SemaExprCXX.cpp revision 0e0983546597944fc934e815a9d47610793a26fe
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SemaInherit.h"
15#include "Sema.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/STLExtras.h"
22using namespace clang;
23
24/// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function
25/// name (e.g., operator void const *) as an expression. This is
26/// very similar to ActOnIdentifierExpr, except that instead of
27/// providing an identifier the parser provides the type of the
28/// conversion function.
29Sema::OwningExprResult
30Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc,
31                                     TypeTy *Ty, bool HasTrailingLParen,
32                                     const CXXScopeSpec &SS,
33                                     bool isAddressOfOperand) {
34  QualType ConvType = QualType::getFromOpaquePtr(Ty);
35  QualType ConvTypeCanon = Context.getCanonicalType(ConvType);
36  DeclarationName ConvName
37    = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon);
38  return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen,
39                                  &SS, isAddressOfOperand);
40}
41
42/// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator
43/// name (e.g., @c operator+ ) as an expression. This is very
44/// similar to ActOnIdentifierExpr, except that instead of providing
45/// an identifier the parser provides the kind of overloaded
46/// operator that was parsed.
47Sema::OwningExprResult
48Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc,
49                                     OverloadedOperatorKind Op,
50                                     bool HasTrailingLParen,
51                                     const CXXScopeSpec &SS,
52                                     bool isAddressOfOperand) {
53  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op);
54  return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS,
55                                  isAddressOfOperand);
56}
57
58/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
59Action::OwningExprResult
60Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
61                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
62  NamespaceDecl *StdNs = GetStdNamespace();
63  if (!StdNs)
64    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
65
66  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
67  Decl *TypeInfoDecl = LookupQualifiedName(StdNs, TypeInfoII, LookupTagName);
68  RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null<RecordDecl>(TypeInfoDecl);
69  if (!TypeInfoRecordDecl)
70    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
71
72  QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
73
74  return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr,
75                                           TypeInfoType.withConst(),
76                                           SourceRange(OpLoc, RParenLoc)));
77}
78
79/// ActOnCXXBoolLiteral - Parse {true,false} literals.
80Action::OwningExprResult
81Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
82  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
83         "Unknown C++ Boolean value!");
84  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
85                                                Context.BoolTy, OpLoc));
86}
87
88/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
89Action::OwningExprResult
90Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
91  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
92}
93
94/// ActOnCXXThrow - Parse throw expressions.
95Action::OwningExprResult
96Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) {
97  Expr *Ex = E.takeAs<Expr>();
98  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
99    return ExprError();
100  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
101}
102
103/// CheckCXXThrowOperand - Validate the operand of a throw.
104bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
105  // C++ [except.throw]p3:
106  //   [...] adjusting the type from "array of T" or "function returning T"
107  //   to "pointer to T" or "pointer to function returning T", [...]
108  DefaultFunctionArrayConversion(E);
109
110  //   If the type of the exception would be an incomplete type or a pointer
111  //   to an incomplete type other than (cv) void the program is ill-formed.
112  QualType Ty = E->getType();
113  int isPointer = 0;
114  if (const PointerType* Ptr = Ty->getAsPointerType()) {
115    Ty = Ptr->getPointeeType();
116    isPointer = 1;
117  }
118  if (!isPointer || !Ty->isVoidType()) {
119    if (RequireCompleteType(ThrowLoc, Ty,
120                            isPointer ? diag::err_throw_incomplete_ptr
121                                      : diag::err_throw_incomplete,
122                            E->getSourceRange(), SourceRange(), QualType()))
123      return true;
124  }
125
126  // FIXME: Construct a temporary here.
127  return false;
128}
129
130Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
131  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
132  /// is a non-lvalue expression whose value is the address of the object for
133  /// which the function is called.
134
135  if (!isa<FunctionDecl>(CurContext))
136    return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
137
138  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
139    if (MD->isInstance())
140      return Owned(new (Context) CXXThisExpr(ThisLoc,
141                                             MD->getThisType(Context)));
142
143  return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
144}
145
146/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
147/// Can be interpreted either as function-style casting ("int(x)")
148/// or class type construction ("ClassType(x,y,z)")
149/// or creation of a value-initialized type ("int()").
150Action::OwningExprResult
151Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
152                                SourceLocation LParenLoc,
153                                MultiExprArg exprs,
154                                SourceLocation *CommaLocs,
155                                SourceLocation RParenLoc) {
156  assert(TypeRep && "Missing type!");
157  QualType Ty = QualType::getFromOpaquePtr(TypeRep);
158  unsigned NumExprs = exprs.size();
159  Expr **Exprs = (Expr**)exprs.get();
160  SourceLocation TyBeginLoc = TypeRange.getBegin();
161  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
162
163  if (Ty->isDependentType() ||
164      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
165    exprs.release();
166
167    // FIXME: Is this correct (I don't think so). Instead, we should have an
168    // CXXUnresolvedTemporaryObjectExpr node for this.
169    CXXTempVarDecl *Temp = CXXTempVarDecl::Create(Context, CurContext, Ty);
170
171    return Owned(new (Context) CXXTemporaryObjectExpr(Context, Temp, 0, Ty,
172                                                      TyBeginLoc,
173                                                      Exprs, NumExprs,
174                                                      RParenLoc));
175  }
176
177
178  // C++ [expr.type.conv]p1:
179  // If the expression list is a single expression, the type conversion
180  // expression is equivalent (in definedness, and if defined in meaning) to the
181  // corresponding cast expression.
182  //
183  if (NumExprs == 1) {
184    if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
185      return ExprError();
186    exprs.release();
187    return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
188                                                     Ty, TyBeginLoc, Exprs[0],
189                                                     RParenLoc));
190  }
191
192  if (const RecordType *RT = Ty->getAsRecordType()) {
193    CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
194
195    // FIXME: We should always create a CXXTemporaryObjectExpr here unless
196    // both the ctor and dtor are trivial.
197    if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) {
198      CXXConstructorDecl *Constructor
199        = PerformInitializationByConstructor(Ty, Exprs, NumExprs,
200                                             TypeRange.getBegin(),
201                                             SourceRange(TypeRange.getBegin(),
202                                                         RParenLoc),
203                                             DeclarationName(),
204                                             IK_Direct);
205
206      if (!Constructor)
207        return ExprError();
208
209      CXXTempVarDecl *Temp = CXXTempVarDecl::Create(Context, CurContext, Ty);
210      ExprTemporaries.push_back(Temp);
211
212      exprs.release();
213      return Owned(new (Context) CXXTemporaryObjectExpr(Context, Temp,
214                                                        Constructor, Ty,
215                                                        TyBeginLoc,  Exprs,
216                                                        NumExprs, RParenLoc));
217    }
218
219    // Fall through to value-initialize an object of class type that
220    // doesn't have a user-declared default constructor.
221  }
222
223  // C++ [expr.type.conv]p1:
224  // If the expression list specifies more than a single value, the type shall
225  // be a class with a suitably declared constructor.
226  //
227  if (NumExprs > 1)
228    return ExprError(Diag(CommaLocs[0],
229                          diag::err_builtin_func_cast_more_than_one_arg)
230      << FullRange);
231
232  assert(NumExprs == 0 && "Expected 0 expressions");
233
234  // C++ [expr.type.conv]p2:
235  // The expression T(), where T is a simple-type-specifier for a non-array
236  // complete object type or the (possibly cv-qualified) void type, creates an
237  // rvalue of the specified type, which is value-initialized.
238  //
239  if (Ty->isArrayType())
240    return ExprError(Diag(TyBeginLoc,
241                          diag::err_value_init_for_array_type) << FullRange);
242  if (!Ty->isDependentType() && !Ty->isVoidType() &&
243      RequireCompleteType(TyBeginLoc, Ty,
244                          diag::err_invalid_incomplete_type_use, FullRange))
245    return ExprError();
246
247  if (RequireNonAbstractType(TyBeginLoc, Ty,
248                             diag::err_allocation_of_abstract_type))
249    return ExprError();
250
251  exprs.release();
252  return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
253}
254
255
256/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
257/// @code new (memory) int[size][4] @endcode
258/// or
259/// @code ::new Foo(23, "hello") @endcode
260/// For the interpretation of this heap of arguments, consult the base version.
261Action::OwningExprResult
262Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
263                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
264                  SourceLocation PlacementRParen, bool ParenTypeId,
265                  Declarator &D, SourceLocation ConstructorLParen,
266                  MultiExprArg ConstructorArgs,
267                  SourceLocation ConstructorRParen)
268{
269  Expr *ArraySize = 0;
270  unsigned Skip = 0;
271  // If the specified type is an array, unwrap it and save the expression.
272  if (D.getNumTypeObjects() > 0 &&
273      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
274    DeclaratorChunk &Chunk = D.getTypeObject(0);
275    if (Chunk.Arr.hasStatic)
276      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
277        << D.getSourceRange());
278    if (!Chunk.Arr.NumElts)
279      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
280        << D.getSourceRange());
281    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
282    Skip = 1;
283  }
284
285  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
286  if (D.isInvalidType())
287    return ExprError();
288
289  if (CheckAllocatedType(AllocType, D))
290    return ExprError();
291
292  QualType ResultType = AllocType->isDependentType()
293                          ? Context.DependentTy
294                          : Context.getPointerType(AllocType);
295
296  // That every array dimension except the first is constant was already
297  // checked by the type check above.
298
299  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
300  //   or enumeration type with a non-negative value."
301  if (ArraySize && !ArraySize->isTypeDependent()) {
302    QualType SizeType = ArraySize->getType();
303    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
304      return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
305                            diag::err_array_size_not_integral)
306        << SizeType << ArraySize->getSourceRange());
307    // Let's see if this is a constant < 0. If so, we reject it out of hand.
308    // We don't care about special rules, so we tell the machinery it's not
309    // evaluated - it gives us a result in more cases.
310    if (!ArraySize->isValueDependent()) {
311      llvm::APSInt Value;
312      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
313        if (Value < llvm::APSInt(
314                        llvm::APInt::getNullValue(Value.getBitWidth()), false))
315          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
316                           diag::err_typecheck_negative_array_size)
317            << ArraySize->getSourceRange());
318      }
319    }
320  }
321
322  FunctionDecl *OperatorNew = 0;
323  FunctionDecl *OperatorDelete = 0;
324  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
325  unsigned NumPlaceArgs = PlacementArgs.size();
326  if (!AllocType->isDependentType() &&
327      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
328      FindAllocationFunctions(StartLoc,
329                              SourceRange(PlacementLParen, PlacementRParen),
330                              UseGlobal, AllocType, ArraySize, PlaceArgs,
331                              NumPlaceArgs, OperatorNew, OperatorDelete))
332    return ExprError();
333
334  bool Init = ConstructorLParen.isValid();
335  // --- Choosing a constructor ---
336  // C++ 5.3.4p15
337  // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
338  //   the object is not initialized. If the object, or any part of it, is
339  //   const-qualified, it's an error.
340  // 2) If T is a POD and there's an empty initializer, the object is value-
341  //   initialized.
342  // 3) If T is a POD and there's one initializer argument, the object is copy-
343  //   constructed.
344  // 4) If T is a POD and there's more initializer arguments, it's an error.
345  // 5) If T is not a POD, the initializer arguments are used as constructor
346  //   arguments.
347  //
348  // Or by the C++0x formulation:
349  // 1) If there's no initializer, the object is default-initialized according
350  //    to C++0x rules.
351  // 2) Otherwise, the object is direct-initialized.
352  CXXConstructorDecl *Constructor = 0;
353  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
354  const RecordType *RT;
355  unsigned NumConsArgs = ConstructorArgs.size();
356  if (AllocType->isDependentType()) {
357    // Skip all the checks.
358  }
359  else if ((RT = AllocType->getAsRecordType()) &&
360            !AllocType->isAggregateType()) {
361    Constructor = PerformInitializationByConstructor(
362                      AllocType, ConsArgs, NumConsArgs,
363                      D.getSourceRange().getBegin(),
364                      SourceRange(D.getSourceRange().getBegin(),
365                                  ConstructorRParen),
366                      RT->getDecl()->getDeclName(),
367                      NumConsArgs != 0 ? IK_Direct : IK_Default);
368    if (!Constructor)
369      return ExprError();
370  } else {
371    if (!Init) {
372      // FIXME: Check that no subpart is const.
373      if (AllocType.isConstQualified())
374        return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const)
375          << D.getSourceRange());
376    } else if (NumConsArgs == 0) {
377      // Object is value-initialized. Do nothing.
378    } else if (NumConsArgs == 1) {
379      // Object is direct-initialized.
380      // FIXME: What DeclarationName do we pass in here?
381      if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
382                                DeclarationName() /*AllocType.getAsString()*/,
383                                /*DirectInit=*/true))
384        return ExprError();
385    } else {
386      return ExprError(Diag(StartLoc,
387                            diag::err_builtin_direct_init_more_than_one_arg)
388        << SourceRange(ConstructorLParen, ConstructorRParen));
389    }
390  }
391
392  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
393
394  PlacementArgs.release();
395  ConstructorArgs.release();
396  return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
397                        NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
398                        ConsArgs, NumConsArgs, OperatorDelete, ResultType,
399                        StartLoc, Init ? ConstructorRParen : SourceLocation()));
400}
401
402/// CheckAllocatedType - Checks that a type is suitable as the allocated type
403/// in a new-expression.
404/// dimension off and stores the size expression in ArraySize.
405bool Sema::CheckAllocatedType(QualType AllocType, const Declarator &D)
406{
407  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
408  //   abstract class type or array thereof.
409  if (AllocType->isFunctionType())
410    return Diag(D.getSourceRange().getBegin(), diag::err_bad_new_type)
411      << AllocType << 0 << D.getSourceRange();
412  else if (AllocType->isReferenceType())
413    return Diag(D.getSourceRange().getBegin(), diag::err_bad_new_type)
414      << AllocType << 1 << D.getSourceRange();
415  else if (!AllocType->isDependentType() &&
416           RequireCompleteType(D.getSourceRange().getBegin(), AllocType,
417                               diag::err_new_incomplete_type,
418                               D.getSourceRange()))
419    return true;
420  else if (RequireNonAbstractType(D.getSourceRange().getBegin(), AllocType,
421                                  diag::err_allocation_of_abstract_type))
422    return true;
423
424  // Every dimension shall be of constant size.
425  unsigned i = 1;
426  while (const ArrayType *Array = Context.getAsArrayType(AllocType)) {
427    if (!Array->isConstantArrayType()) {
428      Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst)
429        << static_cast<Expr*>(D.getTypeObject(i).Arr.NumElts)->getSourceRange();
430      return true;
431    }
432    AllocType = Array->getElementType();
433    ++i;
434  }
435
436  return false;
437}
438
439/// FindAllocationFunctions - Finds the overloads of operator new and delete
440/// that are appropriate for the allocation.
441bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
442                                   bool UseGlobal, QualType AllocType,
443                                   bool IsArray, Expr **PlaceArgs,
444                                   unsigned NumPlaceArgs,
445                                   FunctionDecl *&OperatorNew,
446                                   FunctionDecl *&OperatorDelete)
447{
448  // --- Choosing an allocation function ---
449  // C++ 5.3.4p8 - 14 & 18
450  // 1) If UseGlobal is true, only look in the global scope. Else, also look
451  //   in the scope of the allocated class.
452  // 2) If an array size is given, look for operator new[], else look for
453  //   operator new.
454  // 3) The first argument is always size_t. Append the arguments from the
455  //   placement form.
456  // FIXME: Also find the appropriate delete operator.
457
458  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
459  // We don't care about the actual value of this argument.
460  // FIXME: Should the Sema create the expression and embed it in the syntax
461  // tree? Or should the consumer just recalculate the value?
462  AllocArgs[0] = new (Context) IntegerLiteral(llvm::APInt::getNullValue(
463                                        Context.Target.getPointerWidth(0)),
464                                    Context.getSizeType(),
465                                    SourceLocation());
466  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
467
468  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
469                                        IsArray ? OO_Array_New : OO_New);
470  if (AllocType->isRecordType() && !UseGlobal) {
471    CXXRecordDecl *Record
472      = cast<CXXRecordDecl>(AllocType->getAsRecordType()->getDecl());
473    // FIXME: We fail to find inherited overloads.
474    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
475                          AllocArgs.size(), Record, /*AllowMissing=*/true,
476                          OperatorNew))
477      return true;
478  }
479  if (!OperatorNew) {
480    // Didn't find a member overload. Look for a global one.
481    DeclareGlobalNewDelete();
482    DeclContext *TUDecl = Context.getTranslationUnitDecl();
483    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
484                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
485                          OperatorNew))
486      return true;
487  }
488
489  // FIXME: This is leaked on error. But so much is currently in Sema that it's
490  // easier to clean it in one go.
491  AllocArgs[0]->Destroy(Context);
492  return false;
493}
494
495/// FindAllocationOverload - Find an fitting overload for the allocation
496/// function in the specified scope.
497bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
498                                  DeclarationName Name, Expr** Args,
499                                  unsigned NumArgs, DeclContext *Ctx,
500                                  bool AllowMissing, FunctionDecl *&Operator)
501{
502  DeclContext::lookup_iterator Alloc, AllocEnd;
503  llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Context, Name);
504  if (Alloc == AllocEnd) {
505    if (AllowMissing)
506      return false;
507    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
508      << Name << Range;
509  }
510
511  OverloadCandidateSet Candidates;
512  for (; Alloc != AllocEnd; ++Alloc) {
513    // Even member operator new/delete are implicitly treated as
514    // static, so don't use AddMemberCandidate.
515    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc))
516      AddOverloadCandidate(Fn, Args, NumArgs, Candidates,
517                           /*SuppressUserConversions=*/false);
518  }
519
520  // Do the resolution.
521  OverloadCandidateSet::iterator Best;
522  switch(BestViableFunction(Candidates, Best)) {
523  case OR_Success: {
524    // Got one!
525    FunctionDecl *FnDecl = Best->Function;
526    // The first argument is size_t, and the first parameter must be size_t,
527    // too. This is checked on declaration and can be assumed. (It can't be
528    // asserted on, though, since invalid decls are left in there.)
529    for (unsigned i = 1; i < NumArgs; ++i) {
530      // FIXME: Passing word to diagnostic.
531      if (PerformCopyInitialization(Args[i-1],
532                                    FnDecl->getParamDecl(i)->getType(),
533                                    "passing"))
534        return true;
535    }
536    Operator = FnDecl;
537    return false;
538  }
539
540  case OR_No_Viable_Function:
541    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
542      << Name << Range;
543    PrintOverloadCandidates(Candidates, /*OnlyViable=*/false);
544    return true;
545
546  case OR_Ambiguous:
547    Diag(StartLoc, diag::err_ovl_ambiguous_call)
548      << Name << Range;
549    PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
550    return true;
551
552  case OR_Deleted:
553    Diag(StartLoc, diag::err_ovl_deleted_call)
554      << Best->Function->isDeleted()
555      << Name << Range;
556    PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
557    return true;
558  }
559  assert(false && "Unreachable, bad result from BestViableFunction");
560  return true;
561}
562
563
564/// DeclareGlobalNewDelete - Declare the global forms of operator new and
565/// delete. These are:
566/// @code
567///   void* operator new(std::size_t) throw(std::bad_alloc);
568///   void* operator new[](std::size_t) throw(std::bad_alloc);
569///   void operator delete(void *) throw();
570///   void operator delete[](void *) throw();
571/// @endcode
572/// Note that the placement and nothrow forms of new are *not* implicitly
573/// declared. Their use requires including \<new\>.
574void Sema::DeclareGlobalNewDelete()
575{
576  if (GlobalNewDeleteDeclared)
577    return;
578  GlobalNewDeleteDeclared = true;
579
580  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
581  QualType SizeT = Context.getSizeType();
582
583  // FIXME: Exception specifications are not added.
584  DeclareGlobalAllocationFunction(
585      Context.DeclarationNames.getCXXOperatorName(OO_New),
586      VoidPtr, SizeT);
587  DeclareGlobalAllocationFunction(
588      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
589      VoidPtr, SizeT);
590  DeclareGlobalAllocationFunction(
591      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
592      Context.VoidTy, VoidPtr);
593  DeclareGlobalAllocationFunction(
594      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
595      Context.VoidTy, VoidPtr);
596}
597
598/// DeclareGlobalAllocationFunction - Declares a single implicit global
599/// allocation function if it doesn't already exist.
600void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
601                                           QualType Return, QualType Argument)
602{
603  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
604
605  // Check if this function is already declared.
606  {
607    DeclContext::lookup_iterator Alloc, AllocEnd;
608    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Context, Name);
609         Alloc != AllocEnd; ++Alloc) {
610      // FIXME: Do we need to check for default arguments here?
611      FunctionDecl *Func = cast<FunctionDecl>(*Alloc);
612      if (Func->getNumParams() == 1 &&
613          Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument)
614        return;
615    }
616  }
617
618  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0);
619  FunctionDecl *Alloc =
620    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
621                         FnType, FunctionDecl::None, false, true,
622                         SourceLocation());
623  Alloc->setImplicit();
624  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
625                                           0, Argument, VarDecl::None, 0);
626  Alloc->setParams(Context, &Param, 1);
627
628  // FIXME: Also add this declaration to the IdentifierResolver, but
629  // make sure it is at the end of the chain to coincide with the
630  // global scope.
631  ((DeclContext *)TUScope->getEntity())->addDecl(Context, Alloc);
632}
633
634/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
635/// @code ::delete ptr; @endcode
636/// or
637/// @code delete [] ptr; @endcode
638Action::OwningExprResult
639Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
640                     bool ArrayForm, ExprArg Operand)
641{
642  // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
643  //   having a single conversion function to a pointer type. The result has
644  //   type void."
645  // DR599 amends "pointer type" to "pointer to object type" in both cases.
646
647  Expr *Ex = (Expr *)Operand.get();
648  if (!Ex->isTypeDependent()) {
649    QualType Type = Ex->getType();
650
651    if (Type->isRecordType()) {
652      // FIXME: Find that one conversion function and amend the type.
653    }
654
655    if (!Type->isPointerType())
656      return ExprError(Diag(StartLoc, diag::err_delete_operand)
657        << Type << Ex->getSourceRange());
658
659    QualType Pointee = Type->getAsPointerType()->getPointeeType();
660    if (Pointee->isFunctionType() || Pointee->isVoidType())
661      return ExprError(Diag(StartLoc, diag::err_delete_operand)
662        << Type << Ex->getSourceRange());
663    else if (!Pointee->isDependentType() &&
664             RequireCompleteType(StartLoc, Pointee,
665                                 diag::warn_delete_incomplete,
666                                 Ex->getSourceRange()))
667      return ExprError();
668
669    // FIXME: Look up the correct operator delete overload and pass a pointer
670    // along.
671    // FIXME: Check access and ambiguity of operator delete and destructor.
672  }
673
674  Operand.release();
675  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
676                                           0, Ex, StartLoc));
677}
678
679
680/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
681/// C++ if/switch/while/for statement.
682/// e.g: "if (int x = f()) {...}"
683Action::OwningExprResult
684Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc,
685                                       Declarator &D,
686                                       SourceLocation EqualLoc,
687                                       ExprArg AssignExprVal) {
688  assert(AssignExprVal.get() && "Null assignment expression");
689
690  // C++ 6.4p2:
691  // The declarator shall not specify a function or an array.
692  // The type-specifier-seq shall not contain typedef and shall not declare a
693  // new class or enumeration.
694
695  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
696         "Parser allowed 'typedef' as storage class of condition decl.");
697
698  QualType Ty = GetTypeForDeclarator(D, S);
699
700  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
701    // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
702    // would be created and CXXConditionDeclExpr wants a VarDecl.
703    return ExprError(Diag(StartLoc, diag::err_invalid_use_of_function_type)
704      << SourceRange(StartLoc, EqualLoc));
705  } else if (Ty->isArrayType()) { // ...or an array.
706    Diag(StartLoc, diag::err_invalid_use_of_array_type)
707      << SourceRange(StartLoc, EqualLoc);
708  } else if (const RecordType *RT = Ty->getAsRecordType()) {
709    RecordDecl *RD = RT->getDecl();
710    // The type-specifier-seq shall not declare a new class...
711    if (RD->isDefinition() &&
712        (RD->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(RD))))
713      Diag(RD->getLocation(), diag::err_type_defined_in_condition);
714  } else if (const EnumType *ET = Ty->getAsEnumType()) {
715    EnumDecl *ED = ET->getDecl();
716    // ...or enumeration.
717    if (ED->isDefinition() &&
718        (ED->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(ED))))
719      Diag(ED->getLocation(), diag::err_type_defined_in_condition);
720  }
721
722  DeclPtrTy Dcl = ActOnDeclarator(S, D, DeclPtrTy());
723  if (!Dcl)
724    return ExprError();
725  AddInitializerToDecl(Dcl, move(AssignExprVal));
726
727  // Mark this variable as one that is declared within a conditional.
728  // We know that the decl had to be a VarDecl because that is the only type of
729  // decl that can be assigned and the grammar requires an '='.
730  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
731  VD->setDeclaredInCondition(true);
732  return Owned(new (Context) CXXConditionDeclExpr(StartLoc, EqualLoc, VD));
733}
734
735/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
736bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
737  // C++ 6.4p4:
738  // The value of a condition that is an initialized declaration in a statement
739  // other than a switch statement is the value of the declared variable
740  // implicitly converted to type bool. If that conversion is ill-formed, the
741  // program is ill-formed.
742  // The value of a condition that is an expression is the value of the
743  // expression, implicitly converted to bool.
744  //
745  return PerformContextuallyConvertToBool(CondExpr);
746}
747
748/// Helper function to determine whether this is the (deprecated) C++
749/// conversion from a string literal to a pointer to non-const char or
750/// non-const wchar_t (for narrow and wide string literals,
751/// respectively).
752bool
753Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
754  // Look inside the implicit cast, if it exists.
755  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
756    From = Cast->getSubExpr();
757
758  // A string literal (2.13.4) that is not a wide string literal can
759  // be converted to an rvalue of type "pointer to char"; a wide
760  // string literal can be converted to an rvalue of type "pointer
761  // to wchar_t" (C++ 4.2p2).
762  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
763    if (const PointerType *ToPtrType = ToType->getAsPointerType())
764      if (const BuiltinType *ToPointeeType
765          = ToPtrType->getPointeeType()->getAsBuiltinType()) {
766        // This conversion is considered only when there is an
767        // explicit appropriate pointer target type (C++ 4.2p2).
768        if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
769            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
770             (!StrLit->isWide() &&
771              (ToPointeeType->getKind() == BuiltinType::Char_U ||
772               ToPointeeType->getKind() == BuiltinType::Char_S))))
773          return true;
774      }
775
776  return false;
777}
778
779/// PerformImplicitConversion - Perform an implicit conversion of the
780/// expression From to the type ToType. Returns true if there was an
781/// error, false otherwise. The expression From is replaced with the
782/// converted expression. Flavor is the kind of conversion we're
783/// performing, used in the error message. If @p AllowExplicit,
784/// explicit user-defined conversions are permitted. @p Elidable should be true
785/// when called for copies which may be elided (C++ 12.8p15). C++0x overload
786/// resolution works differently in that case.
787bool
788Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
789                                const char *Flavor, bool AllowExplicit,
790                                bool Elidable)
791{
792  ImplicitConversionSequence ICS;
793  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
794  if (Elidable && getLangOptions().CPlusPlus0x) {
795    ICS = TryImplicitConversion(From, ToType, /*SuppressUserConversions*/false,
796                                AllowExplicit, /*ForceRValue*/true);
797  }
798  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) {
799    ICS = TryImplicitConversion(From, ToType, false, AllowExplicit);
800  }
801  return PerformImplicitConversion(From, ToType, ICS, Flavor);
802}
803
804/// PerformImplicitConversion - Perform an implicit conversion of the
805/// expression From to the type ToType using the pre-computed implicit
806/// conversion sequence ICS. Returns true if there was an error, false
807/// otherwise. The expression From is replaced with the converted
808/// expression. Flavor is the kind of conversion we're performing,
809/// used in the error message.
810bool
811Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
812                                const ImplicitConversionSequence &ICS,
813                                const char* Flavor) {
814  switch (ICS.ConversionKind) {
815  case ImplicitConversionSequence::StandardConversion:
816    if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor))
817      return true;
818    break;
819
820  case ImplicitConversionSequence::UserDefinedConversion:
821    // FIXME: This is, of course, wrong. We'll need to actually call the
822    // constructor or conversion operator, and then cope with the standard
823    // conversions.
824    ImpCastExprToType(From, ToType.getNonReferenceType(),
825                      ToType->isLValueReferenceType());
826    return false;
827
828  case ImplicitConversionSequence::EllipsisConversion:
829    assert(false && "Cannot perform an ellipsis conversion");
830    return false;
831
832  case ImplicitConversionSequence::BadConversion:
833    return true;
834  }
835
836  // Everything went well.
837  return false;
838}
839
840/// PerformImplicitConversion - Perform an implicit conversion of the
841/// expression From to the type ToType by following the standard
842/// conversion sequence SCS. Returns true if there was an error, false
843/// otherwise. The expression From is replaced with the converted
844/// expression. Flavor is the context in which we're performing this
845/// conversion, for use in error messages.
846bool
847Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
848                                const StandardConversionSequence& SCS,
849                                const char *Flavor) {
850  // Overall FIXME: we are recomputing too many types here and doing far too
851  // much extra work. What this means is that we need to keep track of more
852  // information that is computed when we try the implicit conversion initially,
853  // so that we don't need to recompute anything here.
854  QualType FromType = From->getType();
855
856  if (SCS.CopyConstructor) {
857    // FIXME: When can ToType be a reference type?
858    assert(!ToType->isReferenceType());
859
860    CXXTempVarDecl *Temp = CXXTempVarDecl::Create(Context, CurContext, ToType);
861    // FIXME: Keep track of whether the copy constructor is elidable or not.
862    From = CXXConstructExpr::Create(Context, Temp, ToType,
863                                    SCS.CopyConstructor, false, &From, 1);
864    return false;
865  }
866
867  // Perform the first implicit conversion.
868  switch (SCS.First) {
869  case ICK_Identity:
870  case ICK_Lvalue_To_Rvalue:
871    // Nothing to do.
872    break;
873
874  case ICK_Array_To_Pointer:
875    FromType = Context.getArrayDecayedType(FromType);
876    ImpCastExprToType(From, FromType);
877    break;
878
879  case ICK_Function_To_Pointer:
880    if (Context.getCanonicalType(FromType) == Context.OverloadTy) {
881      FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
882      if (!Fn)
883        return true;
884
885      if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
886        return true;
887
888      FixOverloadedFunctionReference(From, Fn);
889      FromType = From->getType();
890    }
891    FromType = Context.getPointerType(FromType);
892    ImpCastExprToType(From, FromType);
893    break;
894
895  default:
896    assert(false && "Improper first standard conversion");
897    break;
898  }
899
900  // Perform the second implicit conversion
901  switch (SCS.Second) {
902  case ICK_Identity:
903    // Nothing to do.
904    break;
905
906  case ICK_Integral_Promotion:
907  case ICK_Floating_Promotion:
908  case ICK_Complex_Promotion:
909  case ICK_Integral_Conversion:
910  case ICK_Floating_Conversion:
911  case ICK_Complex_Conversion:
912  case ICK_Floating_Integral:
913  case ICK_Complex_Real:
914  case ICK_Compatible_Conversion:
915      // FIXME: Go deeper to get the unqualified type!
916    FromType = ToType.getUnqualifiedType();
917    ImpCastExprToType(From, FromType);
918    break;
919
920  case ICK_Pointer_Conversion:
921    if (SCS.IncompatibleObjC) {
922      // Diagnose incompatible Objective-C conversions
923      Diag(From->getSourceRange().getBegin(),
924           diag::ext_typecheck_convert_incompatible_pointer)
925        << From->getType() << ToType << Flavor
926        << From->getSourceRange();
927    }
928
929    if (CheckPointerConversion(From, ToType))
930      return true;
931    ImpCastExprToType(From, ToType);
932    break;
933
934  case ICK_Pointer_Member:
935    if (CheckMemberPointerConversion(From, ToType))
936      return true;
937    ImpCastExprToType(From, ToType);
938    break;
939
940  case ICK_Boolean_Conversion:
941    FromType = Context.BoolTy;
942    ImpCastExprToType(From, FromType);
943    break;
944
945  default:
946    assert(false && "Improper second standard conversion");
947    break;
948  }
949
950  switch (SCS.Third) {
951  case ICK_Identity:
952    // Nothing to do.
953    break;
954
955  case ICK_Qualification:
956    // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue
957    // references.
958    ImpCastExprToType(From, ToType.getNonReferenceType(),
959                      ToType->isLValueReferenceType());
960    break;
961
962  default:
963    assert(false && "Improper second standard conversion");
964    break;
965  }
966
967  return false;
968}
969
970Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
971                                                 SourceLocation KWLoc,
972                                                 SourceLocation LParen,
973                                                 TypeTy *Ty,
974                                                 SourceLocation RParen) {
975  // FIXME: Some of the type traits have requirements. Interestingly, only the
976  // __is_base_of requirement is explicitly stated to be diagnosed. Indeed, G++
977  // accepts __is_pod(Incomplete) without complaints, and claims that the type
978  // is indeed a POD.
979
980  // There is no point in eagerly computing the value. The traits are designed
981  // to be used from type trait templates, so Ty will be a template parameter
982  // 99% of the time.
983  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT,
984                                      QualType::getFromOpaquePtr(Ty),
985                                      RParen, Context.BoolTy));
986}
987
988QualType Sema::CheckPointerToMemberOperands(
989  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect)
990{
991  const char *OpSpelling = isIndirect ? "->*" : ".*";
992  // C++ 5.5p2
993  //   The binary operator .* [p3: ->*] binds its second operand, which shall
994  //   be of type "pointer to member of T" (where T is a completely-defined
995  //   class type) [...]
996  QualType RType = rex->getType();
997  const MemberPointerType *MemPtr = RType->getAsMemberPointerType();
998  if (!MemPtr) {
999    Diag(Loc, diag::err_bad_memptr_rhs)
1000      << OpSpelling << RType << rex->getSourceRange();
1001    return QualType();
1002  }
1003
1004  QualType Class(MemPtr->getClass(), 0);
1005
1006  // C++ 5.5p2
1007  //   [...] to its first operand, which shall be of class T or of a class of
1008  //   which T is an unambiguous and accessible base class. [p3: a pointer to
1009  //   such a class]
1010  QualType LType = lex->getType();
1011  if (isIndirect) {
1012    if (const PointerType *Ptr = LType->getAsPointerType())
1013      LType = Ptr->getPointeeType().getNonReferenceType();
1014    else {
1015      Diag(Loc, diag::err_bad_memptr_lhs)
1016        << OpSpelling << 1 << LType << lex->getSourceRange();
1017      return QualType();
1018    }
1019  }
1020
1021  if (Context.getCanonicalType(Class).getUnqualifiedType() !=
1022      Context.getCanonicalType(LType).getUnqualifiedType()) {
1023    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1024                    /*DetectVirtual=*/false);
1025    // FIXME: Would it be useful to print full ambiguity paths, or is that
1026    // overkill?
1027    if (!IsDerivedFrom(LType, Class, Paths) ||
1028        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
1029      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
1030        << (int)isIndirect << lex->getType() << lex->getSourceRange();
1031      return QualType();
1032    }
1033  }
1034
1035  // C++ 5.5p2
1036  //   The result is an object or a function of the type specified by the
1037  //   second operand.
1038  // The cv qualifiers are the union of those in the pointer and the left side,
1039  // in accordance with 5.5p5 and 5.2.5.
1040  // FIXME: This returns a dereferenced member function pointer as a normal
1041  // function type. However, the only operation valid on such functions is
1042  // calling them. There's also a GCC extension to get a function pointer to the
1043  // thing, which is another complication, because this type - unlike the type
1044  // that is the result of this expression - takes the class as the first
1045  // argument.
1046  // We probably need a "MemberFunctionClosureType" or something like that.
1047  QualType Result = MemPtr->getPointeeType();
1048  if (LType.isConstQualified())
1049    Result.addConst();
1050  if (LType.isVolatileQualified())
1051    Result.addVolatile();
1052  return Result;
1053}
1054
1055/// \brief Get the target type of a standard or user-defined conversion.
1056static QualType TargetType(const ImplicitConversionSequence &ICS) {
1057  assert((ICS.ConversionKind ==
1058              ImplicitConversionSequence::StandardConversion ||
1059          ICS.ConversionKind ==
1060              ImplicitConversionSequence::UserDefinedConversion) &&
1061         "function only valid for standard or user-defined conversions");
1062  if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion)
1063    return QualType::getFromOpaquePtr(ICS.Standard.ToTypePtr);
1064  return QualType::getFromOpaquePtr(ICS.UserDefined.After.ToTypePtr);
1065}
1066
1067/// \brief Try to convert a type to another according to C++0x 5.16p3.
1068///
1069/// This is part of the parameter validation for the ? operator. If either
1070/// value operand is a class type, the two operands are attempted to be
1071/// converted to each other. This function does the conversion in one direction.
1072/// It emits a diagnostic and returns true only if it finds an ambiguous
1073/// conversion.
1074static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
1075                                SourceLocation QuestionLoc,
1076                                ImplicitConversionSequence &ICS)
1077{
1078  // C++0x 5.16p3
1079  //   The process for determining whether an operand expression E1 of type T1
1080  //   can be converted to match an operand expression E2 of type T2 is defined
1081  //   as follows:
1082  //   -- If E2 is an lvalue:
1083  if (To->isLvalue(Self.Context) == Expr::LV_Valid) {
1084    //   E1 can be converted to match E2 if E1 can be implicitly converted to
1085    //   type "lvalue reference to T2", subject to the constraint that in the
1086    //   conversion the reference must bind directly to E1.
1087    if (!Self.CheckReferenceInit(From,
1088                            Self.Context.getLValueReferenceType(To->getType()),
1089                            &ICS))
1090    {
1091      assert((ICS.ConversionKind ==
1092                  ImplicitConversionSequence::StandardConversion ||
1093              ICS.ConversionKind ==
1094                  ImplicitConversionSequence::UserDefinedConversion) &&
1095             "expected a definite conversion");
1096      bool DirectBinding =
1097        ICS.ConversionKind == ImplicitConversionSequence::StandardConversion ?
1098        ICS.Standard.DirectBinding : ICS.UserDefined.After.DirectBinding;
1099      if (DirectBinding)
1100        return false;
1101    }
1102  }
1103  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1104  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
1105  //      -- if E1 and E2 have class type, and the underlying class types are
1106  //         the same or one is a base class of the other:
1107  QualType FTy = From->getType();
1108  QualType TTy = To->getType();
1109  const RecordType *FRec = FTy->getAsRecordType();
1110  const RecordType *TRec = TTy->getAsRecordType();
1111  bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy);
1112  if (FRec && TRec && (FRec == TRec ||
1113        FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
1114    //         E1 can be converted to match E2 if the class of T2 is the
1115    //         same type as, or a base class of, the class of T1, and
1116    //         [cv2 > cv1].
1117    if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) {
1118      // Could still fail if there's no copy constructor.
1119      // FIXME: Is this a hard error then, or just a conversion failure? The
1120      // standard doesn't say.
1121      ICS = Self.TryCopyInitialization(From, TTy);
1122    }
1123  } else {
1124    //     -- Otherwise: E1 can be converted to match E2 if E1 can be
1125    //        implicitly converted to the type that expression E2 would have
1126    //        if E2 were converted to an rvalue.
1127    // First find the decayed type.
1128    if (TTy->isFunctionType())
1129      TTy = Self.Context.getPointerType(TTy);
1130    else if(TTy->isArrayType())
1131      TTy = Self.Context.getArrayDecayedType(TTy);
1132
1133    // Now try the implicit conversion.
1134    // FIXME: This doesn't detect ambiguities.
1135    ICS = Self.TryImplicitConversion(From, TTy);
1136  }
1137  return false;
1138}
1139
1140/// \brief Try to find a common type for two according to C++0x 5.16p5.
1141///
1142/// This is part of the parameter validation for the ? operator. If either
1143/// value operand is a class type, overload resolution is used to find a
1144/// conversion to a common type.
1145static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
1146                                    SourceLocation Loc) {
1147  Expr *Args[2] = { LHS, RHS };
1148  OverloadCandidateSet CandidateSet;
1149  Self.AddBuiltinOperatorCandidates(OO_Conditional, Args, 2, CandidateSet);
1150
1151  OverloadCandidateSet::iterator Best;
1152  switch (Self.BestViableFunction(CandidateSet, Best)) {
1153    case Sema::OR_Success:
1154      // We found a match. Perform the conversions on the arguments and move on.
1155      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
1156                                         Best->Conversions[0], "converting") ||
1157          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
1158                                         Best->Conversions[1], "converting"))
1159        break;
1160      return false;
1161
1162    case Sema::OR_No_Viable_Function:
1163      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
1164        << LHS->getType() << RHS->getType()
1165        << LHS->getSourceRange() << RHS->getSourceRange();
1166      return true;
1167
1168    case Sema::OR_Ambiguous:
1169      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
1170        << LHS->getType() << RHS->getType()
1171        << LHS->getSourceRange() << RHS->getSourceRange();
1172      // FIXME: Print the possible common types by printing the return types of
1173      // the viable candidates.
1174      break;
1175
1176    case Sema::OR_Deleted:
1177      assert(false && "Conditional operator has only built-in overloads");
1178      break;
1179  }
1180  return true;
1181}
1182
1183/// \brief Perform an "extended" implicit conversion as returned by
1184/// TryClassUnification.
1185///
1186/// TryClassUnification generates ICSs that include reference bindings.
1187/// PerformImplicitConversion is not suitable for this; it chokes if the
1188/// second part of a standard conversion is ICK_DerivedToBase. This function
1189/// handles the reference binding specially.
1190static bool ConvertForConditional(Sema &Self, Expr *&E,
1191                                  const ImplicitConversionSequence &ICS)
1192{
1193  if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion &&
1194      ICS.Standard.ReferenceBinding) {
1195    assert(ICS.Standard.DirectBinding &&
1196           "TryClassUnification should never generate indirect ref bindings");
1197    // FIXME: CheckReferenceInit should be able to reuse the ICS instead of
1198    // redoing all the work.
1199    return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
1200                                        TargetType(ICS)));
1201  }
1202  if (ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion &&
1203      ICS.UserDefined.After.ReferenceBinding) {
1204    assert(ICS.UserDefined.After.DirectBinding &&
1205           "TryClassUnification should never generate indirect ref bindings");
1206    return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
1207                                        TargetType(ICS)));
1208  }
1209  if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, "converting"))
1210    return true;
1211  return false;
1212}
1213
1214/// \brief Check the operands of ?: under C++ semantics.
1215///
1216/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
1217/// extension. In this case, LHS == Cond. (But they're not aliases.)
1218QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
1219                                           SourceLocation QuestionLoc) {
1220  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
1221  // interface pointers.
1222
1223  // C++0x 5.16p1
1224  //   The first expression is contextually converted to bool.
1225  if (!Cond->isTypeDependent()) {
1226    if (CheckCXXBooleanCondition(Cond))
1227      return QualType();
1228  }
1229
1230  // Either of the arguments dependent?
1231  if (LHS->isTypeDependent() || RHS->isTypeDependent())
1232    return Context.DependentTy;
1233
1234  // C++0x 5.16p2
1235  //   If either the second or the third operand has type (cv) void, ...
1236  QualType LTy = LHS->getType();
1237  QualType RTy = RHS->getType();
1238  bool LVoid = LTy->isVoidType();
1239  bool RVoid = RTy->isVoidType();
1240  if (LVoid || RVoid) {
1241    //   ... then the [l2r] conversions are performed on the second and third
1242    //   operands ...
1243    DefaultFunctionArrayConversion(LHS);
1244    DefaultFunctionArrayConversion(RHS);
1245    LTy = LHS->getType();
1246    RTy = RHS->getType();
1247
1248    //   ... and one of the following shall hold:
1249    //   -- The second or the third operand (but not both) is a throw-
1250    //      expression; the result is of the type of the other and is an rvalue.
1251    bool LThrow = isa<CXXThrowExpr>(LHS);
1252    bool RThrow = isa<CXXThrowExpr>(RHS);
1253    if (LThrow && !RThrow)
1254      return RTy;
1255    if (RThrow && !LThrow)
1256      return LTy;
1257
1258    //   -- Both the second and third operands have type void; the result is of
1259    //      type void and is an rvalue.
1260    if (LVoid && RVoid)
1261      return Context.VoidTy;
1262
1263    // Neither holds, error.
1264    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
1265      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
1266      << LHS->getSourceRange() << RHS->getSourceRange();
1267    return QualType();
1268  }
1269
1270  // Neither is void.
1271
1272  // C++0x 5.16p3
1273  //   Otherwise, if the second and third operand have different types, and
1274  //   either has (cv) class type, and attempt is made to convert each of those
1275  //   operands to the other.
1276  if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) &&
1277      (LTy->isRecordType() || RTy->isRecordType())) {
1278    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
1279    // These return true if a single direction is already ambiguous.
1280    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight))
1281      return QualType();
1282    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft))
1283      return QualType();
1284
1285    bool HaveL2R = ICSLeftToRight.ConversionKind !=
1286      ImplicitConversionSequence::BadConversion;
1287    bool HaveR2L = ICSRightToLeft.ConversionKind !=
1288      ImplicitConversionSequence::BadConversion;
1289    //   If both can be converted, [...] the program is ill-formed.
1290    if (HaveL2R && HaveR2L) {
1291      Diag(QuestionLoc, diag::err_conditional_ambiguous)
1292        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
1293      return QualType();
1294    }
1295
1296    //   If exactly one conversion is possible, that conversion is applied to
1297    //   the chosen operand and the converted operands are used in place of the
1298    //   original operands for the remainder of this section.
1299    if (HaveL2R) {
1300      if (ConvertForConditional(*this, LHS, ICSLeftToRight))
1301        return QualType();
1302      LTy = LHS->getType();
1303    } else if (HaveR2L) {
1304      if (ConvertForConditional(*this, RHS, ICSRightToLeft))
1305        return QualType();
1306      RTy = RHS->getType();
1307    }
1308  }
1309
1310  // C++0x 5.16p4
1311  //   If the second and third operands are lvalues and have the same type,
1312  //   the result is of that type [...]
1313  bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy);
1314  if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
1315      RHS->isLvalue(Context) == Expr::LV_Valid)
1316    return LTy;
1317
1318  // C++0x 5.16p5
1319  //   Otherwise, the result is an rvalue. If the second and third operands
1320  //   do not have the same type, and either has (cv) class type, ...
1321  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
1322    //   ... overload resolution is used to determine the conversions (if any)
1323    //   to be applied to the operands. If the overload resolution fails, the
1324    //   program is ill-formed.
1325    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
1326      return QualType();
1327  }
1328
1329  // C++0x 5.16p6
1330  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
1331  //   conversions are performed on the second and third operands.
1332  DefaultFunctionArrayConversion(LHS);
1333  DefaultFunctionArrayConversion(RHS);
1334  LTy = LHS->getType();
1335  RTy = RHS->getType();
1336
1337  //   After those conversions, one of the following shall hold:
1338  //   -- The second and third operands have the same type; the result
1339  //      is of that type.
1340  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy))
1341    return LTy;
1342
1343  //   -- The second and third operands have arithmetic or enumeration type;
1344  //      the usual arithmetic conversions are performed to bring them to a
1345  //      common type, and the result is of that type.
1346  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
1347    UsualArithmeticConversions(LHS, RHS);
1348    return LHS->getType();
1349  }
1350
1351  //   -- The second and third operands have pointer type, or one has pointer
1352  //      type and the other is a null pointer constant; pointer conversions
1353  //      and qualification conversions are performed to bring them to their
1354  //      composite pointer type. The result is of the composite pointer type.
1355  QualType Composite = FindCompositePointerType(LHS, RHS);
1356  if (!Composite.isNull())
1357    return Composite;
1358
1359  // Fourth bullet is same for pointers-to-member. However, the possible
1360  // conversions are far more limited: we have null-to-pointer, upcast of
1361  // containing class, and second-level cv-ness.
1362  // cv-ness is not a union, but must match one of the two operands. (Which,
1363  // frankly, is stupid.)
1364  const MemberPointerType *LMemPtr = LTy->getAsMemberPointerType();
1365  const MemberPointerType *RMemPtr = RTy->getAsMemberPointerType();
1366  if (LMemPtr && RHS->isNullPointerConstant(Context)) {
1367    ImpCastExprToType(RHS, LTy);
1368    return LTy;
1369  }
1370  if (RMemPtr && LHS->isNullPointerConstant(Context)) {
1371    ImpCastExprToType(LHS, RTy);
1372    return RTy;
1373  }
1374  if (LMemPtr && RMemPtr) {
1375    QualType LPointee = LMemPtr->getPointeeType();
1376    QualType RPointee = RMemPtr->getPointeeType();
1377    // First, we check that the unqualified pointee type is the same. If it's
1378    // not, there's no conversion that will unify the two pointers.
1379    if (Context.getCanonicalType(LPointee).getUnqualifiedType() ==
1380        Context.getCanonicalType(RPointee).getUnqualifiedType()) {
1381      // Second, we take the greater of the two cv qualifications. If neither
1382      // is greater than the other, the conversion is not possible.
1383      unsigned Q = LPointee.getCVRQualifiers() | RPointee.getCVRQualifiers();
1384      if (Q == LPointee.getCVRQualifiers() || Q == RPointee.getCVRQualifiers()){
1385        // Third, we check if either of the container classes is derived from
1386        // the other.
1387        QualType LContainer(LMemPtr->getClass(), 0);
1388        QualType RContainer(RMemPtr->getClass(), 0);
1389        QualType MoreDerived;
1390        if (Context.getCanonicalType(LContainer) ==
1391            Context.getCanonicalType(RContainer))
1392          MoreDerived = LContainer;
1393        else if (IsDerivedFrom(LContainer, RContainer))
1394          MoreDerived = LContainer;
1395        else if (IsDerivedFrom(RContainer, LContainer))
1396          MoreDerived = RContainer;
1397
1398        if (!MoreDerived.isNull()) {
1399          // The type 'Q Pointee (MoreDerived::*)' is the common type.
1400          // We don't use ImpCastExprToType here because this could still fail
1401          // for ambiguous or inaccessible conversions.
1402          QualType Common = Context.getMemberPointerType(
1403            LPointee.getQualifiedType(Q), MoreDerived.getTypePtr());
1404          if (PerformImplicitConversion(LHS, Common, "converting"))
1405            return QualType();
1406          if (PerformImplicitConversion(RHS, Common, "converting"))
1407            return QualType();
1408          return Common;
1409        }
1410      }
1411    }
1412  }
1413
1414  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
1415    << LHS->getType() << RHS->getType()
1416    << LHS->getSourceRange() << RHS->getSourceRange();
1417  return QualType();
1418}
1419
1420/// \brief Find a merged pointer type and convert the two expressions to it.
1421///
1422/// This finds the composite pointer type for @p E1 and @p E2 according to
1423/// C++0x 5.9p2. It converts both expressions to this type and returns it.
1424/// It does not emit diagnostics.
1425QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) {
1426  assert(getLangOptions().CPlusPlus && "This function assumes C++");
1427  QualType T1 = E1->getType(), T2 = E2->getType();
1428  if(!T1->isPointerType() && !T2->isPointerType())
1429    return QualType();
1430
1431  // C++0x 5.9p2
1432  //   Pointer conversions and qualification conversions are performed on
1433  //   pointer operands to bring them to their composite pointer type. If
1434  //   one operand is a null pointer constant, the composite pointer type is
1435  //   the type of the other operand.
1436  if (E1->isNullPointerConstant(Context)) {
1437    ImpCastExprToType(E1, T2);
1438    return T2;
1439  }
1440  if (E2->isNullPointerConstant(Context)) {
1441    ImpCastExprToType(E2, T1);
1442    return T1;
1443  }
1444  // Now both have to be pointers.
1445  if(!T1->isPointerType() || !T2->isPointerType())
1446    return QualType();
1447
1448  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
1449  //   the other has type "pointer to cv2 T" and the composite pointer type is
1450  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
1451  //   Otherwise, the composite pointer type is a pointer type similar to the
1452  //   type of one of the operands, with a cv-qualification signature that is
1453  //   the union of the cv-qualification signatures of the operand types.
1454  // In practice, the first part here is redundant; it's subsumed by the second.
1455  // What we do here is, we build the two possible composite types, and try the
1456  // conversions in both directions. If only one works, or if the two composite
1457  // types are the same, we have succeeded.
1458  llvm::SmallVector<unsigned, 4> QualifierUnion;
1459  QualType Composite1 = T1, Composite2 = T2;
1460  const PointerType *Ptr1, *Ptr2;
1461  while ((Ptr1 = Composite1->getAsPointerType()) &&
1462         (Ptr2 = Composite2->getAsPointerType())) {
1463    Composite1 = Ptr1->getPointeeType();
1464    Composite2 = Ptr2->getPointeeType();
1465    QualifierUnion.push_back(
1466      Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
1467  }
1468  // Rewrap the composites as pointers with the union CVRs.
1469  for (llvm::SmallVector<unsigned, 4>::iterator I = QualifierUnion.begin(),
1470       E = QualifierUnion.end(); I != E; ++I) {
1471    Composite1 = Context.getPointerType(Composite1.getQualifiedType(*I));
1472    Composite2 = Context.getPointerType(Composite2.getQualifiedType(*I));
1473  }
1474
1475  ImplicitConversionSequence E1ToC1 = TryImplicitConversion(E1, Composite1);
1476  ImplicitConversionSequence E2ToC1 = TryImplicitConversion(E2, Composite1);
1477  ImplicitConversionSequence E1ToC2, E2ToC2;
1478  E1ToC2.ConversionKind = ImplicitConversionSequence::BadConversion;
1479  E2ToC2.ConversionKind = ImplicitConversionSequence::BadConversion;
1480  if (Context.getCanonicalType(Composite1) !=
1481      Context.getCanonicalType(Composite2)) {
1482    E1ToC2 = TryImplicitConversion(E1, Composite2);
1483    E2ToC2 = TryImplicitConversion(E2, Composite2);
1484  }
1485
1486  bool ToC1Viable = E1ToC1.ConversionKind !=
1487                      ImplicitConversionSequence::BadConversion
1488                 && E2ToC1.ConversionKind !=
1489                      ImplicitConversionSequence::BadConversion;
1490  bool ToC2Viable = E1ToC2.ConversionKind !=
1491                      ImplicitConversionSequence::BadConversion
1492                 && E2ToC2.ConversionKind !=
1493                      ImplicitConversionSequence::BadConversion;
1494  if (ToC1Viable && !ToC2Viable) {
1495    if (!PerformImplicitConversion(E1, Composite1, E1ToC1, "converting") &&
1496        !PerformImplicitConversion(E2, Composite1, E2ToC1, "converting"))
1497      return Composite1;
1498  }
1499  if (ToC2Viable && !ToC1Viable) {
1500    if (!PerformImplicitConversion(E1, Composite2, E1ToC2, "converting") &&
1501        !PerformImplicitConversion(E2, Composite2, E2ToC2, "converting"))
1502      return Composite2;
1503  }
1504  return QualType();
1505}
1506
1507Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) {
1508  Expr *FullExpr = Arg.takeAs<Expr>();
1509  assert(FullExpr && "Null full expr!");
1510
1511  if (!ExprTemporaries.empty()) {
1512    // Create a cleanup expr.
1513    FullExpr =
1514      new (Context) CXXExprWithTemporaries(FullExpr, &ExprTemporaries[0],
1515                                           ExprTemporaries.size());
1516    ExprTemporaries.clear();
1517  }
1518
1519  return Owned(FullExpr);
1520}
1521