SemaExprCXX.cpp revision 26de54983e7977fad615c94012f2f67d0d1cf404
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SemaInherit.h"
15#include "Sema.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/STLExtras.h"
22using namespace clang;
23
24/// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function
25/// name (e.g., operator void const *) as an expression. This is
26/// very similar to ActOnIdentifierExpr, except that instead of
27/// providing an identifier the parser provides the type of the
28/// conversion function.
29Sema::OwningExprResult
30Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc,
31                                     TypeTy *Ty, bool HasTrailingLParen,
32                                     const CXXScopeSpec &SS,
33                                     bool isAddressOfOperand) {
34  QualType ConvType = QualType::getFromOpaquePtr(Ty);
35  QualType ConvTypeCanon = Context.getCanonicalType(ConvType);
36  DeclarationName ConvName
37    = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon);
38  return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen,
39                                  &SS, isAddressOfOperand);
40}
41
42/// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator
43/// name (e.g., @c operator+ ) as an expression. This is very
44/// similar to ActOnIdentifierExpr, except that instead of providing
45/// an identifier the parser provides the kind of overloaded
46/// operator that was parsed.
47Sema::OwningExprResult
48Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc,
49                                     OverloadedOperatorKind Op,
50                                     bool HasTrailingLParen,
51                                     const CXXScopeSpec &SS,
52                                     bool isAddressOfOperand) {
53  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op);
54  return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS,
55                                  isAddressOfOperand);
56}
57
58/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
59Action::OwningExprResult
60Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
61                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
62  NamespaceDecl *StdNs = GetStdNamespace();
63  if (!StdNs)
64    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
65
66  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
67  Decl *TypeInfoDecl = LookupQualifiedName(StdNs, TypeInfoII, LookupTagName);
68  RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null<RecordDecl>(TypeInfoDecl);
69  if (!TypeInfoRecordDecl)
70    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
71
72  QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
73
74  return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr,
75                                           TypeInfoType.withConst(),
76                                           SourceRange(OpLoc, RParenLoc)));
77}
78
79/// ActOnCXXBoolLiteral - Parse {true,false} literals.
80Action::OwningExprResult
81Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
82  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
83         "Unknown C++ Boolean value!");
84  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
85                                                Context.BoolTy, OpLoc));
86}
87
88/// ActOnCXXThrow - Parse throw expressions.
89Action::OwningExprResult
90Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) {
91  return Owned(new (Context) CXXThrowExpr((Expr*)E.release(), Context.VoidTy,
92                                          OpLoc));
93}
94
95Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
96  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
97  /// is a non-lvalue expression whose value is the address of the object for
98  /// which the function is called.
99
100  if (!isa<FunctionDecl>(CurContext))
101    return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
102
103  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
104    if (MD->isInstance())
105      return Owned(new (Context) CXXThisExpr(ThisLoc,
106                                             MD->getThisType(Context)));
107
108  return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
109}
110
111/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
112/// Can be interpreted either as function-style casting ("int(x)")
113/// or class type construction ("ClassType(x,y,z)")
114/// or creation of a value-initialized type ("int()").
115Action::OwningExprResult
116Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
117                                SourceLocation LParenLoc,
118                                MultiExprArg exprs,
119                                SourceLocation *CommaLocs,
120                                SourceLocation RParenLoc) {
121  assert(TypeRep && "Missing type!");
122  QualType Ty = QualType::getFromOpaquePtr(TypeRep);
123  unsigned NumExprs = exprs.size();
124  Expr **Exprs = (Expr**)exprs.get();
125  SourceLocation TyBeginLoc = TypeRange.getBegin();
126  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
127
128  if (Ty->isDependentType() ||
129      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
130    exprs.release();
131
132    // FIXME: Is this correct?
133    CXXTempVarDecl *Temp = CXXTempVarDecl::Create(Context, CurContext, Ty);
134    return Owned(new (Context) CXXTemporaryObjectExpr(Temp, 0, Ty, TyBeginLoc,
135                                                      Exprs, NumExprs,
136                                                      RParenLoc));
137  }
138
139
140  // C++ [expr.type.conv]p1:
141  // If the expression list is a single expression, the type conversion
142  // expression is equivalent (in definedness, and if defined in meaning) to the
143  // corresponding cast expression.
144  //
145  if (NumExprs == 1) {
146    if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
147      return ExprError();
148    exprs.release();
149    return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
150                                                     Ty, TyBeginLoc, Exprs[0],
151                                                     RParenLoc));
152  }
153
154  if (const RecordType *RT = Ty->getAsRecordType()) {
155    CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
156
157    if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) {
158      CXXConstructorDecl *Constructor
159        = PerformInitializationByConstructor(Ty, Exprs, NumExprs,
160                                             TypeRange.getBegin(),
161                                             SourceRange(TypeRange.getBegin(),
162                                                         RParenLoc),
163                                             DeclarationName(),
164                                             IK_Direct);
165
166      if (!Constructor)
167        return ExprError();
168
169      CXXTempVarDecl *Temp = CXXTempVarDecl::Create(Context, CurContext, Ty);
170
171      exprs.release();
172      return Owned(new (Context) CXXTemporaryObjectExpr(Temp, Constructor, Ty,
173                                                        TyBeginLoc,  Exprs,
174                                                        NumExprs, RParenLoc));
175    }
176
177    // Fall through to value-initialize an object of class type that
178    // doesn't have a user-declared default constructor.
179  }
180
181  // C++ [expr.type.conv]p1:
182  // If the expression list specifies more than a single value, the type shall
183  // be a class with a suitably declared constructor.
184  //
185  if (NumExprs > 1)
186    return ExprError(Diag(CommaLocs[0],
187                          diag::err_builtin_func_cast_more_than_one_arg)
188      << FullRange);
189
190  assert(NumExprs == 0 && "Expected 0 expressions");
191
192  // C++ [expr.type.conv]p2:
193  // The expression T(), where T is a simple-type-specifier for a non-array
194  // complete object type or the (possibly cv-qualified) void type, creates an
195  // rvalue of the specified type, which is value-initialized.
196  //
197  if (Ty->isArrayType())
198    return ExprError(Diag(TyBeginLoc,
199                          diag::err_value_init_for_array_type) << FullRange);
200  if (!Ty->isDependentType() && !Ty->isVoidType() &&
201      RequireCompleteType(TyBeginLoc, Ty,
202                          diag::err_invalid_incomplete_type_use, FullRange))
203    return ExprError();
204
205  if (RequireNonAbstractType(TyBeginLoc, Ty,
206                             diag::err_allocation_of_abstract_type))
207    return ExprError();
208
209  exprs.release();
210  return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
211}
212
213
214/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
215/// @code new (memory) int[size][4] @endcode
216/// or
217/// @code ::new Foo(23, "hello") @endcode
218/// For the interpretation of this heap of arguments, consult the base version.
219Action::OwningExprResult
220Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
221                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
222                  SourceLocation PlacementRParen, bool ParenTypeId,
223                  Declarator &D, SourceLocation ConstructorLParen,
224                  MultiExprArg ConstructorArgs,
225                  SourceLocation ConstructorRParen)
226{
227  Expr *ArraySize = 0;
228  unsigned Skip = 0;
229  // If the specified type is an array, unwrap it and save the expression.
230  if (D.getNumTypeObjects() > 0 &&
231      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
232    DeclaratorChunk &Chunk = D.getTypeObject(0);
233    if (Chunk.Arr.hasStatic)
234      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
235        << D.getSourceRange());
236    if (!Chunk.Arr.NumElts)
237      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
238        << D.getSourceRange());
239    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
240    Skip = 1;
241  }
242
243  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
244  if (D.getInvalidType())
245    return ExprError();
246
247  if (CheckAllocatedType(AllocType, D))
248    return ExprError();
249
250  QualType ResultType = AllocType->isDependentType()
251                          ? Context.DependentTy
252                          : Context.getPointerType(AllocType);
253
254  // That every array dimension except the first is constant was already
255  // checked by the type check above.
256
257  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
258  //   or enumeration type with a non-negative value."
259  if (ArraySize && !ArraySize->isTypeDependent()) {
260    QualType SizeType = ArraySize->getType();
261    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
262      return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
263                            diag::err_array_size_not_integral)
264        << SizeType << ArraySize->getSourceRange());
265    // Let's see if this is a constant < 0. If so, we reject it out of hand.
266    // We don't care about special rules, so we tell the machinery it's not
267    // evaluated - it gives us a result in more cases.
268    if (!ArraySize->isValueDependent()) {
269      llvm::APSInt Value;
270      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
271        if (Value < llvm::APSInt(
272                        llvm::APInt::getNullValue(Value.getBitWidth()), false))
273          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
274                           diag::err_typecheck_negative_array_size)
275            << ArraySize->getSourceRange());
276      }
277    }
278  }
279
280  FunctionDecl *OperatorNew = 0;
281  FunctionDecl *OperatorDelete = 0;
282  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
283  unsigned NumPlaceArgs = PlacementArgs.size();
284  if (!AllocType->isDependentType() &&
285      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
286      FindAllocationFunctions(StartLoc,
287                              SourceRange(PlacementLParen, PlacementRParen),
288                              UseGlobal, AllocType, ArraySize, PlaceArgs,
289                              NumPlaceArgs, OperatorNew, OperatorDelete))
290    return ExprError();
291
292  bool Init = ConstructorLParen.isValid();
293  // --- Choosing a constructor ---
294  // C++ 5.3.4p15
295  // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
296  //   the object is not initialized. If the object, or any part of it, is
297  //   const-qualified, it's an error.
298  // 2) If T is a POD and there's an empty initializer, the object is value-
299  //   initialized.
300  // 3) If T is a POD and there's one initializer argument, the object is copy-
301  //   constructed.
302  // 4) If T is a POD and there's more initializer arguments, it's an error.
303  // 5) If T is not a POD, the initializer arguments are used as constructor
304  //   arguments.
305  //
306  // Or by the C++0x formulation:
307  // 1) If there's no initializer, the object is default-initialized according
308  //    to C++0x rules.
309  // 2) Otherwise, the object is direct-initialized.
310  CXXConstructorDecl *Constructor = 0;
311  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
312  unsigned NumConsArgs = ConstructorArgs.size();
313  if (AllocType->isDependentType()) {
314    // Skip all the checks.
315  }
316  // FIXME: Should check for primitive/aggregate here, not record.
317  else if (const RecordType *RT = AllocType->getAsRecordType()) {
318    // FIXME: This is incorrect for when there is an empty initializer and
319    // no user-defined constructor. Must zero-initialize, not default-construct.
320    Constructor = PerformInitializationByConstructor(
321                      AllocType, ConsArgs, NumConsArgs,
322                      D.getSourceRange().getBegin(),
323                      SourceRange(D.getSourceRange().getBegin(),
324                                  ConstructorRParen),
325                      RT->getDecl()->getDeclName(),
326                      NumConsArgs != 0 ? IK_Direct : IK_Default);
327    if (!Constructor)
328      return ExprError();
329  } else {
330    if (!Init) {
331      // FIXME: Check that no subpart is const.
332      if (AllocType.isConstQualified())
333        return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const)
334          << D.getSourceRange());
335    } else if (NumConsArgs == 0) {
336      // Object is value-initialized. Do nothing.
337    } else if (NumConsArgs == 1) {
338      // Object is direct-initialized.
339      // FIXME: WHAT DeclarationName do we pass in here?
340      if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
341                                DeclarationName() /*AllocType.getAsString()*/,
342                                /*DirectInit=*/true))
343        return ExprError();
344    } else {
345      return ExprError(Diag(StartLoc,
346                            diag::err_builtin_direct_init_more_than_one_arg)
347        << SourceRange(ConstructorLParen, ConstructorRParen));
348    }
349  }
350
351  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
352
353  PlacementArgs.release();
354  ConstructorArgs.release();
355  return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
356                        NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
357                        ConsArgs, NumConsArgs, OperatorDelete, ResultType,
358                        StartLoc, Init ? ConstructorRParen : SourceLocation()));
359}
360
361/// CheckAllocatedType - Checks that a type is suitable as the allocated type
362/// in a new-expression.
363/// dimension off and stores the size expression in ArraySize.
364bool Sema::CheckAllocatedType(QualType AllocType, const Declarator &D)
365{
366  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
367  //   abstract class type or array thereof.
368  if (AllocType->isFunctionType())
369    return Diag(D.getSourceRange().getBegin(), diag::err_bad_new_type)
370      << AllocType << 0 << D.getSourceRange();
371  else if (AllocType->isReferenceType())
372    return Diag(D.getSourceRange().getBegin(), diag::err_bad_new_type)
373      << AllocType << 1 << D.getSourceRange();
374  else if (!AllocType->isDependentType() &&
375           RequireCompleteType(D.getSourceRange().getBegin(), AllocType,
376                               diag::err_new_incomplete_type,
377                               D.getSourceRange()))
378    return true;
379  else if (RequireNonAbstractType(D.getSourceRange().getBegin(), AllocType,
380                                  diag::err_allocation_of_abstract_type))
381    return true;
382
383  // Every dimension shall be of constant size.
384  unsigned i = 1;
385  while (const ArrayType *Array = Context.getAsArrayType(AllocType)) {
386    if (!Array->isConstantArrayType()) {
387      Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst)
388        << static_cast<Expr*>(D.getTypeObject(i).Arr.NumElts)->getSourceRange();
389      return true;
390    }
391    AllocType = Array->getElementType();
392    ++i;
393  }
394
395  return false;
396}
397
398/// FindAllocationFunctions - Finds the overloads of operator new and delete
399/// that are appropriate for the allocation.
400bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
401                                   bool UseGlobal, QualType AllocType,
402                                   bool IsArray, Expr **PlaceArgs,
403                                   unsigned NumPlaceArgs,
404                                   FunctionDecl *&OperatorNew,
405                                   FunctionDecl *&OperatorDelete)
406{
407  // --- Choosing an allocation function ---
408  // C++ 5.3.4p8 - 14 & 18
409  // 1) If UseGlobal is true, only look in the global scope. Else, also look
410  //   in the scope of the allocated class.
411  // 2) If an array size is given, look for operator new[], else look for
412  //   operator new.
413  // 3) The first argument is always size_t. Append the arguments from the
414  //   placement form.
415  // FIXME: Also find the appropriate delete operator.
416
417  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
418  // We don't care about the actual value of this argument.
419  // FIXME: Should the Sema create the expression and embed it in the syntax
420  // tree? Or should the consumer just recalculate the value?
421  AllocArgs[0] = new (Context) IntegerLiteral(llvm::APInt::getNullValue(
422                                        Context.Target.getPointerWidth(0)),
423                                    Context.getSizeType(),
424                                    SourceLocation());
425  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
426
427  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
428                                        IsArray ? OO_Array_New : OO_New);
429  if (AllocType->isRecordType() && !UseGlobal) {
430    CXXRecordDecl *Record
431      = cast<CXXRecordDecl>(AllocType->getAsRecordType()->getDecl());
432    // FIXME: We fail to find inherited overloads.
433    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
434                          AllocArgs.size(), Record, /*AllowMissing=*/true,
435                          OperatorNew))
436      return true;
437  }
438  if (!OperatorNew) {
439    // Didn't find a member overload. Look for a global one.
440    DeclareGlobalNewDelete();
441    DeclContext *TUDecl = Context.getTranslationUnitDecl();
442    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
443                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
444                          OperatorNew))
445      return true;
446  }
447
448  // FIXME: This is leaked on error. But so much is currently in Sema that it's
449  // easier to clean it in one go.
450  AllocArgs[0]->Destroy(Context);
451  return false;
452}
453
454/// FindAllocationOverload - Find an fitting overload for the allocation
455/// function in the specified scope.
456bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
457                                  DeclarationName Name, Expr** Args,
458                                  unsigned NumArgs, DeclContext *Ctx,
459                                  bool AllowMissing, FunctionDecl *&Operator)
460{
461  DeclContext::lookup_iterator Alloc, AllocEnd;
462  llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Context, Name);
463  if (Alloc == AllocEnd) {
464    if (AllowMissing)
465      return false;
466    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
467      << Name << Range;
468  }
469
470  OverloadCandidateSet Candidates;
471  for (; Alloc != AllocEnd; ++Alloc) {
472    // Even member operator new/delete are implicitly treated as
473    // static, so don't use AddMemberCandidate.
474    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc))
475      AddOverloadCandidate(Fn, Args, NumArgs, Candidates,
476                           /*SuppressUserConversions=*/false);
477  }
478
479  // Do the resolution.
480  OverloadCandidateSet::iterator Best;
481  switch(BestViableFunction(Candidates, Best)) {
482  case OR_Success: {
483    // Got one!
484    FunctionDecl *FnDecl = Best->Function;
485    // The first argument is size_t, and the first parameter must be size_t,
486    // too. This is checked on declaration and can be assumed. (It can't be
487    // asserted on, though, since invalid decls are left in there.)
488    for (unsigned i = 1; i < NumArgs; ++i) {
489      // FIXME: Passing word to diagnostic.
490      if (PerformCopyInitialization(Args[i-1],
491                                    FnDecl->getParamDecl(i)->getType(),
492                                    "passing"))
493        return true;
494    }
495    Operator = FnDecl;
496    return false;
497  }
498
499  case OR_No_Viable_Function:
500    if (AllowMissing)
501      return false;
502    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
503      << Name << Range;
504    PrintOverloadCandidates(Candidates, /*OnlyViable=*/false);
505    return true;
506
507  case OR_Ambiguous:
508    Diag(StartLoc, diag::err_ovl_ambiguous_call)
509      << Name << Range;
510    PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
511    return true;
512
513  case OR_Deleted:
514    Diag(StartLoc, diag::err_ovl_deleted_call)
515      << Best->Function->isDeleted()
516      << Name << Range;
517    PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
518    return true;
519  }
520  assert(false && "Unreachable, bad result from BestViableFunction");
521  return true;
522}
523
524
525/// DeclareGlobalNewDelete - Declare the global forms of operator new and
526/// delete. These are:
527/// @code
528///   void* operator new(std::size_t) throw(std::bad_alloc);
529///   void* operator new[](std::size_t) throw(std::bad_alloc);
530///   void operator delete(void *) throw();
531///   void operator delete[](void *) throw();
532/// @endcode
533/// Note that the placement and nothrow forms of new are *not* implicitly
534/// declared. Their use requires including \<new\>.
535void Sema::DeclareGlobalNewDelete()
536{
537  if (GlobalNewDeleteDeclared)
538    return;
539  GlobalNewDeleteDeclared = true;
540
541  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
542  QualType SizeT = Context.getSizeType();
543
544  // FIXME: Exception specifications are not added.
545  DeclareGlobalAllocationFunction(
546      Context.DeclarationNames.getCXXOperatorName(OO_New),
547      VoidPtr, SizeT);
548  DeclareGlobalAllocationFunction(
549      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
550      VoidPtr, SizeT);
551  DeclareGlobalAllocationFunction(
552      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
553      Context.VoidTy, VoidPtr);
554  DeclareGlobalAllocationFunction(
555      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
556      Context.VoidTy, VoidPtr);
557}
558
559/// DeclareGlobalAllocationFunction - Declares a single implicit global
560/// allocation function if it doesn't already exist.
561void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
562                                           QualType Return, QualType Argument)
563{
564  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
565
566  // Check if this function is already declared.
567  {
568    DeclContext::lookup_iterator Alloc, AllocEnd;
569    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Context, Name);
570         Alloc != AllocEnd; ++Alloc) {
571      // FIXME: Do we need to check for default arguments here?
572      FunctionDecl *Func = cast<FunctionDecl>(*Alloc);
573      if (Func->getNumParams() == 1 &&
574          Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument)
575        return;
576    }
577  }
578
579  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0);
580  FunctionDecl *Alloc =
581    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
582                         FnType, FunctionDecl::None, false, true,
583                         SourceLocation());
584  Alloc->setImplicit();
585  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
586                                           0, Argument, VarDecl::None, 0);
587  Alloc->setParams(Context, &Param, 1);
588
589  // FIXME: Also add this declaration to the IdentifierResolver, but
590  // make sure it is at the end of the chain to coincide with the
591  // global scope.
592  ((DeclContext *)TUScope->getEntity())->addDecl(Context, Alloc);
593}
594
595/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
596/// @code ::delete ptr; @endcode
597/// or
598/// @code delete [] ptr; @endcode
599Action::OwningExprResult
600Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
601                     bool ArrayForm, ExprArg Operand)
602{
603  // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
604  //   having a single conversion function to a pointer type. The result has
605  //   type void."
606  // DR599 amends "pointer type" to "pointer to object type" in both cases.
607
608  Expr *Ex = (Expr *)Operand.get();
609  if (!Ex->isTypeDependent()) {
610    QualType Type = Ex->getType();
611
612    if (Type->isRecordType()) {
613      // FIXME: Find that one conversion function and amend the type.
614    }
615
616    if (!Type->isPointerType())
617      return ExprError(Diag(StartLoc, diag::err_delete_operand)
618        << Type << Ex->getSourceRange());
619
620    QualType Pointee = Type->getAsPointerType()->getPointeeType();
621    if (Pointee->isFunctionType() || Pointee->isVoidType())
622      return ExprError(Diag(StartLoc, diag::err_delete_operand)
623        << Type << Ex->getSourceRange());
624    else if (!Pointee->isDependentType() &&
625             RequireCompleteType(StartLoc, Pointee,
626                                 diag::warn_delete_incomplete,
627                                 Ex->getSourceRange()))
628      return ExprError();
629
630    // FIXME: Look up the correct operator delete overload and pass a pointer
631    // along.
632    // FIXME: Check access and ambiguity of operator delete and destructor.
633  }
634
635  Operand.release();
636  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
637                                           0, Ex, StartLoc));
638}
639
640
641/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
642/// C++ if/switch/while/for statement.
643/// e.g: "if (int x = f()) {...}"
644Action::OwningExprResult
645Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc,
646                                       Declarator &D,
647                                       SourceLocation EqualLoc,
648                                       ExprArg AssignExprVal) {
649  assert(AssignExprVal.get() && "Null assignment expression");
650
651  // C++ 6.4p2:
652  // The declarator shall not specify a function or an array.
653  // The type-specifier-seq shall not contain typedef and shall not declare a
654  // new class or enumeration.
655
656  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
657         "Parser allowed 'typedef' as storage class of condition decl.");
658
659  QualType Ty = GetTypeForDeclarator(D, S);
660
661  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
662    // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
663    // would be created and CXXConditionDeclExpr wants a VarDecl.
664    return ExprError(Diag(StartLoc, diag::err_invalid_use_of_function_type)
665      << SourceRange(StartLoc, EqualLoc));
666  } else if (Ty->isArrayType()) { // ...or an array.
667    Diag(StartLoc, diag::err_invalid_use_of_array_type)
668      << SourceRange(StartLoc, EqualLoc);
669  } else if (const RecordType *RT = Ty->getAsRecordType()) {
670    RecordDecl *RD = RT->getDecl();
671    // The type-specifier-seq shall not declare a new class...
672    if (RD->isDefinition() &&
673        (RD->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(RD))))
674      Diag(RD->getLocation(), diag::err_type_defined_in_condition);
675  } else if (const EnumType *ET = Ty->getAsEnumType()) {
676    EnumDecl *ED = ET->getDecl();
677    // ...or enumeration.
678    if (ED->isDefinition() &&
679        (ED->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(ED))))
680      Diag(ED->getLocation(), diag::err_type_defined_in_condition);
681  }
682
683  DeclPtrTy Dcl = ActOnDeclarator(S, D, DeclPtrTy());
684  if (!Dcl)
685    return ExprError();
686  AddInitializerToDecl(Dcl, move(AssignExprVal));
687
688  // Mark this variable as one that is declared within a conditional.
689  // We know that the decl had to be a VarDecl because that is the only type of
690  // decl that can be assigned and the grammar requires an '='.
691  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
692  VD->setDeclaredInCondition(true);
693  return Owned(new (Context) CXXConditionDeclExpr(StartLoc, EqualLoc, VD));
694}
695
696/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
697bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
698  // C++ 6.4p4:
699  // The value of a condition that is an initialized declaration in a statement
700  // other than a switch statement is the value of the declared variable
701  // implicitly converted to type bool. If that conversion is ill-formed, the
702  // program is ill-formed.
703  // The value of a condition that is an expression is the value of the
704  // expression, implicitly converted to bool.
705  //
706  return PerformContextuallyConvertToBool(CondExpr);
707}
708
709/// Helper function to determine whether this is the (deprecated) C++
710/// conversion from a string literal to a pointer to non-const char or
711/// non-const wchar_t (for narrow and wide string literals,
712/// respectively).
713bool
714Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
715  // Look inside the implicit cast, if it exists.
716  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
717    From = Cast->getSubExpr();
718
719  // A string literal (2.13.4) that is not a wide string literal can
720  // be converted to an rvalue of type "pointer to char"; a wide
721  // string literal can be converted to an rvalue of type "pointer
722  // to wchar_t" (C++ 4.2p2).
723  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
724    if (const PointerType *ToPtrType = ToType->getAsPointerType())
725      if (const BuiltinType *ToPointeeType
726          = ToPtrType->getPointeeType()->getAsBuiltinType()) {
727        // This conversion is considered only when there is an
728        // explicit appropriate pointer target type (C++ 4.2p2).
729        if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
730            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
731             (!StrLit->isWide() &&
732              (ToPointeeType->getKind() == BuiltinType::Char_U ||
733               ToPointeeType->getKind() == BuiltinType::Char_S))))
734          return true;
735      }
736
737  return false;
738}
739
740/// PerformImplicitConversion - Perform an implicit conversion of the
741/// expression From to the type ToType. Returns true if there was an
742/// error, false otherwise. The expression From is replaced with the
743/// converted expression. Flavor is the kind of conversion we're
744/// performing, used in the error message. If @p AllowExplicit,
745/// explicit user-defined conversions are permitted. @p Elidable should be true
746/// when called for copies which may be elided (C++ 12.8p15). C++0x overload
747/// resolution works differently in that case.
748bool
749Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
750                                const char *Flavor, bool AllowExplicit,
751                                bool Elidable)
752{
753  ImplicitConversionSequence ICS;
754  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
755  if (Elidable && getLangOptions().CPlusPlus0x) {
756    ICS = TryImplicitConversion(From, ToType, /*SuppressUserConversions*/false,
757                                AllowExplicit, /*ForceRValue*/true);
758  }
759  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) {
760    ICS = TryImplicitConversion(From, ToType, false, AllowExplicit);
761  }
762  return PerformImplicitConversion(From, ToType, ICS, Flavor);
763}
764
765/// PerformImplicitConversion - Perform an implicit conversion of the
766/// expression From to the type ToType using the pre-computed implicit
767/// conversion sequence ICS. Returns true if there was an error, false
768/// otherwise. The expression From is replaced with the converted
769/// expression. Flavor is the kind of conversion we're performing,
770/// used in the error message.
771bool
772Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
773                                const ImplicitConversionSequence &ICS,
774                                const char* Flavor) {
775  switch (ICS.ConversionKind) {
776  case ImplicitConversionSequence::StandardConversion:
777    if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor))
778      return true;
779    break;
780
781  case ImplicitConversionSequence::UserDefinedConversion:
782    // FIXME: This is, of course, wrong. We'll need to actually call
783    // the constructor or conversion operator, and then cope with the
784    // standard conversions.
785    ImpCastExprToType(From, ToType.getNonReferenceType(),
786                      ToType->isLValueReferenceType());
787    return false;
788
789  case ImplicitConversionSequence::EllipsisConversion:
790    assert(false && "Cannot perform an ellipsis conversion");
791    return false;
792
793  case ImplicitConversionSequence::BadConversion:
794    return true;
795  }
796
797  // Everything went well.
798  return false;
799}
800
801/// PerformImplicitConversion - Perform an implicit conversion of the
802/// expression From to the type ToType by following the standard
803/// conversion sequence SCS. Returns true if there was an error, false
804/// otherwise. The expression From is replaced with the converted
805/// expression. Flavor is the context in which we're performing this
806/// conversion, for use in error messages.
807bool
808Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
809                                const StandardConversionSequence& SCS,
810                                const char *Flavor) {
811  // Overall FIXME: we are recomputing too many types here and doing
812  // far too much extra work. What this means is that we need to keep
813  // track of more information that is computed when we try the
814  // implicit conversion initially, so that we don't need to recompute
815  // anything here.
816  QualType FromType = From->getType();
817
818  if (SCS.CopyConstructor) {
819    // FIXME: Create a temporary object by calling the copy
820    // constructor.
821    ImpCastExprToType(From, ToType.getNonReferenceType(),
822                      ToType->isLValueReferenceType());
823    return false;
824  }
825
826  // Perform the first implicit conversion.
827  switch (SCS.First) {
828  case ICK_Identity:
829  case ICK_Lvalue_To_Rvalue:
830    // Nothing to do.
831    break;
832
833  case ICK_Array_To_Pointer:
834    FromType = Context.getArrayDecayedType(FromType);
835    ImpCastExprToType(From, FromType);
836    break;
837
838  case ICK_Function_To_Pointer:
839    if (Context.getCanonicalType(FromType) == Context.OverloadTy) {
840      FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
841      if (!Fn)
842        return true;
843
844      if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
845        return true;
846
847      FixOverloadedFunctionReference(From, Fn);
848      FromType = From->getType();
849    }
850    FromType = Context.getPointerType(FromType);
851    ImpCastExprToType(From, FromType);
852    break;
853
854  default:
855    assert(false && "Improper first standard conversion");
856    break;
857  }
858
859  // Perform the second implicit conversion
860  switch (SCS.Second) {
861  case ICK_Identity:
862    // Nothing to do.
863    break;
864
865  case ICK_Integral_Promotion:
866  case ICK_Floating_Promotion:
867  case ICK_Complex_Promotion:
868  case ICK_Integral_Conversion:
869  case ICK_Floating_Conversion:
870  case ICK_Complex_Conversion:
871  case ICK_Floating_Integral:
872  case ICK_Complex_Real:
873  case ICK_Compatible_Conversion:
874      // FIXME: Go deeper to get the unqualified type!
875    FromType = ToType.getUnqualifiedType();
876    ImpCastExprToType(From, FromType);
877    break;
878
879  case ICK_Pointer_Conversion:
880    if (SCS.IncompatibleObjC) {
881      // Diagnose incompatible Objective-C conversions
882      Diag(From->getSourceRange().getBegin(),
883           diag::ext_typecheck_convert_incompatible_pointer)
884        << From->getType() << ToType << Flavor
885        << From->getSourceRange();
886    }
887
888    if (CheckPointerConversion(From, ToType))
889      return true;
890    ImpCastExprToType(From, ToType);
891    break;
892
893  case ICK_Pointer_Member:
894    if (CheckMemberPointerConversion(From, ToType))
895      return true;
896    ImpCastExprToType(From, ToType);
897    break;
898
899  case ICK_Boolean_Conversion:
900    FromType = Context.BoolTy;
901    ImpCastExprToType(From, FromType);
902    break;
903
904  default:
905    assert(false && "Improper second standard conversion");
906    break;
907  }
908
909  switch (SCS.Third) {
910  case ICK_Identity:
911    // Nothing to do.
912    break;
913
914  case ICK_Qualification:
915    // FIXME: Not sure about lvalue vs rvalue here in the presence of
916    // rvalue references.
917    ImpCastExprToType(From, ToType.getNonReferenceType(),
918                      ToType->isLValueReferenceType());
919    break;
920
921  default:
922    assert(false && "Improper second standard conversion");
923    break;
924  }
925
926  return false;
927}
928
929Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
930                                                 SourceLocation KWLoc,
931                                                 SourceLocation LParen,
932                                                 TypeTy *Ty,
933                                                 SourceLocation RParen) {
934  // FIXME: Some of the type traits have requirements. Interestingly, only the
935  // __is_base_of requirement is explicitly stated to be diagnosed. Indeed,
936  // G++ accepts __is_pod(Incomplete) without complaints, and claims that the
937  // type is indeed a POD.
938
939  // There is no point in eagerly computing the value. The traits are designed
940  // to be used from type trait templates, so Ty will be a template parameter
941  // 99% of the time.
942  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT,
943                                      QualType::getFromOpaquePtr(Ty),
944                                      RParen, Context.BoolTy));
945}
946
947QualType Sema::CheckPointerToMemberOperands(
948  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect)
949{
950  const char *OpSpelling = isIndirect ? "->*" : ".*";
951  // C++ 5.5p2
952  //   The binary operator .* [p3: ->*] binds its second operand, which shall
953  //   be of type "pointer to member of T" (where T is a completely-defined
954  //   class type) [...]
955  QualType RType = rex->getType();
956  const MemberPointerType *MemPtr = RType->getAsMemberPointerType();
957  if (!MemPtr) {
958    Diag(Loc, diag::err_bad_memptr_rhs)
959      << OpSpelling << RType << rex->getSourceRange();
960    return QualType();
961  } else if (RequireCompleteType(Loc, QualType(MemPtr->getClass(), 0),
962                                 diag::err_memptr_rhs_incomplete,
963                                 rex->getSourceRange()))
964    return QualType();
965
966  QualType Class(MemPtr->getClass(), 0);
967
968  // C++ 5.5p2
969  //   [...] to its first operand, which shall be of class T or of a class of
970  //   which T is an unambiguous and accessible base class. [p3: a pointer to
971  //   such a class]
972  QualType LType = lex->getType();
973  if (isIndirect) {
974    if (const PointerType *Ptr = LType->getAsPointerType())
975      LType = Ptr->getPointeeType().getNonReferenceType();
976    else {
977      Diag(Loc, diag::err_bad_memptr_lhs)
978        << OpSpelling << 1 << LType << lex->getSourceRange();
979      return QualType();
980    }
981  }
982
983  if (Context.getCanonicalType(Class).getUnqualifiedType() !=
984      Context.getCanonicalType(LType).getUnqualifiedType()) {
985    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
986                    /*DetectVirtual=*/false);
987    // FIXME: Would it be useful to print full ambiguity paths,
988    // or is that overkill?
989    if (!IsDerivedFrom(LType, Class, Paths) ||
990        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
991      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
992        << (int)isIndirect << lex->getType() << lex->getSourceRange();
993      return QualType();
994    }
995  }
996
997  // C++ 5.5p2
998  //   The result is an object or a function of the type specified by the
999  //   second operand.
1000  // The cv qualifiers are the union of those in the pointer and the left side,
1001  // in accordance with 5.5p5 and 5.2.5.
1002  // FIXME: This returns a dereferenced member function pointer as a normal
1003  // function type. However, the only operation valid on such functions is
1004  // calling them. There's also a GCC extension to get a function pointer to
1005  // the thing, which is another complication, because this type - unlike the
1006  // type that is the result of this expression - takes the class as the first
1007  // argument.
1008  // We probably need a "MemberFunctionClosureType" or something like that.
1009  QualType Result = MemPtr->getPointeeType();
1010  if (LType.isConstQualified())
1011    Result.addConst();
1012  if (LType.isVolatileQualified())
1013    Result.addVolatile();
1014  return Result;
1015}
1016
1017/// \brief Get the target type of a standard or user-defined conversion.
1018static QualType TargetType(const ImplicitConversionSequence &ICS) {
1019  assert((ICS.ConversionKind ==
1020              ImplicitConversionSequence::StandardConversion ||
1021          ICS.ConversionKind ==
1022              ImplicitConversionSequence::UserDefinedConversion) &&
1023         "function only valid for standard or user-defined conversions");
1024  if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion)
1025    return QualType::getFromOpaquePtr(ICS.Standard.ToTypePtr);
1026  return QualType::getFromOpaquePtr(ICS.UserDefined.After.ToTypePtr);
1027}
1028
1029/// \brief Try to convert a type to another according to C++0x 5.16p3.
1030///
1031/// This is part of the parameter validation for the ? operator. If either
1032/// value operand is a class type, the two operands are attempted to be
1033/// converted to each other. This function does the conversion in one direction.
1034/// It emits a diagnostic and returns true only if it finds an ambiguous
1035/// conversion.
1036static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
1037                                SourceLocation QuestionLoc,
1038                                ImplicitConversionSequence &ICS)
1039{
1040  // C++0x 5.16p3
1041  //   The process for determining whether an operand expression E1 of type T1
1042  //   can be converted to match an operand expression E2 of type T2 is defined
1043  //   as follows:
1044  //   -- If E2 is an lvalue:
1045  if (To->isLvalue(Self.Context) == Expr::LV_Valid) {
1046    //   E1 can be converted to match E2 if E1 can be implicitly converted to
1047    //   type "lvalue reference to T2", subject to the constraint that in the
1048    //   conversion the reference must bind directly to E1.
1049    if (!Self.CheckReferenceInit(From,
1050                            Self.Context.getLValueReferenceType(To->getType()),
1051                            &ICS))
1052    {
1053      assert((ICS.ConversionKind ==
1054                  ImplicitConversionSequence::StandardConversion ||
1055              ICS.ConversionKind ==
1056                  ImplicitConversionSequence::UserDefinedConversion) &&
1057             "expected a definite conversion");
1058      bool DirectBinding =
1059        ICS.ConversionKind == ImplicitConversionSequence::StandardConversion ?
1060        ICS.Standard.DirectBinding : ICS.UserDefined.After.DirectBinding;
1061      if (DirectBinding)
1062        return false;
1063    }
1064  }
1065  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1066  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
1067  //      -- if E1 and E2 have class type, and the underlying class types are
1068  //         the same or one is a base class of the other:
1069  QualType FTy = From->getType();
1070  QualType TTy = To->getType();
1071  const RecordType *FRec = FTy->getAsRecordType();
1072  const RecordType *TRec = TTy->getAsRecordType();
1073  bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy);
1074  if (FRec && TRec && (FRec == TRec ||
1075        FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
1076    //         E1 can be converted to match E2 if the class of T2 is the
1077    //         same type as, or a base class of, the class of T1, and
1078    //         [cv2 > cv1].
1079    if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) {
1080      // Could still fail if there's no copy constructor.
1081      // FIXME: Is this a hard error then, or just a conversion failure? The
1082      // standard doesn't say.
1083      ICS = Self.TryCopyInitialization(From, TTy);
1084    }
1085  } else {
1086    //     -- Otherwise: E1 can be converted to match E2 if E1 can be
1087    //        implicitly converted to the type that expression E2 would have
1088    //        if E2 were converted to an rvalue.
1089    // First find the decayed type.
1090    if (TTy->isFunctionType())
1091      TTy = Self.Context.getPointerType(TTy);
1092    else if(TTy->isArrayType())
1093      TTy = Self.Context.getArrayDecayedType(TTy);
1094
1095    // Now try the implicit conversion.
1096    // FIXME: This doesn't detect ambiguities.
1097    ICS = Self.TryImplicitConversion(From, TTy);
1098  }
1099  return false;
1100}
1101
1102/// \brief Try to find a common type for two according to C++0x 5.16p5.
1103///
1104/// This is part of the parameter validation for the ? operator. If either
1105/// value operand is a class type, overload resolution is used to find a
1106/// conversion to a common type.
1107static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
1108                                    SourceLocation Loc) {
1109  Expr *Args[2] = { LHS, RHS };
1110  OverloadCandidateSet CandidateSet;
1111  Self.AddBuiltinOperatorCandidates(OO_Conditional, Args, 2, CandidateSet);
1112
1113  OverloadCandidateSet::iterator Best;
1114  switch (Self.BestViableFunction(CandidateSet, Best)) {
1115    case Sema::OR_Success:
1116      // We found a match. Perform the conversions on the arguments and move on.
1117      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
1118                                         Best->Conversions[0], "converting") ||
1119          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
1120                                         Best->Conversions[1], "converting"))
1121        break;
1122      return false;
1123
1124    case Sema::OR_No_Viable_Function:
1125      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
1126        << LHS->getType() << RHS->getType()
1127        << LHS->getSourceRange() << RHS->getSourceRange();
1128      return true;
1129
1130    case Sema::OR_Ambiguous:
1131      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
1132        << LHS->getType() << RHS->getType()
1133        << LHS->getSourceRange() << RHS->getSourceRange();
1134      // FIXME: Print the possible common types by printing the return types
1135      // of the viable candidates.
1136      break;
1137
1138    case Sema::OR_Deleted:
1139      assert(false && "Conditional operator has only built-in overloads");
1140      break;
1141  }
1142  return true;
1143}
1144
1145/// \brief Perform an "extended" implicit conversion as returned by
1146/// TryClassUnification.
1147///
1148/// TryClassUnification generates ICSs that include reference bindings.
1149/// PerformImplicitConversion is not suitable for this; it chokes if the
1150/// second part of a standard conversion is ICK_DerivedToBase. This function
1151/// handles the reference binding specially.
1152static bool ConvertForConditional(Sema &Self, Expr *&E,
1153                                  const ImplicitConversionSequence &ICS)
1154{
1155  if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion &&
1156      ICS.Standard.ReferenceBinding) {
1157    assert(ICS.Standard.DirectBinding &&
1158           "TryClassUnification should never generate indirect ref bindings");
1159    // FIXME: Should use CheckReferenceInit here, but we no longer have a
1160    // reference type.
1161    Self.ImpCastExprToType(E, TargetType(ICS), true);
1162    return false;
1163  }
1164  if (ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion &&
1165      ICS.UserDefined.After.ReferenceBinding) {
1166    assert(ICS.UserDefined.After.DirectBinding &&
1167           "TryClassUnification should never generate indirect ref bindings");
1168    Self.ImpCastExprToType(E, TargetType(ICS), true);
1169    return false;
1170  }
1171  if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, "converting"))
1172    return true;
1173  return false;
1174}
1175
1176/// \brief Check the operands of ?: under C++ semantics.
1177///
1178/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
1179/// extension. In this case, LHS == Cond. (But they're not aliases.)
1180QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
1181                                           SourceLocation QuestionLoc) {
1182  // FIXME: Handle C99's complex types, vector types, block pointers and
1183  // Obj-C++ interface pointers.
1184
1185  // C++0x 5.16p1
1186  //   The first expression is contextually converted to bool.
1187  if (!Cond->isTypeDependent()) {
1188    if (CheckCXXBooleanCondition(Cond))
1189      return QualType();
1190  }
1191
1192  // Either of the arguments dependent?
1193  if (LHS->isTypeDependent() || RHS->isTypeDependent())
1194    return Context.DependentTy;
1195
1196  // C++0x 5.16p2
1197  //   If either the second or the third operand has type (cv) void, ...
1198  QualType LTy = LHS->getType();
1199  QualType RTy = RHS->getType();
1200  bool LVoid = LTy->isVoidType();
1201  bool RVoid = RTy->isVoidType();
1202  if (LVoid || RVoid) {
1203    //   ... then the [l2r] conversions are performed on the second and third
1204    //   operands ...
1205    DefaultFunctionArrayConversion(LHS);
1206    DefaultFunctionArrayConversion(RHS);
1207    LTy = LHS->getType();
1208    RTy = RHS->getType();
1209
1210    //   ... and one of the following shall hold:
1211    //   -- The second or the third operand (but not both) is a throw-
1212    //      expression; the result is of the type of the other and is an rvalue.
1213    bool LThrow = isa<CXXThrowExpr>(LHS);
1214    bool RThrow = isa<CXXThrowExpr>(RHS);
1215    if (LThrow && !RThrow)
1216      return RTy;
1217    if (RThrow && !LThrow)
1218      return LTy;
1219
1220    //   -- Both the second and third operands have type void; the result is of
1221    //      type void and is an rvalue.
1222    if (LVoid && RVoid)
1223      return Context.VoidTy;
1224
1225    // Neither holds, error.
1226    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
1227      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
1228      << LHS->getSourceRange() << RHS->getSourceRange();
1229    return QualType();
1230  }
1231
1232  // Neither is void.
1233
1234  // C++0x 5.16p3
1235  //   Otherwise, if the second and third operand have different types, and
1236  //   either has (cv) class type, and attempt is made to convert each of those
1237  //   operands to the other.
1238  if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) &&
1239      (LTy->isRecordType() || RTy->isRecordType())) {
1240    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
1241    // These return true if a single direction is already ambiguous.
1242    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight))
1243      return QualType();
1244    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft))
1245      return QualType();
1246
1247    bool HaveL2R = ICSLeftToRight.ConversionKind !=
1248      ImplicitConversionSequence::BadConversion;
1249    bool HaveR2L = ICSRightToLeft.ConversionKind !=
1250      ImplicitConversionSequence::BadConversion;
1251    //   If both can be converted, [...] the program is ill-formed.
1252    if (HaveL2R && HaveR2L) {
1253      Diag(QuestionLoc, diag::err_conditional_ambiguous)
1254        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
1255      return QualType();
1256    }
1257
1258    //   If exactly one conversion is possible, that conversion is applied to
1259    //   the chosen operand and the converted operands are used in place of the
1260    //   original operands for the remainder of this section.
1261    if (HaveL2R) {
1262      if (ConvertForConditional(*this, LHS, ICSLeftToRight))
1263        return QualType();
1264      LTy = LHS->getType();
1265    } else if (HaveR2L) {
1266      if (ConvertForConditional(*this, RHS, ICSRightToLeft))
1267        return QualType();
1268      RTy = RHS->getType();
1269    }
1270  }
1271
1272  // C++0x 5.16p4
1273  //   If the second and third operands are lvalues and have the same type,
1274  //   the result is of that type [...]
1275  bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy);
1276  if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
1277      RHS->isLvalue(Context) == Expr::LV_Valid)
1278    return LTy;
1279
1280  // C++0x 5.16p5
1281  //   Otherwise, the result is an rvalue. If the second and third operands
1282  //   do not have the same type, and either has (cv) class type, ...
1283  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
1284    //   ... overload resolution is used to determine the conversions (if any)
1285    //   to be applied to the operands. If the overload resolution fails, the
1286    //   program is ill-formed.
1287    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
1288      return QualType();
1289  }
1290
1291  // C++0x 5.16p6
1292  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
1293  //   conversions are performed on the second and third operands.
1294  DefaultFunctionArrayConversion(LHS);
1295  DefaultFunctionArrayConversion(RHS);
1296  LTy = LHS->getType();
1297  RTy = RHS->getType();
1298
1299  //   After those conversions, one of the following shall hold:
1300  //   -- The second and third operands have the same type; the result
1301  //      is of that type.
1302  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy))
1303    return LTy;
1304
1305  //   -- The second and third operands have arithmetic or enumeration type;
1306  //      the usual arithmetic conversions are performed to bring them to a
1307  //      common type, and the result is of that type.
1308  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
1309    UsualArithmeticConversions(LHS, RHS);
1310    return LHS->getType();
1311  }
1312
1313  //   -- The second and third operands have pointer type, or one has pointer
1314  //      type and the other is a null pointer constant; pointer conversions
1315  //      and qualification conversions are performed to bring them to their
1316  //      composite pointer type. The result is of the composite pointer type.
1317  QualType Composite = FindCompositePointerType(LHS, RHS);
1318  if (!Composite.isNull())
1319    return Composite;
1320
1321  // Fourth bullet is same for pointers-to-member. However, the possible
1322  // conversions are far more limited: we have null-to-pointer, upcast of
1323  // containing class, and second-level cv-ness.
1324  // cv-ness is not a union, but must match one of the two operands. (Which,
1325  // frankly, is stupid.)
1326  const MemberPointerType *LMemPtr = LTy->getAsMemberPointerType();
1327  const MemberPointerType *RMemPtr = RTy->getAsMemberPointerType();
1328  if (LMemPtr && RHS->isNullPointerConstant(Context)) {
1329    ImpCastExprToType(RHS, LTy);
1330    return LTy;
1331  }
1332  if (RMemPtr && LHS->isNullPointerConstant(Context)) {
1333    ImpCastExprToType(LHS, RTy);
1334    return RTy;
1335  }
1336  if (LMemPtr && RMemPtr) {
1337    QualType LPointee = LMemPtr->getPointeeType();
1338    QualType RPointee = RMemPtr->getPointeeType();
1339    // First, we check that the unqualified pointee type is the same. If it's
1340    // not, there's no conversion that will unify the two pointers.
1341    if (Context.getCanonicalType(LPointee).getUnqualifiedType() ==
1342        Context.getCanonicalType(RPointee).getUnqualifiedType()) {
1343      // Second, we take the greater of the two cv qualifications. If neither
1344      // is greater than the other, the conversion is not possible.
1345      unsigned Q = LPointee.getCVRQualifiers() | RPointee.getCVRQualifiers();
1346      if (Q == LPointee.getCVRQualifiers() || Q == RPointee.getCVRQualifiers()){
1347        // Third, we check if either of the container classes is derived from
1348        // the other.
1349        QualType LContainer(LMemPtr->getClass(), 0);
1350        QualType RContainer(RMemPtr->getClass(), 0);
1351        QualType MoreDerived;
1352        if (Context.getCanonicalType(LContainer) ==
1353            Context.getCanonicalType(RContainer))
1354          MoreDerived = LContainer;
1355        else if (IsDerivedFrom(LContainer, RContainer))
1356          MoreDerived = LContainer;
1357        else if (IsDerivedFrom(RContainer, LContainer))
1358          MoreDerived = RContainer;
1359
1360        if (!MoreDerived.isNull()) {
1361          // The type 'Q Pointee (MoreDerived::*)' is the common type.
1362          // We don't use ImpCastExprToType here because this could still fail
1363          // for ambiguous or inaccessible conversions.
1364          QualType Common = Context.getMemberPointerType(
1365            LPointee.getQualifiedType(Q), MoreDerived.getTypePtr());
1366          if (PerformImplicitConversion(LHS, Common, "converting"))
1367            return QualType();
1368          if (PerformImplicitConversion(RHS, Common, "converting"))
1369            return QualType();
1370          return Common;
1371        }
1372      }
1373    }
1374  }
1375
1376  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
1377    << LHS->getType() << RHS->getType()
1378    << LHS->getSourceRange() << RHS->getSourceRange();
1379  return QualType();
1380}
1381
1382/// \brief Find a merged pointer type and convert the two expressions to it.
1383///
1384/// This finds the composite pointer type for @p E1 and @p E2 according to
1385/// C++0x 5.9p2. It converts both expressions to this type and returns it.
1386/// It does not emit diagnostics.
1387QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) {
1388  assert(getLangOptions().CPlusPlus && "This function assumes C++");
1389  QualType T1 = E1->getType(), T2 = E2->getType();
1390  if(!T1->isPointerType() && !T2->isPointerType())
1391    return QualType();
1392
1393  // C++0x 5.9p2
1394  //   Pointer conversions and qualification conversions are performed on
1395  //   pointer operands to bring them to their composite pointer type. If
1396  //   one operand is a null pointer constant, the composite pointer type is
1397  //   the type of the other operand.
1398  if (E1->isNullPointerConstant(Context)) {
1399    ImpCastExprToType(E1, T2);
1400    return T2;
1401  }
1402  if (E2->isNullPointerConstant(Context)) {
1403    ImpCastExprToType(E2, T1);
1404    return T1;
1405  }
1406  // Now both have to be pointers.
1407  if(!T1->isPointerType() || !T2->isPointerType())
1408    return QualType();
1409
1410  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
1411  //   the other has type "pointer to cv2 T" and the composite pointer type is
1412  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
1413  //   Otherwise, the composite pointer type is a pointer type similar to the
1414  //   type of one of the operands, with a cv-qualification signature that is
1415  //   the union of the cv-qualification signatures of the operand types.
1416  // In practice, the first part here is redundant; it's subsumed by the second.
1417  // What we do here is, we build the two possible composite types, and try the
1418  // conversions in both directions. If only one works, or if the two composite
1419  // types are the same, we have succeeded.
1420  llvm::SmallVector<unsigned, 4> QualifierUnion;
1421  QualType Composite1 = T1, Composite2 = T2;
1422  const PointerType *Ptr1, *Ptr2;
1423  while ((Ptr1 = Composite1->getAsPointerType()) &&
1424         (Ptr2 = Composite2->getAsPointerType())) {
1425    Composite1 = Ptr1->getPointeeType();
1426    Composite2 = Ptr2->getPointeeType();
1427    QualifierUnion.push_back(
1428      Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
1429  }
1430  // Rewrap the composites as pointers with the union CVRs.
1431  for (llvm::SmallVector<unsigned, 4>::iterator I = QualifierUnion.begin(),
1432       E = QualifierUnion.end(); I != E; ++I) {
1433    Composite1 = Context.getPointerType(Composite1.getQualifiedType(*I));
1434    Composite2 = Context.getPointerType(Composite2.getQualifiedType(*I));
1435  }
1436
1437  ImplicitConversionSequence E1ToC1 = TryImplicitConversion(E1, Composite1);
1438  ImplicitConversionSequence E2ToC1 = TryImplicitConversion(E2, Composite1);
1439  ImplicitConversionSequence E1ToC2, E2ToC2;
1440  E1ToC2.ConversionKind = ImplicitConversionSequence::BadConversion;
1441  E2ToC2.ConversionKind = ImplicitConversionSequence::BadConversion;
1442  if (Context.getCanonicalType(Composite1) !=
1443      Context.getCanonicalType(Composite2)) {
1444    E1ToC2 = TryImplicitConversion(E1, Composite2);
1445    E2ToC2 = TryImplicitConversion(E2, Composite2);
1446  }
1447
1448  bool ToC1Viable = E1ToC1.ConversionKind !=
1449                      ImplicitConversionSequence::BadConversion
1450                 && E2ToC1.ConversionKind !=
1451                      ImplicitConversionSequence::BadConversion;
1452  bool ToC2Viable = E1ToC2.ConversionKind !=
1453                      ImplicitConversionSequence::BadConversion
1454                 && E2ToC2.ConversionKind !=
1455                      ImplicitConversionSequence::BadConversion;
1456  if (ToC1Viable && !ToC2Viable) {
1457    if (!PerformImplicitConversion(E1, Composite1, E1ToC1, "converting") &&
1458        !PerformImplicitConversion(E2, Composite1, E2ToC1, "converting"))
1459      return Composite1;
1460  }
1461  if (ToC2Viable && !ToC1Viable) {
1462    if (!PerformImplicitConversion(E1, Composite2, E1ToC2, "converting") &&
1463        !PerformImplicitConversion(E2, Composite2, E2ToC2, "converting"))
1464      return Composite2;
1465  }
1466  return QualType();
1467}
1468