1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/DataRecursiveASTVisitor.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/Basic/SourceManager.h"
23#include "clang/Sema/DeclSpec.h"
24#include "clang/Sema/ExternalSemaSource.h"
25#include "clang/Sema/Lookup.h"
26#include "clang/Sema/Scope.h"
27#include "clang/Sema/ScopeInfo.h"
28#include "llvm/ADT/DenseSet.h"
29
30using namespace clang;
31
32/// Check whether the given method, which must be in the 'init'
33/// family, is a valid member of that family.
34///
35/// \param receiverTypeIfCall - if null, check this as if declaring it;
36///   if non-null, check this as if making a call to it with the given
37///   receiver type
38///
39/// \return true to indicate that there was an error and appropriate
40///   actions were taken
41bool Sema::checkInitMethod(ObjCMethodDecl *method,
42                           QualType receiverTypeIfCall) {
43  if (method->isInvalidDecl()) return true;
44
45  // This castAs is safe: methods that don't return an object
46  // pointer won't be inferred as inits and will reject an explicit
47  // objc_method_family(init).
48
49  // We ignore protocols here.  Should we?  What about Class?
50
51  const ObjCObjectType *result =
52      method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
53
54  if (result->isObjCId()) {
55    return false;
56  } else if (result->isObjCClass()) {
57    // fall through: always an error
58  } else {
59    ObjCInterfaceDecl *resultClass = result->getInterface();
60    assert(resultClass && "unexpected object type!");
61
62    // It's okay for the result type to still be a forward declaration
63    // if we're checking an interface declaration.
64    if (!resultClass->hasDefinition()) {
65      if (receiverTypeIfCall.isNull() &&
66          !isa<ObjCImplementationDecl>(method->getDeclContext()))
67        return false;
68
69    // Otherwise, we try to compare class types.
70    } else {
71      // If this method was declared in a protocol, we can't check
72      // anything unless we have a receiver type that's an interface.
73      const ObjCInterfaceDecl *receiverClass = nullptr;
74      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
75        if (receiverTypeIfCall.isNull())
76          return false;
77
78        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
79          ->getInterfaceDecl();
80
81        // This can be null for calls to e.g. id<Foo>.
82        if (!receiverClass) return false;
83      } else {
84        receiverClass = method->getClassInterface();
85        assert(receiverClass && "method not associated with a class!");
86      }
87
88      // If either class is a subclass of the other, it's fine.
89      if (receiverClass->isSuperClassOf(resultClass) ||
90          resultClass->isSuperClassOf(receiverClass))
91        return false;
92    }
93  }
94
95  SourceLocation loc = method->getLocation();
96
97  // If we're in a system header, and this is not a call, just make
98  // the method unusable.
99  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
100    method->addAttr(UnavailableAttr::CreateImplicit(Context,
101                "init method returns a type unrelated to its receiver type",
102                loc));
103    return true;
104  }
105
106  // Otherwise, it's an error.
107  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108  method->setInvalidDecl();
109  return true;
110}
111
112void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
113                                   const ObjCMethodDecl *Overridden) {
114  if (Overridden->hasRelatedResultType() &&
115      !NewMethod->hasRelatedResultType()) {
116    // This can only happen when the method follows a naming convention that
117    // implies a related result type, and the original (overridden) method has
118    // a suitable return type, but the new (overriding) method does not have
119    // a suitable return type.
120    QualType ResultType = NewMethod->getReturnType();
121    SourceRange ResultTypeRange;
122    if (const TypeSourceInfo *ResultTypeInfo =
123            NewMethod->getReturnTypeSourceInfo())
124      ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
125
126    // Figure out which class this method is part of, if any.
127    ObjCInterfaceDecl *CurrentClass
128      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
129    if (!CurrentClass) {
130      DeclContext *DC = NewMethod->getDeclContext();
131      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
132        CurrentClass = Cat->getClassInterface();
133      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
134        CurrentClass = Impl->getClassInterface();
135      else if (ObjCCategoryImplDecl *CatImpl
136               = dyn_cast<ObjCCategoryImplDecl>(DC))
137        CurrentClass = CatImpl->getClassInterface();
138    }
139
140    if (CurrentClass) {
141      Diag(NewMethod->getLocation(),
142           diag::warn_related_result_type_compatibility_class)
143        << Context.getObjCInterfaceType(CurrentClass)
144        << ResultType
145        << ResultTypeRange;
146    } else {
147      Diag(NewMethod->getLocation(),
148           diag::warn_related_result_type_compatibility_protocol)
149        << ResultType
150        << ResultTypeRange;
151    }
152
153    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
154      Diag(Overridden->getLocation(),
155           diag::note_related_result_type_family)
156        << /*overridden method*/ 0
157        << Family;
158    else
159      Diag(Overridden->getLocation(),
160           diag::note_related_result_type_overridden);
161  }
162  if (getLangOpts().ObjCAutoRefCount) {
163    if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
164         Overridden->hasAttr<NSReturnsRetainedAttr>())) {
165        Diag(NewMethod->getLocation(),
166             diag::err_nsreturns_retained_attribute_mismatch) << 1;
167        Diag(Overridden->getLocation(), diag::note_previous_decl)
168        << "method";
169    }
170    if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
171              Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
172        Diag(NewMethod->getLocation(),
173             diag::err_nsreturns_retained_attribute_mismatch) << 0;
174        Diag(Overridden->getLocation(), diag::note_previous_decl)
175        << "method";
176    }
177    ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
178                                         oe = Overridden->param_end();
179    for (ObjCMethodDecl::param_iterator
180           ni = NewMethod->param_begin(), ne = NewMethod->param_end();
181         ni != ne && oi != oe; ++ni, ++oi) {
182      const ParmVarDecl *oldDecl = (*oi);
183      ParmVarDecl *newDecl = (*ni);
184      if (newDecl->hasAttr<NSConsumedAttr>() !=
185          oldDecl->hasAttr<NSConsumedAttr>()) {
186        Diag(newDecl->getLocation(),
187             diag::err_nsconsumed_attribute_mismatch);
188        Diag(oldDecl->getLocation(), diag::note_previous_decl)
189          << "parameter";
190      }
191    }
192  }
193}
194
195/// \brief Check a method declaration for compatibility with the Objective-C
196/// ARC conventions.
197bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
198  ObjCMethodFamily family = method->getMethodFamily();
199  switch (family) {
200  case OMF_None:
201  case OMF_finalize:
202  case OMF_retain:
203  case OMF_release:
204  case OMF_autorelease:
205  case OMF_retainCount:
206  case OMF_self:
207  case OMF_performSelector:
208    return false;
209
210  case OMF_dealloc:
211    if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
212      SourceRange ResultTypeRange;
213      if (const TypeSourceInfo *ResultTypeInfo =
214              method->getReturnTypeSourceInfo())
215        ResultTypeRange = ResultTypeInfo->getTypeLoc().getSourceRange();
216      if (ResultTypeRange.isInvalid())
217        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
218            << method->getReturnType()
219            << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
220      else
221        Diag(method->getLocation(), diag::error_dealloc_bad_result_type)
222            << method->getReturnType()
223            << FixItHint::CreateReplacement(ResultTypeRange, "void");
224      return true;
225    }
226    return false;
227
228  case OMF_init:
229    // If the method doesn't obey the init rules, don't bother annotating it.
230    if (checkInitMethod(method, QualType()))
231      return true;
232
233    method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
234
235    // Don't add a second copy of this attribute, but otherwise don't
236    // let it be suppressed.
237    if (method->hasAttr<NSReturnsRetainedAttr>())
238      return false;
239    break;
240
241  case OMF_alloc:
242  case OMF_copy:
243  case OMF_mutableCopy:
244  case OMF_new:
245    if (method->hasAttr<NSReturnsRetainedAttr>() ||
246        method->hasAttr<NSReturnsNotRetainedAttr>() ||
247        method->hasAttr<NSReturnsAutoreleasedAttr>())
248      return false;
249    break;
250  }
251
252  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
253  return false;
254}
255
256static void DiagnoseObjCImplementedDeprecations(Sema &S,
257                                                NamedDecl *ND,
258                                                SourceLocation ImplLoc,
259                                                int select) {
260  if (ND && ND->isDeprecated()) {
261    S.Diag(ImplLoc, diag::warn_deprecated_def) << select;
262    if (select == 0)
263      S.Diag(ND->getLocation(), diag::note_method_declared_at)
264        << ND->getDeclName();
265    else
266      S.Diag(ND->getLocation(), diag::note_previous_decl) << "class";
267  }
268}
269
270/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
271/// pool.
272void Sema::AddAnyMethodToGlobalPool(Decl *D) {
273  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
274
275  // If we don't have a valid method decl, simply return.
276  if (!MDecl)
277    return;
278  if (MDecl->isInstanceMethod())
279    AddInstanceMethodToGlobalPool(MDecl, true);
280  else
281    AddFactoryMethodToGlobalPool(MDecl, true);
282}
283
284/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
285/// has explicit ownership attribute; false otherwise.
286static bool
287HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
288  QualType T = Param->getType();
289
290  if (const PointerType *PT = T->getAs<PointerType>()) {
291    T = PT->getPointeeType();
292  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
293    T = RT->getPointeeType();
294  } else {
295    return true;
296  }
297
298  // If we have a lifetime qualifier, but it's local, we must have
299  // inferred it. So, it is implicit.
300  return !T.getLocalQualifiers().hasObjCLifetime();
301}
302
303/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
304/// and user declared, in the method definition's AST.
305void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
306  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
307  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
308
309  // If we don't have a valid method decl, simply return.
310  if (!MDecl)
311    return;
312
313  // Allow all of Sema to see that we are entering a method definition.
314  PushDeclContext(FnBodyScope, MDecl);
315  PushFunctionScope();
316
317  // Create Decl objects for each parameter, entrring them in the scope for
318  // binding to their use.
319
320  // Insert the invisible arguments, self and _cmd!
321  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
322
323  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
324  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
325
326  // The ObjC parser requires parameter names so there's no need to check.
327  CheckParmsForFunctionDef(MDecl->param_begin(), MDecl->param_end(),
328                           /*CheckParameterNames=*/false);
329
330  // Introduce all of the other parameters into this scope.
331  for (auto *Param : MDecl->params()) {
332    if (!Param->isInvalidDecl() &&
333        getLangOpts().ObjCAutoRefCount &&
334        !HasExplicitOwnershipAttr(*this, Param))
335      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
336            Param->getType();
337
338    if (Param->getIdentifier())
339      PushOnScopeChains(Param, FnBodyScope);
340  }
341
342  // In ARC, disallow definition of retain/release/autorelease/retainCount
343  if (getLangOpts().ObjCAutoRefCount) {
344    switch (MDecl->getMethodFamily()) {
345    case OMF_retain:
346    case OMF_retainCount:
347    case OMF_release:
348    case OMF_autorelease:
349      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
350        << 0 << MDecl->getSelector();
351      break;
352
353    case OMF_None:
354    case OMF_dealloc:
355    case OMF_finalize:
356    case OMF_alloc:
357    case OMF_init:
358    case OMF_mutableCopy:
359    case OMF_copy:
360    case OMF_new:
361    case OMF_self:
362    case OMF_performSelector:
363      break;
364    }
365  }
366
367  // Warn on deprecated methods under -Wdeprecated-implementations,
368  // and prepare for warning on missing super calls.
369  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
370    ObjCMethodDecl *IMD =
371      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
372
373    if (IMD) {
374      ObjCImplDecl *ImplDeclOfMethodDef =
375        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
376      ObjCContainerDecl *ContDeclOfMethodDecl =
377        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
378      ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
379      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
380        ImplDeclOfMethodDecl = OID->getImplementation();
381      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
382        if (CD->IsClassExtension()) {
383          if (ObjCInterfaceDecl *OID = CD->getClassInterface())
384            ImplDeclOfMethodDecl = OID->getImplementation();
385        } else
386            ImplDeclOfMethodDecl = CD->getImplementation();
387      }
388      // No need to issue deprecated warning if deprecated mehod in class/category
389      // is being implemented in its own implementation (no overriding is involved).
390      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
391        DiagnoseObjCImplementedDeprecations(*this,
392                                          dyn_cast<NamedDecl>(IMD),
393                                          MDecl->getLocation(), 0);
394    }
395
396    if (MDecl->getMethodFamily() == OMF_init) {
397      if (MDecl->isDesignatedInitializerForTheInterface()) {
398        getCurFunction()->ObjCIsDesignatedInit = true;
399        getCurFunction()->ObjCWarnForNoDesignatedInitChain =
400            IC->getSuperClass() != nullptr;
401      } else if (IC->hasDesignatedInitializers()) {
402        getCurFunction()->ObjCIsSecondaryInit = true;
403        getCurFunction()->ObjCWarnForNoInitDelegation = true;
404      }
405    }
406
407    // If this is "dealloc" or "finalize", set some bit here.
408    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
409    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
410    // Only do this if the current class actually has a superclass.
411    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
412      ObjCMethodFamily Family = MDecl->getMethodFamily();
413      if (Family == OMF_dealloc) {
414        if (!(getLangOpts().ObjCAutoRefCount ||
415              getLangOpts().getGC() == LangOptions::GCOnly))
416          getCurFunction()->ObjCShouldCallSuper = true;
417
418      } else if (Family == OMF_finalize) {
419        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
420          getCurFunction()->ObjCShouldCallSuper = true;
421
422      } else {
423        const ObjCMethodDecl *SuperMethod =
424          SuperClass->lookupMethod(MDecl->getSelector(),
425                                   MDecl->isInstanceMethod());
426        getCurFunction()->ObjCShouldCallSuper =
427          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
428      }
429    }
430  }
431}
432
433namespace {
434
435// Callback to only accept typo corrections that are Objective-C classes.
436// If an ObjCInterfaceDecl* is given to the constructor, then the validation
437// function will reject corrections to that class.
438class ObjCInterfaceValidatorCCC : public CorrectionCandidateCallback {
439 public:
440  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
441  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
442      : CurrentIDecl(IDecl) {}
443
444  bool ValidateCandidate(const TypoCorrection &candidate) override {
445    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
446    return ID && !declaresSameEntity(ID, CurrentIDecl);
447  }
448
449 private:
450  ObjCInterfaceDecl *CurrentIDecl;
451};
452
453}
454
455Decl *Sema::
456ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
457                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
458                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
459                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
460                         const SourceLocation *ProtoLocs,
461                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
462  assert(ClassName && "Missing class identifier");
463
464  // Check for another declaration kind with the same name.
465  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
466                                         LookupOrdinaryName, ForRedeclaration);
467
468  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
469    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
470    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
471  }
472
473  // Create a declaration to describe this @interface.
474  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
475
476  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
477    // A previous decl with a different name is because of
478    // @compatibility_alias, for example:
479    // \code
480    //   @class NewImage;
481    //   @compatibility_alias OldImage NewImage;
482    // \endcode
483    // A lookup for 'OldImage' will return the 'NewImage' decl.
484    //
485    // In such a case use the real declaration name, instead of the alias one,
486    // otherwise we will break IdentifierResolver and redecls-chain invariants.
487    // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
488    // has been aliased.
489    ClassName = PrevIDecl->getIdentifier();
490  }
491
492  ObjCInterfaceDecl *IDecl
493    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
494                                PrevIDecl, ClassLoc);
495
496  if (PrevIDecl) {
497    // Class already seen. Was it a definition?
498    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
499      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
500        << PrevIDecl->getDeclName();
501      Diag(Def->getLocation(), diag::note_previous_definition);
502      IDecl->setInvalidDecl();
503    }
504  }
505
506  if (AttrList)
507    ProcessDeclAttributeList(TUScope, IDecl, AttrList);
508  PushOnScopeChains(IDecl, TUScope);
509
510  // Start the definition of this class. If we're in a redefinition case, there
511  // may already be a definition, so we'll end up adding to it.
512  if (!IDecl->hasDefinition())
513    IDecl->startDefinition();
514
515  if (SuperName) {
516    // Check if a different kind of symbol declared in this scope.
517    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
518                                LookupOrdinaryName);
519
520    if (!PrevDecl) {
521      // Try to correct for a typo in the superclass name without correcting
522      // to the class we're defining.
523      ObjCInterfaceValidatorCCC Validator(IDecl);
524      if (TypoCorrection Corrected = CorrectTypo(
525          DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName, TUScope,
526          nullptr, Validator, CTK_ErrorRecovery)) {
527        diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
528                                    << SuperName << ClassName);
529        PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
530      }
531    }
532
533    if (declaresSameEntity(PrevDecl, IDecl)) {
534      Diag(SuperLoc, diag::err_recursive_superclass)
535        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
536      IDecl->setEndOfDefinitionLoc(ClassLoc);
537    } else {
538      ObjCInterfaceDecl *SuperClassDecl =
539                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
540
541      // Diagnose classes that inherit from deprecated classes.
542      if (SuperClassDecl)
543        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
544
545      if (PrevDecl && !SuperClassDecl) {
546        // The previous declaration was not a class decl. Check if we have a
547        // typedef. If we do, get the underlying class type.
548        if (const TypedefNameDecl *TDecl =
549              dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
550          QualType T = TDecl->getUnderlyingType();
551          if (T->isObjCObjectType()) {
552            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
553              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
554              // This handles the following case:
555              // @interface NewI @end
556              // typedef NewI DeprI __attribute__((deprecated("blah")))
557              // @interface SI : DeprI /* warn here */ @end
558              (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
559            }
560          }
561        }
562
563        // This handles the following case:
564        //
565        // typedef int SuperClass;
566        // @interface MyClass : SuperClass {} @end
567        //
568        if (!SuperClassDecl) {
569          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
570          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
571        }
572      }
573
574      if (!dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
575        if (!SuperClassDecl)
576          Diag(SuperLoc, diag::err_undef_superclass)
577            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
578        else if (RequireCompleteType(SuperLoc,
579                                  Context.getObjCInterfaceType(SuperClassDecl),
580                                     diag::err_forward_superclass,
581                                     SuperClassDecl->getDeclName(),
582                                     ClassName,
583                                     SourceRange(AtInterfaceLoc, ClassLoc))) {
584          SuperClassDecl = nullptr;
585        }
586      }
587      IDecl->setSuperClass(SuperClassDecl);
588      IDecl->setSuperClassLoc(SuperLoc);
589      IDecl->setEndOfDefinitionLoc(SuperLoc);
590    }
591  } else { // we have a root class.
592    IDecl->setEndOfDefinitionLoc(ClassLoc);
593  }
594
595  // Check then save referenced protocols.
596  if (NumProtoRefs) {
597    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
598                           ProtoLocs, Context);
599    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
600  }
601
602  CheckObjCDeclScope(IDecl);
603  return ActOnObjCContainerStartDefinition(IDecl);
604}
605
606/// ActOnTypedefedProtocols - this action finds protocol list as part of the
607/// typedef'ed use for a qualified super class and adds them to the list
608/// of the protocols.
609void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
610                                   IdentifierInfo *SuperName,
611                                   SourceLocation SuperLoc) {
612  if (!SuperName)
613    return;
614  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
615                                      LookupOrdinaryName);
616  if (!IDecl)
617    return;
618
619  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
620    QualType T = TDecl->getUnderlyingType();
621    if (T->isObjCObjectType())
622      if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>())
623        for (auto *I : OPT->quals())
624          ProtocolRefs.push_back(I);
625  }
626}
627
628/// ActOnCompatibilityAlias - this action is called after complete parsing of
629/// a \@compatibility_alias declaration. It sets up the alias relationships.
630Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
631                                    IdentifierInfo *AliasName,
632                                    SourceLocation AliasLocation,
633                                    IdentifierInfo *ClassName,
634                                    SourceLocation ClassLocation) {
635  // Look for previous declaration of alias name
636  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
637                                      LookupOrdinaryName, ForRedeclaration);
638  if (ADecl) {
639    Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
640    Diag(ADecl->getLocation(), diag::note_previous_declaration);
641    return nullptr;
642  }
643  // Check for class declaration
644  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
645                                       LookupOrdinaryName, ForRedeclaration);
646  if (const TypedefNameDecl *TDecl =
647        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
648    QualType T = TDecl->getUnderlyingType();
649    if (T->isObjCObjectType()) {
650      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
651        ClassName = IDecl->getIdentifier();
652        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
653                                  LookupOrdinaryName, ForRedeclaration);
654      }
655    }
656  }
657  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
658  if (!CDecl) {
659    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
660    if (CDeclU)
661      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
662    return nullptr;
663  }
664
665  // Everything checked out, instantiate a new alias declaration AST.
666  ObjCCompatibleAliasDecl *AliasDecl =
667    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
668
669  if (!CheckObjCDeclScope(AliasDecl))
670    PushOnScopeChains(AliasDecl, TUScope);
671
672  return AliasDecl;
673}
674
675bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
676  IdentifierInfo *PName,
677  SourceLocation &Ploc, SourceLocation PrevLoc,
678  const ObjCList<ObjCProtocolDecl> &PList) {
679
680  bool res = false;
681  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
682       E = PList.end(); I != E; ++I) {
683    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
684                                                 Ploc)) {
685      if (PDecl->getIdentifier() == PName) {
686        Diag(Ploc, diag::err_protocol_has_circular_dependency);
687        Diag(PrevLoc, diag::note_previous_definition);
688        res = true;
689      }
690
691      if (!PDecl->hasDefinition())
692        continue;
693
694      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
695            PDecl->getLocation(), PDecl->getReferencedProtocols()))
696        res = true;
697    }
698  }
699  return res;
700}
701
702Decl *
703Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
704                                  IdentifierInfo *ProtocolName,
705                                  SourceLocation ProtocolLoc,
706                                  Decl * const *ProtoRefs,
707                                  unsigned NumProtoRefs,
708                                  const SourceLocation *ProtoLocs,
709                                  SourceLocation EndProtoLoc,
710                                  AttributeList *AttrList) {
711  bool err = false;
712  // FIXME: Deal with AttrList.
713  assert(ProtocolName && "Missing protocol identifier");
714  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
715                                              ForRedeclaration);
716  ObjCProtocolDecl *PDecl = nullptr;
717  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
718    // If we already have a definition, complain.
719    Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
720    Diag(Def->getLocation(), diag::note_previous_definition);
721
722    // Create a new protocol that is completely distinct from previous
723    // declarations, and do not make this protocol available for name lookup.
724    // That way, we'll end up completely ignoring the duplicate.
725    // FIXME: Can we turn this into an error?
726    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
727                                     ProtocolLoc, AtProtoInterfaceLoc,
728                                     /*PrevDecl=*/nullptr);
729    PDecl->startDefinition();
730  } else {
731    if (PrevDecl) {
732      // Check for circular dependencies among protocol declarations. This can
733      // only happen if this protocol was forward-declared.
734      ObjCList<ObjCProtocolDecl> PList;
735      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
736      err = CheckForwardProtocolDeclarationForCircularDependency(
737              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
738    }
739
740    // Create the new declaration.
741    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
742                                     ProtocolLoc, AtProtoInterfaceLoc,
743                                     /*PrevDecl=*/PrevDecl);
744
745    PushOnScopeChains(PDecl, TUScope);
746    PDecl->startDefinition();
747  }
748
749  if (AttrList)
750    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
751
752  // Merge attributes from previous declarations.
753  if (PrevDecl)
754    mergeDeclAttributes(PDecl, PrevDecl);
755
756  if (!err && NumProtoRefs ) {
757    /// Check then save referenced protocols.
758    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
759                           ProtoLocs, Context);
760  }
761
762  CheckObjCDeclScope(PDecl);
763  return ActOnObjCContainerStartDefinition(PDecl);
764}
765
766static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
767                                          ObjCProtocolDecl *&UndefinedProtocol) {
768  if (!PDecl->hasDefinition() || PDecl->getDefinition()->isHidden()) {
769    UndefinedProtocol = PDecl;
770    return true;
771  }
772
773  for (auto *PI : PDecl->protocols())
774    if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
775      UndefinedProtocol = PI;
776      return true;
777    }
778  return false;
779}
780
781/// FindProtocolDeclaration - This routine looks up protocols and
782/// issues an error if they are not declared. It returns list of
783/// protocol declarations in its 'Protocols' argument.
784void
785Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
786                              const IdentifierLocPair *ProtocolId,
787                              unsigned NumProtocols,
788                              SmallVectorImpl<Decl *> &Protocols) {
789  for (unsigned i = 0; i != NumProtocols; ++i) {
790    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
791                                             ProtocolId[i].second);
792    if (!PDecl) {
793      DeclFilterCCC<ObjCProtocolDecl> Validator;
794      TypoCorrection Corrected = CorrectTypo(
795          DeclarationNameInfo(ProtocolId[i].first, ProtocolId[i].second),
796          LookupObjCProtocolName, TUScope, nullptr, Validator,
797          CTK_ErrorRecovery);
798      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
799        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
800                                    << ProtocolId[i].first);
801    }
802
803    if (!PDecl) {
804      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
805        << ProtocolId[i].first;
806      continue;
807    }
808    // If this is a forward protocol declaration, get its definition.
809    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
810      PDecl = PDecl->getDefinition();
811
812    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
813
814    // If this is a forward declaration and we are supposed to warn in this
815    // case, do it.
816    // FIXME: Recover nicely in the hidden case.
817    ObjCProtocolDecl *UndefinedProtocol;
818
819    if (WarnOnDeclarations &&
820        NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
821      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
822        << ProtocolId[i].first;
823      Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
824        << UndefinedProtocol;
825    }
826    Protocols.push_back(PDecl);
827  }
828}
829
830/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
831/// a class method in its extension.
832///
833void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
834                                            ObjCInterfaceDecl *ID) {
835  if (!ID)
836    return;  // Possibly due to previous error
837
838  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
839  for (auto *MD : ID->methods())
840    MethodMap[MD->getSelector()] = MD;
841
842  if (MethodMap.empty())
843    return;
844  for (const auto *Method : CAT->methods()) {
845    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
846    if (PrevMethod &&
847        (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
848        !MatchTwoMethodDeclarations(Method, PrevMethod)) {
849      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
850            << Method->getDeclName();
851      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
852    }
853  }
854}
855
856/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
857Sema::DeclGroupPtrTy
858Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
859                                      const IdentifierLocPair *IdentList,
860                                      unsigned NumElts,
861                                      AttributeList *attrList) {
862  SmallVector<Decl *, 8> DeclsInGroup;
863  for (unsigned i = 0; i != NumElts; ++i) {
864    IdentifierInfo *Ident = IdentList[i].first;
865    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentList[i].second,
866                                                ForRedeclaration);
867    ObjCProtocolDecl *PDecl
868      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
869                                 IdentList[i].second, AtProtocolLoc,
870                                 PrevDecl);
871
872    PushOnScopeChains(PDecl, TUScope);
873    CheckObjCDeclScope(PDecl);
874
875    if (attrList)
876      ProcessDeclAttributeList(TUScope, PDecl, attrList);
877
878    if (PrevDecl)
879      mergeDeclAttributes(PDecl, PrevDecl);
880
881    DeclsInGroup.push_back(PDecl);
882  }
883
884  return BuildDeclaratorGroup(DeclsInGroup, false);
885}
886
887Decl *Sema::
888ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
889                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
890                            IdentifierInfo *CategoryName,
891                            SourceLocation CategoryLoc,
892                            Decl * const *ProtoRefs,
893                            unsigned NumProtoRefs,
894                            const SourceLocation *ProtoLocs,
895                            SourceLocation EndProtoLoc) {
896  ObjCCategoryDecl *CDecl;
897  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
898
899  /// Check that class of this category is already completely declared.
900
901  if (!IDecl
902      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
903                             diag::err_category_forward_interface,
904                             CategoryName == nullptr)) {
905    // Create an invalid ObjCCategoryDecl to serve as context for
906    // the enclosing method declarations.  We mark the decl invalid
907    // to make it clear that this isn't a valid AST.
908    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
909                                     ClassLoc, CategoryLoc, CategoryName,IDecl);
910    CDecl->setInvalidDecl();
911    CurContext->addDecl(CDecl);
912
913    if (!IDecl)
914      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
915    return ActOnObjCContainerStartDefinition(CDecl);
916  }
917
918  if (!CategoryName && IDecl->getImplementation()) {
919    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
920    Diag(IDecl->getImplementation()->getLocation(),
921          diag::note_implementation_declared);
922  }
923
924  if (CategoryName) {
925    /// Check for duplicate interface declaration for this category
926    if (ObjCCategoryDecl *Previous
927          = IDecl->FindCategoryDeclaration(CategoryName)) {
928      // Class extensions can be declared multiple times, categories cannot.
929      Diag(CategoryLoc, diag::warn_dup_category_def)
930        << ClassName << CategoryName;
931      Diag(Previous->getLocation(), diag::note_previous_definition);
932    }
933  }
934
935  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
936                                   ClassLoc, CategoryLoc, CategoryName, IDecl);
937  // FIXME: PushOnScopeChains?
938  CurContext->addDecl(CDecl);
939
940  if (NumProtoRefs) {
941    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
942                           ProtoLocs, Context);
943    // Protocols in the class extension belong to the class.
944    if (CDecl->IsClassExtension())
945     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
946                                            NumProtoRefs, Context);
947  }
948
949  CheckObjCDeclScope(CDecl);
950  return ActOnObjCContainerStartDefinition(CDecl);
951}
952
953/// ActOnStartCategoryImplementation - Perform semantic checks on the
954/// category implementation declaration and build an ObjCCategoryImplDecl
955/// object.
956Decl *Sema::ActOnStartCategoryImplementation(
957                      SourceLocation AtCatImplLoc,
958                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
959                      IdentifierInfo *CatName, SourceLocation CatLoc) {
960  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
961  ObjCCategoryDecl *CatIDecl = nullptr;
962  if (IDecl && IDecl->hasDefinition()) {
963    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
964    if (!CatIDecl) {
965      // Category @implementation with no corresponding @interface.
966      // Create and install one.
967      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
968                                          ClassLoc, CatLoc,
969                                          CatName, IDecl);
970      CatIDecl->setImplicit();
971    }
972  }
973
974  ObjCCategoryImplDecl *CDecl =
975    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
976                                 ClassLoc, AtCatImplLoc, CatLoc);
977  /// Check that class of this category is already completely declared.
978  if (!IDecl) {
979    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
980    CDecl->setInvalidDecl();
981  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
982                                 diag::err_undef_interface)) {
983    CDecl->setInvalidDecl();
984  }
985
986  // FIXME: PushOnScopeChains?
987  CurContext->addDecl(CDecl);
988
989  // If the interface is deprecated/unavailable, warn/error about it.
990  if (IDecl)
991    DiagnoseUseOfDecl(IDecl, ClassLoc);
992
993  /// Check that CatName, category name, is not used in another implementation.
994  if (CatIDecl) {
995    if (CatIDecl->getImplementation()) {
996      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
997        << CatName;
998      Diag(CatIDecl->getImplementation()->getLocation(),
999           diag::note_previous_definition);
1000      CDecl->setInvalidDecl();
1001    } else {
1002      CatIDecl->setImplementation(CDecl);
1003      // Warn on implementating category of deprecated class under
1004      // -Wdeprecated-implementations flag.
1005      DiagnoseObjCImplementedDeprecations(*this,
1006                                          dyn_cast<NamedDecl>(IDecl),
1007                                          CDecl->getLocation(), 2);
1008    }
1009  }
1010
1011  CheckObjCDeclScope(CDecl);
1012  return ActOnObjCContainerStartDefinition(CDecl);
1013}
1014
1015Decl *Sema::ActOnStartClassImplementation(
1016                      SourceLocation AtClassImplLoc,
1017                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
1018                      IdentifierInfo *SuperClassname,
1019                      SourceLocation SuperClassLoc) {
1020  ObjCInterfaceDecl *IDecl = nullptr;
1021  // Check for another declaration kind with the same name.
1022  NamedDecl *PrevDecl
1023    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1024                       ForRedeclaration);
1025  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1026    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1027    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1028  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1029    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1030                        diag::warn_undef_interface);
1031  } else {
1032    // We did not find anything with the name ClassName; try to correct for
1033    // typos in the class name.
1034    ObjCInterfaceValidatorCCC Validator;
1035    TypoCorrection Corrected =
1036            CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
1037                        LookupOrdinaryName, TUScope, nullptr, Validator,
1038                        CTK_NonError);
1039    if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1040      // Suggest the (potentially) correct interface name. Don't provide a
1041      // code-modification hint or use the typo name for recovery, because
1042      // this is just a warning. The program may actually be correct.
1043      diagnoseTypo(Corrected,
1044                   PDiag(diag::warn_undef_interface_suggest) << ClassName,
1045                   /*ErrorRecovery*/false);
1046    } else {
1047      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
1048    }
1049  }
1050
1051  // Check that super class name is valid class name
1052  ObjCInterfaceDecl *SDecl = nullptr;
1053  if (SuperClassname) {
1054    // Check if a different kind of symbol declared in this scope.
1055    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
1056                                LookupOrdinaryName);
1057    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1058      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
1059        << SuperClassname;
1060      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1061    } else {
1062      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1063      if (SDecl && !SDecl->hasDefinition())
1064        SDecl = nullptr;
1065      if (!SDecl)
1066        Diag(SuperClassLoc, diag::err_undef_superclass)
1067          << SuperClassname << ClassName;
1068      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
1069        // This implementation and its interface do not have the same
1070        // super class.
1071        Diag(SuperClassLoc, diag::err_conflicting_super_class)
1072          << SDecl->getDeclName();
1073        Diag(SDecl->getLocation(), diag::note_previous_definition);
1074      }
1075    }
1076  }
1077
1078  if (!IDecl) {
1079    // Legacy case of @implementation with no corresponding @interface.
1080    // Build, chain & install the interface decl into the identifier.
1081
1082    // FIXME: Do we support attributes on the @implementation? If so we should
1083    // copy them over.
1084    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
1085                                      ClassName, /*PrevDecl=*/nullptr, ClassLoc,
1086                                      true);
1087    IDecl->startDefinition();
1088    if (SDecl) {
1089      IDecl->setSuperClass(SDecl);
1090      IDecl->setSuperClassLoc(SuperClassLoc);
1091      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
1092    } else {
1093      IDecl->setEndOfDefinitionLoc(ClassLoc);
1094    }
1095
1096    PushOnScopeChains(IDecl, TUScope);
1097  } else {
1098    // Mark the interface as being completed, even if it was just as
1099    //   @class ....;
1100    // declaration; the user cannot reopen it.
1101    if (!IDecl->hasDefinition())
1102      IDecl->startDefinition();
1103  }
1104
1105  ObjCImplementationDecl* IMPDecl =
1106    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
1107                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
1108
1109  if (CheckObjCDeclScope(IMPDecl))
1110    return ActOnObjCContainerStartDefinition(IMPDecl);
1111
1112  // Check that there is no duplicate implementation of this class.
1113  if (IDecl->getImplementation()) {
1114    // FIXME: Don't leak everything!
1115    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
1116    Diag(IDecl->getImplementation()->getLocation(),
1117         diag::note_previous_definition);
1118    IMPDecl->setInvalidDecl();
1119  } else { // add it to the list.
1120    IDecl->setImplementation(IMPDecl);
1121    PushOnScopeChains(IMPDecl, TUScope);
1122    // Warn on implementating deprecated class under
1123    // -Wdeprecated-implementations flag.
1124    DiagnoseObjCImplementedDeprecations(*this,
1125                                        dyn_cast<NamedDecl>(IDecl),
1126                                        IMPDecl->getLocation(), 1);
1127  }
1128  return ActOnObjCContainerStartDefinition(IMPDecl);
1129}
1130
1131Sema::DeclGroupPtrTy
1132Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
1133  SmallVector<Decl *, 64> DeclsInGroup;
1134  DeclsInGroup.reserve(Decls.size() + 1);
1135
1136  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
1137    Decl *Dcl = Decls[i];
1138    if (!Dcl)
1139      continue;
1140    if (Dcl->getDeclContext()->isFileContext())
1141      Dcl->setTopLevelDeclInObjCContainer();
1142    DeclsInGroup.push_back(Dcl);
1143  }
1144
1145  DeclsInGroup.push_back(ObjCImpDecl);
1146
1147  return BuildDeclaratorGroup(DeclsInGroup, false);
1148}
1149
1150void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
1151                                    ObjCIvarDecl **ivars, unsigned numIvars,
1152                                    SourceLocation RBrace) {
1153  assert(ImpDecl && "missing implementation decl");
1154  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
1155  if (!IDecl)
1156    return;
1157  /// Check case of non-existing \@interface decl.
1158  /// (legacy objective-c \@implementation decl without an \@interface decl).
1159  /// Add implementations's ivar to the synthesize class's ivar list.
1160  if (IDecl->isImplicitInterfaceDecl()) {
1161    IDecl->setEndOfDefinitionLoc(RBrace);
1162    // Add ivar's to class's DeclContext.
1163    for (unsigned i = 0, e = numIvars; i != e; ++i) {
1164      ivars[i]->setLexicalDeclContext(ImpDecl);
1165      IDecl->makeDeclVisibleInContext(ivars[i]);
1166      ImpDecl->addDecl(ivars[i]);
1167    }
1168
1169    return;
1170  }
1171  // If implementation has empty ivar list, just return.
1172  if (numIvars == 0)
1173    return;
1174
1175  assert(ivars && "missing @implementation ivars");
1176  if (LangOpts.ObjCRuntime.isNonFragile()) {
1177    if (ImpDecl->getSuperClass())
1178      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
1179    for (unsigned i = 0; i < numIvars; i++) {
1180      ObjCIvarDecl* ImplIvar = ivars[i];
1181      if (const ObjCIvarDecl *ClsIvar =
1182            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1183        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1184        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1185        continue;
1186      }
1187      // Check class extensions (unnamed categories) for duplicate ivars.
1188      for (const auto *CDecl : IDecl->visible_extensions()) {
1189        if (const ObjCIvarDecl *ClsExtIvar =
1190            CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
1191          Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
1192          Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
1193          continue;
1194        }
1195      }
1196      // Instance ivar to Implementation's DeclContext.
1197      ImplIvar->setLexicalDeclContext(ImpDecl);
1198      IDecl->makeDeclVisibleInContext(ImplIvar);
1199      ImpDecl->addDecl(ImplIvar);
1200    }
1201    return;
1202  }
1203  // Check interface's Ivar list against those in the implementation.
1204  // names and types must match.
1205  //
1206  unsigned j = 0;
1207  ObjCInterfaceDecl::ivar_iterator
1208    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
1209  for (; numIvars > 0 && IVI != IVE; ++IVI) {
1210    ObjCIvarDecl* ImplIvar = ivars[j++];
1211    ObjCIvarDecl* ClsIvar = *IVI;
1212    assert (ImplIvar && "missing implementation ivar");
1213    assert (ClsIvar && "missing class ivar");
1214
1215    // First, make sure the types match.
1216    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
1217      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
1218        << ImplIvar->getIdentifier()
1219        << ImplIvar->getType() << ClsIvar->getType();
1220      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1221    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
1222               ImplIvar->getBitWidthValue(Context) !=
1223               ClsIvar->getBitWidthValue(Context)) {
1224      Diag(ImplIvar->getBitWidth()->getLocStart(),
1225           diag::err_conflicting_ivar_bitwidth) << ImplIvar->getIdentifier();
1226      Diag(ClsIvar->getBitWidth()->getLocStart(),
1227           diag::note_previous_definition);
1228    }
1229    // Make sure the names are identical.
1230    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
1231      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
1232        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
1233      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
1234    }
1235    --numIvars;
1236  }
1237
1238  if (numIvars > 0)
1239    Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
1240  else if (IVI != IVE)
1241    Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
1242}
1243
1244static void WarnUndefinedMethod(Sema &S, SourceLocation ImpLoc,
1245                                ObjCMethodDecl *method,
1246                                bool &IncompleteImpl,
1247                                unsigned DiagID,
1248                                NamedDecl *NeededFor = nullptr) {
1249  // No point warning no definition of method which is 'unavailable'.
1250  switch (method->getAvailability()) {
1251  case AR_Available:
1252  case AR_Deprecated:
1253    break;
1254
1255      // Don't warn about unavailable or not-yet-introduced methods.
1256  case AR_NotYetIntroduced:
1257  case AR_Unavailable:
1258    return;
1259  }
1260
1261  // FIXME: For now ignore 'IncompleteImpl'.
1262  // Previously we grouped all unimplemented methods under a single
1263  // warning, but some users strongly voiced that they would prefer
1264  // separate warnings.  We will give that approach a try, as that
1265  // matches what we do with protocols.
1266  {
1267    const Sema::SemaDiagnosticBuilder &B = S.Diag(ImpLoc, DiagID);
1268    B << method;
1269    if (NeededFor)
1270      B << NeededFor;
1271  }
1272
1273  // Issue a note to the original declaration.
1274  SourceLocation MethodLoc = method->getLocStart();
1275  if (MethodLoc.isValid())
1276    S.Diag(MethodLoc, diag::note_method_declared_at) << method;
1277}
1278
1279/// Determines if type B can be substituted for type A.  Returns true if we can
1280/// guarantee that anything that the user will do to an object of type A can
1281/// also be done to an object of type B.  This is trivially true if the two
1282/// types are the same, or if B is a subclass of A.  It becomes more complex
1283/// in cases where protocols are involved.
1284///
1285/// Object types in Objective-C describe the minimum requirements for an
1286/// object, rather than providing a complete description of a type.  For
1287/// example, if A is a subclass of B, then B* may refer to an instance of A.
1288/// The principle of substitutability means that we may use an instance of A
1289/// anywhere that we may use an instance of B - it will implement all of the
1290/// ivars of B and all of the methods of B.
1291///
1292/// This substitutability is important when type checking methods, because
1293/// the implementation may have stricter type definitions than the interface.
1294/// The interface specifies minimum requirements, but the implementation may
1295/// have more accurate ones.  For example, a method may privately accept
1296/// instances of B, but only publish that it accepts instances of A.  Any
1297/// object passed to it will be type checked against B, and so will implicitly
1298/// by a valid A*.  Similarly, a method may return a subclass of the class that
1299/// it is declared as returning.
1300///
1301/// This is most important when considering subclassing.  A method in a
1302/// subclass must accept any object as an argument that its superclass's
1303/// implementation accepts.  It may, however, accept a more general type
1304/// without breaking substitutability (i.e. you can still use the subclass
1305/// anywhere that you can use the superclass, but not vice versa).  The
1306/// converse requirement applies to return types: the return type for a
1307/// subclass method must be a valid object of the kind that the superclass
1308/// advertises, but it may be specified more accurately.  This avoids the need
1309/// for explicit down-casting by callers.
1310///
1311/// Note: This is a stricter requirement than for assignment.
1312static bool isObjCTypeSubstitutable(ASTContext &Context,
1313                                    const ObjCObjectPointerType *A,
1314                                    const ObjCObjectPointerType *B,
1315                                    bool rejectId) {
1316  // Reject a protocol-unqualified id.
1317  if (rejectId && B->isObjCIdType()) return false;
1318
1319  // If B is a qualified id, then A must also be a qualified id and it must
1320  // implement all of the protocols in B.  It may not be a qualified class.
1321  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
1322  // stricter definition so it is not substitutable for id<A>.
1323  if (B->isObjCQualifiedIdType()) {
1324    return A->isObjCQualifiedIdType() &&
1325           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
1326                                                     QualType(B,0),
1327                                                     false);
1328  }
1329
1330  /*
1331  // id is a special type that bypasses type checking completely.  We want a
1332  // warning when it is used in one place but not another.
1333  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
1334
1335
1336  // If B is a qualified id, then A must also be a qualified id (which it isn't
1337  // if we've got this far)
1338  if (B->isObjCQualifiedIdType()) return false;
1339  */
1340
1341  // Now we know that A and B are (potentially-qualified) class types.  The
1342  // normal rules for assignment apply.
1343  return Context.canAssignObjCInterfaces(A, B);
1344}
1345
1346static SourceRange getTypeRange(TypeSourceInfo *TSI) {
1347  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
1348}
1349
1350static bool CheckMethodOverrideReturn(Sema &S,
1351                                      ObjCMethodDecl *MethodImpl,
1352                                      ObjCMethodDecl *MethodDecl,
1353                                      bool IsProtocolMethodDecl,
1354                                      bool IsOverridingMode,
1355                                      bool Warn) {
1356  if (IsProtocolMethodDecl &&
1357      (MethodDecl->getObjCDeclQualifier() !=
1358       MethodImpl->getObjCDeclQualifier())) {
1359    if (Warn) {
1360      S.Diag(MethodImpl->getLocation(),
1361             (IsOverridingMode
1362                  ? diag::warn_conflicting_overriding_ret_type_modifiers
1363                  : diag::warn_conflicting_ret_type_modifiers))
1364          << MethodImpl->getDeclName()
1365          << getTypeRange(MethodImpl->getReturnTypeSourceInfo());
1366      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
1367          << getTypeRange(MethodDecl->getReturnTypeSourceInfo());
1368    }
1369    else
1370      return false;
1371  }
1372
1373  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
1374                                       MethodDecl->getReturnType()))
1375    return true;
1376  if (!Warn)
1377    return false;
1378
1379  unsigned DiagID =
1380    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
1381                     : diag::warn_conflicting_ret_types;
1382
1383  // Mismatches between ObjC pointers go into a different warning
1384  // category, and sometimes they're even completely whitelisted.
1385  if (const ObjCObjectPointerType *ImplPtrTy =
1386          MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
1387    if (const ObjCObjectPointerType *IfacePtrTy =
1388            MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
1389      // Allow non-matching return types as long as they don't violate
1390      // the principle of substitutability.  Specifically, we permit
1391      // return types that are subclasses of the declared return type,
1392      // or that are more-qualified versions of the declared type.
1393      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
1394        return false;
1395
1396      DiagID =
1397        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
1398                          : diag::warn_non_covariant_ret_types;
1399    }
1400  }
1401
1402  S.Diag(MethodImpl->getLocation(), DiagID)
1403      << MethodImpl->getDeclName() << MethodDecl->getReturnType()
1404      << MethodImpl->getReturnType()
1405      << getTypeRange(MethodImpl->getReturnTypeSourceInfo());
1406  S.Diag(MethodDecl->getLocation(), IsOverridingMode
1407                                        ? diag::note_previous_declaration
1408                                        : diag::note_previous_definition)
1409      << getTypeRange(MethodDecl->getReturnTypeSourceInfo());
1410  return false;
1411}
1412
1413static bool CheckMethodOverrideParam(Sema &S,
1414                                     ObjCMethodDecl *MethodImpl,
1415                                     ObjCMethodDecl *MethodDecl,
1416                                     ParmVarDecl *ImplVar,
1417                                     ParmVarDecl *IfaceVar,
1418                                     bool IsProtocolMethodDecl,
1419                                     bool IsOverridingMode,
1420                                     bool Warn) {
1421  if (IsProtocolMethodDecl &&
1422      (ImplVar->getObjCDeclQualifier() !=
1423       IfaceVar->getObjCDeclQualifier())) {
1424    if (Warn) {
1425      if (IsOverridingMode)
1426        S.Diag(ImplVar->getLocation(),
1427               diag::warn_conflicting_overriding_param_modifiers)
1428            << getTypeRange(ImplVar->getTypeSourceInfo())
1429            << MethodImpl->getDeclName();
1430      else S.Diag(ImplVar->getLocation(),
1431             diag::warn_conflicting_param_modifiers)
1432          << getTypeRange(ImplVar->getTypeSourceInfo())
1433          << MethodImpl->getDeclName();
1434      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
1435          << getTypeRange(IfaceVar->getTypeSourceInfo());
1436    }
1437    else
1438      return false;
1439  }
1440
1441  QualType ImplTy = ImplVar->getType();
1442  QualType IfaceTy = IfaceVar->getType();
1443
1444  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
1445    return true;
1446
1447  if (!Warn)
1448    return false;
1449  unsigned DiagID =
1450    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
1451                     : diag::warn_conflicting_param_types;
1452
1453  // Mismatches between ObjC pointers go into a different warning
1454  // category, and sometimes they're even completely whitelisted.
1455  if (const ObjCObjectPointerType *ImplPtrTy =
1456        ImplTy->getAs<ObjCObjectPointerType>()) {
1457    if (const ObjCObjectPointerType *IfacePtrTy =
1458          IfaceTy->getAs<ObjCObjectPointerType>()) {
1459      // Allow non-matching argument types as long as they don't
1460      // violate the principle of substitutability.  Specifically, the
1461      // implementation must accept any objects that the superclass
1462      // accepts, however it may also accept others.
1463      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
1464        return false;
1465
1466      DiagID =
1467      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
1468                       :  diag::warn_non_contravariant_param_types;
1469    }
1470  }
1471
1472  S.Diag(ImplVar->getLocation(), DiagID)
1473    << getTypeRange(ImplVar->getTypeSourceInfo())
1474    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
1475  S.Diag(IfaceVar->getLocation(),
1476         (IsOverridingMode ? diag::note_previous_declaration
1477                        : diag::note_previous_definition))
1478    << getTypeRange(IfaceVar->getTypeSourceInfo());
1479  return false;
1480}
1481
1482/// In ARC, check whether the conventional meanings of the two methods
1483/// match.  If they don't, it's a hard error.
1484static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
1485                                      ObjCMethodDecl *decl) {
1486  ObjCMethodFamily implFamily = impl->getMethodFamily();
1487  ObjCMethodFamily declFamily = decl->getMethodFamily();
1488  if (implFamily == declFamily) return false;
1489
1490  // Since conventions are sorted by selector, the only possibility is
1491  // that the types differ enough to cause one selector or the other
1492  // to fall out of the family.
1493  assert(implFamily == OMF_None || declFamily == OMF_None);
1494
1495  // No further diagnostics required on invalid declarations.
1496  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
1497
1498  const ObjCMethodDecl *unmatched = impl;
1499  ObjCMethodFamily family = declFamily;
1500  unsigned errorID = diag::err_arc_lost_method_convention;
1501  unsigned noteID = diag::note_arc_lost_method_convention;
1502  if (declFamily == OMF_None) {
1503    unmatched = decl;
1504    family = implFamily;
1505    errorID = diag::err_arc_gained_method_convention;
1506    noteID = diag::note_arc_gained_method_convention;
1507  }
1508
1509  // Indexes into a %select clause in the diagnostic.
1510  enum FamilySelector {
1511    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
1512  };
1513  FamilySelector familySelector = FamilySelector();
1514
1515  switch (family) {
1516  case OMF_None: llvm_unreachable("logic error, no method convention");
1517  case OMF_retain:
1518  case OMF_release:
1519  case OMF_autorelease:
1520  case OMF_dealloc:
1521  case OMF_finalize:
1522  case OMF_retainCount:
1523  case OMF_self:
1524  case OMF_performSelector:
1525    // Mismatches for these methods don't change ownership
1526    // conventions, so we don't care.
1527    return false;
1528
1529  case OMF_init: familySelector = F_init; break;
1530  case OMF_alloc: familySelector = F_alloc; break;
1531  case OMF_copy: familySelector = F_copy; break;
1532  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
1533  case OMF_new: familySelector = F_new; break;
1534  }
1535
1536  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
1537  ReasonSelector reasonSelector;
1538
1539  // The only reason these methods don't fall within their families is
1540  // due to unusual result types.
1541  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
1542    reasonSelector = R_UnrelatedReturn;
1543  } else {
1544    reasonSelector = R_NonObjectReturn;
1545  }
1546
1547  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
1548  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
1549
1550  return true;
1551}
1552
1553void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1554                                       ObjCMethodDecl *MethodDecl,
1555                                       bool IsProtocolMethodDecl) {
1556  if (getLangOpts().ObjCAutoRefCount &&
1557      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
1558    return;
1559
1560  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1561                            IsProtocolMethodDecl, false,
1562                            true);
1563
1564  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1565       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1566       EF = MethodDecl->param_end();
1567       IM != EM && IF != EF; ++IM, ++IF) {
1568    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
1569                             IsProtocolMethodDecl, false, true);
1570  }
1571
1572  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
1573    Diag(ImpMethodDecl->getLocation(),
1574         diag::warn_conflicting_variadic);
1575    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
1576  }
1577}
1578
1579void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
1580                                       ObjCMethodDecl *Overridden,
1581                                       bool IsProtocolMethodDecl) {
1582
1583  CheckMethodOverrideReturn(*this, Method, Overridden,
1584                            IsProtocolMethodDecl, true,
1585                            true);
1586
1587  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
1588       IF = Overridden->param_begin(), EM = Method->param_end(),
1589       EF = Overridden->param_end();
1590       IM != EM && IF != EF; ++IM, ++IF) {
1591    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
1592                             IsProtocolMethodDecl, true, true);
1593  }
1594
1595  if (Method->isVariadic() != Overridden->isVariadic()) {
1596    Diag(Method->getLocation(),
1597         diag::warn_conflicting_overriding_variadic);
1598    Diag(Overridden->getLocation(), diag::note_previous_declaration);
1599  }
1600}
1601
1602/// WarnExactTypedMethods - This routine issues a warning if method
1603/// implementation declaration matches exactly that of its declaration.
1604void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
1605                                 ObjCMethodDecl *MethodDecl,
1606                                 bool IsProtocolMethodDecl) {
1607  // don't issue warning when protocol method is optional because primary
1608  // class is not required to implement it and it is safe for protocol
1609  // to implement it.
1610  if (MethodDecl->getImplementationControl() == ObjCMethodDecl::Optional)
1611    return;
1612  // don't issue warning when primary class's method is
1613  // depecated/unavailable.
1614  if (MethodDecl->hasAttr<UnavailableAttr>() ||
1615      MethodDecl->hasAttr<DeprecatedAttr>())
1616    return;
1617
1618  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
1619                                      IsProtocolMethodDecl, false, false);
1620  if (match)
1621    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
1622         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
1623         EF = MethodDecl->param_end();
1624         IM != EM && IF != EF; ++IM, ++IF) {
1625      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
1626                                       *IM, *IF,
1627                                       IsProtocolMethodDecl, false, false);
1628      if (!match)
1629        break;
1630    }
1631  if (match)
1632    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
1633  if (match)
1634    match = !(MethodDecl->isClassMethod() &&
1635              MethodDecl->getSelector() == GetNullarySelector("load", Context));
1636
1637  if (match) {
1638    Diag(ImpMethodDecl->getLocation(),
1639         diag::warn_category_method_impl_match);
1640    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
1641      << MethodDecl->getDeclName();
1642  }
1643}
1644
1645/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
1646/// improve the efficiency of selector lookups and type checking by associating
1647/// with each protocol / interface / category the flattened instance tables. If
1648/// we used an immutable set to keep the table then it wouldn't add significant
1649/// memory cost and it would be handy for lookups.
1650
1651typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
1652typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
1653
1654static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
1655                                           ProtocolNameSet &PNS) {
1656  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
1657    PNS.insert(PDecl->getIdentifier());
1658  for (const auto *PI : PDecl->protocols())
1659    findProtocolsWithExplicitImpls(PI, PNS);
1660}
1661
1662/// Recursively populates a set with all conformed protocols in a class
1663/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
1664/// attribute.
1665static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
1666                                           ProtocolNameSet &PNS) {
1667  if (!Super)
1668    return;
1669
1670  for (const auto *I : Super->all_referenced_protocols())
1671    findProtocolsWithExplicitImpls(I, PNS);
1672
1673  findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
1674}
1675
1676/// CheckProtocolMethodDefs - This routine checks unimplemented methods
1677/// Declared in protocol, and those referenced by it.
1678static void CheckProtocolMethodDefs(Sema &S,
1679                                    SourceLocation ImpLoc,
1680                                    ObjCProtocolDecl *PDecl,
1681                                    bool& IncompleteImpl,
1682                                    const Sema::SelectorSet &InsMap,
1683                                    const Sema::SelectorSet &ClsMap,
1684                                    ObjCContainerDecl *CDecl,
1685                                    LazyProtocolNameSet &ProtocolsExplictImpl) {
1686  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
1687  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
1688                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
1689  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
1690
1691  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
1692  ObjCInterfaceDecl *NSIDecl = nullptr;
1693
1694  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
1695  // then we should check if any class in the super class hierarchy also
1696  // conforms to this protocol, either directly or via protocol inheritance.
1697  // If so, we can skip checking this protocol completely because we
1698  // know that a parent class already satisfies this protocol.
1699  //
1700  // Note: we could generalize this logic for all protocols, and merely
1701  // add the limit on looking at the super class chain for just
1702  // specially marked protocols.  This may be a good optimization.  This
1703  // change is restricted to 'objc_protocol_requires_explicit_implementation'
1704  // protocols for now for controlled evaluation.
1705  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
1706    if (!ProtocolsExplictImpl) {
1707      ProtocolsExplictImpl.reset(new ProtocolNameSet);
1708      findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
1709    }
1710    if (ProtocolsExplictImpl->find(PDecl->getIdentifier()) !=
1711        ProtocolsExplictImpl->end())
1712      return;
1713
1714    // If no super class conforms to the protocol, we should not search
1715    // for methods in the super class to implicitly satisfy the protocol.
1716    Super = nullptr;
1717  }
1718
1719  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
1720    // check to see if class implements forwardInvocation method and objects
1721    // of this class are derived from 'NSProxy' so that to forward requests
1722    // from one object to another.
1723    // Under such conditions, which means that every method possible is
1724    // implemented in the class, we should not issue "Method definition not
1725    // found" warnings.
1726    // FIXME: Use a general GetUnarySelector method for this.
1727    IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
1728    Selector fISelector = S.Context.Selectors.getSelector(1, &II);
1729    if (InsMap.count(fISelector))
1730      // Is IDecl derived from 'NSProxy'? If so, no instance methods
1731      // need be implemented in the implementation.
1732      NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
1733  }
1734
1735  // If this is a forward protocol declaration, get its definition.
1736  if (!PDecl->isThisDeclarationADefinition() &&
1737      PDecl->getDefinition())
1738    PDecl = PDecl->getDefinition();
1739
1740  // If a method lookup fails locally we still need to look and see if
1741  // the method was implemented by a base class or an inherited
1742  // protocol. This lookup is slow, but occurs rarely in correct code
1743  // and otherwise would terminate in a warning.
1744
1745  // check unimplemented instance methods.
1746  if (!NSIDecl)
1747    for (auto *method : PDecl->instance_methods()) {
1748      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1749          !method->isPropertyAccessor() &&
1750          !InsMap.count(method->getSelector()) &&
1751          (!Super || !Super->lookupMethod(method->getSelector(),
1752                                          true /* instance */,
1753                                          false /* shallowCategory */,
1754                                          true /* followsSuper */,
1755                                          nullptr /* category */))) {
1756            // If a method is not implemented in the category implementation but
1757            // has been declared in its primary class, superclass,
1758            // or in one of their protocols, no need to issue the warning.
1759            // This is because method will be implemented in the primary class
1760            // or one of its super class implementation.
1761
1762            // Ugly, but necessary. Method declared in protcol might have
1763            // have been synthesized due to a property declared in the class which
1764            // uses the protocol.
1765            if (ObjCMethodDecl *MethodInClass =
1766                  IDecl->lookupMethod(method->getSelector(),
1767                                      true /* instance */,
1768                                      true /* shallowCategoryLookup */,
1769                                      false /* followSuper */))
1770              if (C || MethodInClass->isPropertyAccessor())
1771                continue;
1772            unsigned DIAG = diag::warn_unimplemented_protocol_method;
1773            if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
1774              WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG,
1775                                  PDecl);
1776            }
1777          }
1778    }
1779  // check unimplemented class methods
1780  for (auto *method : PDecl->class_methods()) {
1781    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
1782        !ClsMap.count(method->getSelector()) &&
1783        (!Super || !Super->lookupMethod(method->getSelector(),
1784                                        false /* class method */,
1785                                        false /* shallowCategoryLookup */,
1786                                        true  /* followSuper */,
1787                                        nullptr /* category */))) {
1788      // See above comment for instance method lookups.
1789      if (C && IDecl->lookupMethod(method->getSelector(),
1790                                   false /* class */,
1791                                   true /* shallowCategoryLookup */,
1792                                   false /* followSuper */))
1793        continue;
1794
1795      unsigned DIAG = diag::warn_unimplemented_protocol_method;
1796      if (!S.Diags.isIgnored(DIAG, ImpLoc)) {
1797        WarnUndefinedMethod(S, ImpLoc, method, IncompleteImpl, DIAG, PDecl);
1798      }
1799    }
1800  }
1801  // Check on this protocols's referenced protocols, recursively.
1802  for (auto *PI : PDecl->protocols())
1803    CheckProtocolMethodDefs(S, ImpLoc, PI, IncompleteImpl, InsMap, ClsMap,
1804                            CDecl, ProtocolsExplictImpl);
1805}
1806
1807/// MatchAllMethodDeclarations - Check methods declared in interface
1808/// or protocol against those declared in their implementations.
1809///
1810void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
1811                                      const SelectorSet &ClsMap,
1812                                      SelectorSet &InsMapSeen,
1813                                      SelectorSet &ClsMapSeen,
1814                                      ObjCImplDecl* IMPDecl,
1815                                      ObjCContainerDecl* CDecl,
1816                                      bool &IncompleteImpl,
1817                                      bool ImmediateClass,
1818                                      bool WarnCategoryMethodImpl) {
1819  // Check and see if instance methods in class interface have been
1820  // implemented in the implementation class. If so, their types match.
1821  for (auto *I : CDecl->instance_methods()) {
1822    if (!InsMapSeen.insert(I->getSelector()))
1823      continue;
1824    if (!I->isPropertyAccessor() &&
1825        !InsMap.count(I->getSelector())) {
1826      if (ImmediateClass)
1827        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
1828                            diag::warn_undef_method_impl);
1829      continue;
1830    } else {
1831      ObjCMethodDecl *ImpMethodDecl =
1832        IMPDecl->getInstanceMethod(I->getSelector());
1833      assert(CDecl->getInstanceMethod(I->getSelector()) &&
1834             "Expected to find the method through lookup as well");
1835      // ImpMethodDecl may be null as in a @dynamic property.
1836      if (ImpMethodDecl) {
1837        if (!WarnCategoryMethodImpl)
1838          WarnConflictingTypedMethods(ImpMethodDecl, I,
1839                                      isa<ObjCProtocolDecl>(CDecl));
1840        else if (!I->isPropertyAccessor())
1841          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
1842      }
1843    }
1844  }
1845
1846  // Check and see if class methods in class interface have been
1847  // implemented in the implementation class. If so, their types match.
1848  for (auto *I : CDecl->class_methods()) {
1849    if (!ClsMapSeen.insert(I->getSelector()))
1850      continue;
1851    if (!ClsMap.count(I->getSelector())) {
1852      if (ImmediateClass)
1853        WarnUndefinedMethod(*this, IMPDecl->getLocation(), I, IncompleteImpl,
1854                            diag::warn_undef_method_impl);
1855    } else {
1856      ObjCMethodDecl *ImpMethodDecl =
1857        IMPDecl->getClassMethod(I->getSelector());
1858      assert(CDecl->getClassMethod(I->getSelector()) &&
1859             "Expected to find the method through lookup as well");
1860      if (!WarnCategoryMethodImpl)
1861        WarnConflictingTypedMethods(ImpMethodDecl, I,
1862                                    isa<ObjCProtocolDecl>(CDecl));
1863      else
1864        WarnExactTypedMethods(ImpMethodDecl, I,
1865                              isa<ObjCProtocolDecl>(CDecl));
1866    }
1867  }
1868
1869  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
1870    // Also, check for methods declared in protocols inherited by
1871    // this protocol.
1872    for (auto *PI : PD->protocols())
1873      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1874                                 IMPDecl, PI, IncompleteImpl, false,
1875                                 WarnCategoryMethodImpl);
1876  }
1877
1878  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1879    // when checking that methods in implementation match their declaration,
1880    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
1881    // extension; as well as those in categories.
1882    if (!WarnCategoryMethodImpl) {
1883      for (auto *Cat : I->visible_categories())
1884        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1885                                   IMPDecl, Cat, IncompleteImpl, false,
1886                                   WarnCategoryMethodImpl);
1887    } else {
1888      // Also methods in class extensions need be looked at next.
1889      for (auto *Ext : I->visible_extensions())
1890        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1891                                   IMPDecl, Ext, IncompleteImpl, false,
1892                                   WarnCategoryMethodImpl);
1893    }
1894
1895    // Check for any implementation of a methods declared in protocol.
1896    for (auto *PI : I->all_referenced_protocols())
1897      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1898                                 IMPDecl, PI, IncompleteImpl, false,
1899                                 WarnCategoryMethodImpl);
1900
1901    // FIXME. For now, we are not checking for extact match of methods
1902    // in category implementation and its primary class's super class.
1903    if (!WarnCategoryMethodImpl && I->getSuperClass())
1904      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1905                                 IMPDecl,
1906                                 I->getSuperClass(), IncompleteImpl, false);
1907  }
1908}
1909
1910/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
1911/// category matches with those implemented in its primary class and
1912/// warns each time an exact match is found.
1913void Sema::CheckCategoryVsClassMethodMatches(
1914                                  ObjCCategoryImplDecl *CatIMPDecl) {
1915  // Get category's primary class.
1916  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
1917  if (!CatDecl)
1918    return;
1919  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
1920  if (!IDecl)
1921    return;
1922  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
1923  SelectorSet InsMap, ClsMap;
1924
1925  for (const auto *I : CatIMPDecl->instance_methods()) {
1926    Selector Sel = I->getSelector();
1927    // When checking for methods implemented in the category, skip over
1928    // those declared in category class's super class. This is because
1929    // the super class must implement the method.
1930    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
1931      continue;
1932    InsMap.insert(Sel);
1933  }
1934
1935  for (const auto *I : CatIMPDecl->class_methods()) {
1936    Selector Sel = I->getSelector();
1937    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
1938      continue;
1939    ClsMap.insert(Sel);
1940  }
1941  if (InsMap.empty() && ClsMap.empty())
1942    return;
1943
1944  SelectorSet InsMapSeen, ClsMapSeen;
1945  bool IncompleteImpl = false;
1946  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1947                             CatIMPDecl, IDecl,
1948                             IncompleteImpl, false,
1949                             true /*WarnCategoryMethodImpl*/);
1950}
1951
1952void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1953                                     ObjCContainerDecl* CDecl,
1954                                     bool IncompleteImpl) {
1955  SelectorSet InsMap;
1956  // Check and see if instance methods in class interface have been
1957  // implemented in the implementation class.
1958  for (const auto *I : IMPDecl->instance_methods())
1959    InsMap.insert(I->getSelector());
1960
1961  // Check and see if properties declared in the interface have either 1)
1962  // an implementation or 2) there is a @synthesize/@dynamic implementation
1963  // of the property in the @implementation.
1964  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
1965    bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
1966                                LangOpts.ObjCRuntime.isNonFragile() &&
1967                                !IDecl->isObjCRequiresPropertyDefs();
1968    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
1969  }
1970
1971  SelectorSet ClsMap;
1972  for (const auto *I : IMPDecl->class_methods())
1973    ClsMap.insert(I->getSelector());
1974
1975  // Check for type conflict of methods declared in a class/protocol and
1976  // its implementation; if any.
1977  SelectorSet InsMapSeen, ClsMapSeen;
1978  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1979                             IMPDecl, CDecl,
1980                             IncompleteImpl, true);
1981
1982  // check all methods implemented in category against those declared
1983  // in its primary class.
1984  if (ObjCCategoryImplDecl *CatDecl =
1985        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
1986    CheckCategoryVsClassMethodMatches(CatDecl);
1987
1988  // Check the protocol list for unimplemented methods in the @implementation
1989  // class.
1990  // Check and see if class methods in class interface have been
1991  // implemented in the implementation class.
1992
1993  LazyProtocolNameSet ExplicitImplProtocols;
1994
1995  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1996    for (auto *PI : I->all_referenced_protocols())
1997      CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), PI, IncompleteImpl,
1998                              InsMap, ClsMap, I, ExplicitImplProtocols);
1999    // Check class extensions (unnamed categories)
2000    for (auto *Ext : I->visible_extensions())
2001      ImplMethodsVsClassMethods(S, IMPDecl, Ext, IncompleteImpl);
2002  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
2003    // For extended class, unimplemented methods in its protocols will
2004    // be reported in the primary class.
2005    if (!C->IsClassExtension()) {
2006      for (auto *P : C->protocols())
2007        CheckProtocolMethodDefs(*this, IMPDecl->getLocation(), P,
2008                                IncompleteImpl, InsMap, ClsMap, CDecl,
2009                                ExplicitImplProtocols);
2010      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
2011                                      /* SynthesizeProperties */ false);
2012    }
2013  } else
2014    llvm_unreachable("invalid ObjCContainerDecl type.");
2015}
2016
2017/// ActOnForwardClassDeclaration -
2018Sema::DeclGroupPtrTy
2019Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
2020                                   IdentifierInfo **IdentList,
2021                                   SourceLocation *IdentLocs,
2022                                   unsigned NumElts) {
2023  SmallVector<Decl *, 8> DeclsInGroup;
2024  for (unsigned i = 0; i != NumElts; ++i) {
2025    // Check for another declaration kind with the same name.
2026    NamedDecl *PrevDecl
2027      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
2028                         LookupOrdinaryName, ForRedeclaration);
2029    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2030      // GCC apparently allows the following idiom:
2031      //
2032      // typedef NSObject < XCElementTogglerP > XCElementToggler;
2033      // @class XCElementToggler;
2034      //
2035      // Here we have chosen to ignore the forward class declaration
2036      // with a warning. Since this is the implied behavior.
2037      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
2038      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
2039        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
2040        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2041      } else {
2042        // a forward class declaration matching a typedef name of a class refers
2043        // to the underlying class. Just ignore the forward class with a warning
2044        // as this will force the intended behavior which is to lookup the typedef
2045        // name.
2046        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
2047          Diag(AtClassLoc, diag::warn_forward_class_redefinition) << IdentList[i];
2048          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2049          continue;
2050        }
2051      }
2052    }
2053
2054    // Create a declaration to describe this forward declaration.
2055    ObjCInterfaceDecl *PrevIDecl
2056      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2057
2058    IdentifierInfo *ClassName = IdentList[i];
2059    if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
2060      // A previous decl with a different name is because of
2061      // @compatibility_alias, for example:
2062      // \code
2063      //   @class NewImage;
2064      //   @compatibility_alias OldImage NewImage;
2065      // \endcode
2066      // A lookup for 'OldImage' will return the 'NewImage' decl.
2067      //
2068      // In such a case use the real declaration name, instead of the alias one,
2069      // otherwise we will break IdentifierResolver and redecls-chain invariants.
2070      // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
2071      // has been aliased.
2072      ClassName = PrevIDecl->getIdentifier();
2073    }
2074
2075    ObjCInterfaceDecl *IDecl
2076      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
2077                                  ClassName, PrevIDecl, IdentLocs[i]);
2078    IDecl->setAtEndRange(IdentLocs[i]);
2079
2080    PushOnScopeChains(IDecl, TUScope);
2081    CheckObjCDeclScope(IDecl);
2082    DeclsInGroup.push_back(IDecl);
2083  }
2084
2085  return BuildDeclaratorGroup(DeclsInGroup, false);
2086}
2087
2088static bool tryMatchRecordTypes(ASTContext &Context,
2089                                Sema::MethodMatchStrategy strategy,
2090                                const Type *left, const Type *right);
2091
2092static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
2093                       QualType leftQT, QualType rightQT) {
2094  const Type *left =
2095    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
2096  const Type *right =
2097    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
2098
2099  if (left == right) return true;
2100
2101  // If we're doing a strict match, the types have to match exactly.
2102  if (strategy == Sema::MMS_strict) return false;
2103
2104  if (left->isIncompleteType() || right->isIncompleteType()) return false;
2105
2106  // Otherwise, use this absurdly complicated algorithm to try to
2107  // validate the basic, low-level compatibility of the two types.
2108
2109  // As a minimum, require the sizes and alignments to match.
2110  if (Context.getTypeInfo(left) != Context.getTypeInfo(right))
2111    return false;
2112
2113  // Consider all the kinds of non-dependent canonical types:
2114  // - functions and arrays aren't possible as return and parameter types
2115
2116  // - vector types of equal size can be arbitrarily mixed
2117  if (isa<VectorType>(left)) return isa<VectorType>(right);
2118  if (isa<VectorType>(right)) return false;
2119
2120  // - references should only match references of identical type
2121  // - structs, unions, and Objective-C objects must match more-or-less
2122  //   exactly
2123  // - everything else should be a scalar
2124  if (!left->isScalarType() || !right->isScalarType())
2125    return tryMatchRecordTypes(Context, strategy, left, right);
2126
2127  // Make scalars agree in kind, except count bools as chars, and group
2128  // all non-member pointers together.
2129  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
2130  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
2131  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
2132  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
2133  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
2134    leftSK = Type::STK_ObjCObjectPointer;
2135  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
2136    rightSK = Type::STK_ObjCObjectPointer;
2137
2138  // Note that data member pointers and function member pointers don't
2139  // intermix because of the size differences.
2140
2141  return (leftSK == rightSK);
2142}
2143
2144static bool tryMatchRecordTypes(ASTContext &Context,
2145                                Sema::MethodMatchStrategy strategy,
2146                                const Type *lt, const Type *rt) {
2147  assert(lt && rt && lt != rt);
2148
2149  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
2150  RecordDecl *left = cast<RecordType>(lt)->getDecl();
2151  RecordDecl *right = cast<RecordType>(rt)->getDecl();
2152
2153  // Require union-hood to match.
2154  if (left->isUnion() != right->isUnion()) return false;
2155
2156  // Require an exact match if either is non-POD.
2157  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
2158      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
2159    return false;
2160
2161  // Require size and alignment to match.
2162  if (Context.getTypeInfo(lt) != Context.getTypeInfo(rt)) return false;
2163
2164  // Require fields to match.
2165  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
2166  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
2167  for (; li != le && ri != re; ++li, ++ri) {
2168    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
2169      return false;
2170  }
2171  return (li == le && ri == re);
2172}
2173
2174/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
2175/// returns true, or false, accordingly.
2176/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
2177bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
2178                                      const ObjCMethodDecl *right,
2179                                      MethodMatchStrategy strategy) {
2180  if (!matchTypes(Context, strategy, left->getReturnType(),
2181                  right->getReturnType()))
2182    return false;
2183
2184  // If either is hidden, it is not considered to match.
2185  if (left->isHidden() || right->isHidden())
2186    return false;
2187
2188  if (getLangOpts().ObjCAutoRefCount &&
2189      (left->hasAttr<NSReturnsRetainedAttr>()
2190         != right->hasAttr<NSReturnsRetainedAttr>() ||
2191       left->hasAttr<NSConsumesSelfAttr>()
2192         != right->hasAttr<NSConsumesSelfAttr>()))
2193    return false;
2194
2195  ObjCMethodDecl::param_const_iterator
2196    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
2197    re = right->param_end();
2198
2199  for (; li != le && ri != re; ++li, ++ri) {
2200    assert(ri != right->param_end() && "Param mismatch");
2201    const ParmVarDecl *lparm = *li, *rparm = *ri;
2202
2203    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
2204      return false;
2205
2206    if (getLangOpts().ObjCAutoRefCount &&
2207        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
2208      return false;
2209  }
2210  return true;
2211}
2212
2213void Sema::addMethodToGlobalList(ObjCMethodList *List, ObjCMethodDecl *Method) {
2214  // Record at the head of the list whether there were 0, 1, or >= 2 methods
2215  // inside categories.
2216  if (ObjCCategoryDecl *
2217        CD = dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
2218    if (!CD->IsClassExtension() && List->getBits() < 2)
2219        List->setBits(List->getBits()+1);
2220
2221  // If the list is empty, make it a singleton list.
2222  if (List->Method == nullptr) {
2223    List->Method = Method;
2224    List->setNext(nullptr);
2225    return;
2226  }
2227
2228  // We've seen a method with this name, see if we have already seen this type
2229  // signature.
2230  ObjCMethodList *Previous = List;
2231  for (; List; Previous = List, List = List->getNext()) {
2232    // If we are building a module, keep all of the methods.
2233    if (getLangOpts().Modules && !getLangOpts().CurrentModule.empty())
2234      continue;
2235
2236    if (!MatchTwoMethodDeclarations(Method, List->Method))
2237      continue;
2238
2239    ObjCMethodDecl *PrevObjCMethod = List->Method;
2240
2241    // Propagate the 'defined' bit.
2242    if (Method->isDefined())
2243      PrevObjCMethod->setDefined(true);
2244
2245    // If a method is deprecated, push it in the global pool.
2246    // This is used for better diagnostics.
2247    if (Method->isDeprecated()) {
2248      if (!PrevObjCMethod->isDeprecated())
2249        List->Method = Method;
2250    }
2251    // If new method is unavailable, push it into global pool
2252    // unless previous one is deprecated.
2253    if (Method->isUnavailable()) {
2254      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
2255        List->Method = Method;
2256    }
2257
2258    return;
2259  }
2260
2261  // We have a new signature for an existing method - add it.
2262  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
2263  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
2264  Previous->setNext(new (Mem) ObjCMethodList(Method, nullptr));
2265}
2266
2267/// \brief Read the contents of the method pool for a given selector from
2268/// external storage.
2269void Sema::ReadMethodPool(Selector Sel) {
2270  assert(ExternalSource && "We need an external AST source");
2271  ExternalSource->ReadMethodPool(Sel);
2272}
2273
2274void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
2275                                 bool instance) {
2276  // Ignore methods of invalid containers.
2277  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
2278    return;
2279
2280  if (ExternalSource)
2281    ReadMethodPool(Method->getSelector());
2282
2283  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
2284  if (Pos == MethodPool.end())
2285    Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
2286                                           GlobalMethods())).first;
2287
2288  Method->setDefined(impl);
2289
2290  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
2291  addMethodToGlobalList(&Entry, Method);
2292}
2293
2294/// Determines if this is an "acceptable" loose mismatch in the global
2295/// method pool.  This exists mostly as a hack to get around certain
2296/// global mismatches which we can't afford to make warnings / errors.
2297/// Really, what we want is a way to take a method out of the global
2298/// method pool.
2299static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
2300                                       ObjCMethodDecl *other) {
2301  if (!chosen->isInstanceMethod())
2302    return false;
2303
2304  Selector sel = chosen->getSelector();
2305  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
2306    return false;
2307
2308  // Don't complain about mismatches for -length if the method we
2309  // chose has an integral result type.
2310  return (chosen->getReturnType()->isIntegerType());
2311}
2312
2313ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
2314                                               bool receiverIdOrClass,
2315                                               bool warn, bool instance) {
2316  if (ExternalSource)
2317    ReadMethodPool(Sel);
2318
2319  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2320  if (Pos == MethodPool.end())
2321    return nullptr;
2322
2323  // Gather the non-hidden methods.
2324  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
2325  SmallVector<ObjCMethodDecl *, 4> Methods;
2326  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
2327    if (M->Method && !M->Method->isHidden()) {
2328      // If we're not supposed to warn about mismatches, we're done.
2329      if (!warn)
2330        return M->Method;
2331
2332      Methods.push_back(M->Method);
2333    }
2334  }
2335
2336  // If there aren't any visible methods, we're done.
2337  // FIXME: Recover if there are any known-but-hidden methods?
2338  if (Methods.empty())
2339    return nullptr;
2340
2341  if (Methods.size() == 1)
2342    return Methods[0];
2343
2344  // We found multiple methods, so we may have to complain.
2345  bool issueDiagnostic = false, issueError = false;
2346
2347  // We support a warning which complains about *any* difference in
2348  // method signature.
2349  bool strictSelectorMatch =
2350      receiverIdOrClass && warn &&
2351      !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
2352  if (strictSelectorMatch) {
2353    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2354      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
2355        issueDiagnostic = true;
2356        break;
2357      }
2358    }
2359  }
2360
2361  // If we didn't see any strict differences, we won't see any loose
2362  // differences.  In ARC, however, we also need to check for loose
2363  // mismatches, because most of them are errors.
2364  if (!strictSelectorMatch ||
2365      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
2366    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2367      // This checks if the methods differ in type mismatch.
2368      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
2369          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
2370        issueDiagnostic = true;
2371        if (getLangOpts().ObjCAutoRefCount)
2372          issueError = true;
2373        break;
2374      }
2375    }
2376
2377  if (issueDiagnostic) {
2378    if (issueError)
2379      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
2380    else if (strictSelectorMatch)
2381      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
2382    else
2383      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
2384
2385    Diag(Methods[0]->getLocStart(),
2386         issueError ? diag::note_possibility : diag::note_using)
2387      << Methods[0]->getSourceRange();
2388    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
2389      Diag(Methods[I]->getLocStart(), diag::note_also_found)
2390        << Methods[I]->getSourceRange();
2391  }
2392  }
2393  return Methods[0];
2394}
2395
2396ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
2397  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
2398  if (Pos == MethodPool.end())
2399    return nullptr;
2400
2401  GlobalMethods &Methods = Pos->second;
2402  for (const ObjCMethodList *Method = &Methods.first; Method;
2403       Method = Method->getNext())
2404    if (Method->Method && Method->Method->isDefined())
2405      return Method->Method;
2406
2407  for (const ObjCMethodList *Method = &Methods.second; Method;
2408       Method = Method->getNext())
2409    if (Method->Method && Method->Method->isDefined())
2410      return Method->Method;
2411  return nullptr;
2412}
2413
2414static void
2415HelperSelectorsForTypoCorrection(
2416                      SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
2417                      StringRef Typo, const ObjCMethodDecl * Method) {
2418  const unsigned MaxEditDistance = 1;
2419  unsigned BestEditDistance = MaxEditDistance + 1;
2420  std::string MethodName = Method->getSelector().getAsString();
2421
2422  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
2423  if (MinPossibleEditDistance > 0 &&
2424      Typo.size() / MinPossibleEditDistance < 1)
2425    return;
2426  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
2427  if (EditDistance > MaxEditDistance)
2428    return;
2429  if (EditDistance == BestEditDistance)
2430    BestMethod.push_back(Method);
2431  else if (EditDistance < BestEditDistance) {
2432    BestMethod.clear();
2433    BestMethod.push_back(Method);
2434  }
2435}
2436
2437static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
2438                                     QualType ObjectType) {
2439  if (ObjectType.isNull())
2440    return true;
2441  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
2442    return true;
2443  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
2444         nullptr;
2445}
2446
2447const ObjCMethodDecl *
2448Sema::SelectorsForTypoCorrection(Selector Sel,
2449                                 QualType ObjectType) {
2450  unsigned NumArgs = Sel.getNumArgs();
2451  SmallVector<const ObjCMethodDecl *, 8> Methods;
2452  bool ObjectIsId = true, ObjectIsClass = true;
2453  if (ObjectType.isNull())
2454    ObjectIsId = ObjectIsClass = false;
2455  else if (!ObjectType->isObjCObjectPointerType())
2456    return nullptr;
2457  else if (const ObjCObjectPointerType *ObjCPtr =
2458           ObjectType->getAsObjCInterfacePointerType()) {
2459    ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
2460    ObjectIsId = ObjectIsClass = false;
2461  }
2462  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
2463    ObjectIsClass = false;
2464  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
2465    ObjectIsId = false;
2466  else
2467    return nullptr;
2468
2469  for (GlobalMethodPool::iterator b = MethodPool.begin(),
2470       e = MethodPool.end(); b != e; b++) {
2471    // instance methods
2472    for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
2473      if (M->Method &&
2474          (M->Method->getSelector().getNumArgs() == NumArgs) &&
2475          (M->Method->getSelector() != Sel)) {
2476        if (ObjectIsId)
2477          Methods.push_back(M->Method);
2478        else if (!ObjectIsClass &&
2479                 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2480          Methods.push_back(M->Method);
2481      }
2482    // class methods
2483    for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
2484      if (M->Method &&
2485          (M->Method->getSelector().getNumArgs() == NumArgs) &&
2486          (M->Method->getSelector() != Sel)) {
2487        if (ObjectIsClass)
2488          Methods.push_back(M->Method);
2489        else if (!ObjectIsId &&
2490                 HelperIsMethodInObjCType(*this, M->Method->getSelector(), ObjectType))
2491          Methods.push_back(M->Method);
2492      }
2493  }
2494
2495  SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
2496  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
2497    HelperSelectorsForTypoCorrection(SelectedMethods,
2498                                     Sel.getAsString(), Methods[i]);
2499  }
2500  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
2501}
2502
2503/// DiagnoseDuplicateIvars -
2504/// Check for duplicate ivars in the entire class at the start of
2505/// \@implementation. This becomes necesssary because class extension can
2506/// add ivars to a class in random order which will not be known until
2507/// class's \@implementation is seen.
2508void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
2509                                  ObjCInterfaceDecl *SID) {
2510  for (auto *Ivar : ID->ivars()) {
2511    if (Ivar->isInvalidDecl())
2512      continue;
2513    if (IdentifierInfo *II = Ivar->getIdentifier()) {
2514      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
2515      if (prevIvar) {
2516        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
2517        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
2518        Ivar->setInvalidDecl();
2519      }
2520    }
2521  }
2522}
2523
2524Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
2525  switch (CurContext->getDeclKind()) {
2526    case Decl::ObjCInterface:
2527      return Sema::OCK_Interface;
2528    case Decl::ObjCProtocol:
2529      return Sema::OCK_Protocol;
2530    case Decl::ObjCCategory:
2531      if (dyn_cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
2532        return Sema::OCK_ClassExtension;
2533      else
2534        return Sema::OCK_Category;
2535    case Decl::ObjCImplementation:
2536      return Sema::OCK_Implementation;
2537    case Decl::ObjCCategoryImpl:
2538      return Sema::OCK_CategoryImplementation;
2539
2540    default:
2541      return Sema::OCK_None;
2542  }
2543}
2544
2545// Note: For class/category implementations, allMethods is always null.
2546Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
2547                       ArrayRef<DeclGroupPtrTy> allTUVars) {
2548  if (getObjCContainerKind() == Sema::OCK_None)
2549    return nullptr;
2550
2551  assert(AtEnd.isValid() && "Invalid location for '@end'");
2552
2553  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
2554  Decl *ClassDecl = cast<Decl>(OCD);
2555
2556  bool isInterfaceDeclKind =
2557        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
2558         || isa<ObjCProtocolDecl>(ClassDecl);
2559  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
2560
2561  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
2562  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
2563  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
2564
2565  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
2566    ObjCMethodDecl *Method =
2567      cast_or_null<ObjCMethodDecl>(allMethods[i]);
2568
2569    if (!Method) continue;  // Already issued a diagnostic.
2570    if (Method->isInstanceMethod()) {
2571      /// Check for instance method of the same name with incompatible types
2572      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
2573      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2574                              : false;
2575      if ((isInterfaceDeclKind && PrevMethod && !match)
2576          || (checkIdenticalMethods && match)) {
2577          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2578            << Method->getDeclName();
2579          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2580        Method->setInvalidDecl();
2581      } else {
2582        if (PrevMethod) {
2583          Method->setAsRedeclaration(PrevMethod);
2584          if (!Context.getSourceManager().isInSystemHeader(
2585                 Method->getLocation()))
2586            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2587              << Method->getDeclName();
2588          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2589        }
2590        InsMap[Method->getSelector()] = Method;
2591        /// The following allows us to typecheck messages to "id".
2592        AddInstanceMethodToGlobalPool(Method);
2593      }
2594    } else {
2595      /// Check for class method of the same name with incompatible types
2596      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
2597      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
2598                              : false;
2599      if ((isInterfaceDeclKind && PrevMethod && !match)
2600          || (checkIdenticalMethods && match)) {
2601        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
2602          << Method->getDeclName();
2603        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2604        Method->setInvalidDecl();
2605      } else {
2606        if (PrevMethod) {
2607          Method->setAsRedeclaration(PrevMethod);
2608          if (!Context.getSourceManager().isInSystemHeader(
2609                 Method->getLocation()))
2610            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
2611              << Method->getDeclName();
2612          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
2613        }
2614        ClsMap[Method->getSelector()] = Method;
2615        AddFactoryMethodToGlobalPool(Method);
2616      }
2617    }
2618  }
2619  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
2620    // Nothing to do here.
2621  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
2622    // Categories are used to extend the class by declaring new methods.
2623    // By the same token, they are also used to add new properties. No
2624    // need to compare the added property to those in the class.
2625
2626    if (C->IsClassExtension()) {
2627      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
2628      DiagnoseClassExtensionDupMethods(C, CCPrimary);
2629    }
2630  }
2631  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
2632    if (CDecl->getIdentifier())
2633      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
2634      // user-defined setter/getter. It also synthesizes setter/getter methods
2635      // and adds them to the DeclContext and global method pools.
2636      for (auto *I : CDecl->properties())
2637        ProcessPropertyDecl(I, CDecl);
2638    CDecl->setAtEndRange(AtEnd);
2639  }
2640  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
2641    IC->setAtEndRange(AtEnd);
2642    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
2643      // Any property declared in a class extension might have user
2644      // declared setter or getter in current class extension or one
2645      // of the other class extensions. Mark them as synthesized as
2646      // property will be synthesized when property with same name is
2647      // seen in the @implementation.
2648      for (const auto *Ext : IDecl->visible_extensions()) {
2649        for (const auto *Property : Ext->properties()) {
2650          // Skip over properties declared @dynamic
2651          if (const ObjCPropertyImplDecl *PIDecl
2652              = IC->FindPropertyImplDecl(Property->getIdentifier()))
2653            if (PIDecl->getPropertyImplementation()
2654                  == ObjCPropertyImplDecl::Dynamic)
2655              continue;
2656
2657          for (const auto *Ext : IDecl->visible_extensions()) {
2658            if (ObjCMethodDecl *GetterMethod
2659                  = Ext->getInstanceMethod(Property->getGetterName()))
2660              GetterMethod->setPropertyAccessor(true);
2661            if (!Property->isReadOnly())
2662              if (ObjCMethodDecl *SetterMethod
2663                    = Ext->getInstanceMethod(Property->getSetterName()))
2664                SetterMethod->setPropertyAccessor(true);
2665          }
2666        }
2667      }
2668      ImplMethodsVsClassMethods(S, IC, IDecl);
2669      AtomicPropertySetterGetterRules(IC, IDecl);
2670      DiagnoseOwningPropertyGetterSynthesis(IC);
2671      DiagnoseUnusedBackingIvarInAccessor(S, IC);
2672      if (IDecl->hasDesignatedInitializers())
2673        DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
2674
2675      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
2676      if (IDecl->getSuperClass() == nullptr) {
2677        // This class has no superclass, so check that it has been marked with
2678        // __attribute((objc_root_class)).
2679        if (!HasRootClassAttr) {
2680          SourceLocation DeclLoc(IDecl->getLocation());
2681          SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
2682          Diag(DeclLoc, diag::warn_objc_root_class_missing)
2683            << IDecl->getIdentifier();
2684          // See if NSObject is in the current scope, and if it is, suggest
2685          // adding " : NSObject " to the class declaration.
2686          NamedDecl *IF = LookupSingleName(TUScope,
2687                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
2688                                           DeclLoc, LookupOrdinaryName);
2689          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
2690          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
2691            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
2692              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
2693          } else {
2694            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
2695          }
2696        }
2697      } else if (HasRootClassAttr) {
2698        // Complain that only root classes may have this attribute.
2699        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
2700      }
2701
2702      if (LangOpts.ObjCRuntime.isNonFragile()) {
2703        while (IDecl->getSuperClass()) {
2704          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
2705          IDecl = IDecl->getSuperClass();
2706        }
2707      }
2708    }
2709    SetIvarInitializers(IC);
2710  } else if (ObjCCategoryImplDecl* CatImplClass =
2711                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
2712    CatImplClass->setAtEndRange(AtEnd);
2713
2714    // Find category interface decl and then check that all methods declared
2715    // in this interface are implemented in the category @implementation.
2716    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
2717      if (ObjCCategoryDecl *Cat
2718            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
2719        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
2720      }
2721    }
2722  }
2723  if (isInterfaceDeclKind) {
2724    // Reject invalid vardecls.
2725    for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2726      DeclGroupRef DG = allTUVars[i].get();
2727      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2728        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
2729          if (!VDecl->hasExternalStorage())
2730            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
2731        }
2732    }
2733  }
2734  ActOnObjCContainerFinishDefinition();
2735
2736  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
2737    DeclGroupRef DG = allTUVars[i].get();
2738    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
2739      (*I)->setTopLevelDeclInObjCContainer();
2740    Consumer.HandleTopLevelDeclInObjCContainer(DG);
2741  }
2742
2743  ActOnDocumentableDecl(ClassDecl);
2744  return ClassDecl;
2745}
2746
2747
2748/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
2749/// objective-c's type qualifier from the parser version of the same info.
2750static Decl::ObjCDeclQualifier
2751CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
2752  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
2753}
2754
2755/// \brief Check whether the declared result type of the given Objective-C
2756/// method declaration is compatible with the method's class.
2757///
2758static Sema::ResultTypeCompatibilityKind
2759CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
2760                                    ObjCInterfaceDecl *CurrentClass) {
2761  QualType ResultType = Method->getReturnType();
2762
2763  // If an Objective-C method inherits its related result type, then its
2764  // declared result type must be compatible with its own class type. The
2765  // declared result type is compatible if:
2766  if (const ObjCObjectPointerType *ResultObjectType
2767                                = ResultType->getAs<ObjCObjectPointerType>()) {
2768    //   - it is id or qualified id, or
2769    if (ResultObjectType->isObjCIdType() ||
2770        ResultObjectType->isObjCQualifiedIdType())
2771      return Sema::RTC_Compatible;
2772
2773    if (CurrentClass) {
2774      if (ObjCInterfaceDecl *ResultClass
2775                                      = ResultObjectType->getInterfaceDecl()) {
2776        //   - it is the same as the method's class type, or
2777        if (declaresSameEntity(CurrentClass, ResultClass))
2778          return Sema::RTC_Compatible;
2779
2780        //   - it is a superclass of the method's class type
2781        if (ResultClass->isSuperClassOf(CurrentClass))
2782          return Sema::RTC_Compatible;
2783      }
2784    } else {
2785      // Any Objective-C pointer type might be acceptable for a protocol
2786      // method; we just don't know.
2787      return Sema::RTC_Unknown;
2788    }
2789  }
2790
2791  return Sema::RTC_Incompatible;
2792}
2793
2794namespace {
2795/// A helper class for searching for methods which a particular method
2796/// overrides.
2797class OverrideSearch {
2798public:
2799  Sema &S;
2800  ObjCMethodDecl *Method;
2801  llvm::SmallPtrSet<ObjCMethodDecl*, 4> Overridden;
2802  bool Recursive;
2803
2804public:
2805  OverrideSearch(Sema &S, ObjCMethodDecl *method) : S(S), Method(method) {
2806    Selector selector = method->getSelector();
2807
2808    // Bypass this search if we've never seen an instance/class method
2809    // with this selector before.
2810    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
2811    if (it == S.MethodPool.end()) {
2812      if (!S.getExternalSource()) return;
2813      S.ReadMethodPool(selector);
2814
2815      it = S.MethodPool.find(selector);
2816      if (it == S.MethodPool.end())
2817        return;
2818    }
2819    ObjCMethodList &list =
2820      method->isInstanceMethod() ? it->second.first : it->second.second;
2821    if (!list.Method) return;
2822
2823    ObjCContainerDecl *container
2824      = cast<ObjCContainerDecl>(method->getDeclContext());
2825
2826    // Prevent the search from reaching this container again.  This is
2827    // important with categories, which override methods from the
2828    // interface and each other.
2829    if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(container)) {
2830      searchFromContainer(container);
2831      if (ObjCInterfaceDecl *Interface = Category->getClassInterface())
2832        searchFromContainer(Interface);
2833    } else {
2834      searchFromContainer(container);
2835    }
2836  }
2837
2838  typedef llvm::SmallPtrSet<ObjCMethodDecl*, 128>::iterator iterator;
2839  iterator begin() const { return Overridden.begin(); }
2840  iterator end() const { return Overridden.end(); }
2841
2842private:
2843  void searchFromContainer(ObjCContainerDecl *container) {
2844    if (container->isInvalidDecl()) return;
2845
2846    switch (container->getDeclKind()) {
2847#define OBJCCONTAINER(type, base) \
2848    case Decl::type: \
2849      searchFrom(cast<type##Decl>(container)); \
2850      break;
2851#define ABSTRACT_DECL(expansion)
2852#define DECL(type, base) \
2853    case Decl::type:
2854#include "clang/AST/DeclNodes.inc"
2855      llvm_unreachable("not an ObjC container!");
2856    }
2857  }
2858
2859  void searchFrom(ObjCProtocolDecl *protocol) {
2860    if (!protocol->hasDefinition())
2861      return;
2862
2863    // A method in a protocol declaration overrides declarations from
2864    // referenced ("parent") protocols.
2865    search(protocol->getReferencedProtocols());
2866  }
2867
2868  void searchFrom(ObjCCategoryDecl *category) {
2869    // A method in a category declaration overrides declarations from
2870    // the main class and from protocols the category references.
2871    // The main class is handled in the constructor.
2872    search(category->getReferencedProtocols());
2873  }
2874
2875  void searchFrom(ObjCCategoryImplDecl *impl) {
2876    // A method in a category definition that has a category
2877    // declaration overrides declarations from the category
2878    // declaration.
2879    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
2880      search(category);
2881      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
2882        search(Interface);
2883
2884    // Otherwise it overrides declarations from the class.
2885    } else if (ObjCInterfaceDecl *Interface = impl->getClassInterface()) {
2886      search(Interface);
2887    }
2888  }
2889
2890  void searchFrom(ObjCInterfaceDecl *iface) {
2891    // A method in a class declaration overrides declarations from
2892    if (!iface->hasDefinition())
2893      return;
2894
2895    //   - categories,
2896    for (auto *Cat : iface->known_categories())
2897      search(Cat);
2898
2899    //   - the super class, and
2900    if (ObjCInterfaceDecl *super = iface->getSuperClass())
2901      search(super);
2902
2903    //   - any referenced protocols.
2904    search(iface->getReferencedProtocols());
2905  }
2906
2907  void searchFrom(ObjCImplementationDecl *impl) {
2908    // A method in a class implementation overrides declarations from
2909    // the class interface.
2910    if (ObjCInterfaceDecl *Interface = impl->getClassInterface())
2911      search(Interface);
2912  }
2913
2914
2915  void search(const ObjCProtocolList &protocols) {
2916    for (ObjCProtocolList::iterator i = protocols.begin(), e = protocols.end();
2917         i != e; ++i)
2918      search(*i);
2919  }
2920
2921  void search(ObjCContainerDecl *container) {
2922    // Check for a method in this container which matches this selector.
2923    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
2924                                                Method->isInstanceMethod(),
2925                                                /*AllowHidden=*/true);
2926
2927    // If we find one, record it and bail out.
2928    if (meth) {
2929      Overridden.insert(meth);
2930      return;
2931    }
2932
2933    // Otherwise, search for methods that a hypothetical method here
2934    // would have overridden.
2935
2936    // Note that we're now in a recursive case.
2937    Recursive = true;
2938
2939    searchFromContainer(container);
2940  }
2941};
2942}
2943
2944void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
2945                                    ObjCInterfaceDecl *CurrentClass,
2946                                    ResultTypeCompatibilityKind RTC) {
2947  // Search for overridden methods and merge information down from them.
2948  OverrideSearch overrides(*this, ObjCMethod);
2949  // Keep track if the method overrides any method in the class's base classes,
2950  // its protocols, or its categories' protocols; we will keep that info
2951  // in the ObjCMethodDecl.
2952  // For this info, a method in an implementation is not considered as
2953  // overriding the same method in the interface or its categories.
2954  bool hasOverriddenMethodsInBaseOrProtocol = false;
2955  for (OverrideSearch::iterator
2956         i = overrides.begin(), e = overrides.end(); i != e; ++i) {
2957    ObjCMethodDecl *overridden = *i;
2958
2959    if (!hasOverriddenMethodsInBaseOrProtocol) {
2960      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
2961          CurrentClass != overridden->getClassInterface() ||
2962          overridden->isOverriding()) {
2963        hasOverriddenMethodsInBaseOrProtocol = true;
2964
2965      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
2966        // OverrideSearch will return as "overridden" the same method in the
2967        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
2968        // check whether a category of a base class introduced a method with the
2969        // same selector, after the interface method declaration.
2970        // To avoid unnecessary lookups in the majority of cases, we use the
2971        // extra info bits in GlobalMethodPool to check whether there were any
2972        // category methods with this selector.
2973        GlobalMethodPool::iterator It =
2974            MethodPool.find(ObjCMethod->getSelector());
2975        if (It != MethodPool.end()) {
2976          ObjCMethodList &List =
2977            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
2978          unsigned CategCount = List.getBits();
2979          if (CategCount > 0) {
2980            // If the method is in a category we'll do lookup if there were at
2981            // least 2 category methods recorded, otherwise only one will do.
2982            if (CategCount > 1 ||
2983                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
2984              OverrideSearch overrides(*this, overridden);
2985              for (OverrideSearch::iterator
2986                     OI= overrides.begin(), OE= overrides.end(); OI!=OE; ++OI) {
2987                ObjCMethodDecl *SuperOverridden = *OI;
2988                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
2989                    CurrentClass != SuperOverridden->getClassInterface()) {
2990                  hasOverriddenMethodsInBaseOrProtocol = true;
2991                  overridden->setOverriding(true);
2992                  break;
2993                }
2994              }
2995            }
2996          }
2997        }
2998      }
2999    }
3000
3001    // Propagate down the 'related result type' bit from overridden methods.
3002    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
3003      ObjCMethod->SetRelatedResultType();
3004
3005    // Then merge the declarations.
3006    mergeObjCMethodDecls(ObjCMethod, overridden);
3007
3008    if (ObjCMethod->isImplicit() && overridden->isImplicit())
3009      continue; // Conflicting properties are detected elsewhere.
3010
3011    // Check for overriding methods
3012    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
3013        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
3014      CheckConflictingOverridingMethod(ObjCMethod, overridden,
3015              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
3016
3017    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
3018        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
3019        !overridden->isImplicit() /* not meant for properties */) {
3020      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
3021                                          E = ObjCMethod->param_end();
3022      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
3023                                     PrevE = overridden->param_end();
3024      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
3025        assert(PrevI != overridden->param_end() && "Param mismatch");
3026        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
3027        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
3028        // If type of argument of method in this class does not match its
3029        // respective argument type in the super class method, issue warning;
3030        if (!Context.typesAreCompatible(T1, T2)) {
3031          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
3032            << T1 << T2;
3033          Diag(overridden->getLocation(), diag::note_previous_declaration);
3034          break;
3035        }
3036      }
3037    }
3038  }
3039
3040  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
3041}
3042
3043Decl *Sema::ActOnMethodDeclaration(
3044    Scope *S,
3045    SourceLocation MethodLoc, SourceLocation EndLoc,
3046    tok::TokenKind MethodType,
3047    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
3048    ArrayRef<SourceLocation> SelectorLocs,
3049    Selector Sel,
3050    // optional arguments. The number of types/arguments is obtained
3051    // from the Sel.getNumArgs().
3052    ObjCArgInfo *ArgInfo,
3053    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
3054    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
3055    bool isVariadic, bool MethodDefinition) {
3056  // Make sure we can establish a context for the method.
3057  if (!CurContext->isObjCContainer()) {
3058    Diag(MethodLoc, diag::error_missing_method_context);
3059    return nullptr;
3060  }
3061  ObjCContainerDecl *OCD = dyn_cast<ObjCContainerDecl>(CurContext);
3062  Decl *ClassDecl = cast<Decl>(OCD);
3063  QualType resultDeclType;
3064
3065  bool HasRelatedResultType = false;
3066  TypeSourceInfo *ReturnTInfo = nullptr;
3067  if (ReturnType) {
3068    resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
3069
3070    if (CheckFunctionReturnType(resultDeclType, MethodLoc))
3071      return nullptr;
3072
3073    HasRelatedResultType = (resultDeclType == Context.getObjCInstanceType());
3074  } else { // get the type for "id".
3075    resultDeclType = Context.getObjCIdType();
3076    Diag(MethodLoc, diag::warn_missing_method_return_type)
3077      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
3078  }
3079
3080  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
3081      Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
3082      MethodType == tok::minus, isVariadic,
3083      /*isPropertyAccessor=*/false,
3084      /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
3085      MethodDeclKind == tok::objc_optional ? ObjCMethodDecl::Optional
3086                                           : ObjCMethodDecl::Required,
3087      HasRelatedResultType);
3088
3089  SmallVector<ParmVarDecl*, 16> Params;
3090
3091  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
3092    QualType ArgType;
3093    TypeSourceInfo *DI;
3094
3095    if (!ArgInfo[i].Type) {
3096      ArgType = Context.getObjCIdType();
3097      DI = nullptr;
3098    } else {
3099      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
3100    }
3101
3102    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
3103                   LookupOrdinaryName, ForRedeclaration);
3104    LookupName(R, S);
3105    if (R.isSingleResult()) {
3106      NamedDecl *PrevDecl = R.getFoundDecl();
3107      if (S->isDeclScope(PrevDecl)) {
3108        Diag(ArgInfo[i].NameLoc,
3109             (MethodDefinition ? diag::warn_method_param_redefinition
3110                               : diag::warn_method_param_declaration))
3111          << ArgInfo[i].Name;
3112        Diag(PrevDecl->getLocation(),
3113             diag::note_previous_declaration);
3114      }
3115    }
3116
3117    SourceLocation StartLoc = DI
3118      ? DI->getTypeLoc().getBeginLoc()
3119      : ArgInfo[i].NameLoc;
3120
3121    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
3122                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
3123                                        ArgType, DI, SC_None);
3124
3125    Param->setObjCMethodScopeInfo(i);
3126
3127    Param->setObjCDeclQualifier(
3128      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
3129
3130    // Apply the attributes to the parameter.
3131    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
3132
3133    if (Param->hasAttr<BlocksAttr>()) {
3134      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
3135      Param->setInvalidDecl();
3136    }
3137    S->AddDecl(Param);
3138    IdResolver.AddDecl(Param);
3139
3140    Params.push_back(Param);
3141  }
3142
3143  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
3144    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
3145    QualType ArgType = Param->getType();
3146    if (ArgType.isNull())
3147      ArgType = Context.getObjCIdType();
3148    else
3149      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
3150      ArgType = Context.getAdjustedParameterType(ArgType);
3151
3152    Param->setDeclContext(ObjCMethod);
3153    Params.push_back(Param);
3154  }
3155
3156  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
3157  ObjCMethod->setObjCDeclQualifier(
3158    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
3159
3160  if (AttrList)
3161    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
3162
3163  // Add the method now.
3164  const ObjCMethodDecl *PrevMethod = nullptr;
3165  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
3166    if (MethodType == tok::minus) {
3167      PrevMethod = ImpDecl->getInstanceMethod(Sel);
3168      ImpDecl->addInstanceMethod(ObjCMethod);
3169    } else {
3170      PrevMethod = ImpDecl->getClassMethod(Sel);
3171      ImpDecl->addClassMethod(ObjCMethod);
3172    }
3173
3174    ObjCMethodDecl *IMD = nullptr;
3175    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface())
3176      IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
3177                                ObjCMethod->isInstanceMethod());
3178    if (IMD && IMD->hasAttr<ObjCRequiresSuperAttr>() &&
3179        !ObjCMethod->hasAttr<ObjCRequiresSuperAttr>()) {
3180      // merge the attribute into implementation.
3181      ObjCMethod->addAttr(ObjCRequiresSuperAttr::CreateImplicit(Context,
3182                                                   ObjCMethod->getLocation()));
3183    }
3184    if (isa<ObjCCategoryImplDecl>(ImpDecl)) {
3185      ObjCMethodFamily family =
3186        ObjCMethod->getSelector().getMethodFamily();
3187      if (family == OMF_dealloc && IMD && IMD->isOverriding())
3188        Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
3189          << ObjCMethod->getDeclName();
3190    }
3191  } else {
3192    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
3193  }
3194
3195  if (PrevMethod) {
3196    // You can never have two method definitions with the same name.
3197    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
3198      << ObjCMethod->getDeclName();
3199    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
3200    ObjCMethod->setInvalidDecl();
3201    return ObjCMethod;
3202  }
3203
3204  // If this Objective-C method does not have a related result type, but we
3205  // are allowed to infer related result types, try to do so based on the
3206  // method family.
3207  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
3208  if (!CurrentClass) {
3209    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
3210      CurrentClass = Cat->getClassInterface();
3211    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
3212      CurrentClass = Impl->getClassInterface();
3213    else if (ObjCCategoryImplDecl *CatImpl
3214                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
3215      CurrentClass = CatImpl->getClassInterface();
3216  }
3217
3218  ResultTypeCompatibilityKind RTC
3219    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
3220
3221  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
3222
3223  bool ARCError = false;
3224  if (getLangOpts().ObjCAutoRefCount)
3225    ARCError = CheckARCMethodDecl(ObjCMethod);
3226
3227  // Infer the related result type when possible.
3228  if (!ARCError && RTC == Sema::RTC_Compatible &&
3229      !ObjCMethod->hasRelatedResultType() &&
3230      LangOpts.ObjCInferRelatedResultType) {
3231    bool InferRelatedResultType = false;
3232    switch (ObjCMethod->getMethodFamily()) {
3233    case OMF_None:
3234    case OMF_copy:
3235    case OMF_dealloc:
3236    case OMF_finalize:
3237    case OMF_mutableCopy:
3238    case OMF_release:
3239    case OMF_retainCount:
3240    case OMF_performSelector:
3241      break;
3242
3243    case OMF_alloc:
3244    case OMF_new:
3245      InferRelatedResultType = ObjCMethod->isClassMethod();
3246      break;
3247
3248    case OMF_init:
3249    case OMF_autorelease:
3250    case OMF_retain:
3251    case OMF_self:
3252      InferRelatedResultType = ObjCMethod->isInstanceMethod();
3253      break;
3254    }
3255
3256    if (InferRelatedResultType)
3257      ObjCMethod->SetRelatedResultType();
3258  }
3259
3260  ActOnDocumentableDecl(ObjCMethod);
3261
3262  return ObjCMethod;
3263}
3264
3265bool Sema::CheckObjCDeclScope(Decl *D) {
3266  // Following is also an error. But it is caused by a missing @end
3267  // and diagnostic is issued elsewhere.
3268  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
3269    return false;
3270
3271  // If we switched context to translation unit while we are still lexically in
3272  // an objc container, it means the parser missed emitting an error.
3273  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
3274    return false;
3275
3276  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
3277  D->setInvalidDecl();
3278
3279  return true;
3280}
3281
3282/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
3283/// instance variables of ClassName into Decls.
3284void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
3285                     IdentifierInfo *ClassName,
3286                     SmallVectorImpl<Decl*> &Decls) {
3287  // Check that ClassName is a valid class
3288  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
3289  if (!Class) {
3290    Diag(DeclStart, diag::err_undef_interface) << ClassName;
3291    return;
3292  }
3293  if (LangOpts.ObjCRuntime.isNonFragile()) {
3294    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
3295    return;
3296  }
3297
3298  // Collect the instance variables
3299  SmallVector<const ObjCIvarDecl*, 32> Ivars;
3300  Context.DeepCollectObjCIvars(Class, true, Ivars);
3301  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
3302  for (unsigned i = 0; i < Ivars.size(); i++) {
3303    const FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
3304    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
3305    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
3306                                           /*FIXME: StartL=*/ID->getLocation(),
3307                                           ID->getLocation(),
3308                                           ID->getIdentifier(), ID->getType(),
3309                                           ID->getBitWidth());
3310    Decls.push_back(FD);
3311  }
3312
3313  // Introduce all of these fields into the appropriate scope.
3314  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
3315       D != Decls.end(); ++D) {
3316    FieldDecl *FD = cast<FieldDecl>(*D);
3317    if (getLangOpts().CPlusPlus)
3318      PushOnScopeChains(cast<FieldDecl>(FD), S);
3319    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
3320      Record->addDecl(FD);
3321  }
3322}
3323
3324/// \brief Build a type-check a new Objective-C exception variable declaration.
3325VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
3326                                      SourceLocation StartLoc,
3327                                      SourceLocation IdLoc,
3328                                      IdentifierInfo *Id,
3329                                      bool Invalid) {
3330  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3331  // duration shall not be qualified by an address-space qualifier."
3332  // Since all parameters have automatic store duration, they can not have
3333  // an address space.
3334  if (T.getAddressSpace() != 0) {
3335    Diag(IdLoc, diag::err_arg_with_address_space);
3336    Invalid = true;
3337  }
3338
3339  // An @catch parameter must be an unqualified object pointer type;
3340  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
3341  if (Invalid) {
3342    // Don't do any further checking.
3343  } else if (T->isDependentType()) {
3344    // Okay: we don't know what this type will instantiate to.
3345  } else if (!T->isObjCObjectPointerType()) {
3346    Invalid = true;
3347    Diag(IdLoc ,diag::err_catch_param_not_objc_type);
3348  } else if (T->isObjCQualifiedIdType()) {
3349    Invalid = true;
3350    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
3351  }
3352
3353  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
3354                                 T, TInfo, SC_None);
3355  New->setExceptionVariable(true);
3356
3357  // In ARC, infer 'retaining' for variables of retainable type.
3358  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
3359    Invalid = true;
3360
3361  if (Invalid)
3362    New->setInvalidDecl();
3363  return New;
3364}
3365
3366Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
3367  const DeclSpec &DS = D.getDeclSpec();
3368
3369  // We allow the "register" storage class on exception variables because
3370  // GCC did, but we drop it completely. Any other storage class is an error.
3371  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3372    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
3373      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
3374  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3375    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
3376      << DeclSpec::getSpecifierName(SCS);
3377  }
3378  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
3379    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
3380         diag::err_invalid_thread)
3381     << DeclSpec::getSpecifierName(TSCS);
3382  D.getMutableDeclSpec().ClearStorageClassSpecs();
3383
3384  DiagnoseFunctionSpecifiers(D.getDeclSpec());
3385
3386  // Check that there are no default arguments inside the type of this
3387  // exception object (C++ only).
3388  if (getLangOpts().CPlusPlus)
3389    CheckExtraCXXDefaultArguments(D);
3390
3391  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3392  QualType ExceptionType = TInfo->getType();
3393
3394  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
3395                                        D.getSourceRange().getBegin(),
3396                                        D.getIdentifierLoc(),
3397                                        D.getIdentifier(),
3398                                        D.isInvalidType());
3399
3400  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3401  if (D.getCXXScopeSpec().isSet()) {
3402    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
3403      << D.getCXXScopeSpec().getRange();
3404    New->setInvalidDecl();
3405  }
3406
3407  // Add the parameter declaration into this scope.
3408  S->AddDecl(New);
3409  if (D.getIdentifier())
3410    IdResolver.AddDecl(New);
3411
3412  ProcessDeclAttributes(S, New, D);
3413
3414  if (New->hasAttr<BlocksAttr>())
3415    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3416  return New;
3417}
3418
3419/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
3420/// initialization.
3421void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
3422                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
3423  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
3424       Iv= Iv->getNextIvar()) {
3425    QualType QT = Context.getBaseElementType(Iv->getType());
3426    if (QT->isRecordType())
3427      Ivars.push_back(Iv);
3428  }
3429}
3430
3431void Sema::DiagnoseUseOfUnimplementedSelectors() {
3432  // Load referenced selectors from the external source.
3433  if (ExternalSource) {
3434    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
3435    ExternalSource->ReadReferencedSelectors(Sels);
3436    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
3437      ReferencedSelectors[Sels[I].first] = Sels[I].second;
3438  }
3439
3440  // Warning will be issued only when selector table is
3441  // generated (which means there is at lease one implementation
3442  // in the TU). This is to match gcc's behavior.
3443  if (ReferencedSelectors.empty() ||
3444      !Context.AnyObjCImplementation())
3445    return;
3446  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
3447        ReferencedSelectors.begin(),
3448       E = ReferencedSelectors.end(); S != E; ++S) {
3449    Selector Sel = (*S).first;
3450    if (!LookupImplementedMethodInGlobalPool(Sel))
3451      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
3452  }
3453  return;
3454}
3455
3456ObjCIvarDecl *
3457Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
3458                                     const ObjCPropertyDecl *&PDecl) const {
3459  if (Method->isClassMethod())
3460    return nullptr;
3461  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
3462  if (!IDecl)
3463    return nullptr;
3464  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
3465                               /*shallowCategoryLookup=*/false,
3466                               /*followSuper=*/false);
3467  if (!Method || !Method->isPropertyAccessor())
3468    return nullptr;
3469  if ((PDecl = Method->findPropertyDecl()))
3470    if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
3471      // property backing ivar must belong to property's class
3472      // or be a private ivar in class's implementation.
3473      // FIXME. fix the const-ness issue.
3474      IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
3475                                                        IV->getIdentifier());
3476      return IV;
3477    }
3478  return nullptr;
3479}
3480
3481namespace {
3482  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
3483  /// accessor references the backing ivar.
3484  class UnusedBackingIvarChecker :
3485      public DataRecursiveASTVisitor<UnusedBackingIvarChecker> {
3486  public:
3487    Sema &S;
3488    const ObjCMethodDecl *Method;
3489    const ObjCIvarDecl *IvarD;
3490    bool AccessedIvar;
3491    bool InvokedSelfMethod;
3492
3493    UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
3494                             const ObjCIvarDecl *IvarD)
3495      : S(S), Method(Method), IvarD(IvarD),
3496        AccessedIvar(false), InvokedSelfMethod(false) {
3497      assert(IvarD);
3498    }
3499
3500    bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
3501      if (E->getDecl() == IvarD) {
3502        AccessedIvar = true;
3503        return false;
3504      }
3505      return true;
3506    }
3507
3508    bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
3509      if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
3510          S.isSelfExpr(E->getInstanceReceiver(), Method)) {
3511        InvokedSelfMethod = true;
3512      }
3513      return true;
3514    }
3515  };
3516}
3517
3518void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
3519                                          const ObjCImplementationDecl *ImplD) {
3520  if (S->hasUnrecoverableErrorOccurred())
3521    return;
3522
3523  for (const auto *CurMethod : ImplD->instance_methods()) {
3524    unsigned DIAG = diag::warn_unused_property_backing_ivar;
3525    SourceLocation Loc = CurMethod->getLocation();
3526    if (Diags.isIgnored(DIAG, Loc))
3527      continue;
3528
3529    const ObjCPropertyDecl *PDecl;
3530    const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
3531    if (!IV)
3532      continue;
3533
3534    UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
3535    Checker.TraverseStmt(CurMethod->getBody());
3536    if (Checker.AccessedIvar)
3537      continue;
3538
3539    // Do not issue this warning if backing ivar is used somewhere and accessor
3540    // implementation makes a self call. This is to prevent false positive in
3541    // cases where the ivar is accessed by another method that the accessor
3542    // delegates to.
3543    if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
3544      Diag(Loc, DIAG) << IV;
3545      Diag(PDecl->getLocation(), diag::note_property_declare);
3546    }
3547  }
3548}
3549