getDeclName() << NewTy << OldTy;
5320    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5321    return true;
5322  };
5323
5324
5325  // The new class type must have the same or less qualifiers as the old type.
5326  if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
5327    Diag(New->getLocation(),
5328         diag::err_covariant_return_type_class_type_more_qualified)
5329    << New->getDeclName() << NewTy << OldTy;
5330    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5331    return true;
5332  };
5333
5334  return false;
5335}
5336
5337bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
5338                                             const CXXMethodDecl *Old)
5339{
5340  if (Old->hasAttr<FinalAttr>()) {
5341    Diag(New->getLocation(), diag::err_final_function_overridden)
5342      << New->getDeclName();
5343    Diag(Old->getLocation(), diag::note_overridden_virtual_function);
5344    return true;
5345  }
5346
5347  return false;
5348}
5349
5350/// \brief Mark the given method pure.
5351///
5352/// \param Method the method to be marked pure.
5353///
5354/// \param InitRange the source range that covers the "0" initializer.
5355bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
5356  if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
5357    Method->setPure();
5358
5359    // A class is abstract if at least one function is pure virtual.
5360    Method->getParent()->setAbstract(true);
5361    return false;
5362  }
5363
5364  if (!Method->isInvalidDecl())
5365    Diag(Method->getLocation(), diag::err_non_virtual_pure)
5366      << Method->getDeclName() << InitRange;
5367  return true;
5368}
5369
5370/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
5371/// an initializer for the out-of-line declaration 'Dcl'.  The scope
5372/// is a fresh scope pushed for just this purpose.
5373///
5374/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
5375/// static data member of class X, names should be looked up in the scope of
5376/// class X.
5377void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5378  // If there is no declaration, there was an error parsing it.
5379  Decl *D = Dcl.getAs<Decl>();
5380  if (D == 0) return;
5381
5382  // We should only get called for declarations with scope specifiers, like:
5383  //   int foo::bar;
5384  assert(D->isOutOfLine());
5385  EnterDeclaratorContext(S, D->getDeclContext());
5386}
5387
5388/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
5389/// initializer for the out-of-line declaration 'Dcl'.
5390void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
5391  // If there is no declaration, there was an error parsing it.
5392  Decl *D = Dcl.getAs<Decl>();
5393  if (D == 0) return;
5394
5395  assert(D->isOutOfLine());
5396  ExitDeclaratorContext(S);
5397}
5398
5399/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
5400/// C++ if/switch/while/for statement.
5401/// e.g: "if (int x = f()) {...}"
5402Action::DeclResult
5403Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
5404  // C++ 6.4p2:
5405  // The declarator shall not specify a function or an array.
5406  // The type-specifier-seq shall not contain typedef and shall not declare a
5407  // new class or enumeration.
5408  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5409         "Parser allowed 'typedef' as storage class of condition decl.");
5410
5411  TypeSourceInfo *TInfo = 0;
5412  TagDecl *OwnedTag = 0;
5413  QualType Ty = GetTypeForDeclarator(D, S, &TInfo, &OwnedTag);
5414
5415  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
5416                              // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
5417                              // would be created and CXXConditionDeclExpr wants a VarDecl.
5418    Diag(D.getIdentifierLoc(), diag::err_invalid_use_of_function_type)
5419      << D.getSourceRange();
5420    return DeclResult();
5421  } else if (OwnedTag && OwnedTag->isDefinition()) {
5422    // The type-specifier-seq shall not declare a new class or enumeration.
5423    Diag(OwnedTag->getLocation(), diag::err_type_defined_in_condition);
5424  }
5425
5426  DeclPtrTy Dcl = ActOnDeclarator(S, D);
5427  if (!Dcl)
5428    return DeclResult();
5429
5430  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
5431  VD->setDeclaredInCondition(true);
5432  return Dcl;
5433}
5434
5435static bool needsVtable(CXXMethodDecl *MD, ASTContext &Context) {
5436  // Ignore dependent types.
5437  if (MD->isDependentContext())
5438    return false;
5439
5440  // Ignore declarations that are not definitions.
5441  if (!MD->isThisDeclarationADefinition())
5442    return false;
5443
5444  CXXRecordDecl *RD = MD->getParent();
5445
5446  // Ignore classes without a vtable.
5447  if (!RD->isDynamicClass())
5448    return false;
5449
5450  switch (MD->getParent()->getTemplateSpecializationKind()) {
5451  case TSK_Undeclared:
5452  case TSK_ExplicitSpecialization:
5453    // Classes that aren't instantiations of templates don't need their
5454    // virtual methods marked until we see the definition of the key
5455    // function.
5456    break;
5457
5458  case TSK_ImplicitInstantiation:
5459    // This is a constructor of a class template; mark all of the virtual
5460    // members as referenced to ensure that they get instantiatied.
5461    if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
5462      return true;
5463    break;
5464
5465  case TSK_ExplicitInstantiationDeclaration:
5466    return false;
5467
5468  case TSK_ExplicitInstantiationDefinition:
5469    // This is method of a explicit instantiation; mark all of the virtual
5470    // members as referenced to ensure that they get instantiatied.
5471    return true;
5472  }
5473
5474  // Consider only out-of-line definitions of member functions. When we see
5475  // an inline definition, it's too early to compute the key function.
5476  if (!MD->isOutOfLine())
5477    return false;
5478
5479  const CXXMethodDecl *KeyFunction = Context.getKeyFunction(RD);
5480
5481  // If there is no key function, we will need a copy of the vtable.
5482  if (!KeyFunction)
5483    return true;
5484
5485  // If this is the key function, we need to mark virtual members.
5486  if (KeyFunction->getCanonicalDecl() == MD->getCanonicalDecl())
5487    return true;
5488
5489  return false;
5490}
5491
5492void Sema::MaybeMarkVirtualMembersReferenced(SourceLocation Loc,
5493                                             CXXMethodDecl *MD) {
5494  CXXRecordDecl *RD = MD->getParent();
5495
5496  // We will need to mark all of the virtual members as referenced to build the
5497  // vtable.
5498  if (!needsVtable(MD, Context))
5499    return;
5500
5501  TemplateSpecializationKind kind = RD->getTemplateSpecializationKind();
5502  if (kind == TSK_ImplicitInstantiation)
5503    ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(RD, Loc));
5504  else
5505    MarkVirtualMembersReferenced(Loc, RD);
5506}
5507
5508bool Sema::ProcessPendingClassesWithUnmarkedVirtualMembers() {
5509  if (ClassesWithUnmarkedVirtualMembers.empty())
5510    return false;
5511
5512  while (!ClassesWithUnmarkedVirtualMembers.empty()) {
5513    CXXRecordDecl *RD = ClassesWithUnmarkedVirtualMembers.back().first;
5514    SourceLocation Loc = ClassesWithUnmarkedVirtualMembers.back().second;
5515    ClassesWithUnmarkedVirtualMembers.pop_back();
5516    MarkVirtualMembersReferenced(Loc, RD);
5517  }
5518
5519  return true;
5520}
5521
5522void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
5523                                        const CXXRecordDecl *RD) {
5524  for (CXXRecordDecl::method_iterator i = RD->method_begin(),
5525       e = RD->method_end(); i != e; ++i) {
5526    CXXMethodDecl *MD = *i;
5527
5528    // C++ [basic.def.odr]p2:
5529    //   [...] A virtual member function is used if it is not pure. [...]
5530    if (MD->isVirtual() && !MD->isPure())
5531      MarkDeclarationReferenced(Loc, MD);
5532  }
5533
5534  // Only classes that have virtual bases need a VTT.
5535  if (RD->getNumVBases() == 0)
5536    return;
5537
5538  for (CXXRecordDecl::base_class_const_iterator i = RD->bases_begin(),
5539           e = RD->bases_end(); i != e; ++i) {
5540    const CXXRecordDecl *Base =
5541        cast<CXXRecordDecl>(i->getType()->getAs<RecordType>()->getDecl());
5542    if (i->isVirtual())
5543      continue;
5544    if (Base->getNumVBases() == 0)
5545      continue;
5546    MarkVirtualMembersReferenced(Loc, Base);
5547  }
5548}
5549