SemaDeclObjC.cpp revision 1bfa059effa6b3cf3cf4b2f377a8f8e2f7d2cd12
1//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for Objective C declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/Sema/ExternalSemaSource.h"
17#include "clang/Sema/Scope.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/AST/Expr.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/Sema/DeclSpec.h"
23#include "llvm/ADT/DenseSet.h"
24
25using namespace clang;
26
27/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
28/// and user declared, in the method definition's AST.
29void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
30  assert(getCurMethodDecl() == 0 && "Method parsing confused");
31  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
32
33  // If we don't have a valid method decl, simply return.
34  if (!MDecl)
35    return;
36
37  // Allow the rest of sema to find private method decl implementations.
38  if (MDecl->isInstanceMethod())
39    AddInstanceMethodToGlobalPool(MDecl, true);
40  else
41    AddFactoryMethodToGlobalPool(MDecl, true);
42
43  // Allow all of Sema to see that we are entering a method definition.
44  PushDeclContext(FnBodyScope, MDecl);
45  PushFunctionScope();
46
47  // Create Decl objects for each parameter, entrring them in the scope for
48  // binding to their use.
49
50  // Insert the invisible arguments, self and _cmd!
51  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
52
53  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
54  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
55
56  // Introduce all of the other parameters into this scope.
57  for (ObjCMethodDecl::param_iterator PI = MDecl->param_begin(),
58       E = MDecl->param_end(); PI != E; ++PI) {
59    ParmVarDecl *Param = (*PI);
60    if (!Param->isInvalidDecl() &&
61        RequireCompleteType(Param->getLocation(), Param->getType(),
62                            diag::err_typecheck_decl_incomplete_type))
63          Param->setInvalidDecl();
64    if ((*PI)->getIdentifier())
65      PushOnScopeChains(*PI, FnBodyScope);
66  }
67}
68
69Decl *Sema::
70ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
71                         IdentifierInfo *ClassName, SourceLocation ClassLoc,
72                         IdentifierInfo *SuperName, SourceLocation SuperLoc,
73                         Decl * const *ProtoRefs, unsigned NumProtoRefs,
74                         const SourceLocation *ProtoLocs,
75                         SourceLocation EndProtoLoc, AttributeList *AttrList) {
76  assert(ClassName && "Missing class identifier");
77
78  // Check for another declaration kind with the same name.
79  NamedDecl *PrevDecl = LookupSingleName(TUScope, ClassName, ClassLoc,
80                                         LookupOrdinaryName, ForRedeclaration);
81
82  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
83    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
84    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
85  }
86
87  ObjCInterfaceDecl* IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
88  if (IDecl) {
89    // Class already seen. Is it a forward declaration?
90    if (!IDecl->isForwardDecl()) {
91      IDecl->setInvalidDecl();
92      Diag(AtInterfaceLoc, diag::err_duplicate_class_def)<<IDecl->getDeclName();
93      Diag(IDecl->getLocation(), diag::note_previous_definition);
94
95      // Return the previous class interface.
96      // FIXME: don't leak the objects passed in!
97      return IDecl;
98    } else {
99      IDecl->setLocation(AtInterfaceLoc);
100      IDecl->setForwardDecl(false);
101      IDecl->setClassLoc(ClassLoc);
102      // If the forward decl was in a PCH, we need to write it again in a
103      // dependent AST file.
104      IDecl->setChangedSinceDeserialization(true);
105
106      // Since this ObjCInterfaceDecl was created by a forward declaration,
107      // we now add it to the DeclContext since it wasn't added before
108      // (see ActOnForwardClassDeclaration).
109      IDecl->setLexicalDeclContext(CurContext);
110      CurContext->addDecl(IDecl);
111
112      if (AttrList)
113        ProcessDeclAttributeList(TUScope, IDecl, AttrList);
114    }
115  } else {
116    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc,
117                                      ClassName, ClassLoc);
118    if (AttrList)
119      ProcessDeclAttributeList(TUScope, IDecl, AttrList);
120
121    PushOnScopeChains(IDecl, TUScope);
122  }
123
124  if (SuperName) {
125    // Check if a different kind of symbol declared in this scope.
126    PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
127                                LookupOrdinaryName);
128
129    if (!PrevDecl) {
130      // Try to correct for a typo in the superclass name.
131      LookupResult R(*this, SuperName, SuperLoc, LookupOrdinaryName);
132      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
133          (PrevDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
134        Diag(SuperLoc, diag::err_undef_superclass_suggest)
135          << SuperName << ClassName << PrevDecl->getDeclName();
136        Diag(PrevDecl->getLocation(), diag::note_previous_decl)
137          << PrevDecl->getDeclName();
138      }
139    }
140
141    if (PrevDecl == IDecl) {
142      Diag(SuperLoc, diag::err_recursive_superclass)
143        << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
144      IDecl->setLocEnd(ClassLoc);
145    } else {
146      ObjCInterfaceDecl *SuperClassDecl =
147                                dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
148
149      // Diagnose classes that inherit from deprecated classes.
150      if (SuperClassDecl)
151        (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
152
153      if (PrevDecl && SuperClassDecl == 0) {
154        // The previous declaration was not a class decl. Check if we have a
155        // typedef. If we do, get the underlying class type.
156        if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
157          QualType T = TDecl->getUnderlyingType();
158          if (T->isObjCObjectType()) {
159            if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface())
160              SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
161          }
162        }
163
164        // This handles the following case:
165        //
166        // typedef int SuperClass;
167        // @interface MyClass : SuperClass {} @end
168        //
169        if (!SuperClassDecl) {
170          Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
171          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
172        }
173      }
174
175      if (!dyn_cast_or_null<TypedefDecl>(PrevDecl)) {
176        if (!SuperClassDecl)
177          Diag(SuperLoc, diag::err_undef_superclass)
178            << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
179        else if (SuperClassDecl->isForwardDecl())
180          Diag(SuperLoc, diag::err_undef_superclass)
181            << SuperClassDecl->getDeclName() << ClassName
182            << SourceRange(AtInterfaceLoc, ClassLoc);
183      }
184      IDecl->setSuperClass(SuperClassDecl);
185      IDecl->setSuperClassLoc(SuperLoc);
186      IDecl->setLocEnd(SuperLoc);
187    }
188  } else { // we have a root class.
189    IDecl->setLocEnd(ClassLoc);
190  }
191
192  // Check then save referenced protocols.
193  if (NumProtoRefs) {
194    IDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
195                           ProtoLocs, Context);
196    IDecl->setLocEnd(EndProtoLoc);
197  }
198
199  CheckObjCDeclScope(IDecl);
200  return IDecl;
201}
202
203/// ActOnCompatiblityAlias - this action is called after complete parsing of
204/// @compatibility_alias declaration. It sets up the alias relationships.
205Decl *Sema::ActOnCompatiblityAlias(SourceLocation AtLoc,
206                                        IdentifierInfo *AliasName,
207                                        SourceLocation AliasLocation,
208                                        IdentifierInfo *ClassName,
209                                        SourceLocation ClassLocation) {
210  // Look for previous declaration of alias name
211  NamedDecl *ADecl = LookupSingleName(TUScope, AliasName, AliasLocation,
212                                      LookupOrdinaryName, ForRedeclaration);
213  if (ADecl) {
214    if (isa<ObjCCompatibleAliasDecl>(ADecl))
215      Diag(AliasLocation, diag::warn_previous_alias_decl);
216    else
217      Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
218    Diag(ADecl->getLocation(), diag::note_previous_declaration);
219    return 0;
220  }
221  // Check for class declaration
222  NamedDecl *CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
223                                       LookupOrdinaryName, ForRedeclaration);
224  if (const TypedefDecl *TDecl = dyn_cast_or_null<TypedefDecl>(CDeclU)) {
225    QualType T = TDecl->getUnderlyingType();
226    if (T->isObjCObjectType()) {
227      if (NamedDecl *IDecl = T->getAs<ObjCObjectType>()->getInterface()) {
228        ClassName = IDecl->getIdentifier();
229        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
230                                  LookupOrdinaryName, ForRedeclaration);
231      }
232    }
233  }
234  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
235  if (CDecl == 0) {
236    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
237    if (CDeclU)
238      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
239    return 0;
240  }
241
242  // Everything checked out, instantiate a new alias declaration AST.
243  ObjCCompatibleAliasDecl *AliasDecl =
244    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
245
246  if (!CheckObjCDeclScope(AliasDecl))
247    PushOnScopeChains(AliasDecl, TUScope);
248
249  return AliasDecl;
250}
251
252void Sema::CheckForwardProtocolDeclarationForCircularDependency(
253  IdentifierInfo *PName,
254  SourceLocation &Ploc, SourceLocation PrevLoc,
255  const ObjCList<ObjCProtocolDecl> &PList) {
256  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
257       E = PList.end(); I != E; ++I) {
258
259    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
260                                                 Ploc)) {
261      if (PDecl->getIdentifier() == PName) {
262        Diag(Ploc, diag::err_protocol_has_circular_dependency);
263        Diag(PrevLoc, diag::note_previous_definition);
264      }
265      CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
266        PDecl->getLocation(), PDecl->getReferencedProtocols());
267    }
268  }
269}
270
271Decl *
272Sema::ActOnStartProtocolInterface(SourceLocation AtProtoInterfaceLoc,
273                                  IdentifierInfo *ProtocolName,
274                                  SourceLocation ProtocolLoc,
275                                  Decl * const *ProtoRefs,
276                                  unsigned NumProtoRefs,
277                                  const SourceLocation *ProtoLocs,
278                                  SourceLocation EndProtoLoc,
279                                  AttributeList *AttrList) {
280  // FIXME: Deal with AttrList.
281  assert(ProtocolName && "Missing protocol identifier");
282  ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolName, ProtocolLoc);
283  if (PDecl) {
284    // Protocol already seen. Better be a forward protocol declaration
285    if (!PDecl->isForwardDecl()) {
286      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
287      Diag(PDecl->getLocation(), diag::note_previous_definition);
288      // Just return the protocol we already had.
289      // FIXME: don't leak the objects passed in!
290      return PDecl;
291    }
292    ObjCList<ObjCProtocolDecl> PList;
293    PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
294    CheckForwardProtocolDeclarationForCircularDependency(
295      ProtocolName, ProtocolLoc, PDecl->getLocation(), PList);
296
297    // Make sure the cached decl gets a valid start location.
298    PDecl->setLocation(AtProtoInterfaceLoc);
299    PDecl->setForwardDecl(false);
300    CurContext->addDecl(PDecl);
301    // Repeat in dependent AST files.
302    PDecl->setChangedSinceDeserialization(true);
303  } else {
304    PDecl = ObjCProtocolDecl::Create(Context, CurContext,
305                                     AtProtoInterfaceLoc,ProtocolName);
306    PushOnScopeChains(PDecl, TUScope);
307    PDecl->setForwardDecl(false);
308  }
309  if (AttrList)
310    ProcessDeclAttributeList(TUScope, PDecl, AttrList);
311  if (NumProtoRefs) {
312    /// Check then save referenced protocols.
313    PDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
314                           ProtoLocs, Context);
315    PDecl->setLocEnd(EndProtoLoc);
316  }
317
318  CheckObjCDeclScope(PDecl);
319  return PDecl;
320}
321
322/// FindProtocolDeclaration - This routine looks up protocols and
323/// issues an error if they are not declared. It returns list of
324/// protocol declarations in its 'Protocols' argument.
325void
326Sema::FindProtocolDeclaration(bool WarnOnDeclarations,
327                              const IdentifierLocPair *ProtocolId,
328                              unsigned NumProtocols,
329                              llvm::SmallVectorImpl<Decl *> &Protocols) {
330  for (unsigned i = 0; i != NumProtocols; ++i) {
331    ObjCProtocolDecl *PDecl = LookupProtocol(ProtocolId[i].first,
332                                             ProtocolId[i].second);
333    if (!PDecl) {
334      LookupResult R(*this, ProtocolId[i].first, ProtocolId[i].second,
335                     LookupObjCProtocolName);
336      if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
337          (PDecl = R.getAsSingle<ObjCProtocolDecl>())) {
338        Diag(ProtocolId[i].second, diag::err_undeclared_protocol_suggest)
339          << ProtocolId[i].first << R.getLookupName();
340        Diag(PDecl->getLocation(), diag::note_previous_decl)
341          << PDecl->getDeclName();
342      }
343    }
344
345    if (!PDecl) {
346      Diag(ProtocolId[i].second, diag::err_undeclared_protocol)
347        << ProtocolId[i].first;
348      continue;
349    }
350
351    (void)DiagnoseUseOfDecl(PDecl, ProtocolId[i].second);
352
353    // If this is a forward declaration and we are supposed to warn in this
354    // case, do it.
355    if (WarnOnDeclarations && PDecl->isForwardDecl())
356      Diag(ProtocolId[i].second, diag::warn_undef_protocolref)
357        << ProtocolId[i].first;
358    Protocols.push_back(PDecl);
359  }
360}
361
362/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
363/// a class method in its extension.
364///
365void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
366                                            ObjCInterfaceDecl *ID) {
367  if (!ID)
368    return;  // Possibly due to previous error
369
370  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
371  for (ObjCInterfaceDecl::method_iterator i = ID->meth_begin(),
372       e =  ID->meth_end(); i != e; ++i) {
373    ObjCMethodDecl *MD = *i;
374    MethodMap[MD->getSelector()] = MD;
375  }
376
377  if (MethodMap.empty())
378    return;
379  for (ObjCCategoryDecl::method_iterator i = CAT->meth_begin(),
380       e =  CAT->meth_end(); i != e; ++i) {
381    ObjCMethodDecl *Method = *i;
382    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
383    if (PrevMethod && !MatchTwoMethodDeclarations(Method, PrevMethod)) {
384      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
385            << Method->getDeclName();
386      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
387    }
388  }
389}
390
391/// ActOnForwardProtocolDeclaration - Handle @protocol foo;
392Decl *
393Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
394                                      const IdentifierLocPair *IdentList,
395                                      unsigned NumElts,
396                                      AttributeList *attrList) {
397  llvm::SmallVector<ObjCProtocolDecl*, 32> Protocols;
398  llvm::SmallVector<SourceLocation, 8> ProtoLocs;
399
400  for (unsigned i = 0; i != NumElts; ++i) {
401    IdentifierInfo *Ident = IdentList[i].first;
402    ObjCProtocolDecl *PDecl = LookupProtocol(Ident, IdentList[i].second);
403    bool isNew = false;
404    if (PDecl == 0) { // Not already seen?
405      PDecl = ObjCProtocolDecl::Create(Context, CurContext,
406                                       IdentList[i].second, Ident);
407      PushOnScopeChains(PDecl, TUScope, false);
408      isNew = true;
409    }
410    if (attrList) {
411      ProcessDeclAttributeList(TUScope, PDecl, attrList);
412      if (!isNew)
413        PDecl->setChangedSinceDeserialization(true);
414    }
415    Protocols.push_back(PDecl);
416    ProtoLocs.push_back(IdentList[i].second);
417  }
418
419  ObjCForwardProtocolDecl *PDecl =
420    ObjCForwardProtocolDecl::Create(Context, CurContext, AtProtocolLoc,
421                                    Protocols.data(), Protocols.size(),
422                                    ProtoLocs.data());
423  CurContext->addDecl(PDecl);
424  CheckObjCDeclScope(PDecl);
425  return PDecl;
426}
427
428Decl *Sema::
429ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
430                            IdentifierInfo *ClassName, SourceLocation ClassLoc,
431                            IdentifierInfo *CategoryName,
432                            SourceLocation CategoryLoc,
433                            Decl * const *ProtoRefs,
434                            unsigned NumProtoRefs,
435                            const SourceLocation *ProtoLocs,
436                            SourceLocation EndProtoLoc) {
437  ObjCCategoryDecl *CDecl;
438  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
439
440  /// Check that class of this category is already completely declared.
441  if (!IDecl || IDecl->isForwardDecl()) {
442    // Create an invalid ObjCCategoryDecl to serve as context for
443    // the enclosing method declarations.  We mark the decl invalid
444    // to make it clear that this isn't a valid AST.
445    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
446                                     ClassLoc, CategoryLoc, CategoryName);
447    CDecl->setInvalidDecl();
448    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
449    return CDecl;
450  }
451
452  if (!CategoryName && IDecl->getImplementation()) {
453    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
454    Diag(IDecl->getImplementation()->getLocation(),
455          diag::note_implementation_declared);
456  }
457
458  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
459                                   ClassLoc, CategoryLoc, CategoryName);
460  // FIXME: PushOnScopeChains?
461  CurContext->addDecl(CDecl);
462
463  CDecl->setClassInterface(IDecl);
464  // Insert class extension to the list of class's categories.
465  if (!CategoryName)
466    CDecl->insertNextClassCategory();
467
468  // If the interface is deprecated, warn about it.
469  (void)DiagnoseUseOfDecl(IDecl, ClassLoc);
470
471  if (CategoryName) {
472    /// Check for duplicate interface declaration for this category
473    ObjCCategoryDecl *CDeclChain;
474    for (CDeclChain = IDecl->getCategoryList(); CDeclChain;
475         CDeclChain = CDeclChain->getNextClassCategory()) {
476      if (CDeclChain->getIdentifier() == CategoryName) {
477        // Class extensions can be declared multiple times.
478        Diag(CategoryLoc, diag::warn_dup_category_def)
479          << ClassName << CategoryName;
480        Diag(CDeclChain->getLocation(), diag::note_previous_definition);
481        break;
482      }
483    }
484    if (!CDeclChain)
485      CDecl->insertNextClassCategory();
486  }
487
488  if (NumProtoRefs) {
489    CDecl->setProtocolList((ObjCProtocolDecl**)ProtoRefs, NumProtoRefs,
490                           ProtoLocs, Context);
491    // Protocols in the class extension belong to the class.
492    if (CDecl->IsClassExtension())
493     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl**)ProtoRefs,
494                                            NumProtoRefs, Context);
495  }
496
497  CheckObjCDeclScope(CDecl);
498  return CDecl;
499}
500
501/// ActOnStartCategoryImplementation - Perform semantic checks on the
502/// category implementation declaration and build an ObjCCategoryImplDecl
503/// object.
504Decl *Sema::ActOnStartCategoryImplementation(
505                      SourceLocation AtCatImplLoc,
506                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
507                      IdentifierInfo *CatName, SourceLocation CatLoc) {
508  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
509  ObjCCategoryDecl *CatIDecl = 0;
510  if (IDecl) {
511    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
512    if (!CatIDecl) {
513      // Category @implementation with no corresponding @interface.
514      // Create and install one.
515      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, SourceLocation(),
516                                          SourceLocation(), SourceLocation(),
517                                          CatName);
518      CatIDecl->setClassInterface(IDecl);
519      CatIDecl->insertNextClassCategory();
520    }
521  }
522
523  ObjCCategoryImplDecl *CDecl =
524    ObjCCategoryImplDecl::Create(Context, CurContext, AtCatImplLoc, CatName,
525                                 IDecl);
526  /// Check that class of this category is already completely declared.
527  if (!IDecl || IDecl->isForwardDecl())
528    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
529
530  // FIXME: PushOnScopeChains?
531  CurContext->addDecl(CDecl);
532
533  /// Check that CatName, category name, is not used in another implementation.
534  if (CatIDecl) {
535    if (CatIDecl->getImplementation()) {
536      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
537        << CatName;
538      Diag(CatIDecl->getImplementation()->getLocation(),
539           diag::note_previous_definition);
540    } else
541      CatIDecl->setImplementation(CDecl);
542  }
543
544  CheckObjCDeclScope(CDecl);
545  return CDecl;
546}
547
548Decl *Sema::ActOnStartClassImplementation(
549                      SourceLocation AtClassImplLoc,
550                      IdentifierInfo *ClassName, SourceLocation ClassLoc,
551                      IdentifierInfo *SuperClassname,
552                      SourceLocation SuperClassLoc) {
553  ObjCInterfaceDecl* IDecl = 0;
554  // Check for another declaration kind with the same name.
555  NamedDecl *PrevDecl
556    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
557                       ForRedeclaration);
558  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
559    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
560    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
561  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
562    // If this is a forward declaration of an interface, warn.
563    if (IDecl->isForwardDecl()) {
564      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
565      IDecl = 0;
566    }
567  } else {
568    // We did not find anything with the name ClassName; try to correct for
569    // typos in the class name.
570    LookupResult R(*this, ClassName, ClassLoc, LookupOrdinaryName);
571    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
572        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
573      // Suggest the (potentially) correct interface name. However, put the
574      // fix-it hint itself in a separate note, since changing the name in
575      // the warning would make the fix-it change semantics.However, don't
576      // provide a code-modification hint or use the typo name for recovery,
577      // because this is just a warning. The program may actually be correct.
578      Diag(ClassLoc, diag::warn_undef_interface_suggest)
579        << ClassName << R.getLookupName();
580      Diag(IDecl->getLocation(), diag::note_previous_decl)
581        << R.getLookupName()
582        << FixItHint::CreateReplacement(ClassLoc,
583                                        R.getLookupName().getAsString());
584      IDecl = 0;
585    } else {
586      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
587    }
588  }
589
590  // Check that super class name is valid class name
591  ObjCInterfaceDecl* SDecl = 0;
592  if (SuperClassname) {
593    // Check if a different kind of symbol declared in this scope.
594    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
595                                LookupOrdinaryName);
596    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
597      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
598        << SuperClassname;
599      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
600    } else {
601      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
602      if (!SDecl)
603        Diag(SuperClassLoc, diag::err_undef_superclass)
604          << SuperClassname << ClassName;
605      else if (IDecl && IDecl->getSuperClass() != SDecl) {
606        // This implementation and its interface do not have the same
607        // super class.
608        Diag(SuperClassLoc, diag::err_conflicting_super_class)
609          << SDecl->getDeclName();
610        Diag(SDecl->getLocation(), diag::note_previous_definition);
611      }
612    }
613  }
614
615  if (!IDecl) {
616    // Legacy case of @implementation with no corresponding @interface.
617    // Build, chain & install the interface decl into the identifier.
618
619    // FIXME: Do we support attributes on the @implementation? If so we should
620    // copy them over.
621    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
622                                      ClassName, ClassLoc, false, true);
623    IDecl->setSuperClass(SDecl);
624    IDecl->setLocEnd(ClassLoc);
625
626    PushOnScopeChains(IDecl, TUScope);
627  } else {
628    // Mark the interface as being completed, even if it was just as
629    //   @class ....;
630    // declaration; the user cannot reopen it.
631    IDecl->setForwardDecl(false);
632  }
633
634  ObjCImplementationDecl* IMPDecl =
635    ObjCImplementationDecl::Create(Context, CurContext, AtClassImplLoc,
636                                   IDecl, SDecl);
637
638  if (CheckObjCDeclScope(IMPDecl))
639    return IMPDecl;
640
641  // Check that there is no duplicate implementation of this class.
642  if (IDecl->getImplementation()) {
643    // FIXME: Don't leak everything!
644    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
645    Diag(IDecl->getImplementation()->getLocation(),
646         diag::note_previous_definition);
647  } else { // add it to the list.
648    IDecl->setImplementation(IMPDecl);
649    PushOnScopeChains(IMPDecl, TUScope);
650  }
651  return IMPDecl;
652}
653
654void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
655                                    ObjCIvarDecl **ivars, unsigned numIvars,
656                                    SourceLocation RBrace) {
657  assert(ImpDecl && "missing implementation decl");
658  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
659  if (!IDecl)
660    return;
661  /// Check case of non-existing @interface decl.
662  /// (legacy objective-c @implementation decl without an @interface decl).
663  /// Add implementations's ivar to the synthesize class's ivar list.
664  if (IDecl->isImplicitInterfaceDecl()) {
665    IDecl->setLocEnd(RBrace);
666    // Add ivar's to class's DeclContext.
667    for (unsigned i = 0, e = numIvars; i != e; ++i) {
668      ivars[i]->setLexicalDeclContext(ImpDecl);
669      IDecl->makeDeclVisibleInContext(ivars[i], false);
670      ImpDecl->addDecl(ivars[i]);
671    }
672
673    return;
674  }
675  // If implementation has empty ivar list, just return.
676  if (numIvars == 0)
677    return;
678
679  assert(ivars && "missing @implementation ivars");
680  if (LangOpts.ObjCNonFragileABI2) {
681    if (ImpDecl->getSuperClass())
682      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
683    for (unsigned i = 0; i < numIvars; i++) {
684      ObjCIvarDecl* ImplIvar = ivars[i];
685      if (const ObjCIvarDecl *ClsIvar =
686            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
687        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
688        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
689        continue;
690      }
691      // Instance ivar to Implementation's DeclContext.
692      ImplIvar->setLexicalDeclContext(ImpDecl);
693      IDecl->makeDeclVisibleInContext(ImplIvar, false);
694      ImpDecl->addDecl(ImplIvar);
695    }
696    return;
697  }
698  // Check interface's Ivar list against those in the implementation.
699  // names and types must match.
700  //
701  unsigned j = 0;
702  ObjCInterfaceDecl::ivar_iterator
703    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
704  for (; numIvars > 0 && IVI != IVE; ++IVI) {
705    ObjCIvarDecl* ImplIvar = ivars[j++];
706    ObjCIvarDecl* ClsIvar = *IVI;
707    assert (ImplIvar && "missing implementation ivar");
708    assert (ClsIvar && "missing class ivar");
709
710    // First, make sure the types match.
711    if (Context.getCanonicalType(ImplIvar->getType()) !=
712        Context.getCanonicalType(ClsIvar->getType())) {
713      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
714        << ImplIvar->getIdentifier()
715        << ImplIvar->getType() << ClsIvar->getType();
716      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
717    } else if (ImplIvar->isBitField() && ClsIvar->isBitField()) {
718      Expr *ImplBitWidth = ImplIvar->getBitWidth();
719      Expr *ClsBitWidth = ClsIvar->getBitWidth();
720      if (ImplBitWidth->EvaluateAsInt(Context).getZExtValue() !=
721          ClsBitWidth->EvaluateAsInt(Context).getZExtValue()) {
722        Diag(ImplBitWidth->getLocStart(), diag::err_conflicting_ivar_bitwidth)
723          << ImplIvar->getIdentifier();
724        Diag(ClsBitWidth->getLocStart(), diag::note_previous_definition);
725      }
726    }
727    // Make sure the names are identical.
728    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
729      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
730        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
731      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
732    }
733    --numIvars;
734  }
735
736  if (numIvars > 0)
737    Diag(ivars[j]->getLocation(), diag::err_inconsistant_ivar_count);
738  else if (IVI != IVE)
739    Diag((*IVI)->getLocation(), diag::err_inconsistant_ivar_count);
740}
741
742void Sema::WarnUndefinedMethod(SourceLocation ImpLoc, ObjCMethodDecl *method,
743                               bool &IncompleteImpl, unsigned DiagID) {
744  if (!IncompleteImpl) {
745    Diag(ImpLoc, diag::warn_incomplete_impl);
746    IncompleteImpl = true;
747  }
748  if (DiagID == diag::warn_unimplemented_protocol_method)
749    Diag(ImpLoc, DiagID) << method->getDeclName();
750  else
751    Diag(method->getLocation(), DiagID) << method->getDeclName();
752}
753
754/// Determines if type B can be substituted for type A.  Returns true if we can
755/// guarantee that anything that the user will do to an object of type A can
756/// also be done to an object of type B.  This is trivially true if the two
757/// types are the same, or if B is a subclass of A.  It becomes more complex
758/// in cases where protocols are involved.
759///
760/// Object types in Objective-C describe the minimum requirements for an
761/// object, rather than providing a complete description of a type.  For
762/// example, if A is a subclass of B, then B* may refer to an instance of A.
763/// The principle of substitutability means that we may use an instance of A
764/// anywhere that we may use an instance of B - it will implement all of the
765/// ivars of B and all of the methods of B.
766///
767/// This substitutability is important when type checking methods, because
768/// the implementation may have stricter type definitions than the interface.
769/// The interface specifies minimum requirements, but the implementation may
770/// have more accurate ones.  For example, a method may privately accept
771/// instances of B, but only publish that it accepts instances of A.  Any
772/// object passed to it will be type checked against B, and so will implicitly
773/// by a valid A*.  Similarly, a method may return a subclass of the class that
774/// it is declared as returning.
775///
776/// This is most important when considering subclassing.  A method in a
777/// subclass must accept any object as an argument that its superclass's
778/// implementation accepts.  It may, however, accept a more general type
779/// without breaking substitutability (i.e. you can still use the subclass
780/// anywhere that you can use the superclass, but not vice versa).  The
781/// converse requirement applies to return types: the return type for a
782/// subclass method must be a valid object of the kind that the superclass
783/// advertises, but it may be specified more accurately.  This avoids the need
784/// for explicit down-casting by callers.
785///
786/// Note: This is a stricter requirement than for assignment.
787static bool isObjCTypeSubstitutable(ASTContext &Context,
788                                    const ObjCObjectPointerType *A,
789                                    const ObjCObjectPointerType *B,
790                                    bool rejectId) {
791  // Reject a protocol-unqualified id.
792  if (rejectId && B->isObjCIdType()) return false;
793
794  // If B is a qualified id, then A must also be a qualified id and it must
795  // implement all of the protocols in B.  It may not be a qualified class.
796  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
797  // stricter definition so it is not substitutable for id<A>.
798  if (B->isObjCQualifiedIdType()) {
799    return A->isObjCQualifiedIdType() &&
800           Context.ObjCQualifiedIdTypesAreCompatible(QualType(A, 0),
801                                                     QualType(B,0),
802                                                     false);
803  }
804
805  /*
806  // id is a special type that bypasses type checking completely.  We want a
807  // warning when it is used in one place but not another.
808  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
809
810
811  // If B is a qualified id, then A must also be a qualified id (which it isn't
812  // if we've got this far)
813  if (B->isObjCQualifiedIdType()) return false;
814  */
815
816  // Now we know that A and B are (potentially-qualified) class types.  The
817  // normal rules for assignment apply.
818  return Context.canAssignObjCInterfaces(A, B);
819}
820
821static SourceRange getTypeRange(TypeSourceInfo *TSI) {
822  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
823}
824
825static void CheckMethodOverrideReturn(Sema &S,
826                                      ObjCMethodDecl *MethodImpl,
827                                      ObjCMethodDecl *MethodIface) {
828  if (S.Context.hasSameUnqualifiedType(MethodImpl->getResultType(),
829                                       MethodIface->getResultType()))
830    return;
831
832  unsigned DiagID = diag::warn_conflicting_ret_types;
833
834  // Mismatches between ObjC pointers go into a different warning
835  // category, and sometimes they're even completely whitelisted.
836  if (const ObjCObjectPointerType *ImplPtrTy =
837        MethodImpl->getResultType()->getAs<ObjCObjectPointerType>()) {
838    if (const ObjCObjectPointerType *IfacePtrTy =
839          MethodIface->getResultType()->getAs<ObjCObjectPointerType>()) {
840      // Allow non-matching return types as long as they don't violate
841      // the principle of substitutability.  Specifically, we permit
842      // return types that are subclasses of the declared return type,
843      // or that are more-qualified versions of the declared type.
844      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
845        return;
846
847      DiagID = diag::warn_non_covariant_ret_types;
848    }
849  }
850
851  S.Diag(MethodImpl->getLocation(), DiagID)
852    << MethodImpl->getDeclName()
853    << MethodIface->getResultType()
854    << MethodImpl->getResultType()
855    << getTypeRange(MethodImpl->getResultTypeSourceInfo());
856  S.Diag(MethodIface->getLocation(), diag::note_previous_definition)
857    << getTypeRange(MethodIface->getResultTypeSourceInfo());
858}
859
860static void CheckMethodOverrideParam(Sema &S,
861                                     ObjCMethodDecl *MethodImpl,
862                                     ObjCMethodDecl *MethodIface,
863                                     ParmVarDecl *ImplVar,
864                                     ParmVarDecl *IfaceVar) {
865  QualType ImplTy = ImplVar->getType();
866  QualType IfaceTy = IfaceVar->getType();
867  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
868    return;
869
870  unsigned DiagID = diag::warn_conflicting_param_types;
871
872  // Mismatches between ObjC pointers go into a different warning
873  // category, and sometimes they're even completely whitelisted.
874  if (const ObjCObjectPointerType *ImplPtrTy =
875        ImplTy->getAs<ObjCObjectPointerType>()) {
876    if (const ObjCObjectPointerType *IfacePtrTy =
877          IfaceTy->getAs<ObjCObjectPointerType>()) {
878      // Allow non-matching argument types as long as they don't
879      // violate the principle of substitutability.  Specifically, the
880      // implementation must accept any objects that the superclass
881      // accepts, however it may also accept others.
882      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
883        return;
884
885      DiagID = diag::warn_non_contravariant_param_types;
886    }
887  }
888
889  S.Diag(ImplVar->getLocation(), DiagID)
890    << getTypeRange(ImplVar->getTypeSourceInfo())
891    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
892  S.Diag(IfaceVar->getLocation(), diag::note_previous_definition)
893    << getTypeRange(IfaceVar->getTypeSourceInfo());
894}
895
896
897void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
898                                       ObjCMethodDecl *IntfMethodDecl) {
899  CheckMethodOverrideReturn(*this, ImpMethodDecl, IntfMethodDecl);
900
901  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
902       IF = IntfMethodDecl->param_begin(), EM = ImpMethodDecl->param_end();
903       IM != EM; ++IM, ++IF)
904    CheckMethodOverrideParam(*this, ImpMethodDecl, IntfMethodDecl, *IM, *IF);
905
906  if (ImpMethodDecl->isVariadic() != IntfMethodDecl->isVariadic()) {
907    Diag(ImpMethodDecl->getLocation(), diag::warn_conflicting_variadic);
908    Diag(IntfMethodDecl->getLocation(), diag::note_previous_declaration);
909  }
910}
911
912/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
913/// improve the efficiency of selector lookups and type checking by associating
914/// with each protocol / interface / category the flattened instance tables. If
915/// we used an immutable set to keep the table then it wouldn't add significant
916/// memory cost and it would be handy for lookups.
917
918/// CheckProtocolMethodDefs - This routine checks unimplemented methods
919/// Declared in protocol, and those referenced by it.
920void Sema::CheckProtocolMethodDefs(SourceLocation ImpLoc,
921                                   ObjCProtocolDecl *PDecl,
922                                   bool& IncompleteImpl,
923                                   const llvm::DenseSet<Selector> &InsMap,
924                                   const llvm::DenseSet<Selector> &ClsMap,
925                                   ObjCContainerDecl *CDecl) {
926  ObjCInterfaceDecl *IDecl;
927  if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl))
928    IDecl = C->getClassInterface();
929  else
930    IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
931  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
932
933  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
934  ObjCInterfaceDecl *NSIDecl = 0;
935  if (getLangOptions().NeXTRuntime) {
936    // check to see if class implements forwardInvocation method and objects
937    // of this class are derived from 'NSProxy' so that to forward requests
938    // from one object to another.
939    // Under such conditions, which means that every method possible is
940    // implemented in the class, we should not issue "Method definition not
941    // found" warnings.
942    // FIXME: Use a general GetUnarySelector method for this.
943    IdentifierInfo* II = &Context.Idents.get("forwardInvocation");
944    Selector fISelector = Context.Selectors.getSelector(1, &II);
945    if (InsMap.count(fISelector))
946      // Is IDecl derived from 'NSProxy'? If so, no instance methods
947      // need be implemented in the implementation.
948      NSIDecl = IDecl->lookupInheritedClass(&Context.Idents.get("NSProxy"));
949  }
950
951  // If a method lookup fails locally we still need to look and see if
952  // the method was implemented by a base class or an inherited
953  // protocol. This lookup is slow, but occurs rarely in correct code
954  // and otherwise would terminate in a warning.
955
956  // check unimplemented instance methods.
957  if (!NSIDecl)
958    for (ObjCProtocolDecl::instmeth_iterator I = PDecl->instmeth_begin(),
959         E = PDecl->instmeth_end(); I != E; ++I) {
960      ObjCMethodDecl *method = *I;
961      if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
962          !method->isSynthesized() && !InsMap.count(method->getSelector()) &&
963          (!Super ||
964           !Super->lookupInstanceMethod(method->getSelector()))) {
965            // Ugly, but necessary. Method declared in protcol might have
966            // have been synthesized due to a property declared in the class which
967            // uses the protocol.
968            ObjCMethodDecl *MethodInClass =
969            IDecl->lookupInstanceMethod(method->getSelector());
970            if (!MethodInClass || !MethodInClass->isSynthesized()) {
971              unsigned DIAG = diag::warn_unimplemented_protocol_method;
972              if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) {
973                WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
974                Diag(method->getLocation(), diag::note_method_declared_at);
975                Diag(CDecl->getLocation(), diag::note_required_for_protocol_at)
976                  << PDecl->getDeclName();
977              }
978            }
979          }
980    }
981  // check unimplemented class methods
982  for (ObjCProtocolDecl::classmeth_iterator
983         I = PDecl->classmeth_begin(), E = PDecl->classmeth_end();
984       I != E; ++I) {
985    ObjCMethodDecl *method = *I;
986    if (method->getImplementationControl() != ObjCMethodDecl::Optional &&
987        !ClsMap.count(method->getSelector()) &&
988        (!Super || !Super->lookupClassMethod(method->getSelector()))) {
989      unsigned DIAG = diag::warn_unimplemented_protocol_method;
990      if (Diags.getDiagnosticLevel(DIAG) != Diagnostic::Ignored) {
991        WarnUndefinedMethod(ImpLoc, method, IncompleteImpl, DIAG);
992        Diag(method->getLocation(), diag::note_method_declared_at);
993        Diag(IDecl->getLocation(), diag::note_required_for_protocol_at) <<
994          PDecl->getDeclName();
995      }
996    }
997  }
998  // Check on this protocols's referenced protocols, recursively.
999  for (ObjCProtocolDecl::protocol_iterator PI = PDecl->protocol_begin(),
1000       E = PDecl->protocol_end(); PI != E; ++PI)
1001    CheckProtocolMethodDefs(ImpLoc, *PI, IncompleteImpl, InsMap, ClsMap, IDecl);
1002}
1003
1004/// MatchAllMethodDeclarations - Check methods declaraed in interface or
1005/// or protocol against those declared in their implementations.
1006///
1007void Sema::MatchAllMethodDeclarations(const llvm::DenseSet<Selector> &InsMap,
1008                                      const llvm::DenseSet<Selector> &ClsMap,
1009                                      llvm::DenseSet<Selector> &InsMapSeen,
1010                                      llvm::DenseSet<Selector> &ClsMapSeen,
1011                                      ObjCImplDecl* IMPDecl,
1012                                      ObjCContainerDecl* CDecl,
1013                                      bool &IncompleteImpl,
1014                                      bool ImmediateClass) {
1015  // Check and see if instance methods in class interface have been
1016  // implemented in the implementation class. If so, their types match.
1017  for (ObjCInterfaceDecl::instmeth_iterator I = CDecl->instmeth_begin(),
1018       E = CDecl->instmeth_end(); I != E; ++I) {
1019    if (InsMapSeen.count((*I)->getSelector()))
1020        continue;
1021    InsMapSeen.insert((*I)->getSelector());
1022    if (!(*I)->isSynthesized() &&
1023        !InsMap.count((*I)->getSelector())) {
1024      if (ImmediateClass)
1025        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1026                            diag::note_undef_method_impl);
1027      continue;
1028    } else {
1029      ObjCMethodDecl *ImpMethodDecl =
1030      IMPDecl->getInstanceMethod((*I)->getSelector());
1031      ObjCMethodDecl *IntfMethodDecl =
1032      CDecl->getInstanceMethod((*I)->getSelector());
1033      assert(IntfMethodDecl &&
1034             "IntfMethodDecl is null in ImplMethodsVsClassMethods");
1035      // ImpMethodDecl may be null as in a @dynamic property.
1036      if (ImpMethodDecl)
1037        WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
1038    }
1039  }
1040
1041  // Check and see if class methods in class interface have been
1042  // implemented in the implementation class. If so, their types match.
1043   for (ObjCInterfaceDecl::classmeth_iterator
1044       I = CDecl->classmeth_begin(), E = CDecl->classmeth_end(); I != E; ++I) {
1045     if (ClsMapSeen.count((*I)->getSelector()))
1046       continue;
1047     ClsMapSeen.insert((*I)->getSelector());
1048    if (!ClsMap.count((*I)->getSelector())) {
1049      if (ImmediateClass)
1050        WarnUndefinedMethod(IMPDecl->getLocation(), *I, IncompleteImpl,
1051                            diag::note_undef_method_impl);
1052    } else {
1053      ObjCMethodDecl *ImpMethodDecl =
1054        IMPDecl->getClassMethod((*I)->getSelector());
1055      ObjCMethodDecl *IntfMethodDecl =
1056        CDecl->getClassMethod((*I)->getSelector());
1057      WarnConflictingTypedMethods(ImpMethodDecl, IntfMethodDecl);
1058    }
1059  }
1060
1061  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1062    // Also methods in class extensions need be looked at next.
1063    for (const ObjCCategoryDecl *ClsExtDecl = I->getFirstClassExtension();
1064         ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension())
1065      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1066                                 IMPDecl,
1067                                 const_cast<ObjCCategoryDecl *>(ClsExtDecl),
1068                                 IncompleteImpl, false);
1069
1070    // Check for any implementation of a methods declared in protocol.
1071    for (ObjCInterfaceDecl::all_protocol_iterator
1072          PI = I->all_referenced_protocol_begin(),
1073          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1074      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1075                                 IMPDecl,
1076                                 (*PI), IncompleteImpl, false);
1077    if (I->getSuperClass())
1078      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1079                                 IMPDecl,
1080                                 I->getSuperClass(), IncompleteImpl, false);
1081  }
1082}
1083
1084void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
1085                                     ObjCContainerDecl* CDecl,
1086                                     bool IncompleteImpl) {
1087  llvm::DenseSet<Selector> InsMap;
1088  // Check and see if instance methods in class interface have been
1089  // implemented in the implementation class.
1090  for (ObjCImplementationDecl::instmeth_iterator
1091         I = IMPDecl->instmeth_begin(), E = IMPDecl->instmeth_end(); I!=E; ++I)
1092    InsMap.insert((*I)->getSelector());
1093
1094  // Check and see if properties declared in the interface have either 1)
1095  // an implementation or 2) there is a @synthesize/@dynamic implementation
1096  // of the property in the @implementation.
1097  if (isa<ObjCInterfaceDecl>(CDecl) && !LangOpts.ObjCNonFragileABI2)
1098    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1099
1100  llvm::DenseSet<Selector> ClsMap;
1101  for (ObjCImplementationDecl::classmeth_iterator
1102       I = IMPDecl->classmeth_begin(),
1103       E = IMPDecl->classmeth_end(); I != E; ++I)
1104    ClsMap.insert((*I)->getSelector());
1105
1106  // Check for type conflict of methods declared in a class/protocol and
1107  // its implementation; if any.
1108  llvm::DenseSet<Selector> InsMapSeen, ClsMapSeen;
1109  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
1110                             IMPDecl, CDecl,
1111                             IncompleteImpl, true);
1112
1113  // Check the protocol list for unimplemented methods in the @implementation
1114  // class.
1115  // Check and see if class methods in class interface have been
1116  // implemented in the implementation class.
1117
1118  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
1119    for (ObjCInterfaceDecl::all_protocol_iterator
1120          PI = I->all_referenced_protocol_begin(),
1121          E = I->all_referenced_protocol_end(); PI != E; ++PI)
1122      CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1123                              InsMap, ClsMap, I);
1124    // Check class extensions (unnamed categories)
1125    for (const ObjCCategoryDecl *Categories = I->getFirstClassExtension();
1126         Categories; Categories = Categories->getNextClassExtension())
1127      ImplMethodsVsClassMethods(S, IMPDecl,
1128                                const_cast<ObjCCategoryDecl*>(Categories),
1129                                IncompleteImpl);
1130  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
1131    // For extended class, unimplemented methods in its protocols will
1132    // be reported in the primary class.
1133    if (!C->IsClassExtension()) {
1134      for (ObjCCategoryDecl::protocol_iterator PI = C->protocol_begin(),
1135           E = C->protocol_end(); PI != E; ++PI)
1136        CheckProtocolMethodDefs(IMPDecl->getLocation(), *PI, IncompleteImpl,
1137                                InsMap, ClsMap, CDecl);
1138      // Report unimplemented properties in the category as well.
1139      // When reporting on missing setter/getters, do not report when
1140      // setter/getter is implemented in category's primary class
1141      // implementation.
1142      if (ObjCInterfaceDecl *ID = C->getClassInterface())
1143        if (ObjCImplDecl *IMP = ID->getImplementation()) {
1144          for (ObjCImplementationDecl::instmeth_iterator
1145               I = IMP->instmeth_begin(), E = IMP->instmeth_end(); I!=E; ++I)
1146            InsMap.insert((*I)->getSelector());
1147        }
1148      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, InsMap);
1149    }
1150  } else
1151    assert(false && "invalid ObjCContainerDecl type.");
1152}
1153
1154/// ActOnForwardClassDeclaration -
1155Decl *
1156Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
1157                                   IdentifierInfo **IdentList,
1158                                   SourceLocation *IdentLocs,
1159                                   unsigned NumElts) {
1160  llvm::SmallVector<ObjCInterfaceDecl*, 32> Interfaces;
1161
1162  for (unsigned i = 0; i != NumElts; ++i) {
1163    // Check for another declaration kind with the same name.
1164    NamedDecl *PrevDecl
1165      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
1166                         LookupOrdinaryName, ForRedeclaration);
1167    if (PrevDecl && PrevDecl->isTemplateParameter()) {
1168      // Maybe we will complain about the shadowed template parameter.
1169      DiagnoseTemplateParameterShadow(AtClassLoc, PrevDecl);
1170      // Just pretend that we didn't see the previous declaration.
1171      PrevDecl = 0;
1172    }
1173
1174    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1175      // GCC apparently allows the following idiom:
1176      //
1177      // typedef NSObject < XCElementTogglerP > XCElementToggler;
1178      // @class XCElementToggler;
1179      //
1180      // FIXME: Make an extension?
1181      TypedefDecl *TDD = dyn_cast<TypedefDecl>(PrevDecl);
1182      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
1183        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
1184        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1185      } else {
1186        // a forward class declaration matching a typedef name of a class refers
1187        // to the underlying class.
1188        if (const ObjCObjectType *OI =
1189              TDD->getUnderlyingType()->getAs<ObjCObjectType>())
1190          PrevDecl = OI->getInterface();
1191      }
1192    }
1193    ObjCInterfaceDecl *IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
1194    if (!IDecl) {  // Not already seen?  Make a forward decl.
1195      IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
1196                                        IdentList[i], IdentLocs[i], true);
1197
1198      // Push the ObjCInterfaceDecl on the scope chain but do *not* add it to
1199      // the current DeclContext.  This prevents clients that walk DeclContext
1200      // from seeing the imaginary ObjCInterfaceDecl until it is actually
1201      // declared later (if at all).  We also take care to explicitly make
1202      // sure this declaration is visible for name lookup.
1203      PushOnScopeChains(IDecl, TUScope, false);
1204      CurContext->makeDeclVisibleInContext(IDecl, true);
1205    }
1206
1207    Interfaces.push_back(IDecl);
1208  }
1209
1210  assert(Interfaces.size() == NumElts);
1211  ObjCClassDecl *CDecl = ObjCClassDecl::Create(Context, CurContext, AtClassLoc,
1212                                               Interfaces.data(), IdentLocs,
1213                                               Interfaces.size());
1214  CurContext->addDecl(CDecl);
1215  CheckObjCDeclScope(CDecl);
1216  return CDecl;
1217}
1218
1219
1220/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
1221/// returns true, or false, accordingly.
1222/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
1223bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *Method,
1224                                      const ObjCMethodDecl *PrevMethod,
1225                                      bool matchBasedOnSizeAndAlignment,
1226                                      bool matchBasedOnStrictEqulity) {
1227  QualType T1 = Context.getCanonicalType(Method->getResultType());
1228  QualType T2 = Context.getCanonicalType(PrevMethod->getResultType());
1229
1230  if (T1 != T2) {
1231    // The result types are different.
1232    if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1233      return false;
1234    // Incomplete types don't have a size and alignment.
1235    if (T1->isIncompleteType() || T2->isIncompleteType())
1236      return false;
1237    // Check is based on size and alignment.
1238    if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1239      return false;
1240  }
1241
1242  ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1243       E = Method->param_end();
1244  ObjCMethodDecl::param_iterator PrevI = PrevMethod->param_begin();
1245
1246  for (; ParamI != E; ++ParamI, ++PrevI) {
1247    assert(PrevI != PrevMethod->param_end() && "Param mismatch");
1248    T1 = Context.getCanonicalType((*ParamI)->getType());
1249    T2 = Context.getCanonicalType((*PrevI)->getType());
1250    if (T1 != T2) {
1251      // The result types are different.
1252      if (!matchBasedOnSizeAndAlignment || matchBasedOnStrictEqulity)
1253        return false;
1254      // Incomplete types don't have a size and alignment.
1255      if (T1->isIncompleteType() || T2->isIncompleteType())
1256        return false;
1257      // Check is based on size and alignment.
1258      if (Context.getTypeInfo(T1) != Context.getTypeInfo(T2))
1259        return false;
1260    }
1261  }
1262  return true;
1263}
1264
1265/// \brief Read the contents of the method pool for a given selector from
1266/// external storage.
1267///
1268/// This routine should only be called once, when the method pool has no entry
1269/// for this selector.
1270Sema::GlobalMethodPool::iterator Sema::ReadMethodPool(Selector Sel) {
1271  assert(ExternalSource && "We need an external AST source");
1272  assert(MethodPool.find(Sel) == MethodPool.end() &&
1273         "Selector data already loaded into the method pool");
1274
1275  // Read the method list from the external source.
1276  GlobalMethods Methods = ExternalSource->ReadMethodPool(Sel);
1277
1278  return MethodPool.insert(std::make_pair(Sel, Methods)).first;
1279}
1280
1281void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
1282                                 bool instance) {
1283  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
1284  if (Pos == MethodPool.end()) {
1285    if (ExternalSource)
1286      Pos = ReadMethodPool(Method->getSelector());
1287    else
1288      Pos = MethodPool.insert(std::make_pair(Method->getSelector(),
1289                                             GlobalMethods())).first;
1290  }
1291  Method->setDefined(impl);
1292  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
1293  if (Entry.Method == 0) {
1294    // Haven't seen a method with this selector name yet - add it.
1295    Entry.Method = Method;
1296    Entry.Next = 0;
1297    return;
1298  }
1299
1300  // We've seen a method with this name, see if we have already seen this type
1301  // signature.
1302  for (ObjCMethodList *List = &Entry; List; List = List->Next)
1303    if (MatchTwoMethodDeclarations(Method, List->Method)) {
1304      List->Method->setDefined(impl);
1305      return;
1306    }
1307
1308  // We have a new signature for an existing method - add it.
1309  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
1310  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
1311  Entry.Next = new (Mem) ObjCMethodList(Method, Entry.Next);
1312}
1313
1314ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
1315                                               bool receiverIdOrClass,
1316                                               bool warn, bool instance) {
1317  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1318  if (Pos == MethodPool.end()) {
1319    if (ExternalSource)
1320      Pos = ReadMethodPool(Sel);
1321    else
1322      return 0;
1323  }
1324
1325  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
1326
1327  bool strictSelectorMatch = receiverIdOrClass && warn &&
1328    (Diags.getDiagnosticLevel(diag::warn_strict_multiple_method_decl) !=
1329      Diagnostic::Ignored);
1330  if (warn && MethList.Method && MethList.Next) {
1331    bool issueWarning = false;
1332    if (strictSelectorMatch)
1333      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1334        // This checks if the methods differ in type mismatch.
1335        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, false, true))
1336          issueWarning = true;
1337      }
1338
1339    if (!issueWarning)
1340      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next) {
1341        // This checks if the methods differ by size & alignment.
1342        if (!MatchTwoMethodDeclarations(MethList.Method, Next->Method, true))
1343          issueWarning = true;
1344      }
1345
1346    if (issueWarning) {
1347      if (strictSelectorMatch)
1348        Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
1349      else
1350        Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
1351      Diag(MethList.Method->getLocStart(), diag::note_using)
1352        << MethList.Method->getSourceRange();
1353      for (ObjCMethodList *Next = MethList.Next; Next; Next = Next->Next)
1354        Diag(Next->Method->getLocStart(), diag::note_also_found)
1355          << Next->Method->getSourceRange();
1356    }
1357  }
1358  return MethList.Method;
1359}
1360
1361ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
1362  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
1363  if (Pos == MethodPool.end())
1364    return 0;
1365
1366  GlobalMethods &Methods = Pos->second;
1367
1368  if (Methods.first.Method && Methods.first.Method->isDefined())
1369    return Methods.first.Method;
1370  if (Methods.second.Method && Methods.second.Method->isDefined())
1371    return Methods.second.Method;
1372  return 0;
1373}
1374
1375/// CompareMethodParamsInBaseAndSuper - This routine compares methods with
1376/// identical selector names in current and its super classes and issues
1377/// a warning if any of their argument types are incompatible.
1378void Sema::CompareMethodParamsInBaseAndSuper(Decl *ClassDecl,
1379                                             ObjCMethodDecl *Method,
1380                                             bool IsInstance)  {
1381  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
1382  if (ID == 0) return;
1383
1384  while (ObjCInterfaceDecl *SD = ID->getSuperClass()) {
1385    ObjCMethodDecl *SuperMethodDecl =
1386        SD->lookupMethod(Method->getSelector(), IsInstance);
1387    if (SuperMethodDecl == 0) {
1388      ID = SD;
1389      continue;
1390    }
1391    ObjCMethodDecl::param_iterator ParamI = Method->param_begin(),
1392      E = Method->param_end();
1393    ObjCMethodDecl::param_iterator PrevI = SuperMethodDecl->param_begin();
1394    for (; ParamI != E; ++ParamI, ++PrevI) {
1395      // Number of parameters are the same and is guaranteed by selector match.
1396      assert(PrevI != SuperMethodDecl->param_end() && "Param mismatch");
1397      QualType T1 = Context.getCanonicalType((*ParamI)->getType());
1398      QualType T2 = Context.getCanonicalType((*PrevI)->getType());
1399      // If type of arguement of method in this class does not match its
1400      // respective argument type in the super class method, issue warning;
1401      if (!Context.typesAreCompatible(T1, T2)) {
1402        Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
1403          << T1 << T2;
1404        Diag(SuperMethodDecl->getLocation(), diag::note_previous_declaration);
1405        return;
1406      }
1407    }
1408    ID = SD;
1409  }
1410}
1411
1412/// DiagnoseDuplicateIvars -
1413/// Check for duplicate ivars in the entire class at the start of
1414/// @implementation. This becomes necesssary because class extension can
1415/// add ivars to a class in random order which will not be known until
1416/// class's @implementation is seen.
1417void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
1418                                  ObjCInterfaceDecl *SID) {
1419  for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
1420       IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
1421    ObjCIvarDecl* Ivar = (*IVI);
1422    if (Ivar->isInvalidDecl())
1423      continue;
1424    if (IdentifierInfo *II = Ivar->getIdentifier()) {
1425      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
1426      if (prevIvar) {
1427        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
1428        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
1429        Ivar->setInvalidDecl();
1430      }
1431    }
1432  }
1433}
1434
1435// Note: For class/category implemenations, allMethods/allProperties is
1436// always null.
1437void Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd,
1438                      Decl *ClassDecl,
1439                      Decl **allMethods, unsigned allNum,
1440                      Decl **allProperties, unsigned pNum,
1441                      DeclGroupPtrTy *allTUVars, unsigned tuvNum) {
1442  // FIXME: If we don't have a ClassDecl, we have an error. We should consider
1443  // always passing in a decl. If the decl has an error, isInvalidDecl()
1444  // should be true.
1445  if (!ClassDecl)
1446    return;
1447
1448  bool isInterfaceDeclKind =
1449        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
1450         || isa<ObjCProtocolDecl>(ClassDecl);
1451  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
1452
1453  if (!isInterfaceDeclKind && AtEnd.isInvalid()) {
1454    // FIXME: This is wrong.  We shouldn't be pretending that there is
1455    //  an '@end' in the declaration.
1456    SourceLocation L = ClassDecl->getLocation();
1457    AtEnd.setBegin(L);
1458    AtEnd.setEnd(L);
1459    Diag(L, diag::warn_missing_atend);
1460  }
1461
1462  DeclContext *DC = dyn_cast<DeclContext>(ClassDecl);
1463
1464  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
1465  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
1466  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
1467
1468  for (unsigned i = 0; i < allNum; i++ ) {
1469    ObjCMethodDecl *Method =
1470      cast_or_null<ObjCMethodDecl>(allMethods[i]);
1471
1472    if (!Method) continue;  // Already issued a diagnostic.
1473    if (Method->isInstanceMethod()) {
1474      /// Check for instance method of the same name with incompatible types
1475      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
1476      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1477                              : false;
1478      if ((isInterfaceDeclKind && PrevMethod && !match)
1479          || (checkIdenticalMethods && match)) {
1480          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1481            << Method->getDeclName();
1482          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1483      } else {
1484        DC->addDecl(Method);
1485        InsMap[Method->getSelector()] = Method;
1486        /// The following allows us to typecheck messages to "id".
1487        AddInstanceMethodToGlobalPool(Method);
1488        // verify that the instance method conforms to the same definition of
1489        // parent methods if it shadows one.
1490        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, true);
1491      }
1492    } else {
1493      /// Check for class method of the same name with incompatible types
1494      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
1495      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
1496                              : false;
1497      if ((isInterfaceDeclKind && PrevMethod && !match)
1498          || (checkIdenticalMethods && match)) {
1499        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1500          << Method->getDeclName();
1501        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1502      } else {
1503        DC->addDecl(Method);
1504        ClsMap[Method->getSelector()] = Method;
1505        /// The following allows us to typecheck messages to "Class".
1506        AddFactoryMethodToGlobalPool(Method);
1507        // verify that the class method conforms to the same definition of
1508        // parent methods if it shadows one.
1509        CompareMethodParamsInBaseAndSuper(ClassDecl, Method, false);
1510      }
1511    }
1512  }
1513  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
1514    // Compares properties declared in this class to those of its
1515    // super class.
1516    ComparePropertiesInBaseAndSuper(I);
1517    CompareProperties(I, I);
1518  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
1519    // Categories are used to extend the class by declaring new methods.
1520    // By the same token, they are also used to add new properties. No
1521    // need to compare the added property to those in the class.
1522
1523    // Compare protocol properties with those in category
1524    CompareProperties(C, C);
1525    if (C->IsClassExtension())
1526      DiagnoseClassExtensionDupMethods(C, C->getClassInterface());
1527  }
1528  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
1529    if (CDecl->getIdentifier())
1530      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
1531      // user-defined setter/getter. It also synthesizes setter/getter methods
1532      // and adds them to the DeclContext and global method pools.
1533      for (ObjCContainerDecl::prop_iterator I = CDecl->prop_begin(),
1534                                            E = CDecl->prop_end();
1535           I != E; ++I)
1536        ProcessPropertyDecl(*I, CDecl);
1537    CDecl->setAtEndRange(AtEnd);
1538  }
1539  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1540    IC->setAtEndRange(AtEnd);
1541    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
1542      if (LangOpts.ObjCNonFragileABI2)
1543        DefaultSynthesizeProperties(S, IC, IDecl);
1544      ImplMethodsVsClassMethods(S, IC, IDecl);
1545      AtomicPropertySetterGetterRules(IC, IDecl);
1546
1547      if (LangOpts.ObjCNonFragileABI2)
1548        while (IDecl->getSuperClass()) {
1549          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
1550          IDecl = IDecl->getSuperClass();
1551        }
1552    }
1553    SetIvarInitializers(IC);
1554  } else if (ObjCCategoryImplDecl* CatImplClass =
1555                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1556    CatImplClass->setAtEndRange(AtEnd);
1557
1558    // Find category interface decl and then check that all methods declared
1559    // in this interface are implemented in the category @implementation.
1560    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
1561      for (ObjCCategoryDecl *Categories = IDecl->getCategoryList();
1562           Categories; Categories = Categories->getNextClassCategory()) {
1563        if (Categories->getIdentifier() == CatImplClass->getIdentifier()) {
1564          ImplMethodsVsClassMethods(S, CatImplClass, Categories);
1565          break;
1566        }
1567      }
1568    }
1569  }
1570  if (isInterfaceDeclKind) {
1571    // Reject invalid vardecls.
1572    for (unsigned i = 0; i != tuvNum; i++) {
1573      DeclGroupRef DG = allTUVars[i].getAsVal<DeclGroupRef>();
1574      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
1575        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
1576          if (!VDecl->hasExternalStorage())
1577            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
1578        }
1579    }
1580  }
1581}
1582
1583
1584/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
1585/// objective-c's type qualifier from the parser version of the same info.
1586static Decl::ObjCDeclQualifier
1587CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
1588  Decl::ObjCDeclQualifier ret = Decl::OBJC_TQ_None;
1589  if (PQTVal & ObjCDeclSpec::DQ_In)
1590    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_In);
1591  if (PQTVal & ObjCDeclSpec::DQ_Inout)
1592    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Inout);
1593  if (PQTVal & ObjCDeclSpec::DQ_Out)
1594    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Out);
1595  if (PQTVal & ObjCDeclSpec::DQ_Bycopy)
1596    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Bycopy);
1597  if (PQTVal & ObjCDeclSpec::DQ_Byref)
1598    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Byref);
1599  if (PQTVal & ObjCDeclSpec::DQ_Oneway)
1600    ret = (Decl::ObjCDeclQualifier)(ret | Decl::OBJC_TQ_Oneway);
1601
1602  return ret;
1603}
1604
1605static inline
1606bool containsInvalidMethodImplAttribute(const AttrVec &A) {
1607  // The 'ibaction' attribute is allowed on method definitions because of
1608  // how the IBAction macro is used on both method declarations and definitions.
1609  // If the method definitions contains any other attributes, return true.
1610  for (AttrVec::const_iterator i = A.begin(), e = A.end(); i != e; ++i)
1611    if ((*i)->getKind() != attr::IBAction)
1612      return true;
1613  return false;
1614}
1615
1616Decl *Sema::ActOnMethodDeclaration(
1617    SourceLocation MethodLoc, SourceLocation EndLoc,
1618    tok::TokenKind MethodType, Decl *ClassDecl,
1619    ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
1620    Selector Sel,
1621    // optional arguments. The number of types/arguments is obtained
1622    // from the Sel.getNumArgs().
1623    ObjCArgInfo *ArgInfo,
1624    DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
1625    AttributeList *AttrList, tok::ObjCKeywordKind MethodDeclKind,
1626    bool isVariadic) {
1627  // Make sure we can establish a context for the method.
1628  if (!ClassDecl) {
1629    Diag(MethodLoc, diag::error_missing_method_context);
1630    getCurFunction()->LabelMap.clear();
1631    return 0;
1632  }
1633  QualType resultDeclType;
1634
1635  TypeSourceInfo *ResultTInfo = 0;
1636  if (ReturnType) {
1637    resultDeclType = GetTypeFromParser(ReturnType, &ResultTInfo);
1638
1639    // Methods cannot return interface types. All ObjC objects are
1640    // passed by reference.
1641    if (resultDeclType->isObjCObjectType()) {
1642      Diag(MethodLoc, diag::err_object_cannot_be_passed_returned_by_value)
1643        << 0 << resultDeclType;
1644      return 0;
1645    }
1646  } else // get the type for "id".
1647    resultDeclType = Context.getObjCIdType();
1648
1649  ObjCMethodDecl* ObjCMethod =
1650    ObjCMethodDecl::Create(Context, MethodLoc, EndLoc, Sel, resultDeclType,
1651                           ResultTInfo,
1652                           cast<DeclContext>(ClassDecl),
1653                           MethodType == tok::minus, isVariadic,
1654                           false, false,
1655                           MethodDeclKind == tok::objc_optional ?
1656                           ObjCMethodDecl::Optional :
1657                           ObjCMethodDecl::Required);
1658
1659  llvm::SmallVector<ParmVarDecl*, 16> Params;
1660
1661  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
1662    QualType ArgType;
1663    TypeSourceInfo *DI;
1664
1665    if (ArgInfo[i].Type == 0) {
1666      ArgType = Context.getObjCIdType();
1667      DI = 0;
1668    } else {
1669      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
1670      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1671      ArgType = adjustParameterType(ArgType);
1672    }
1673
1674    ParmVarDecl* Param
1675      = ParmVarDecl::Create(Context, ObjCMethod, ArgInfo[i].NameLoc,
1676                            ArgInfo[i].Name, ArgType, DI,
1677                            SC_None, SC_None, 0);
1678
1679    if (ArgType->isObjCObjectType()) {
1680      Diag(ArgInfo[i].NameLoc,
1681           diag::err_object_cannot_be_passed_returned_by_value)
1682        << 1 << ArgType;
1683      Param->setInvalidDecl();
1684    }
1685
1686    Param->setObjCDeclQualifier(
1687      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
1688
1689    // Apply the attributes to the parameter.
1690    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
1691
1692    Params.push_back(Param);
1693  }
1694
1695  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
1696    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
1697    QualType ArgType = Param->getType();
1698    if (ArgType.isNull())
1699      ArgType = Context.getObjCIdType();
1700    else
1701      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
1702      ArgType = adjustParameterType(ArgType);
1703    if (ArgType->isObjCObjectType()) {
1704      Diag(Param->getLocation(),
1705           diag::err_object_cannot_be_passed_returned_by_value)
1706      << 1 << ArgType;
1707      Param->setInvalidDecl();
1708    }
1709    Param->setDeclContext(ObjCMethod);
1710    if (Param->getDeclName())
1711      IdResolver.RemoveDecl(Param);
1712    Params.push_back(Param);
1713  }
1714
1715  ObjCMethod->setMethodParams(Context, Params.data(), Params.size(),
1716                              Sel.getNumArgs());
1717  ObjCMethod->setObjCDeclQualifier(
1718    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
1719  const ObjCMethodDecl *PrevMethod = 0;
1720
1721  if (AttrList)
1722    ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
1723
1724  const ObjCMethodDecl *InterfaceMD = 0;
1725
1726  // For implementations (which can be very "coarse grain"), we add the
1727  // method now. This allows the AST to implement lookup methods that work
1728  // incrementally (without waiting until we parse the @end). It also allows
1729  // us to flag multiple declaration errors as they occur.
1730  if (ObjCImplementationDecl *ImpDecl =
1731        dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
1732    if (MethodType == tok::minus) {
1733      PrevMethod = ImpDecl->getInstanceMethod(Sel);
1734      ImpDecl->addInstanceMethod(ObjCMethod);
1735    } else {
1736      PrevMethod = ImpDecl->getClassMethod(Sel);
1737      ImpDecl->addClassMethod(ObjCMethod);
1738    }
1739    InterfaceMD = ImpDecl->getClassInterface()->getMethod(Sel,
1740                                                   MethodType == tok::minus);
1741    if (ObjCMethod->hasAttrs() &&
1742        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1743      Diag(EndLoc, diag::warn_attribute_method_def);
1744  } else if (ObjCCategoryImplDecl *CatImpDecl =
1745             dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
1746    if (MethodType == tok::minus) {
1747      PrevMethod = CatImpDecl->getInstanceMethod(Sel);
1748      CatImpDecl->addInstanceMethod(ObjCMethod);
1749    } else {
1750      PrevMethod = CatImpDecl->getClassMethod(Sel);
1751      CatImpDecl->addClassMethod(ObjCMethod);
1752    }
1753    if (ObjCMethod->hasAttrs() &&
1754        containsInvalidMethodImplAttribute(ObjCMethod->getAttrs()))
1755      Diag(EndLoc, diag::warn_attribute_method_def);
1756  }
1757  if (PrevMethod) {
1758    // You can never have two method definitions with the same name.
1759    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
1760      << ObjCMethod->getDeclName();
1761    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1762  }
1763
1764  // If the interface declared this method, and it was deprecated there,
1765  // mark it deprecated here.
1766  if (InterfaceMD)
1767   if (Attr *DA = InterfaceMD->getAttr<DeprecatedAttr>()) {
1768    StringLiteral *SE = StringLiteral::CreateEmpty(Context, 1);
1769    ObjCMethod->addAttr(::new (Context)
1770                        DeprecatedAttr(DA->getLocation(),
1771                                       Context,
1772                                       SE->getString()));
1773   }
1774
1775  return ObjCMethod;
1776}
1777
1778bool Sema::CheckObjCDeclScope(Decl *D) {
1779  if (isa<TranslationUnitDecl>(CurContext->getRedeclContext()))
1780    return false;
1781
1782  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
1783  D->setInvalidDecl();
1784
1785  return true;
1786}
1787
1788/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1789/// instance variables of ClassName into Decls.
1790void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
1791                     IdentifierInfo *ClassName,
1792                     llvm::SmallVectorImpl<Decl*> &Decls) {
1793  // Check that ClassName is a valid class
1794  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
1795  if (!Class) {
1796    Diag(DeclStart, diag::err_undef_interface) << ClassName;
1797    return;
1798  }
1799  if (LangOpts.ObjCNonFragileABI) {
1800    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
1801    return;
1802  }
1803
1804  // Collect the instance variables
1805  llvm::SmallVector<ObjCIvarDecl*, 32> Ivars;
1806  Context.DeepCollectObjCIvars(Class, true, Ivars);
1807  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1808  for (unsigned i = 0; i < Ivars.size(); i++) {
1809    FieldDecl* ID = cast<FieldDecl>(Ivars[i]);
1810    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
1811    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record, ID->getLocation(),
1812                                           ID->getIdentifier(), ID->getType(),
1813                                           ID->getBitWidth());
1814    Decls.push_back(FD);
1815  }
1816
1817  // Introduce all of these fields into the appropriate scope.
1818  for (llvm::SmallVectorImpl<Decl*>::iterator D = Decls.begin();
1819       D != Decls.end(); ++D) {
1820    FieldDecl *FD = cast<FieldDecl>(*D);
1821    if (getLangOptions().CPlusPlus)
1822      PushOnScopeChains(cast<FieldDecl>(FD), S);
1823    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
1824      Record->addDecl(FD);
1825  }
1826}
1827
1828/// \brief Build a type-check a new Objective-C exception variable declaration.
1829VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo,
1830                                      QualType T,
1831                                      IdentifierInfo *Name,
1832                                      SourceLocation NameLoc,
1833                                      bool Invalid) {
1834  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
1835  // duration shall not be qualified by an address-space qualifier."
1836  // Since all parameters have automatic store duration, they can not have
1837  // an address space.
1838  if (T.getAddressSpace() != 0) {
1839    Diag(NameLoc, diag::err_arg_with_address_space);
1840    Invalid = true;
1841  }
1842
1843  // An @catch parameter must be an unqualified object pointer type;
1844  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
1845  if (Invalid) {
1846    // Don't do any further checking.
1847  } else if (T->isDependentType()) {
1848    // Okay: we don't know what this type will instantiate to.
1849  } else if (!T->isObjCObjectPointerType()) {
1850    Invalid = true;
1851    Diag(NameLoc ,diag::err_catch_param_not_objc_type);
1852  } else if (T->isObjCQualifiedIdType()) {
1853    Invalid = true;
1854    Diag(NameLoc, diag::err_illegal_qualifiers_on_catch_parm);
1855  }
1856
1857  VarDecl *New = VarDecl::Create(Context, CurContext, NameLoc, Name, T, TInfo,
1858                                 SC_None, SC_None);
1859  New->setExceptionVariable(true);
1860
1861  if (Invalid)
1862    New->setInvalidDecl();
1863  return New;
1864}
1865
1866Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
1867  const DeclSpec &DS = D.getDeclSpec();
1868
1869  // We allow the "register" storage class on exception variables because
1870  // GCC did, but we drop it completely. Any other storage class is an error.
1871  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1872    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
1873      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
1874  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1875    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
1876      << DS.getStorageClassSpec();
1877  }
1878  if (D.getDeclSpec().isThreadSpecified())
1879    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1880  D.getMutableDeclSpec().ClearStorageClassSpecs();
1881
1882  DiagnoseFunctionSpecifiers(D);
1883
1884  // Check that there are no default arguments inside the type of this
1885  // exception object (C++ only).
1886  if (getLangOptions().CPlusPlus)
1887    CheckExtraCXXDefaultArguments(D);
1888
1889  TagDecl *OwnedDecl = 0;
1890  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
1891  QualType ExceptionType = TInfo->getType();
1892
1893  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
1894    // Objective-C++: Types shall not be defined in exception types.
1895    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
1896      << Context.getTypeDeclType(OwnedDecl);
1897  }
1898
1899  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType, D.getIdentifier(),
1900                                        D.getIdentifierLoc(),
1901                                        D.isInvalidType());
1902
1903  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
1904  if (D.getCXXScopeSpec().isSet()) {
1905    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
1906      << D.getCXXScopeSpec().getRange();
1907    New->setInvalidDecl();
1908  }
1909
1910  // Add the parameter declaration into this scope.
1911  S->AddDecl(New);
1912  if (D.getIdentifier())
1913    IdResolver.AddDecl(New);
1914
1915  ProcessDeclAttributes(S, New, D);
1916
1917  if (New->hasAttr<BlocksAttr>())
1918    Diag(New->getLocation(), diag::err_block_on_nonlocal);
1919  return New;
1920}
1921
1922/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
1923/// initialization.
1924void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
1925                                llvm::SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
1926  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
1927       Iv= Iv->getNextIvar()) {
1928    QualType QT = Context.getBaseElementType(Iv->getType());
1929    if (QT->isRecordType())
1930      Ivars.push_back(Iv);
1931  }
1932}
1933
1934void ObjCImplementationDecl::setIvarInitializers(ASTContext &C,
1935                                    CXXBaseOrMemberInitializer ** initializers,
1936                                                 unsigned numInitializers) {
1937  if (numInitializers > 0) {
1938    NumIvarInitializers = numInitializers;
1939    CXXBaseOrMemberInitializer **ivarInitializers =
1940    new (C) CXXBaseOrMemberInitializer*[NumIvarInitializers];
1941    memcpy(ivarInitializers, initializers,
1942           numInitializers * sizeof(CXXBaseOrMemberInitializer*));
1943    IvarInitializers = ivarInitializers;
1944  }
1945}
1946
1947void Sema::DiagnoseUseOfUnimplementedSelectors() {
1948  if (ReferencedSelectors.empty())
1949    return;
1950  for (llvm::DenseMap<Selector, SourceLocation>::iterator S =
1951        ReferencedSelectors.begin(),
1952       E = ReferencedSelectors.end(); S != E; ++S) {
1953    Selector Sel = (*S).first;
1954    if (!LookupImplementedMethodInGlobalPool(Sel))
1955      Diag((*S).second, diag::warn_unimplemented_selector) << Sel;
1956  }
1957  return;
1958}
1959