SemaExprCXX.cpp revision 36784e78bcce1dbaf35f94a655394e348b4d9ac7
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31using namespace clang;
32using namespace sema;
33
34ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
35                                   IdentifierInfo &II,
36                                   SourceLocation NameLoc,
37                                   Scope *S, CXXScopeSpec &SS,
38                                   ParsedType ObjectTypePtr,
39                                   bool EnteringContext) {
40  // Determine where to perform name lookup.
41
42  // FIXME: This area of the standard is very messy, and the current
43  // wording is rather unclear about which scopes we search for the
44  // destructor name; see core issues 399 and 555. Issue 399 in
45  // particular shows where the current description of destructor name
46  // lookup is completely out of line with existing practice, e.g.,
47  // this appears to be ill-formed:
48  //
49  //   namespace N {
50  //     template <typename T> struct S {
51  //       ~S();
52  //     };
53  //   }
54  //
55  //   void f(N::S<int>* s) {
56  //     s->N::S<int>::~S();
57  //   }
58  //
59  // See also PR6358 and PR6359.
60  // For this reason, we're currently only doing the C++03 version of this
61  // code; the C++0x version has to wait until we get a proper spec.
62  QualType SearchType;
63  DeclContext *LookupCtx = 0;
64  bool isDependent = false;
65  bool LookInScope = false;
66
67  // If we have an object type, it's because we are in a
68  // pseudo-destructor-expression or a member access expression, and
69  // we know what type we're looking for.
70  if (ObjectTypePtr)
71    SearchType = GetTypeFromParser(ObjectTypePtr);
72
73  if (SS.isSet()) {
74    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
75
76    bool AlreadySearched = false;
77    bool LookAtPrefix = true;
78    // C++ [basic.lookup.qual]p6:
79    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
80    //   the type-names are looked up as types in the scope designated by the
81    //   nested-name-specifier. In a qualified-id of the form:
82    //
83    //     ::[opt] nested-name-specifier  ~ class-name
84    //
85    //   where the nested-name-specifier designates a namespace scope, and in
86    //   a qualified-id of the form:
87    //
88    //     ::opt nested-name-specifier class-name ::  ~ class-name
89    //
90    //   the class-names are looked up as types in the scope designated by
91    //   the nested-name-specifier.
92    //
93    // Here, we check the first case (completely) and determine whether the
94    // code below is permitted to look at the prefix of the
95    // nested-name-specifier.
96    DeclContext *DC = computeDeclContext(SS, EnteringContext);
97    if (DC && DC->isFileContext()) {
98      AlreadySearched = true;
99      LookupCtx = DC;
100      isDependent = false;
101    } else if (DC && isa<CXXRecordDecl>(DC))
102      LookAtPrefix = false;
103
104    // The second case from the C++03 rules quoted further above.
105    NestedNameSpecifier *Prefix = 0;
106    if (AlreadySearched) {
107      // Nothing left to do.
108    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
109      CXXScopeSpec PrefixSS;
110      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
111      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
112      isDependent = isDependentScopeSpecifier(PrefixSS);
113    } else if (ObjectTypePtr) {
114      LookupCtx = computeDeclContext(SearchType);
115      isDependent = SearchType->isDependentType();
116    } else {
117      LookupCtx = computeDeclContext(SS, EnteringContext);
118      isDependent = LookupCtx && LookupCtx->isDependentContext();
119    }
120
121    LookInScope = false;
122  } else if (ObjectTypePtr) {
123    // C++ [basic.lookup.classref]p3:
124    //   If the unqualified-id is ~type-name, the type-name is looked up
125    //   in the context of the entire postfix-expression. If the type T
126    //   of the object expression is of a class type C, the type-name is
127    //   also looked up in the scope of class C. At least one of the
128    //   lookups shall find a name that refers to (possibly
129    //   cv-qualified) T.
130    LookupCtx = computeDeclContext(SearchType);
131    isDependent = SearchType->isDependentType();
132    assert((isDependent || !SearchType->isIncompleteType()) &&
133           "Caller should have completed object type");
134
135    LookInScope = true;
136  } else {
137    // Perform lookup into the current scope (only).
138    LookInScope = true;
139  }
140
141  TypeDecl *NonMatchingTypeDecl = 0;
142  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
143  for (unsigned Step = 0; Step != 2; ++Step) {
144    // Look for the name first in the computed lookup context (if we
145    // have one) and, if that fails to find a match, in the scope (if
146    // we're allowed to look there).
147    Found.clear();
148    if (Step == 0 && LookupCtx)
149      LookupQualifiedName(Found, LookupCtx);
150    else if (Step == 1 && LookInScope && S)
151      LookupName(Found, S);
152    else
153      continue;
154
155    // FIXME: Should we be suppressing ambiguities here?
156    if (Found.isAmbiguous())
157      return ParsedType();
158
159    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
160      QualType T = Context.getTypeDeclType(Type);
161
162      if (SearchType.isNull() || SearchType->isDependentType() ||
163          Context.hasSameUnqualifiedType(T, SearchType)) {
164        // We found our type!
165
166        return ParsedType::make(T);
167      }
168
169      if (!SearchType.isNull())
170        NonMatchingTypeDecl = Type;
171    }
172
173    // If the name that we found is a class template name, and it is
174    // the same name as the template name in the last part of the
175    // nested-name-specifier (if present) or the object type, then
176    // this is the destructor for that class.
177    // FIXME: This is a workaround until we get real drafting for core
178    // issue 399, for which there isn't even an obvious direction.
179    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
180      QualType MemberOfType;
181      if (SS.isSet()) {
182        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
183          // Figure out the type of the context, if it has one.
184          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
185            MemberOfType = Context.getTypeDeclType(Record);
186        }
187      }
188      if (MemberOfType.isNull())
189        MemberOfType = SearchType;
190
191      if (MemberOfType.isNull())
192        continue;
193
194      // We're referring into a class template specialization. If the
195      // class template we found is the same as the template being
196      // specialized, we found what we are looking for.
197      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
198        if (ClassTemplateSpecializationDecl *Spec
199              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
200          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
201                Template->getCanonicalDecl())
202            return ParsedType::make(MemberOfType);
203        }
204
205        continue;
206      }
207
208      // We're referring to an unresolved class template
209      // specialization. Determine whether we class template we found
210      // is the same as the template being specialized or, if we don't
211      // know which template is being specialized, that it at least
212      // has the same name.
213      if (const TemplateSpecializationType *SpecType
214            = MemberOfType->getAs<TemplateSpecializationType>()) {
215        TemplateName SpecName = SpecType->getTemplateName();
216
217        // The class template we found is the same template being
218        // specialized.
219        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
220          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
221            return ParsedType::make(MemberOfType);
222
223          continue;
224        }
225
226        // The class template we found has the same name as the
227        // (dependent) template name being specialized.
228        if (DependentTemplateName *DepTemplate
229                                    = SpecName.getAsDependentTemplateName()) {
230          if (DepTemplate->isIdentifier() &&
231              DepTemplate->getIdentifier() == Template->getIdentifier())
232            return ParsedType::make(MemberOfType);
233
234          continue;
235        }
236      }
237    }
238  }
239
240  if (isDependent) {
241    // We didn't find our type, but that's okay: it's dependent
242    // anyway.
243
244    // FIXME: What if we have no nested-name-specifier?
245    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
246                                   SS.getWithLocInContext(Context),
247                                   II, NameLoc);
248    return ParsedType::make(T);
249  }
250
251  if (NonMatchingTypeDecl) {
252    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
253    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
254      << T << SearchType;
255    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
256      << T;
257  } else if (ObjectTypePtr)
258    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
259      << &II;
260  else
261    Diag(NameLoc, diag::err_destructor_class_name);
262
263  return ParsedType();
264}
265
266/// \brief Build a C++ typeid expression with a type operand.
267ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
268                                SourceLocation TypeidLoc,
269                                TypeSourceInfo *Operand,
270                                SourceLocation RParenLoc) {
271  // C++ [expr.typeid]p4:
272  //   The top-level cv-qualifiers of the lvalue expression or the type-id
273  //   that is the operand of typeid are always ignored.
274  //   If the type of the type-id is a class type or a reference to a class
275  //   type, the class shall be completely-defined.
276  Qualifiers Quals;
277  QualType T
278    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
279                                      Quals);
280  if (T->getAs<RecordType>() &&
281      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
282    return ExprError();
283
284  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
285                                           Operand,
286                                           SourceRange(TypeidLoc, RParenLoc)));
287}
288
289/// \brief Build a C++ typeid expression with an expression operand.
290ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
291                                SourceLocation TypeidLoc,
292                                Expr *E,
293                                SourceLocation RParenLoc) {
294  bool isUnevaluatedOperand = true;
295  if (E && !E->isTypeDependent()) {
296    QualType T = E->getType();
297    if (const RecordType *RecordT = T->getAs<RecordType>()) {
298      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
299      // C++ [expr.typeid]p3:
300      //   [...] If the type of the expression is a class type, the class
301      //   shall be completely-defined.
302      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
303        return ExprError();
304
305      // C++ [expr.typeid]p3:
306      //   When typeid is applied to an expression other than an glvalue of a
307      //   polymorphic class type [...] [the] expression is an unevaluated
308      //   operand. [...]
309      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
310        isUnevaluatedOperand = false;
311
312        // We require a vtable to query the type at run time.
313        MarkVTableUsed(TypeidLoc, RecordD);
314      }
315    }
316
317    // C++ [expr.typeid]p4:
318    //   [...] If the type of the type-id is a reference to a possibly
319    //   cv-qualified type, the result of the typeid expression refers to a
320    //   std::type_info object representing the cv-unqualified referenced
321    //   type.
322    Qualifiers Quals;
323    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
324    if (!Context.hasSameType(T, UnqualT)) {
325      T = UnqualT;
326      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
327    }
328  }
329
330  // If this is an unevaluated operand, clear out the set of
331  // declaration references we have been computing and eliminate any
332  // temporaries introduced in its computation.
333  if (isUnevaluatedOperand)
334    ExprEvalContexts.back().Context = Unevaluated;
335
336  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
337                                           E,
338                                           SourceRange(TypeidLoc, RParenLoc)));
339}
340
341/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
342ExprResult
343Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
344                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
345  // Find the std::type_info type.
346  if (!StdNamespace)
347    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
348
349  if (!CXXTypeInfoDecl) {
350    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
351    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
352    LookupQualifiedName(R, getStdNamespace());
353    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
354    if (!CXXTypeInfoDecl)
355      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
356  }
357
358  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
359
360  if (isType) {
361    // The operand is a type; handle it as such.
362    TypeSourceInfo *TInfo = 0;
363    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
364                                   &TInfo);
365    if (T.isNull())
366      return ExprError();
367
368    if (!TInfo)
369      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
370
371    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
372  }
373
374  // The operand is an expression.
375  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
376}
377
378/// Retrieve the UuidAttr associated with QT.
379static UuidAttr *GetUuidAttrOfType(QualType QT) {
380  // Optionally remove one level of pointer, reference or array indirection.
381  const Type *Ty = QT.getTypePtr();;
382  if (QT->isPointerType() || QT->isReferenceType())
383    Ty = QT->getPointeeType().getTypePtr();
384  else if (QT->isArrayType())
385    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
386
387  // Loop all class definition and declaration looking for an uuid attribute.
388  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
389  while (RD) {
390    if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
391      return Uuid;
392    RD = RD->getPreviousDeclaration();
393  }
394  return 0;
395}
396
397/// \brief Build a Microsoft __uuidof expression with a type operand.
398ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
399                                SourceLocation TypeidLoc,
400                                TypeSourceInfo *Operand,
401                                SourceLocation RParenLoc) {
402  if (!Operand->getType()->isDependentType()) {
403    if (!GetUuidAttrOfType(Operand->getType()))
404      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
405  }
406
407  // FIXME: add __uuidof semantic analysis for type operand.
408  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
409                                           Operand,
410                                           SourceRange(TypeidLoc, RParenLoc)));
411}
412
413/// \brief Build a Microsoft __uuidof expression with an expression operand.
414ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
415                                SourceLocation TypeidLoc,
416                                Expr *E,
417                                SourceLocation RParenLoc) {
418  if (!E->getType()->isDependentType()) {
419    if (!GetUuidAttrOfType(E->getType()) &&
420        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
421      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
422  }
423  // FIXME: add __uuidof semantic analysis for type operand.
424  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
425                                           E,
426                                           SourceRange(TypeidLoc, RParenLoc)));
427}
428
429/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
430ExprResult
431Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
432                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
433  // If MSVCGuidDecl has not been cached, do the lookup.
434  if (!MSVCGuidDecl) {
435    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
436    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
437    LookupQualifiedName(R, Context.getTranslationUnitDecl());
438    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
439    if (!MSVCGuidDecl)
440      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
441  }
442
443  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
444
445  if (isType) {
446    // The operand is a type; handle it as such.
447    TypeSourceInfo *TInfo = 0;
448    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
449                                   &TInfo);
450    if (T.isNull())
451      return ExprError();
452
453    if (!TInfo)
454      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
455
456    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
457  }
458
459  // The operand is an expression.
460  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
461}
462
463/// ActOnCXXBoolLiteral - Parse {true,false} literals.
464ExprResult
465Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
466  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
467         "Unknown C++ Boolean value!");
468  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
469                                                Context.BoolTy, OpLoc));
470}
471
472/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
473ExprResult
474Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
475  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
476}
477
478/// ActOnCXXThrow - Parse throw expressions.
479ExprResult
480Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
481  // Don't report an error if 'throw' is used in system headers.
482  if (!getLangOptions().CXXExceptions &&
483      !getSourceManager().isInSystemHeader(OpLoc))
484    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
485
486  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
487    return ExprError();
488  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
489}
490
491/// CheckCXXThrowOperand - Validate the operand of a throw.
492bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
493  // C++ [except.throw]p3:
494  //   A throw-expression initializes a temporary object, called the exception
495  //   object, the type of which is determined by removing any top-level
496  //   cv-qualifiers from the static type of the operand of throw and adjusting
497  //   the type from "array of T" or "function returning T" to "pointer to T"
498  //   or "pointer to function returning T", [...]
499  if (E->getType().hasQualifiers())
500    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
501                      CastCategory(E));
502
503  DefaultFunctionArrayConversion(E);
504
505  //   If the type of the exception would be an incomplete type or a pointer
506  //   to an incomplete type other than (cv) void the program is ill-formed.
507  QualType Ty = E->getType();
508  bool isPointer = false;
509  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
510    Ty = Ptr->getPointeeType();
511    isPointer = true;
512  }
513  if (!isPointer || !Ty->isVoidType()) {
514    if (RequireCompleteType(ThrowLoc, Ty,
515                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
516                                            : diag::err_throw_incomplete)
517                              << E->getSourceRange()))
518      return true;
519
520    if (RequireNonAbstractType(ThrowLoc, E->getType(),
521                               PDiag(diag::err_throw_abstract_type)
522                                 << E->getSourceRange()))
523      return true;
524  }
525
526  // Initialize the exception result.  This implicitly weeds out
527  // abstract types or types with inaccessible copy constructors.
528  const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
529
530  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
531  InitializedEntity Entity =
532      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
533                                             /*NRVO=*/false);
534  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
535                                                   QualType(), E);
536  if (Res.isInvalid())
537    return true;
538  E = Res.takeAs<Expr>();
539
540  // If the exception has class type, we need additional handling.
541  const RecordType *RecordTy = Ty->getAs<RecordType>();
542  if (!RecordTy)
543    return false;
544  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
545
546  // If we are throwing a polymorphic class type or pointer thereof,
547  // exception handling will make use of the vtable.
548  MarkVTableUsed(ThrowLoc, RD);
549
550  // If a pointer is thrown, the referenced object will not be destroyed.
551  if (isPointer)
552    return false;
553
554  // If the class has a non-trivial destructor, we must be able to call it.
555  if (RD->hasTrivialDestructor())
556    return false;
557
558  CXXDestructorDecl *Destructor
559    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
560  if (!Destructor)
561    return false;
562
563  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
564  CheckDestructorAccess(E->getExprLoc(), Destructor,
565                        PDiag(diag::err_access_dtor_exception) << Ty);
566  return false;
567}
568
569CXXMethodDecl *Sema::tryCaptureCXXThis() {
570  // Ignore block scopes: we can capture through them.
571  // Ignore nested enum scopes: we'll diagnose non-constant expressions
572  // where they're invalid, and other uses are legitimate.
573  // Don't ignore nested class scopes: you can't use 'this' in a local class.
574  DeclContext *DC = CurContext;
575  while (true) {
576    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
577    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
578    else break;
579  }
580
581  // If we're not in an instance method, error out.
582  CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
583  if (!method || !method->isInstance())
584    return 0;
585
586  // Mark that we're closing on 'this' in all the block scopes, if applicable.
587  for (unsigned idx = FunctionScopes.size() - 1;
588       isa<BlockScopeInfo>(FunctionScopes[idx]);
589       --idx)
590    cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
591
592  return method;
593}
594
595ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
596  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
597  /// is a non-lvalue expression whose value is the address of the object for
598  /// which the function is called.
599
600  CXXMethodDecl *method = tryCaptureCXXThis();
601  if (!method) return Diag(loc, diag::err_invalid_this_use);
602
603  return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
604                                         /*isImplicit=*/false));
605}
606
607ExprResult
608Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
609                                SourceLocation LParenLoc,
610                                MultiExprArg exprs,
611                                SourceLocation RParenLoc) {
612  if (!TypeRep)
613    return ExprError();
614
615  TypeSourceInfo *TInfo;
616  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
617  if (!TInfo)
618    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
619
620  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
621}
622
623/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
624/// Can be interpreted either as function-style casting ("int(x)")
625/// or class type construction ("ClassType(x,y,z)")
626/// or creation of a value-initialized type ("int()").
627ExprResult
628Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
629                                SourceLocation LParenLoc,
630                                MultiExprArg exprs,
631                                SourceLocation RParenLoc) {
632  QualType Ty = TInfo->getType();
633  unsigned NumExprs = exprs.size();
634  Expr **Exprs = (Expr**)exprs.get();
635  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
636  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
637
638  if (Ty->isDependentType() ||
639      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
640    exprs.release();
641
642    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
643                                                    LParenLoc,
644                                                    Exprs, NumExprs,
645                                                    RParenLoc));
646  }
647
648  if (Ty->isArrayType())
649    return ExprError(Diag(TyBeginLoc,
650                          diag::err_value_init_for_array_type) << FullRange);
651  if (!Ty->isVoidType() &&
652      RequireCompleteType(TyBeginLoc, Ty,
653                          PDiag(diag::err_invalid_incomplete_type_use)
654                            << FullRange))
655    return ExprError();
656
657  if (RequireNonAbstractType(TyBeginLoc, Ty,
658                             diag::err_allocation_of_abstract_type))
659    return ExprError();
660
661
662  // C++ [expr.type.conv]p1:
663  // If the expression list is a single expression, the type conversion
664  // expression is equivalent (in definedness, and if defined in meaning) to the
665  // corresponding cast expression.
666  //
667  if (NumExprs == 1) {
668    CastKind Kind = CK_Invalid;
669    ExprValueKind VK = VK_RValue;
670    CXXCastPath BasePath;
671    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
672                       Kind, VK, BasePath,
673                       /*FunctionalStyle=*/true))
674      return ExprError();
675
676    exprs.release();
677
678    return Owned(CXXFunctionalCastExpr::Create(Context,
679                                               Ty.getNonLValueExprType(Context),
680                                               VK, TInfo, TyBeginLoc, Kind,
681                                               Exprs[0], &BasePath,
682                                               RParenLoc));
683  }
684
685  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
686  InitializationKind Kind
687    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
688                                                  LParenLoc, RParenLoc)
689               : InitializationKind::CreateValue(TyBeginLoc,
690                                                 LParenLoc, RParenLoc);
691  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
692  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
693
694  // FIXME: Improve AST representation?
695  return move(Result);
696}
697
698/// doesUsualArrayDeleteWantSize - Answers whether the usual
699/// operator delete[] for the given type has a size_t parameter.
700static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
701                                         QualType allocType) {
702  const RecordType *record =
703    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
704  if (!record) return false;
705
706  // Try to find an operator delete[] in class scope.
707
708  DeclarationName deleteName =
709    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
710  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
711  S.LookupQualifiedName(ops, record->getDecl());
712
713  // We're just doing this for information.
714  ops.suppressDiagnostics();
715
716  // Very likely: there's no operator delete[].
717  if (ops.empty()) return false;
718
719  // If it's ambiguous, it should be illegal to call operator delete[]
720  // on this thing, so it doesn't matter if we allocate extra space or not.
721  if (ops.isAmbiguous()) return false;
722
723  LookupResult::Filter filter = ops.makeFilter();
724  while (filter.hasNext()) {
725    NamedDecl *del = filter.next()->getUnderlyingDecl();
726
727    // C++0x [basic.stc.dynamic.deallocation]p2:
728    //   A template instance is never a usual deallocation function,
729    //   regardless of its signature.
730    if (isa<FunctionTemplateDecl>(del)) {
731      filter.erase();
732      continue;
733    }
734
735    // C++0x [basic.stc.dynamic.deallocation]p2:
736    //   If class T does not declare [an operator delete[] with one
737    //   parameter] but does declare a member deallocation function
738    //   named operator delete[] with exactly two parameters, the
739    //   second of which has type std::size_t, then this function
740    //   is a usual deallocation function.
741    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
742      filter.erase();
743      continue;
744    }
745  }
746  filter.done();
747
748  if (!ops.isSingleResult()) return false;
749
750  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
751  return (del->getNumParams() == 2);
752}
753
754/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
755/// @code new (memory) int[size][4] @endcode
756/// or
757/// @code ::new Foo(23, "hello") @endcode
758/// For the interpretation of this heap of arguments, consult the base version.
759ExprResult
760Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
761                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
762                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
763                  Declarator &D, SourceLocation ConstructorLParen,
764                  MultiExprArg ConstructorArgs,
765                  SourceLocation ConstructorRParen) {
766  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
767
768  Expr *ArraySize = 0;
769  // If the specified type is an array, unwrap it and save the expression.
770  if (D.getNumTypeObjects() > 0 &&
771      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
772    DeclaratorChunk &Chunk = D.getTypeObject(0);
773    if (TypeContainsAuto)
774      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
775        << D.getSourceRange());
776    if (Chunk.Arr.hasStatic)
777      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
778        << D.getSourceRange());
779    if (!Chunk.Arr.NumElts)
780      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
781        << D.getSourceRange());
782
783    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
784    D.DropFirstTypeObject();
785  }
786
787  // Every dimension shall be of constant size.
788  if (ArraySize) {
789    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
790      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
791        break;
792
793      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
794      if (Expr *NumElts = (Expr *)Array.NumElts) {
795        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
796            !NumElts->isIntegerConstantExpr(Context)) {
797          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
798            << NumElts->getSourceRange();
799          return ExprError();
800        }
801      }
802    }
803  }
804
805  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
806                                               /*AllowAuto=*/true);
807  QualType AllocType = TInfo->getType();
808  if (D.isInvalidType())
809    return ExprError();
810
811  return BuildCXXNew(StartLoc, UseGlobal,
812                     PlacementLParen,
813                     move(PlacementArgs),
814                     PlacementRParen,
815                     TypeIdParens,
816                     AllocType,
817                     TInfo,
818                     ArraySize,
819                     ConstructorLParen,
820                     move(ConstructorArgs),
821                     ConstructorRParen,
822                     TypeContainsAuto);
823}
824
825ExprResult
826Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
827                  SourceLocation PlacementLParen,
828                  MultiExprArg PlacementArgs,
829                  SourceLocation PlacementRParen,
830                  SourceRange TypeIdParens,
831                  QualType AllocType,
832                  TypeSourceInfo *AllocTypeInfo,
833                  Expr *ArraySize,
834                  SourceLocation ConstructorLParen,
835                  MultiExprArg ConstructorArgs,
836                  SourceLocation ConstructorRParen,
837                  bool TypeMayContainAuto) {
838  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
839
840  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
841  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
842    if (ConstructorArgs.size() == 0)
843      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
844                       << AllocType << TypeRange);
845    if (ConstructorArgs.size() != 1) {
846      Expr *FirstBad = ConstructorArgs.get()[1];
847      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
848                            diag::err_auto_new_ctor_multiple_expressions)
849                       << AllocType << TypeRange);
850    }
851    QualType DeducedType;
852    if (!DeduceAutoType(AllocType, ConstructorArgs.get()[0], DeducedType))
853      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
854                       << AllocType
855                       << ConstructorArgs.get()[0]->getType()
856                       << TypeRange
857                       << ConstructorArgs.get()[0]->getSourceRange());
858
859    AllocType = DeducedType;
860    AllocTypeInfo = Context.getTrivialTypeSourceInfo(AllocType, StartLoc);
861  }
862
863  // Per C++0x [expr.new]p5, the type being constructed may be a
864  // typedef of an array type.
865  if (!ArraySize) {
866    if (const ConstantArrayType *Array
867                              = Context.getAsConstantArrayType(AllocType)) {
868      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
869                                         Context.getSizeType(),
870                                         TypeRange.getEnd());
871      AllocType = Array->getElementType();
872    }
873  }
874
875  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
876    return ExprError();
877
878  QualType ResultType = Context.getPointerType(AllocType);
879
880  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
881  //   or enumeration type with a non-negative value."
882  if (ArraySize && !ArraySize->isTypeDependent()) {
883
884    QualType SizeType = ArraySize->getType();
885
886    ExprResult ConvertedSize
887      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
888                                       PDiag(diag::err_array_size_not_integral),
889                                     PDiag(diag::err_array_size_incomplete_type)
890                                       << ArraySize->getSourceRange(),
891                               PDiag(diag::err_array_size_explicit_conversion),
892                                       PDiag(diag::note_array_size_conversion),
893                               PDiag(diag::err_array_size_ambiguous_conversion),
894                                       PDiag(diag::note_array_size_conversion),
895                          PDiag(getLangOptions().CPlusPlus0x? 0
896                                            : diag::ext_array_size_conversion));
897    if (ConvertedSize.isInvalid())
898      return ExprError();
899
900    ArraySize = ConvertedSize.take();
901    SizeType = ArraySize->getType();
902    if (!SizeType->isIntegralOrUnscopedEnumerationType())
903      return ExprError();
904
905    // Let's see if this is a constant < 0. If so, we reject it out of hand.
906    // We don't care about special rules, so we tell the machinery it's not
907    // evaluated - it gives us a result in more cases.
908    if (!ArraySize->isValueDependent()) {
909      llvm::APSInt Value;
910      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
911        if (Value < llvm::APSInt(
912                        llvm::APInt::getNullValue(Value.getBitWidth()),
913                                 Value.isUnsigned()))
914          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
915                                diag::err_typecheck_negative_array_size)
916            << ArraySize->getSourceRange());
917
918        if (!AllocType->isDependentType()) {
919          unsigned ActiveSizeBits
920            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
921          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
922            Diag(ArraySize->getSourceRange().getBegin(),
923                 diag::err_array_too_large)
924              << Value.toString(10)
925              << ArraySize->getSourceRange();
926            return ExprError();
927          }
928        }
929      } else if (TypeIdParens.isValid()) {
930        // Can't have dynamic array size when the type-id is in parentheses.
931        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
932          << ArraySize->getSourceRange()
933          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
934          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
935
936        TypeIdParens = SourceRange();
937      }
938    }
939
940    ImpCastExprToType(ArraySize, Context.getSizeType(),
941                      CK_IntegralCast);
942  }
943
944  FunctionDecl *OperatorNew = 0;
945  FunctionDecl *OperatorDelete = 0;
946  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
947  unsigned NumPlaceArgs = PlacementArgs.size();
948
949  if (!AllocType->isDependentType() &&
950      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
951      FindAllocationFunctions(StartLoc,
952                              SourceRange(PlacementLParen, PlacementRParen),
953                              UseGlobal, AllocType, ArraySize, PlaceArgs,
954                              NumPlaceArgs, OperatorNew, OperatorDelete))
955    return ExprError();
956
957  // If this is an array allocation, compute whether the usual array
958  // deallocation function for the type has a size_t parameter.
959  bool UsualArrayDeleteWantsSize = false;
960  if (ArraySize && !AllocType->isDependentType())
961    UsualArrayDeleteWantsSize
962      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
963
964  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
965  if (OperatorNew) {
966    // Add default arguments, if any.
967    const FunctionProtoType *Proto =
968      OperatorNew->getType()->getAs<FunctionProtoType>();
969    VariadicCallType CallType =
970      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
971
972    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
973                               Proto, 1, PlaceArgs, NumPlaceArgs,
974                               AllPlaceArgs, CallType))
975      return ExprError();
976
977    NumPlaceArgs = AllPlaceArgs.size();
978    if (NumPlaceArgs > 0)
979      PlaceArgs = &AllPlaceArgs[0];
980  }
981
982  bool Init = ConstructorLParen.isValid();
983  // --- Choosing a constructor ---
984  CXXConstructorDecl *Constructor = 0;
985  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
986  unsigned NumConsArgs = ConstructorArgs.size();
987  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
988
989  // Array 'new' can't have any initializers.
990  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
991    SourceRange InitRange(ConsArgs[0]->getLocStart(),
992                          ConsArgs[NumConsArgs - 1]->getLocEnd());
993
994    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
995    return ExprError();
996  }
997
998  if (!AllocType->isDependentType() &&
999      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
1000    // C++0x [expr.new]p15:
1001    //   A new-expression that creates an object of type T initializes that
1002    //   object as follows:
1003    InitializationKind Kind
1004    //     - If the new-initializer is omitted, the object is default-
1005    //       initialized (8.5); if no initialization is performed,
1006    //       the object has indeterminate value
1007      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1008    //     - Otherwise, the new-initializer is interpreted according to the
1009    //       initialization rules of 8.5 for direct-initialization.
1010             : InitializationKind::CreateDirect(TypeRange.getBegin(),
1011                                                ConstructorLParen,
1012                                                ConstructorRParen);
1013
1014    InitializedEntity Entity
1015      = InitializedEntity::InitializeNew(StartLoc, AllocType);
1016    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1017    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1018                                                move(ConstructorArgs));
1019    if (FullInit.isInvalid())
1020      return ExprError();
1021
1022    // FullInit is our initializer; walk through it to determine if it's a
1023    // constructor call, which CXXNewExpr handles directly.
1024    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1025      if (CXXBindTemporaryExpr *Binder
1026            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1027        FullInitExpr = Binder->getSubExpr();
1028      if (CXXConstructExpr *Construct
1029                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1030        Constructor = Construct->getConstructor();
1031        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1032                                         AEnd = Construct->arg_end();
1033             A != AEnd; ++A)
1034          ConvertedConstructorArgs.push_back(*A);
1035      } else {
1036        // Take the converted initializer.
1037        ConvertedConstructorArgs.push_back(FullInit.release());
1038      }
1039    } else {
1040      // No initialization required.
1041    }
1042
1043    // Take the converted arguments and use them for the new expression.
1044    NumConsArgs = ConvertedConstructorArgs.size();
1045    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1046  }
1047
1048  // Mark the new and delete operators as referenced.
1049  if (OperatorNew)
1050    MarkDeclarationReferenced(StartLoc, OperatorNew);
1051  if (OperatorDelete)
1052    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1053
1054  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
1055
1056  PlacementArgs.release();
1057  ConstructorArgs.release();
1058
1059  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1060                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1061                                        ArraySize, Constructor, Init,
1062                                        ConsArgs, NumConsArgs, OperatorDelete,
1063                                        UsualArrayDeleteWantsSize,
1064                                        ResultType, AllocTypeInfo,
1065                                        StartLoc,
1066                                        Init ? ConstructorRParen :
1067                                               TypeRange.getEnd(),
1068                                        ConstructorLParen, ConstructorRParen));
1069}
1070
1071/// CheckAllocatedType - Checks that a type is suitable as the allocated type
1072/// in a new-expression.
1073/// dimension off and stores the size expression in ArraySize.
1074bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1075                              SourceRange R) {
1076  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1077  //   abstract class type or array thereof.
1078  if (AllocType->isFunctionType())
1079    return Diag(Loc, diag::err_bad_new_type)
1080      << AllocType << 0 << R;
1081  else if (AllocType->isReferenceType())
1082    return Diag(Loc, diag::err_bad_new_type)
1083      << AllocType << 1 << R;
1084  else if (!AllocType->isDependentType() &&
1085           RequireCompleteType(Loc, AllocType,
1086                               PDiag(diag::err_new_incomplete_type)
1087                                 << R))
1088    return true;
1089  else if (RequireNonAbstractType(Loc, AllocType,
1090                                  diag::err_allocation_of_abstract_type))
1091    return true;
1092  else if (AllocType->isVariablyModifiedType())
1093    return Diag(Loc, diag::err_variably_modified_new_type)
1094             << AllocType;
1095
1096  return false;
1097}
1098
1099/// \brief Determine whether the given function is a non-placement
1100/// deallocation function.
1101static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1102  if (FD->isInvalidDecl())
1103    return false;
1104
1105  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1106    return Method->isUsualDeallocationFunction();
1107
1108  return ((FD->getOverloadedOperator() == OO_Delete ||
1109           FD->getOverloadedOperator() == OO_Array_Delete) &&
1110          FD->getNumParams() == 1);
1111}
1112
1113/// FindAllocationFunctions - Finds the overloads of operator new and delete
1114/// that are appropriate for the allocation.
1115bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1116                                   bool UseGlobal, QualType AllocType,
1117                                   bool IsArray, Expr **PlaceArgs,
1118                                   unsigned NumPlaceArgs,
1119                                   FunctionDecl *&OperatorNew,
1120                                   FunctionDecl *&OperatorDelete) {
1121  // --- Choosing an allocation function ---
1122  // C++ 5.3.4p8 - 14 & 18
1123  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1124  //   in the scope of the allocated class.
1125  // 2) If an array size is given, look for operator new[], else look for
1126  //   operator new.
1127  // 3) The first argument is always size_t. Append the arguments from the
1128  //   placement form.
1129
1130  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1131  // We don't care about the actual value of this argument.
1132  // FIXME: Should the Sema create the expression and embed it in the syntax
1133  // tree? Or should the consumer just recalculate the value?
1134  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1135                      Context.Target.getPointerWidth(0)),
1136                      Context.getSizeType(),
1137                      SourceLocation());
1138  AllocArgs[0] = &Size;
1139  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1140
1141  // C++ [expr.new]p8:
1142  //   If the allocated type is a non-array type, the allocation
1143  //   function's name is operator new and the deallocation function's
1144  //   name is operator delete. If the allocated type is an array
1145  //   type, the allocation function's name is operator new[] and the
1146  //   deallocation function's name is operator delete[].
1147  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1148                                        IsArray ? OO_Array_New : OO_New);
1149  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1150                                        IsArray ? OO_Array_Delete : OO_Delete);
1151
1152  QualType AllocElemType = Context.getBaseElementType(AllocType);
1153
1154  if (AllocElemType->isRecordType() && !UseGlobal) {
1155    CXXRecordDecl *Record
1156      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1157    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1158                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1159                          OperatorNew))
1160      return true;
1161  }
1162  if (!OperatorNew) {
1163    // Didn't find a member overload. Look for a global one.
1164    DeclareGlobalNewDelete();
1165    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1166    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1167                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1168                          OperatorNew))
1169      return true;
1170  }
1171
1172  // We don't need an operator delete if we're running under
1173  // -fno-exceptions.
1174  if (!getLangOptions().Exceptions) {
1175    OperatorDelete = 0;
1176    return false;
1177  }
1178
1179  // FindAllocationOverload can change the passed in arguments, so we need to
1180  // copy them back.
1181  if (NumPlaceArgs > 0)
1182    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1183
1184  // C++ [expr.new]p19:
1185  //
1186  //   If the new-expression begins with a unary :: operator, the
1187  //   deallocation function's name is looked up in the global
1188  //   scope. Otherwise, if the allocated type is a class type T or an
1189  //   array thereof, the deallocation function's name is looked up in
1190  //   the scope of T. If this lookup fails to find the name, or if
1191  //   the allocated type is not a class type or array thereof, the
1192  //   deallocation function's name is looked up in the global scope.
1193  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1194  if (AllocElemType->isRecordType() && !UseGlobal) {
1195    CXXRecordDecl *RD
1196      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1197    LookupQualifiedName(FoundDelete, RD);
1198  }
1199  if (FoundDelete.isAmbiguous())
1200    return true; // FIXME: clean up expressions?
1201
1202  if (FoundDelete.empty()) {
1203    DeclareGlobalNewDelete();
1204    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1205  }
1206
1207  FoundDelete.suppressDiagnostics();
1208
1209  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1210
1211  // Whether we're looking for a placement operator delete is dictated
1212  // by whether we selected a placement operator new, not by whether
1213  // we had explicit placement arguments.  This matters for things like
1214  //   struct A { void *operator new(size_t, int = 0); ... };
1215  //   A *a = new A()
1216  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1217
1218  if (isPlacementNew) {
1219    // C++ [expr.new]p20:
1220    //   A declaration of a placement deallocation function matches the
1221    //   declaration of a placement allocation function if it has the
1222    //   same number of parameters and, after parameter transformations
1223    //   (8.3.5), all parameter types except the first are
1224    //   identical. [...]
1225    //
1226    // To perform this comparison, we compute the function type that
1227    // the deallocation function should have, and use that type both
1228    // for template argument deduction and for comparison purposes.
1229    //
1230    // FIXME: this comparison should ignore CC and the like.
1231    QualType ExpectedFunctionType;
1232    {
1233      const FunctionProtoType *Proto
1234        = OperatorNew->getType()->getAs<FunctionProtoType>();
1235
1236      llvm::SmallVector<QualType, 4> ArgTypes;
1237      ArgTypes.push_back(Context.VoidPtrTy);
1238      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1239        ArgTypes.push_back(Proto->getArgType(I));
1240
1241      FunctionProtoType::ExtProtoInfo EPI;
1242      EPI.Variadic = Proto->isVariadic();
1243
1244      ExpectedFunctionType
1245        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1246                                  ArgTypes.size(), EPI);
1247    }
1248
1249    for (LookupResult::iterator D = FoundDelete.begin(),
1250                             DEnd = FoundDelete.end();
1251         D != DEnd; ++D) {
1252      FunctionDecl *Fn = 0;
1253      if (FunctionTemplateDecl *FnTmpl
1254            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1255        // Perform template argument deduction to try to match the
1256        // expected function type.
1257        TemplateDeductionInfo Info(Context, StartLoc);
1258        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1259          continue;
1260      } else
1261        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1262
1263      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1264        Matches.push_back(std::make_pair(D.getPair(), Fn));
1265    }
1266  } else {
1267    // C++ [expr.new]p20:
1268    //   [...] Any non-placement deallocation function matches a
1269    //   non-placement allocation function. [...]
1270    for (LookupResult::iterator D = FoundDelete.begin(),
1271                             DEnd = FoundDelete.end();
1272         D != DEnd; ++D) {
1273      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1274        if (isNonPlacementDeallocationFunction(Fn))
1275          Matches.push_back(std::make_pair(D.getPair(), Fn));
1276    }
1277  }
1278
1279  // C++ [expr.new]p20:
1280  //   [...] If the lookup finds a single matching deallocation
1281  //   function, that function will be called; otherwise, no
1282  //   deallocation function will be called.
1283  if (Matches.size() == 1) {
1284    OperatorDelete = Matches[0].second;
1285
1286    // C++0x [expr.new]p20:
1287    //   If the lookup finds the two-parameter form of a usual
1288    //   deallocation function (3.7.4.2) and that function, considered
1289    //   as a placement deallocation function, would have been
1290    //   selected as a match for the allocation function, the program
1291    //   is ill-formed.
1292    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1293        isNonPlacementDeallocationFunction(OperatorDelete)) {
1294      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1295        << SourceRange(PlaceArgs[0]->getLocStart(),
1296                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1297      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1298        << DeleteName;
1299    } else {
1300      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1301                            Matches[0].first);
1302    }
1303  }
1304
1305  return false;
1306}
1307
1308/// FindAllocationOverload - Find an fitting overload for the allocation
1309/// function in the specified scope.
1310bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1311                                  DeclarationName Name, Expr** Args,
1312                                  unsigned NumArgs, DeclContext *Ctx,
1313                                  bool AllowMissing, FunctionDecl *&Operator) {
1314  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1315  LookupQualifiedName(R, Ctx);
1316  if (R.empty()) {
1317    if (AllowMissing)
1318      return false;
1319    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1320      << Name << Range;
1321  }
1322
1323  if (R.isAmbiguous())
1324    return true;
1325
1326  R.suppressDiagnostics();
1327
1328  OverloadCandidateSet Candidates(StartLoc);
1329  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1330       Alloc != AllocEnd; ++Alloc) {
1331    // Even member operator new/delete are implicitly treated as
1332    // static, so don't use AddMemberCandidate.
1333    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1334
1335    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1336      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1337                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1338                                   Candidates,
1339                                   /*SuppressUserConversions=*/false);
1340      continue;
1341    }
1342
1343    FunctionDecl *Fn = cast<FunctionDecl>(D);
1344    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1345                         /*SuppressUserConversions=*/false);
1346  }
1347
1348  // Do the resolution.
1349  OverloadCandidateSet::iterator Best;
1350  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1351  case OR_Success: {
1352    // Got one!
1353    FunctionDecl *FnDecl = Best->Function;
1354    MarkDeclarationReferenced(StartLoc, FnDecl);
1355    // The first argument is size_t, and the first parameter must be size_t,
1356    // too. This is checked on declaration and can be assumed. (It can't be
1357    // asserted on, though, since invalid decls are left in there.)
1358    // Watch out for variadic allocator function.
1359    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1360    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1361      ExprResult Result
1362        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1363                                                       Context,
1364                                                       FnDecl->getParamDecl(i)),
1365                                    SourceLocation(),
1366                                    Owned(Args[i]));
1367      if (Result.isInvalid())
1368        return true;
1369
1370      Args[i] = Result.takeAs<Expr>();
1371    }
1372    Operator = FnDecl;
1373    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1374    return false;
1375  }
1376
1377  case OR_No_Viable_Function:
1378    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1379      << Name << Range;
1380    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1381    return true;
1382
1383  case OR_Ambiguous:
1384    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1385      << Name << Range;
1386    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1387    return true;
1388
1389  case OR_Deleted:
1390    Diag(StartLoc, diag::err_ovl_deleted_call)
1391      << Best->Function->isDeleted()
1392      << Name
1393      << Best->Function->getMessageUnavailableAttr(
1394             !Best->Function->isDeleted())
1395      << Range;
1396    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1397    return true;
1398  }
1399  assert(false && "Unreachable, bad result from BestViableFunction");
1400  return true;
1401}
1402
1403
1404/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1405/// delete. These are:
1406/// @code
1407///   void* operator new(std::size_t) throw(std::bad_alloc);
1408///   void* operator new[](std::size_t) throw(std::bad_alloc);
1409///   void operator delete(void *) throw();
1410///   void operator delete[](void *) throw();
1411/// @endcode
1412/// Note that the placement and nothrow forms of new are *not* implicitly
1413/// declared. Their use requires including \<new\>.
1414void Sema::DeclareGlobalNewDelete() {
1415  if (GlobalNewDeleteDeclared)
1416    return;
1417
1418  // C++ [basic.std.dynamic]p2:
1419  //   [...] The following allocation and deallocation functions (18.4) are
1420  //   implicitly declared in global scope in each translation unit of a
1421  //   program
1422  //
1423  //     void* operator new(std::size_t) throw(std::bad_alloc);
1424  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1425  //     void  operator delete(void*) throw();
1426  //     void  operator delete[](void*) throw();
1427  //
1428  //   These implicit declarations introduce only the function names operator
1429  //   new, operator new[], operator delete, operator delete[].
1430  //
1431  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1432  // "std" or "bad_alloc" as necessary to form the exception specification.
1433  // However, we do not make these implicit declarations visible to name
1434  // lookup.
1435  if (!StdBadAlloc) {
1436    // The "std::bad_alloc" class has not yet been declared, so build it
1437    // implicitly.
1438    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1439                                        getOrCreateStdNamespace(),
1440                                        SourceLocation(),
1441                                      &PP.getIdentifierTable().get("bad_alloc"),
1442                                        SourceLocation(), 0);
1443    getStdBadAlloc()->setImplicit(true);
1444  }
1445
1446  GlobalNewDeleteDeclared = true;
1447
1448  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1449  QualType SizeT = Context.getSizeType();
1450  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1451
1452  DeclareGlobalAllocationFunction(
1453      Context.DeclarationNames.getCXXOperatorName(OO_New),
1454      VoidPtr, SizeT, AssumeSaneOperatorNew);
1455  DeclareGlobalAllocationFunction(
1456      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1457      VoidPtr, SizeT, AssumeSaneOperatorNew);
1458  DeclareGlobalAllocationFunction(
1459      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1460      Context.VoidTy, VoidPtr);
1461  DeclareGlobalAllocationFunction(
1462      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1463      Context.VoidTy, VoidPtr);
1464}
1465
1466/// DeclareGlobalAllocationFunction - Declares a single implicit global
1467/// allocation function if it doesn't already exist.
1468void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1469                                           QualType Return, QualType Argument,
1470                                           bool AddMallocAttr) {
1471  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1472
1473  // Check if this function is already declared.
1474  {
1475    DeclContext::lookup_iterator Alloc, AllocEnd;
1476    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1477         Alloc != AllocEnd; ++Alloc) {
1478      // Only look at non-template functions, as it is the predefined,
1479      // non-templated allocation function we are trying to declare here.
1480      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1481        QualType InitialParamType =
1482          Context.getCanonicalType(
1483            Func->getParamDecl(0)->getType().getUnqualifiedType());
1484        // FIXME: Do we need to check for default arguments here?
1485        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1486          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1487            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1488          return;
1489        }
1490      }
1491    }
1492  }
1493
1494  QualType BadAllocType;
1495  bool HasBadAllocExceptionSpec
1496    = (Name.getCXXOverloadedOperator() == OO_New ||
1497       Name.getCXXOverloadedOperator() == OO_Array_New);
1498  if (HasBadAllocExceptionSpec) {
1499    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1500    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1501  }
1502
1503  FunctionProtoType::ExtProtoInfo EPI;
1504  EPI.ExceptionSpecType = EST_Dynamic;
1505  if (HasBadAllocExceptionSpec) {
1506    EPI.NumExceptions = 1;
1507    EPI.Exceptions = &BadAllocType;
1508  }
1509
1510  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1511  FunctionDecl *Alloc =
1512    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
1513                         FnType, /*TInfo=*/0, SC_None,
1514                         SC_None, false, true);
1515  Alloc->setImplicit();
1516
1517  if (AddMallocAttr)
1518    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1519
1520  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1521                                           0, Argument, /*TInfo=*/0,
1522                                           SC_None,
1523                                           SC_None, 0);
1524  Alloc->setParams(&Param, 1);
1525
1526  // FIXME: Also add this declaration to the IdentifierResolver, but
1527  // make sure it is at the end of the chain to coincide with the
1528  // global scope.
1529  Context.getTranslationUnitDecl()->addDecl(Alloc);
1530}
1531
1532bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1533                                    DeclarationName Name,
1534                                    FunctionDecl* &Operator) {
1535  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1536  // Try to find operator delete/operator delete[] in class scope.
1537  LookupQualifiedName(Found, RD);
1538
1539  if (Found.isAmbiguous())
1540    return true;
1541
1542  Found.suppressDiagnostics();
1543
1544  llvm::SmallVector<DeclAccessPair,4> Matches;
1545  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1546       F != FEnd; ++F) {
1547    NamedDecl *ND = (*F)->getUnderlyingDecl();
1548
1549    // Ignore template operator delete members from the check for a usual
1550    // deallocation function.
1551    if (isa<FunctionTemplateDecl>(ND))
1552      continue;
1553
1554    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1555      Matches.push_back(F.getPair());
1556  }
1557
1558  // There's exactly one suitable operator;  pick it.
1559  if (Matches.size() == 1) {
1560    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1561    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1562                          Matches[0]);
1563    return false;
1564
1565  // We found multiple suitable operators;  complain about the ambiguity.
1566  } else if (!Matches.empty()) {
1567    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1568      << Name << RD;
1569
1570    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1571           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1572      Diag((*F)->getUnderlyingDecl()->getLocation(),
1573           diag::note_member_declared_here) << Name;
1574    return true;
1575  }
1576
1577  // We did find operator delete/operator delete[] declarations, but
1578  // none of them were suitable.
1579  if (!Found.empty()) {
1580    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1581      << Name << RD;
1582
1583    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1584         F != FEnd; ++F)
1585      Diag((*F)->getUnderlyingDecl()->getLocation(),
1586           diag::note_member_declared_here) << Name;
1587
1588    return true;
1589  }
1590
1591  // Look for a global declaration.
1592  DeclareGlobalNewDelete();
1593  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1594
1595  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1596  Expr* DeallocArgs[1];
1597  DeallocArgs[0] = &Null;
1598  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1599                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1600                             Operator))
1601    return true;
1602
1603  assert(Operator && "Did not find a deallocation function!");
1604  return false;
1605}
1606
1607/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1608/// @code ::delete ptr; @endcode
1609/// or
1610/// @code delete [] ptr; @endcode
1611ExprResult
1612Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1613                     bool ArrayForm, Expr *Ex) {
1614  // C++ [expr.delete]p1:
1615  //   The operand shall have a pointer type, or a class type having a single
1616  //   conversion function to a pointer type. The result has type void.
1617  //
1618  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1619
1620  FunctionDecl *OperatorDelete = 0;
1621  bool ArrayFormAsWritten = ArrayForm;
1622  bool UsualArrayDeleteWantsSize = false;
1623
1624  if (!Ex->isTypeDependent()) {
1625    QualType Type = Ex->getType();
1626
1627    if (const RecordType *Record = Type->getAs<RecordType>()) {
1628      if (RequireCompleteType(StartLoc, Type,
1629                              PDiag(diag::err_delete_incomplete_class_type)))
1630        return ExprError();
1631
1632      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1633
1634      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1635      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1636      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1637             E = Conversions->end(); I != E; ++I) {
1638        NamedDecl *D = I.getDecl();
1639        if (isa<UsingShadowDecl>(D))
1640          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1641
1642        // Skip over templated conversion functions; they aren't considered.
1643        if (isa<FunctionTemplateDecl>(D))
1644          continue;
1645
1646        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1647
1648        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1649        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1650          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1651            ObjectPtrConversions.push_back(Conv);
1652      }
1653      if (ObjectPtrConversions.size() == 1) {
1654        // We have a single conversion to a pointer-to-object type. Perform
1655        // that conversion.
1656        // TODO: don't redo the conversion calculation.
1657        if (!PerformImplicitConversion(Ex,
1658                            ObjectPtrConversions.front()->getConversionType(),
1659                                      AA_Converting)) {
1660          Type = Ex->getType();
1661        }
1662      }
1663      else if (ObjectPtrConversions.size() > 1) {
1664        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1665              << Type << Ex->getSourceRange();
1666        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1667          NoteOverloadCandidate(ObjectPtrConversions[i]);
1668        return ExprError();
1669      }
1670    }
1671
1672    if (!Type->isPointerType())
1673      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1674        << Type << Ex->getSourceRange());
1675
1676    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1677    if (Pointee->isVoidType() && !isSFINAEContext()) {
1678      // The C++ standard bans deleting a pointer to a non-object type, which
1679      // effectively bans deletion of "void*". However, most compilers support
1680      // this, so we treat it as a warning unless we're in a SFINAE context.
1681      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1682        << Type << Ex->getSourceRange();
1683    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1684      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1685        << Type << Ex->getSourceRange());
1686    else if (!Pointee->isDependentType() &&
1687             RequireCompleteType(StartLoc, Pointee,
1688                                 PDiag(diag::warn_delete_incomplete)
1689                                   << Ex->getSourceRange()))
1690      return ExprError();
1691
1692    // C++ [expr.delete]p2:
1693    //   [Note: a pointer to a const type can be the operand of a
1694    //   delete-expression; it is not necessary to cast away the constness
1695    //   (5.2.11) of the pointer expression before it is used as the operand
1696    //   of the delete-expression. ]
1697    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1698                      CK_NoOp);
1699
1700    if (Pointee->isArrayType() && !ArrayForm) {
1701      Diag(StartLoc, diag::warn_delete_array_type)
1702          << Type << Ex->getSourceRange()
1703          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1704      ArrayForm = true;
1705    }
1706
1707    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1708                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1709
1710    QualType PointeeElem = Context.getBaseElementType(Pointee);
1711    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1712      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1713
1714      if (!UseGlobal &&
1715          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1716        return ExprError();
1717
1718      // If we're allocating an array of records, check whether the
1719      // usual operator delete[] has a size_t parameter.
1720      if (ArrayForm) {
1721        // If the user specifically asked to use the global allocator,
1722        // we'll need to do the lookup into the class.
1723        if (UseGlobal)
1724          UsualArrayDeleteWantsSize =
1725            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1726
1727        // Otherwise, the usual operator delete[] should be the
1728        // function we just found.
1729        else if (isa<CXXMethodDecl>(OperatorDelete))
1730          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1731      }
1732
1733      if (!RD->hasTrivialDestructor())
1734        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1735          MarkDeclarationReferenced(StartLoc,
1736                                    const_cast<CXXDestructorDecl*>(Dtor));
1737          DiagnoseUseOfDecl(Dtor, StartLoc);
1738        }
1739    }
1740
1741    if (!OperatorDelete) {
1742      // Look for a global declaration.
1743      DeclareGlobalNewDelete();
1744      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1745      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1746                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1747                                 OperatorDelete))
1748        return ExprError();
1749    }
1750
1751    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1752
1753    // Check access and ambiguity of operator delete and destructor.
1754    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1755      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1756      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1757          CheckDestructorAccess(Ex->getExprLoc(), Dtor,
1758                      PDiag(diag::err_access_dtor) << PointeeElem);
1759      }
1760    }
1761
1762  }
1763
1764  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1765                                           ArrayFormAsWritten,
1766                                           UsualArrayDeleteWantsSize,
1767                                           OperatorDelete, Ex, StartLoc));
1768}
1769
1770/// \brief Check the use of the given variable as a C++ condition in an if,
1771/// while, do-while, or switch statement.
1772ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1773                                        SourceLocation StmtLoc,
1774                                        bool ConvertToBoolean) {
1775  QualType T = ConditionVar->getType();
1776
1777  // C++ [stmt.select]p2:
1778  //   The declarator shall not specify a function or an array.
1779  if (T->isFunctionType())
1780    return ExprError(Diag(ConditionVar->getLocation(),
1781                          diag::err_invalid_use_of_function_type)
1782                       << ConditionVar->getSourceRange());
1783  else if (T->isArrayType())
1784    return ExprError(Diag(ConditionVar->getLocation(),
1785                          diag::err_invalid_use_of_array_type)
1786                     << ConditionVar->getSourceRange());
1787
1788  Expr *Condition = DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
1789                                        ConditionVar,
1790                                        ConditionVar->getLocation(),
1791                            ConditionVar->getType().getNonReferenceType(),
1792                                        VK_LValue);
1793  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1794    return ExprError();
1795
1796  return Owned(Condition);
1797}
1798
1799/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1800bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1801  // C++ 6.4p4:
1802  // The value of a condition that is an initialized declaration in a statement
1803  // other than a switch statement is the value of the declared variable
1804  // implicitly converted to type bool. If that conversion is ill-formed, the
1805  // program is ill-formed.
1806  // The value of a condition that is an expression is the value of the
1807  // expression, implicitly converted to bool.
1808  //
1809  return PerformContextuallyConvertToBool(CondExpr);
1810}
1811
1812/// Helper function to determine whether this is the (deprecated) C++
1813/// conversion from a string literal to a pointer to non-const char or
1814/// non-const wchar_t (for narrow and wide string literals,
1815/// respectively).
1816bool
1817Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1818  // Look inside the implicit cast, if it exists.
1819  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1820    From = Cast->getSubExpr();
1821
1822  // A string literal (2.13.4) that is not a wide string literal can
1823  // be converted to an rvalue of type "pointer to char"; a wide
1824  // string literal can be converted to an rvalue of type "pointer
1825  // to wchar_t" (C++ 4.2p2).
1826  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1827    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1828      if (const BuiltinType *ToPointeeType
1829          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1830        // This conversion is considered only when there is an
1831        // explicit appropriate pointer target type (C++ 4.2p2).
1832        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1833            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1834             (!StrLit->isWide() &&
1835              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1836               ToPointeeType->getKind() == BuiltinType::Char_S))))
1837          return true;
1838      }
1839
1840  return false;
1841}
1842
1843static ExprResult BuildCXXCastArgument(Sema &S,
1844                                       SourceLocation CastLoc,
1845                                       QualType Ty,
1846                                       CastKind Kind,
1847                                       CXXMethodDecl *Method,
1848                                       NamedDecl *FoundDecl,
1849                                       Expr *From) {
1850  switch (Kind) {
1851  default: assert(0 && "Unhandled cast kind!");
1852  case CK_ConstructorConversion: {
1853    ASTOwningVector<Expr*> ConstructorArgs(S);
1854
1855    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1856                                  MultiExprArg(&From, 1),
1857                                  CastLoc, ConstructorArgs))
1858      return ExprError();
1859
1860    ExprResult Result =
1861    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1862                            move_arg(ConstructorArgs),
1863                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1864                            SourceRange());
1865    if (Result.isInvalid())
1866      return ExprError();
1867
1868    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1869  }
1870
1871  case CK_UserDefinedConversion: {
1872    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1873
1874    // Create an implicit call expr that calls it.
1875    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
1876    if (Result.isInvalid())
1877      return ExprError();
1878
1879    return S.MaybeBindToTemporary(Result.get());
1880  }
1881  }
1882}
1883
1884/// PerformImplicitConversion - Perform an implicit conversion of the
1885/// expression From to the type ToType using the pre-computed implicit
1886/// conversion sequence ICS. Returns true if there was an error, false
1887/// otherwise. The expression From is replaced with the converted
1888/// expression. Action is the kind of conversion we're performing,
1889/// used in the error message.
1890bool
1891Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1892                                const ImplicitConversionSequence &ICS,
1893                                AssignmentAction Action, bool CStyle) {
1894  switch (ICS.getKind()) {
1895  case ImplicitConversionSequence::StandardConversion:
1896    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1897                                  CStyle))
1898      return true;
1899    break;
1900
1901  case ImplicitConversionSequence::UserDefinedConversion: {
1902
1903      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1904      CastKind CastKind;
1905      QualType BeforeToType;
1906      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1907        CastKind = CK_UserDefinedConversion;
1908
1909        // If the user-defined conversion is specified by a conversion function,
1910        // the initial standard conversion sequence converts the source type to
1911        // the implicit object parameter of the conversion function.
1912        BeforeToType = Context.getTagDeclType(Conv->getParent());
1913      } else {
1914        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
1915        CastKind = CK_ConstructorConversion;
1916        // Do no conversion if dealing with ... for the first conversion.
1917        if (!ICS.UserDefined.EllipsisConversion) {
1918          // If the user-defined conversion is specified by a constructor, the
1919          // initial standard conversion sequence converts the source type to the
1920          // type required by the argument of the constructor
1921          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1922        }
1923      }
1924      // Watch out for elipsis conversion.
1925      if (!ICS.UserDefined.EllipsisConversion) {
1926        if (PerformImplicitConversion(From, BeforeToType,
1927                                      ICS.UserDefined.Before, AA_Converting,
1928                                      CStyle))
1929          return true;
1930      }
1931
1932      ExprResult CastArg
1933        = BuildCXXCastArgument(*this,
1934                               From->getLocStart(),
1935                               ToType.getNonReferenceType(),
1936                               CastKind, cast<CXXMethodDecl>(FD),
1937                               ICS.UserDefined.FoundConversionFunction,
1938                               From);
1939
1940      if (CastArg.isInvalid())
1941        return true;
1942
1943      From = CastArg.takeAs<Expr>();
1944
1945      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1946                                       AA_Converting, CStyle);
1947  }
1948
1949  case ImplicitConversionSequence::AmbiguousConversion:
1950    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1951                          PDiag(diag::err_typecheck_ambiguous_condition)
1952                            << From->getSourceRange());
1953     return true;
1954
1955  case ImplicitConversionSequence::EllipsisConversion:
1956    assert(false && "Cannot perform an ellipsis conversion");
1957    return false;
1958
1959  case ImplicitConversionSequence::BadConversion:
1960    return true;
1961  }
1962
1963  // Everything went well.
1964  return false;
1965}
1966
1967/// PerformImplicitConversion - Perform an implicit conversion of the
1968/// expression From to the type ToType by following the standard
1969/// conversion sequence SCS. Returns true if there was an error, false
1970/// otherwise. The expression From is replaced with the converted
1971/// expression. Flavor is the context in which we're performing this
1972/// conversion, for use in error messages.
1973bool
1974Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1975                                const StandardConversionSequence& SCS,
1976                                AssignmentAction Action, bool CStyle) {
1977  // Overall FIXME: we are recomputing too many types here and doing far too
1978  // much extra work. What this means is that we need to keep track of more
1979  // information that is computed when we try the implicit conversion initially,
1980  // so that we don't need to recompute anything here.
1981  QualType FromType = From->getType();
1982
1983  if (SCS.CopyConstructor) {
1984    // FIXME: When can ToType be a reference type?
1985    assert(!ToType->isReferenceType());
1986    if (SCS.Second == ICK_Derived_To_Base) {
1987      ASTOwningVector<Expr*> ConstructorArgs(*this);
1988      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1989                                  MultiExprArg(*this, &From, 1),
1990                                  /*FIXME:ConstructLoc*/SourceLocation(),
1991                                  ConstructorArgs))
1992        return true;
1993      ExprResult FromResult =
1994        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1995                              ToType, SCS.CopyConstructor,
1996                              move_arg(ConstructorArgs),
1997                              /*ZeroInit*/ false,
1998                              CXXConstructExpr::CK_Complete,
1999                              SourceRange());
2000      if (FromResult.isInvalid())
2001        return true;
2002      From = FromResult.takeAs<Expr>();
2003      return false;
2004    }
2005    ExprResult FromResult =
2006      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2007                            ToType, SCS.CopyConstructor,
2008                            MultiExprArg(*this, &From, 1),
2009                            /*ZeroInit*/ false,
2010                            CXXConstructExpr::CK_Complete,
2011                            SourceRange());
2012
2013    if (FromResult.isInvalid())
2014      return true;
2015
2016    From = FromResult.takeAs<Expr>();
2017    return false;
2018  }
2019
2020  // Resolve overloaded function references.
2021  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2022    DeclAccessPair Found;
2023    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2024                                                          true, Found);
2025    if (!Fn)
2026      return true;
2027
2028    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2029      return true;
2030
2031    From = FixOverloadedFunctionReference(From, Found, Fn);
2032    FromType = From->getType();
2033  }
2034
2035  // Perform the first implicit conversion.
2036  switch (SCS.First) {
2037  case ICK_Identity:
2038    // Nothing to do.
2039    break;
2040
2041  case ICK_Lvalue_To_Rvalue:
2042    // Should this get its own ICK?
2043    if (From->getObjectKind() == OK_ObjCProperty) {
2044      ConvertPropertyForRValue(From);
2045      if (!From->isGLValue()) break;
2046    }
2047
2048    // Check for trivial buffer overflows.
2049    CheckArrayAccess(From);
2050
2051    FromType = FromType.getUnqualifiedType();
2052    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2053                                    From, 0, VK_RValue);
2054    break;
2055
2056  case ICK_Array_To_Pointer:
2057    FromType = Context.getArrayDecayedType(FromType);
2058    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
2059    break;
2060
2061  case ICK_Function_To_Pointer:
2062    FromType = Context.getPointerType(FromType);
2063    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
2064    break;
2065
2066  default:
2067    assert(false && "Improper first standard conversion");
2068    break;
2069  }
2070
2071  // Perform the second implicit conversion
2072  switch (SCS.Second) {
2073  case ICK_Identity:
2074    // If both sides are functions (or pointers/references to them), there could
2075    // be incompatible exception declarations.
2076    if (CheckExceptionSpecCompatibility(From, ToType))
2077      return true;
2078    // Nothing else to do.
2079    break;
2080
2081  case ICK_NoReturn_Adjustment:
2082    // If both sides are functions (or pointers/references to them), there could
2083    // be incompatible exception declarations.
2084    if (CheckExceptionSpecCompatibility(From, ToType))
2085      return true;
2086
2087    ImpCastExprToType(From, ToType, CK_NoOp);
2088    break;
2089
2090  case ICK_Integral_Promotion:
2091  case ICK_Integral_Conversion:
2092    ImpCastExprToType(From, ToType, CK_IntegralCast);
2093    break;
2094
2095  case ICK_Floating_Promotion:
2096  case ICK_Floating_Conversion:
2097    ImpCastExprToType(From, ToType, CK_FloatingCast);
2098    break;
2099
2100  case ICK_Complex_Promotion:
2101  case ICK_Complex_Conversion: {
2102    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2103    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2104    CastKind CK;
2105    if (FromEl->isRealFloatingType()) {
2106      if (ToEl->isRealFloatingType())
2107        CK = CK_FloatingComplexCast;
2108      else
2109        CK = CK_FloatingComplexToIntegralComplex;
2110    } else if (ToEl->isRealFloatingType()) {
2111      CK = CK_IntegralComplexToFloatingComplex;
2112    } else {
2113      CK = CK_IntegralComplexCast;
2114    }
2115    ImpCastExprToType(From, ToType, CK);
2116    break;
2117  }
2118
2119  case ICK_Floating_Integral:
2120    if (ToType->isRealFloatingType())
2121      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
2122    else
2123      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
2124    break;
2125
2126  case ICK_Compatible_Conversion:
2127    ImpCastExprToType(From, ToType, CK_NoOp);
2128    break;
2129
2130  case ICK_Pointer_Conversion: {
2131    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2132      // Diagnose incompatible Objective-C conversions
2133      Diag(From->getSourceRange().getBegin(),
2134           diag::ext_typecheck_convert_incompatible_pointer)
2135        << From->getType() << ToType << Action
2136        << From->getSourceRange();
2137    }
2138
2139    CastKind Kind = CK_Invalid;
2140    CXXCastPath BasePath;
2141    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2142      return true;
2143    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2144    break;
2145  }
2146
2147  case ICK_Pointer_Member: {
2148    CastKind Kind = CK_Invalid;
2149    CXXCastPath BasePath;
2150    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2151      return true;
2152    if (CheckExceptionSpecCompatibility(From, ToType))
2153      return true;
2154    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2155    break;
2156  }
2157  case ICK_Boolean_Conversion: {
2158    CastKind Kind = CK_Invalid;
2159    switch (FromType->getScalarTypeKind()) {
2160    case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
2161    case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
2162    case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
2163    case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
2164    case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
2165    case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
2166    case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
2167    }
2168
2169    ImpCastExprToType(From, Context.BoolTy, Kind);
2170    break;
2171  }
2172
2173  case ICK_Derived_To_Base: {
2174    CXXCastPath BasePath;
2175    if (CheckDerivedToBaseConversion(From->getType(),
2176                                     ToType.getNonReferenceType(),
2177                                     From->getLocStart(),
2178                                     From->getSourceRange(),
2179                                     &BasePath,
2180                                     CStyle))
2181      return true;
2182
2183    ImpCastExprToType(From, ToType.getNonReferenceType(),
2184                      CK_DerivedToBase, CastCategory(From),
2185                      &BasePath);
2186    break;
2187  }
2188
2189  case ICK_Vector_Conversion:
2190    ImpCastExprToType(From, ToType, CK_BitCast);
2191    break;
2192
2193  case ICK_Vector_Splat:
2194    ImpCastExprToType(From, ToType, CK_VectorSplat);
2195    break;
2196
2197  case ICK_Complex_Real:
2198    // Case 1.  x -> _Complex y
2199    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2200      QualType ElType = ToComplex->getElementType();
2201      bool isFloatingComplex = ElType->isRealFloatingType();
2202
2203      // x -> y
2204      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2205        // do nothing
2206      } else if (From->getType()->isRealFloatingType()) {
2207        ImpCastExprToType(From, ElType,
2208                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
2209      } else {
2210        assert(From->getType()->isIntegerType());
2211        ImpCastExprToType(From, ElType,
2212                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
2213      }
2214      // y -> _Complex y
2215      ImpCastExprToType(From, ToType,
2216                   isFloatingComplex ? CK_FloatingRealToComplex
2217                                     : CK_IntegralRealToComplex);
2218
2219    // Case 2.  _Complex x -> y
2220    } else {
2221      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2222      assert(FromComplex);
2223
2224      QualType ElType = FromComplex->getElementType();
2225      bool isFloatingComplex = ElType->isRealFloatingType();
2226
2227      // _Complex x -> x
2228      ImpCastExprToType(From, ElType,
2229                   isFloatingComplex ? CK_FloatingComplexToReal
2230                                     : CK_IntegralComplexToReal);
2231
2232      // x -> y
2233      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2234        // do nothing
2235      } else if (ToType->isRealFloatingType()) {
2236        ImpCastExprToType(From, ToType,
2237                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
2238      } else {
2239        assert(ToType->isIntegerType());
2240        ImpCastExprToType(From, ToType,
2241                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
2242      }
2243    }
2244    break;
2245
2246  case ICK_Block_Pointer_Conversion: {
2247      ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue);
2248      break;
2249    }
2250
2251  case ICK_Lvalue_To_Rvalue:
2252  case ICK_Array_To_Pointer:
2253  case ICK_Function_To_Pointer:
2254  case ICK_Qualification:
2255  case ICK_Num_Conversion_Kinds:
2256    assert(false && "Improper second standard conversion");
2257    break;
2258  }
2259
2260  switch (SCS.Third) {
2261  case ICK_Identity:
2262    // Nothing to do.
2263    break;
2264
2265  case ICK_Qualification: {
2266    // The qualification keeps the category of the inner expression, unless the
2267    // target type isn't a reference.
2268    ExprValueKind VK = ToType->isReferenceType() ?
2269                                  CastCategory(From) : VK_RValue;
2270    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2271                      CK_NoOp, VK);
2272
2273    if (SCS.DeprecatedStringLiteralToCharPtr)
2274      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2275        << ToType.getNonReferenceType();
2276
2277    break;
2278    }
2279
2280  default:
2281    assert(false && "Improper third standard conversion");
2282    break;
2283  }
2284
2285  return false;
2286}
2287
2288ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2289                                     SourceLocation KWLoc,
2290                                     ParsedType Ty,
2291                                     SourceLocation RParen) {
2292  TypeSourceInfo *TSInfo;
2293  QualType T = GetTypeFromParser(Ty, &TSInfo);
2294
2295  if (!TSInfo)
2296    TSInfo = Context.getTrivialTypeSourceInfo(T);
2297  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2298}
2299
2300static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2301                                   SourceLocation KeyLoc) {
2302  // FIXME: For many of these traits, we need a complete type before we can
2303  // check these properties.
2304  assert(!T->isDependentType() &&
2305         "Cannot evaluate traits for dependent types.");
2306  ASTContext &C = Self.Context;
2307  switch(UTT) {
2308  default: assert(false && "Unknown type trait or not implemented");
2309  case UTT_IsPOD: return T->isPODType();
2310  case UTT_IsLiteral: return T->isLiteralType();
2311  case UTT_IsClass: // Fallthrough
2312  case UTT_IsUnion:
2313    if (const RecordType *Record = T->getAs<RecordType>()) {
2314      bool Union = Record->getDecl()->isUnion();
2315      return UTT == UTT_IsUnion ? Union : !Union;
2316    }
2317    return false;
2318  case UTT_IsEnum: return T->isEnumeralType();
2319  case UTT_IsPolymorphic:
2320    if (const RecordType *Record = T->getAs<RecordType>()) {
2321      // Type traits are only parsed in C++, so we've got CXXRecords.
2322      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2323    }
2324    return false;
2325  case UTT_IsAbstract:
2326    if (const RecordType *RT = T->getAs<RecordType>())
2327      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2328    return false;
2329  case UTT_IsEmpty:
2330    if (const RecordType *Record = T->getAs<RecordType>()) {
2331      return !Record->getDecl()->isUnion()
2332          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2333    }
2334    return false;
2335  case UTT_HasTrivialConstructor:
2336    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2337    //   If __is_pod (type) is true then the trait is true, else if type is
2338    //   a cv class or union type (or array thereof) with a trivial default
2339    //   constructor ([class.ctor]) then the trait is true, else it is false.
2340    if (T->isPODType())
2341      return true;
2342    if (const RecordType *RT =
2343          C.getBaseElementType(T)->getAs<RecordType>())
2344      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2345    return false;
2346  case UTT_HasTrivialCopy:
2347    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2348    //   If __is_pod (type) is true or type is a reference type then
2349    //   the trait is true, else if type is a cv class or union type
2350    //   with a trivial copy constructor ([class.copy]) then the trait
2351    //   is true, else it is false.
2352    if (T->isPODType() || T->isReferenceType())
2353      return true;
2354    if (const RecordType *RT = T->getAs<RecordType>())
2355      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2356    return false;
2357  case UTT_HasTrivialAssign:
2358    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2359    //   If type is const qualified or is a reference type then the
2360    //   trait is false. Otherwise if __is_pod (type) is true then the
2361    //   trait is true, else if type is a cv class or union type with
2362    //   a trivial copy assignment ([class.copy]) then the trait is
2363    //   true, else it is false.
2364    // Note: the const and reference restrictions are interesting,
2365    // given that const and reference members don't prevent a class
2366    // from having a trivial copy assignment operator (but do cause
2367    // errors if the copy assignment operator is actually used, q.v.
2368    // [class.copy]p12).
2369
2370    if (C.getBaseElementType(T).isConstQualified())
2371      return false;
2372    if (T->isPODType())
2373      return true;
2374    if (const RecordType *RT = T->getAs<RecordType>())
2375      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2376    return false;
2377  case UTT_HasTrivialDestructor:
2378    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2379    //   If __is_pod (type) is true or type is a reference type
2380    //   then the trait is true, else if type is a cv class or union
2381    //   type (or array thereof) with a trivial destructor
2382    //   ([class.dtor]) then the trait is true, else it is
2383    //   false.
2384    if (T->isPODType() || T->isReferenceType())
2385      return true;
2386    if (const RecordType *RT =
2387          C.getBaseElementType(T)->getAs<RecordType>())
2388      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2389    return false;
2390  // TODO: Propagate nothrowness for implicitly declared special members.
2391  case UTT_HasNothrowAssign:
2392    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2393    //   If type is const qualified or is a reference type then the
2394    //   trait is false. Otherwise if __has_trivial_assign (type)
2395    //   is true then the trait is true, else if type is a cv class
2396    //   or union type with copy assignment operators that are known
2397    //   not to throw an exception then the trait is true, else it is
2398    //   false.
2399    if (C.getBaseElementType(T).isConstQualified())
2400      return false;
2401    if (T->isReferenceType())
2402      return false;
2403    if (T->isPODType())
2404      return true;
2405    if (const RecordType *RT = T->getAs<RecordType>()) {
2406      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2407      if (RD->hasTrivialCopyAssignment())
2408        return true;
2409
2410      bool FoundAssign = false;
2411      bool AllNoThrow = true;
2412      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2413      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2414                       Sema::LookupOrdinaryName);
2415      if (Self.LookupQualifiedName(Res, RD)) {
2416        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2417             Op != OpEnd; ++Op) {
2418          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2419          if (Operator->isCopyAssignmentOperator()) {
2420            FoundAssign = true;
2421            const FunctionProtoType *CPT
2422                = Operator->getType()->getAs<FunctionProtoType>();
2423            if (!CPT->hasEmptyExceptionSpec()) {
2424              AllNoThrow = false;
2425              break;
2426            }
2427          }
2428        }
2429      }
2430
2431      return FoundAssign && AllNoThrow;
2432    }
2433    return false;
2434  case UTT_HasNothrowCopy:
2435    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2436    //   If __has_trivial_copy (type) is true then the trait is true, else
2437    //   if type is a cv class or union type with copy constructors that are
2438    //   known not to throw an exception then the trait is true, else it is
2439    //   false.
2440    if (T->isPODType() || T->isReferenceType())
2441      return true;
2442    if (const RecordType *RT = T->getAs<RecordType>()) {
2443      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2444      if (RD->hasTrivialCopyConstructor())
2445        return true;
2446
2447      bool FoundConstructor = false;
2448      bool AllNoThrow = true;
2449      unsigned FoundTQs;
2450      DeclContext::lookup_const_iterator Con, ConEnd;
2451      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2452           Con != ConEnd; ++Con) {
2453        // A template constructor is never a copy constructor.
2454        // FIXME: However, it may actually be selected at the actual overload
2455        // resolution point.
2456        if (isa<FunctionTemplateDecl>(*Con))
2457          continue;
2458        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2459        if (Constructor->isCopyConstructor(FoundTQs)) {
2460          FoundConstructor = true;
2461          const FunctionProtoType *CPT
2462              = Constructor->getType()->getAs<FunctionProtoType>();
2463          // TODO: check whether evaluating default arguments can throw.
2464          // For now, we'll be conservative and assume that they can throw.
2465          if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
2466            AllNoThrow = false;
2467            break;
2468          }
2469        }
2470      }
2471
2472      return FoundConstructor && AllNoThrow;
2473    }
2474    return false;
2475  case UTT_HasNothrowConstructor:
2476    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2477    //   If __has_trivial_constructor (type) is true then the trait is
2478    //   true, else if type is a cv class or union type (or array
2479    //   thereof) with a default constructor that is known not to
2480    //   throw an exception then the trait is true, else it is false.
2481    if (T->isPODType())
2482      return true;
2483    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2484      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2485      if (RD->hasTrivialConstructor())
2486        return true;
2487
2488      DeclContext::lookup_const_iterator Con, ConEnd;
2489      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2490           Con != ConEnd; ++Con) {
2491        // FIXME: In C++0x, a constructor template can be a default constructor.
2492        if (isa<FunctionTemplateDecl>(*Con))
2493          continue;
2494        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2495        if (Constructor->isDefaultConstructor()) {
2496          const FunctionProtoType *CPT
2497              = Constructor->getType()->getAs<FunctionProtoType>();
2498          // TODO: check whether evaluating default arguments can throw.
2499          // For now, we'll be conservative and assume that they can throw.
2500          return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
2501        }
2502      }
2503    }
2504    return false;
2505  case UTT_HasVirtualDestructor:
2506    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2507    //   If type is a class type with a virtual destructor ([class.dtor])
2508    //   then the trait is true, else it is false.
2509    if (const RecordType *Record = T->getAs<RecordType>()) {
2510      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2511      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2512        return Destructor->isVirtual();
2513    }
2514    return false;
2515  }
2516}
2517
2518ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2519                                     SourceLocation KWLoc,
2520                                     TypeSourceInfo *TSInfo,
2521                                     SourceLocation RParen) {
2522  QualType T = TSInfo->getType();
2523
2524  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2525  // all traits except __is_class, __is_enum and __is_union require a the type
2526  // to be complete, an array of unknown bound, or void.
2527  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2528    QualType E = T;
2529    if (T->isIncompleteArrayType())
2530      E = Context.getAsArrayType(T)->getElementType();
2531    if (!T->isVoidType() &&
2532        RequireCompleteType(KWLoc, E,
2533                            diag::err_incomplete_type_used_in_type_trait_expr))
2534      return ExprError();
2535  }
2536
2537  bool Value = false;
2538  if (!T->isDependentType())
2539    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2540
2541  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2542                                                RParen, Context.BoolTy));
2543}
2544
2545ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2546                                      SourceLocation KWLoc,
2547                                      ParsedType LhsTy,
2548                                      ParsedType RhsTy,
2549                                      SourceLocation RParen) {
2550  TypeSourceInfo *LhsTSInfo;
2551  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2552  if (!LhsTSInfo)
2553    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2554
2555  TypeSourceInfo *RhsTSInfo;
2556  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2557  if (!RhsTSInfo)
2558    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2559
2560  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2561}
2562
2563static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2564                                    QualType LhsT, QualType RhsT,
2565                                    SourceLocation KeyLoc) {
2566  assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
2567         "Cannot evaluate traits for dependent types.");
2568
2569  switch(BTT) {
2570  case BTT_IsBaseOf: {
2571    // C++0x [meta.rel]p2
2572    // Base is a base class of Derived without regard to cv-qualifiers or
2573    // Base and Derived are not unions and name the same class type without
2574    // regard to cv-qualifiers.
2575
2576    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2577    if (!lhsRecord) return false;
2578
2579    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
2580    if (!rhsRecord) return false;
2581
2582    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
2583             == (lhsRecord == rhsRecord));
2584
2585    if (lhsRecord == rhsRecord)
2586      return !lhsRecord->getDecl()->isUnion();
2587
2588    // C++0x [meta.rel]p2:
2589    //   If Base and Derived are class types and are different types
2590    //   (ignoring possible cv-qualifiers) then Derived shall be a
2591    //   complete type.
2592    if (Self.RequireCompleteType(KeyLoc, RhsT,
2593                          diag::err_incomplete_type_used_in_type_trait_expr))
2594      return false;
2595
2596    return cast<CXXRecordDecl>(rhsRecord->getDecl())
2597      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
2598  }
2599
2600  case BTT_TypeCompatible:
2601    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2602                                           RhsT.getUnqualifiedType());
2603
2604  case BTT_IsConvertibleTo: {
2605    // C++0x [meta.rel]p4:
2606    //   Given the following function prototype:
2607    //
2608    //     template <class T>
2609    //       typename add_rvalue_reference<T>::type create();
2610    //
2611    //   the predicate condition for a template specialization
2612    //   is_convertible<From, To> shall be satisfied if and only if
2613    //   the return expression in the following code would be
2614    //   well-formed, including any implicit conversions to the return
2615    //   type of the function:
2616    //
2617    //     To test() {
2618    //       return create<From>();
2619    //     }
2620    //
2621    //   Access checking is performed as if in a context unrelated to To and
2622    //   From. Only the validity of the immediate context of the expression
2623    //   of the return-statement (including conversions to the return type)
2624    //   is considered.
2625    //
2626    // We model the initialization as a copy-initialization of a temporary
2627    // of the appropriate type, which for this expression is identical to the
2628    // return statement (since NRVO doesn't apply).
2629    if (LhsT->isObjectType() || LhsT->isFunctionType())
2630      LhsT = Self.Context.getRValueReferenceType(LhsT);
2631
2632    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
2633    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
2634                         Expr::getValueKindForType(LhsT));
2635    Expr *FromPtr = &From;
2636    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
2637                                                           SourceLocation()));
2638
2639    // Perform the initialization within a SFINAE trap at translation unit
2640    // scope.
2641    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
2642    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
2643    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
2644    if (Init.getKind() == InitializationSequence::FailedSequence)
2645      return false;
2646
2647    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
2648    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
2649  }
2650  }
2651  llvm_unreachable("Unknown type trait or not implemented");
2652}
2653
2654ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
2655                                      SourceLocation KWLoc,
2656                                      TypeSourceInfo *LhsTSInfo,
2657                                      TypeSourceInfo *RhsTSInfo,
2658                                      SourceLocation RParen) {
2659  QualType LhsT = LhsTSInfo->getType();
2660  QualType RhsT = RhsTSInfo->getType();
2661
2662  if (BTT == BTT_TypeCompatible) {
2663    if (getLangOptions().CPlusPlus) {
2664      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
2665        << SourceRange(KWLoc, RParen);
2666      return ExprError();
2667    }
2668  }
2669
2670  bool Value = false;
2671  if (!LhsT->isDependentType() && !RhsT->isDependentType())
2672    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
2673
2674  // Select trait result type.
2675  QualType ResultType;
2676  switch (BTT) {
2677  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
2678  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
2679  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
2680  }
2681
2682  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
2683                                                 RhsTSInfo, Value, RParen,
2684                                                 ResultType));
2685}
2686
2687QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
2688                                            ExprValueKind &VK,
2689                                            SourceLocation Loc,
2690                                            bool isIndirect) {
2691  const char *OpSpelling = isIndirect ? "->*" : ".*";
2692  // C++ 5.5p2
2693  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2694  //   be of type "pointer to member of T" (where T is a completely-defined
2695  //   class type) [...]
2696  QualType RType = rex->getType();
2697  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2698  if (!MemPtr) {
2699    Diag(Loc, diag::err_bad_memptr_rhs)
2700      << OpSpelling << RType << rex->getSourceRange();
2701    return QualType();
2702  }
2703
2704  QualType Class(MemPtr->getClass(), 0);
2705
2706  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
2707  // member pointer points must be completely-defined. However, there is no
2708  // reason for this semantic distinction, and the rule is not enforced by
2709  // other compilers. Therefore, we do not check this property, as it is
2710  // likely to be considered a defect.
2711
2712  // C++ 5.5p2
2713  //   [...] to its first operand, which shall be of class T or of a class of
2714  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2715  //   such a class]
2716  QualType LType = lex->getType();
2717  if (isIndirect) {
2718    if (const PointerType *Ptr = LType->getAs<PointerType>())
2719      LType = Ptr->getPointeeType();
2720    else {
2721      Diag(Loc, diag::err_bad_memptr_lhs)
2722        << OpSpelling << 1 << LType
2723        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2724      return QualType();
2725    }
2726  }
2727
2728  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2729    // If we want to check the hierarchy, we need a complete type.
2730    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2731        << OpSpelling << (int)isIndirect)) {
2732      return QualType();
2733    }
2734    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2735                       /*DetectVirtual=*/false);
2736    // FIXME: Would it be useful to print full ambiguity paths, or is that
2737    // overkill?
2738    if (!IsDerivedFrom(LType, Class, Paths) ||
2739        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2740      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2741        << (int)isIndirect << lex->getType();
2742      return QualType();
2743    }
2744    // Cast LHS to type of use.
2745    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2746    ExprValueKind VK =
2747        isIndirect ? VK_RValue : CastCategory(lex);
2748
2749    CXXCastPath BasePath;
2750    BuildBasePathArray(Paths, BasePath);
2751    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2752  }
2753
2754  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2755    // Diagnose use of pointer-to-member type which when used as
2756    // the functional cast in a pointer-to-member expression.
2757    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2758     return QualType();
2759  }
2760
2761  // C++ 5.5p2
2762  //   The result is an object or a function of the type specified by the
2763  //   second operand.
2764  // The cv qualifiers are the union of those in the pointer and the left side,
2765  // in accordance with 5.5p5 and 5.2.5.
2766  // FIXME: This returns a dereferenced member function pointer as a normal
2767  // function type. However, the only operation valid on such functions is
2768  // calling them. There's also a GCC extension to get a function pointer to the
2769  // thing, which is another complication, because this type - unlike the type
2770  // that is the result of this expression - takes the class as the first
2771  // argument.
2772  // We probably need a "MemberFunctionClosureType" or something like that.
2773  QualType Result = MemPtr->getPointeeType();
2774  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2775
2776  // C++0x [expr.mptr.oper]p6:
2777  //   In a .* expression whose object expression is an rvalue, the program is
2778  //   ill-formed if the second operand is a pointer to member function with
2779  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
2780  //   expression is an lvalue, the program is ill-formed if the second operand
2781  //   is a pointer to member function with ref-qualifier &&.
2782  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
2783    switch (Proto->getRefQualifier()) {
2784    case RQ_None:
2785      // Do nothing
2786      break;
2787
2788    case RQ_LValue:
2789      if (!isIndirect && !lex->Classify(Context).isLValue())
2790        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2791          << RType << 1 << lex->getSourceRange();
2792      break;
2793
2794    case RQ_RValue:
2795      if (isIndirect || !lex->Classify(Context).isRValue())
2796        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2797          << RType << 0 << lex->getSourceRange();
2798      break;
2799    }
2800  }
2801
2802  // C++ [expr.mptr.oper]p6:
2803  //   The result of a .* expression whose second operand is a pointer
2804  //   to a data member is of the same value category as its
2805  //   first operand. The result of a .* expression whose second
2806  //   operand is a pointer to a member function is a prvalue. The
2807  //   result of an ->* expression is an lvalue if its second operand
2808  //   is a pointer to data member and a prvalue otherwise.
2809  if (Result->isFunctionType())
2810    VK = VK_RValue;
2811  else if (isIndirect)
2812    VK = VK_LValue;
2813  else
2814    VK = lex->getValueKind();
2815
2816  return Result;
2817}
2818
2819/// \brief Try to convert a type to another according to C++0x 5.16p3.
2820///
2821/// This is part of the parameter validation for the ? operator. If either
2822/// value operand is a class type, the two operands are attempted to be
2823/// converted to each other. This function does the conversion in one direction.
2824/// It returns true if the program is ill-formed and has already been diagnosed
2825/// as such.
2826static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2827                                SourceLocation QuestionLoc,
2828                                bool &HaveConversion,
2829                                QualType &ToType) {
2830  HaveConversion = false;
2831  ToType = To->getType();
2832
2833  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2834                                                           SourceLocation());
2835  // C++0x 5.16p3
2836  //   The process for determining whether an operand expression E1 of type T1
2837  //   can be converted to match an operand expression E2 of type T2 is defined
2838  //   as follows:
2839  //   -- If E2 is an lvalue:
2840  bool ToIsLvalue = To->isLValue();
2841  if (ToIsLvalue) {
2842    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2843    //   type "lvalue reference to T2", subject to the constraint that in the
2844    //   conversion the reference must bind directly to E1.
2845    QualType T = Self.Context.getLValueReferenceType(ToType);
2846    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2847
2848    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2849    if (InitSeq.isDirectReferenceBinding()) {
2850      ToType = T;
2851      HaveConversion = true;
2852      return false;
2853    }
2854
2855    if (InitSeq.isAmbiguous())
2856      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2857  }
2858
2859  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2860  //      -- if E1 and E2 have class type, and the underlying class types are
2861  //         the same or one is a base class of the other:
2862  QualType FTy = From->getType();
2863  QualType TTy = To->getType();
2864  const RecordType *FRec = FTy->getAs<RecordType>();
2865  const RecordType *TRec = TTy->getAs<RecordType>();
2866  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2867                       Self.IsDerivedFrom(FTy, TTy);
2868  if (FRec && TRec &&
2869      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2870    //         E1 can be converted to match E2 if the class of T2 is the
2871    //         same type as, or a base class of, the class of T1, and
2872    //         [cv2 > cv1].
2873    if (FRec == TRec || FDerivedFromT) {
2874      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2875        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2876        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2877        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2878          HaveConversion = true;
2879          return false;
2880        }
2881
2882        if (InitSeq.isAmbiguous())
2883          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2884      }
2885    }
2886
2887    return false;
2888  }
2889
2890  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2891  //        implicitly converted to the type that expression E2 would have
2892  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2893  //        an rvalue).
2894  //
2895  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2896  // to the array-to-pointer or function-to-pointer conversions.
2897  if (!TTy->getAs<TagType>())
2898    TTy = TTy.getUnqualifiedType();
2899
2900  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2901  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2902  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2903  ToType = TTy;
2904  if (InitSeq.isAmbiguous())
2905    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2906
2907  return false;
2908}
2909
2910/// \brief Try to find a common type for two according to C++0x 5.16p5.
2911///
2912/// This is part of the parameter validation for the ? operator. If either
2913/// value operand is a class type, overload resolution is used to find a
2914/// conversion to a common type.
2915static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2916                                    SourceLocation QuestionLoc) {
2917  Expr *Args[2] = { LHS, RHS };
2918  OverloadCandidateSet CandidateSet(QuestionLoc);
2919  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
2920                                    CandidateSet);
2921
2922  OverloadCandidateSet::iterator Best;
2923  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
2924    case OR_Success:
2925      // We found a match. Perform the conversions on the arguments and move on.
2926      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2927                                         Best->Conversions[0], Sema::AA_Converting) ||
2928          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2929                                         Best->Conversions[1], Sema::AA_Converting))
2930        break;
2931      if (Best->Function)
2932        Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
2933      return false;
2934
2935    case OR_No_Viable_Function:
2936
2937      // Emit a better diagnostic if one of the expressions is a null pointer
2938      // constant and the other is a pointer type. In this case, the user most
2939      // likely forgot to take the address of the other expression.
2940      if (Self.DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
2941        return true;
2942
2943      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2944        << LHS->getType() << RHS->getType()
2945        << LHS->getSourceRange() << RHS->getSourceRange();
2946      return true;
2947
2948    case OR_Ambiguous:
2949      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
2950        << LHS->getType() << RHS->getType()
2951        << LHS->getSourceRange() << RHS->getSourceRange();
2952      // FIXME: Print the possible common types by printing the return types of
2953      // the viable candidates.
2954      break;
2955
2956    case OR_Deleted:
2957      assert(false && "Conditional operator has only built-in overloads");
2958      break;
2959  }
2960  return true;
2961}
2962
2963/// \brief Perform an "extended" implicit conversion as returned by
2964/// TryClassUnification.
2965static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2966  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2967  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2968                                                           SourceLocation());
2969  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2970  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2971  if (Result.isInvalid())
2972    return true;
2973
2974  E = Result.takeAs<Expr>();
2975  return false;
2976}
2977
2978/// \brief Check the operands of ?: under C++ semantics.
2979///
2980/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2981/// extension. In this case, LHS == Cond. (But they're not aliases.)
2982QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2983                                           ExprValueKind &VK, ExprObjectKind &OK,
2984                                           SourceLocation QuestionLoc) {
2985  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2986  // interface pointers.
2987
2988  // C++0x 5.16p1
2989  //   The first expression is contextually converted to bool.
2990  if (!Cond->isTypeDependent()) {
2991    if (CheckCXXBooleanCondition(Cond))
2992      return QualType();
2993  }
2994
2995  // Assume r-value.
2996  VK = VK_RValue;
2997  OK = OK_Ordinary;
2998
2999  // Either of the arguments dependent?
3000  if (LHS->isTypeDependent() || RHS->isTypeDependent())
3001    return Context.DependentTy;
3002
3003  // C++0x 5.16p2
3004  //   If either the second or the third operand has type (cv) void, ...
3005  QualType LTy = LHS->getType();
3006  QualType RTy = RHS->getType();
3007  bool LVoid = LTy->isVoidType();
3008  bool RVoid = RTy->isVoidType();
3009  if (LVoid || RVoid) {
3010    //   ... then the [l2r] conversions are performed on the second and third
3011    //   operands ...
3012    DefaultFunctionArrayLvalueConversion(LHS);
3013    DefaultFunctionArrayLvalueConversion(RHS);
3014    LTy = LHS->getType();
3015    RTy = RHS->getType();
3016
3017    //   ... and one of the following shall hold:
3018    //   -- The second or the third operand (but not both) is a throw-
3019    //      expression; the result is of the type of the other and is an rvalue.
3020    bool LThrow = isa<CXXThrowExpr>(LHS);
3021    bool RThrow = isa<CXXThrowExpr>(RHS);
3022    if (LThrow && !RThrow)
3023      return RTy;
3024    if (RThrow && !LThrow)
3025      return LTy;
3026
3027    //   -- Both the second and third operands have type void; the result is of
3028    //      type void and is an rvalue.
3029    if (LVoid && RVoid)
3030      return Context.VoidTy;
3031
3032    // Neither holds, error.
3033    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3034      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3035      << LHS->getSourceRange() << RHS->getSourceRange();
3036    return QualType();
3037  }
3038
3039  // Neither is void.
3040
3041  // C++0x 5.16p3
3042  //   Otherwise, if the second and third operand have different types, and
3043  //   either has (cv) class type, and attempt is made to convert each of those
3044  //   operands to the other.
3045  if (!Context.hasSameType(LTy, RTy) &&
3046      (LTy->isRecordType() || RTy->isRecordType())) {
3047    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3048    // These return true if a single direction is already ambiguous.
3049    QualType L2RType, R2LType;
3050    bool HaveL2R, HaveR2L;
3051    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
3052      return QualType();
3053    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
3054      return QualType();
3055
3056    //   If both can be converted, [...] the program is ill-formed.
3057    if (HaveL2R && HaveR2L) {
3058      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3059        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
3060      return QualType();
3061    }
3062
3063    //   If exactly one conversion is possible, that conversion is applied to
3064    //   the chosen operand and the converted operands are used in place of the
3065    //   original operands for the remainder of this section.
3066    if (HaveL2R) {
3067      if (ConvertForConditional(*this, LHS, L2RType))
3068        return QualType();
3069      LTy = LHS->getType();
3070    } else if (HaveR2L) {
3071      if (ConvertForConditional(*this, RHS, R2LType))
3072        return QualType();
3073      RTy = RHS->getType();
3074    }
3075  }
3076
3077  // C++0x 5.16p4
3078  //   If the second and third operands are glvalues of the same value
3079  //   category and have the same type, the result is of that type and
3080  //   value category and it is a bit-field if the second or the third
3081  //   operand is a bit-field, or if both are bit-fields.
3082  // We only extend this to bitfields, not to the crazy other kinds of
3083  // l-values.
3084  bool Same = Context.hasSameType(LTy, RTy);
3085  if (Same &&
3086      LHS->isGLValue() &&
3087      LHS->getValueKind() == RHS->getValueKind() &&
3088      LHS->isOrdinaryOrBitFieldObject() &&
3089      RHS->isOrdinaryOrBitFieldObject()) {
3090    VK = LHS->getValueKind();
3091    if (LHS->getObjectKind() == OK_BitField ||
3092        RHS->getObjectKind() == OK_BitField)
3093      OK = OK_BitField;
3094    return LTy;
3095  }
3096
3097  // C++0x 5.16p5
3098  //   Otherwise, the result is an rvalue. If the second and third operands
3099  //   do not have the same type, and either has (cv) class type, ...
3100  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3101    //   ... overload resolution is used to determine the conversions (if any)
3102    //   to be applied to the operands. If the overload resolution fails, the
3103    //   program is ill-formed.
3104    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3105      return QualType();
3106  }
3107
3108  // C++0x 5.16p6
3109  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3110  //   conversions are performed on the second and third operands.
3111  DefaultFunctionArrayLvalueConversion(LHS);
3112  DefaultFunctionArrayLvalueConversion(RHS);
3113  LTy = LHS->getType();
3114  RTy = RHS->getType();
3115
3116  //   After those conversions, one of the following shall hold:
3117  //   -- The second and third operands have the same type; the result
3118  //      is of that type. If the operands have class type, the result
3119  //      is a prvalue temporary of the result type, which is
3120  //      copy-initialized from either the second operand or the third
3121  //      operand depending on the value of the first operand.
3122  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3123    if (LTy->isRecordType()) {
3124      // The operands have class type. Make a temporary copy.
3125      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3126      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3127                                                     SourceLocation(),
3128                                                     Owned(LHS));
3129      if (LHSCopy.isInvalid())
3130        return QualType();
3131
3132      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3133                                                     SourceLocation(),
3134                                                     Owned(RHS));
3135      if (RHSCopy.isInvalid())
3136        return QualType();
3137
3138      LHS = LHSCopy.takeAs<Expr>();
3139      RHS = RHSCopy.takeAs<Expr>();
3140    }
3141
3142    return LTy;
3143  }
3144
3145  // Extension: conditional operator involving vector types.
3146  if (LTy->isVectorType() || RTy->isVectorType())
3147    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3148
3149  //   -- The second and third operands have arithmetic or enumeration type;
3150  //      the usual arithmetic conversions are performed to bring them to a
3151  //      common type, and the result is of that type.
3152  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3153    UsualArithmeticConversions(LHS, RHS);
3154    return LHS->getType();
3155  }
3156
3157  //   -- The second and third operands have pointer type, or one has pointer
3158  //      type and the other is a null pointer constant; pointer conversions
3159  //      and qualification conversions are performed to bring them to their
3160  //      composite pointer type. The result is of the composite pointer type.
3161  //   -- The second and third operands have pointer to member type, or one has
3162  //      pointer to member type and the other is a null pointer constant;
3163  //      pointer to member conversions and qualification conversions are
3164  //      performed to bring them to a common type, whose cv-qualification
3165  //      shall match the cv-qualification of either the second or the third
3166  //      operand. The result is of the common type.
3167  bool NonStandardCompositeType = false;
3168  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3169                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3170  if (!Composite.isNull()) {
3171    if (NonStandardCompositeType)
3172      Diag(QuestionLoc,
3173           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3174        << LTy << RTy << Composite
3175        << LHS->getSourceRange() << RHS->getSourceRange();
3176
3177    return Composite;
3178  }
3179
3180  // Similarly, attempt to find composite type of two objective-c pointers.
3181  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3182  if (!Composite.isNull())
3183    return Composite;
3184
3185  // Check if we are using a null with a non-pointer type.
3186  if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
3187    return QualType();
3188
3189  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3190    << LHS->getType() << RHS->getType()
3191    << LHS->getSourceRange() << RHS->getSourceRange();
3192  return QualType();
3193}
3194
3195/// \brief Find a merged pointer type and convert the two expressions to it.
3196///
3197/// This finds the composite pointer type (or member pointer type) for @p E1
3198/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3199/// type and returns it.
3200/// It does not emit diagnostics.
3201///
3202/// \param Loc The location of the operator requiring these two expressions to
3203/// be converted to the composite pointer type.
3204///
3205/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3206/// a non-standard (but still sane) composite type to which both expressions
3207/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3208/// will be set true.
3209QualType Sema::FindCompositePointerType(SourceLocation Loc,
3210                                        Expr *&E1, Expr *&E2,
3211                                        bool *NonStandardCompositeType) {
3212  if (NonStandardCompositeType)
3213    *NonStandardCompositeType = false;
3214
3215  assert(getLangOptions().CPlusPlus && "This function assumes C++");
3216  QualType T1 = E1->getType(), T2 = E2->getType();
3217
3218  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3219      !T2->isAnyPointerType() && !T2->isMemberPointerType())
3220   return QualType();
3221
3222  // C++0x 5.9p2
3223  //   Pointer conversions and qualification conversions are performed on
3224  //   pointer operands to bring them to their composite pointer type. If
3225  //   one operand is a null pointer constant, the composite pointer type is
3226  //   the type of the other operand.
3227  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3228    if (T2->isMemberPointerType())
3229      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
3230    else
3231      ImpCastExprToType(E1, T2, CK_NullToPointer);
3232    return T2;
3233  }
3234  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3235    if (T1->isMemberPointerType())
3236      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
3237    else
3238      ImpCastExprToType(E2, T1, CK_NullToPointer);
3239    return T1;
3240  }
3241
3242  // Now both have to be pointers or member pointers.
3243  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3244      (!T2->isPointerType() && !T2->isMemberPointerType()))
3245    return QualType();
3246
3247  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3248  //   the other has type "pointer to cv2 T" and the composite pointer type is
3249  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3250  //   Otherwise, the composite pointer type is a pointer type similar to the
3251  //   type of one of the operands, with a cv-qualification signature that is
3252  //   the union of the cv-qualification signatures of the operand types.
3253  // In practice, the first part here is redundant; it's subsumed by the second.
3254  // What we do here is, we build the two possible composite types, and try the
3255  // conversions in both directions. If only one works, or if the two composite
3256  // types are the same, we have succeeded.
3257  // FIXME: extended qualifiers?
3258  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3259  QualifierVector QualifierUnion;
3260  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3261      ContainingClassVector;
3262  ContainingClassVector MemberOfClass;
3263  QualType Composite1 = Context.getCanonicalType(T1),
3264           Composite2 = Context.getCanonicalType(T2);
3265  unsigned NeedConstBefore = 0;
3266  do {
3267    const PointerType *Ptr1, *Ptr2;
3268    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3269        (Ptr2 = Composite2->getAs<PointerType>())) {
3270      Composite1 = Ptr1->getPointeeType();
3271      Composite2 = Ptr2->getPointeeType();
3272
3273      // If we're allowed to create a non-standard composite type, keep track
3274      // of where we need to fill in additional 'const' qualifiers.
3275      if (NonStandardCompositeType &&
3276          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3277        NeedConstBefore = QualifierUnion.size();
3278
3279      QualifierUnion.push_back(
3280                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3281      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3282      continue;
3283    }
3284
3285    const MemberPointerType *MemPtr1, *MemPtr2;
3286    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3287        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3288      Composite1 = MemPtr1->getPointeeType();
3289      Composite2 = MemPtr2->getPointeeType();
3290
3291      // If we're allowed to create a non-standard composite type, keep track
3292      // of where we need to fill in additional 'const' qualifiers.
3293      if (NonStandardCompositeType &&
3294          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3295        NeedConstBefore = QualifierUnion.size();
3296
3297      QualifierUnion.push_back(
3298                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3299      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3300                                             MemPtr2->getClass()));
3301      continue;
3302    }
3303
3304    // FIXME: block pointer types?
3305
3306    // Cannot unwrap any more types.
3307    break;
3308  } while (true);
3309
3310  if (NeedConstBefore && NonStandardCompositeType) {
3311    // Extension: Add 'const' to qualifiers that come before the first qualifier
3312    // mismatch, so that our (non-standard!) composite type meets the
3313    // requirements of C++ [conv.qual]p4 bullet 3.
3314    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3315      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3316        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3317        *NonStandardCompositeType = true;
3318      }
3319    }
3320  }
3321
3322  // Rewrap the composites as pointers or member pointers with the union CVRs.
3323  ContainingClassVector::reverse_iterator MOC
3324    = MemberOfClass.rbegin();
3325  for (QualifierVector::reverse_iterator
3326         I = QualifierUnion.rbegin(),
3327         E = QualifierUnion.rend();
3328       I != E; (void)++I, ++MOC) {
3329    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3330    if (MOC->first && MOC->second) {
3331      // Rebuild member pointer type
3332      Composite1 = Context.getMemberPointerType(
3333                                    Context.getQualifiedType(Composite1, Quals),
3334                                    MOC->first);
3335      Composite2 = Context.getMemberPointerType(
3336                                    Context.getQualifiedType(Composite2, Quals),
3337                                    MOC->second);
3338    } else {
3339      // Rebuild pointer type
3340      Composite1
3341        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3342      Composite2
3343        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3344    }
3345  }
3346
3347  // Try to convert to the first composite pointer type.
3348  InitializedEntity Entity1
3349    = InitializedEntity::InitializeTemporary(Composite1);
3350  InitializationKind Kind
3351    = InitializationKind::CreateCopy(Loc, SourceLocation());
3352  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3353  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3354
3355  if (E1ToC1 && E2ToC1) {
3356    // Conversion to Composite1 is viable.
3357    if (!Context.hasSameType(Composite1, Composite2)) {
3358      // Composite2 is a different type from Composite1. Check whether
3359      // Composite2 is also viable.
3360      InitializedEntity Entity2
3361        = InitializedEntity::InitializeTemporary(Composite2);
3362      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3363      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3364      if (E1ToC2 && E2ToC2) {
3365        // Both Composite1 and Composite2 are viable and are different;
3366        // this is an ambiguity.
3367        return QualType();
3368      }
3369    }
3370
3371    // Convert E1 to Composite1
3372    ExprResult E1Result
3373      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3374    if (E1Result.isInvalid())
3375      return QualType();
3376    E1 = E1Result.takeAs<Expr>();
3377
3378    // Convert E2 to Composite1
3379    ExprResult E2Result
3380      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3381    if (E2Result.isInvalid())
3382      return QualType();
3383    E2 = E2Result.takeAs<Expr>();
3384
3385    return Composite1;
3386  }
3387
3388  // Check whether Composite2 is viable.
3389  InitializedEntity Entity2
3390    = InitializedEntity::InitializeTemporary(Composite2);
3391  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3392  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3393  if (!E1ToC2 || !E2ToC2)
3394    return QualType();
3395
3396  // Convert E1 to Composite2
3397  ExprResult E1Result
3398    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3399  if (E1Result.isInvalid())
3400    return QualType();
3401  E1 = E1Result.takeAs<Expr>();
3402
3403  // Convert E2 to Composite2
3404  ExprResult E2Result
3405    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3406  if (E2Result.isInvalid())
3407    return QualType();
3408  E2 = E2Result.takeAs<Expr>();
3409
3410  return Composite2;
3411}
3412
3413ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3414  if (!E)
3415    return ExprError();
3416
3417  if (!Context.getLangOptions().CPlusPlus)
3418    return Owned(E);
3419
3420  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3421
3422  const RecordType *RT = E->getType()->getAs<RecordType>();
3423  if (!RT)
3424    return Owned(E);
3425
3426  // If the result is a glvalue, we shouldn't bind it.
3427  if (E->Classify(Context).isGLValue())
3428    return Owned(E);
3429
3430  // That should be enough to guarantee that this type is complete.
3431  // If it has a trivial destructor, we can avoid the extra copy.
3432  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3433  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3434    return Owned(E);
3435
3436  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
3437  ExprTemporaries.push_back(Temp);
3438  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
3439    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
3440    CheckDestructorAccess(E->getExprLoc(), Destructor,
3441                          PDiag(diag::err_access_dtor_temp)
3442                            << E->getType());
3443  }
3444  // FIXME: Add the temporary to the temporaries vector.
3445  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
3446}
3447
3448Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
3449  assert(SubExpr && "sub expression can't be null!");
3450
3451  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3452  assert(ExprTemporaries.size() >= FirstTemporary);
3453  if (ExprTemporaries.size() == FirstTemporary)
3454    return SubExpr;
3455
3456  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
3457                                     &ExprTemporaries[FirstTemporary],
3458                                     ExprTemporaries.size() - FirstTemporary);
3459  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3460                        ExprTemporaries.end());
3461
3462  return E;
3463}
3464
3465ExprResult
3466Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
3467  if (SubExpr.isInvalid())
3468    return ExprError();
3469
3470  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
3471}
3472
3473Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
3474  assert(SubStmt && "sub statement can't be null!");
3475
3476  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3477  assert(ExprTemporaries.size() >= FirstTemporary);
3478  if (ExprTemporaries.size() == FirstTemporary)
3479    return SubStmt;
3480
3481  // FIXME: In order to attach the temporaries, wrap the statement into
3482  // a StmtExpr; currently this is only used for asm statements.
3483  // This is hacky, either create a new CXXStmtWithTemporaries statement or
3484  // a new AsmStmtWithTemporaries.
3485  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
3486                                                      SourceLocation(),
3487                                                      SourceLocation());
3488  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
3489                                   SourceLocation());
3490  return MaybeCreateExprWithCleanups(E);
3491}
3492
3493ExprResult
3494Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3495                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3496                                   bool &MayBePseudoDestructor) {
3497  // Since this might be a postfix expression, get rid of ParenListExprs.
3498  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3499  if (Result.isInvalid()) return ExprError();
3500  Base = Result.get();
3501
3502  QualType BaseType = Base->getType();
3503  MayBePseudoDestructor = false;
3504  if (BaseType->isDependentType()) {
3505    // If we have a pointer to a dependent type and are using the -> operator,
3506    // the object type is the type that the pointer points to. We might still
3507    // have enough information about that type to do something useful.
3508    if (OpKind == tok::arrow)
3509      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3510        BaseType = Ptr->getPointeeType();
3511
3512    ObjectType = ParsedType::make(BaseType);
3513    MayBePseudoDestructor = true;
3514    return Owned(Base);
3515  }
3516
3517  // C++ [over.match.oper]p8:
3518  //   [...] When operator->returns, the operator-> is applied  to the value
3519  //   returned, with the original second operand.
3520  if (OpKind == tok::arrow) {
3521    // The set of types we've considered so far.
3522    llvm::SmallPtrSet<CanQualType,8> CTypes;
3523    llvm::SmallVector<SourceLocation, 8> Locations;
3524    CTypes.insert(Context.getCanonicalType(BaseType));
3525
3526    while (BaseType->isRecordType()) {
3527      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3528      if (Result.isInvalid())
3529        return ExprError();
3530      Base = Result.get();
3531      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3532        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3533      BaseType = Base->getType();
3534      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3535      if (!CTypes.insert(CBaseType)) {
3536        Diag(OpLoc, diag::err_operator_arrow_circular);
3537        for (unsigned i = 0; i < Locations.size(); i++)
3538          Diag(Locations[i], diag::note_declared_at);
3539        return ExprError();
3540      }
3541    }
3542
3543    if (BaseType->isPointerType())
3544      BaseType = BaseType->getPointeeType();
3545  }
3546
3547  // We could end up with various non-record types here, such as extended
3548  // vector types or Objective-C interfaces. Just return early and let
3549  // ActOnMemberReferenceExpr do the work.
3550  if (!BaseType->isRecordType()) {
3551    // C++ [basic.lookup.classref]p2:
3552    //   [...] If the type of the object expression is of pointer to scalar
3553    //   type, the unqualified-id is looked up in the context of the complete
3554    //   postfix-expression.
3555    //
3556    // This also indicates that we should be parsing a
3557    // pseudo-destructor-name.
3558    ObjectType = ParsedType();
3559    MayBePseudoDestructor = true;
3560    return Owned(Base);
3561  }
3562
3563  // The object type must be complete (or dependent).
3564  if (!BaseType->isDependentType() &&
3565      RequireCompleteType(OpLoc, BaseType,
3566                          PDiag(diag::err_incomplete_member_access)))
3567    return ExprError();
3568
3569  // C++ [basic.lookup.classref]p2:
3570  //   If the id-expression in a class member access (5.2.5) is an
3571  //   unqualified-id, and the type of the object expression is of a class
3572  //   type C (or of pointer to a class type C), the unqualified-id is looked
3573  //   up in the scope of class C. [...]
3574  ObjectType = ParsedType::make(BaseType);
3575  return move(Base);
3576}
3577
3578ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3579                                                   Expr *MemExpr) {
3580  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3581  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3582    << isa<CXXPseudoDestructorExpr>(MemExpr)
3583    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3584
3585  return ActOnCallExpr(/*Scope*/ 0,
3586                       MemExpr,
3587                       /*LPLoc*/ ExpectedLParenLoc,
3588                       MultiExprArg(),
3589                       /*RPLoc*/ ExpectedLParenLoc);
3590}
3591
3592ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3593                                           SourceLocation OpLoc,
3594                                           tok::TokenKind OpKind,
3595                                           const CXXScopeSpec &SS,
3596                                           TypeSourceInfo *ScopeTypeInfo,
3597                                           SourceLocation CCLoc,
3598                                           SourceLocation TildeLoc,
3599                                         PseudoDestructorTypeStorage Destructed,
3600                                           bool HasTrailingLParen) {
3601  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3602
3603  // C++ [expr.pseudo]p2:
3604  //   The left-hand side of the dot operator shall be of scalar type. The
3605  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3606  //   This scalar type is the object type.
3607  QualType ObjectType = Base->getType();
3608  if (OpKind == tok::arrow) {
3609    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3610      ObjectType = Ptr->getPointeeType();
3611    } else if (!Base->isTypeDependent()) {
3612      // The user wrote "p->" when she probably meant "p."; fix it.
3613      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3614        << ObjectType << true
3615        << FixItHint::CreateReplacement(OpLoc, ".");
3616      if (isSFINAEContext())
3617        return ExprError();
3618
3619      OpKind = tok::period;
3620    }
3621  }
3622
3623  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3624    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3625      << ObjectType << Base->getSourceRange();
3626    return ExprError();
3627  }
3628
3629  // C++ [expr.pseudo]p2:
3630  //   [...] The cv-unqualified versions of the object type and of the type
3631  //   designated by the pseudo-destructor-name shall be the same type.
3632  if (DestructedTypeInfo) {
3633    QualType DestructedType = DestructedTypeInfo->getType();
3634    SourceLocation DestructedTypeStart
3635      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3636    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3637        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3638      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3639        << ObjectType << DestructedType << Base->getSourceRange()
3640        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3641
3642      // Recover by setting the destructed type to the object type.
3643      DestructedType = ObjectType;
3644      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3645                                                           DestructedTypeStart);
3646      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3647    }
3648  }
3649
3650  // C++ [expr.pseudo]p2:
3651  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3652  //   form
3653  //
3654  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3655  //
3656  //   shall designate the same scalar type.
3657  if (ScopeTypeInfo) {
3658    QualType ScopeType = ScopeTypeInfo->getType();
3659    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3660        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3661
3662      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3663           diag::err_pseudo_dtor_type_mismatch)
3664        << ObjectType << ScopeType << Base->getSourceRange()
3665        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3666
3667      ScopeType = QualType();
3668      ScopeTypeInfo = 0;
3669    }
3670  }
3671
3672  Expr *Result
3673    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3674                                            OpKind == tok::arrow, OpLoc,
3675                                            SS.getWithLocInContext(Context),
3676                                            ScopeTypeInfo,
3677                                            CCLoc,
3678                                            TildeLoc,
3679                                            Destructed);
3680
3681  if (HasTrailingLParen)
3682    return Owned(Result);
3683
3684  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3685}
3686
3687ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3688                                           SourceLocation OpLoc,
3689                                           tok::TokenKind OpKind,
3690                                           CXXScopeSpec &SS,
3691                                           UnqualifiedId &FirstTypeName,
3692                                           SourceLocation CCLoc,
3693                                           SourceLocation TildeLoc,
3694                                           UnqualifiedId &SecondTypeName,
3695                                           bool HasTrailingLParen) {
3696  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3697          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3698         "Invalid first type name in pseudo-destructor");
3699  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3700          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3701         "Invalid second type name in pseudo-destructor");
3702
3703  // C++ [expr.pseudo]p2:
3704  //   The left-hand side of the dot operator shall be of scalar type. The
3705  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3706  //   This scalar type is the object type.
3707  QualType ObjectType = Base->getType();
3708  if (OpKind == tok::arrow) {
3709    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3710      ObjectType = Ptr->getPointeeType();
3711    } else if (!ObjectType->isDependentType()) {
3712      // The user wrote "p->" when she probably meant "p."; fix it.
3713      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3714        << ObjectType << true
3715        << FixItHint::CreateReplacement(OpLoc, ".");
3716      if (isSFINAEContext())
3717        return ExprError();
3718
3719      OpKind = tok::period;
3720    }
3721  }
3722
3723  // Compute the object type that we should use for name lookup purposes. Only
3724  // record types and dependent types matter.
3725  ParsedType ObjectTypePtrForLookup;
3726  if (!SS.isSet()) {
3727    if (ObjectType->isRecordType())
3728      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
3729    else if (ObjectType->isDependentType())
3730      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3731  }
3732
3733  // Convert the name of the type being destructed (following the ~) into a
3734  // type (with source-location information).
3735  QualType DestructedType;
3736  TypeSourceInfo *DestructedTypeInfo = 0;
3737  PseudoDestructorTypeStorage Destructed;
3738  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3739    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3740                               SecondTypeName.StartLocation,
3741                               S, &SS, true, false, ObjectTypePtrForLookup);
3742    if (!T &&
3743        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3744         (!SS.isSet() && ObjectType->isDependentType()))) {
3745      // The name of the type being destroyed is a dependent name, and we
3746      // couldn't find anything useful in scope. Just store the identifier and
3747      // it's location, and we'll perform (qualified) name lookup again at
3748      // template instantiation time.
3749      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3750                                               SecondTypeName.StartLocation);
3751    } else if (!T) {
3752      Diag(SecondTypeName.StartLocation,
3753           diag::err_pseudo_dtor_destructor_non_type)
3754        << SecondTypeName.Identifier << ObjectType;
3755      if (isSFINAEContext())
3756        return ExprError();
3757
3758      // Recover by assuming we had the right type all along.
3759      DestructedType = ObjectType;
3760    } else
3761      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3762  } else {
3763    // Resolve the template-id to a type.
3764    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3765    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3766                                       TemplateId->getTemplateArgs(),
3767                                       TemplateId->NumArgs);
3768    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
3769                                       TemplateId->Template,
3770                                       TemplateId->TemplateNameLoc,
3771                                       TemplateId->LAngleLoc,
3772                                       TemplateArgsPtr,
3773                                       TemplateId->RAngleLoc);
3774    if (T.isInvalid() || !T.get()) {
3775      // Recover by assuming we had the right type all along.
3776      DestructedType = ObjectType;
3777    } else
3778      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3779  }
3780
3781  // If we've performed some kind of recovery, (re-)build the type source
3782  // information.
3783  if (!DestructedType.isNull()) {
3784    if (!DestructedTypeInfo)
3785      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3786                                                  SecondTypeName.StartLocation);
3787    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3788  }
3789
3790  // Convert the name of the scope type (the type prior to '::') into a type.
3791  TypeSourceInfo *ScopeTypeInfo = 0;
3792  QualType ScopeType;
3793  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3794      FirstTypeName.Identifier) {
3795    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3796      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3797                                 FirstTypeName.StartLocation,
3798                                 S, &SS, true, false, ObjectTypePtrForLookup);
3799      if (!T) {
3800        Diag(FirstTypeName.StartLocation,
3801             diag::err_pseudo_dtor_destructor_non_type)
3802          << FirstTypeName.Identifier << ObjectType;
3803
3804        if (isSFINAEContext())
3805          return ExprError();
3806
3807        // Just drop this type. It's unnecessary anyway.
3808        ScopeType = QualType();
3809      } else
3810        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3811    } else {
3812      // Resolve the template-id to a type.
3813      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3814      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3815                                         TemplateId->getTemplateArgs(),
3816                                         TemplateId->NumArgs);
3817      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
3818                                         TemplateId->Template,
3819                                         TemplateId->TemplateNameLoc,
3820                                         TemplateId->LAngleLoc,
3821                                         TemplateArgsPtr,
3822                                         TemplateId->RAngleLoc);
3823      if (T.isInvalid() || !T.get()) {
3824        // Recover by dropping this type.
3825        ScopeType = QualType();
3826      } else
3827        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3828    }
3829  }
3830
3831  if (!ScopeType.isNull() && !ScopeTypeInfo)
3832    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3833                                                  FirstTypeName.StartLocation);
3834
3835
3836  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3837                                   ScopeTypeInfo, CCLoc, TildeLoc,
3838                                   Destructed, HasTrailingLParen);
3839}
3840
3841ExprResult Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
3842                                        CXXMethodDecl *Method) {
3843  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3844                                          FoundDecl, Method))
3845    return true;
3846
3847  MemberExpr *ME =
3848      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3849                               SourceLocation(), Method->getType(),
3850                               VK_RValue, OK_Ordinary);
3851  QualType ResultType = Method->getResultType();
3852  ExprValueKind VK = Expr::getValueKindForType(ResultType);
3853  ResultType = ResultType.getNonLValueExprType(Context);
3854
3855  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3856  CXXMemberCallExpr *CE =
3857    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
3858                                    Exp->getLocEnd());
3859  return CE;
3860}
3861
3862ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3863                                      SourceLocation RParen) {
3864  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3865                                             Operand->CanThrow(Context),
3866                                             KeyLoc, RParen));
3867}
3868
3869ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3870                                   Expr *Operand, SourceLocation RParen) {
3871  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3872}
3873
3874/// Perform the conversions required for an expression used in a
3875/// context that ignores the result.
3876void Sema::IgnoredValueConversions(Expr *&E) {
3877  // C99 6.3.2.1:
3878  //   [Except in specific positions,] an lvalue that does not have
3879  //   array type is converted to the value stored in the
3880  //   designated object (and is no longer an lvalue).
3881  if (E->isRValue()) return;
3882
3883  // We always want to do this on ObjC property references.
3884  if (E->getObjectKind() == OK_ObjCProperty) {
3885    ConvertPropertyForRValue(E);
3886    if (E->isRValue()) return;
3887  }
3888
3889  // Otherwise, this rule does not apply in C++, at least not for the moment.
3890  if (getLangOptions().CPlusPlus) return;
3891
3892  // GCC seems to also exclude expressions of incomplete enum type.
3893  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
3894    if (!T->getDecl()->isComplete()) {
3895      // FIXME: stupid workaround for a codegen bug!
3896      ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
3897      return;
3898    }
3899  }
3900
3901  DefaultFunctionArrayLvalueConversion(E);
3902  if (!E->getType()->isVoidType())
3903    RequireCompleteType(E->getExprLoc(), E->getType(),
3904                        diag::err_incomplete_type);
3905}
3906
3907ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3908  if (!FullExpr)
3909    return ExprError();
3910
3911  if (DiagnoseUnexpandedParameterPack(FullExpr))
3912    return ExprError();
3913
3914  // 13.4.1 ... An overloaded function name shall not be used without arguments
3915  //         in contexts other than those listed [i.e list of targets].
3916  //
3917  //  void foo(); void foo(int);
3918  //  template<class T> void fooT(); template<class T> void fooT(int);
3919
3920  //  Therefore these should error:
3921  //  foo;
3922  //  fooT<int>;
3923
3924  if (FullExpr->getType() == Context.OverloadTy) {
3925    if (!ResolveSingleFunctionTemplateSpecialization(FullExpr,
3926                                                     /* Complain */ false)) {
3927      OverloadExpr* OvlExpr = OverloadExpr::find(FullExpr).Expression;
3928      Diag(FullExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
3929        << OvlExpr->getName();
3930      NoteAllOverloadCandidates(OvlExpr);
3931      return ExprError();
3932    }
3933  }
3934
3935
3936  IgnoredValueConversions(FullExpr);
3937  CheckImplicitConversions(FullExpr);
3938
3939  return MaybeCreateExprWithCleanups(FullExpr);
3940}
3941
3942StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
3943  if (!FullStmt) return StmtError();
3944
3945  return MaybeCreateStmtWithCleanups(FullStmt);
3946}
3947