1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TypeLocBuilder.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/EvaluatedExprVisitor.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/RecursiveASTVisitor.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Sema/Scope.h"
35#include "clang/Sema/ScopeInfo.h"
36#include "clang/Sema/SemaLambda.h"
37#include "clang/Sema/TemplateDeduction.h"
38#include "llvm/ADT/APInt.h"
39#include "llvm/ADT/STLExtras.h"
40#include "llvm/Support/ErrorHandling.h"
41using namespace clang;
42using namespace sema;
43
44/// \brief Handle the result of the special case name lookup for inheriting
45/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
46/// constructor names in member using declarations, even if 'X' is not the
47/// name of the corresponding type.
48ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
49                                              SourceLocation NameLoc,
50                                              IdentifierInfo &Name) {
51  NestedNameSpecifier *NNS = SS.getScopeRep();
52
53  // Convert the nested-name-specifier into a type.
54  QualType Type;
55  switch (NNS->getKind()) {
56  case NestedNameSpecifier::TypeSpec:
57  case NestedNameSpecifier::TypeSpecWithTemplate:
58    Type = QualType(NNS->getAsType(), 0);
59    break;
60
61  case NestedNameSpecifier::Identifier:
62    // Strip off the last layer of the nested-name-specifier and build a
63    // typename type for it.
64    assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
65    Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
66                                        NNS->getAsIdentifier());
67    break;
68
69  case NestedNameSpecifier::Global:
70  case NestedNameSpecifier::Namespace:
71  case NestedNameSpecifier::NamespaceAlias:
72    llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
73  }
74
75  // This reference to the type is located entirely at the location of the
76  // final identifier in the qualified-id.
77  return CreateParsedType(Type,
78                          Context.getTrivialTypeSourceInfo(Type, NameLoc));
79}
80
81ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
82                                   IdentifierInfo &II,
83                                   SourceLocation NameLoc,
84                                   Scope *S, CXXScopeSpec &SS,
85                                   ParsedType ObjectTypePtr,
86                                   bool EnteringContext) {
87  // Determine where to perform name lookup.
88
89  // FIXME: This area of the standard is very messy, and the current
90  // wording is rather unclear about which scopes we search for the
91  // destructor name; see core issues 399 and 555. Issue 399 in
92  // particular shows where the current description of destructor name
93  // lookup is completely out of line with existing practice, e.g.,
94  // this appears to be ill-formed:
95  //
96  //   namespace N {
97  //     template <typename T> struct S {
98  //       ~S();
99  //     };
100  //   }
101  //
102  //   void f(N::S<int>* s) {
103  //     s->N::S<int>::~S();
104  //   }
105  //
106  // See also PR6358 and PR6359.
107  // For this reason, we're currently only doing the C++03 version of this
108  // code; the C++0x version has to wait until we get a proper spec.
109  QualType SearchType;
110  DeclContext *LookupCtx = nullptr;
111  bool isDependent = false;
112  bool LookInScope = false;
113
114  // If we have an object type, it's because we are in a
115  // pseudo-destructor-expression or a member access expression, and
116  // we know what type we're looking for.
117  if (ObjectTypePtr)
118    SearchType = GetTypeFromParser(ObjectTypePtr);
119
120  if (SS.isSet()) {
121    NestedNameSpecifier *NNS = SS.getScopeRep();
122
123    bool AlreadySearched = false;
124    bool LookAtPrefix = true;
125    // C++11 [basic.lookup.qual]p6:
126    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
127    //   the type-names are looked up as types in the scope designated by the
128    //   nested-name-specifier. Similarly, in a qualified-id of the form:
129    //
130    //     nested-name-specifier[opt] class-name :: ~ class-name
131    //
132    //   the second class-name is looked up in the same scope as the first.
133    //
134    // Here, we determine whether the code below is permitted to look at the
135    // prefix of the nested-name-specifier.
136    DeclContext *DC = computeDeclContext(SS, EnteringContext);
137    if (DC && DC->isFileContext()) {
138      AlreadySearched = true;
139      LookupCtx = DC;
140      isDependent = false;
141    } else if (DC && isa<CXXRecordDecl>(DC)) {
142      LookAtPrefix = false;
143      LookInScope = true;
144    }
145
146    // The second case from the C++03 rules quoted further above.
147    NestedNameSpecifier *Prefix = nullptr;
148    if (AlreadySearched) {
149      // Nothing left to do.
150    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
151      CXXScopeSpec PrefixSS;
152      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
153      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
154      isDependent = isDependentScopeSpecifier(PrefixSS);
155    } else if (ObjectTypePtr) {
156      LookupCtx = computeDeclContext(SearchType);
157      isDependent = SearchType->isDependentType();
158    } else {
159      LookupCtx = computeDeclContext(SS, EnteringContext);
160      isDependent = LookupCtx && LookupCtx->isDependentContext();
161    }
162  } else if (ObjectTypePtr) {
163    // C++ [basic.lookup.classref]p3:
164    //   If the unqualified-id is ~type-name, the type-name is looked up
165    //   in the context of the entire postfix-expression. If the type T
166    //   of the object expression is of a class type C, the type-name is
167    //   also looked up in the scope of class C. At least one of the
168    //   lookups shall find a name that refers to (possibly
169    //   cv-qualified) T.
170    LookupCtx = computeDeclContext(SearchType);
171    isDependent = SearchType->isDependentType();
172    assert((isDependent || !SearchType->isIncompleteType()) &&
173           "Caller should have completed object type");
174
175    LookInScope = true;
176  } else {
177    // Perform lookup into the current scope (only).
178    LookInScope = true;
179  }
180
181  TypeDecl *NonMatchingTypeDecl = nullptr;
182  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
183  for (unsigned Step = 0; Step != 2; ++Step) {
184    // Look for the name first in the computed lookup context (if we
185    // have one) and, if that fails to find a match, in the scope (if
186    // we're allowed to look there).
187    Found.clear();
188    if (Step == 0 && LookupCtx)
189      LookupQualifiedName(Found, LookupCtx);
190    else if (Step == 1 && LookInScope && S)
191      LookupName(Found, S);
192    else
193      continue;
194
195    // FIXME: Should we be suppressing ambiguities here?
196    if (Found.isAmbiguous())
197      return ParsedType();
198
199    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
200      QualType T = Context.getTypeDeclType(Type);
201
202      if (SearchType.isNull() || SearchType->isDependentType() ||
203          Context.hasSameUnqualifiedType(T, SearchType)) {
204        // We found our type!
205
206        return CreateParsedType(T,
207                                Context.getTrivialTypeSourceInfo(T, NameLoc));
208      }
209
210      if (!SearchType.isNull())
211        NonMatchingTypeDecl = Type;
212    }
213
214    // If the name that we found is a class template name, and it is
215    // the same name as the template name in the last part of the
216    // nested-name-specifier (if present) or the object type, then
217    // this is the destructor for that class.
218    // FIXME: This is a workaround until we get real drafting for core
219    // issue 399, for which there isn't even an obvious direction.
220    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
221      QualType MemberOfType;
222      if (SS.isSet()) {
223        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
224          // Figure out the type of the context, if it has one.
225          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
226            MemberOfType = Context.getTypeDeclType(Record);
227        }
228      }
229      if (MemberOfType.isNull())
230        MemberOfType = SearchType;
231
232      if (MemberOfType.isNull())
233        continue;
234
235      // We're referring into a class template specialization. If the
236      // class template we found is the same as the template being
237      // specialized, we found what we are looking for.
238      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
239        if (ClassTemplateSpecializationDecl *Spec
240              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
241          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
242                Template->getCanonicalDecl())
243            return CreateParsedType(
244                MemberOfType,
245                Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
246        }
247
248        continue;
249      }
250
251      // We're referring to an unresolved class template
252      // specialization. Determine whether we class template we found
253      // is the same as the template being specialized or, if we don't
254      // know which template is being specialized, that it at least
255      // has the same name.
256      if (const TemplateSpecializationType *SpecType
257            = MemberOfType->getAs<TemplateSpecializationType>()) {
258        TemplateName SpecName = SpecType->getTemplateName();
259
260        // The class template we found is the same template being
261        // specialized.
262        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
263          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
264            return CreateParsedType(
265                MemberOfType,
266                Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
267
268          continue;
269        }
270
271        // The class template we found has the same name as the
272        // (dependent) template name being specialized.
273        if (DependentTemplateName *DepTemplate
274                                    = SpecName.getAsDependentTemplateName()) {
275          if (DepTemplate->isIdentifier() &&
276              DepTemplate->getIdentifier() == Template->getIdentifier())
277            return CreateParsedType(
278                MemberOfType,
279                Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc));
280
281          continue;
282        }
283      }
284    }
285  }
286
287  if (isDependent) {
288    // We didn't find our type, but that's okay: it's dependent
289    // anyway.
290
291    // FIXME: What if we have no nested-name-specifier?
292    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
293                                   SS.getWithLocInContext(Context),
294                                   II, NameLoc);
295    return ParsedType::make(T);
296  }
297
298  if (NonMatchingTypeDecl) {
299    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
300    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
301      << T << SearchType;
302    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
303      << T;
304  } else if (ObjectTypePtr)
305    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
306      << &II;
307  else {
308    SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
309                                          diag::err_destructor_class_name);
310    if (S) {
311      const DeclContext *Ctx = S->getEntity();
312      if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
313        DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
314                                                 Class->getNameAsString());
315    }
316  }
317
318  return ParsedType();
319}
320
321ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
322    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
323      return ParsedType();
324    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
325           && "only get destructor types from declspecs");
326    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
327    QualType SearchType = GetTypeFromParser(ObjectType);
328    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
329      return ParsedType::make(T);
330    }
331
332    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
333      << T << SearchType;
334    return ParsedType();
335}
336
337bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS,
338                                  const UnqualifiedId &Name) {
339  assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId);
340
341  if (!SS.isValid())
342    return false;
343
344  switch (SS.getScopeRep()->getKind()) {
345  case NestedNameSpecifier::Identifier:
346  case NestedNameSpecifier::TypeSpec:
347  case NestedNameSpecifier::TypeSpecWithTemplate:
348    // Per C++11 [over.literal]p2, literal operators can only be declared at
349    // namespace scope. Therefore, this unqualified-id cannot name anything.
350    // Reject it early, because we have no AST representation for this in the
351    // case where the scope is dependent.
352    Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace)
353      << SS.getScopeRep();
354    return true;
355
356  case NestedNameSpecifier::Global:
357  case NestedNameSpecifier::Namespace:
358  case NestedNameSpecifier::NamespaceAlias:
359    return false;
360  }
361
362  llvm_unreachable("unknown nested name specifier kind");
363}
364
365/// \brief Build a C++ typeid expression with a type operand.
366ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
367                                SourceLocation TypeidLoc,
368                                TypeSourceInfo *Operand,
369                                SourceLocation RParenLoc) {
370  // C++ [expr.typeid]p4:
371  //   The top-level cv-qualifiers of the lvalue expression or the type-id
372  //   that is the operand of typeid are always ignored.
373  //   If the type of the type-id is a class type or a reference to a class
374  //   type, the class shall be completely-defined.
375  Qualifiers Quals;
376  QualType T
377    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
378                                      Quals);
379  if (T->getAs<RecordType>() &&
380      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
381    return ExprError();
382
383  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand,
384                                     SourceRange(TypeidLoc, RParenLoc));
385}
386
387/// \brief Build a C++ typeid expression with an expression operand.
388ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
389                                SourceLocation TypeidLoc,
390                                Expr *E,
391                                SourceLocation RParenLoc) {
392  if (E && !E->isTypeDependent()) {
393    if (E->getType()->isPlaceholderType()) {
394      ExprResult result = CheckPlaceholderExpr(E);
395      if (result.isInvalid()) return ExprError();
396      E = result.get();
397    }
398
399    QualType T = E->getType();
400    if (const RecordType *RecordT = T->getAs<RecordType>()) {
401      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
402      // C++ [expr.typeid]p3:
403      //   [...] If the type of the expression is a class type, the class
404      //   shall be completely-defined.
405      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
406        return ExprError();
407
408      // C++ [expr.typeid]p3:
409      //   When typeid is applied to an expression other than an glvalue of a
410      //   polymorphic class type [...] [the] expression is an unevaluated
411      //   operand. [...]
412      if (RecordD->isPolymorphic() && E->isGLValue()) {
413        // The subexpression is potentially evaluated; switch the context
414        // and recheck the subexpression.
415        ExprResult Result = TransformToPotentiallyEvaluated(E);
416        if (Result.isInvalid()) return ExprError();
417        E = Result.get();
418
419        // We require a vtable to query the type at run time.
420        MarkVTableUsed(TypeidLoc, RecordD);
421      }
422    }
423
424    // C++ [expr.typeid]p4:
425    //   [...] If the type of the type-id is a reference to a possibly
426    //   cv-qualified type, the result of the typeid expression refers to a
427    //   std::type_info object representing the cv-unqualified referenced
428    //   type.
429    Qualifiers Quals;
430    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
431    if (!Context.hasSameType(T, UnqualT)) {
432      T = UnqualT;
433      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get();
434    }
435  }
436
437  return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E,
438                                     SourceRange(TypeidLoc, RParenLoc));
439}
440
441/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
442ExprResult
443Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
444                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
445  // Find the std::type_info type.
446  if (!getStdNamespace())
447    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
448
449  if (!CXXTypeInfoDecl) {
450    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
451    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
452    LookupQualifiedName(R, getStdNamespace());
453    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
454    // Microsoft's typeinfo doesn't have type_info in std but in the global
455    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
456    if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) {
457      LookupQualifiedName(R, Context.getTranslationUnitDecl());
458      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
459    }
460    if (!CXXTypeInfoDecl)
461      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
462  }
463
464  if (!getLangOpts().RTTI) {
465    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
466  }
467
468  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
469
470  if (isType) {
471    // The operand is a type; handle it as such.
472    TypeSourceInfo *TInfo = nullptr;
473    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
474                                   &TInfo);
475    if (T.isNull())
476      return ExprError();
477
478    if (!TInfo)
479      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
480
481    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
482  }
483
484  // The operand is an expression.
485  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
486}
487
488/// \brief Build a Microsoft __uuidof expression with a type operand.
489ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
490                                SourceLocation TypeidLoc,
491                                TypeSourceInfo *Operand,
492                                SourceLocation RParenLoc) {
493  if (!Operand->getType()->isDependentType()) {
494    bool HasMultipleGUIDs = false;
495    if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(),
496                                          &HasMultipleGUIDs)) {
497      if (HasMultipleGUIDs)
498        return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
499      else
500        return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
501    }
502  }
503
504  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand,
505                                     SourceRange(TypeidLoc, RParenLoc));
506}
507
508/// \brief Build a Microsoft __uuidof expression with an expression operand.
509ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
510                                SourceLocation TypeidLoc,
511                                Expr *E,
512                                SourceLocation RParenLoc) {
513  if (!E->getType()->isDependentType()) {
514    bool HasMultipleGUIDs = false;
515    if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) &&
516        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
517      if (HasMultipleGUIDs)
518        return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids));
519      else
520        return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
521    }
522  }
523
524  return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E,
525                                     SourceRange(TypeidLoc, RParenLoc));
526}
527
528/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
529ExprResult
530Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
531                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
532  // If MSVCGuidDecl has not been cached, do the lookup.
533  if (!MSVCGuidDecl) {
534    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
535    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
536    LookupQualifiedName(R, Context.getTranslationUnitDecl());
537    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
538    if (!MSVCGuidDecl)
539      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
540  }
541
542  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
543
544  if (isType) {
545    // The operand is a type; handle it as such.
546    TypeSourceInfo *TInfo = nullptr;
547    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
548                                   &TInfo);
549    if (T.isNull())
550      return ExprError();
551
552    if (!TInfo)
553      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
554
555    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
556  }
557
558  // The operand is an expression.
559  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
560}
561
562/// ActOnCXXBoolLiteral - Parse {true,false} literals.
563ExprResult
564Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
565  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
566         "Unknown C++ Boolean value!");
567  return new (Context)
568      CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
569}
570
571/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
572ExprResult
573Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
574  return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
575}
576
577/// ActOnCXXThrow - Parse throw expressions.
578ExprResult
579Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
580  bool IsThrownVarInScope = false;
581  if (Ex) {
582    // C++0x [class.copymove]p31:
583    //   When certain criteria are met, an implementation is allowed to omit the
584    //   copy/move construction of a class object [...]
585    //
586    //     - in a throw-expression, when the operand is the name of a
587    //       non-volatile automatic object (other than a function or catch-
588    //       clause parameter) whose scope does not extend beyond the end of the
589    //       innermost enclosing try-block (if there is one), the copy/move
590    //       operation from the operand to the exception object (15.1) can be
591    //       omitted by constructing the automatic object directly into the
592    //       exception object
593    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
594      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
595        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
596          for( ; S; S = S->getParent()) {
597            if (S->isDeclScope(Var)) {
598              IsThrownVarInScope = true;
599              break;
600            }
601
602            if (S->getFlags() &
603                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
604                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
605                 Scope::TryScope))
606              break;
607          }
608        }
609      }
610  }
611
612  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
613}
614
615ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
616                               bool IsThrownVarInScope) {
617  // Don't report an error if 'throw' is used in system headers.
618  if (!getLangOpts().CXXExceptions &&
619      !getSourceManager().isInSystemHeader(OpLoc))
620    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
621
622  if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
623    Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw";
624
625  if (Ex && !Ex->isTypeDependent()) {
626    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
627    if (ExRes.isInvalid())
628      return ExprError();
629    Ex = ExRes.get();
630  }
631
632  return new (Context)
633      CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope);
634}
635
636/// CheckCXXThrowOperand - Validate the operand of a throw.
637ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
638                                      bool IsThrownVarInScope) {
639  // C++ [except.throw]p3:
640  //   A throw-expression initializes a temporary object, called the exception
641  //   object, the type of which is determined by removing any top-level
642  //   cv-qualifiers from the static type of the operand of throw and adjusting
643  //   the type from "array of T" or "function returning T" to "pointer to T"
644  //   or "pointer to function returning T", [...]
645  if (E->getType().hasQualifiers())
646    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
647                          E->getValueKind()).get();
648
649  ExprResult Res = DefaultFunctionArrayConversion(E);
650  if (Res.isInvalid())
651    return ExprError();
652  E = Res.get();
653
654  //   If the type of the exception would be an incomplete type or a pointer
655  //   to an incomplete type other than (cv) void the program is ill-formed.
656  QualType Ty = E->getType();
657  bool isPointer = false;
658  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
659    Ty = Ptr->getPointeeType();
660    isPointer = true;
661  }
662  if (!isPointer || !Ty->isVoidType()) {
663    if (RequireCompleteType(ThrowLoc, Ty,
664                            isPointer? diag::err_throw_incomplete_ptr
665                                     : diag::err_throw_incomplete,
666                            E->getSourceRange()))
667      return ExprError();
668
669    if (RequireNonAbstractType(ThrowLoc, E->getType(),
670                               diag::err_throw_abstract_type, E))
671      return ExprError();
672  }
673
674  // Initialize the exception result.  This implicitly weeds out
675  // abstract types or types with inaccessible copy constructors.
676
677  // C++0x [class.copymove]p31:
678  //   When certain criteria are met, an implementation is allowed to omit the
679  //   copy/move construction of a class object [...]
680  //
681  //     - in a throw-expression, when the operand is the name of a
682  //       non-volatile automatic object (other than a function or catch-clause
683  //       parameter) whose scope does not extend beyond the end of the
684  //       innermost enclosing try-block (if there is one), the copy/move
685  //       operation from the operand to the exception object (15.1) can be
686  //       omitted by constructing the automatic object directly into the
687  //       exception object
688  const VarDecl *NRVOVariable = nullptr;
689  if (IsThrownVarInScope)
690    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
691
692  InitializedEntity Entity =
693      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
694                                             /*NRVO=*/NRVOVariable != nullptr);
695  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
696                                        QualType(), E,
697                                        IsThrownVarInScope);
698  if (Res.isInvalid())
699    return ExprError();
700  E = Res.get();
701
702  // If the exception has class type, we need additional handling.
703  const RecordType *RecordTy = Ty->getAs<RecordType>();
704  if (!RecordTy)
705    return E;
706  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
707
708  // If we are throwing a polymorphic class type or pointer thereof,
709  // exception handling will make use of the vtable.
710  MarkVTableUsed(ThrowLoc, RD);
711
712  // If a pointer is thrown, the referenced object will not be destroyed.
713  if (isPointer)
714    return E;
715
716  // If the class has a destructor, we must be able to call it.
717  if (RD->hasIrrelevantDestructor())
718    return E;
719
720  CXXDestructorDecl *Destructor = LookupDestructor(RD);
721  if (!Destructor)
722    return E;
723
724  MarkFunctionReferenced(E->getExprLoc(), Destructor);
725  CheckDestructorAccess(E->getExprLoc(), Destructor,
726                        PDiag(diag::err_access_dtor_exception) << Ty);
727  if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
728    return ExprError();
729  return E;
730}
731
732QualType Sema::getCurrentThisType() {
733  DeclContext *DC = getFunctionLevelDeclContext();
734  QualType ThisTy = CXXThisTypeOverride;
735  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
736    if (method && method->isInstance())
737      ThisTy = method->getThisType(Context);
738  }
739  if (ThisTy.isNull()) {
740    if (isGenericLambdaCallOperatorSpecialization(CurContext) &&
741        CurContext->getParent()->getParent()->isRecord()) {
742      // This is a generic lambda call operator that is being instantiated
743      // within a default initializer - so use the enclosing class as 'this'.
744      // There is no enclosing member function to retrieve the 'this' pointer
745      // from.
746      QualType ClassTy = Context.getTypeDeclType(
747          cast<CXXRecordDecl>(CurContext->getParent()->getParent()));
748      // There are no cv-qualifiers for 'this' within default initializers,
749      // per [expr.prim.general]p4.
750      return Context.getPointerType(ClassTy);
751    }
752  }
753  return ThisTy;
754}
755
756Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
757                                         Decl *ContextDecl,
758                                         unsigned CXXThisTypeQuals,
759                                         bool Enabled)
760  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
761{
762  if (!Enabled || !ContextDecl)
763    return;
764
765  CXXRecordDecl *Record = nullptr;
766  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
767    Record = Template->getTemplatedDecl();
768  else
769    Record = cast<CXXRecordDecl>(ContextDecl);
770
771  S.CXXThisTypeOverride
772    = S.Context.getPointerType(
773        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
774
775  this->Enabled = true;
776}
777
778
779Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
780  if (Enabled) {
781    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
782  }
783}
784
785static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
786                         QualType ThisTy, SourceLocation Loc) {
787  FieldDecl *Field
788    = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy,
789                        Context.getTrivialTypeSourceInfo(ThisTy, Loc),
790                        nullptr, false, ICIS_NoInit);
791  Field->setImplicit(true);
792  Field->setAccess(AS_private);
793  RD->addDecl(Field);
794  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
795}
796
797bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit,
798    bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) {
799  // We don't need to capture this in an unevaluated context.
800  if (isUnevaluatedContext() && !Explicit)
801    return true;
802
803  const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ?
804    *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
805 // Otherwise, check that we can capture 'this'.
806  unsigned NumClosures = 0;
807  for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) {
808    if (CapturingScopeInfo *CSI =
809            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
810      if (CSI->CXXThisCaptureIndex != 0) {
811        // 'this' is already being captured; there isn't anything more to do.
812        break;
813      }
814      LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI);
815      if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) {
816        // This context can't implicitly capture 'this'; fail out.
817        if (BuildAndDiagnose)
818          Diag(Loc, diag::err_this_capture) << Explicit;
819        return true;
820      }
821      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
822          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
823          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
824          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
825          Explicit) {
826        // This closure can capture 'this'; continue looking upwards.
827        NumClosures++;
828        Explicit = false;
829        continue;
830      }
831      // This context can't implicitly capture 'this'; fail out.
832      if (BuildAndDiagnose)
833        Diag(Loc, diag::err_this_capture) << Explicit;
834      return true;
835    }
836    break;
837  }
838  if (!BuildAndDiagnose) return false;
839  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
840  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
841  // contexts.
842  for (unsigned idx = MaxFunctionScopesIndex; NumClosures;
843      --idx, --NumClosures) {
844    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
845    Expr *ThisExpr = nullptr;
846    QualType ThisTy = getCurrentThisType();
847    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
848      // For lambda expressions, build a field and an initializing expression.
849      ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
850    else if (CapturedRegionScopeInfo *RSI
851        = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
852      ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
853
854    bool isNested = NumClosures > 1;
855    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
856  }
857  return false;
858}
859
860ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
861  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
862  /// is a non-lvalue expression whose value is the address of the object for
863  /// which the function is called.
864
865  QualType ThisTy = getCurrentThisType();
866  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
867
868  CheckCXXThisCapture(Loc);
869  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false);
870}
871
872bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
873  // If we're outside the body of a member function, then we'll have a specified
874  // type for 'this'.
875  if (CXXThisTypeOverride.isNull())
876    return false;
877
878  // Determine whether we're looking into a class that's currently being
879  // defined.
880  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
881  return Class && Class->isBeingDefined();
882}
883
884ExprResult
885Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
886                                SourceLocation LParenLoc,
887                                MultiExprArg exprs,
888                                SourceLocation RParenLoc) {
889  if (!TypeRep)
890    return ExprError();
891
892  TypeSourceInfo *TInfo;
893  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
894  if (!TInfo)
895    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
896
897  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
898}
899
900/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
901/// Can be interpreted either as function-style casting ("int(x)")
902/// or class type construction ("ClassType(x,y,z)")
903/// or creation of a value-initialized type ("int()").
904ExprResult
905Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
906                                SourceLocation LParenLoc,
907                                MultiExprArg Exprs,
908                                SourceLocation RParenLoc) {
909  QualType Ty = TInfo->getType();
910  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
911
912  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
913    return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs,
914                                              RParenLoc);
915  }
916
917  bool ListInitialization = LParenLoc.isInvalid();
918  assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
919         && "List initialization must have initializer list as expression.");
920  SourceRange FullRange = SourceRange(TyBeginLoc,
921      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
922
923  // C++ [expr.type.conv]p1:
924  // If the expression list is a single expression, the type conversion
925  // expression is equivalent (in definedness, and if defined in meaning) to the
926  // corresponding cast expression.
927  if (Exprs.size() == 1 && !ListInitialization) {
928    Expr *Arg = Exprs[0];
929    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
930  }
931
932  QualType ElemTy = Ty;
933  if (Ty->isArrayType()) {
934    if (!ListInitialization)
935      return ExprError(Diag(TyBeginLoc,
936                            diag::err_value_init_for_array_type) << FullRange);
937    ElemTy = Context.getBaseElementType(Ty);
938  }
939
940  if (!Ty->isVoidType() &&
941      RequireCompleteType(TyBeginLoc, ElemTy,
942                          diag::err_invalid_incomplete_type_use, FullRange))
943    return ExprError();
944
945  if (RequireNonAbstractType(TyBeginLoc, Ty,
946                             diag::err_allocation_of_abstract_type))
947    return ExprError();
948
949  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
950  InitializationKind Kind =
951      Exprs.size() ? ListInitialization
952      ? InitializationKind::CreateDirectList(TyBeginLoc)
953      : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
954      : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
955  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
956  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
957
958  if (Result.isInvalid() || !ListInitialization)
959    return Result;
960
961  Expr *Inner = Result.get();
962  if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner))
963    Inner = BTE->getSubExpr();
964  if (isa<InitListExpr>(Inner)) {
965    // If the list-initialization doesn't involve a constructor call, we'll get
966    // the initializer-list (with corrected type) back, but that's not what we
967    // want, since it will be treated as an initializer list in further
968    // processing. Explicitly insert a cast here.
969    QualType ResultType = Result.get()->getType();
970    Result = CXXFunctionalCastExpr::Create(
971        Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo,
972        CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc);
973  }
974
975  // FIXME: Improve AST representation?
976  return Result;
977}
978
979/// doesUsualArrayDeleteWantSize - Answers whether the usual
980/// operator delete[] for the given type has a size_t parameter.
981static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
982                                         QualType allocType) {
983  const RecordType *record =
984    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
985  if (!record) return false;
986
987  // Try to find an operator delete[] in class scope.
988
989  DeclarationName deleteName =
990    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
991  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
992  S.LookupQualifiedName(ops, record->getDecl());
993
994  // We're just doing this for information.
995  ops.suppressDiagnostics();
996
997  // Very likely: there's no operator delete[].
998  if (ops.empty()) return false;
999
1000  // If it's ambiguous, it should be illegal to call operator delete[]
1001  // on this thing, so it doesn't matter if we allocate extra space or not.
1002  if (ops.isAmbiguous()) return false;
1003
1004  LookupResult::Filter filter = ops.makeFilter();
1005  while (filter.hasNext()) {
1006    NamedDecl *del = filter.next()->getUnderlyingDecl();
1007
1008    // C++0x [basic.stc.dynamic.deallocation]p2:
1009    //   A template instance is never a usual deallocation function,
1010    //   regardless of its signature.
1011    if (isa<FunctionTemplateDecl>(del)) {
1012      filter.erase();
1013      continue;
1014    }
1015
1016    // C++0x [basic.stc.dynamic.deallocation]p2:
1017    //   If class T does not declare [an operator delete[] with one
1018    //   parameter] but does declare a member deallocation function
1019    //   named operator delete[] with exactly two parameters, the
1020    //   second of which has type std::size_t, then this function
1021    //   is a usual deallocation function.
1022    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
1023      filter.erase();
1024      continue;
1025    }
1026  }
1027  filter.done();
1028
1029  if (!ops.isSingleResult()) return false;
1030
1031  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
1032  return (del->getNumParams() == 2);
1033}
1034
1035/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
1036///
1037/// E.g.:
1038/// @code new (memory) int[size][4] @endcode
1039/// or
1040/// @code ::new Foo(23, "hello") @endcode
1041///
1042/// \param StartLoc The first location of the expression.
1043/// \param UseGlobal True if 'new' was prefixed with '::'.
1044/// \param PlacementLParen Opening paren of the placement arguments.
1045/// \param PlacementArgs Placement new arguments.
1046/// \param PlacementRParen Closing paren of the placement arguments.
1047/// \param TypeIdParens If the type is in parens, the source range.
1048/// \param D The type to be allocated, as well as array dimensions.
1049/// \param Initializer The initializing expression or initializer-list, or null
1050///   if there is none.
1051ExprResult
1052Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
1053                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
1054                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
1055                  Declarator &D, Expr *Initializer) {
1056  bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
1057
1058  Expr *ArraySize = nullptr;
1059  // If the specified type is an array, unwrap it and save the expression.
1060  if (D.getNumTypeObjects() > 0 &&
1061      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
1062     DeclaratorChunk &Chunk = D.getTypeObject(0);
1063    if (TypeContainsAuto)
1064      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
1065        << D.getSourceRange());
1066    if (Chunk.Arr.hasStatic)
1067      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1068        << D.getSourceRange());
1069    if (!Chunk.Arr.NumElts)
1070      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1071        << D.getSourceRange());
1072
1073    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1074    D.DropFirstTypeObject();
1075  }
1076
1077  // Every dimension shall be of constant size.
1078  if (ArraySize) {
1079    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1080      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1081        break;
1082
1083      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1084      if (Expr *NumElts = (Expr *)Array.NumElts) {
1085        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1086          if (getLangOpts().CPlusPlus1y) {
1087	    // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator
1088	    //   shall be a converted constant expression (5.19) of type std::size_t
1089	    //   and shall evaluate to a strictly positive value.
1090            unsigned IntWidth = Context.getTargetInfo().getIntWidth();
1091            assert(IntWidth && "Builtin type of size 0?");
1092            llvm::APSInt Value(IntWidth);
1093            Array.NumElts
1094             = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value,
1095                                                CCEK_NewExpr)
1096                 .get();
1097          } else {
1098            Array.NumElts
1099              = VerifyIntegerConstantExpression(NumElts, nullptr,
1100                                                diag::err_new_array_nonconst)
1101                  .get();
1102          }
1103          if (!Array.NumElts)
1104            return ExprError();
1105        }
1106      }
1107    }
1108  }
1109
1110  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr);
1111  QualType AllocType = TInfo->getType();
1112  if (D.isInvalidType())
1113    return ExprError();
1114
1115  SourceRange DirectInitRange;
1116  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1117    DirectInitRange = List->getSourceRange();
1118
1119  return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1120                     PlacementLParen,
1121                     PlacementArgs,
1122                     PlacementRParen,
1123                     TypeIdParens,
1124                     AllocType,
1125                     TInfo,
1126                     ArraySize,
1127                     DirectInitRange,
1128                     Initializer,
1129                     TypeContainsAuto);
1130}
1131
1132static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1133                                       Expr *Init) {
1134  if (!Init)
1135    return true;
1136  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1137    return PLE->getNumExprs() == 0;
1138  if (isa<ImplicitValueInitExpr>(Init))
1139    return true;
1140  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1141    return !CCE->isListInitialization() &&
1142           CCE->getConstructor()->isDefaultConstructor();
1143  else if (Style == CXXNewExpr::ListInit) {
1144    assert(isa<InitListExpr>(Init) &&
1145           "Shouldn't create list CXXConstructExprs for arrays.");
1146    return true;
1147  }
1148  return false;
1149}
1150
1151ExprResult
1152Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1153                  SourceLocation PlacementLParen,
1154                  MultiExprArg PlacementArgs,
1155                  SourceLocation PlacementRParen,
1156                  SourceRange TypeIdParens,
1157                  QualType AllocType,
1158                  TypeSourceInfo *AllocTypeInfo,
1159                  Expr *ArraySize,
1160                  SourceRange DirectInitRange,
1161                  Expr *Initializer,
1162                  bool TypeMayContainAuto) {
1163  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1164  SourceLocation StartLoc = Range.getBegin();
1165
1166  CXXNewExpr::InitializationStyle initStyle;
1167  if (DirectInitRange.isValid()) {
1168    assert(Initializer && "Have parens but no initializer.");
1169    initStyle = CXXNewExpr::CallInit;
1170  } else if (Initializer && isa<InitListExpr>(Initializer))
1171    initStyle = CXXNewExpr::ListInit;
1172  else {
1173    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1174            isa<CXXConstructExpr>(Initializer)) &&
1175           "Initializer expression that cannot have been implicitly created.");
1176    initStyle = CXXNewExpr::NoInit;
1177  }
1178
1179  Expr **Inits = &Initializer;
1180  unsigned NumInits = Initializer ? 1 : 0;
1181  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1182    assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1183    Inits = List->getExprs();
1184    NumInits = List->getNumExprs();
1185  }
1186
1187  // Determine whether we've already built the initializer.
1188  bool HaveCompleteInit = false;
1189  if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1190      !isa<CXXTemporaryObjectExpr>(Initializer))
1191    HaveCompleteInit = true;
1192  else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1193    HaveCompleteInit = true;
1194
1195  // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1196  if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1197    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1198      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1199                       << AllocType << TypeRange);
1200    if (initStyle == CXXNewExpr::ListInit ||
1201        (NumInits == 1 && isa<InitListExpr>(Inits[0])))
1202      return ExprError(Diag(Inits[0]->getLocStart(),
1203                            diag::err_auto_new_list_init)
1204                       << AllocType << TypeRange);
1205    if (NumInits > 1) {
1206      Expr *FirstBad = Inits[1];
1207      return ExprError(Diag(FirstBad->getLocStart(),
1208                            diag::err_auto_new_ctor_multiple_expressions)
1209                       << AllocType << TypeRange);
1210    }
1211    Expr *Deduce = Inits[0];
1212    QualType DeducedType;
1213    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1214      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1215                       << AllocType << Deduce->getType()
1216                       << TypeRange << Deduce->getSourceRange());
1217    if (DeducedType.isNull())
1218      return ExprError();
1219    AllocType = DeducedType;
1220  }
1221
1222  // Per C++0x [expr.new]p5, the type being constructed may be a
1223  // typedef of an array type.
1224  if (!ArraySize) {
1225    if (const ConstantArrayType *Array
1226                              = Context.getAsConstantArrayType(AllocType)) {
1227      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1228                                         Context.getSizeType(),
1229                                         TypeRange.getEnd());
1230      AllocType = Array->getElementType();
1231    }
1232  }
1233
1234  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1235    return ExprError();
1236
1237  if (initStyle == CXXNewExpr::ListInit &&
1238      isStdInitializerList(AllocType, nullptr)) {
1239    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1240         diag::warn_dangling_std_initializer_list)
1241        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1242  }
1243
1244  // In ARC, infer 'retaining' for the allocated
1245  if (getLangOpts().ObjCAutoRefCount &&
1246      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1247      AllocType->isObjCLifetimeType()) {
1248    AllocType = Context.getLifetimeQualifiedType(AllocType,
1249                                    AllocType->getObjCARCImplicitLifetime());
1250  }
1251
1252  QualType ResultType = Context.getPointerType(AllocType);
1253
1254  if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1255    ExprResult result = CheckPlaceholderExpr(ArraySize);
1256    if (result.isInvalid()) return ExprError();
1257    ArraySize = result.get();
1258  }
1259  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1260  //   integral or enumeration type with a non-negative value."
1261  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1262  //   enumeration type, or a class type for which a single non-explicit
1263  //   conversion function to integral or unscoped enumeration type exists.
1264  // C++1y [expr.new]p6: The expression [...] is implicitly converted to
1265  //   std::size_t.
1266  if (ArraySize && !ArraySize->isTypeDependent()) {
1267    ExprResult ConvertedSize;
1268    if (getLangOpts().CPlusPlus1y) {
1269      assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?");
1270
1271      ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(),
1272						AA_Converting);
1273
1274      if (!ConvertedSize.isInvalid() &&
1275          ArraySize->getType()->getAs<RecordType>())
1276        // Diagnose the compatibility of this conversion.
1277        Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion)
1278          << ArraySize->getType() << 0 << "'size_t'";
1279    } else {
1280      class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1281      protected:
1282        Expr *ArraySize;
1283
1284      public:
1285        SizeConvertDiagnoser(Expr *ArraySize)
1286            : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false),
1287              ArraySize(ArraySize) {}
1288
1289        SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1290                                             QualType T) override {
1291          return S.Diag(Loc, diag::err_array_size_not_integral)
1292                   << S.getLangOpts().CPlusPlus11 << T;
1293        }
1294
1295        SemaDiagnosticBuilder diagnoseIncomplete(
1296            Sema &S, SourceLocation Loc, QualType T) override {
1297          return S.Diag(Loc, diag::err_array_size_incomplete_type)
1298                   << T << ArraySize->getSourceRange();
1299        }
1300
1301        SemaDiagnosticBuilder diagnoseExplicitConv(
1302            Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1303          return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1304        }
1305
1306        SemaDiagnosticBuilder noteExplicitConv(
1307            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1308          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1309                   << ConvTy->isEnumeralType() << ConvTy;
1310        }
1311
1312        SemaDiagnosticBuilder diagnoseAmbiguous(
1313            Sema &S, SourceLocation Loc, QualType T) override {
1314          return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1315        }
1316
1317        SemaDiagnosticBuilder noteAmbiguous(
1318            Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
1319          return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1320                   << ConvTy->isEnumeralType() << ConvTy;
1321        }
1322
1323        virtual SemaDiagnosticBuilder diagnoseConversion(
1324            Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
1325          return S.Diag(Loc,
1326                        S.getLangOpts().CPlusPlus11
1327                          ? diag::warn_cxx98_compat_array_size_conversion
1328                          : diag::ext_array_size_conversion)
1329                   << T << ConvTy->isEnumeralType() << ConvTy;
1330        }
1331      } SizeDiagnoser(ArraySize);
1332
1333      ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize,
1334                                                          SizeDiagnoser);
1335    }
1336    if (ConvertedSize.isInvalid())
1337      return ExprError();
1338
1339    ArraySize = ConvertedSize.get();
1340    QualType SizeType = ArraySize->getType();
1341
1342    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1343      return ExprError();
1344
1345    // C++98 [expr.new]p7:
1346    //   The expression in a direct-new-declarator shall have integral type
1347    //   with a non-negative value.
1348    //
1349    // Let's see if this is a constant < 0. If so, we reject it out of
1350    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1351    // array type.
1352    //
1353    // Note: such a construct has well-defined semantics in C++11: it throws
1354    // std::bad_array_new_length.
1355    if (!ArraySize->isValueDependent()) {
1356      llvm::APSInt Value;
1357      // We've already performed any required implicit conversion to integer or
1358      // unscoped enumeration type.
1359      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1360        if (Value < llvm::APSInt(
1361                        llvm::APInt::getNullValue(Value.getBitWidth()),
1362                                 Value.isUnsigned())) {
1363          if (getLangOpts().CPlusPlus11)
1364            Diag(ArraySize->getLocStart(),
1365                 diag::warn_typecheck_negative_array_new_size)
1366              << ArraySize->getSourceRange();
1367          else
1368            return ExprError(Diag(ArraySize->getLocStart(),
1369                                  diag::err_typecheck_negative_array_size)
1370                             << ArraySize->getSourceRange());
1371        } else if (!AllocType->isDependentType()) {
1372          unsigned ActiveSizeBits =
1373            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1374          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1375            if (getLangOpts().CPlusPlus11)
1376              Diag(ArraySize->getLocStart(),
1377                   diag::warn_array_new_too_large)
1378                << Value.toString(10)
1379                << ArraySize->getSourceRange();
1380            else
1381              return ExprError(Diag(ArraySize->getLocStart(),
1382                                    diag::err_array_too_large)
1383                               << Value.toString(10)
1384                               << ArraySize->getSourceRange());
1385          }
1386        }
1387      } else if (TypeIdParens.isValid()) {
1388        // Can't have dynamic array size when the type-id is in parentheses.
1389        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1390          << ArraySize->getSourceRange()
1391          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1392          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1393
1394        TypeIdParens = SourceRange();
1395      }
1396    }
1397
1398    // Note that we do *not* convert the argument in any way.  It can
1399    // be signed, larger than size_t, whatever.
1400  }
1401
1402  FunctionDecl *OperatorNew = nullptr;
1403  FunctionDecl *OperatorDelete = nullptr;
1404
1405  if (!AllocType->isDependentType() &&
1406      !Expr::hasAnyTypeDependentArguments(PlacementArgs) &&
1407      FindAllocationFunctions(StartLoc,
1408                              SourceRange(PlacementLParen, PlacementRParen),
1409                              UseGlobal, AllocType, ArraySize, PlacementArgs,
1410                              OperatorNew, OperatorDelete))
1411    return ExprError();
1412
1413  // If this is an array allocation, compute whether the usual array
1414  // deallocation function for the type has a size_t parameter.
1415  bool UsualArrayDeleteWantsSize = false;
1416  if (ArraySize && !AllocType->isDependentType())
1417    UsualArrayDeleteWantsSize
1418      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1419
1420  SmallVector<Expr *, 8> AllPlaceArgs;
1421  if (OperatorNew) {
1422    const FunctionProtoType *Proto =
1423        OperatorNew->getType()->getAs<FunctionProtoType>();
1424    VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction
1425                                                    : VariadicDoesNotApply;
1426
1427    // We've already converted the placement args, just fill in any default
1428    // arguments. Skip the first parameter because we don't have a corresponding
1429    // argument.
1430    if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1,
1431                               PlacementArgs, AllPlaceArgs, CallType))
1432      return ExprError();
1433
1434    if (!AllPlaceArgs.empty())
1435      PlacementArgs = AllPlaceArgs;
1436
1437    // FIXME: This is wrong: PlacementArgs misses out the first (size) argument.
1438    DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs);
1439
1440    // FIXME: Missing call to CheckFunctionCall or equivalent
1441  }
1442
1443  // Warn if the type is over-aligned and is being allocated by global operator
1444  // new.
1445  if (PlacementArgs.empty() && OperatorNew &&
1446      (OperatorNew->isImplicit() ||
1447       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1448    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1449      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1450      if (Align > SuitableAlign)
1451        Diag(StartLoc, diag::warn_overaligned_type)
1452            << AllocType
1453            << unsigned(Align / Context.getCharWidth())
1454            << unsigned(SuitableAlign / Context.getCharWidth());
1455    }
1456  }
1457
1458  QualType InitType = AllocType;
1459  // Array 'new' can't have any initializers except empty parentheses.
1460  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1461  // dialect distinction.
1462  if (ResultType->isArrayType() || ArraySize) {
1463    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1464      SourceRange InitRange(Inits[0]->getLocStart(),
1465                            Inits[NumInits - 1]->getLocEnd());
1466      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1467      return ExprError();
1468    }
1469    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1470      // We do the initialization typechecking against the array type
1471      // corresponding to the number of initializers + 1 (to also check
1472      // default-initialization).
1473      unsigned NumElements = ILE->getNumInits() + 1;
1474      InitType = Context.getConstantArrayType(AllocType,
1475          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1476                                              ArrayType::Normal, 0);
1477    }
1478  }
1479
1480  // If we can perform the initialization, and we've not already done so,
1481  // do it now.
1482  if (!AllocType->isDependentType() &&
1483      !Expr::hasAnyTypeDependentArguments(
1484        llvm::makeArrayRef(Inits, NumInits)) &&
1485      !HaveCompleteInit) {
1486    // C++11 [expr.new]p15:
1487    //   A new-expression that creates an object of type T initializes that
1488    //   object as follows:
1489    InitializationKind Kind
1490    //     - If the new-initializer is omitted, the object is default-
1491    //       initialized (8.5); if no initialization is performed,
1492    //       the object has indeterminate value
1493      = initStyle == CXXNewExpr::NoInit
1494          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1495    //     - Otherwise, the new-initializer is interpreted according to the
1496    //       initialization rules of 8.5 for direct-initialization.
1497          : initStyle == CXXNewExpr::ListInit
1498              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1499              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1500                                                 DirectInitRange.getBegin(),
1501                                                 DirectInitRange.getEnd());
1502
1503    InitializedEntity Entity
1504      = InitializedEntity::InitializeNew(StartLoc, InitType);
1505    InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1506    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1507                                          MultiExprArg(Inits, NumInits));
1508    if (FullInit.isInvalid())
1509      return ExprError();
1510
1511    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1512    // we don't want the initialized object to be destructed.
1513    if (CXXBindTemporaryExpr *Binder =
1514            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1515      FullInit = Binder->getSubExpr();
1516
1517    Initializer = FullInit.get();
1518  }
1519
1520  // Mark the new and delete operators as referenced.
1521  if (OperatorNew) {
1522    if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1523      return ExprError();
1524    MarkFunctionReferenced(StartLoc, OperatorNew);
1525  }
1526  if (OperatorDelete) {
1527    if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1528      return ExprError();
1529    MarkFunctionReferenced(StartLoc, OperatorDelete);
1530  }
1531
1532  // C++0x [expr.new]p17:
1533  //   If the new expression creates an array of objects of class type,
1534  //   access and ambiguity control are done for the destructor.
1535  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1536  if (ArraySize && !BaseAllocType->isDependentType()) {
1537    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1538      if (CXXDestructorDecl *dtor = LookupDestructor(
1539              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1540        MarkFunctionReferenced(StartLoc, dtor);
1541        CheckDestructorAccess(StartLoc, dtor,
1542                              PDiag(diag::err_access_dtor)
1543                                << BaseAllocType);
1544        if (DiagnoseUseOfDecl(dtor, StartLoc))
1545          return ExprError();
1546      }
1547    }
1548  }
1549
1550  return new (Context)
1551      CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete,
1552                 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens,
1553                 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo,
1554                 Range, DirectInitRange);
1555}
1556
1557/// \brief Checks that a type is suitable as the allocated type
1558/// in a new-expression.
1559bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1560                              SourceRange R) {
1561  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1562  //   abstract class type or array thereof.
1563  if (AllocType->isFunctionType())
1564    return Diag(Loc, diag::err_bad_new_type)
1565      << AllocType << 0 << R;
1566  else if (AllocType->isReferenceType())
1567    return Diag(Loc, diag::err_bad_new_type)
1568      << AllocType << 1 << R;
1569  else if (!AllocType->isDependentType() &&
1570           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1571    return true;
1572  else if (RequireNonAbstractType(Loc, AllocType,
1573                                  diag::err_allocation_of_abstract_type))
1574    return true;
1575  else if (AllocType->isVariablyModifiedType())
1576    return Diag(Loc, diag::err_variably_modified_new_type)
1577             << AllocType;
1578  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1579    return Diag(Loc, diag::err_address_space_qualified_new)
1580      << AllocType.getUnqualifiedType() << AddressSpace;
1581  else if (getLangOpts().ObjCAutoRefCount) {
1582    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1583      QualType BaseAllocType = Context.getBaseElementType(AT);
1584      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1585          BaseAllocType->isObjCLifetimeType())
1586        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1587          << BaseAllocType;
1588    }
1589  }
1590
1591  return false;
1592}
1593
1594/// \brief Determine whether the given function is a non-placement
1595/// deallocation function.
1596static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) {
1597  if (FD->isInvalidDecl())
1598    return false;
1599
1600  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1601    return Method->isUsualDeallocationFunction();
1602
1603  if (FD->getOverloadedOperator() != OO_Delete &&
1604      FD->getOverloadedOperator() != OO_Array_Delete)
1605    return false;
1606
1607  if (FD->getNumParams() == 1)
1608    return true;
1609
1610  return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 &&
1611         S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(),
1612                                          S.Context.getSizeType());
1613}
1614
1615/// FindAllocationFunctions - Finds the overloads of operator new and delete
1616/// that are appropriate for the allocation.
1617bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1618                                   bool UseGlobal, QualType AllocType,
1619                                   bool IsArray, MultiExprArg PlaceArgs,
1620                                   FunctionDecl *&OperatorNew,
1621                                   FunctionDecl *&OperatorDelete) {
1622  // --- Choosing an allocation function ---
1623  // C++ 5.3.4p8 - 14 & 18
1624  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1625  //   in the scope of the allocated class.
1626  // 2) If an array size is given, look for operator new[], else look for
1627  //   operator new.
1628  // 3) The first argument is always size_t. Append the arguments from the
1629  //   placement form.
1630
1631  SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size());
1632  // We don't care about the actual value of this argument.
1633  // FIXME: Should the Sema create the expression and embed it in the syntax
1634  // tree? Or should the consumer just recalculate the value?
1635  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1636                      Context.getTargetInfo().getPointerWidth(0)),
1637                      Context.getSizeType(),
1638                      SourceLocation());
1639  AllocArgs[0] = &Size;
1640  std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1);
1641
1642  // C++ [expr.new]p8:
1643  //   If the allocated type is a non-array type, the allocation
1644  //   function's name is operator new and the deallocation function's
1645  //   name is operator delete. If the allocated type is an array
1646  //   type, the allocation function's name is operator new[] and the
1647  //   deallocation function's name is operator delete[].
1648  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1649                                        IsArray ? OO_Array_New : OO_New);
1650  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1651                                        IsArray ? OO_Array_Delete : OO_Delete);
1652
1653  QualType AllocElemType = Context.getBaseElementType(AllocType);
1654
1655  if (AllocElemType->isRecordType() && !UseGlobal) {
1656    CXXRecordDecl *Record
1657      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1658    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1659                               /*AllowMissing=*/true, OperatorNew))
1660      return true;
1661  }
1662
1663  if (!OperatorNew) {
1664    // Didn't find a member overload. Look for a global one.
1665    DeclareGlobalNewDelete();
1666    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1667    bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat;
1668    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1669                               /*AllowMissing=*/FallbackEnabled, OperatorNew,
1670                               /*Diagnose=*/!FallbackEnabled)) {
1671      if (!FallbackEnabled)
1672        return true;
1673
1674      // MSVC will fall back on trying to find a matching global operator new
1675      // if operator new[] cannot be found.  Also, MSVC will leak by not
1676      // generating a call to operator delete or operator delete[], but we
1677      // will not replicate that bug.
1678      NewName = Context.DeclarationNames.getCXXOperatorName(OO_New);
1679      DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete);
1680      if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1681                               /*AllowMissing=*/false, OperatorNew))
1682      return true;
1683    }
1684  }
1685
1686  // We don't need an operator delete if we're running under
1687  // -fno-exceptions.
1688  if (!getLangOpts().Exceptions) {
1689    OperatorDelete = nullptr;
1690    return false;
1691  }
1692
1693  // C++ [expr.new]p19:
1694  //
1695  //   If the new-expression begins with a unary :: operator, the
1696  //   deallocation function's name is looked up in the global
1697  //   scope. Otherwise, if the allocated type is a class type T or an
1698  //   array thereof, the deallocation function's name is looked up in
1699  //   the scope of T. If this lookup fails to find the name, or if
1700  //   the allocated type is not a class type or array thereof, the
1701  //   deallocation function's name is looked up in the global scope.
1702  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1703  if (AllocElemType->isRecordType() && !UseGlobal) {
1704    CXXRecordDecl *RD
1705      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1706    LookupQualifiedName(FoundDelete, RD);
1707  }
1708  if (FoundDelete.isAmbiguous())
1709    return true; // FIXME: clean up expressions?
1710
1711  if (FoundDelete.empty()) {
1712    DeclareGlobalNewDelete();
1713    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1714  }
1715
1716  FoundDelete.suppressDiagnostics();
1717
1718  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1719
1720  // Whether we're looking for a placement operator delete is dictated
1721  // by whether we selected a placement operator new, not by whether
1722  // we had explicit placement arguments.  This matters for things like
1723  //   struct A { void *operator new(size_t, int = 0); ... };
1724  //   A *a = new A()
1725  bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1);
1726
1727  if (isPlacementNew) {
1728    // C++ [expr.new]p20:
1729    //   A declaration of a placement deallocation function matches the
1730    //   declaration of a placement allocation function if it has the
1731    //   same number of parameters and, after parameter transformations
1732    //   (8.3.5), all parameter types except the first are
1733    //   identical. [...]
1734    //
1735    // To perform this comparison, we compute the function type that
1736    // the deallocation function should have, and use that type both
1737    // for template argument deduction and for comparison purposes.
1738    //
1739    // FIXME: this comparison should ignore CC and the like.
1740    QualType ExpectedFunctionType;
1741    {
1742      const FunctionProtoType *Proto
1743        = OperatorNew->getType()->getAs<FunctionProtoType>();
1744
1745      SmallVector<QualType, 4> ArgTypes;
1746      ArgTypes.push_back(Context.VoidPtrTy);
1747      for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I)
1748        ArgTypes.push_back(Proto->getParamType(I));
1749
1750      FunctionProtoType::ExtProtoInfo EPI;
1751      EPI.Variadic = Proto->isVariadic();
1752
1753      ExpectedFunctionType
1754        = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1755    }
1756
1757    for (LookupResult::iterator D = FoundDelete.begin(),
1758                             DEnd = FoundDelete.end();
1759         D != DEnd; ++D) {
1760      FunctionDecl *Fn = nullptr;
1761      if (FunctionTemplateDecl *FnTmpl
1762            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1763        // Perform template argument deduction to try to match the
1764        // expected function type.
1765        TemplateDeductionInfo Info(StartLoc);
1766        if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn,
1767                                    Info))
1768          continue;
1769      } else
1770        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1771
1772      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1773        Matches.push_back(std::make_pair(D.getPair(), Fn));
1774    }
1775  } else {
1776    // C++ [expr.new]p20:
1777    //   [...] Any non-placement deallocation function matches a
1778    //   non-placement allocation function. [...]
1779    for (LookupResult::iterator D = FoundDelete.begin(),
1780                             DEnd = FoundDelete.end();
1781         D != DEnd; ++D) {
1782      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1783        if (isNonPlacementDeallocationFunction(*this, Fn))
1784          Matches.push_back(std::make_pair(D.getPair(), Fn));
1785    }
1786
1787    // C++1y [expr.new]p22:
1788    //   For a non-placement allocation function, the normal deallocation
1789    //   function lookup is used
1790    // C++1y [expr.delete]p?:
1791    //   If [...] deallocation function lookup finds both a usual deallocation
1792    //   function with only a pointer parameter and a usual deallocation
1793    //   function with both a pointer parameter and a size parameter, then the
1794    //   selected deallocation function shall be the one with two parameters.
1795    //   Otherwise, the selected deallocation function shall be the function
1796    //   with one parameter.
1797    if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
1798      if (Matches[0].second->getNumParams() == 1)
1799        Matches.erase(Matches.begin());
1800      else
1801        Matches.erase(Matches.begin() + 1);
1802      assert(Matches[0].second->getNumParams() == 2 &&
1803             "found an unexpected usual deallocation function");
1804    }
1805  }
1806
1807  // C++ [expr.new]p20:
1808  //   [...] If the lookup finds a single matching deallocation
1809  //   function, that function will be called; otherwise, no
1810  //   deallocation function will be called.
1811  if (Matches.size() == 1) {
1812    OperatorDelete = Matches[0].second;
1813
1814    // C++0x [expr.new]p20:
1815    //   If the lookup finds the two-parameter form of a usual
1816    //   deallocation function (3.7.4.2) and that function, considered
1817    //   as a placement deallocation function, would have been
1818    //   selected as a match for the allocation function, the program
1819    //   is ill-formed.
1820    if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 &&
1821        isNonPlacementDeallocationFunction(*this, OperatorDelete)) {
1822      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1823        << SourceRange(PlaceArgs.front()->getLocStart(),
1824                       PlaceArgs.back()->getLocEnd());
1825      if (!OperatorDelete->isImplicit())
1826        Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1827          << DeleteName;
1828    } else {
1829      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1830                            Matches[0].first);
1831    }
1832  }
1833
1834  return false;
1835}
1836
1837/// \brief Find an fitting overload for the allocation function
1838/// in the specified scope.
1839///
1840/// \param StartLoc The location of the 'new' token.
1841/// \param Range The range of the placement arguments.
1842/// \param Name The name of the function ('operator new' or 'operator new[]').
1843/// \param Args The placement arguments specified.
1844/// \param Ctx The scope in which we should search; either a class scope or the
1845///        translation unit.
1846/// \param AllowMissing If \c true, report an error if we can't find any
1847///        allocation functions. Otherwise, succeed but don't fill in \p
1848///        Operator.
1849/// \param Operator Filled in with the found allocation function. Unchanged if
1850///        no allocation function was found.
1851/// \param Diagnose If \c true, issue errors if the allocation function is not
1852///        usable.
1853bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1854                                  DeclarationName Name, MultiExprArg Args,
1855                                  DeclContext *Ctx,
1856                                  bool AllowMissing, FunctionDecl *&Operator,
1857                                  bool Diagnose) {
1858  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1859  LookupQualifiedName(R, Ctx);
1860  if (R.empty()) {
1861    if (AllowMissing || !Diagnose)
1862      return false;
1863    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1864      << Name << Range;
1865  }
1866
1867  if (R.isAmbiguous())
1868    return true;
1869
1870  R.suppressDiagnostics();
1871
1872  OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal);
1873  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1874       Alloc != AllocEnd; ++Alloc) {
1875    // Even member operator new/delete are implicitly treated as
1876    // static, so don't use AddMemberCandidate.
1877    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1878
1879    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1880      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1881                                   /*ExplicitTemplateArgs=*/nullptr,
1882                                   Args, Candidates,
1883                                   /*SuppressUserConversions=*/false);
1884      continue;
1885    }
1886
1887    FunctionDecl *Fn = cast<FunctionDecl>(D);
1888    AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1889                         /*SuppressUserConversions=*/false);
1890  }
1891
1892  // Do the resolution.
1893  OverloadCandidateSet::iterator Best;
1894  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1895  case OR_Success: {
1896    // Got one!
1897    FunctionDecl *FnDecl = Best->Function;
1898    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1899                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1900      return true;
1901
1902    Operator = FnDecl;
1903    return false;
1904  }
1905
1906  case OR_No_Viable_Function:
1907    if (Diagnose) {
1908      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1909        << Name << Range;
1910      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1911    }
1912    return true;
1913
1914  case OR_Ambiguous:
1915    if (Diagnose) {
1916      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1917        << Name << Range;
1918      Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
1919    }
1920    return true;
1921
1922  case OR_Deleted: {
1923    if (Diagnose) {
1924      Diag(StartLoc, diag::err_ovl_deleted_call)
1925        << Best->Function->isDeleted()
1926        << Name
1927        << getDeletedOrUnavailableSuffix(Best->Function)
1928        << Range;
1929      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1930    }
1931    return true;
1932  }
1933  }
1934  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1935}
1936
1937
1938/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1939/// delete. These are:
1940/// @code
1941///   // C++03:
1942///   void* operator new(std::size_t) throw(std::bad_alloc);
1943///   void* operator new[](std::size_t) throw(std::bad_alloc);
1944///   void operator delete(void *) throw();
1945///   void operator delete[](void *) throw();
1946///   // C++11:
1947///   void* operator new(std::size_t);
1948///   void* operator new[](std::size_t);
1949///   void operator delete(void *) noexcept;
1950///   void operator delete[](void *) noexcept;
1951///   // C++1y:
1952///   void* operator new(std::size_t);
1953///   void* operator new[](std::size_t);
1954///   void operator delete(void *) noexcept;
1955///   void operator delete[](void *) noexcept;
1956///   void operator delete(void *, std::size_t) noexcept;
1957///   void operator delete[](void *, std::size_t) noexcept;
1958/// @endcode
1959/// Note that the placement and nothrow forms of new are *not* implicitly
1960/// declared. Their use requires including \<new\>.
1961void Sema::DeclareGlobalNewDelete() {
1962  if (GlobalNewDeleteDeclared)
1963    return;
1964
1965  // C++ [basic.std.dynamic]p2:
1966  //   [...] The following allocation and deallocation functions (18.4) are
1967  //   implicitly declared in global scope in each translation unit of a
1968  //   program
1969  //
1970  //     C++03:
1971  //     void* operator new(std::size_t) throw(std::bad_alloc);
1972  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1973  //     void  operator delete(void*) throw();
1974  //     void  operator delete[](void*) throw();
1975  //     C++11:
1976  //     void* operator new(std::size_t);
1977  //     void* operator new[](std::size_t);
1978  //     void  operator delete(void*) noexcept;
1979  //     void  operator delete[](void*) noexcept;
1980  //     C++1y:
1981  //     void* operator new(std::size_t);
1982  //     void* operator new[](std::size_t);
1983  //     void  operator delete(void*) noexcept;
1984  //     void  operator delete[](void*) noexcept;
1985  //     void  operator delete(void*, std::size_t) noexcept;
1986  //     void  operator delete[](void*, std::size_t) noexcept;
1987  //
1988  //   These implicit declarations introduce only the function names operator
1989  //   new, operator new[], operator delete, operator delete[].
1990  //
1991  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1992  // "std" or "bad_alloc" as necessary to form the exception specification.
1993  // However, we do not make these implicit declarations visible to name
1994  // lookup.
1995  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1996    // The "std::bad_alloc" class has not yet been declared, so build it
1997    // implicitly.
1998    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1999                                        getOrCreateStdNamespace(),
2000                                        SourceLocation(), SourceLocation(),
2001                                      &PP.getIdentifierTable().get("bad_alloc"),
2002                                        nullptr);
2003    getStdBadAlloc()->setImplicit(true);
2004  }
2005
2006  GlobalNewDeleteDeclared = true;
2007
2008  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
2009  QualType SizeT = Context.getSizeType();
2010  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
2011
2012  DeclareGlobalAllocationFunction(
2013      Context.DeclarationNames.getCXXOperatorName(OO_New),
2014      VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2015  DeclareGlobalAllocationFunction(
2016      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
2017      VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew);
2018  DeclareGlobalAllocationFunction(
2019      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2020      Context.VoidTy, VoidPtr);
2021  DeclareGlobalAllocationFunction(
2022      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2023      Context.VoidTy, VoidPtr);
2024  if (getLangOpts().SizedDeallocation) {
2025    DeclareGlobalAllocationFunction(
2026        Context.DeclarationNames.getCXXOperatorName(OO_Delete),
2027        Context.VoidTy, VoidPtr, Context.getSizeType());
2028    DeclareGlobalAllocationFunction(
2029        Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
2030        Context.VoidTy, VoidPtr, Context.getSizeType());
2031  }
2032}
2033
2034/// DeclareGlobalAllocationFunction - Declares a single implicit global
2035/// allocation function if it doesn't already exist.
2036void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
2037                                           QualType Return,
2038                                           QualType Param1, QualType Param2,
2039                                           bool AddMallocAttr) {
2040  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
2041  unsigned NumParams = Param2.isNull() ? 1 : 2;
2042
2043  // Check if this function is already declared.
2044  DeclContext::lookup_result R = GlobalCtx->lookup(Name);
2045  for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
2046       Alloc != AllocEnd; ++Alloc) {
2047    // Only look at non-template functions, as it is the predefined,
2048    // non-templated allocation function we are trying to declare here.
2049    if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
2050      if (Func->getNumParams() == NumParams) {
2051        QualType InitialParam1Type =
2052            Context.getCanonicalType(Func->getParamDecl(0)
2053                                         ->getType().getUnqualifiedType());
2054        QualType InitialParam2Type =
2055            NumParams == 2
2056                ? Context.getCanonicalType(Func->getParamDecl(1)
2057                                               ->getType().getUnqualifiedType())
2058                : QualType();
2059        // FIXME: Do we need to check for default arguments here?
2060        if (InitialParam1Type == Param1 &&
2061            (NumParams == 1 || InitialParam2Type == Param2)) {
2062          if (AddMallocAttr && !Func->hasAttr<MallocAttr>())
2063            Func->addAttr(MallocAttr::CreateImplicit(Context));
2064          // Make the function visible to name lookup, even if we found it in
2065          // an unimported module. It either is an implicitly-declared global
2066          // allocation function, or is suppressing that function.
2067          Func->setHidden(false);
2068          return;
2069        }
2070      }
2071    }
2072  }
2073
2074  FunctionProtoType::ExtProtoInfo EPI;
2075
2076  QualType BadAllocType;
2077  bool HasBadAllocExceptionSpec
2078    = (Name.getCXXOverloadedOperator() == OO_New ||
2079       Name.getCXXOverloadedOperator() == OO_Array_New);
2080  if (HasBadAllocExceptionSpec) {
2081    if (!getLangOpts().CPlusPlus11) {
2082      BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
2083      assert(StdBadAlloc && "Must have std::bad_alloc declared");
2084      EPI.ExceptionSpecType = EST_Dynamic;
2085      EPI.NumExceptions = 1;
2086      EPI.Exceptions = &BadAllocType;
2087    }
2088  } else {
2089    EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
2090                                EST_BasicNoexcept : EST_DynamicNone;
2091  }
2092
2093  QualType Params[] = { Param1, Param2 };
2094
2095  QualType FnType = Context.getFunctionType(
2096      Return, ArrayRef<QualType>(Params, NumParams), EPI);
2097  FunctionDecl *Alloc =
2098    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
2099                         SourceLocation(), Name,
2100                         FnType, /*TInfo=*/nullptr, SC_None, false, true);
2101  Alloc->setImplicit();
2102
2103  if (AddMallocAttr)
2104    Alloc->addAttr(MallocAttr::CreateImplicit(Context));
2105
2106  ParmVarDecl *ParamDecls[2];
2107  for (unsigned I = 0; I != NumParams; ++I) {
2108    ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
2109                                        SourceLocation(), nullptr,
2110                                        Params[I], /*TInfo=*/nullptr,
2111                                        SC_None, nullptr);
2112    ParamDecls[I]->setImplicit();
2113  }
2114  Alloc->setParams(ArrayRef<ParmVarDecl*>(ParamDecls, NumParams));
2115
2116  Context.getTranslationUnitDecl()->addDecl(Alloc);
2117  IdResolver.tryAddTopLevelDecl(Alloc, Name);
2118}
2119
2120FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc,
2121                                                  bool CanProvideSize,
2122                                                  DeclarationName Name) {
2123  DeclareGlobalNewDelete();
2124
2125  LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName);
2126  LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
2127
2128  // C++ [expr.new]p20:
2129  //   [...] Any non-placement deallocation function matches a
2130  //   non-placement allocation function. [...]
2131  llvm::SmallVector<FunctionDecl*, 2> Matches;
2132  for (LookupResult::iterator D = FoundDelete.begin(),
2133                           DEnd = FoundDelete.end();
2134       D != DEnd; ++D) {
2135    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D))
2136      if (isNonPlacementDeallocationFunction(*this, Fn))
2137        Matches.push_back(Fn);
2138  }
2139
2140  // C++1y [expr.delete]p?:
2141  //   If the type is complete and deallocation function lookup finds both a
2142  //   usual deallocation function with only a pointer parameter and a usual
2143  //   deallocation function with both a pointer parameter and a size
2144  //   parameter, then the selected deallocation function shall be the one
2145  //   with two parameters.  Otherwise, the selected deallocation function
2146  //   shall be the function with one parameter.
2147  if (getLangOpts().SizedDeallocation && Matches.size() == 2) {
2148    unsigned NumArgs = CanProvideSize ? 2 : 1;
2149    if (Matches[0]->getNumParams() != NumArgs)
2150      Matches.erase(Matches.begin());
2151    else
2152      Matches.erase(Matches.begin() + 1);
2153    assert(Matches[0]->getNumParams() == NumArgs &&
2154           "found an unexpected usual deallocation function");
2155  }
2156
2157  assert(Matches.size() == 1 &&
2158         "unexpectedly have multiple usual deallocation functions");
2159  return Matches.front();
2160}
2161
2162bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
2163                                    DeclarationName Name,
2164                                    FunctionDecl* &Operator, bool Diagnose) {
2165  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
2166  // Try to find operator delete/operator delete[] in class scope.
2167  LookupQualifiedName(Found, RD);
2168
2169  if (Found.isAmbiguous())
2170    return true;
2171
2172  Found.suppressDiagnostics();
2173
2174  SmallVector<DeclAccessPair,4> Matches;
2175  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2176       F != FEnd; ++F) {
2177    NamedDecl *ND = (*F)->getUnderlyingDecl();
2178
2179    // Ignore template operator delete members from the check for a usual
2180    // deallocation function.
2181    if (isa<FunctionTemplateDecl>(ND))
2182      continue;
2183
2184    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
2185      Matches.push_back(F.getPair());
2186  }
2187
2188  // There's exactly one suitable operator;  pick it.
2189  if (Matches.size() == 1) {
2190    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2191
2192    if (Operator->isDeleted()) {
2193      if (Diagnose) {
2194        Diag(StartLoc, diag::err_deleted_function_use);
2195        NoteDeletedFunction(Operator);
2196      }
2197      return true;
2198    }
2199
2200    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2201                              Matches[0], Diagnose) == AR_inaccessible)
2202      return true;
2203
2204    return false;
2205
2206  // We found multiple suitable operators;  complain about the ambiguity.
2207  } else if (!Matches.empty()) {
2208    if (Diagnose) {
2209      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2210        << Name << RD;
2211
2212      for (SmallVectorImpl<DeclAccessPair>::iterator
2213             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2214        Diag((*F)->getUnderlyingDecl()->getLocation(),
2215             diag::note_member_declared_here) << Name;
2216    }
2217    return true;
2218  }
2219
2220  // We did find operator delete/operator delete[] declarations, but
2221  // none of them were suitable.
2222  if (!Found.empty()) {
2223    if (Diagnose) {
2224      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2225        << Name << RD;
2226
2227      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2228           F != FEnd; ++F)
2229        Diag((*F)->getUnderlyingDecl()->getLocation(),
2230             diag::note_member_declared_here) << Name;
2231    }
2232    return true;
2233  }
2234
2235  Operator = nullptr;
2236  return false;
2237}
2238
2239/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2240/// @code ::delete ptr; @endcode
2241/// or
2242/// @code delete [] ptr; @endcode
2243ExprResult
2244Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2245                     bool ArrayForm, Expr *ExE) {
2246  // C++ [expr.delete]p1:
2247  //   The operand shall have a pointer type, or a class type having a single
2248  //   non-explicit conversion function to a pointer type. The result has type
2249  //   void.
2250  //
2251  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2252
2253  ExprResult Ex = ExE;
2254  FunctionDecl *OperatorDelete = nullptr;
2255  bool ArrayFormAsWritten = ArrayForm;
2256  bool UsualArrayDeleteWantsSize = false;
2257
2258  if (!Ex.get()->isTypeDependent()) {
2259    // Perform lvalue-to-rvalue cast, if needed.
2260    Ex = DefaultLvalueConversion(Ex.get());
2261    if (Ex.isInvalid())
2262      return ExprError();
2263
2264    QualType Type = Ex.get()->getType();
2265
2266    class DeleteConverter : public ContextualImplicitConverter {
2267    public:
2268      DeleteConverter() : ContextualImplicitConverter(false, true) {}
2269
2270      bool match(QualType ConvType) override {
2271        // FIXME: If we have an operator T* and an operator void*, we must pick
2272        // the operator T*.
2273        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2274          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2275            return true;
2276        return false;
2277      }
2278
2279      SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc,
2280                                            QualType T) override {
2281        return S.Diag(Loc, diag::err_delete_operand) << T;
2282      }
2283
2284      SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
2285                                               QualType T) override {
2286        return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T;
2287      }
2288
2289      SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc,
2290                                                 QualType T,
2291                                                 QualType ConvTy) override {
2292        return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy;
2293      }
2294
2295      SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv,
2296                                             QualType ConvTy) override {
2297        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2298          << ConvTy;
2299      }
2300
2301      SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
2302                                              QualType T) override {
2303        return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T;
2304      }
2305
2306      SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
2307                                          QualType ConvTy) override {
2308        return S.Diag(Conv->getLocation(), diag::note_delete_conversion)
2309          << ConvTy;
2310      }
2311
2312      SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
2313                                               QualType T,
2314                                               QualType ConvTy) override {
2315        llvm_unreachable("conversion functions are permitted");
2316      }
2317    } Converter;
2318
2319    Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter);
2320    if (Ex.isInvalid())
2321      return ExprError();
2322    Type = Ex.get()->getType();
2323    if (!Converter.match(Type))
2324      // FIXME: PerformContextualImplicitConversion should return ExprError
2325      //        itself in this case.
2326      return ExprError();
2327
2328    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2329    QualType PointeeElem = Context.getBaseElementType(Pointee);
2330
2331    if (unsigned AddressSpace = Pointee.getAddressSpace())
2332      return Diag(Ex.get()->getLocStart(),
2333                  diag::err_address_space_qualified_delete)
2334               << Pointee.getUnqualifiedType() << AddressSpace;
2335
2336    CXXRecordDecl *PointeeRD = nullptr;
2337    if (Pointee->isVoidType() && !isSFINAEContext()) {
2338      // The C++ standard bans deleting a pointer to a non-object type, which
2339      // effectively bans deletion of "void*". However, most compilers support
2340      // this, so we treat it as a warning unless we're in a SFINAE context.
2341      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2342        << Type << Ex.get()->getSourceRange();
2343    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2344      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2345        << Type << Ex.get()->getSourceRange());
2346    } else if (!Pointee->isDependentType()) {
2347      if (!RequireCompleteType(StartLoc, Pointee,
2348                               diag::warn_delete_incomplete, Ex.get())) {
2349        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2350          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2351      }
2352    }
2353
2354    // C++ [expr.delete]p2:
2355    //   [Note: a pointer to a const type can be the operand of a
2356    //   delete-expression; it is not necessary to cast away the constness
2357    //   (5.2.11) of the pointer expression before it is used as the operand
2358    //   of the delete-expression. ]
2359
2360    if (Pointee->isArrayType() && !ArrayForm) {
2361      Diag(StartLoc, diag::warn_delete_array_type)
2362          << Type << Ex.get()->getSourceRange()
2363          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2364      ArrayForm = true;
2365    }
2366
2367    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2368                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2369
2370    if (PointeeRD) {
2371      if (!UseGlobal &&
2372          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2373                                   OperatorDelete))
2374        return ExprError();
2375
2376      // If we're allocating an array of records, check whether the
2377      // usual operator delete[] has a size_t parameter.
2378      if (ArrayForm) {
2379        // If the user specifically asked to use the global allocator,
2380        // we'll need to do the lookup into the class.
2381        if (UseGlobal)
2382          UsualArrayDeleteWantsSize =
2383            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2384
2385        // Otherwise, the usual operator delete[] should be the
2386        // function we just found.
2387        else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete))
2388          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2389      }
2390
2391      if (!PointeeRD->hasIrrelevantDestructor())
2392        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2393          MarkFunctionReferenced(StartLoc,
2394                                    const_cast<CXXDestructorDecl*>(Dtor));
2395          if (DiagnoseUseOfDecl(Dtor, StartLoc))
2396            return ExprError();
2397        }
2398
2399      // C++ [expr.delete]p3:
2400      //   In the first alternative (delete object), if the static type of the
2401      //   object to be deleted is different from its dynamic type, the static
2402      //   type shall be a base class of the dynamic type of the object to be
2403      //   deleted and the static type shall have a virtual destructor or the
2404      //   behavior is undefined.
2405      //
2406      // Note: a final class cannot be derived from, no issue there
2407      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2408        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2409        if (dtor && !dtor->isVirtual()) {
2410          if (PointeeRD->isAbstract()) {
2411            // If the class is abstract, we warn by default, because we're
2412            // sure the code has undefined behavior.
2413            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2414                << PointeeElem;
2415          } else if (!ArrayForm) {
2416            // Otherwise, if this is not an array delete, it's a bit suspect,
2417            // but not necessarily wrong.
2418            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2419          }
2420        }
2421      }
2422
2423    }
2424
2425    if (!OperatorDelete)
2426      // Look for a global declaration.
2427      OperatorDelete = FindUsualDeallocationFunction(
2428          StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) &&
2429                    (!ArrayForm || UsualArrayDeleteWantsSize ||
2430                     Pointee.isDestructedType()),
2431          DeleteName);
2432
2433    MarkFunctionReferenced(StartLoc, OperatorDelete);
2434
2435    // Check access and ambiguity of operator delete and destructor.
2436    if (PointeeRD) {
2437      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2438          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2439                      PDiag(diag::err_access_dtor) << PointeeElem);
2440      }
2441    }
2442  }
2443
2444  return new (Context) CXXDeleteExpr(
2445      Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten,
2446      UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc);
2447}
2448
2449/// \brief Check the use of the given variable as a C++ condition in an if,
2450/// while, do-while, or switch statement.
2451ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2452                                        SourceLocation StmtLoc,
2453                                        bool ConvertToBoolean) {
2454  if (ConditionVar->isInvalidDecl())
2455    return ExprError();
2456
2457  QualType T = ConditionVar->getType();
2458
2459  // C++ [stmt.select]p2:
2460  //   The declarator shall not specify a function or an array.
2461  if (T->isFunctionType())
2462    return ExprError(Diag(ConditionVar->getLocation(),
2463                          diag::err_invalid_use_of_function_type)
2464                       << ConditionVar->getSourceRange());
2465  else if (T->isArrayType())
2466    return ExprError(Diag(ConditionVar->getLocation(),
2467                          diag::err_invalid_use_of_array_type)
2468                     << ConditionVar->getSourceRange());
2469
2470  ExprResult Condition = DeclRefExpr::Create(
2471      Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar,
2472      /*enclosing*/ false, ConditionVar->getLocation(),
2473      ConditionVar->getType().getNonReferenceType(), VK_LValue);
2474
2475  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2476
2477  if (ConvertToBoolean) {
2478    Condition = CheckBooleanCondition(Condition.get(), StmtLoc);
2479    if (Condition.isInvalid())
2480      return ExprError();
2481  }
2482
2483  return Condition;
2484}
2485
2486/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2487ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2488  // C++ 6.4p4:
2489  // The value of a condition that is an initialized declaration in a statement
2490  // other than a switch statement is the value of the declared variable
2491  // implicitly converted to type bool. If that conversion is ill-formed, the
2492  // program is ill-formed.
2493  // The value of a condition that is an expression is the value of the
2494  // expression, implicitly converted to bool.
2495  //
2496  return PerformContextuallyConvertToBool(CondExpr);
2497}
2498
2499/// Helper function to determine whether this is the (deprecated) C++
2500/// conversion from a string literal to a pointer to non-const char or
2501/// non-const wchar_t (for narrow and wide string literals,
2502/// respectively).
2503bool
2504Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2505  // Look inside the implicit cast, if it exists.
2506  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2507    From = Cast->getSubExpr();
2508
2509  // A string literal (2.13.4) that is not a wide string literal can
2510  // be converted to an rvalue of type "pointer to char"; a wide
2511  // string literal can be converted to an rvalue of type "pointer
2512  // to wchar_t" (C++ 4.2p2).
2513  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2514    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2515      if (const BuiltinType *ToPointeeType
2516          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2517        // This conversion is considered only when there is an
2518        // explicit appropriate pointer target type (C++ 4.2p2).
2519        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2520          switch (StrLit->getKind()) {
2521            case StringLiteral::UTF8:
2522            case StringLiteral::UTF16:
2523            case StringLiteral::UTF32:
2524              // We don't allow UTF literals to be implicitly converted
2525              break;
2526            case StringLiteral::Ascii:
2527              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2528                      ToPointeeType->getKind() == BuiltinType::Char_S);
2529            case StringLiteral::Wide:
2530              return ToPointeeType->isWideCharType();
2531          }
2532        }
2533      }
2534
2535  return false;
2536}
2537
2538static ExprResult BuildCXXCastArgument(Sema &S,
2539                                       SourceLocation CastLoc,
2540                                       QualType Ty,
2541                                       CastKind Kind,
2542                                       CXXMethodDecl *Method,
2543                                       DeclAccessPair FoundDecl,
2544                                       bool HadMultipleCandidates,
2545                                       Expr *From) {
2546  switch (Kind) {
2547  default: llvm_unreachable("Unhandled cast kind!");
2548  case CK_ConstructorConversion: {
2549    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2550    SmallVector<Expr*, 8> ConstructorArgs;
2551
2552    if (S.RequireNonAbstractType(CastLoc, Ty,
2553                                 diag::err_allocation_of_abstract_type))
2554      return ExprError();
2555
2556    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2557      return ExprError();
2558
2559    S.CheckConstructorAccess(CastLoc, Constructor,
2560                             InitializedEntity::InitializeTemporary(Ty),
2561                             Constructor->getAccess());
2562
2563    ExprResult Result
2564      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2565                                ConstructorArgs, HadMultipleCandidates,
2566                                /*ListInit*/ false, /*ZeroInit*/ false,
2567                                CXXConstructExpr::CK_Complete, SourceRange());
2568    if (Result.isInvalid())
2569      return ExprError();
2570
2571    return S.MaybeBindToTemporary(Result.getAs<Expr>());
2572  }
2573
2574  case CK_UserDefinedConversion: {
2575    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2576
2577    // Create an implicit call expr that calls it.
2578    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2579    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2580                                                 HadMultipleCandidates);
2581    if (Result.isInvalid())
2582      return ExprError();
2583    // Record usage of conversion in an implicit cast.
2584    Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(),
2585                                      CK_UserDefinedConversion, Result.get(),
2586                                      nullptr, Result.get()->getValueKind());
2587
2588    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl);
2589
2590    return S.MaybeBindToTemporary(Result.get());
2591  }
2592  }
2593}
2594
2595/// PerformImplicitConversion - Perform an implicit conversion of the
2596/// expression From to the type ToType using the pre-computed implicit
2597/// conversion sequence ICS. Returns the converted
2598/// expression. Action is the kind of conversion we're performing,
2599/// used in the error message.
2600ExprResult
2601Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2602                                const ImplicitConversionSequence &ICS,
2603                                AssignmentAction Action,
2604                                CheckedConversionKind CCK) {
2605  switch (ICS.getKind()) {
2606  case ImplicitConversionSequence::StandardConversion: {
2607    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2608                                               Action, CCK);
2609    if (Res.isInvalid())
2610      return ExprError();
2611    From = Res.get();
2612    break;
2613  }
2614
2615  case ImplicitConversionSequence::UserDefinedConversion: {
2616
2617      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2618      CastKind CastKind;
2619      QualType BeforeToType;
2620      assert(FD && "FIXME: aggregate initialization from init list");
2621      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2622        CastKind = CK_UserDefinedConversion;
2623
2624        // If the user-defined conversion is specified by a conversion function,
2625        // the initial standard conversion sequence converts the source type to
2626        // the implicit object parameter of the conversion function.
2627        BeforeToType = Context.getTagDeclType(Conv->getParent());
2628      } else {
2629        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2630        CastKind = CK_ConstructorConversion;
2631        // Do no conversion if dealing with ... for the first conversion.
2632        if (!ICS.UserDefined.EllipsisConversion) {
2633          // If the user-defined conversion is specified by a constructor, the
2634          // initial standard conversion sequence converts the source type to the
2635          // type required by the argument of the constructor
2636          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2637        }
2638      }
2639      // Watch out for ellipsis conversion.
2640      if (!ICS.UserDefined.EllipsisConversion) {
2641        ExprResult Res =
2642          PerformImplicitConversion(From, BeforeToType,
2643                                    ICS.UserDefined.Before, AA_Converting,
2644                                    CCK);
2645        if (Res.isInvalid())
2646          return ExprError();
2647        From = Res.get();
2648      }
2649
2650      ExprResult CastArg
2651        = BuildCXXCastArgument(*this,
2652                               From->getLocStart(),
2653                               ToType.getNonReferenceType(),
2654                               CastKind, cast<CXXMethodDecl>(FD),
2655                               ICS.UserDefined.FoundConversionFunction,
2656                               ICS.UserDefined.HadMultipleCandidates,
2657                               From);
2658
2659      if (CastArg.isInvalid())
2660        return ExprError();
2661
2662      From = CastArg.get();
2663
2664      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2665                                       AA_Converting, CCK);
2666  }
2667
2668  case ImplicitConversionSequence::AmbiguousConversion:
2669    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2670                          PDiag(diag::err_typecheck_ambiguous_condition)
2671                            << From->getSourceRange());
2672     return ExprError();
2673
2674  case ImplicitConversionSequence::EllipsisConversion:
2675    llvm_unreachable("Cannot perform an ellipsis conversion");
2676
2677  case ImplicitConversionSequence::BadConversion:
2678    return ExprError();
2679  }
2680
2681  // Everything went well.
2682  return From;
2683}
2684
2685/// PerformImplicitConversion - Perform an implicit conversion of the
2686/// expression From to the type ToType by following the standard
2687/// conversion sequence SCS. Returns the converted
2688/// expression. Flavor is the context in which we're performing this
2689/// conversion, for use in error messages.
2690ExprResult
2691Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2692                                const StandardConversionSequence& SCS,
2693                                AssignmentAction Action,
2694                                CheckedConversionKind CCK) {
2695  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2696
2697  // Overall FIXME: we are recomputing too many types here and doing far too
2698  // much extra work. What this means is that we need to keep track of more
2699  // information that is computed when we try the implicit conversion initially,
2700  // so that we don't need to recompute anything here.
2701  QualType FromType = From->getType();
2702
2703  if (SCS.CopyConstructor) {
2704    // FIXME: When can ToType be a reference type?
2705    assert(!ToType->isReferenceType());
2706    if (SCS.Second == ICK_Derived_To_Base) {
2707      SmallVector<Expr*, 8> ConstructorArgs;
2708      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2709                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
2710                                  ConstructorArgs))
2711        return ExprError();
2712      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2713                                   ToType, SCS.CopyConstructor,
2714                                   ConstructorArgs,
2715                                   /*HadMultipleCandidates*/ false,
2716                                   /*ListInit*/ false, /*ZeroInit*/ false,
2717                                   CXXConstructExpr::CK_Complete,
2718                                   SourceRange());
2719    }
2720    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2721                                 ToType, SCS.CopyConstructor,
2722                                 From, /*HadMultipleCandidates*/ false,
2723                                 /*ListInit*/ false, /*ZeroInit*/ false,
2724                                 CXXConstructExpr::CK_Complete,
2725                                 SourceRange());
2726  }
2727
2728  // Resolve overloaded function references.
2729  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2730    DeclAccessPair Found;
2731    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2732                                                          true, Found);
2733    if (!Fn)
2734      return ExprError();
2735
2736    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2737      return ExprError();
2738
2739    From = FixOverloadedFunctionReference(From, Found, Fn);
2740    FromType = From->getType();
2741  }
2742
2743  // If we're converting to an atomic type, first convert to the corresponding
2744  // non-atomic type.
2745  QualType ToAtomicType;
2746  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) {
2747    ToAtomicType = ToType;
2748    ToType = ToAtomic->getValueType();
2749  }
2750
2751  // Perform the first implicit conversion.
2752  switch (SCS.First) {
2753  case ICK_Identity:
2754    // Nothing to do.
2755    break;
2756
2757  case ICK_Lvalue_To_Rvalue: {
2758    assert(From->getObjectKind() != OK_ObjCProperty);
2759    FromType = FromType.getUnqualifiedType();
2760    ExprResult FromRes = DefaultLvalueConversion(From);
2761    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2762    From = FromRes.get();
2763    break;
2764  }
2765
2766  case ICK_Array_To_Pointer:
2767    FromType = Context.getArrayDecayedType(FromType);
2768    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2769                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
2770    break;
2771
2772  case ICK_Function_To_Pointer:
2773    FromType = Context.getPointerType(FromType);
2774    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2775                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
2776    break;
2777
2778  default:
2779    llvm_unreachable("Improper first standard conversion");
2780  }
2781
2782  // Perform the second implicit conversion
2783  switch (SCS.Second) {
2784  case ICK_Identity:
2785    // If both sides are functions (or pointers/references to them), there could
2786    // be incompatible exception declarations.
2787    if (CheckExceptionSpecCompatibility(From, ToType))
2788      return ExprError();
2789    // Nothing else to do.
2790    break;
2791
2792  case ICK_NoReturn_Adjustment:
2793    // If both sides are functions (or pointers/references to them), there could
2794    // be incompatible exception declarations.
2795    if (CheckExceptionSpecCompatibility(From, ToType))
2796      return ExprError();
2797
2798    From = ImpCastExprToType(From, ToType, CK_NoOp,
2799                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
2800    break;
2801
2802  case ICK_Integral_Promotion:
2803  case ICK_Integral_Conversion:
2804    if (ToType->isBooleanType()) {
2805      assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2806             SCS.Second == ICK_Integral_Promotion &&
2807             "only enums with fixed underlying type can promote to bool");
2808      From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2809                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
2810    } else {
2811      From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2812                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
2813    }
2814    break;
2815
2816  case ICK_Floating_Promotion:
2817  case ICK_Floating_Conversion:
2818    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2819                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
2820    break;
2821
2822  case ICK_Complex_Promotion:
2823  case ICK_Complex_Conversion: {
2824    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2825    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2826    CastKind CK;
2827    if (FromEl->isRealFloatingType()) {
2828      if (ToEl->isRealFloatingType())
2829        CK = CK_FloatingComplexCast;
2830      else
2831        CK = CK_FloatingComplexToIntegralComplex;
2832    } else if (ToEl->isRealFloatingType()) {
2833      CK = CK_IntegralComplexToFloatingComplex;
2834    } else {
2835      CK = CK_IntegralComplexCast;
2836    }
2837    From = ImpCastExprToType(From, ToType, CK,
2838                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
2839    break;
2840  }
2841
2842  case ICK_Floating_Integral:
2843    if (ToType->isRealFloatingType())
2844      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2845                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
2846    else
2847      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2848                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
2849    break;
2850
2851  case ICK_Compatible_Conversion:
2852      From = ImpCastExprToType(From, ToType, CK_NoOp,
2853                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
2854    break;
2855
2856  case ICK_Writeback_Conversion:
2857  case ICK_Pointer_Conversion: {
2858    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2859      // Diagnose incompatible Objective-C conversions
2860      if (Action == AA_Initializing || Action == AA_Assigning)
2861        Diag(From->getLocStart(),
2862             diag::ext_typecheck_convert_incompatible_pointer)
2863          << ToType << From->getType() << Action
2864          << From->getSourceRange() << 0;
2865      else
2866        Diag(From->getLocStart(),
2867             diag::ext_typecheck_convert_incompatible_pointer)
2868          << From->getType() << ToType << Action
2869          << From->getSourceRange() << 0;
2870
2871      if (From->getType()->isObjCObjectPointerType() &&
2872          ToType->isObjCObjectPointerType())
2873        EmitRelatedResultTypeNote(From);
2874    }
2875    else if (getLangOpts().ObjCAutoRefCount &&
2876             !CheckObjCARCUnavailableWeakConversion(ToType,
2877                                                    From->getType())) {
2878      if (Action == AA_Initializing)
2879        Diag(From->getLocStart(),
2880             diag::err_arc_weak_unavailable_assign);
2881      else
2882        Diag(From->getLocStart(),
2883             diag::err_arc_convesion_of_weak_unavailable)
2884          << (Action == AA_Casting) << From->getType() << ToType
2885          << From->getSourceRange();
2886    }
2887
2888    CastKind Kind = CK_Invalid;
2889    CXXCastPath BasePath;
2890    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2891      return ExprError();
2892
2893    // Make sure we extend blocks if necessary.
2894    // FIXME: doing this here is really ugly.
2895    if (Kind == CK_BlockPointerToObjCPointerCast) {
2896      ExprResult E = From;
2897      (void) PrepareCastToObjCObjectPointer(E);
2898      From = E.get();
2899    }
2900    if (getLangOpts().ObjCAutoRefCount)
2901      CheckObjCARCConversion(SourceRange(), ToType, From, CCK);
2902    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2903             .get();
2904    break;
2905  }
2906
2907  case ICK_Pointer_Member: {
2908    CastKind Kind = CK_Invalid;
2909    CXXCastPath BasePath;
2910    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2911      return ExprError();
2912    if (CheckExceptionSpecCompatibility(From, ToType))
2913      return ExprError();
2914    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2915             .get();
2916    break;
2917  }
2918
2919  case ICK_Boolean_Conversion:
2920    // Perform half-to-boolean conversion via float.
2921    if (From->getType()->isHalfType()) {
2922      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get();
2923      FromType = Context.FloatTy;
2924    }
2925
2926    From = ImpCastExprToType(From, Context.BoolTy,
2927                             ScalarTypeToBooleanCastKind(FromType),
2928                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
2929    break;
2930
2931  case ICK_Derived_To_Base: {
2932    CXXCastPath BasePath;
2933    if (CheckDerivedToBaseConversion(From->getType(),
2934                                     ToType.getNonReferenceType(),
2935                                     From->getLocStart(),
2936                                     From->getSourceRange(),
2937                                     &BasePath,
2938                                     CStyle))
2939      return ExprError();
2940
2941    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2942                      CK_DerivedToBase, From->getValueKind(),
2943                      &BasePath, CCK).get();
2944    break;
2945  }
2946
2947  case ICK_Vector_Conversion:
2948    From = ImpCastExprToType(From, ToType, CK_BitCast,
2949                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
2950    break;
2951
2952  case ICK_Vector_Splat:
2953    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2954                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
2955    break;
2956
2957  case ICK_Complex_Real:
2958    // Case 1.  x -> _Complex y
2959    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2960      QualType ElType = ToComplex->getElementType();
2961      bool isFloatingComplex = ElType->isRealFloatingType();
2962
2963      // x -> y
2964      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2965        // do nothing
2966      } else if (From->getType()->isRealFloatingType()) {
2967        From = ImpCastExprToType(From, ElType,
2968                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get();
2969      } else {
2970        assert(From->getType()->isIntegerType());
2971        From = ImpCastExprToType(From, ElType,
2972                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get();
2973      }
2974      // y -> _Complex y
2975      From = ImpCastExprToType(From, ToType,
2976                   isFloatingComplex ? CK_FloatingRealToComplex
2977                                     : CK_IntegralRealToComplex).get();
2978
2979    // Case 2.  _Complex x -> y
2980    } else {
2981      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2982      assert(FromComplex);
2983
2984      QualType ElType = FromComplex->getElementType();
2985      bool isFloatingComplex = ElType->isRealFloatingType();
2986
2987      // _Complex x -> x
2988      From = ImpCastExprToType(From, ElType,
2989                   isFloatingComplex ? CK_FloatingComplexToReal
2990                                     : CK_IntegralComplexToReal,
2991                               VK_RValue, /*BasePath=*/nullptr, CCK).get();
2992
2993      // x -> y
2994      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2995        // do nothing
2996      } else if (ToType->isRealFloatingType()) {
2997        From = ImpCastExprToType(From, ToType,
2998                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2999                                 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3000      } else {
3001        assert(ToType->isIntegerType());
3002        From = ImpCastExprToType(From, ToType,
3003                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
3004                                 VK_RValue, /*BasePath=*/nullptr, CCK).get();
3005      }
3006    }
3007    break;
3008
3009  case ICK_Block_Pointer_Conversion: {
3010    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
3011                             VK_RValue, /*BasePath=*/nullptr, CCK).get();
3012    break;
3013  }
3014
3015  case ICK_TransparentUnionConversion: {
3016    ExprResult FromRes = From;
3017    Sema::AssignConvertType ConvTy =
3018      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
3019    if (FromRes.isInvalid())
3020      return ExprError();
3021    From = FromRes.get();
3022    assert ((ConvTy == Sema::Compatible) &&
3023            "Improper transparent union conversion");
3024    (void)ConvTy;
3025    break;
3026  }
3027
3028  case ICK_Zero_Event_Conversion:
3029    From = ImpCastExprToType(From, ToType,
3030                             CK_ZeroToOCLEvent,
3031                             From->getValueKind()).get();
3032    break;
3033
3034  case ICK_Lvalue_To_Rvalue:
3035  case ICK_Array_To_Pointer:
3036  case ICK_Function_To_Pointer:
3037  case ICK_Qualification:
3038  case ICK_Num_Conversion_Kinds:
3039    llvm_unreachable("Improper second standard conversion");
3040  }
3041
3042  switch (SCS.Third) {
3043  case ICK_Identity:
3044    // Nothing to do.
3045    break;
3046
3047  case ICK_Qualification: {
3048    // The qualification keeps the category of the inner expression, unless the
3049    // target type isn't a reference.
3050    ExprValueKind VK = ToType->isReferenceType() ?
3051                                  From->getValueKind() : VK_RValue;
3052    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
3053                             CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get();
3054
3055    if (SCS.DeprecatedStringLiteralToCharPtr &&
3056        !getLangOpts().WritableStrings) {
3057      Diag(From->getLocStart(), getLangOpts().CPlusPlus11
3058           ? diag::ext_deprecated_string_literal_conversion
3059           : diag::warn_deprecated_string_literal_conversion)
3060        << ToType.getNonReferenceType();
3061    }
3062
3063    break;
3064  }
3065
3066  default:
3067    llvm_unreachable("Improper third standard conversion");
3068  }
3069
3070  // If this conversion sequence involved a scalar -> atomic conversion, perform
3071  // that conversion now.
3072  if (!ToAtomicType.isNull()) {
3073    assert(Context.hasSameType(
3074        ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType()));
3075    From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic,
3076                             VK_RValue, nullptr, CCK).get();
3077  }
3078
3079  return From;
3080}
3081
3082/// \brief Check the completeness of a type in a unary type trait.
3083///
3084/// If the particular type trait requires a complete type, tries to complete
3085/// it. If completing the type fails, a diagnostic is emitted and false
3086/// returned. If completing the type succeeds or no completion was required,
3087/// returns true.
3088static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT,
3089                                                SourceLocation Loc,
3090                                                QualType ArgTy) {
3091  // C++0x [meta.unary.prop]p3:
3092  //   For all of the class templates X declared in this Clause, instantiating
3093  //   that template with a template argument that is a class template
3094  //   specialization may result in the implicit instantiation of the template
3095  //   argument if and only if the semantics of X require that the argument
3096  //   must be a complete type.
3097  // We apply this rule to all the type trait expressions used to implement
3098  // these class templates. We also try to follow any GCC documented behavior
3099  // in these expressions to ensure portability of standard libraries.
3100  switch (UTT) {
3101  default: llvm_unreachable("not a UTT");
3102    // is_complete_type somewhat obviously cannot require a complete type.
3103  case UTT_IsCompleteType:
3104    // Fall-through
3105
3106    // These traits are modeled on the type predicates in C++0x
3107    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
3108    // requiring a complete type, as whether or not they return true cannot be
3109    // impacted by the completeness of the type.
3110  case UTT_IsVoid:
3111  case UTT_IsIntegral:
3112  case UTT_IsFloatingPoint:
3113  case UTT_IsArray:
3114  case UTT_IsPointer:
3115  case UTT_IsLvalueReference:
3116  case UTT_IsRvalueReference:
3117  case UTT_IsMemberFunctionPointer:
3118  case UTT_IsMemberObjectPointer:
3119  case UTT_IsEnum:
3120  case UTT_IsUnion:
3121  case UTT_IsClass:
3122  case UTT_IsFunction:
3123  case UTT_IsReference:
3124  case UTT_IsArithmetic:
3125  case UTT_IsFundamental:
3126  case UTT_IsObject:
3127  case UTT_IsScalar:
3128  case UTT_IsCompound:
3129  case UTT_IsMemberPointer:
3130    // Fall-through
3131
3132    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
3133    // which requires some of its traits to have the complete type. However,
3134    // the completeness of the type cannot impact these traits' semantics, and
3135    // so they don't require it. This matches the comments on these traits in
3136    // Table 49.
3137  case UTT_IsConst:
3138  case UTT_IsVolatile:
3139  case UTT_IsSigned:
3140  case UTT_IsUnsigned:
3141    return true;
3142
3143    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
3144    // applied to a complete type.
3145  case UTT_IsTrivial:
3146  case UTT_IsTriviallyCopyable:
3147  case UTT_IsStandardLayout:
3148  case UTT_IsPOD:
3149  case UTT_IsLiteral:
3150  case UTT_IsEmpty:
3151  case UTT_IsPolymorphic:
3152  case UTT_IsAbstract:
3153  case UTT_IsInterfaceClass:
3154  case UTT_IsDestructible:
3155  case UTT_IsNothrowDestructible:
3156    // Fall-through
3157
3158  // These traits require a complete type.
3159  case UTT_IsFinal:
3160  case UTT_IsSealed:
3161
3162    // These trait expressions are designed to help implement predicates in
3163    // [meta.unary.prop] despite not being named the same. They are specified
3164    // by both GCC and the Embarcadero C++ compiler, and require the complete
3165    // type due to the overarching C++0x type predicates being implemented
3166    // requiring the complete type.
3167  case UTT_HasNothrowAssign:
3168  case UTT_HasNothrowMoveAssign:
3169  case UTT_HasNothrowConstructor:
3170  case UTT_HasNothrowCopy:
3171  case UTT_HasTrivialAssign:
3172  case UTT_HasTrivialMoveAssign:
3173  case UTT_HasTrivialDefaultConstructor:
3174  case UTT_HasTrivialMoveConstructor:
3175  case UTT_HasTrivialCopy:
3176  case UTT_HasTrivialDestructor:
3177  case UTT_HasVirtualDestructor:
3178    // Arrays of unknown bound are expressly allowed.
3179    QualType ElTy = ArgTy;
3180    if (ArgTy->isIncompleteArrayType())
3181      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3182
3183    // The void type is expressly allowed.
3184    if (ElTy->isVoidType())
3185      return true;
3186
3187    return !S.RequireCompleteType(
3188      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3189  }
3190}
3191
3192static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3193                               Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3194                               bool (CXXRecordDecl::*HasTrivial)() const,
3195                               bool (CXXRecordDecl::*HasNonTrivial)() const,
3196                               bool (CXXMethodDecl::*IsDesiredOp)() const)
3197{
3198  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3199  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3200    return true;
3201
3202  DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3203  DeclarationNameInfo NameInfo(Name, KeyLoc);
3204  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3205  if (Self.LookupQualifiedName(Res, RD)) {
3206    bool FoundOperator = false;
3207    Res.suppressDiagnostics();
3208    for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3209         Op != OpEnd; ++Op) {
3210      if (isa<FunctionTemplateDecl>(*Op))
3211        continue;
3212
3213      CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3214      if((Operator->*IsDesiredOp)()) {
3215        FoundOperator = true;
3216        const FunctionProtoType *CPT =
3217          Operator->getType()->getAs<FunctionProtoType>();
3218        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3219        if (!CPT || !CPT->isNothrow(C))
3220          return false;
3221      }
3222    }
3223    return FoundOperator;
3224  }
3225  return false;
3226}
3227
3228static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT,
3229                                   SourceLocation KeyLoc, QualType T) {
3230  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3231
3232  ASTContext &C = Self.Context;
3233  switch(UTT) {
3234  default: llvm_unreachable("not a UTT");
3235    // Type trait expressions corresponding to the primary type category
3236    // predicates in C++0x [meta.unary.cat].
3237  case UTT_IsVoid:
3238    return T->isVoidType();
3239  case UTT_IsIntegral:
3240    return T->isIntegralType(C);
3241  case UTT_IsFloatingPoint:
3242    return T->isFloatingType();
3243  case UTT_IsArray:
3244    return T->isArrayType();
3245  case UTT_IsPointer:
3246    return T->isPointerType();
3247  case UTT_IsLvalueReference:
3248    return T->isLValueReferenceType();
3249  case UTT_IsRvalueReference:
3250    return T->isRValueReferenceType();
3251  case UTT_IsMemberFunctionPointer:
3252    return T->isMemberFunctionPointerType();
3253  case UTT_IsMemberObjectPointer:
3254    return T->isMemberDataPointerType();
3255  case UTT_IsEnum:
3256    return T->isEnumeralType();
3257  case UTT_IsUnion:
3258    return T->isUnionType();
3259  case UTT_IsClass:
3260    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3261  case UTT_IsFunction:
3262    return T->isFunctionType();
3263
3264    // Type trait expressions which correspond to the convenient composition
3265    // predicates in C++0x [meta.unary.comp].
3266  case UTT_IsReference:
3267    return T->isReferenceType();
3268  case UTT_IsArithmetic:
3269    return T->isArithmeticType() && !T->isEnumeralType();
3270  case UTT_IsFundamental:
3271    return T->isFundamentalType();
3272  case UTT_IsObject:
3273    return T->isObjectType();
3274  case UTT_IsScalar:
3275    // Note: semantic analysis depends on Objective-C lifetime types to be
3276    // considered scalar types. However, such types do not actually behave
3277    // like scalar types at run time (since they may require retain/release
3278    // operations), so we report them as non-scalar.
3279    if (T->isObjCLifetimeType()) {
3280      switch (T.getObjCLifetime()) {
3281      case Qualifiers::OCL_None:
3282      case Qualifiers::OCL_ExplicitNone:
3283        return true;
3284
3285      case Qualifiers::OCL_Strong:
3286      case Qualifiers::OCL_Weak:
3287      case Qualifiers::OCL_Autoreleasing:
3288        return false;
3289      }
3290    }
3291
3292    return T->isScalarType();
3293  case UTT_IsCompound:
3294    return T->isCompoundType();
3295  case UTT_IsMemberPointer:
3296    return T->isMemberPointerType();
3297
3298    // Type trait expressions which correspond to the type property predicates
3299    // in C++0x [meta.unary.prop].
3300  case UTT_IsConst:
3301    return T.isConstQualified();
3302  case UTT_IsVolatile:
3303    return T.isVolatileQualified();
3304  case UTT_IsTrivial:
3305    return T.isTrivialType(Self.Context);
3306  case UTT_IsTriviallyCopyable:
3307    return T.isTriviallyCopyableType(Self.Context);
3308  case UTT_IsStandardLayout:
3309    return T->isStandardLayoutType();
3310  case UTT_IsPOD:
3311    return T.isPODType(Self.Context);
3312  case UTT_IsLiteral:
3313    return T->isLiteralType(Self.Context);
3314  case UTT_IsEmpty:
3315    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3316      return !RD->isUnion() && RD->isEmpty();
3317    return false;
3318  case UTT_IsPolymorphic:
3319    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3320      return RD->isPolymorphic();
3321    return false;
3322  case UTT_IsAbstract:
3323    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3324      return RD->isAbstract();
3325    return false;
3326  case UTT_IsInterfaceClass:
3327    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3328      return RD->isInterface();
3329    return false;
3330  case UTT_IsFinal:
3331    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3332      return RD->hasAttr<FinalAttr>();
3333    return false;
3334  case UTT_IsSealed:
3335    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3336      if (FinalAttr *FA = RD->getAttr<FinalAttr>())
3337        return FA->isSpelledAsSealed();
3338    return false;
3339  case UTT_IsSigned:
3340    return T->isSignedIntegerType();
3341  case UTT_IsUnsigned:
3342    return T->isUnsignedIntegerType();
3343
3344    // Type trait expressions which query classes regarding their construction,
3345    // destruction, and copying. Rather than being based directly on the
3346    // related type predicates in the standard, they are specified by both
3347    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3348    // specifications.
3349    //
3350    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3351    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3352    //
3353    // Note that these builtins do not behave as documented in g++: if a class
3354    // has both a trivial and a non-trivial special member of a particular kind,
3355    // they return false! For now, we emulate this behavior.
3356    // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3357    // does not correctly compute triviality in the presence of multiple special
3358    // members of the same kind. Revisit this once the g++ bug is fixed.
3359  case UTT_HasTrivialDefaultConstructor:
3360    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3361    //   If __is_pod (type) is true then the trait is true, else if type is
3362    //   a cv class or union type (or array thereof) with a trivial default
3363    //   constructor ([class.ctor]) then the trait is true, else it is false.
3364    if (T.isPODType(Self.Context))
3365      return true;
3366    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3367      return RD->hasTrivialDefaultConstructor() &&
3368             !RD->hasNonTrivialDefaultConstructor();
3369    return false;
3370  case UTT_HasTrivialMoveConstructor:
3371    //  This trait is implemented by MSVC 2012 and needed to parse the
3372    //  standard library headers. Specifically this is used as the logic
3373    //  behind std::is_trivially_move_constructible (20.9.4.3).
3374    if (T.isPODType(Self.Context))
3375      return true;
3376    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3377      return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3378    return false;
3379  case UTT_HasTrivialCopy:
3380    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3381    //   If __is_pod (type) is true or type is a reference type then
3382    //   the trait is true, else if type is a cv class or union type
3383    //   with a trivial copy constructor ([class.copy]) then the trait
3384    //   is true, else it is false.
3385    if (T.isPODType(Self.Context) || T->isReferenceType())
3386      return true;
3387    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3388      return RD->hasTrivialCopyConstructor() &&
3389             !RD->hasNonTrivialCopyConstructor();
3390    return false;
3391  case UTT_HasTrivialMoveAssign:
3392    //  This trait is implemented by MSVC 2012 and needed to parse the
3393    //  standard library headers. Specifically it is used as the logic
3394    //  behind std::is_trivially_move_assignable (20.9.4.3)
3395    if (T.isPODType(Self.Context))
3396      return true;
3397    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3398      return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3399    return false;
3400  case UTT_HasTrivialAssign:
3401    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3402    //   If type is const qualified or is a reference type then the
3403    //   trait is false. Otherwise if __is_pod (type) is true then the
3404    //   trait is true, else if type is a cv class or union type with
3405    //   a trivial copy assignment ([class.copy]) then the trait is
3406    //   true, else it is false.
3407    // Note: the const and reference restrictions are interesting,
3408    // given that const and reference members don't prevent a class
3409    // from having a trivial copy assignment operator (but do cause
3410    // errors if the copy assignment operator is actually used, q.v.
3411    // [class.copy]p12).
3412
3413    if (T.isConstQualified())
3414      return false;
3415    if (T.isPODType(Self.Context))
3416      return true;
3417    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3418      return RD->hasTrivialCopyAssignment() &&
3419             !RD->hasNonTrivialCopyAssignment();
3420    return false;
3421  case UTT_IsDestructible:
3422  case UTT_IsNothrowDestructible:
3423    // FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible.
3424    // For now, let's fall through.
3425  case UTT_HasTrivialDestructor:
3426    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3427    //   If __is_pod (type) is true or type is a reference type
3428    //   then the trait is true, else if type is a cv class or union
3429    //   type (or array thereof) with a trivial destructor
3430    //   ([class.dtor]) then the trait is true, else it is
3431    //   false.
3432    if (T.isPODType(Self.Context) || T->isReferenceType())
3433      return true;
3434
3435    // Objective-C++ ARC: autorelease types don't require destruction.
3436    if (T->isObjCLifetimeType() &&
3437        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3438      return true;
3439
3440    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3441      return RD->hasTrivialDestructor();
3442    return false;
3443  // TODO: Propagate nothrowness for implicitly declared special members.
3444  case UTT_HasNothrowAssign:
3445    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3446    //   If type is const qualified or is a reference type then the
3447    //   trait is false. Otherwise if __has_trivial_assign (type)
3448    //   is true then the trait is true, else if type is a cv class
3449    //   or union type with copy assignment operators that are known
3450    //   not to throw an exception then the trait is true, else it is
3451    //   false.
3452    if (C.getBaseElementType(T).isConstQualified())
3453      return false;
3454    if (T->isReferenceType())
3455      return false;
3456    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3457      return true;
3458
3459    if (const RecordType *RT = T->getAs<RecordType>())
3460      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3461                                &CXXRecordDecl::hasTrivialCopyAssignment,
3462                                &CXXRecordDecl::hasNonTrivialCopyAssignment,
3463                                &CXXMethodDecl::isCopyAssignmentOperator);
3464    return false;
3465  case UTT_HasNothrowMoveAssign:
3466    //  This trait is implemented by MSVC 2012 and needed to parse the
3467    //  standard library headers. Specifically this is used as the logic
3468    //  behind std::is_nothrow_move_assignable (20.9.4.3).
3469    if (T.isPODType(Self.Context))
3470      return true;
3471
3472    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3473      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3474                                &CXXRecordDecl::hasTrivialMoveAssignment,
3475                                &CXXRecordDecl::hasNonTrivialMoveAssignment,
3476                                &CXXMethodDecl::isMoveAssignmentOperator);
3477    return false;
3478  case UTT_HasNothrowCopy:
3479    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3480    //   If __has_trivial_copy (type) is true then the trait is true, else
3481    //   if type is a cv class or union type with copy constructors that are
3482    //   known not to throw an exception then the trait is true, else it is
3483    //   false.
3484    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3485      return true;
3486    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3487      if (RD->hasTrivialCopyConstructor() &&
3488          !RD->hasNonTrivialCopyConstructor())
3489        return true;
3490
3491      bool FoundConstructor = false;
3492      unsigned FoundTQs;
3493      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3494      for (DeclContext::lookup_const_iterator Con = R.begin(),
3495           ConEnd = R.end(); Con != ConEnd; ++Con) {
3496        // A template constructor is never a copy constructor.
3497        // FIXME: However, it may actually be selected at the actual overload
3498        // resolution point.
3499        if (isa<FunctionTemplateDecl>(*Con))
3500          continue;
3501        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3502        if (Constructor->isCopyConstructor(FoundTQs)) {
3503          FoundConstructor = true;
3504          const FunctionProtoType *CPT
3505              = Constructor->getType()->getAs<FunctionProtoType>();
3506          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3507          if (!CPT)
3508            return false;
3509          // TODO: check whether evaluating default arguments can throw.
3510          // For now, we'll be conservative and assume that they can throw.
3511          if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1)
3512            return false;
3513        }
3514      }
3515
3516      return FoundConstructor;
3517    }
3518    return false;
3519  case UTT_HasNothrowConstructor:
3520    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
3521    //   If __has_trivial_constructor (type) is true then the trait is
3522    //   true, else if type is a cv class or union type (or array
3523    //   thereof) with a default constructor that is known not to
3524    //   throw an exception then the trait is true, else it is false.
3525    if (T.isPODType(C) || T->isObjCLifetimeType())
3526      return true;
3527    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3528      if (RD->hasTrivialDefaultConstructor() &&
3529          !RD->hasNonTrivialDefaultConstructor())
3530        return true;
3531
3532      bool FoundConstructor = false;
3533      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3534      for (DeclContext::lookup_const_iterator Con = R.begin(),
3535           ConEnd = R.end(); Con != ConEnd; ++Con) {
3536        // FIXME: In C++0x, a constructor template can be a default constructor.
3537        if (isa<FunctionTemplateDecl>(*Con))
3538          continue;
3539        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3540        if (Constructor->isDefaultConstructor()) {
3541          FoundConstructor = true;
3542          const FunctionProtoType *CPT
3543              = Constructor->getType()->getAs<FunctionProtoType>();
3544          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3545          if (!CPT)
3546            return false;
3547          // FIXME: check whether evaluating default arguments can throw.
3548          // For now, we'll be conservative and assume that they can throw.
3549          if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0)
3550            return false;
3551        }
3552      }
3553      return FoundConstructor;
3554    }
3555    return false;
3556  case UTT_HasVirtualDestructor:
3557    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3558    //   If type is a class type with a virtual destructor ([class.dtor])
3559    //   then the trait is true, else it is false.
3560    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3561      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3562        return Destructor->isVirtual();
3563    return false;
3564
3565    // These type trait expressions are modeled on the specifications for the
3566    // Embarcadero C++0x type trait functions:
3567    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3568  case UTT_IsCompleteType:
3569    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3570    //   Returns True if and only if T is a complete type at the point of the
3571    //   function call.
3572    return !T->isIncompleteType();
3573  }
3574}
3575
3576/// \brief Determine whether T has a non-trivial Objective-C lifetime in
3577/// ARC mode.
3578static bool hasNontrivialObjCLifetime(QualType T) {
3579  switch (T.getObjCLifetime()) {
3580  case Qualifiers::OCL_ExplicitNone:
3581    return false;
3582
3583  case Qualifiers::OCL_Strong:
3584  case Qualifiers::OCL_Weak:
3585  case Qualifiers::OCL_Autoreleasing:
3586    return true;
3587
3588  case Qualifiers::OCL_None:
3589    return T->isObjCLifetimeType();
3590  }
3591
3592  llvm_unreachable("Unknown ObjC lifetime qualifier");
3593}
3594
3595static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
3596                                    QualType RhsT, SourceLocation KeyLoc);
3597
3598static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3599                              ArrayRef<TypeSourceInfo *> Args,
3600                              SourceLocation RParenLoc) {
3601  if (Kind <= UTT_Last)
3602    return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType());
3603
3604  if (Kind <= BTT_Last)
3605    return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(),
3606                                   Args[1]->getType(), RParenLoc);
3607
3608  switch (Kind) {
3609  case clang::TT_IsConstructible:
3610  case clang::TT_IsNothrowConstructible:
3611  case clang::TT_IsTriviallyConstructible: {
3612    // C++11 [meta.unary.prop]:
3613    //   is_trivially_constructible is defined as:
3614    //
3615    //     is_constructible<T, Args...>::value is true and the variable
3616    //     definition for is_constructible, as defined below, is known to call
3617    //     no operation that is not trivial.
3618    //
3619    //   The predicate condition for a template specialization
3620    //   is_constructible<T, Args...> shall be satisfied if and only if the
3621    //   following variable definition would be well-formed for some invented
3622    //   variable t:
3623    //
3624    //     T t(create<Args>()...);
3625    assert(!Args.empty());
3626
3627    // Precondition: T and all types in the parameter pack Args shall be
3628    // complete types, (possibly cv-qualified) void, or arrays of
3629    // unknown bound.
3630    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3631      QualType ArgTy = Args[I]->getType();
3632      if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType())
3633        continue;
3634
3635      if (S.RequireCompleteType(KWLoc, ArgTy,
3636          diag::err_incomplete_type_used_in_type_trait_expr))
3637        return false;
3638    }
3639
3640    // Make sure the first argument is a complete type.
3641    if (Args[0]->getType()->isIncompleteType())
3642      return false;
3643
3644    // Make sure the first argument is not an abstract type.
3645    CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl();
3646    if (RD && RD->isAbstract())
3647      return false;
3648
3649    SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3650    SmallVector<Expr *, 2> ArgExprs;
3651    ArgExprs.reserve(Args.size() - 1);
3652    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3653      QualType T = Args[I]->getType();
3654      if (T->isObjectType() || T->isFunctionType())
3655        T = S.Context.getRValueReferenceType(T);
3656      OpaqueArgExprs.push_back(
3657        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3658                        T.getNonLValueExprType(S.Context),
3659                        Expr::getValueKindForType(T)));
3660      ArgExprs.push_back(&OpaqueArgExprs.back());
3661    }
3662
3663    // Perform the initialization in an unevaluated context within a SFINAE
3664    // trap at translation unit scope.
3665    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3666    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3667    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3668    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3669    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3670                                                                 RParenLoc));
3671    InitializationSequence Init(S, To, InitKind, ArgExprs);
3672    if (Init.Failed())
3673      return false;
3674
3675    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3676    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3677      return false;
3678
3679    if (Kind == clang::TT_IsConstructible)
3680      return true;
3681
3682    if (Kind == clang::TT_IsNothrowConstructible)
3683      return S.canThrow(Result.get()) == CT_Cannot;
3684
3685    if (Kind == clang::TT_IsTriviallyConstructible) {
3686      // Under Objective-C ARC, if the destination has non-trivial Objective-C
3687      // lifetime, this is a non-trivial construction.
3688      if (S.getLangOpts().ObjCAutoRefCount &&
3689          hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3690        return false;
3691
3692      // The initialization succeeded; now make sure there are no non-trivial
3693      // calls.
3694      return !Result.get()->hasNonTrivialCall(S.Context);
3695    }
3696
3697    llvm_unreachable("unhandled type trait");
3698    return false;
3699  }
3700    default: llvm_unreachable("not a TT");
3701  }
3702
3703  return false;
3704}
3705
3706ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3707                                ArrayRef<TypeSourceInfo *> Args,
3708                                SourceLocation RParenLoc) {
3709  QualType ResultType = Context.getLogicalOperationType();
3710
3711  if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness(
3712                               *this, Kind, KWLoc, Args[0]->getType()))
3713    return ExprError();
3714
3715  bool Dependent = false;
3716  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3717    if (Args[I]->getType()->isDependentType()) {
3718      Dependent = true;
3719      break;
3720    }
3721  }
3722
3723  bool Result = false;
3724  if (!Dependent)
3725    Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3726
3727  return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args,
3728                               RParenLoc, Result);
3729}
3730
3731ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3732                                ArrayRef<ParsedType> Args,
3733                                SourceLocation RParenLoc) {
3734  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3735  ConvertedArgs.reserve(Args.size());
3736
3737  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3738    TypeSourceInfo *TInfo;
3739    QualType T = GetTypeFromParser(Args[I], &TInfo);
3740    if (!TInfo)
3741      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3742
3743    ConvertedArgs.push_back(TInfo);
3744  }
3745
3746  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3747}
3748
3749static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT,
3750                                    QualType RhsT, SourceLocation KeyLoc) {
3751  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3752         "Cannot evaluate traits of dependent types");
3753
3754  switch(BTT) {
3755  case BTT_IsBaseOf: {
3756    // C++0x [meta.rel]p2
3757    // Base is a base class of Derived without regard to cv-qualifiers or
3758    // Base and Derived are not unions and name the same class type without
3759    // regard to cv-qualifiers.
3760
3761    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3762    if (!lhsRecord) return false;
3763
3764    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3765    if (!rhsRecord) return false;
3766
3767    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3768             == (lhsRecord == rhsRecord));
3769
3770    if (lhsRecord == rhsRecord)
3771      return !lhsRecord->getDecl()->isUnion();
3772
3773    // C++0x [meta.rel]p2:
3774    //   If Base and Derived are class types and are different types
3775    //   (ignoring possible cv-qualifiers) then Derived shall be a
3776    //   complete type.
3777    if (Self.RequireCompleteType(KeyLoc, RhsT,
3778                          diag::err_incomplete_type_used_in_type_trait_expr))
3779      return false;
3780
3781    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3782      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3783  }
3784  case BTT_IsSame:
3785    return Self.Context.hasSameType(LhsT, RhsT);
3786  case BTT_TypeCompatible:
3787    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3788                                           RhsT.getUnqualifiedType());
3789  case BTT_IsConvertible:
3790  case BTT_IsConvertibleTo: {
3791    // C++0x [meta.rel]p4:
3792    //   Given the following function prototype:
3793    //
3794    //     template <class T>
3795    //       typename add_rvalue_reference<T>::type create();
3796    //
3797    //   the predicate condition for a template specialization
3798    //   is_convertible<From, To> shall be satisfied if and only if
3799    //   the return expression in the following code would be
3800    //   well-formed, including any implicit conversions to the return
3801    //   type of the function:
3802    //
3803    //     To test() {
3804    //       return create<From>();
3805    //     }
3806    //
3807    //   Access checking is performed as if in a context unrelated to To and
3808    //   From. Only the validity of the immediate context of the expression
3809    //   of the return-statement (including conversions to the return type)
3810    //   is considered.
3811    //
3812    // We model the initialization as a copy-initialization of a temporary
3813    // of the appropriate type, which for this expression is identical to the
3814    // return statement (since NRVO doesn't apply).
3815
3816    // Functions aren't allowed to return function or array types.
3817    if (RhsT->isFunctionType() || RhsT->isArrayType())
3818      return false;
3819
3820    // A return statement in a void function must have void type.
3821    if (RhsT->isVoidType())
3822      return LhsT->isVoidType();
3823
3824    // A function definition requires a complete, non-abstract return type.
3825    if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3826        Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3827      return false;
3828
3829    // Compute the result of add_rvalue_reference.
3830    if (LhsT->isObjectType() || LhsT->isFunctionType())
3831      LhsT = Self.Context.getRValueReferenceType(LhsT);
3832
3833    // Build a fake source and destination for initialization.
3834    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3835    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3836                         Expr::getValueKindForType(LhsT));
3837    Expr *FromPtr = &From;
3838    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3839                                                           SourceLocation()));
3840
3841    // Perform the initialization in an unevaluated context within a SFINAE
3842    // trap at translation unit scope.
3843    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3844    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3845    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3846    InitializationSequence Init(Self, To, Kind, FromPtr);
3847    if (Init.Failed())
3848      return false;
3849
3850    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3851    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3852  }
3853
3854  case BTT_IsNothrowAssignable:
3855  case BTT_IsTriviallyAssignable: {
3856    // C++11 [meta.unary.prop]p3:
3857    //   is_trivially_assignable is defined as:
3858    //     is_assignable<T, U>::value is true and the assignment, as defined by
3859    //     is_assignable, is known to call no operation that is not trivial
3860    //
3861    //   is_assignable is defined as:
3862    //     The expression declval<T>() = declval<U>() is well-formed when
3863    //     treated as an unevaluated operand (Clause 5).
3864    //
3865    //   For both, T and U shall be complete types, (possibly cv-qualified)
3866    //   void, or arrays of unknown bound.
3867    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3868        Self.RequireCompleteType(KeyLoc, LhsT,
3869          diag::err_incomplete_type_used_in_type_trait_expr))
3870      return false;
3871    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3872        Self.RequireCompleteType(KeyLoc, RhsT,
3873          diag::err_incomplete_type_used_in_type_trait_expr))
3874      return false;
3875
3876    // cv void is never assignable.
3877    if (LhsT->isVoidType() || RhsT->isVoidType())
3878      return false;
3879
3880    // Build expressions that emulate the effect of declval<T>() and
3881    // declval<U>().
3882    if (LhsT->isObjectType() || LhsT->isFunctionType())
3883      LhsT = Self.Context.getRValueReferenceType(LhsT);
3884    if (RhsT->isObjectType() || RhsT->isFunctionType())
3885      RhsT = Self.Context.getRValueReferenceType(RhsT);
3886    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3887                        Expr::getValueKindForType(LhsT));
3888    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3889                        Expr::getValueKindForType(RhsT));
3890
3891    // Attempt the assignment in an unevaluated context within a SFINAE
3892    // trap at translation unit scope.
3893    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3894    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3895    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3896    ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs,
3897                                        &Rhs);
3898    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3899      return false;
3900
3901    if (BTT == BTT_IsNothrowAssignable)
3902      return Self.canThrow(Result.get()) == CT_Cannot;
3903
3904    if (BTT == BTT_IsTriviallyAssignable) {
3905      // Under Objective-C ARC, if the destination has non-trivial Objective-C
3906      // lifetime, this is a non-trivial assignment.
3907      if (Self.getLangOpts().ObjCAutoRefCount &&
3908          hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3909        return false;
3910
3911      return !Result.get()->hasNonTrivialCall(Self.Context);
3912    }
3913
3914    llvm_unreachable("unhandled type trait");
3915    return false;
3916  }
3917    default: llvm_unreachable("not a BTT");
3918  }
3919  llvm_unreachable("Unknown type trait or not implemented");
3920}
3921
3922ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3923                                     SourceLocation KWLoc,
3924                                     ParsedType Ty,
3925                                     Expr* DimExpr,
3926                                     SourceLocation RParen) {
3927  TypeSourceInfo *TSInfo;
3928  QualType T = GetTypeFromParser(Ty, &TSInfo);
3929  if (!TSInfo)
3930    TSInfo = Context.getTrivialTypeSourceInfo(T);
3931
3932  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3933}
3934
3935static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3936                                           QualType T, Expr *DimExpr,
3937                                           SourceLocation KeyLoc) {
3938  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3939
3940  switch(ATT) {
3941  case ATT_ArrayRank:
3942    if (T->isArrayType()) {
3943      unsigned Dim = 0;
3944      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3945        ++Dim;
3946        T = AT->getElementType();
3947      }
3948      return Dim;
3949    }
3950    return 0;
3951
3952  case ATT_ArrayExtent: {
3953    llvm::APSInt Value;
3954    uint64_t Dim;
3955    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3956          diag::err_dimension_expr_not_constant_integer,
3957          false).isInvalid())
3958      return 0;
3959    if (Value.isSigned() && Value.isNegative()) {
3960      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3961        << DimExpr->getSourceRange();
3962      return 0;
3963    }
3964    Dim = Value.getLimitedValue();
3965
3966    if (T->isArrayType()) {
3967      unsigned D = 0;
3968      bool Matched = false;
3969      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3970        if (Dim == D) {
3971          Matched = true;
3972          break;
3973        }
3974        ++D;
3975        T = AT->getElementType();
3976      }
3977
3978      if (Matched && T->isArrayType()) {
3979        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3980          return CAT->getSize().getLimitedValue();
3981      }
3982    }
3983    return 0;
3984  }
3985  }
3986  llvm_unreachable("Unknown type trait or not implemented");
3987}
3988
3989ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3990                                     SourceLocation KWLoc,
3991                                     TypeSourceInfo *TSInfo,
3992                                     Expr* DimExpr,
3993                                     SourceLocation RParen) {
3994  QualType T = TSInfo->getType();
3995
3996  // FIXME: This should likely be tracked as an APInt to remove any host
3997  // assumptions about the width of size_t on the target.
3998  uint64_t Value = 0;
3999  if (!T->isDependentType())
4000    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
4001
4002  // While the specification for these traits from the Embarcadero C++
4003  // compiler's documentation says the return type is 'unsigned int', Clang
4004  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
4005  // compiler, there is no difference. On several other platforms this is an
4006  // important distinction.
4007  return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr,
4008                                          RParen, Context.getSizeType());
4009}
4010
4011ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
4012                                      SourceLocation KWLoc,
4013                                      Expr *Queried,
4014                                      SourceLocation RParen) {
4015  // If error parsing the expression, ignore.
4016  if (!Queried)
4017    return ExprError();
4018
4019  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
4020
4021  return Result;
4022}
4023
4024static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
4025  switch (ET) {
4026  case ET_IsLValueExpr: return E->isLValue();
4027  case ET_IsRValueExpr: return E->isRValue();
4028  }
4029  llvm_unreachable("Expression trait not covered by switch");
4030}
4031
4032ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
4033                                      SourceLocation KWLoc,
4034                                      Expr *Queried,
4035                                      SourceLocation RParen) {
4036  if (Queried->isTypeDependent()) {
4037    // Delay type-checking for type-dependent expressions.
4038  } else if (Queried->getType()->isPlaceholderType()) {
4039    ExprResult PE = CheckPlaceholderExpr(Queried);
4040    if (PE.isInvalid()) return ExprError();
4041    return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen);
4042  }
4043
4044  bool Value = EvaluateExpressionTrait(ET, Queried);
4045
4046  return new (Context)
4047      ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy);
4048}
4049
4050QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
4051                                            ExprValueKind &VK,
4052                                            SourceLocation Loc,
4053                                            bool isIndirect) {
4054  assert(!LHS.get()->getType()->isPlaceholderType() &&
4055         !RHS.get()->getType()->isPlaceholderType() &&
4056         "placeholders should have been weeded out by now");
4057
4058  // The LHS undergoes lvalue conversions if this is ->*.
4059  if (isIndirect) {
4060    LHS = DefaultLvalueConversion(LHS.get());
4061    if (LHS.isInvalid()) return QualType();
4062  }
4063
4064  // The RHS always undergoes lvalue conversions.
4065  RHS = DefaultLvalueConversion(RHS.get());
4066  if (RHS.isInvalid()) return QualType();
4067
4068  const char *OpSpelling = isIndirect ? "->*" : ".*";
4069  // C++ 5.5p2
4070  //   The binary operator .* [p3: ->*] binds its second operand, which shall
4071  //   be of type "pointer to member of T" (where T is a completely-defined
4072  //   class type) [...]
4073  QualType RHSType = RHS.get()->getType();
4074  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
4075  if (!MemPtr) {
4076    Diag(Loc, diag::err_bad_memptr_rhs)
4077      << OpSpelling << RHSType << RHS.get()->getSourceRange();
4078    return QualType();
4079  }
4080
4081  QualType Class(MemPtr->getClass(), 0);
4082
4083  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
4084  // member pointer points must be completely-defined. However, there is no
4085  // reason for this semantic distinction, and the rule is not enforced by
4086  // other compilers. Therefore, we do not check this property, as it is
4087  // likely to be considered a defect.
4088
4089  // C++ 5.5p2
4090  //   [...] to its first operand, which shall be of class T or of a class of
4091  //   which T is an unambiguous and accessible base class. [p3: a pointer to
4092  //   such a class]
4093  QualType LHSType = LHS.get()->getType();
4094  if (isIndirect) {
4095    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
4096      LHSType = Ptr->getPointeeType();
4097    else {
4098      Diag(Loc, diag::err_bad_memptr_lhs)
4099        << OpSpelling << 1 << LHSType
4100        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
4101      return QualType();
4102    }
4103  }
4104
4105  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
4106    // If we want to check the hierarchy, we need a complete type.
4107    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
4108                            OpSpelling, (int)isIndirect)) {
4109      return QualType();
4110    }
4111
4112    if (!IsDerivedFrom(LHSType, Class)) {
4113      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
4114        << (int)isIndirect << LHS.get()->getType();
4115      return QualType();
4116    }
4117
4118    CXXCastPath BasePath;
4119    if (CheckDerivedToBaseConversion(LHSType, Class, Loc,
4120                                     SourceRange(LHS.get()->getLocStart(),
4121                                                 RHS.get()->getLocEnd()),
4122                                     &BasePath))
4123      return QualType();
4124
4125    // Cast LHS to type of use.
4126    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
4127    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
4128    LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK,
4129                            &BasePath);
4130  }
4131
4132  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
4133    // Diagnose use of pointer-to-member type which when used as
4134    // the functional cast in a pointer-to-member expression.
4135    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
4136     return QualType();
4137  }
4138
4139  // C++ 5.5p2
4140  //   The result is an object or a function of the type specified by the
4141  //   second operand.
4142  // The cv qualifiers are the union of those in the pointer and the left side,
4143  // in accordance with 5.5p5 and 5.2.5.
4144  QualType Result = MemPtr->getPointeeType();
4145  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
4146
4147  // C++0x [expr.mptr.oper]p6:
4148  //   In a .* expression whose object expression is an rvalue, the program is
4149  //   ill-formed if the second operand is a pointer to member function with
4150  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
4151  //   expression is an lvalue, the program is ill-formed if the second operand
4152  //   is a pointer to member function with ref-qualifier &&.
4153  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
4154    switch (Proto->getRefQualifier()) {
4155    case RQ_None:
4156      // Do nothing
4157      break;
4158
4159    case RQ_LValue:
4160      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
4161        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4162          << RHSType << 1 << LHS.get()->getSourceRange();
4163      break;
4164
4165    case RQ_RValue:
4166      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4167        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4168          << RHSType << 0 << LHS.get()->getSourceRange();
4169      break;
4170    }
4171  }
4172
4173  // C++ [expr.mptr.oper]p6:
4174  //   The result of a .* expression whose second operand is a pointer
4175  //   to a data member is of the same value category as its
4176  //   first operand. The result of a .* expression whose second
4177  //   operand is a pointer to a member function is a prvalue. The
4178  //   result of an ->* expression is an lvalue if its second operand
4179  //   is a pointer to data member and a prvalue otherwise.
4180  if (Result->isFunctionType()) {
4181    VK = VK_RValue;
4182    return Context.BoundMemberTy;
4183  } else if (isIndirect) {
4184    VK = VK_LValue;
4185  } else {
4186    VK = LHS.get()->getValueKind();
4187  }
4188
4189  return Result;
4190}
4191
4192/// \brief Try to convert a type to another according to C++0x 5.16p3.
4193///
4194/// This is part of the parameter validation for the ? operator. If either
4195/// value operand is a class type, the two operands are attempted to be
4196/// converted to each other. This function does the conversion in one direction.
4197/// It returns true if the program is ill-formed and has already been diagnosed
4198/// as such.
4199static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4200                                SourceLocation QuestionLoc,
4201                                bool &HaveConversion,
4202                                QualType &ToType) {
4203  HaveConversion = false;
4204  ToType = To->getType();
4205
4206  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4207                                                           SourceLocation());
4208  // C++0x 5.16p3
4209  //   The process for determining whether an operand expression E1 of type T1
4210  //   can be converted to match an operand expression E2 of type T2 is defined
4211  //   as follows:
4212  //   -- If E2 is an lvalue:
4213  bool ToIsLvalue = To->isLValue();
4214  if (ToIsLvalue) {
4215    //   E1 can be converted to match E2 if E1 can be implicitly converted to
4216    //   type "lvalue reference to T2", subject to the constraint that in the
4217    //   conversion the reference must bind directly to E1.
4218    QualType T = Self.Context.getLValueReferenceType(ToType);
4219    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4220
4221    InitializationSequence InitSeq(Self, Entity, Kind, From);
4222    if (InitSeq.isDirectReferenceBinding()) {
4223      ToType = T;
4224      HaveConversion = true;
4225      return false;
4226    }
4227
4228    if (InitSeq.isAmbiguous())
4229      return InitSeq.Diagnose(Self, Entity, Kind, From);
4230  }
4231
4232  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
4233  //      -- if E1 and E2 have class type, and the underlying class types are
4234  //         the same or one is a base class of the other:
4235  QualType FTy = From->getType();
4236  QualType TTy = To->getType();
4237  const RecordType *FRec = FTy->getAs<RecordType>();
4238  const RecordType *TRec = TTy->getAs<RecordType>();
4239  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4240                       Self.IsDerivedFrom(FTy, TTy);
4241  if (FRec && TRec &&
4242      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
4243    //         E1 can be converted to match E2 if the class of T2 is the
4244    //         same type as, or a base class of, the class of T1, and
4245    //         [cv2 > cv1].
4246    if (FRec == TRec || FDerivedFromT) {
4247      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4248        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4249        InitializationSequence InitSeq(Self, Entity, Kind, From);
4250        if (InitSeq) {
4251          HaveConversion = true;
4252          return false;
4253        }
4254
4255        if (InitSeq.isAmbiguous())
4256          return InitSeq.Diagnose(Self, Entity, Kind, From);
4257      }
4258    }
4259
4260    return false;
4261  }
4262
4263  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4264  //        implicitly converted to the type that expression E2 would have
4265  //        if E2 were converted to an rvalue (or the type it has, if E2 is
4266  //        an rvalue).
4267  //
4268  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4269  // to the array-to-pointer or function-to-pointer conversions.
4270  if (!TTy->getAs<TagType>())
4271    TTy = TTy.getUnqualifiedType();
4272
4273  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4274  InitializationSequence InitSeq(Self, Entity, Kind, From);
4275  HaveConversion = !InitSeq.Failed();
4276  ToType = TTy;
4277  if (InitSeq.isAmbiguous())
4278    return InitSeq.Diagnose(Self, Entity, Kind, From);
4279
4280  return false;
4281}
4282
4283/// \brief Try to find a common type for two according to C++0x 5.16p5.
4284///
4285/// This is part of the parameter validation for the ? operator. If either
4286/// value operand is a class type, overload resolution is used to find a
4287/// conversion to a common type.
4288static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4289                                    SourceLocation QuestionLoc) {
4290  Expr *Args[2] = { LHS.get(), RHS.get() };
4291  OverloadCandidateSet CandidateSet(QuestionLoc,
4292                                    OverloadCandidateSet::CSK_Operator);
4293  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4294                                    CandidateSet);
4295
4296  OverloadCandidateSet::iterator Best;
4297  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4298    case OR_Success: {
4299      // We found a match. Perform the conversions on the arguments and move on.
4300      ExprResult LHSRes =
4301        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4302                                       Best->Conversions[0], Sema::AA_Converting);
4303      if (LHSRes.isInvalid())
4304        break;
4305      LHS = LHSRes;
4306
4307      ExprResult RHSRes =
4308        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4309                                       Best->Conversions[1], Sema::AA_Converting);
4310      if (RHSRes.isInvalid())
4311        break;
4312      RHS = RHSRes;
4313      if (Best->Function)
4314        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4315      return false;
4316    }
4317
4318    case OR_No_Viable_Function:
4319
4320      // Emit a better diagnostic if one of the expressions is a null pointer
4321      // constant and the other is a pointer type. In this case, the user most
4322      // likely forgot to take the address of the other expression.
4323      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4324        return true;
4325
4326      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4327        << LHS.get()->getType() << RHS.get()->getType()
4328        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4329      return true;
4330
4331    case OR_Ambiguous:
4332      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4333        << LHS.get()->getType() << RHS.get()->getType()
4334        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4335      // FIXME: Print the possible common types by printing the return types of
4336      // the viable candidates.
4337      break;
4338
4339    case OR_Deleted:
4340      llvm_unreachable("Conditional operator has only built-in overloads");
4341  }
4342  return true;
4343}
4344
4345/// \brief Perform an "extended" implicit conversion as returned by
4346/// TryClassUnification.
4347static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4348  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4349  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4350                                                           SourceLocation());
4351  Expr *Arg = E.get();
4352  InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4353  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4354  if (Result.isInvalid())
4355    return true;
4356
4357  E = Result;
4358  return false;
4359}
4360
4361/// \brief Check the operands of ?: under C++ semantics.
4362///
4363/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4364/// extension. In this case, LHS == Cond. (But they're not aliases.)
4365QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4366                                           ExprResult &RHS, ExprValueKind &VK,
4367                                           ExprObjectKind &OK,
4368                                           SourceLocation QuestionLoc) {
4369  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4370  // interface pointers.
4371
4372  // C++11 [expr.cond]p1
4373  //   The first expression is contextually converted to bool.
4374  if (!Cond.get()->isTypeDependent()) {
4375    ExprResult CondRes = CheckCXXBooleanCondition(Cond.get());
4376    if (CondRes.isInvalid())
4377      return QualType();
4378    Cond = CondRes;
4379  }
4380
4381  // Assume r-value.
4382  VK = VK_RValue;
4383  OK = OK_Ordinary;
4384
4385  // Either of the arguments dependent?
4386  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4387    return Context.DependentTy;
4388
4389  // C++11 [expr.cond]p2
4390  //   If either the second or the third operand has type (cv) void, ...
4391  QualType LTy = LHS.get()->getType();
4392  QualType RTy = RHS.get()->getType();
4393  bool LVoid = LTy->isVoidType();
4394  bool RVoid = RTy->isVoidType();
4395  if (LVoid || RVoid) {
4396    //   ... one of the following shall hold:
4397    //   -- The second or the third operand (but not both) is a (possibly
4398    //      parenthesized) throw-expression; the result is of the type
4399    //      and value category of the other.
4400    bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts());
4401    bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts());
4402    if (LThrow != RThrow) {
4403      Expr *NonThrow = LThrow ? RHS.get() : LHS.get();
4404      VK = NonThrow->getValueKind();
4405      // DR (no number yet): the result is a bit-field if the
4406      // non-throw-expression operand is a bit-field.
4407      OK = NonThrow->getObjectKind();
4408      return NonThrow->getType();
4409    }
4410
4411    //   -- Both the second and third operands have type void; the result is of
4412    //      type void and is a prvalue.
4413    if (LVoid && RVoid)
4414      return Context.VoidTy;
4415
4416    // Neither holds, error.
4417    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4418      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4419      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4420    return QualType();
4421  }
4422
4423  // Neither is void.
4424
4425  // C++11 [expr.cond]p3
4426  //   Otherwise, if the second and third operand have different types, and
4427  //   either has (cv) class type [...] an attempt is made to convert each of
4428  //   those operands to the type of the other.
4429  if (!Context.hasSameType(LTy, RTy) &&
4430      (LTy->isRecordType() || RTy->isRecordType())) {
4431    // These return true if a single direction is already ambiguous.
4432    QualType L2RType, R2LType;
4433    bool HaveL2R, HaveR2L;
4434    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4435      return QualType();
4436    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4437      return QualType();
4438
4439    //   If both can be converted, [...] the program is ill-formed.
4440    if (HaveL2R && HaveR2L) {
4441      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4442        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4443      return QualType();
4444    }
4445
4446    //   If exactly one conversion is possible, that conversion is applied to
4447    //   the chosen operand and the converted operands are used in place of the
4448    //   original operands for the remainder of this section.
4449    if (HaveL2R) {
4450      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4451        return QualType();
4452      LTy = LHS.get()->getType();
4453    } else if (HaveR2L) {
4454      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4455        return QualType();
4456      RTy = RHS.get()->getType();
4457    }
4458  }
4459
4460  // C++11 [expr.cond]p3
4461  //   if both are glvalues of the same value category and the same type except
4462  //   for cv-qualification, an attempt is made to convert each of those
4463  //   operands to the type of the other.
4464  ExprValueKind LVK = LHS.get()->getValueKind();
4465  ExprValueKind RVK = RHS.get()->getValueKind();
4466  if (!Context.hasSameType(LTy, RTy) &&
4467      Context.hasSameUnqualifiedType(LTy, RTy) &&
4468      LVK == RVK && LVK != VK_RValue) {
4469    // Since the unqualified types are reference-related and we require the
4470    // result to be as if a reference bound directly, the only conversion
4471    // we can perform is to add cv-qualifiers.
4472    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4473    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4474    if (RCVR.isStrictSupersetOf(LCVR)) {
4475      LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK);
4476      LTy = LHS.get()->getType();
4477    }
4478    else if (LCVR.isStrictSupersetOf(RCVR)) {
4479      RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK);
4480      RTy = RHS.get()->getType();
4481    }
4482  }
4483
4484  // C++11 [expr.cond]p4
4485  //   If the second and third operands are glvalues of the same value
4486  //   category and have the same type, the result is of that type and
4487  //   value category and it is a bit-field if the second or the third
4488  //   operand is a bit-field, or if both are bit-fields.
4489  // We only extend this to bitfields, not to the crazy other kinds of
4490  // l-values.
4491  bool Same = Context.hasSameType(LTy, RTy);
4492  if (Same && LVK == RVK && LVK != VK_RValue &&
4493      LHS.get()->isOrdinaryOrBitFieldObject() &&
4494      RHS.get()->isOrdinaryOrBitFieldObject()) {
4495    VK = LHS.get()->getValueKind();
4496    if (LHS.get()->getObjectKind() == OK_BitField ||
4497        RHS.get()->getObjectKind() == OK_BitField)
4498      OK = OK_BitField;
4499    return LTy;
4500  }
4501
4502  // C++11 [expr.cond]p5
4503  //   Otherwise, the result is a prvalue. If the second and third operands
4504  //   do not have the same type, and either has (cv) class type, ...
4505  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4506    //   ... overload resolution is used to determine the conversions (if any)
4507    //   to be applied to the operands. If the overload resolution fails, the
4508    //   program is ill-formed.
4509    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4510      return QualType();
4511  }
4512
4513  // C++11 [expr.cond]p6
4514  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4515  //   conversions are performed on the second and third operands.
4516  LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
4517  RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
4518  if (LHS.isInvalid() || RHS.isInvalid())
4519    return QualType();
4520  LTy = LHS.get()->getType();
4521  RTy = RHS.get()->getType();
4522
4523  //   After those conversions, one of the following shall hold:
4524  //   -- The second and third operands have the same type; the result
4525  //      is of that type. If the operands have class type, the result
4526  //      is a prvalue temporary of the result type, which is
4527  //      copy-initialized from either the second operand or the third
4528  //      operand depending on the value of the first operand.
4529  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4530    if (LTy->isRecordType()) {
4531      // The operands have class type. Make a temporary copy.
4532      if (RequireNonAbstractType(QuestionLoc, LTy,
4533                                 diag::err_allocation_of_abstract_type))
4534        return QualType();
4535      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4536
4537      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4538                                                     SourceLocation(),
4539                                                     LHS);
4540      if (LHSCopy.isInvalid())
4541        return QualType();
4542
4543      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4544                                                     SourceLocation(),
4545                                                     RHS);
4546      if (RHSCopy.isInvalid())
4547        return QualType();
4548
4549      LHS = LHSCopy;
4550      RHS = RHSCopy;
4551    }
4552
4553    return LTy;
4554  }
4555
4556  // Extension: conditional operator involving vector types.
4557  if (LTy->isVectorType() || RTy->isVectorType())
4558    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4559
4560  //   -- The second and third operands have arithmetic or enumeration type;
4561  //      the usual arithmetic conversions are performed to bring them to a
4562  //      common type, and the result is of that type.
4563  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4564    UsualArithmeticConversions(LHS, RHS);
4565    if (LHS.isInvalid() || RHS.isInvalid())
4566      return QualType();
4567    return LHS.get()->getType();
4568  }
4569
4570  //   -- The second and third operands have pointer type, or one has pointer
4571  //      type and the other is a null pointer constant, or both are null
4572  //      pointer constants, at least one of which is non-integral; pointer
4573  //      conversions and qualification conversions are performed to bring them
4574  //      to their composite pointer type. The result is of the composite
4575  //      pointer type.
4576  //   -- The second and third operands have pointer to member type, or one has
4577  //      pointer to member type and the other is a null pointer constant;
4578  //      pointer to member conversions and qualification conversions are
4579  //      performed to bring them to a common type, whose cv-qualification
4580  //      shall match the cv-qualification of either the second or the third
4581  //      operand. The result is of the common type.
4582  bool NonStandardCompositeType = false;
4583  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4584                                 isSFINAEContext() ? nullptr
4585                                                   : &NonStandardCompositeType);
4586  if (!Composite.isNull()) {
4587    if (NonStandardCompositeType)
4588      Diag(QuestionLoc,
4589           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4590        << LTy << RTy << Composite
4591        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4592
4593    return Composite;
4594  }
4595
4596  // Similarly, attempt to find composite type of two objective-c pointers.
4597  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4598  if (!Composite.isNull())
4599    return Composite;
4600
4601  // Check if we are using a null with a non-pointer type.
4602  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4603    return QualType();
4604
4605  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4606    << LHS.get()->getType() << RHS.get()->getType()
4607    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4608  return QualType();
4609}
4610
4611/// \brief Find a merged pointer type and convert the two expressions to it.
4612///
4613/// This finds the composite pointer type (or member pointer type) for @p E1
4614/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4615/// type and returns it.
4616/// It does not emit diagnostics.
4617///
4618/// \param Loc The location of the operator requiring these two expressions to
4619/// be converted to the composite pointer type.
4620///
4621/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4622/// a non-standard (but still sane) composite type to which both expressions
4623/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4624/// will be set true.
4625QualType Sema::FindCompositePointerType(SourceLocation Loc,
4626                                        Expr *&E1, Expr *&E2,
4627                                        bool *NonStandardCompositeType) {
4628  if (NonStandardCompositeType)
4629    *NonStandardCompositeType = false;
4630
4631  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4632  QualType T1 = E1->getType(), T2 = E2->getType();
4633
4634  // C++11 5.9p2
4635  //   Pointer conversions and qualification conversions are performed on
4636  //   pointer operands to bring them to their composite pointer type. If
4637  //   one operand is a null pointer constant, the composite pointer type is
4638  //   std::nullptr_t if the other operand is also a null pointer constant or,
4639  //   if the other operand is a pointer, the type of the other operand.
4640  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4641      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4642    if (T1->isNullPtrType() &&
4643        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4644      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
4645      return T1;
4646    }
4647    if (T2->isNullPtrType() &&
4648        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4649      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
4650      return T2;
4651    }
4652    return QualType();
4653  }
4654
4655  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4656    if (T2->isMemberPointerType())
4657      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get();
4658    else
4659      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get();
4660    return T2;
4661  }
4662  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4663    if (T1->isMemberPointerType())
4664      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get();
4665    else
4666      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get();
4667    return T1;
4668  }
4669
4670  // Now both have to be pointers or member pointers.
4671  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4672      (!T2->isPointerType() && !T2->isMemberPointerType()))
4673    return QualType();
4674
4675  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4676  //   the other has type "pointer to cv2 T" and the composite pointer type is
4677  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4678  //   Otherwise, the composite pointer type is a pointer type similar to the
4679  //   type of one of the operands, with a cv-qualification signature that is
4680  //   the union of the cv-qualification signatures of the operand types.
4681  // In practice, the first part here is redundant; it's subsumed by the second.
4682  // What we do here is, we build the two possible composite types, and try the
4683  // conversions in both directions. If only one works, or if the two composite
4684  // types are the same, we have succeeded.
4685  // FIXME: extended qualifiers?
4686  typedef SmallVector<unsigned, 4> QualifierVector;
4687  QualifierVector QualifierUnion;
4688  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4689      ContainingClassVector;
4690  ContainingClassVector MemberOfClass;
4691  QualType Composite1 = Context.getCanonicalType(T1),
4692           Composite2 = Context.getCanonicalType(T2);
4693  unsigned NeedConstBefore = 0;
4694  do {
4695    const PointerType *Ptr1, *Ptr2;
4696    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4697        (Ptr2 = Composite2->getAs<PointerType>())) {
4698      Composite1 = Ptr1->getPointeeType();
4699      Composite2 = Ptr2->getPointeeType();
4700
4701      // If we're allowed to create a non-standard composite type, keep track
4702      // of where we need to fill in additional 'const' qualifiers.
4703      if (NonStandardCompositeType &&
4704          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4705        NeedConstBefore = QualifierUnion.size();
4706
4707      QualifierUnion.push_back(
4708                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4709      MemberOfClass.push_back(std::make_pair(nullptr, nullptr));
4710      continue;
4711    }
4712
4713    const MemberPointerType *MemPtr1, *MemPtr2;
4714    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4715        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4716      Composite1 = MemPtr1->getPointeeType();
4717      Composite2 = MemPtr2->getPointeeType();
4718
4719      // If we're allowed to create a non-standard composite type, keep track
4720      // of where we need to fill in additional 'const' qualifiers.
4721      if (NonStandardCompositeType &&
4722          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4723        NeedConstBefore = QualifierUnion.size();
4724
4725      QualifierUnion.push_back(
4726                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4727      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4728                                             MemPtr2->getClass()));
4729      continue;
4730    }
4731
4732    // FIXME: block pointer types?
4733
4734    // Cannot unwrap any more types.
4735    break;
4736  } while (true);
4737
4738  if (NeedConstBefore && NonStandardCompositeType) {
4739    // Extension: Add 'const' to qualifiers that come before the first qualifier
4740    // mismatch, so that our (non-standard!) composite type meets the
4741    // requirements of C++ [conv.qual]p4 bullet 3.
4742    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4743      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4744        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4745        *NonStandardCompositeType = true;
4746      }
4747    }
4748  }
4749
4750  // Rewrap the composites as pointers or member pointers with the union CVRs.
4751  ContainingClassVector::reverse_iterator MOC
4752    = MemberOfClass.rbegin();
4753  for (QualifierVector::reverse_iterator
4754         I = QualifierUnion.rbegin(),
4755         E = QualifierUnion.rend();
4756       I != E; (void)++I, ++MOC) {
4757    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4758    if (MOC->first && MOC->second) {
4759      // Rebuild member pointer type
4760      Composite1 = Context.getMemberPointerType(
4761                                    Context.getQualifiedType(Composite1, Quals),
4762                                    MOC->first);
4763      Composite2 = Context.getMemberPointerType(
4764                                    Context.getQualifiedType(Composite2, Quals),
4765                                    MOC->second);
4766    } else {
4767      // Rebuild pointer type
4768      Composite1
4769        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4770      Composite2
4771        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4772    }
4773  }
4774
4775  // Try to convert to the first composite pointer type.
4776  InitializedEntity Entity1
4777    = InitializedEntity::InitializeTemporary(Composite1);
4778  InitializationKind Kind
4779    = InitializationKind::CreateCopy(Loc, SourceLocation());
4780  InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
4781  InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
4782
4783  if (E1ToC1 && E2ToC1) {
4784    // Conversion to Composite1 is viable.
4785    if (!Context.hasSameType(Composite1, Composite2)) {
4786      // Composite2 is a different type from Composite1. Check whether
4787      // Composite2 is also viable.
4788      InitializedEntity Entity2
4789        = InitializedEntity::InitializeTemporary(Composite2);
4790      InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4791      InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4792      if (E1ToC2 && E2ToC2) {
4793        // Both Composite1 and Composite2 are viable and are different;
4794        // this is an ambiguity.
4795        return QualType();
4796      }
4797    }
4798
4799    // Convert E1 to Composite1
4800    ExprResult E1Result
4801      = E1ToC1.Perform(*this, Entity1, Kind, E1);
4802    if (E1Result.isInvalid())
4803      return QualType();
4804    E1 = E1Result.getAs<Expr>();
4805
4806    // Convert E2 to Composite1
4807    ExprResult E2Result
4808      = E2ToC1.Perform(*this, Entity1, Kind, E2);
4809    if (E2Result.isInvalid())
4810      return QualType();
4811    E2 = E2Result.getAs<Expr>();
4812
4813    return Composite1;
4814  }
4815
4816  // Check whether Composite2 is viable.
4817  InitializedEntity Entity2
4818    = InitializedEntity::InitializeTemporary(Composite2);
4819  InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4820  InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4821  if (!E1ToC2 || !E2ToC2)
4822    return QualType();
4823
4824  // Convert E1 to Composite2
4825  ExprResult E1Result
4826    = E1ToC2.Perform(*this, Entity2, Kind, E1);
4827  if (E1Result.isInvalid())
4828    return QualType();
4829  E1 = E1Result.getAs<Expr>();
4830
4831  // Convert E2 to Composite2
4832  ExprResult E2Result
4833    = E2ToC2.Perform(*this, Entity2, Kind, E2);
4834  if (E2Result.isInvalid())
4835    return QualType();
4836  E2 = E2Result.getAs<Expr>();
4837
4838  return Composite2;
4839}
4840
4841ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4842  if (!E)
4843    return ExprError();
4844
4845  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4846
4847  // If the result is a glvalue, we shouldn't bind it.
4848  if (!E->isRValue())
4849    return E;
4850
4851  // In ARC, calls that return a retainable type can return retained,
4852  // in which case we have to insert a consuming cast.
4853  if (getLangOpts().ObjCAutoRefCount &&
4854      E->getType()->isObjCRetainableType()) {
4855
4856    bool ReturnsRetained;
4857
4858    // For actual calls, we compute this by examining the type of the
4859    // called value.
4860    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4861      Expr *Callee = Call->getCallee()->IgnoreParens();
4862      QualType T = Callee->getType();
4863
4864      if (T == Context.BoundMemberTy) {
4865        // Handle pointer-to-members.
4866        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4867          T = BinOp->getRHS()->getType();
4868        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4869          T = Mem->getMemberDecl()->getType();
4870      }
4871
4872      if (const PointerType *Ptr = T->getAs<PointerType>())
4873        T = Ptr->getPointeeType();
4874      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4875        T = Ptr->getPointeeType();
4876      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4877        T = MemPtr->getPointeeType();
4878
4879      const FunctionType *FTy = T->getAs<FunctionType>();
4880      assert(FTy && "call to value not of function type?");
4881      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4882
4883    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4884    // type always produce a +1 object.
4885    } else if (isa<StmtExpr>(E)) {
4886      ReturnsRetained = true;
4887
4888    // We hit this case with the lambda conversion-to-block optimization;
4889    // we don't want any extra casts here.
4890    } else if (isa<CastExpr>(E) &&
4891               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4892      return E;
4893
4894    // For message sends and property references, we try to find an
4895    // actual method.  FIXME: we should infer retention by selector in
4896    // cases where we don't have an actual method.
4897    } else {
4898      ObjCMethodDecl *D = nullptr;
4899      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4900        D = Send->getMethodDecl();
4901      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4902        D = BoxedExpr->getBoxingMethod();
4903      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4904        D = ArrayLit->getArrayWithObjectsMethod();
4905      } else if (ObjCDictionaryLiteral *DictLit
4906                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4907        D = DictLit->getDictWithObjectsMethod();
4908      }
4909
4910      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4911
4912      // Don't do reclaims on performSelector calls; despite their
4913      // return type, the invoked method doesn't necessarily actually
4914      // return an object.
4915      if (!ReturnsRetained &&
4916          D && D->getMethodFamily() == OMF_performSelector)
4917        return E;
4918    }
4919
4920    // Don't reclaim an object of Class type.
4921    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4922      return E;
4923
4924    ExprNeedsCleanups = true;
4925
4926    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4927                                   : CK_ARCReclaimReturnedObject);
4928    return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr,
4929                                    VK_RValue);
4930  }
4931
4932  if (!getLangOpts().CPlusPlus)
4933    return E;
4934
4935  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4936  // a fast path for the common case that the type is directly a RecordType.
4937  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4938  const RecordType *RT = nullptr;
4939  while (!RT) {
4940    switch (T->getTypeClass()) {
4941    case Type::Record:
4942      RT = cast<RecordType>(T);
4943      break;
4944    case Type::ConstantArray:
4945    case Type::IncompleteArray:
4946    case Type::VariableArray:
4947    case Type::DependentSizedArray:
4948      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4949      break;
4950    default:
4951      return E;
4952    }
4953  }
4954
4955  // That should be enough to guarantee that this type is complete, if we're
4956  // not processing a decltype expression.
4957  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4958  if (RD->isInvalidDecl() || RD->isDependentContext())
4959    return E;
4960
4961  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4962  CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD);
4963
4964  if (Destructor) {
4965    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4966    CheckDestructorAccess(E->getExprLoc(), Destructor,
4967                          PDiag(diag::err_access_dtor_temp)
4968                            << E->getType());
4969    if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
4970      return ExprError();
4971
4972    // If destructor is trivial, we can avoid the extra copy.
4973    if (Destructor->isTrivial())
4974      return E;
4975
4976    // We need a cleanup, but we don't need to remember the temporary.
4977    ExprNeedsCleanups = true;
4978  }
4979
4980  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4981  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4982
4983  if (IsDecltype)
4984    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4985
4986  return Bind;
4987}
4988
4989ExprResult
4990Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4991  if (SubExpr.isInvalid())
4992    return ExprError();
4993
4994  return MaybeCreateExprWithCleanups(SubExpr.get());
4995}
4996
4997Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4998  assert(SubExpr && "subexpression can't be null!");
4999
5000  CleanupVarDeclMarking();
5001
5002  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
5003  assert(ExprCleanupObjects.size() >= FirstCleanup);
5004  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
5005  if (!ExprNeedsCleanups)
5006    return SubExpr;
5007
5008  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
5009    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
5010                         ExprCleanupObjects.size() - FirstCleanup);
5011
5012  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
5013  DiscardCleanupsInEvaluationContext();
5014
5015  return E;
5016}
5017
5018Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
5019  assert(SubStmt && "sub-statement can't be null!");
5020
5021  CleanupVarDeclMarking();
5022
5023  if (!ExprNeedsCleanups)
5024    return SubStmt;
5025
5026  // FIXME: In order to attach the temporaries, wrap the statement into
5027  // a StmtExpr; currently this is only used for asm statements.
5028  // This is hacky, either create a new CXXStmtWithTemporaries statement or
5029  // a new AsmStmtWithTemporaries.
5030  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
5031                                                      SourceLocation(),
5032                                                      SourceLocation());
5033  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
5034                                   SourceLocation());
5035  return MaybeCreateExprWithCleanups(E);
5036}
5037
5038/// Process the expression contained within a decltype. For such expressions,
5039/// certain semantic checks on temporaries are delayed until this point, and
5040/// are omitted for the 'topmost' call in the decltype expression. If the
5041/// topmost call bound a temporary, strip that temporary off the expression.
5042ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
5043  assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
5044
5045  // C++11 [expr.call]p11:
5046  //   If a function call is a prvalue of object type,
5047  // -- if the function call is either
5048  //   -- the operand of a decltype-specifier, or
5049  //   -- the right operand of a comma operator that is the operand of a
5050  //      decltype-specifier,
5051  //   a temporary object is not introduced for the prvalue.
5052
5053  // Recursively rebuild ParenExprs and comma expressions to strip out the
5054  // outermost CXXBindTemporaryExpr, if any.
5055  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
5056    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
5057    if (SubExpr.isInvalid())
5058      return ExprError();
5059    if (SubExpr.get() == PE->getSubExpr())
5060      return E;
5061    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get());
5062  }
5063  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5064    if (BO->getOpcode() == BO_Comma) {
5065      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
5066      if (RHS.isInvalid())
5067        return ExprError();
5068      if (RHS.get() == BO->getRHS())
5069        return E;
5070      return new (Context) BinaryOperator(
5071          BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(),
5072          BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable());
5073    }
5074  }
5075
5076  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
5077  CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr())
5078                              : nullptr;
5079  if (TopCall)
5080    E = TopCall;
5081  else
5082    TopBind = nullptr;
5083
5084  // Disable the special decltype handling now.
5085  ExprEvalContexts.back().IsDecltype = false;
5086
5087  // In MS mode, don't perform any extra checking of call return types within a
5088  // decltype expression.
5089  if (getLangOpts().MSVCCompat)
5090    return E;
5091
5092  // Perform the semantic checks we delayed until this point.
5093  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
5094       I != N; ++I) {
5095    CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
5096    if (Call == TopCall)
5097      continue;
5098
5099    if (CheckCallReturnType(Call->getCallReturnType(),
5100                            Call->getLocStart(),
5101                            Call, Call->getDirectCallee()))
5102      return ExprError();
5103  }
5104
5105  // Now all relevant types are complete, check the destructors are accessible
5106  // and non-deleted, and annotate them on the temporaries.
5107  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
5108       I != N; ++I) {
5109    CXXBindTemporaryExpr *Bind =
5110      ExprEvalContexts.back().DelayedDecltypeBinds[I];
5111    if (Bind == TopBind)
5112      continue;
5113
5114    CXXTemporary *Temp = Bind->getTemporary();
5115
5116    CXXRecordDecl *RD =
5117      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
5118    CXXDestructorDecl *Destructor = LookupDestructor(RD);
5119    Temp->setDestructor(Destructor);
5120
5121    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
5122    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
5123                          PDiag(diag::err_access_dtor_temp)
5124                            << Bind->getType());
5125    if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
5126      return ExprError();
5127
5128    // We need a cleanup, but we don't need to remember the temporary.
5129    ExprNeedsCleanups = true;
5130  }
5131
5132  // Possibly strip off the top CXXBindTemporaryExpr.
5133  return E;
5134}
5135
5136/// Note a set of 'operator->' functions that were used for a member access.
5137static void noteOperatorArrows(Sema &S,
5138                               ArrayRef<FunctionDecl *> OperatorArrows) {
5139  unsigned SkipStart = OperatorArrows.size(), SkipCount = 0;
5140  // FIXME: Make this configurable?
5141  unsigned Limit = 9;
5142  if (OperatorArrows.size() > Limit) {
5143    // Produce Limit-1 normal notes and one 'skipping' note.
5144    SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2;
5145    SkipCount = OperatorArrows.size() - (Limit - 1);
5146  }
5147
5148  for (unsigned I = 0; I < OperatorArrows.size(); /**/) {
5149    if (I == SkipStart) {
5150      S.Diag(OperatorArrows[I]->getLocation(),
5151             diag::note_operator_arrows_suppressed)
5152          << SkipCount;
5153      I += SkipCount;
5154    } else {
5155      S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here)
5156          << OperatorArrows[I]->getCallResultType();
5157      ++I;
5158    }
5159  }
5160}
5161
5162ExprResult
5163Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
5164                                   tok::TokenKind OpKind, ParsedType &ObjectType,
5165                                   bool &MayBePseudoDestructor) {
5166  // Since this might be a postfix expression, get rid of ParenListExprs.
5167  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5168  if (Result.isInvalid()) return ExprError();
5169  Base = Result.get();
5170
5171  Result = CheckPlaceholderExpr(Base);
5172  if (Result.isInvalid()) return ExprError();
5173  Base = Result.get();
5174
5175  QualType BaseType = Base->getType();
5176  MayBePseudoDestructor = false;
5177  if (BaseType->isDependentType()) {
5178    // If we have a pointer to a dependent type and are using the -> operator,
5179    // the object type is the type that the pointer points to. We might still
5180    // have enough information about that type to do something useful.
5181    if (OpKind == tok::arrow)
5182      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5183        BaseType = Ptr->getPointeeType();
5184
5185    ObjectType = ParsedType::make(BaseType);
5186    MayBePseudoDestructor = true;
5187    return Base;
5188  }
5189
5190  // C++ [over.match.oper]p8:
5191  //   [...] When operator->returns, the operator-> is applied  to the value
5192  //   returned, with the original second operand.
5193  if (OpKind == tok::arrow) {
5194    QualType StartingType = BaseType;
5195    bool NoArrowOperatorFound = false;
5196    bool FirstIteration = true;
5197    FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext);
5198    // The set of types we've considered so far.
5199    llvm::SmallPtrSet<CanQualType,8> CTypes;
5200    SmallVector<FunctionDecl*, 8> OperatorArrows;
5201    CTypes.insert(Context.getCanonicalType(BaseType));
5202
5203    while (BaseType->isRecordType()) {
5204      if (OperatorArrows.size() >= getLangOpts().ArrowDepth) {
5205        Diag(OpLoc, diag::err_operator_arrow_depth_exceeded)
5206          << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange();
5207        noteOperatorArrows(*this, OperatorArrows);
5208        Diag(OpLoc, diag::note_operator_arrow_depth)
5209          << getLangOpts().ArrowDepth;
5210        return ExprError();
5211      }
5212
5213      Result = BuildOverloadedArrowExpr(
5214          S, Base, OpLoc,
5215          // When in a template specialization and on the first loop iteration,
5216          // potentially give the default diagnostic (with the fixit in a
5217          // separate note) instead of having the error reported back to here
5218          // and giving a diagnostic with a fixit attached to the error itself.
5219          (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization())
5220              ? nullptr
5221              : &NoArrowOperatorFound);
5222      if (Result.isInvalid()) {
5223        if (NoArrowOperatorFound) {
5224          if (FirstIteration) {
5225            Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5226              << BaseType << 1 << Base->getSourceRange()
5227              << FixItHint::CreateReplacement(OpLoc, ".");
5228            OpKind = tok::period;
5229            break;
5230          }
5231          Diag(OpLoc, diag::err_typecheck_member_reference_arrow)
5232            << BaseType << Base->getSourceRange();
5233          CallExpr *CE = dyn_cast<CallExpr>(Base);
5234          if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) {
5235            Diag(CD->getLocStart(),
5236                 diag::note_member_reference_arrow_from_operator_arrow);
5237          }
5238        }
5239        return ExprError();
5240      }
5241      Base = Result.get();
5242      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5243        OperatorArrows.push_back(OpCall->getDirectCallee());
5244      BaseType = Base->getType();
5245      CanQualType CBaseType = Context.getCanonicalType(BaseType);
5246      if (!CTypes.insert(CBaseType)) {
5247        Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType;
5248        noteOperatorArrows(*this, OperatorArrows);
5249        return ExprError();
5250      }
5251      FirstIteration = false;
5252    }
5253
5254    if (OpKind == tok::arrow &&
5255        (BaseType->isPointerType() || BaseType->isObjCObjectPointerType()))
5256      BaseType = BaseType->getPointeeType();
5257  }
5258
5259  // Objective-C properties allow "." access on Objective-C pointer types,
5260  // so adjust the base type to the object type itself.
5261  if (BaseType->isObjCObjectPointerType())
5262    BaseType = BaseType->getPointeeType();
5263
5264  // C++ [basic.lookup.classref]p2:
5265  //   [...] If the type of the object expression is of pointer to scalar
5266  //   type, the unqualified-id is looked up in the context of the complete
5267  //   postfix-expression.
5268  //
5269  // This also indicates that we could be parsing a pseudo-destructor-name.
5270  // Note that Objective-C class and object types can be pseudo-destructor
5271  // expressions or normal member (ivar or property) access expressions.
5272  if (BaseType->isObjCObjectOrInterfaceType()) {
5273    MayBePseudoDestructor = true;
5274  } else if (!BaseType->isRecordType()) {
5275    ObjectType = ParsedType();
5276    MayBePseudoDestructor = true;
5277    return Base;
5278  }
5279
5280  // The object type must be complete (or dependent), or
5281  // C++11 [expr.prim.general]p3:
5282  //   Unlike the object expression in other contexts, *this is not required to
5283  //   be of complete type for purposes of class member access (5.2.5) outside
5284  //   the member function body.
5285  if (!BaseType->isDependentType() &&
5286      !isThisOutsideMemberFunctionBody(BaseType) &&
5287      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5288    return ExprError();
5289
5290  // C++ [basic.lookup.classref]p2:
5291  //   If the id-expression in a class member access (5.2.5) is an
5292  //   unqualified-id, and the type of the object expression is of a class
5293  //   type C (or of pointer to a class type C), the unqualified-id is looked
5294  //   up in the scope of class C. [...]
5295  ObjectType = ParsedType::make(BaseType);
5296  return Base;
5297}
5298
5299ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
5300                                                   Expr *MemExpr) {
5301  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
5302  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
5303    << isa<CXXPseudoDestructorExpr>(MemExpr)
5304    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
5305
5306  return ActOnCallExpr(/*Scope*/ nullptr,
5307                       MemExpr,
5308                       /*LPLoc*/ ExpectedLParenLoc,
5309                       None,
5310                       /*RPLoc*/ ExpectedLParenLoc);
5311}
5312
5313static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5314                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
5315  if (Base->hasPlaceholderType()) {
5316    ExprResult result = S.CheckPlaceholderExpr(Base);
5317    if (result.isInvalid()) return true;
5318    Base = result.get();
5319  }
5320  ObjectType = Base->getType();
5321
5322  // C++ [expr.pseudo]p2:
5323  //   The left-hand side of the dot operator shall be of scalar type. The
5324  //   left-hand side of the arrow operator shall be of pointer to scalar type.
5325  //   This scalar type is the object type.
5326  // Note that this is rather different from the normal handling for the
5327  // arrow operator.
5328  if (OpKind == tok::arrow) {
5329    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5330      ObjectType = Ptr->getPointeeType();
5331    } else if (!Base->isTypeDependent()) {
5332      // The user wrote "p->" when she probably meant "p."; fix it.
5333      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5334        << ObjectType << true
5335        << FixItHint::CreateReplacement(OpLoc, ".");
5336      if (S.isSFINAEContext())
5337        return true;
5338
5339      OpKind = tok::period;
5340    }
5341  }
5342
5343  return false;
5344}
5345
5346ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5347                                           SourceLocation OpLoc,
5348                                           tok::TokenKind OpKind,
5349                                           const CXXScopeSpec &SS,
5350                                           TypeSourceInfo *ScopeTypeInfo,
5351                                           SourceLocation CCLoc,
5352                                           SourceLocation TildeLoc,
5353                                         PseudoDestructorTypeStorage Destructed,
5354                                           bool HasTrailingLParen) {
5355  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5356
5357  QualType ObjectType;
5358  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5359    return ExprError();
5360
5361  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5362      !ObjectType->isVectorType()) {
5363    if (getLangOpts().MSVCCompat && ObjectType->isVoidType())
5364      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5365    else {
5366      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5367        << ObjectType << Base->getSourceRange();
5368      return ExprError();
5369    }
5370  }
5371
5372  // C++ [expr.pseudo]p2:
5373  //   [...] The cv-unqualified versions of the object type and of the type
5374  //   designated by the pseudo-destructor-name shall be the same type.
5375  if (DestructedTypeInfo) {
5376    QualType DestructedType = DestructedTypeInfo->getType();
5377    SourceLocation DestructedTypeStart
5378      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5379    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5380      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5381        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5382          << ObjectType << DestructedType << Base->getSourceRange()
5383          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5384
5385        // Recover by setting the destructed type to the object type.
5386        DestructedType = ObjectType;
5387        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5388                                                           DestructedTypeStart);
5389        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5390      } else if (DestructedType.getObjCLifetime() !=
5391                                                ObjectType.getObjCLifetime()) {
5392
5393        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5394          // Okay: just pretend that the user provided the correctly-qualified
5395          // type.
5396        } else {
5397          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5398            << ObjectType << DestructedType << Base->getSourceRange()
5399            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5400        }
5401
5402        // Recover by setting the destructed type to the object type.
5403        DestructedType = ObjectType;
5404        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5405                                                           DestructedTypeStart);
5406        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5407      }
5408    }
5409  }
5410
5411  // C++ [expr.pseudo]p2:
5412  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5413  //   form
5414  //
5415  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5416  //
5417  //   shall designate the same scalar type.
5418  if (ScopeTypeInfo) {
5419    QualType ScopeType = ScopeTypeInfo->getType();
5420    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5421        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5422
5423      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5424           diag::err_pseudo_dtor_type_mismatch)
5425        << ObjectType << ScopeType << Base->getSourceRange()
5426        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5427
5428      ScopeType = QualType();
5429      ScopeTypeInfo = nullptr;
5430    }
5431  }
5432
5433  Expr *Result
5434    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5435                                            OpKind == tok::arrow, OpLoc,
5436                                            SS.getWithLocInContext(Context),
5437                                            ScopeTypeInfo,
5438                                            CCLoc,
5439                                            TildeLoc,
5440                                            Destructed);
5441
5442  if (HasTrailingLParen)
5443    return Result;
5444
5445  return DiagnoseDtorReference(Destructed.getLocation(), Result);
5446}
5447
5448ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5449                                           SourceLocation OpLoc,
5450                                           tok::TokenKind OpKind,
5451                                           CXXScopeSpec &SS,
5452                                           UnqualifiedId &FirstTypeName,
5453                                           SourceLocation CCLoc,
5454                                           SourceLocation TildeLoc,
5455                                           UnqualifiedId &SecondTypeName,
5456                                           bool HasTrailingLParen) {
5457  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5458          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5459         "Invalid first type name in pseudo-destructor");
5460  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5461          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5462         "Invalid second type name in pseudo-destructor");
5463
5464  QualType ObjectType;
5465  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5466    return ExprError();
5467
5468  // Compute the object type that we should use for name lookup purposes. Only
5469  // record types and dependent types matter.
5470  ParsedType ObjectTypePtrForLookup;
5471  if (!SS.isSet()) {
5472    if (ObjectType->isRecordType())
5473      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5474    else if (ObjectType->isDependentType())
5475      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5476  }
5477
5478  // Convert the name of the type being destructed (following the ~) into a
5479  // type (with source-location information).
5480  QualType DestructedType;
5481  TypeSourceInfo *DestructedTypeInfo = nullptr;
5482  PseudoDestructorTypeStorage Destructed;
5483  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5484    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5485                               SecondTypeName.StartLocation,
5486                               S, &SS, true, false, ObjectTypePtrForLookup);
5487    if (!T &&
5488        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5489         (!SS.isSet() && ObjectType->isDependentType()))) {
5490      // The name of the type being destroyed is a dependent name, and we
5491      // couldn't find anything useful in scope. Just store the identifier and
5492      // it's location, and we'll perform (qualified) name lookup again at
5493      // template instantiation time.
5494      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5495                                               SecondTypeName.StartLocation);
5496    } else if (!T) {
5497      Diag(SecondTypeName.StartLocation,
5498           diag::err_pseudo_dtor_destructor_non_type)
5499        << SecondTypeName.Identifier << ObjectType;
5500      if (isSFINAEContext())
5501        return ExprError();
5502
5503      // Recover by assuming we had the right type all along.
5504      DestructedType = ObjectType;
5505    } else
5506      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5507  } else {
5508    // Resolve the template-id to a type.
5509    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5510    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5511                                       TemplateId->NumArgs);
5512    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5513                                       TemplateId->TemplateKWLoc,
5514                                       TemplateId->Template,
5515                                       TemplateId->TemplateNameLoc,
5516                                       TemplateId->LAngleLoc,
5517                                       TemplateArgsPtr,
5518                                       TemplateId->RAngleLoc);
5519    if (T.isInvalid() || !T.get()) {
5520      // Recover by assuming we had the right type all along.
5521      DestructedType = ObjectType;
5522    } else
5523      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5524  }
5525
5526  // If we've performed some kind of recovery, (re-)build the type source
5527  // information.
5528  if (!DestructedType.isNull()) {
5529    if (!DestructedTypeInfo)
5530      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5531                                                  SecondTypeName.StartLocation);
5532    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5533  }
5534
5535  // Convert the name of the scope type (the type prior to '::') into a type.
5536  TypeSourceInfo *ScopeTypeInfo = nullptr;
5537  QualType ScopeType;
5538  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5539      FirstTypeName.Identifier) {
5540    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5541      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5542                                 FirstTypeName.StartLocation,
5543                                 S, &SS, true, false, ObjectTypePtrForLookup);
5544      if (!T) {
5545        Diag(FirstTypeName.StartLocation,
5546             diag::err_pseudo_dtor_destructor_non_type)
5547          << FirstTypeName.Identifier << ObjectType;
5548
5549        if (isSFINAEContext())
5550          return ExprError();
5551
5552        // Just drop this type. It's unnecessary anyway.
5553        ScopeType = QualType();
5554      } else
5555        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5556    } else {
5557      // Resolve the template-id to a type.
5558      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5559      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5560                                         TemplateId->NumArgs);
5561      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5562                                         TemplateId->TemplateKWLoc,
5563                                         TemplateId->Template,
5564                                         TemplateId->TemplateNameLoc,
5565                                         TemplateId->LAngleLoc,
5566                                         TemplateArgsPtr,
5567                                         TemplateId->RAngleLoc);
5568      if (T.isInvalid() || !T.get()) {
5569        // Recover by dropping this type.
5570        ScopeType = QualType();
5571      } else
5572        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5573    }
5574  }
5575
5576  if (!ScopeType.isNull() && !ScopeTypeInfo)
5577    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5578                                                  FirstTypeName.StartLocation);
5579
5580
5581  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5582                                   ScopeTypeInfo, CCLoc, TildeLoc,
5583                                   Destructed, HasTrailingLParen);
5584}
5585
5586ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5587                                           SourceLocation OpLoc,
5588                                           tok::TokenKind OpKind,
5589                                           SourceLocation TildeLoc,
5590                                           const DeclSpec& DS,
5591                                           bool HasTrailingLParen) {
5592  QualType ObjectType;
5593  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5594    return ExprError();
5595
5596  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5597
5598  TypeLocBuilder TLB;
5599  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5600  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5601  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5602  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5603
5604  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5605                                   nullptr, SourceLocation(), TildeLoc,
5606                                   Destructed, HasTrailingLParen);
5607}
5608
5609ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5610                                        CXXConversionDecl *Method,
5611                                        bool HadMultipleCandidates) {
5612  if (Method->getParent()->isLambda() &&
5613      Method->getConversionType()->isBlockPointerType()) {
5614    // This is a lambda coversion to block pointer; check if the argument
5615    // is a LambdaExpr.
5616    Expr *SubE = E;
5617    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5618    if (CE && CE->getCastKind() == CK_NoOp)
5619      SubE = CE->getSubExpr();
5620    SubE = SubE->IgnoreParens();
5621    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5622      SubE = BE->getSubExpr();
5623    if (isa<LambdaExpr>(SubE)) {
5624      // For the conversion to block pointer on a lambda expression, we
5625      // construct a special BlockLiteral instead; this doesn't really make
5626      // a difference in ARC, but outside of ARC the resulting block literal
5627      // follows the normal lifetime rules for block literals instead of being
5628      // autoreleased.
5629      DiagnosticErrorTrap Trap(Diags);
5630      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5631                                                     E->getExprLoc(),
5632                                                     Method, E);
5633      if (Exp.isInvalid())
5634        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5635      return Exp;
5636    }
5637  }
5638
5639  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr,
5640                                          FoundDecl, Method);
5641  if (Exp.isInvalid())
5642    return true;
5643
5644  MemberExpr *ME =
5645      new (Context) MemberExpr(Exp.get(), /*IsArrow=*/false, Method,
5646                               SourceLocation(), Context.BoundMemberTy,
5647                               VK_RValue, OK_Ordinary);
5648  if (HadMultipleCandidates)
5649    ME->setHadMultipleCandidates(true);
5650  MarkMemberReferenced(ME);
5651
5652  QualType ResultType = Method->getReturnType();
5653  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5654  ResultType = ResultType.getNonLValueExprType(Context);
5655
5656  CXXMemberCallExpr *CE =
5657    new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
5658                                    Exp.get()->getLocEnd());
5659  return CE;
5660}
5661
5662ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5663                                      SourceLocation RParen) {
5664  CanThrowResult CanThrow = canThrow(Operand);
5665  return new (Context)
5666      CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen);
5667}
5668
5669ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5670                                   Expr *Operand, SourceLocation RParen) {
5671  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5672}
5673
5674static bool IsSpecialDiscardedValue(Expr *E) {
5675  // In C++11, discarded-value expressions of a certain form are special,
5676  // according to [expr]p10:
5677  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5678  //   expression is an lvalue of volatile-qualified type and it has
5679  //   one of the following forms:
5680  E = E->IgnoreParens();
5681
5682  //   - id-expression (5.1.1),
5683  if (isa<DeclRefExpr>(E))
5684    return true;
5685
5686  //   - subscripting (5.2.1),
5687  if (isa<ArraySubscriptExpr>(E))
5688    return true;
5689
5690  //   - class member access (5.2.5),
5691  if (isa<MemberExpr>(E))
5692    return true;
5693
5694  //   - indirection (5.3.1),
5695  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5696    if (UO->getOpcode() == UO_Deref)
5697      return true;
5698
5699  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5700    //   - pointer-to-member operation (5.5),
5701    if (BO->isPtrMemOp())
5702      return true;
5703
5704    //   - comma expression (5.18) where the right operand is one of the above.
5705    if (BO->getOpcode() == BO_Comma)
5706      return IsSpecialDiscardedValue(BO->getRHS());
5707  }
5708
5709  //   - conditional expression (5.16) where both the second and the third
5710  //     operands are one of the above, or
5711  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5712    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5713           IsSpecialDiscardedValue(CO->getFalseExpr());
5714  // The related edge case of "*x ?: *x".
5715  if (BinaryConditionalOperator *BCO =
5716          dyn_cast<BinaryConditionalOperator>(E)) {
5717    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5718      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5719             IsSpecialDiscardedValue(BCO->getFalseExpr());
5720  }
5721
5722  // Objective-C++ extensions to the rule.
5723  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5724    return true;
5725
5726  return false;
5727}
5728
5729/// Perform the conversions required for an expression used in a
5730/// context that ignores the result.
5731ExprResult Sema::IgnoredValueConversions(Expr *E) {
5732  if (E->hasPlaceholderType()) {
5733    ExprResult result = CheckPlaceholderExpr(E);
5734    if (result.isInvalid()) return E;
5735    E = result.get();
5736  }
5737
5738  // C99 6.3.2.1:
5739  //   [Except in specific positions,] an lvalue that does not have
5740  //   array type is converted to the value stored in the
5741  //   designated object (and is no longer an lvalue).
5742  if (E->isRValue()) {
5743    // In C, function designators (i.e. expressions of function type)
5744    // are r-values, but we still want to do function-to-pointer decay
5745    // on them.  This is both technically correct and convenient for
5746    // some clients.
5747    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5748      return DefaultFunctionArrayConversion(E);
5749
5750    return E;
5751  }
5752
5753  if (getLangOpts().CPlusPlus)  {
5754    // The C++11 standard defines the notion of a discarded-value expression;
5755    // normally, we don't need to do anything to handle it, but if it is a
5756    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5757    // conversion.
5758    if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5759        E->getType().isVolatileQualified() &&
5760        IsSpecialDiscardedValue(E)) {
5761      ExprResult Res = DefaultLvalueConversion(E);
5762      if (Res.isInvalid())
5763        return E;
5764      E = Res.get();
5765    }
5766    return E;
5767  }
5768
5769  // GCC seems to also exclude expressions of incomplete enum type.
5770  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5771    if (!T->getDecl()->isComplete()) {
5772      // FIXME: stupid workaround for a codegen bug!
5773      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get();
5774      return E;
5775    }
5776  }
5777
5778  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5779  if (Res.isInvalid())
5780    return E;
5781  E = Res.get();
5782
5783  if (!E->getType()->isVoidType())
5784    RequireCompleteType(E->getExprLoc(), E->getType(),
5785                        diag::err_incomplete_type);
5786  return E;
5787}
5788
5789// If we can unambiguously determine whether Var can never be used
5790// in a constant expression, return true.
5791//  - if the variable and its initializer are non-dependent, then
5792//    we can unambiguously check if the variable is a constant expression.
5793//  - if the initializer is not value dependent - we can determine whether
5794//    it can be used to initialize a constant expression.  If Init can not
5795//    be used to initialize a constant expression we conclude that Var can
5796//    never be a constant expression.
5797//  - FXIME: if the initializer is dependent, we can still do some analysis and
5798//    identify certain cases unambiguously as non-const by using a Visitor:
5799//      - such as those that involve odr-use of a ParmVarDecl, involve a new
5800//        delete, lambda-expr, dynamic-cast, reinterpret-cast etc...
5801static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var,
5802    ASTContext &Context) {
5803  if (isa<ParmVarDecl>(Var)) return true;
5804  const VarDecl *DefVD = nullptr;
5805
5806  // If there is no initializer - this can not be a constant expression.
5807  if (!Var->getAnyInitializer(DefVD)) return true;
5808  assert(DefVD);
5809  if (DefVD->isWeak()) return false;
5810  EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
5811
5812  Expr *Init = cast<Expr>(Eval->Value);
5813
5814  if (Var->getType()->isDependentType() || Init->isValueDependent()) {
5815    // FIXME: Teach the constant evaluator to deal with the non-dependent parts
5816    // of value-dependent expressions, and use it here to determine whether the
5817    // initializer is a potential constant expression.
5818    return false;
5819  }
5820
5821  return !IsVariableAConstantExpression(Var, Context);
5822}
5823
5824/// \brief Check if the current lambda has any potential captures
5825/// that must be captured by any of its enclosing lambdas that are ready to
5826/// capture. If there is a lambda that can capture a nested
5827/// potential-capture, go ahead and do so.  Also, check to see if any
5828/// variables are uncaptureable or do not involve an odr-use so do not
5829/// need to be captured.
5830
5831static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(
5832    Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) {
5833
5834  assert(!S.isUnevaluatedContext());
5835  assert(S.CurContext->isDependentContext());
5836  assert(CurrentLSI->CallOperator == S.CurContext &&
5837      "The current call operator must be synchronized with Sema's CurContext");
5838
5839  const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent();
5840
5841  ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef(
5842      S.FunctionScopes.data(), S.FunctionScopes.size());
5843
5844  // All the potentially captureable variables in the current nested
5845  // lambda (within a generic outer lambda), must be captured by an
5846  // outer lambda that is enclosed within a non-dependent context.
5847  const unsigned NumPotentialCaptures =
5848      CurrentLSI->getNumPotentialVariableCaptures();
5849  for (unsigned I = 0; I != NumPotentialCaptures; ++I) {
5850    Expr *VarExpr = nullptr;
5851    VarDecl *Var = nullptr;
5852    CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr);
5853    // If the variable is clearly identified as non-odr-used and the full
5854    // expression is not instantiation dependent, only then do we not
5855    // need to check enclosing lambda's for speculative captures.
5856    // For e.g.:
5857    // Even though 'x' is not odr-used, it should be captured.
5858    // int test() {
5859    //   const int x = 10;
5860    //   auto L = [=](auto a) {
5861    //     (void) +x + a;
5862    //   };
5863    // }
5864    if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) &&
5865        !IsFullExprInstantiationDependent)
5866      continue;
5867
5868    // If we have a capture-capable lambda for the variable, go ahead and
5869    // capture the variable in that lambda (and all its enclosing lambdas).
5870    if (const Optional<unsigned> Index =
5871            getStackIndexOfNearestEnclosingCaptureCapableLambda(
5872                FunctionScopesArrayRef, Var, S)) {
5873      const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
5874      MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S,
5875                         &FunctionScopeIndexOfCapturableLambda);
5876    }
5877    const bool IsVarNeverAConstantExpression =
5878        VariableCanNeverBeAConstantExpression(Var, S.Context);
5879    if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) {
5880      // This full expression is not instantiation dependent or the variable
5881      // can not be used in a constant expression - which means
5882      // this variable must be odr-used here, so diagnose a
5883      // capture violation early, if the variable is un-captureable.
5884      // This is purely for diagnosing errors early.  Otherwise, this
5885      // error would get diagnosed when the lambda becomes capture ready.
5886      QualType CaptureType, DeclRefType;
5887      SourceLocation ExprLoc = VarExpr->getExprLoc();
5888      if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
5889                          /*EllipsisLoc*/ SourceLocation(),
5890                          /*BuildAndDiagnose*/false, CaptureType,
5891                          DeclRefType, nullptr)) {
5892        // We will never be able to capture this variable, and we need
5893        // to be able to in any and all instantiations, so diagnose it.
5894        S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit,
5895                          /*EllipsisLoc*/ SourceLocation(),
5896                          /*BuildAndDiagnose*/true, CaptureType,
5897                          DeclRefType, nullptr);
5898      }
5899    }
5900  }
5901
5902  // Check if 'this' needs to be captured.
5903  if (CurrentLSI->hasPotentialThisCapture()) {
5904    // If we have a capture-capable lambda for 'this', go ahead and capture
5905    // 'this' in that lambda (and all its enclosing lambdas).
5906    if (const Optional<unsigned> Index =
5907            getStackIndexOfNearestEnclosingCaptureCapableLambda(
5908                FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) {
5909      const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue();
5910      S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation,
5911                            /*Explicit*/ false, /*BuildAndDiagnose*/ true,
5912                            &FunctionScopeIndexOfCapturableLambda);
5913    }
5914  }
5915
5916  // Reset all the potential captures at the end of each full-expression.
5917  CurrentLSI->clearPotentialCaptures();
5918}
5919
5920
5921ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5922                                     bool DiscardedValue,
5923                                     bool IsConstexpr,
5924                                     bool IsLambdaInitCaptureInitializer) {
5925  ExprResult FullExpr = FE;
5926
5927  if (!FullExpr.get())
5928    return ExprError();
5929
5930  // If we are an init-expression in a lambdas init-capture, we should not
5931  // diagnose an unexpanded pack now (will be diagnosed once lambda-expr
5932  // containing full-expression is done).
5933  // template<class ... Ts> void test(Ts ... t) {
5934  //   test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now.
5935  //     return a;
5936  //   }() ...);
5937  // }
5938  // FIXME: This is a hack. It would be better if we pushed the lambda scope
5939  // when we parse the lambda introducer, and teach capturing (but not
5940  // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a
5941  // corresponding class yet (that is, have LambdaScopeInfo either represent a
5942  // lambda where we've entered the introducer but not the body, or represent a
5943  // lambda where we've entered the body, depending on where the
5944  // parser/instantiation has got to).
5945  if (!IsLambdaInitCaptureInitializer &&
5946      DiagnoseUnexpandedParameterPack(FullExpr.get()))
5947    return ExprError();
5948
5949  // Top-level expressions default to 'id' when we're in a debugger.
5950  if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5951      FullExpr.get()->getType() == Context.UnknownAnyTy) {
5952    FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType());
5953    if (FullExpr.isInvalid())
5954      return ExprError();
5955  }
5956
5957  if (DiscardedValue) {
5958    FullExpr = CheckPlaceholderExpr(FullExpr.get());
5959    if (FullExpr.isInvalid())
5960      return ExprError();
5961
5962    FullExpr = IgnoredValueConversions(FullExpr.get());
5963    if (FullExpr.isInvalid())
5964      return ExprError();
5965  }
5966
5967  CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5968
5969  // At the end of this full expression (which could be a deeply nested
5970  // lambda), if there is a potential capture within the nested lambda,
5971  // have the outer capture-able lambda try and capture it.
5972  // Consider the following code:
5973  // void f(int, int);
5974  // void f(const int&, double);
5975  // void foo() {
5976  //  const int x = 10, y = 20;
5977  //  auto L = [=](auto a) {
5978  //      auto M = [=](auto b) {
5979  //         f(x, b); <-- requires x to be captured by L and M
5980  //         f(y, a); <-- requires y to be captured by L, but not all Ms
5981  //      };
5982  //   };
5983  // }
5984
5985  // FIXME: Also consider what happens for something like this that involves
5986  // the gnu-extension statement-expressions or even lambda-init-captures:
5987  //   void f() {
5988  //     const int n = 0;
5989  //     auto L =  [&](auto a) {
5990  //       +n + ({ 0; a; });
5991  //     };
5992  //   }
5993  //
5994  // Here, we see +n, and then the full-expression 0; ends, so we don't
5995  // capture n (and instead remove it from our list of potential captures),
5996  // and then the full-expression +n + ({ 0; }); ends, but it's too late
5997  // for us to see that we need to capture n after all.
5998
5999  LambdaScopeInfo *const CurrentLSI = getCurLambda();
6000  // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer
6001  // even if CurContext is not a lambda call operator. Refer to that Bug Report
6002  // for an example of the code that might cause this asynchrony.
6003  // By ensuring we are in the context of a lambda's call operator
6004  // we can fix the bug (we only need to check whether we need to capture
6005  // if we are within a lambda's body); but per the comments in that
6006  // PR, a proper fix would entail :
6007  //   "Alternative suggestion:
6008  //   - Add to Sema an integer holding the smallest (outermost) scope
6009  //     index that we are *lexically* within, and save/restore/set to
6010  //     FunctionScopes.size() in InstantiatingTemplate's
6011  //     constructor/destructor.
6012  //  - Teach the handful of places that iterate over FunctionScopes to
6013  //    stop at the outermost enclosing lexical scope."
6014  const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext);
6015  if (IsInLambdaDeclContext && CurrentLSI &&
6016      CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid())
6017    CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI,
6018                                                              *this);
6019  return MaybeCreateExprWithCleanups(FullExpr);
6020}
6021
6022StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
6023  if (!FullStmt) return StmtError();
6024
6025  return MaybeCreateStmtWithCleanups(FullStmt);
6026}
6027
6028Sema::IfExistsResult
6029Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
6030                                   CXXScopeSpec &SS,
6031                                   const DeclarationNameInfo &TargetNameInfo) {
6032  DeclarationName TargetName = TargetNameInfo.getName();
6033  if (!TargetName)
6034    return IER_DoesNotExist;
6035
6036  // If the name itself is dependent, then the result is dependent.
6037  if (TargetName.isDependentName())
6038    return IER_Dependent;
6039
6040  // Do the redeclaration lookup in the current scope.
6041  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
6042                 Sema::NotForRedeclaration);
6043  LookupParsedName(R, S, &SS);
6044  R.suppressDiagnostics();
6045
6046  switch (R.getResultKind()) {
6047  case LookupResult::Found:
6048  case LookupResult::FoundOverloaded:
6049  case LookupResult::FoundUnresolvedValue:
6050  case LookupResult::Ambiguous:
6051    return IER_Exists;
6052
6053  case LookupResult::NotFound:
6054    return IER_DoesNotExist;
6055
6056  case LookupResult::NotFoundInCurrentInstantiation:
6057    return IER_Dependent;
6058  }
6059
6060  llvm_unreachable("Invalid LookupResult Kind!");
6061}
6062
6063Sema::IfExistsResult
6064Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
6065                                   bool IsIfExists, CXXScopeSpec &SS,
6066                                   UnqualifiedId &Name) {
6067  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
6068
6069  // Check for unexpanded parameter packs.
6070  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
6071  collectUnexpandedParameterPacks(SS, Unexpanded);
6072  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
6073  if (!Unexpanded.empty()) {
6074    DiagnoseUnexpandedParameterPacks(KeywordLoc,
6075                                     IsIfExists? UPPC_IfExists
6076                                               : UPPC_IfNotExists,
6077                                     Unexpanded);
6078    return IER_Error;
6079  }
6080
6081  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
6082}
6083