SemaExprCXX.cpp revision 35366a67baa970c287c714c957cf78a4131cf60d
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SemaInherit.h"
15#include "Sema.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/STLExtras.h"
22using namespace clang;
23
24/// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function
25/// name (e.g., operator void const *) as an expression. This is
26/// very similar to ActOnIdentifierExpr, except that instead of
27/// providing an identifier the parser provides the type of the
28/// conversion function.
29Sema::OwningExprResult
30Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc,
31                                     TypeTy *Ty, bool HasTrailingLParen,
32                                     const CXXScopeSpec &SS,
33                                     bool isAddressOfOperand) {
34  QualType ConvType = QualType::getFromOpaquePtr(Ty);
35  QualType ConvTypeCanon = Context.getCanonicalType(ConvType);
36  DeclarationName ConvName
37    = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon);
38  return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen,
39                                  &SS, isAddressOfOperand);
40}
41
42/// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator
43/// name (e.g., @c operator+ ) as an expression. This is very
44/// similar to ActOnIdentifierExpr, except that instead of providing
45/// an identifier the parser provides the kind of overloaded
46/// operator that was parsed.
47Sema::OwningExprResult
48Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc,
49                                     OverloadedOperatorKind Op,
50                                     bool HasTrailingLParen,
51                                     const CXXScopeSpec &SS,
52                                     bool isAddressOfOperand) {
53  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op);
54  return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS,
55                                  isAddressOfOperand);
56}
57
58/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
59Action::OwningExprResult
60Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
61                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
62  NamespaceDecl *StdNs = GetStdNamespace();
63  if (!StdNs)
64    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
65
66  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
67  Decl *TypeInfoDecl = LookupQualifiedName(StdNs, TypeInfoII, LookupTagName);
68  RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null<RecordDecl>(TypeInfoDecl);
69  if (!TypeInfoRecordDecl)
70    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
71
72  QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
73
74  if (!isType) {
75    // C++0x [expr.typeid]p3:
76    //   When typeid is applied to an expression other than an lvalue of a
77    //   polymorphic class type [...] [the] expression is an unevaluated
78    //   operand.
79
80    // FIXME: if the type of the expression is a class type, the class
81    // shall be completely defined.
82    bool isUnevaluatedOperand = true;
83    Expr *E = static_cast<Expr *>(TyOrExpr);
84    if (E && !E->isTypeDependent() && E->isLvalue(Context) == Expr::LV_Valid) {
85      QualType T = E->getType();
86      if (const RecordType *RecordT = T->getAsRecordType()) {
87        CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
88        if (RecordD->isPolymorphic())
89          isUnevaluatedOperand = false;
90      }
91    }
92
93    // If this is an unevaluated operand, clear out the set of declaration
94    // references we have been computing.
95    if (isUnevaluatedOperand)
96      PotentiallyReferencedDeclStack.back().clear();
97  }
98
99  return Owned(new (Context) CXXTypeidExpr(isType, TyOrExpr,
100                                           TypeInfoType.withConst(),
101                                           SourceRange(OpLoc, RParenLoc)));
102}
103
104/// ActOnCXXBoolLiteral - Parse {true,false} literals.
105Action::OwningExprResult
106Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
107  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
108         "Unknown C++ Boolean value!");
109  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
110                                                Context.BoolTy, OpLoc));
111}
112
113/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
114Action::OwningExprResult
115Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
116  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
117}
118
119/// ActOnCXXThrow - Parse throw expressions.
120Action::OwningExprResult
121Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprArg E) {
122  Expr *Ex = E.takeAs<Expr>();
123  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
124    return ExprError();
125  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
126}
127
128/// CheckCXXThrowOperand - Validate the operand of a throw.
129bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
130  // C++ [except.throw]p3:
131  //   [...] adjusting the type from "array of T" or "function returning T"
132  //   to "pointer to T" or "pointer to function returning T", [...]
133  DefaultFunctionArrayConversion(E);
134
135  //   If the type of the exception would be an incomplete type or a pointer
136  //   to an incomplete type other than (cv) void the program is ill-formed.
137  QualType Ty = E->getType();
138  int isPointer = 0;
139  if (const PointerType* Ptr = Ty->getAsPointerType()) {
140    Ty = Ptr->getPointeeType();
141    isPointer = 1;
142  }
143  if (!isPointer || !Ty->isVoidType()) {
144    if (RequireCompleteType(ThrowLoc, Ty,
145                            isPointer ? diag::err_throw_incomplete_ptr
146                                      : diag::err_throw_incomplete,
147                            E->getSourceRange(), SourceRange(), QualType()))
148      return true;
149  }
150
151  // FIXME: Construct a temporary here.
152  return false;
153}
154
155Action::OwningExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
156  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
157  /// is a non-lvalue expression whose value is the address of the object for
158  /// which the function is called.
159
160  if (!isa<FunctionDecl>(CurContext))
161    return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
162
163  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
164    if (MD->isInstance())
165      return Owned(new (Context) CXXThisExpr(ThisLoc,
166                                             MD->getThisType(Context)));
167
168  return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
169}
170
171/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
172/// Can be interpreted either as function-style casting ("int(x)")
173/// or class type construction ("ClassType(x,y,z)")
174/// or creation of a value-initialized type ("int()").
175Action::OwningExprResult
176Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
177                                SourceLocation LParenLoc,
178                                MultiExprArg exprs,
179                                SourceLocation *CommaLocs,
180                                SourceLocation RParenLoc) {
181  assert(TypeRep && "Missing type!");
182  QualType Ty = QualType::getFromOpaquePtr(TypeRep);
183  unsigned NumExprs = exprs.size();
184  Expr **Exprs = (Expr**)exprs.get();
185  SourceLocation TyBeginLoc = TypeRange.getBegin();
186  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
187
188  if (Ty->isDependentType() ||
189      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
190    exprs.release();
191
192    return Owned(CXXUnresolvedConstructExpr::Create(Context,
193                                                    TypeRange.getBegin(), Ty,
194                                                    LParenLoc,
195                                                    Exprs, NumExprs,
196                                                    RParenLoc));
197  }
198
199
200  // C++ [expr.type.conv]p1:
201  // If the expression list is a single expression, the type conversion
202  // expression is equivalent (in definedness, and if defined in meaning) to the
203  // corresponding cast expression.
204  //
205  if (NumExprs == 1) {
206    if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
207      return ExprError();
208    exprs.release();
209    return Owned(new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(),
210                                                     Ty, TyBeginLoc, Exprs[0],
211                                                     RParenLoc));
212  }
213
214  if (const RecordType *RT = Ty->getAsRecordType()) {
215    CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
216
217    // FIXME: We should always create a CXXTemporaryObjectExpr here unless
218    // both the ctor and dtor are trivial.
219    if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) {
220      CXXConstructorDecl *Constructor
221        = PerformInitializationByConstructor(Ty, Exprs, NumExprs,
222                                             TypeRange.getBegin(),
223                                             SourceRange(TypeRange.getBegin(),
224                                                         RParenLoc),
225                                             DeclarationName(),
226                                             IK_Direct);
227
228      if (!Constructor)
229        return ExprError();
230
231      exprs.release();
232      Expr *E = new (Context) CXXTemporaryObjectExpr(Context, Constructor,
233                                                     Ty, TyBeginLoc, Exprs,
234                                                     NumExprs, RParenLoc);
235      return MaybeBindToTemporary(E);
236    }
237
238    // Fall through to value-initialize an object of class type that
239    // doesn't have a user-declared default constructor.
240  }
241
242  // C++ [expr.type.conv]p1:
243  // If the expression list specifies more than a single value, the type shall
244  // be a class with a suitably declared constructor.
245  //
246  if (NumExprs > 1)
247    return ExprError(Diag(CommaLocs[0],
248                          diag::err_builtin_func_cast_more_than_one_arg)
249      << FullRange);
250
251  assert(NumExprs == 0 && "Expected 0 expressions");
252
253  // C++ [expr.type.conv]p2:
254  // The expression T(), where T is a simple-type-specifier for a non-array
255  // complete object type or the (possibly cv-qualified) void type, creates an
256  // rvalue of the specified type, which is value-initialized.
257  //
258  if (Ty->isArrayType())
259    return ExprError(Diag(TyBeginLoc,
260                          diag::err_value_init_for_array_type) << FullRange);
261  if (!Ty->isDependentType() && !Ty->isVoidType() &&
262      RequireCompleteType(TyBeginLoc, Ty,
263                          diag::err_invalid_incomplete_type_use, FullRange))
264    return ExprError();
265
266  if (RequireNonAbstractType(TyBeginLoc, Ty,
267                             diag::err_allocation_of_abstract_type))
268    return ExprError();
269
270  exprs.release();
271  return Owned(new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc));
272}
273
274
275/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
276/// @code new (memory) int[size][4] @endcode
277/// or
278/// @code ::new Foo(23, "hello") @endcode
279/// For the interpretation of this heap of arguments, consult the base version.
280Action::OwningExprResult
281Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
282                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
283                  SourceLocation PlacementRParen, bool ParenTypeId,
284                  Declarator &D, SourceLocation ConstructorLParen,
285                  MultiExprArg ConstructorArgs,
286                  SourceLocation ConstructorRParen)
287{
288  Expr *ArraySize = 0;
289  unsigned Skip = 0;
290  // If the specified type is an array, unwrap it and save the expression.
291  if (D.getNumTypeObjects() > 0 &&
292      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
293    DeclaratorChunk &Chunk = D.getTypeObject(0);
294    if (Chunk.Arr.hasStatic)
295      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
296        << D.getSourceRange());
297    if (!Chunk.Arr.NumElts)
298      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
299        << D.getSourceRange());
300    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
301    Skip = 1;
302  }
303
304  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
305  if (D.isInvalidType())
306    return ExprError();
307
308  // Every dimension shall be of constant size.
309  unsigned i = 1;
310  QualType ElementType = AllocType;
311  while (const ArrayType *Array = Context.getAsArrayType(ElementType)) {
312    if (!Array->isConstantArrayType()) {
313      Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst)
314        << static_cast<Expr*>(D.getTypeObject(i).Arr.NumElts)->getSourceRange();
315      return ExprError();
316    }
317    ElementType = Array->getElementType();
318    ++i;
319  }
320
321  return BuildCXXNew(StartLoc, UseGlobal,
322                     PlacementLParen,
323                     move(PlacementArgs),
324                     PlacementRParen,
325                     ParenTypeId,
326                     AllocType,
327                     D.getSourceRange().getBegin(),
328                     D.getSourceRange(),
329                     Owned(ArraySize),
330                     ConstructorLParen,
331                     move(ConstructorArgs),
332                     ConstructorRParen);
333}
334
335Sema::OwningExprResult
336Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
337                  SourceLocation PlacementLParen,
338                  MultiExprArg PlacementArgs,
339                  SourceLocation PlacementRParen,
340                  bool ParenTypeId,
341                  QualType AllocType,
342                  SourceLocation TypeLoc,
343                  SourceRange TypeRange,
344                  ExprArg ArraySizeE,
345                  SourceLocation ConstructorLParen,
346                  MultiExprArg ConstructorArgs,
347                  SourceLocation ConstructorRParen) {
348  if (CheckAllocatedType(AllocType, TypeLoc, TypeRange))
349    return ExprError();
350
351  QualType ResultType = Context.getPointerType(AllocType);
352
353  // That every array dimension except the first is constant was already
354  // checked by the type check above.
355
356  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
357  //   or enumeration type with a non-negative value."
358  Expr *ArraySize = (Expr *)ArraySizeE.get();
359  if (ArraySize && !ArraySize->isTypeDependent()) {
360    QualType SizeType = ArraySize->getType();
361    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
362      return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
363                            diag::err_array_size_not_integral)
364        << SizeType << ArraySize->getSourceRange());
365    // Let's see if this is a constant < 0. If so, we reject it out of hand.
366    // We don't care about special rules, so we tell the machinery it's not
367    // evaluated - it gives us a result in more cases.
368    if (!ArraySize->isValueDependent()) {
369      llvm::APSInt Value;
370      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
371        if (Value < llvm::APSInt(
372                        llvm::APInt::getNullValue(Value.getBitWidth()), false))
373          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
374                           diag::err_typecheck_negative_array_size)
375            << ArraySize->getSourceRange());
376      }
377    }
378  }
379
380  FunctionDecl *OperatorNew = 0;
381  FunctionDecl *OperatorDelete = 0;
382  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
383  unsigned NumPlaceArgs = PlacementArgs.size();
384  if (!AllocType->isDependentType() &&
385      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
386      FindAllocationFunctions(StartLoc,
387                              SourceRange(PlacementLParen, PlacementRParen),
388                              UseGlobal, AllocType, ArraySize, PlaceArgs,
389                              NumPlaceArgs, OperatorNew, OperatorDelete))
390    return ExprError();
391
392  bool Init = ConstructorLParen.isValid();
393  // --- Choosing a constructor ---
394  // C++ 5.3.4p15
395  // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
396  //   the object is not initialized. If the object, or any part of it, is
397  //   const-qualified, it's an error.
398  // 2) If T is a POD and there's an empty initializer, the object is value-
399  //   initialized.
400  // 3) If T is a POD and there's one initializer argument, the object is copy-
401  //   constructed.
402  // 4) If T is a POD and there's more initializer arguments, it's an error.
403  // 5) If T is not a POD, the initializer arguments are used as constructor
404  //   arguments.
405  //
406  // Or by the C++0x formulation:
407  // 1) If there's no initializer, the object is default-initialized according
408  //    to C++0x rules.
409  // 2) Otherwise, the object is direct-initialized.
410  CXXConstructorDecl *Constructor = 0;
411  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
412  const RecordType *RT;
413  unsigned NumConsArgs = ConstructorArgs.size();
414  if (AllocType->isDependentType()) {
415    // Skip all the checks.
416  }
417  else if ((RT = AllocType->getAsRecordType()) &&
418            !AllocType->isAggregateType()) {
419    Constructor = PerformInitializationByConstructor(
420                      AllocType, ConsArgs, NumConsArgs,
421                      TypeLoc,
422                      SourceRange(TypeLoc, ConstructorRParen),
423                      RT->getDecl()->getDeclName(),
424                      NumConsArgs != 0 ? IK_Direct : IK_Default);
425    if (!Constructor)
426      return ExprError();
427  } else {
428    if (!Init) {
429      // FIXME: Check that no subpart is const.
430      if (AllocType.isConstQualified())
431        return ExprError(Diag(StartLoc, diag::err_new_uninitialized_const)
432                           << TypeRange);
433    } else if (NumConsArgs == 0) {
434      // Object is value-initialized. Do nothing.
435    } else if (NumConsArgs == 1) {
436      // Object is direct-initialized.
437      // FIXME: What DeclarationName do we pass in here?
438      if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
439                                DeclarationName() /*AllocType.getAsString()*/,
440                                /*DirectInit=*/true))
441        return ExprError();
442    } else {
443      return ExprError(Diag(StartLoc,
444                            diag::err_builtin_direct_init_more_than_one_arg)
445        << SourceRange(ConstructorLParen, ConstructorRParen));
446    }
447  }
448
449  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
450
451  PlacementArgs.release();
452  ConstructorArgs.release();
453  ArraySizeE.release();
454  return Owned(new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
455                        NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
456                        ConsArgs, NumConsArgs, OperatorDelete, ResultType,
457                        StartLoc, Init ? ConstructorRParen : SourceLocation()));
458}
459
460/// CheckAllocatedType - Checks that a type is suitable as the allocated type
461/// in a new-expression.
462/// dimension off and stores the size expression in ArraySize.
463bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
464                              SourceRange R)
465{
466  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
467  //   abstract class type or array thereof.
468  if (AllocType->isFunctionType())
469    return Diag(Loc, diag::err_bad_new_type)
470      << AllocType << 0 << R;
471  else if (AllocType->isReferenceType())
472    return Diag(Loc, diag::err_bad_new_type)
473      << AllocType << 1 << R;
474  else if (!AllocType->isDependentType() &&
475           RequireCompleteType(Loc, AllocType,
476                               diag::err_new_incomplete_type,
477                               R))
478    return true;
479  else if (RequireNonAbstractType(Loc, AllocType,
480                                  diag::err_allocation_of_abstract_type))
481    return true;
482
483  return false;
484}
485
486/// FindAllocationFunctions - Finds the overloads of operator new and delete
487/// that are appropriate for the allocation.
488bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
489                                   bool UseGlobal, QualType AllocType,
490                                   bool IsArray, Expr **PlaceArgs,
491                                   unsigned NumPlaceArgs,
492                                   FunctionDecl *&OperatorNew,
493                                   FunctionDecl *&OperatorDelete)
494{
495  // --- Choosing an allocation function ---
496  // C++ 5.3.4p8 - 14 & 18
497  // 1) If UseGlobal is true, only look in the global scope. Else, also look
498  //   in the scope of the allocated class.
499  // 2) If an array size is given, look for operator new[], else look for
500  //   operator new.
501  // 3) The first argument is always size_t. Append the arguments from the
502  //   placement form.
503  // FIXME: Also find the appropriate delete operator.
504
505  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
506  // We don't care about the actual value of this argument.
507  // FIXME: Should the Sema create the expression and embed it in the syntax
508  // tree? Or should the consumer just recalculate the value?
509  AllocArgs[0] = new (Context) IntegerLiteral(llvm::APInt::getNullValue(
510                                        Context.Target.getPointerWidth(0)),
511                                    Context.getSizeType(),
512                                    SourceLocation());
513  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
514
515  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
516                                        IsArray ? OO_Array_New : OO_New);
517  if (AllocType->isRecordType() && !UseGlobal) {
518    CXXRecordDecl *Record
519      = cast<CXXRecordDecl>(AllocType->getAsRecordType()->getDecl());
520    // FIXME: We fail to find inherited overloads.
521    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
522                          AllocArgs.size(), Record, /*AllowMissing=*/true,
523                          OperatorNew))
524      return true;
525  }
526  if (!OperatorNew) {
527    // Didn't find a member overload. Look for a global one.
528    DeclareGlobalNewDelete();
529    DeclContext *TUDecl = Context.getTranslationUnitDecl();
530    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
531                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
532                          OperatorNew))
533      return true;
534  }
535
536  // FindAllocationOverload can change the passed in arguments, so we need to
537  // copy them back.
538  if (NumPlaceArgs > 0)
539    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
540
541  // FIXME: This is leaked on error. But so much is currently in Sema that it's
542  // easier to clean it in one go.
543  AllocArgs[0]->Destroy(Context);
544  return false;
545}
546
547/// FindAllocationOverload - Find an fitting overload for the allocation
548/// function in the specified scope.
549bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
550                                  DeclarationName Name, Expr** Args,
551                                  unsigned NumArgs, DeclContext *Ctx,
552                                  bool AllowMissing, FunctionDecl *&Operator)
553{
554  DeclContext::lookup_iterator Alloc, AllocEnd;
555  llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Name);
556  if (Alloc == AllocEnd) {
557    if (AllowMissing)
558      return false;
559    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
560      << Name << Range;
561  }
562
563  OverloadCandidateSet Candidates;
564  for (; Alloc != AllocEnd; ++Alloc) {
565    // Even member operator new/delete are implicitly treated as
566    // static, so don't use AddMemberCandidate.
567    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc))
568      AddOverloadCandidate(Fn, Args, NumArgs, Candidates,
569                           /*SuppressUserConversions=*/false);
570  }
571
572  // Do the resolution.
573  OverloadCandidateSet::iterator Best;
574  switch(BestViableFunction(Candidates, StartLoc, Best)) {
575  case OR_Success: {
576    // Got one!
577    FunctionDecl *FnDecl = Best->Function;
578    // The first argument is size_t, and the first parameter must be size_t,
579    // too. This is checked on declaration and can be assumed. (It can't be
580    // asserted on, though, since invalid decls are left in there.)
581    for (unsigned i = 1; i < NumArgs; ++i) {
582      // FIXME: Passing word to diagnostic.
583      if (PerformCopyInitialization(Args[i],
584                                    FnDecl->getParamDecl(i)->getType(),
585                                    "passing"))
586        return true;
587    }
588    Operator = FnDecl;
589    return false;
590  }
591
592  case OR_No_Viable_Function:
593    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
594      << Name << Range;
595    PrintOverloadCandidates(Candidates, /*OnlyViable=*/false);
596    return true;
597
598  case OR_Ambiguous:
599    Diag(StartLoc, diag::err_ovl_ambiguous_call)
600      << Name << Range;
601    PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
602    return true;
603
604  case OR_Deleted:
605    Diag(StartLoc, diag::err_ovl_deleted_call)
606      << Best->Function->isDeleted()
607      << Name << Range;
608    PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
609    return true;
610  }
611  assert(false && "Unreachable, bad result from BestViableFunction");
612  return true;
613}
614
615
616/// DeclareGlobalNewDelete - Declare the global forms of operator new and
617/// delete. These are:
618/// @code
619///   void* operator new(std::size_t) throw(std::bad_alloc);
620///   void* operator new[](std::size_t) throw(std::bad_alloc);
621///   void operator delete(void *) throw();
622///   void operator delete[](void *) throw();
623/// @endcode
624/// Note that the placement and nothrow forms of new are *not* implicitly
625/// declared. Their use requires including \<new\>.
626void Sema::DeclareGlobalNewDelete()
627{
628  if (GlobalNewDeleteDeclared)
629    return;
630  GlobalNewDeleteDeclared = true;
631
632  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
633  QualType SizeT = Context.getSizeType();
634
635  // FIXME: Exception specifications are not added.
636  DeclareGlobalAllocationFunction(
637      Context.DeclarationNames.getCXXOperatorName(OO_New),
638      VoidPtr, SizeT);
639  DeclareGlobalAllocationFunction(
640      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
641      VoidPtr, SizeT);
642  DeclareGlobalAllocationFunction(
643      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
644      Context.VoidTy, VoidPtr);
645  DeclareGlobalAllocationFunction(
646      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
647      Context.VoidTy, VoidPtr);
648}
649
650/// DeclareGlobalAllocationFunction - Declares a single implicit global
651/// allocation function if it doesn't already exist.
652void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
653                                           QualType Return, QualType Argument)
654{
655  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
656
657  // Check if this function is already declared.
658  {
659    DeclContext::lookup_iterator Alloc, AllocEnd;
660    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
661         Alloc != AllocEnd; ++Alloc) {
662      // FIXME: Do we need to check for default arguments here?
663      FunctionDecl *Func = cast<FunctionDecl>(*Alloc);
664      if (Func->getNumParams() == 1 &&
665          Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument)
666        return;
667    }
668  }
669
670  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0);
671  FunctionDecl *Alloc =
672    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
673                         FnType, FunctionDecl::None, false, true,
674                         SourceLocation());
675  Alloc->setImplicit();
676  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
677                                           0, Argument, VarDecl::None, 0);
678  Alloc->setParams(Context, &Param, 1);
679
680  // FIXME: Also add this declaration to the IdentifierResolver, but
681  // make sure it is at the end of the chain to coincide with the
682  // global scope.
683  ((DeclContext *)TUScope->getEntity())->addDecl(Alloc);
684}
685
686/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
687/// @code ::delete ptr; @endcode
688/// or
689/// @code delete [] ptr; @endcode
690Action::OwningExprResult
691Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
692                     bool ArrayForm, ExprArg Operand)
693{
694  // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
695  //   having a single conversion function to a pointer type. The result has
696  //   type void."
697  // DR599 amends "pointer type" to "pointer to object type" in both cases.
698
699  Expr *Ex = (Expr *)Operand.get();
700  if (!Ex->isTypeDependent()) {
701    QualType Type = Ex->getType();
702
703    if (Type->isRecordType()) {
704      // FIXME: Find that one conversion function and amend the type.
705    }
706
707    if (!Type->isPointerType())
708      return ExprError(Diag(StartLoc, diag::err_delete_operand)
709        << Type << Ex->getSourceRange());
710
711    QualType Pointee = Type->getAsPointerType()->getPointeeType();
712    if (Pointee->isFunctionType() || Pointee->isVoidType())
713      return ExprError(Diag(StartLoc, diag::err_delete_operand)
714        << Type << Ex->getSourceRange());
715    else if (!Pointee->isDependentType() &&
716             RequireCompleteType(StartLoc, Pointee,
717                                 diag::warn_delete_incomplete,
718                                 Ex->getSourceRange()))
719      return ExprError();
720
721    // FIXME: Look up the correct operator delete overload and pass a pointer
722    // along.
723    // FIXME: Check access and ambiguity of operator delete and destructor.
724  }
725
726  Operand.release();
727  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
728                                           0, Ex, StartLoc));
729}
730
731
732/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
733/// C++ if/switch/while/for statement.
734/// e.g: "if (int x = f()) {...}"
735Action::OwningExprResult
736Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc,
737                                       Declarator &D,
738                                       SourceLocation EqualLoc,
739                                       ExprArg AssignExprVal) {
740  assert(AssignExprVal.get() && "Null assignment expression");
741
742  // C++ 6.4p2:
743  // The declarator shall not specify a function or an array.
744  // The type-specifier-seq shall not contain typedef and shall not declare a
745  // new class or enumeration.
746
747  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
748         "Parser allowed 'typedef' as storage class of condition decl.");
749
750  QualType Ty = GetTypeForDeclarator(D, S);
751
752  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
753    // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
754    // would be created and CXXConditionDeclExpr wants a VarDecl.
755    return ExprError(Diag(StartLoc, diag::err_invalid_use_of_function_type)
756      << SourceRange(StartLoc, EqualLoc));
757  } else if (Ty->isArrayType()) { // ...or an array.
758    Diag(StartLoc, diag::err_invalid_use_of_array_type)
759      << SourceRange(StartLoc, EqualLoc);
760  } else if (const RecordType *RT = Ty->getAsRecordType()) {
761    RecordDecl *RD = RT->getDecl();
762    // The type-specifier-seq shall not declare a new class...
763    if (RD->isDefinition() &&
764        (RD->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(RD))))
765      Diag(RD->getLocation(), diag::err_type_defined_in_condition);
766  } else if (const EnumType *ET = Ty->getAsEnumType()) {
767    EnumDecl *ED = ET->getDecl();
768    // ...or enumeration.
769    if (ED->isDefinition() &&
770        (ED->getIdentifier() == 0 || S->isDeclScope(DeclPtrTy::make(ED))))
771      Diag(ED->getLocation(), diag::err_type_defined_in_condition);
772  }
773
774  DeclPtrTy Dcl = ActOnDeclarator(S, D);
775  if (!Dcl)
776    return ExprError();
777  AddInitializerToDecl(Dcl, move(AssignExprVal), /*DirectInit=*/false);
778
779  // Mark this variable as one that is declared within a conditional.
780  // We know that the decl had to be a VarDecl because that is the only type of
781  // decl that can be assigned and the grammar requires an '='.
782  VarDecl *VD = cast<VarDecl>(Dcl.getAs<Decl>());
783  VD->setDeclaredInCondition(true);
784  return Owned(new (Context) CXXConditionDeclExpr(StartLoc, EqualLoc, VD));
785}
786
787/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
788bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
789  // C++ 6.4p4:
790  // The value of a condition that is an initialized declaration in a statement
791  // other than a switch statement is the value of the declared variable
792  // implicitly converted to type bool. If that conversion is ill-formed, the
793  // program is ill-formed.
794  // The value of a condition that is an expression is the value of the
795  // expression, implicitly converted to bool.
796  //
797  return PerformContextuallyConvertToBool(CondExpr);
798}
799
800/// Helper function to determine whether this is the (deprecated) C++
801/// conversion from a string literal to a pointer to non-const char or
802/// non-const wchar_t (for narrow and wide string literals,
803/// respectively).
804bool
805Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
806  // Look inside the implicit cast, if it exists.
807  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
808    From = Cast->getSubExpr();
809
810  // A string literal (2.13.4) that is not a wide string literal can
811  // be converted to an rvalue of type "pointer to char"; a wide
812  // string literal can be converted to an rvalue of type "pointer
813  // to wchar_t" (C++ 4.2p2).
814  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
815    if (const PointerType *ToPtrType = ToType->getAsPointerType())
816      if (const BuiltinType *ToPointeeType
817          = ToPtrType->getPointeeType()->getAsBuiltinType()) {
818        // This conversion is considered only when there is an
819        // explicit appropriate pointer target type (C++ 4.2p2).
820        if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
821            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
822             (!StrLit->isWide() &&
823              (ToPointeeType->getKind() == BuiltinType::Char_U ||
824               ToPointeeType->getKind() == BuiltinType::Char_S))))
825          return true;
826      }
827
828  return false;
829}
830
831/// PerformImplicitConversion - Perform an implicit conversion of the
832/// expression From to the type ToType. Returns true if there was an
833/// error, false otherwise. The expression From is replaced with the
834/// converted expression. Flavor is the kind of conversion we're
835/// performing, used in the error message. If @p AllowExplicit,
836/// explicit user-defined conversions are permitted. @p Elidable should be true
837/// when called for copies which may be elided (C++ 12.8p15). C++0x overload
838/// resolution works differently in that case.
839bool
840Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
841                                const char *Flavor, bool AllowExplicit,
842                                bool Elidable)
843{
844  ImplicitConversionSequence ICS;
845  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
846  if (Elidable && getLangOptions().CPlusPlus0x) {
847    ICS = TryImplicitConversion(From, ToType, /*SuppressUserConversions*/false,
848                                AllowExplicit, /*ForceRValue*/true);
849  }
850  if (ICS.ConversionKind == ImplicitConversionSequence::BadConversion) {
851    ICS = TryImplicitConversion(From, ToType, false, AllowExplicit);
852  }
853  return PerformImplicitConversion(From, ToType, ICS, Flavor);
854}
855
856/// PerformImplicitConversion - Perform an implicit conversion of the
857/// expression From to the type ToType using the pre-computed implicit
858/// conversion sequence ICS. Returns true if there was an error, false
859/// otherwise. The expression From is replaced with the converted
860/// expression. Flavor is the kind of conversion we're performing,
861/// used in the error message.
862bool
863Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
864                                const ImplicitConversionSequence &ICS,
865                                const char* Flavor) {
866  switch (ICS.ConversionKind) {
867  case ImplicitConversionSequence::StandardConversion:
868    if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor))
869      return true;
870    break;
871
872  case ImplicitConversionSequence::UserDefinedConversion:
873    // FIXME: This is, of course, wrong. We'll need to actually call the
874    // constructor or conversion operator, and then cope with the standard
875    // conversions.
876    ImpCastExprToType(From, ToType.getNonReferenceType(),
877                      ToType->isLValueReferenceType());
878    return false;
879
880  case ImplicitConversionSequence::EllipsisConversion:
881    assert(false && "Cannot perform an ellipsis conversion");
882    return false;
883
884  case ImplicitConversionSequence::BadConversion:
885    return true;
886  }
887
888  // Everything went well.
889  return false;
890}
891
892/// PerformImplicitConversion - Perform an implicit conversion of the
893/// expression From to the type ToType by following the standard
894/// conversion sequence SCS. Returns true if there was an error, false
895/// otherwise. The expression From is replaced with the converted
896/// expression. Flavor is the context in which we're performing this
897/// conversion, for use in error messages.
898bool
899Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
900                                const StandardConversionSequence& SCS,
901                                const char *Flavor) {
902  // Overall FIXME: we are recomputing too many types here and doing far too
903  // much extra work. What this means is that we need to keep track of more
904  // information that is computed when we try the implicit conversion initially,
905  // so that we don't need to recompute anything here.
906  QualType FromType = From->getType();
907
908  if (SCS.CopyConstructor) {
909    // FIXME: When can ToType be a reference type?
910    assert(!ToType->isReferenceType());
911
912    // FIXME: Keep track of whether the copy constructor is elidable or not.
913    From = CXXConstructExpr::Create(Context, ToType,
914                                    SCS.CopyConstructor, false, &From, 1);
915    return false;
916  }
917
918  // Perform the first implicit conversion.
919  switch (SCS.First) {
920  case ICK_Identity:
921  case ICK_Lvalue_To_Rvalue:
922    // Nothing to do.
923    break;
924
925  case ICK_Array_To_Pointer:
926    FromType = Context.getArrayDecayedType(FromType);
927    ImpCastExprToType(From, FromType);
928    break;
929
930  case ICK_Function_To_Pointer:
931    if (Context.getCanonicalType(FromType) == Context.OverloadTy) {
932      FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
933      if (!Fn)
934        return true;
935
936      if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
937        return true;
938
939      FixOverloadedFunctionReference(From, Fn);
940      FromType = From->getType();
941    }
942    FromType = Context.getPointerType(FromType);
943    ImpCastExprToType(From, FromType);
944    break;
945
946  default:
947    assert(false && "Improper first standard conversion");
948    break;
949  }
950
951  // Perform the second implicit conversion
952  switch (SCS.Second) {
953  case ICK_Identity:
954    // Nothing to do.
955    break;
956
957  case ICK_Integral_Promotion:
958  case ICK_Floating_Promotion:
959  case ICK_Complex_Promotion:
960  case ICK_Integral_Conversion:
961  case ICK_Floating_Conversion:
962  case ICK_Complex_Conversion:
963  case ICK_Floating_Integral:
964  case ICK_Complex_Real:
965  case ICK_Compatible_Conversion:
966      // FIXME: Go deeper to get the unqualified type!
967    FromType = ToType.getUnqualifiedType();
968    ImpCastExprToType(From, FromType);
969    break;
970
971  case ICK_Pointer_Conversion:
972    if (SCS.IncompatibleObjC) {
973      // Diagnose incompatible Objective-C conversions
974      Diag(From->getSourceRange().getBegin(),
975           diag::ext_typecheck_convert_incompatible_pointer)
976        << From->getType() << ToType << Flavor
977        << From->getSourceRange();
978    }
979
980    if (CheckPointerConversion(From, ToType))
981      return true;
982    ImpCastExprToType(From, ToType);
983    break;
984
985  case ICK_Pointer_Member:
986    if (CheckMemberPointerConversion(From, ToType))
987      return true;
988    ImpCastExprToType(From, ToType);
989    break;
990
991  case ICK_Boolean_Conversion:
992    FromType = Context.BoolTy;
993    ImpCastExprToType(From, FromType);
994    break;
995
996  default:
997    assert(false && "Improper second standard conversion");
998    break;
999  }
1000
1001  switch (SCS.Third) {
1002  case ICK_Identity:
1003    // Nothing to do.
1004    break;
1005
1006  case ICK_Qualification:
1007    // FIXME: Not sure about lvalue vs rvalue here in the presence of rvalue
1008    // references.
1009    ImpCastExprToType(From, ToType.getNonReferenceType(),
1010                      ToType->isLValueReferenceType());
1011    break;
1012
1013  default:
1014    assert(false && "Improper second standard conversion");
1015    break;
1016  }
1017
1018  return false;
1019}
1020
1021Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
1022                                                 SourceLocation KWLoc,
1023                                                 SourceLocation LParen,
1024                                                 TypeTy *Ty,
1025                                                 SourceLocation RParen) {
1026  QualType T = QualType::getFromOpaquePtr(Ty);
1027
1028  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
1029  // all traits except __is_class, __is_enum and __is_union require a the type
1030  // to be complete.
1031  if (OTT != UTT_IsClass && OTT != UTT_IsEnum && OTT != UTT_IsUnion) {
1032    if (RequireCompleteType(KWLoc, T,
1033                            diag::err_incomplete_type_used_in_type_trait_expr,
1034                            SourceRange(), SourceRange(), T))
1035      return ExprError();
1036  }
1037
1038  // There is no point in eagerly computing the value. The traits are designed
1039  // to be used from type trait templates, so Ty will be a template parameter
1040  // 99% of the time.
1041  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT, T,
1042                                                RParen, Context.BoolTy));
1043}
1044
1045QualType Sema::CheckPointerToMemberOperands(
1046  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect)
1047{
1048  const char *OpSpelling = isIndirect ? "->*" : ".*";
1049  // C++ 5.5p2
1050  //   The binary operator .* [p3: ->*] binds its second operand, which shall
1051  //   be of type "pointer to member of T" (where T is a completely-defined
1052  //   class type) [...]
1053  QualType RType = rex->getType();
1054  const MemberPointerType *MemPtr = RType->getAsMemberPointerType();
1055  if (!MemPtr) {
1056    Diag(Loc, diag::err_bad_memptr_rhs)
1057      << OpSpelling << RType << rex->getSourceRange();
1058    return QualType();
1059  }
1060
1061  QualType Class(MemPtr->getClass(), 0);
1062
1063  // C++ 5.5p2
1064  //   [...] to its first operand, which shall be of class T or of a class of
1065  //   which T is an unambiguous and accessible base class. [p3: a pointer to
1066  //   such a class]
1067  QualType LType = lex->getType();
1068  if (isIndirect) {
1069    if (const PointerType *Ptr = LType->getAsPointerType())
1070      LType = Ptr->getPointeeType().getNonReferenceType();
1071    else {
1072      Diag(Loc, diag::err_bad_memptr_lhs)
1073        << OpSpelling << 1 << LType << lex->getSourceRange();
1074      return QualType();
1075    }
1076  }
1077
1078  if (Context.getCanonicalType(Class).getUnqualifiedType() !=
1079      Context.getCanonicalType(LType).getUnqualifiedType()) {
1080    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
1081                    /*DetectVirtual=*/false);
1082    // FIXME: Would it be useful to print full ambiguity paths, or is that
1083    // overkill?
1084    if (!IsDerivedFrom(LType, Class, Paths) ||
1085        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
1086      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
1087        << (int)isIndirect << lex->getType() << lex->getSourceRange();
1088      return QualType();
1089    }
1090  }
1091
1092  // C++ 5.5p2
1093  //   The result is an object or a function of the type specified by the
1094  //   second operand.
1095  // The cv qualifiers are the union of those in the pointer and the left side,
1096  // in accordance with 5.5p5 and 5.2.5.
1097  // FIXME: This returns a dereferenced member function pointer as a normal
1098  // function type. However, the only operation valid on such functions is
1099  // calling them. There's also a GCC extension to get a function pointer to the
1100  // thing, which is another complication, because this type - unlike the type
1101  // that is the result of this expression - takes the class as the first
1102  // argument.
1103  // We probably need a "MemberFunctionClosureType" or something like that.
1104  QualType Result = MemPtr->getPointeeType();
1105  if (LType.isConstQualified())
1106    Result.addConst();
1107  if (LType.isVolatileQualified())
1108    Result.addVolatile();
1109  return Result;
1110}
1111
1112/// \brief Get the target type of a standard or user-defined conversion.
1113static QualType TargetType(const ImplicitConversionSequence &ICS) {
1114  assert((ICS.ConversionKind ==
1115              ImplicitConversionSequence::StandardConversion ||
1116          ICS.ConversionKind ==
1117              ImplicitConversionSequence::UserDefinedConversion) &&
1118         "function only valid for standard or user-defined conversions");
1119  if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion)
1120    return QualType::getFromOpaquePtr(ICS.Standard.ToTypePtr);
1121  return QualType::getFromOpaquePtr(ICS.UserDefined.After.ToTypePtr);
1122}
1123
1124/// \brief Try to convert a type to another according to C++0x 5.16p3.
1125///
1126/// This is part of the parameter validation for the ? operator. If either
1127/// value operand is a class type, the two operands are attempted to be
1128/// converted to each other. This function does the conversion in one direction.
1129/// It emits a diagnostic and returns true only if it finds an ambiguous
1130/// conversion.
1131static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
1132                                SourceLocation QuestionLoc,
1133                                ImplicitConversionSequence &ICS)
1134{
1135  // C++0x 5.16p3
1136  //   The process for determining whether an operand expression E1 of type T1
1137  //   can be converted to match an operand expression E2 of type T2 is defined
1138  //   as follows:
1139  //   -- If E2 is an lvalue:
1140  if (To->isLvalue(Self.Context) == Expr::LV_Valid) {
1141    //   E1 can be converted to match E2 if E1 can be implicitly converted to
1142    //   type "lvalue reference to T2", subject to the constraint that in the
1143    //   conversion the reference must bind directly to E1.
1144    if (!Self.CheckReferenceInit(From,
1145                            Self.Context.getLValueReferenceType(To->getType()),
1146                            &ICS))
1147    {
1148      assert((ICS.ConversionKind ==
1149                  ImplicitConversionSequence::StandardConversion ||
1150              ICS.ConversionKind ==
1151                  ImplicitConversionSequence::UserDefinedConversion) &&
1152             "expected a definite conversion");
1153      bool DirectBinding =
1154        ICS.ConversionKind == ImplicitConversionSequence::StandardConversion ?
1155        ICS.Standard.DirectBinding : ICS.UserDefined.After.DirectBinding;
1156      if (DirectBinding)
1157        return false;
1158    }
1159  }
1160  ICS.ConversionKind = ImplicitConversionSequence::BadConversion;
1161  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
1162  //      -- if E1 and E2 have class type, and the underlying class types are
1163  //         the same or one is a base class of the other:
1164  QualType FTy = From->getType();
1165  QualType TTy = To->getType();
1166  const RecordType *FRec = FTy->getAsRecordType();
1167  const RecordType *TRec = TTy->getAsRecordType();
1168  bool FDerivedFromT = FRec && TRec && Self.IsDerivedFrom(FTy, TTy);
1169  if (FRec && TRec && (FRec == TRec ||
1170        FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
1171    //         E1 can be converted to match E2 if the class of T2 is the
1172    //         same type as, or a base class of, the class of T1, and
1173    //         [cv2 > cv1].
1174    if ((FRec == TRec || FDerivedFromT) && TTy.isAtLeastAsQualifiedAs(FTy)) {
1175      // Could still fail if there's no copy constructor.
1176      // FIXME: Is this a hard error then, or just a conversion failure? The
1177      // standard doesn't say.
1178      ICS = Self.TryCopyInitialization(From, TTy);
1179    }
1180  } else {
1181    //     -- Otherwise: E1 can be converted to match E2 if E1 can be
1182    //        implicitly converted to the type that expression E2 would have
1183    //        if E2 were converted to an rvalue.
1184    // First find the decayed type.
1185    if (TTy->isFunctionType())
1186      TTy = Self.Context.getPointerType(TTy);
1187    else if(TTy->isArrayType())
1188      TTy = Self.Context.getArrayDecayedType(TTy);
1189
1190    // Now try the implicit conversion.
1191    // FIXME: This doesn't detect ambiguities.
1192    ICS = Self.TryImplicitConversion(From, TTy);
1193  }
1194  return false;
1195}
1196
1197/// \brief Try to find a common type for two according to C++0x 5.16p5.
1198///
1199/// This is part of the parameter validation for the ? operator. If either
1200/// value operand is a class type, overload resolution is used to find a
1201/// conversion to a common type.
1202static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
1203                                    SourceLocation Loc) {
1204  Expr *Args[2] = { LHS, RHS };
1205  OverloadCandidateSet CandidateSet;
1206  Self.AddBuiltinOperatorCandidates(OO_Conditional, Args, 2, CandidateSet);
1207
1208  OverloadCandidateSet::iterator Best;
1209  switch (Self.BestViableFunction(CandidateSet, Loc, Best)) {
1210    case Sema::OR_Success:
1211      // We found a match. Perform the conversions on the arguments and move on.
1212      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
1213                                         Best->Conversions[0], "converting") ||
1214          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
1215                                         Best->Conversions[1], "converting"))
1216        break;
1217      return false;
1218
1219    case Sema::OR_No_Viable_Function:
1220      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
1221        << LHS->getType() << RHS->getType()
1222        << LHS->getSourceRange() << RHS->getSourceRange();
1223      return true;
1224
1225    case Sema::OR_Ambiguous:
1226      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
1227        << LHS->getType() << RHS->getType()
1228        << LHS->getSourceRange() << RHS->getSourceRange();
1229      // FIXME: Print the possible common types by printing the return types of
1230      // the viable candidates.
1231      break;
1232
1233    case Sema::OR_Deleted:
1234      assert(false && "Conditional operator has only built-in overloads");
1235      break;
1236  }
1237  return true;
1238}
1239
1240/// \brief Perform an "extended" implicit conversion as returned by
1241/// TryClassUnification.
1242///
1243/// TryClassUnification generates ICSs that include reference bindings.
1244/// PerformImplicitConversion is not suitable for this; it chokes if the
1245/// second part of a standard conversion is ICK_DerivedToBase. This function
1246/// handles the reference binding specially.
1247static bool ConvertForConditional(Sema &Self, Expr *&E,
1248                                  const ImplicitConversionSequence &ICS)
1249{
1250  if (ICS.ConversionKind == ImplicitConversionSequence::StandardConversion &&
1251      ICS.Standard.ReferenceBinding) {
1252    assert(ICS.Standard.DirectBinding &&
1253           "TryClassUnification should never generate indirect ref bindings");
1254    // FIXME: CheckReferenceInit should be able to reuse the ICS instead of
1255    // redoing all the work.
1256    return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
1257                                        TargetType(ICS)));
1258  }
1259  if (ICS.ConversionKind == ImplicitConversionSequence::UserDefinedConversion &&
1260      ICS.UserDefined.After.ReferenceBinding) {
1261    assert(ICS.UserDefined.After.DirectBinding &&
1262           "TryClassUnification should never generate indirect ref bindings");
1263    return Self.CheckReferenceInit(E, Self.Context.getLValueReferenceType(
1264                                        TargetType(ICS)));
1265  }
1266  if (Self.PerformImplicitConversion(E, TargetType(ICS), ICS, "converting"))
1267    return true;
1268  return false;
1269}
1270
1271/// \brief Check the operands of ?: under C++ semantics.
1272///
1273/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
1274/// extension. In this case, LHS == Cond. (But they're not aliases.)
1275QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
1276                                           SourceLocation QuestionLoc) {
1277  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
1278  // interface pointers.
1279
1280  // C++0x 5.16p1
1281  //   The first expression is contextually converted to bool.
1282  if (!Cond->isTypeDependent()) {
1283    if (CheckCXXBooleanCondition(Cond))
1284      return QualType();
1285  }
1286
1287  // Either of the arguments dependent?
1288  if (LHS->isTypeDependent() || RHS->isTypeDependent())
1289    return Context.DependentTy;
1290
1291  // C++0x 5.16p2
1292  //   If either the second or the third operand has type (cv) void, ...
1293  QualType LTy = LHS->getType();
1294  QualType RTy = RHS->getType();
1295  bool LVoid = LTy->isVoidType();
1296  bool RVoid = RTy->isVoidType();
1297  if (LVoid || RVoid) {
1298    //   ... then the [l2r] conversions are performed on the second and third
1299    //   operands ...
1300    DefaultFunctionArrayConversion(LHS);
1301    DefaultFunctionArrayConversion(RHS);
1302    LTy = LHS->getType();
1303    RTy = RHS->getType();
1304
1305    //   ... and one of the following shall hold:
1306    //   -- The second or the third operand (but not both) is a throw-
1307    //      expression; the result is of the type of the other and is an rvalue.
1308    bool LThrow = isa<CXXThrowExpr>(LHS);
1309    bool RThrow = isa<CXXThrowExpr>(RHS);
1310    if (LThrow && !RThrow)
1311      return RTy;
1312    if (RThrow && !LThrow)
1313      return LTy;
1314
1315    //   -- Both the second and third operands have type void; the result is of
1316    //      type void and is an rvalue.
1317    if (LVoid && RVoid)
1318      return Context.VoidTy;
1319
1320    // Neither holds, error.
1321    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
1322      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
1323      << LHS->getSourceRange() << RHS->getSourceRange();
1324    return QualType();
1325  }
1326
1327  // Neither is void.
1328
1329  // C++0x 5.16p3
1330  //   Otherwise, if the second and third operand have different types, and
1331  //   either has (cv) class type, and attempt is made to convert each of those
1332  //   operands to the other.
1333  if (Context.getCanonicalType(LTy) != Context.getCanonicalType(RTy) &&
1334      (LTy->isRecordType() || RTy->isRecordType())) {
1335    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
1336    // These return true if a single direction is already ambiguous.
1337    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, ICSLeftToRight))
1338      return QualType();
1339    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, ICSRightToLeft))
1340      return QualType();
1341
1342    bool HaveL2R = ICSLeftToRight.ConversionKind !=
1343      ImplicitConversionSequence::BadConversion;
1344    bool HaveR2L = ICSRightToLeft.ConversionKind !=
1345      ImplicitConversionSequence::BadConversion;
1346    //   If both can be converted, [...] the program is ill-formed.
1347    if (HaveL2R && HaveR2L) {
1348      Diag(QuestionLoc, diag::err_conditional_ambiguous)
1349        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
1350      return QualType();
1351    }
1352
1353    //   If exactly one conversion is possible, that conversion is applied to
1354    //   the chosen operand and the converted operands are used in place of the
1355    //   original operands for the remainder of this section.
1356    if (HaveL2R) {
1357      if (ConvertForConditional(*this, LHS, ICSLeftToRight))
1358        return QualType();
1359      LTy = LHS->getType();
1360    } else if (HaveR2L) {
1361      if (ConvertForConditional(*this, RHS, ICSRightToLeft))
1362        return QualType();
1363      RTy = RHS->getType();
1364    }
1365  }
1366
1367  // C++0x 5.16p4
1368  //   If the second and third operands are lvalues and have the same type,
1369  //   the result is of that type [...]
1370  bool Same = Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy);
1371  if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
1372      RHS->isLvalue(Context) == Expr::LV_Valid)
1373    return LTy;
1374
1375  // C++0x 5.16p5
1376  //   Otherwise, the result is an rvalue. If the second and third operands
1377  //   do not have the same type, and either has (cv) class type, ...
1378  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
1379    //   ... overload resolution is used to determine the conversions (if any)
1380    //   to be applied to the operands. If the overload resolution fails, the
1381    //   program is ill-formed.
1382    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
1383      return QualType();
1384  }
1385
1386  // C++0x 5.16p6
1387  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
1388  //   conversions are performed on the second and third operands.
1389  DefaultFunctionArrayConversion(LHS);
1390  DefaultFunctionArrayConversion(RHS);
1391  LTy = LHS->getType();
1392  RTy = RHS->getType();
1393
1394  //   After those conversions, one of the following shall hold:
1395  //   -- The second and third operands have the same type; the result
1396  //      is of that type.
1397  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy))
1398    return LTy;
1399
1400  //   -- The second and third operands have arithmetic or enumeration type;
1401  //      the usual arithmetic conversions are performed to bring them to a
1402  //      common type, and the result is of that type.
1403  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
1404    UsualArithmeticConversions(LHS, RHS);
1405    return LHS->getType();
1406  }
1407
1408  //   -- The second and third operands have pointer type, or one has pointer
1409  //      type and the other is a null pointer constant; pointer conversions
1410  //      and qualification conversions are performed to bring them to their
1411  //      composite pointer type. The result is of the composite pointer type.
1412  QualType Composite = FindCompositePointerType(LHS, RHS);
1413  if (!Composite.isNull())
1414    return Composite;
1415
1416  // Fourth bullet is same for pointers-to-member. However, the possible
1417  // conversions are far more limited: we have null-to-pointer, upcast of
1418  // containing class, and second-level cv-ness.
1419  // cv-ness is not a union, but must match one of the two operands. (Which,
1420  // frankly, is stupid.)
1421  const MemberPointerType *LMemPtr = LTy->getAsMemberPointerType();
1422  const MemberPointerType *RMemPtr = RTy->getAsMemberPointerType();
1423  if (LMemPtr && RHS->isNullPointerConstant(Context)) {
1424    ImpCastExprToType(RHS, LTy);
1425    return LTy;
1426  }
1427  if (RMemPtr && LHS->isNullPointerConstant(Context)) {
1428    ImpCastExprToType(LHS, RTy);
1429    return RTy;
1430  }
1431  if (LMemPtr && RMemPtr) {
1432    QualType LPointee = LMemPtr->getPointeeType();
1433    QualType RPointee = RMemPtr->getPointeeType();
1434    // First, we check that the unqualified pointee type is the same. If it's
1435    // not, there's no conversion that will unify the two pointers.
1436    if (Context.getCanonicalType(LPointee).getUnqualifiedType() ==
1437        Context.getCanonicalType(RPointee).getUnqualifiedType()) {
1438      // Second, we take the greater of the two cv qualifications. If neither
1439      // is greater than the other, the conversion is not possible.
1440      unsigned Q = LPointee.getCVRQualifiers() | RPointee.getCVRQualifiers();
1441      if (Q == LPointee.getCVRQualifiers() || Q == RPointee.getCVRQualifiers()){
1442        // Third, we check if either of the container classes is derived from
1443        // the other.
1444        QualType LContainer(LMemPtr->getClass(), 0);
1445        QualType RContainer(RMemPtr->getClass(), 0);
1446        QualType MoreDerived;
1447        if (Context.getCanonicalType(LContainer) ==
1448            Context.getCanonicalType(RContainer))
1449          MoreDerived = LContainer;
1450        else if (IsDerivedFrom(LContainer, RContainer))
1451          MoreDerived = LContainer;
1452        else if (IsDerivedFrom(RContainer, LContainer))
1453          MoreDerived = RContainer;
1454
1455        if (!MoreDerived.isNull()) {
1456          // The type 'Q Pointee (MoreDerived::*)' is the common type.
1457          // We don't use ImpCastExprToType here because this could still fail
1458          // for ambiguous or inaccessible conversions.
1459          QualType Common = Context.getMemberPointerType(
1460            LPointee.getQualifiedType(Q), MoreDerived.getTypePtr());
1461          if (PerformImplicitConversion(LHS, Common, "converting"))
1462            return QualType();
1463          if (PerformImplicitConversion(RHS, Common, "converting"))
1464            return QualType();
1465          return Common;
1466        }
1467      }
1468    }
1469  }
1470
1471  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
1472    << LHS->getType() << RHS->getType()
1473    << LHS->getSourceRange() << RHS->getSourceRange();
1474  return QualType();
1475}
1476
1477/// \brief Find a merged pointer type and convert the two expressions to it.
1478///
1479/// This finds the composite pointer type for @p E1 and @p E2 according to
1480/// C++0x 5.9p2. It converts both expressions to this type and returns it.
1481/// It does not emit diagnostics.
1482QualType Sema::FindCompositePointerType(Expr *&E1, Expr *&E2) {
1483  assert(getLangOptions().CPlusPlus && "This function assumes C++");
1484  QualType T1 = E1->getType(), T2 = E2->getType();
1485  if(!T1->isAnyPointerType() && !T2->isAnyPointerType())
1486    return QualType();
1487
1488  // C++0x 5.9p2
1489  //   Pointer conversions and qualification conversions are performed on
1490  //   pointer operands to bring them to their composite pointer type. If
1491  //   one operand is a null pointer constant, the composite pointer type is
1492  //   the type of the other operand.
1493  if (E1->isNullPointerConstant(Context)) {
1494    ImpCastExprToType(E1, T2);
1495    return T2;
1496  }
1497  if (E2->isNullPointerConstant(Context)) {
1498    ImpCastExprToType(E2, T1);
1499    return T1;
1500  }
1501  // Now both have to be pointers.
1502  if(!T1->isPointerType() || !T2->isPointerType())
1503    return QualType();
1504
1505  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
1506  //   the other has type "pointer to cv2 T" and the composite pointer type is
1507  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
1508  //   Otherwise, the composite pointer type is a pointer type similar to the
1509  //   type of one of the operands, with a cv-qualification signature that is
1510  //   the union of the cv-qualification signatures of the operand types.
1511  // In practice, the first part here is redundant; it's subsumed by the second.
1512  // What we do here is, we build the two possible composite types, and try the
1513  // conversions in both directions. If only one works, or if the two composite
1514  // types are the same, we have succeeded.
1515  llvm::SmallVector<unsigned, 4> QualifierUnion;
1516  QualType Composite1 = T1, Composite2 = T2;
1517  const PointerType *Ptr1, *Ptr2;
1518  while ((Ptr1 = Composite1->getAsPointerType()) &&
1519         (Ptr2 = Composite2->getAsPointerType())) {
1520    Composite1 = Ptr1->getPointeeType();
1521    Composite2 = Ptr2->getPointeeType();
1522    QualifierUnion.push_back(
1523      Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
1524  }
1525  // Rewrap the composites as pointers with the union CVRs.
1526  for (llvm::SmallVector<unsigned, 4>::iterator I = QualifierUnion.begin(),
1527       E = QualifierUnion.end(); I != E; ++I) {
1528    Composite1 = Context.getPointerType(Composite1.getQualifiedType(*I));
1529    Composite2 = Context.getPointerType(Composite2.getQualifiedType(*I));
1530  }
1531
1532  ImplicitConversionSequence E1ToC1 = TryImplicitConversion(E1, Composite1);
1533  ImplicitConversionSequence E2ToC1 = TryImplicitConversion(E2, Composite1);
1534  ImplicitConversionSequence E1ToC2, E2ToC2;
1535  E1ToC2.ConversionKind = ImplicitConversionSequence::BadConversion;
1536  E2ToC2.ConversionKind = ImplicitConversionSequence::BadConversion;
1537  if (Context.getCanonicalType(Composite1) !=
1538      Context.getCanonicalType(Composite2)) {
1539    E1ToC2 = TryImplicitConversion(E1, Composite2);
1540    E2ToC2 = TryImplicitConversion(E2, Composite2);
1541  }
1542
1543  bool ToC1Viable = E1ToC1.ConversionKind !=
1544                      ImplicitConversionSequence::BadConversion
1545                 && E2ToC1.ConversionKind !=
1546                      ImplicitConversionSequence::BadConversion;
1547  bool ToC2Viable = E1ToC2.ConversionKind !=
1548                      ImplicitConversionSequence::BadConversion
1549                 && E2ToC2.ConversionKind !=
1550                      ImplicitConversionSequence::BadConversion;
1551  if (ToC1Viable && !ToC2Viable) {
1552    if (!PerformImplicitConversion(E1, Composite1, E1ToC1, "converting") &&
1553        !PerformImplicitConversion(E2, Composite1, E2ToC1, "converting"))
1554      return Composite1;
1555  }
1556  if (ToC2Viable && !ToC1Viable) {
1557    if (!PerformImplicitConversion(E1, Composite2, E1ToC2, "converting") &&
1558        !PerformImplicitConversion(E2, Composite2, E2ToC2, "converting"))
1559      return Composite2;
1560  }
1561  return QualType();
1562}
1563
1564Sema::OwningExprResult Sema::MaybeBindToTemporary(Expr *E) {
1565  const RecordType *RT = E->getType()->getAsRecordType();
1566  if (!RT)
1567    return Owned(E);
1568
1569  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1570  if (RD->hasTrivialDestructor())
1571    return Owned(E);
1572
1573  CXXTemporary *Temp = CXXTemporary::Create(Context,
1574                                            RD->getDestructor(Context));
1575  ExprTemporaries.push_back(Temp);
1576  MarkDestructorReferenced(E->getExprLoc(), E->getType());
1577  // FIXME: Add the temporary to the temporaries vector.
1578  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
1579}
1580
1581Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr,
1582                                              bool ShouldDestroyTemps) {
1583  assert(SubExpr && "sub expression can't be null!");
1584
1585  if (ExprTemporaries.empty())
1586    return SubExpr;
1587
1588  Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr,
1589                                           &ExprTemporaries[0],
1590                                           ExprTemporaries.size(),
1591                                           ShouldDestroyTemps);
1592  ExprTemporaries.clear();
1593
1594  return E;
1595}
1596
1597Sema::OwningExprResult Sema::ActOnFinishFullExpr(ExprArg Arg) {
1598  Expr *FullExpr = Arg.takeAs<Expr>();
1599  if (FullExpr)
1600    FullExpr = MaybeCreateCXXExprWithTemporaries(FullExpr,
1601                                                 /*ShouldDestroyTemps=*/true);
1602
1603  return Owned(FullExpr);
1604}
1605