SemaExprCXX.cpp revision 383616cd2e61131a534afd9364ef53f643e1f834
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31#include "llvm/Support/ErrorHandling.h"
32using namespace clang;
33using namespace sema;
34
35ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
36                                   IdentifierInfo &II,
37                                   SourceLocation NameLoc,
38                                   Scope *S, CXXScopeSpec &SS,
39                                   ParsedType ObjectTypePtr,
40                                   bool EnteringContext) {
41  // Determine where to perform name lookup.
42
43  // FIXME: This area of the standard is very messy, and the current
44  // wording is rather unclear about which scopes we search for the
45  // destructor name; see core issues 399 and 555. Issue 399 in
46  // particular shows where the current description of destructor name
47  // lookup is completely out of line with existing practice, e.g.,
48  // this appears to be ill-formed:
49  //
50  //   namespace N {
51  //     template <typename T> struct S {
52  //       ~S();
53  //     };
54  //   }
55  //
56  //   void f(N::S<int>* s) {
57  //     s->N::S<int>::~S();
58  //   }
59  //
60  // See also PR6358 and PR6359.
61  // For this reason, we're currently only doing the C++03 version of this
62  // code; the C++0x version has to wait until we get a proper spec.
63  QualType SearchType;
64  DeclContext *LookupCtx = 0;
65  bool isDependent = false;
66  bool LookInScope = false;
67
68  // If we have an object type, it's because we are in a
69  // pseudo-destructor-expression or a member access expression, and
70  // we know what type we're looking for.
71  if (ObjectTypePtr)
72    SearchType = GetTypeFromParser(ObjectTypePtr);
73
74  if (SS.isSet()) {
75    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
76
77    bool AlreadySearched = false;
78    bool LookAtPrefix = true;
79    // C++ [basic.lookup.qual]p6:
80    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
81    //   the type-names are looked up as types in the scope designated by the
82    //   nested-name-specifier. In a qualified-id of the form:
83    //
84    //     ::[opt] nested-name-specifier  ~ class-name
85    //
86    //   where the nested-name-specifier designates a namespace scope, and in
87    //   a qualified-id of the form:
88    //
89    //     ::opt nested-name-specifier class-name ::  ~ class-name
90    //
91    //   the class-names are looked up as types in the scope designated by
92    //   the nested-name-specifier.
93    //
94    // Here, we check the first case (completely) and determine whether the
95    // code below is permitted to look at the prefix of the
96    // nested-name-specifier.
97    DeclContext *DC = computeDeclContext(SS, EnteringContext);
98    if (DC && DC->isFileContext()) {
99      AlreadySearched = true;
100      LookupCtx = DC;
101      isDependent = false;
102    } else if (DC && isa<CXXRecordDecl>(DC))
103      LookAtPrefix = false;
104
105    // The second case from the C++03 rules quoted further above.
106    NestedNameSpecifier *Prefix = 0;
107    if (AlreadySearched) {
108      // Nothing left to do.
109    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
110      CXXScopeSpec PrefixSS;
111      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
112      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
113      isDependent = isDependentScopeSpecifier(PrefixSS);
114    } else if (ObjectTypePtr) {
115      LookupCtx = computeDeclContext(SearchType);
116      isDependent = SearchType->isDependentType();
117    } else {
118      LookupCtx = computeDeclContext(SS, EnteringContext);
119      isDependent = LookupCtx && LookupCtx->isDependentContext();
120    }
121
122    LookInScope = false;
123  } else if (ObjectTypePtr) {
124    // C++ [basic.lookup.classref]p3:
125    //   If the unqualified-id is ~type-name, the type-name is looked up
126    //   in the context of the entire postfix-expression. If the type T
127    //   of the object expression is of a class type C, the type-name is
128    //   also looked up in the scope of class C. At least one of the
129    //   lookups shall find a name that refers to (possibly
130    //   cv-qualified) T.
131    LookupCtx = computeDeclContext(SearchType);
132    isDependent = SearchType->isDependentType();
133    assert((isDependent || !SearchType->isIncompleteType()) &&
134           "Caller should have completed object type");
135
136    LookInScope = true;
137  } else {
138    // Perform lookup into the current scope (only).
139    LookInScope = true;
140  }
141
142  TypeDecl *NonMatchingTypeDecl = 0;
143  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
144  for (unsigned Step = 0; Step != 2; ++Step) {
145    // Look for the name first in the computed lookup context (if we
146    // have one) and, if that fails to find a match, in the scope (if
147    // we're allowed to look there).
148    Found.clear();
149    if (Step == 0 && LookupCtx)
150      LookupQualifiedName(Found, LookupCtx);
151    else if (Step == 1 && LookInScope && S)
152      LookupName(Found, S);
153    else
154      continue;
155
156    // FIXME: Should we be suppressing ambiguities here?
157    if (Found.isAmbiguous())
158      return ParsedType();
159
160    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
161      QualType T = Context.getTypeDeclType(Type);
162
163      if (SearchType.isNull() || SearchType->isDependentType() ||
164          Context.hasSameUnqualifiedType(T, SearchType)) {
165        // We found our type!
166
167        return ParsedType::make(T);
168      }
169
170      if (!SearchType.isNull())
171        NonMatchingTypeDecl = Type;
172    }
173
174    // If the name that we found is a class template name, and it is
175    // the same name as the template name in the last part of the
176    // nested-name-specifier (if present) or the object type, then
177    // this is the destructor for that class.
178    // FIXME: This is a workaround until we get real drafting for core
179    // issue 399, for which there isn't even an obvious direction.
180    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
181      QualType MemberOfType;
182      if (SS.isSet()) {
183        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
184          // Figure out the type of the context, if it has one.
185          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
186            MemberOfType = Context.getTypeDeclType(Record);
187        }
188      }
189      if (MemberOfType.isNull())
190        MemberOfType = SearchType;
191
192      if (MemberOfType.isNull())
193        continue;
194
195      // We're referring into a class template specialization. If the
196      // class template we found is the same as the template being
197      // specialized, we found what we are looking for.
198      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
199        if (ClassTemplateSpecializationDecl *Spec
200              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
201          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
202                Template->getCanonicalDecl())
203            return ParsedType::make(MemberOfType);
204        }
205
206        continue;
207      }
208
209      // We're referring to an unresolved class template
210      // specialization. Determine whether we class template we found
211      // is the same as the template being specialized or, if we don't
212      // know which template is being specialized, that it at least
213      // has the same name.
214      if (const TemplateSpecializationType *SpecType
215            = MemberOfType->getAs<TemplateSpecializationType>()) {
216        TemplateName SpecName = SpecType->getTemplateName();
217
218        // The class template we found is the same template being
219        // specialized.
220        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
221          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
222            return ParsedType::make(MemberOfType);
223
224          continue;
225        }
226
227        // The class template we found has the same name as the
228        // (dependent) template name being specialized.
229        if (DependentTemplateName *DepTemplate
230                                    = SpecName.getAsDependentTemplateName()) {
231          if (DepTemplate->isIdentifier() &&
232              DepTemplate->getIdentifier() == Template->getIdentifier())
233            return ParsedType::make(MemberOfType);
234
235          continue;
236        }
237      }
238    }
239  }
240
241  if (isDependent) {
242    // We didn't find our type, but that's okay: it's dependent
243    // anyway.
244
245    // FIXME: What if we have no nested-name-specifier?
246    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
247                                   SS.getWithLocInContext(Context),
248                                   II, NameLoc);
249    return ParsedType::make(T);
250  }
251
252  if (NonMatchingTypeDecl) {
253    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
254    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
255      << T << SearchType;
256    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
257      << T;
258  } else if (ObjectTypePtr)
259    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
260      << &II;
261  else
262    Diag(NameLoc, diag::err_destructor_class_name);
263
264  return ParsedType();
265}
266
267/// \brief Build a C++ typeid expression with a type operand.
268ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
269                                SourceLocation TypeidLoc,
270                                TypeSourceInfo *Operand,
271                                SourceLocation RParenLoc) {
272  // C++ [expr.typeid]p4:
273  //   The top-level cv-qualifiers of the lvalue expression or the type-id
274  //   that is the operand of typeid are always ignored.
275  //   If the type of the type-id is a class type or a reference to a class
276  //   type, the class shall be completely-defined.
277  Qualifiers Quals;
278  QualType T
279    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
280                                      Quals);
281  if (T->getAs<RecordType>() &&
282      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
283    return ExprError();
284
285  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
286                                           Operand,
287                                           SourceRange(TypeidLoc, RParenLoc)));
288}
289
290/// \brief Build a C++ typeid expression with an expression operand.
291ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
292                                SourceLocation TypeidLoc,
293                                Expr *E,
294                                SourceLocation RParenLoc) {
295  bool isUnevaluatedOperand = true;
296  if (E && !E->isTypeDependent()) {
297    QualType T = E->getType();
298    if (const RecordType *RecordT = T->getAs<RecordType>()) {
299      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
300      // C++ [expr.typeid]p3:
301      //   [...] If the type of the expression is a class type, the class
302      //   shall be completely-defined.
303      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
304        return ExprError();
305
306      // C++ [expr.typeid]p3:
307      //   When typeid is applied to an expression other than an glvalue of a
308      //   polymorphic class type [...] [the] expression is an unevaluated
309      //   operand. [...]
310      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
311        isUnevaluatedOperand = false;
312
313        // We require a vtable to query the type at run time.
314        MarkVTableUsed(TypeidLoc, RecordD);
315      }
316    }
317
318    // C++ [expr.typeid]p4:
319    //   [...] If the type of the type-id is a reference to a possibly
320    //   cv-qualified type, the result of the typeid expression refers to a
321    //   std::type_info object representing the cv-unqualified referenced
322    //   type.
323    Qualifiers Quals;
324    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
325    if (!Context.hasSameType(T, UnqualT)) {
326      T = UnqualT;
327      E = ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E)).take();
328    }
329  }
330
331  // If this is an unevaluated operand, clear out the set of
332  // declaration references we have been computing and eliminate any
333  // temporaries introduced in its computation.
334  if (isUnevaluatedOperand)
335    ExprEvalContexts.back().Context = Unevaluated;
336
337  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
338                                           E,
339                                           SourceRange(TypeidLoc, RParenLoc)));
340}
341
342/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
343ExprResult
344Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
345                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
346  // Find the std::type_info type.
347  if (!getStdNamespace())
348    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
349
350  if (!CXXTypeInfoDecl) {
351    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
352    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
353    LookupQualifiedName(R, getStdNamespace());
354    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
355    if (!CXXTypeInfoDecl)
356      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
357  }
358
359  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
360
361  if (isType) {
362    // The operand is a type; handle it as such.
363    TypeSourceInfo *TInfo = 0;
364    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
365                                   &TInfo);
366    if (T.isNull())
367      return ExprError();
368
369    if (!TInfo)
370      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
371
372    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
373  }
374
375  // The operand is an expression.
376  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
377}
378
379/// Retrieve the UuidAttr associated with QT.
380static UuidAttr *GetUuidAttrOfType(QualType QT) {
381  // Optionally remove one level of pointer, reference or array indirection.
382  const Type *Ty = QT.getTypePtr();;
383  if (QT->isPointerType() || QT->isReferenceType())
384    Ty = QT->getPointeeType().getTypePtr();
385  else if (QT->isArrayType())
386    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
387
388  // Loop all record redeclaration looking for an uuid attribute.
389  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
390  for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
391       E = RD->redecls_end(); I != E; ++I) {
392    if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
393      return Uuid;
394  }
395
396  return 0;
397}
398
399/// \brief Build a Microsoft __uuidof expression with a type operand.
400ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
401                                SourceLocation TypeidLoc,
402                                TypeSourceInfo *Operand,
403                                SourceLocation RParenLoc) {
404  if (!Operand->getType()->isDependentType()) {
405    if (!GetUuidAttrOfType(Operand->getType()))
406      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
407  }
408
409  // FIXME: add __uuidof semantic analysis for type operand.
410  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
411                                           Operand,
412                                           SourceRange(TypeidLoc, RParenLoc)));
413}
414
415/// \brief Build a Microsoft __uuidof expression with an expression operand.
416ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
417                                SourceLocation TypeidLoc,
418                                Expr *E,
419                                SourceLocation RParenLoc) {
420  if (!E->getType()->isDependentType()) {
421    if (!GetUuidAttrOfType(E->getType()) &&
422        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
423      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
424  }
425  // FIXME: add __uuidof semantic analysis for type operand.
426  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
427                                           E,
428                                           SourceRange(TypeidLoc, RParenLoc)));
429}
430
431/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
432ExprResult
433Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
434                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
435  // If MSVCGuidDecl has not been cached, do the lookup.
436  if (!MSVCGuidDecl) {
437    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
438    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
439    LookupQualifiedName(R, Context.getTranslationUnitDecl());
440    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
441    if (!MSVCGuidDecl)
442      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
443  }
444
445  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
446
447  if (isType) {
448    // The operand is a type; handle it as such.
449    TypeSourceInfo *TInfo = 0;
450    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
451                                   &TInfo);
452    if (T.isNull())
453      return ExprError();
454
455    if (!TInfo)
456      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
457
458    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
459  }
460
461  // The operand is an expression.
462  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
463}
464
465/// ActOnCXXBoolLiteral - Parse {true,false} literals.
466ExprResult
467Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
468  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
469         "Unknown C++ Boolean value!");
470  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
471                                                Context.BoolTy, OpLoc));
472}
473
474/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
475ExprResult
476Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
477  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
478}
479
480/// ActOnCXXThrow - Parse throw expressions.
481ExprResult
482Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
483  // Don't report an error if 'throw' is used in system headers.
484  if (!getLangOptions().CXXExceptions &&
485      !getSourceManager().isInSystemHeader(OpLoc))
486    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
487
488  if (Ex && !Ex->isTypeDependent()) {
489    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex);
490    if (ExRes.isInvalid())
491      return ExprError();
492    Ex = ExRes.take();
493  }
494  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
495}
496
497/// CheckCXXThrowOperand - Validate the operand of a throw.
498ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E) {
499  // C++ [except.throw]p3:
500  //   A throw-expression initializes a temporary object, called the exception
501  //   object, the type of which is determined by removing any top-level
502  //   cv-qualifiers from the static type of the operand of throw and adjusting
503  //   the type from "array of T" or "function returning T" to "pointer to T"
504  //   or "pointer to function returning T", [...]
505  if (E->getType().hasQualifiers())
506    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
507                      CastCategory(E)).take();
508
509  ExprResult Res = DefaultFunctionArrayConversion(E);
510  if (Res.isInvalid())
511    return ExprError();
512  E = Res.take();
513
514  //   If the type of the exception would be an incomplete type or a pointer
515  //   to an incomplete type other than (cv) void the program is ill-formed.
516  QualType Ty = E->getType();
517  bool isPointer = false;
518  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
519    Ty = Ptr->getPointeeType();
520    isPointer = true;
521  }
522  if (!isPointer || !Ty->isVoidType()) {
523    if (RequireCompleteType(ThrowLoc, Ty,
524                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
525                                            : diag::err_throw_incomplete)
526                              << E->getSourceRange()))
527      return ExprError();
528
529    if (RequireNonAbstractType(ThrowLoc, E->getType(),
530                               PDiag(diag::err_throw_abstract_type)
531                                 << E->getSourceRange()))
532      return ExprError();
533  }
534
535  // Initialize the exception result.  This implicitly weeds out
536  // abstract types or types with inaccessible copy constructors.
537  const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
538
539  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
540  InitializedEntity Entity =
541      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
542                                             /*NRVO=*/false);
543  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
544                                        QualType(), E);
545  if (Res.isInvalid())
546    return ExprError();
547  E = Res.take();
548
549  // If the exception has class type, we need additional handling.
550  const RecordType *RecordTy = Ty->getAs<RecordType>();
551  if (!RecordTy)
552    return Owned(E);
553  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
554
555  // If we are throwing a polymorphic class type or pointer thereof,
556  // exception handling will make use of the vtable.
557  MarkVTableUsed(ThrowLoc, RD);
558
559  // If a pointer is thrown, the referenced object will not be destroyed.
560  if (isPointer)
561    return Owned(E);
562
563  // If the class has a non-trivial destructor, we must be able to call it.
564  if (RD->hasTrivialDestructor())
565    return Owned(E);
566
567  CXXDestructorDecl *Destructor
568    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
569  if (!Destructor)
570    return Owned(E);
571
572  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
573  CheckDestructorAccess(E->getExprLoc(), Destructor,
574                        PDiag(diag::err_access_dtor_exception) << Ty);
575  return Owned(E);
576}
577
578CXXMethodDecl *Sema::tryCaptureCXXThis() {
579  // Ignore block scopes: we can capture through them.
580  // Ignore nested enum scopes: we'll diagnose non-constant expressions
581  // where they're invalid, and other uses are legitimate.
582  // Don't ignore nested class scopes: you can't use 'this' in a local class.
583  DeclContext *DC = CurContext;
584  while (true) {
585    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
586    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
587    else break;
588  }
589
590  // If we're not in an instance method, error out.
591  CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
592  if (!method || !method->isInstance())
593    return 0;
594
595  // Mark that we're closing on 'this' in all the block scopes, if applicable.
596  for (unsigned idx = FunctionScopes.size() - 1;
597       isa<BlockScopeInfo>(FunctionScopes[idx]);
598       --idx)
599    cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
600
601  return method;
602}
603
604ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
605  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
606  /// is a non-lvalue expression whose value is the address of the object for
607  /// which the function is called.
608
609  CXXMethodDecl *method = tryCaptureCXXThis();
610  if (!method) return Diag(loc, diag::err_invalid_this_use);
611
612  return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
613                                         /*isImplicit=*/false));
614}
615
616ExprResult
617Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
618                                SourceLocation LParenLoc,
619                                MultiExprArg exprs,
620                                SourceLocation RParenLoc) {
621  if (!TypeRep)
622    return ExprError();
623
624  TypeSourceInfo *TInfo;
625  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
626  if (!TInfo)
627    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
628
629  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
630}
631
632/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
633/// Can be interpreted either as function-style casting ("int(x)")
634/// or class type construction ("ClassType(x,y,z)")
635/// or creation of a value-initialized type ("int()").
636ExprResult
637Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
638                                SourceLocation LParenLoc,
639                                MultiExprArg exprs,
640                                SourceLocation RParenLoc) {
641  QualType Ty = TInfo->getType();
642  unsigned NumExprs = exprs.size();
643  Expr **Exprs = (Expr**)exprs.get();
644  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
645  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
646
647  if (Ty->isDependentType() ||
648      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
649    exprs.release();
650
651    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
652                                                    LParenLoc,
653                                                    Exprs, NumExprs,
654                                                    RParenLoc));
655  }
656
657  if (Ty->isArrayType())
658    return ExprError(Diag(TyBeginLoc,
659                          diag::err_value_init_for_array_type) << FullRange);
660  if (!Ty->isVoidType() &&
661      RequireCompleteType(TyBeginLoc, Ty,
662                          PDiag(diag::err_invalid_incomplete_type_use)
663                            << FullRange))
664    return ExprError();
665
666  if (RequireNonAbstractType(TyBeginLoc, Ty,
667                             diag::err_allocation_of_abstract_type))
668    return ExprError();
669
670
671  // C++ [expr.type.conv]p1:
672  // If the expression list is a single expression, the type conversion
673  // expression is equivalent (in definedness, and if defined in meaning) to the
674  // corresponding cast expression.
675  //
676  if (NumExprs == 1) {
677    CastKind Kind = CK_Invalid;
678    ExprValueKind VK = VK_RValue;
679    CXXCastPath BasePath;
680    ExprResult CastExpr =
681      CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
682                     Kind, VK, BasePath,
683                     /*FunctionalStyle=*/true);
684    if (CastExpr.isInvalid())
685      return ExprError();
686    Exprs[0] = CastExpr.take();
687
688    exprs.release();
689
690    return Owned(CXXFunctionalCastExpr::Create(Context,
691                                               Ty.getNonLValueExprType(Context),
692                                               VK, TInfo, TyBeginLoc, Kind,
693                                               Exprs[0], &BasePath,
694                                               RParenLoc));
695  }
696
697  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
698  InitializationKind Kind
699    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
700                                                  LParenLoc, RParenLoc)
701               : InitializationKind::CreateValue(TyBeginLoc,
702                                                 LParenLoc, RParenLoc);
703  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
704  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
705
706  // FIXME: Improve AST representation?
707  return move(Result);
708}
709
710/// doesUsualArrayDeleteWantSize - Answers whether the usual
711/// operator delete[] for the given type has a size_t parameter.
712static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
713                                         QualType allocType) {
714  const RecordType *record =
715    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
716  if (!record) return false;
717
718  // Try to find an operator delete[] in class scope.
719
720  DeclarationName deleteName =
721    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
722  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
723  S.LookupQualifiedName(ops, record->getDecl());
724
725  // We're just doing this for information.
726  ops.suppressDiagnostics();
727
728  // Very likely: there's no operator delete[].
729  if (ops.empty()) return false;
730
731  // If it's ambiguous, it should be illegal to call operator delete[]
732  // on this thing, so it doesn't matter if we allocate extra space or not.
733  if (ops.isAmbiguous()) return false;
734
735  LookupResult::Filter filter = ops.makeFilter();
736  while (filter.hasNext()) {
737    NamedDecl *del = filter.next()->getUnderlyingDecl();
738
739    // C++0x [basic.stc.dynamic.deallocation]p2:
740    //   A template instance is never a usual deallocation function,
741    //   regardless of its signature.
742    if (isa<FunctionTemplateDecl>(del)) {
743      filter.erase();
744      continue;
745    }
746
747    // C++0x [basic.stc.dynamic.deallocation]p2:
748    //   If class T does not declare [an operator delete[] with one
749    //   parameter] but does declare a member deallocation function
750    //   named operator delete[] with exactly two parameters, the
751    //   second of which has type std::size_t, then this function
752    //   is a usual deallocation function.
753    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
754      filter.erase();
755      continue;
756    }
757  }
758  filter.done();
759
760  if (!ops.isSingleResult()) return false;
761
762  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
763  return (del->getNumParams() == 2);
764}
765
766/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
767/// @code new (memory) int[size][4] @endcode
768/// or
769/// @code ::new Foo(23, "hello") @endcode
770/// For the interpretation of this heap of arguments, consult the base version.
771ExprResult
772Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
773                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
774                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
775                  Declarator &D, SourceLocation ConstructorLParen,
776                  MultiExprArg ConstructorArgs,
777                  SourceLocation ConstructorRParen) {
778  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
779
780  Expr *ArraySize = 0;
781  // If the specified type is an array, unwrap it and save the expression.
782  if (D.getNumTypeObjects() > 0 &&
783      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
784    DeclaratorChunk &Chunk = D.getTypeObject(0);
785    if (TypeContainsAuto)
786      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
787        << D.getSourceRange());
788    if (Chunk.Arr.hasStatic)
789      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
790        << D.getSourceRange());
791    if (!Chunk.Arr.NumElts)
792      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
793        << D.getSourceRange());
794
795    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
796    D.DropFirstTypeObject();
797  }
798
799  // Every dimension shall be of constant size.
800  if (ArraySize) {
801    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
802      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
803        break;
804
805      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
806      if (Expr *NumElts = (Expr *)Array.NumElts) {
807        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
808            !NumElts->isIntegerConstantExpr(Context)) {
809          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
810            << NumElts->getSourceRange();
811          return ExprError();
812        }
813      }
814    }
815  }
816
817  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
818                                               /*AllowAuto=*/true);
819  QualType AllocType = TInfo->getType();
820  if (D.isInvalidType())
821    return ExprError();
822
823  return BuildCXXNew(StartLoc, UseGlobal,
824                     PlacementLParen,
825                     move(PlacementArgs),
826                     PlacementRParen,
827                     TypeIdParens,
828                     AllocType,
829                     TInfo,
830                     ArraySize,
831                     ConstructorLParen,
832                     move(ConstructorArgs),
833                     ConstructorRParen,
834                     TypeContainsAuto);
835}
836
837ExprResult
838Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
839                  SourceLocation PlacementLParen,
840                  MultiExprArg PlacementArgs,
841                  SourceLocation PlacementRParen,
842                  SourceRange TypeIdParens,
843                  QualType AllocType,
844                  TypeSourceInfo *AllocTypeInfo,
845                  Expr *ArraySize,
846                  SourceLocation ConstructorLParen,
847                  MultiExprArg ConstructorArgs,
848                  SourceLocation ConstructorRParen,
849                  bool TypeMayContainAuto) {
850  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
851
852  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
853  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
854    if (ConstructorArgs.size() == 0)
855      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
856                       << AllocType << TypeRange);
857    if (ConstructorArgs.size() != 1) {
858      Expr *FirstBad = ConstructorArgs.get()[1];
859      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
860                            diag::err_auto_new_ctor_multiple_expressions)
861                       << AllocType << TypeRange);
862    }
863    TypeSourceInfo *DeducedType = 0;
864    if (!DeduceAutoType(AllocTypeInfo, ConstructorArgs.get()[0], DeducedType))
865      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
866                       << AllocType
867                       << ConstructorArgs.get()[0]->getType()
868                       << TypeRange
869                       << ConstructorArgs.get()[0]->getSourceRange());
870    if (!DeducedType)
871      return ExprError();
872
873    AllocTypeInfo = DeducedType;
874    AllocType = AllocTypeInfo->getType();
875  }
876
877  // Per C++0x [expr.new]p5, the type being constructed may be a
878  // typedef of an array type.
879  if (!ArraySize) {
880    if (const ConstantArrayType *Array
881                              = Context.getAsConstantArrayType(AllocType)) {
882      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
883                                         Context.getSizeType(),
884                                         TypeRange.getEnd());
885      AllocType = Array->getElementType();
886    }
887  }
888
889  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
890    return ExprError();
891
892  QualType ResultType = Context.getPointerType(AllocType);
893
894  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
895  //   or enumeration type with a non-negative value."
896  if (ArraySize && !ArraySize->isTypeDependent()) {
897
898    QualType SizeType = ArraySize->getType();
899
900    ExprResult ConvertedSize
901      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
902                                       PDiag(diag::err_array_size_not_integral),
903                                     PDiag(diag::err_array_size_incomplete_type)
904                                       << ArraySize->getSourceRange(),
905                               PDiag(diag::err_array_size_explicit_conversion),
906                                       PDiag(diag::note_array_size_conversion),
907                               PDiag(diag::err_array_size_ambiguous_conversion),
908                                       PDiag(diag::note_array_size_conversion),
909                          PDiag(getLangOptions().CPlusPlus0x? 0
910                                            : diag::ext_array_size_conversion));
911    if (ConvertedSize.isInvalid())
912      return ExprError();
913
914    ArraySize = ConvertedSize.take();
915    SizeType = ArraySize->getType();
916    if (!SizeType->isIntegralOrUnscopedEnumerationType())
917      return ExprError();
918
919    // Let's see if this is a constant < 0. If so, we reject it out of hand.
920    // We don't care about special rules, so we tell the machinery it's not
921    // evaluated - it gives us a result in more cases.
922    if (!ArraySize->isValueDependent()) {
923      llvm::APSInt Value;
924      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
925        if (Value < llvm::APSInt(
926                        llvm::APInt::getNullValue(Value.getBitWidth()),
927                                 Value.isUnsigned()))
928          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
929                                diag::err_typecheck_negative_array_size)
930            << ArraySize->getSourceRange());
931
932        if (!AllocType->isDependentType()) {
933          unsigned ActiveSizeBits
934            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
935          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
936            Diag(ArraySize->getSourceRange().getBegin(),
937                 diag::err_array_too_large)
938              << Value.toString(10)
939              << ArraySize->getSourceRange();
940            return ExprError();
941          }
942        }
943      } else if (TypeIdParens.isValid()) {
944        // Can't have dynamic array size when the type-id is in parentheses.
945        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
946          << ArraySize->getSourceRange()
947          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
948          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
949
950        TypeIdParens = SourceRange();
951      }
952    }
953
954    // Note that we do *not* convert the argument in any way.  It can
955    // be signed, larger than size_t, whatever.
956  }
957
958  FunctionDecl *OperatorNew = 0;
959  FunctionDecl *OperatorDelete = 0;
960  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
961  unsigned NumPlaceArgs = PlacementArgs.size();
962
963  if (!AllocType->isDependentType() &&
964      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
965      FindAllocationFunctions(StartLoc,
966                              SourceRange(PlacementLParen, PlacementRParen),
967                              UseGlobal, AllocType, ArraySize, PlaceArgs,
968                              NumPlaceArgs, OperatorNew, OperatorDelete))
969    return ExprError();
970
971  // If this is an array allocation, compute whether the usual array
972  // deallocation function for the type has a size_t parameter.
973  bool UsualArrayDeleteWantsSize = false;
974  if (ArraySize && !AllocType->isDependentType())
975    UsualArrayDeleteWantsSize
976      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
977
978  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
979  if (OperatorNew) {
980    // Add default arguments, if any.
981    const FunctionProtoType *Proto =
982      OperatorNew->getType()->getAs<FunctionProtoType>();
983    VariadicCallType CallType =
984      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
985
986    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
987                               Proto, 1, PlaceArgs, NumPlaceArgs,
988                               AllPlaceArgs, CallType))
989      return ExprError();
990
991    NumPlaceArgs = AllPlaceArgs.size();
992    if (NumPlaceArgs > 0)
993      PlaceArgs = &AllPlaceArgs[0];
994  }
995
996  bool Init = ConstructorLParen.isValid();
997  // --- Choosing a constructor ---
998  CXXConstructorDecl *Constructor = 0;
999  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
1000  unsigned NumConsArgs = ConstructorArgs.size();
1001  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
1002
1003  // Array 'new' can't have any initializers.
1004  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
1005    SourceRange InitRange(ConsArgs[0]->getLocStart(),
1006                          ConsArgs[NumConsArgs - 1]->getLocEnd());
1007
1008    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1009    return ExprError();
1010  }
1011
1012  if (!AllocType->isDependentType() &&
1013      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
1014    // C++0x [expr.new]p15:
1015    //   A new-expression that creates an object of type T initializes that
1016    //   object as follows:
1017    InitializationKind Kind
1018    //     - If the new-initializer is omitted, the object is default-
1019    //       initialized (8.5); if no initialization is performed,
1020    //       the object has indeterminate value
1021      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1022    //     - Otherwise, the new-initializer is interpreted according to the
1023    //       initialization rules of 8.5 for direct-initialization.
1024             : InitializationKind::CreateDirect(TypeRange.getBegin(),
1025                                                ConstructorLParen,
1026                                                ConstructorRParen);
1027
1028    InitializedEntity Entity
1029      = InitializedEntity::InitializeNew(StartLoc, AllocType);
1030    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1031    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1032                                                move(ConstructorArgs));
1033    if (FullInit.isInvalid())
1034      return ExprError();
1035
1036    // FullInit is our initializer; walk through it to determine if it's a
1037    // constructor call, which CXXNewExpr handles directly.
1038    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1039      if (CXXBindTemporaryExpr *Binder
1040            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1041        FullInitExpr = Binder->getSubExpr();
1042      if (CXXConstructExpr *Construct
1043                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1044        Constructor = Construct->getConstructor();
1045        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1046                                         AEnd = Construct->arg_end();
1047             A != AEnd; ++A)
1048          ConvertedConstructorArgs.push_back(*A);
1049      } else {
1050        // Take the converted initializer.
1051        ConvertedConstructorArgs.push_back(FullInit.release());
1052      }
1053    } else {
1054      // No initialization required.
1055    }
1056
1057    // Take the converted arguments and use them for the new expression.
1058    NumConsArgs = ConvertedConstructorArgs.size();
1059    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1060  }
1061
1062  // Mark the new and delete operators as referenced.
1063  if (OperatorNew)
1064    MarkDeclarationReferenced(StartLoc, OperatorNew);
1065  if (OperatorDelete)
1066    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1067
1068  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
1069
1070  PlacementArgs.release();
1071  ConstructorArgs.release();
1072
1073  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1074                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1075                                        ArraySize, Constructor, Init,
1076                                        ConsArgs, NumConsArgs, OperatorDelete,
1077                                        UsualArrayDeleteWantsSize,
1078                                        ResultType, AllocTypeInfo,
1079                                        StartLoc,
1080                                        Init ? ConstructorRParen :
1081                                               TypeRange.getEnd(),
1082                                        ConstructorLParen, ConstructorRParen));
1083}
1084
1085/// CheckAllocatedType - Checks that a type is suitable as the allocated type
1086/// in a new-expression.
1087/// dimension off and stores the size expression in ArraySize.
1088bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1089                              SourceRange R) {
1090  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1091  //   abstract class type or array thereof.
1092  if (AllocType->isFunctionType())
1093    return Diag(Loc, diag::err_bad_new_type)
1094      << AllocType << 0 << R;
1095  else if (AllocType->isReferenceType())
1096    return Diag(Loc, diag::err_bad_new_type)
1097      << AllocType << 1 << R;
1098  else if (!AllocType->isDependentType() &&
1099           RequireCompleteType(Loc, AllocType,
1100                               PDiag(diag::err_new_incomplete_type)
1101                                 << R))
1102    return true;
1103  else if (RequireNonAbstractType(Loc, AllocType,
1104                                  diag::err_allocation_of_abstract_type))
1105    return true;
1106  else if (AllocType->isVariablyModifiedType())
1107    return Diag(Loc, diag::err_variably_modified_new_type)
1108             << AllocType;
1109  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1110    return Diag(Loc, diag::err_address_space_qualified_new)
1111      << AllocType.getUnqualifiedType() << AddressSpace;
1112
1113  return false;
1114}
1115
1116/// \brief Determine whether the given function is a non-placement
1117/// deallocation function.
1118static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1119  if (FD->isInvalidDecl())
1120    return false;
1121
1122  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1123    return Method->isUsualDeallocationFunction();
1124
1125  return ((FD->getOverloadedOperator() == OO_Delete ||
1126           FD->getOverloadedOperator() == OO_Array_Delete) &&
1127          FD->getNumParams() == 1);
1128}
1129
1130/// FindAllocationFunctions - Finds the overloads of operator new and delete
1131/// that are appropriate for the allocation.
1132bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1133                                   bool UseGlobal, QualType AllocType,
1134                                   bool IsArray, Expr **PlaceArgs,
1135                                   unsigned NumPlaceArgs,
1136                                   FunctionDecl *&OperatorNew,
1137                                   FunctionDecl *&OperatorDelete) {
1138  // --- Choosing an allocation function ---
1139  // C++ 5.3.4p8 - 14 & 18
1140  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1141  //   in the scope of the allocated class.
1142  // 2) If an array size is given, look for operator new[], else look for
1143  //   operator new.
1144  // 3) The first argument is always size_t. Append the arguments from the
1145  //   placement form.
1146
1147  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1148  // We don't care about the actual value of this argument.
1149  // FIXME: Should the Sema create the expression and embed it in the syntax
1150  // tree? Or should the consumer just recalculate the value?
1151  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1152                      Context.Target.getPointerWidth(0)),
1153                      Context.getSizeType(),
1154                      SourceLocation());
1155  AllocArgs[0] = &Size;
1156  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1157
1158  // C++ [expr.new]p8:
1159  //   If the allocated type is a non-array type, the allocation
1160  //   function's name is operator new and the deallocation function's
1161  //   name is operator delete. If the allocated type is an array
1162  //   type, the allocation function's name is operator new[] and the
1163  //   deallocation function's name is operator delete[].
1164  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1165                                        IsArray ? OO_Array_New : OO_New);
1166  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1167                                        IsArray ? OO_Array_Delete : OO_Delete);
1168
1169  QualType AllocElemType = Context.getBaseElementType(AllocType);
1170
1171  if (AllocElemType->isRecordType() && !UseGlobal) {
1172    CXXRecordDecl *Record
1173      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1174    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1175                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1176                          OperatorNew))
1177      return true;
1178  }
1179  if (!OperatorNew) {
1180    // Didn't find a member overload. Look for a global one.
1181    DeclareGlobalNewDelete();
1182    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1183    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1184                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1185                          OperatorNew))
1186      return true;
1187  }
1188
1189  // We don't need an operator delete if we're running under
1190  // -fno-exceptions.
1191  if (!getLangOptions().Exceptions) {
1192    OperatorDelete = 0;
1193    return false;
1194  }
1195
1196  // FindAllocationOverload can change the passed in arguments, so we need to
1197  // copy them back.
1198  if (NumPlaceArgs > 0)
1199    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1200
1201  // C++ [expr.new]p19:
1202  //
1203  //   If the new-expression begins with a unary :: operator, the
1204  //   deallocation function's name is looked up in the global
1205  //   scope. Otherwise, if the allocated type is a class type T or an
1206  //   array thereof, the deallocation function's name is looked up in
1207  //   the scope of T. If this lookup fails to find the name, or if
1208  //   the allocated type is not a class type or array thereof, the
1209  //   deallocation function's name is looked up in the global scope.
1210  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1211  if (AllocElemType->isRecordType() && !UseGlobal) {
1212    CXXRecordDecl *RD
1213      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1214    LookupQualifiedName(FoundDelete, RD);
1215  }
1216  if (FoundDelete.isAmbiguous())
1217    return true; // FIXME: clean up expressions?
1218
1219  if (FoundDelete.empty()) {
1220    DeclareGlobalNewDelete();
1221    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1222  }
1223
1224  FoundDelete.suppressDiagnostics();
1225
1226  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1227
1228  // Whether we're looking for a placement operator delete is dictated
1229  // by whether we selected a placement operator new, not by whether
1230  // we had explicit placement arguments.  This matters for things like
1231  //   struct A { void *operator new(size_t, int = 0); ... };
1232  //   A *a = new A()
1233  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1234
1235  if (isPlacementNew) {
1236    // C++ [expr.new]p20:
1237    //   A declaration of a placement deallocation function matches the
1238    //   declaration of a placement allocation function if it has the
1239    //   same number of parameters and, after parameter transformations
1240    //   (8.3.5), all parameter types except the first are
1241    //   identical. [...]
1242    //
1243    // To perform this comparison, we compute the function type that
1244    // the deallocation function should have, and use that type both
1245    // for template argument deduction and for comparison purposes.
1246    //
1247    // FIXME: this comparison should ignore CC and the like.
1248    QualType ExpectedFunctionType;
1249    {
1250      const FunctionProtoType *Proto
1251        = OperatorNew->getType()->getAs<FunctionProtoType>();
1252
1253      llvm::SmallVector<QualType, 4> ArgTypes;
1254      ArgTypes.push_back(Context.VoidPtrTy);
1255      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1256        ArgTypes.push_back(Proto->getArgType(I));
1257
1258      FunctionProtoType::ExtProtoInfo EPI;
1259      EPI.Variadic = Proto->isVariadic();
1260
1261      ExpectedFunctionType
1262        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1263                                  ArgTypes.size(), EPI);
1264    }
1265
1266    for (LookupResult::iterator D = FoundDelete.begin(),
1267                             DEnd = FoundDelete.end();
1268         D != DEnd; ++D) {
1269      FunctionDecl *Fn = 0;
1270      if (FunctionTemplateDecl *FnTmpl
1271            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1272        // Perform template argument deduction to try to match the
1273        // expected function type.
1274        TemplateDeductionInfo Info(Context, StartLoc);
1275        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1276          continue;
1277      } else
1278        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1279
1280      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1281        Matches.push_back(std::make_pair(D.getPair(), Fn));
1282    }
1283  } else {
1284    // C++ [expr.new]p20:
1285    //   [...] Any non-placement deallocation function matches a
1286    //   non-placement allocation function. [...]
1287    for (LookupResult::iterator D = FoundDelete.begin(),
1288                             DEnd = FoundDelete.end();
1289         D != DEnd; ++D) {
1290      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1291        if (isNonPlacementDeallocationFunction(Fn))
1292          Matches.push_back(std::make_pair(D.getPair(), Fn));
1293    }
1294  }
1295
1296  // C++ [expr.new]p20:
1297  //   [...] If the lookup finds a single matching deallocation
1298  //   function, that function will be called; otherwise, no
1299  //   deallocation function will be called.
1300  if (Matches.size() == 1) {
1301    OperatorDelete = Matches[0].second;
1302
1303    // C++0x [expr.new]p20:
1304    //   If the lookup finds the two-parameter form of a usual
1305    //   deallocation function (3.7.4.2) and that function, considered
1306    //   as a placement deallocation function, would have been
1307    //   selected as a match for the allocation function, the program
1308    //   is ill-formed.
1309    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1310        isNonPlacementDeallocationFunction(OperatorDelete)) {
1311      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1312        << SourceRange(PlaceArgs[0]->getLocStart(),
1313                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1314      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1315        << DeleteName;
1316    } else {
1317      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1318                            Matches[0].first);
1319    }
1320  }
1321
1322  return false;
1323}
1324
1325/// FindAllocationOverload - Find an fitting overload for the allocation
1326/// function in the specified scope.
1327bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1328                                  DeclarationName Name, Expr** Args,
1329                                  unsigned NumArgs, DeclContext *Ctx,
1330                                  bool AllowMissing, FunctionDecl *&Operator,
1331                                  bool Diagnose) {
1332  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1333  LookupQualifiedName(R, Ctx);
1334  if (R.empty()) {
1335    if (AllowMissing || !Diagnose)
1336      return false;
1337    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1338      << Name << Range;
1339  }
1340
1341  if (R.isAmbiguous())
1342    return true;
1343
1344  R.suppressDiagnostics();
1345
1346  OverloadCandidateSet Candidates(StartLoc);
1347  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1348       Alloc != AllocEnd; ++Alloc) {
1349    // Even member operator new/delete are implicitly treated as
1350    // static, so don't use AddMemberCandidate.
1351    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1352
1353    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1354      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1355                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1356                                   Candidates,
1357                                   /*SuppressUserConversions=*/false);
1358      continue;
1359    }
1360
1361    FunctionDecl *Fn = cast<FunctionDecl>(D);
1362    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1363                         /*SuppressUserConversions=*/false);
1364  }
1365
1366  // Do the resolution.
1367  OverloadCandidateSet::iterator Best;
1368  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1369  case OR_Success: {
1370    // Got one!
1371    FunctionDecl *FnDecl = Best->Function;
1372    MarkDeclarationReferenced(StartLoc, FnDecl);
1373    // The first argument is size_t, and the first parameter must be size_t,
1374    // too. This is checked on declaration and can be assumed. (It can't be
1375    // asserted on, though, since invalid decls are left in there.)
1376    // Watch out for variadic allocator function.
1377    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1378    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1379      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1380                                                       FnDecl->getParamDecl(i));
1381
1382      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1383        return true;
1384
1385      ExprResult Result
1386        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1387      if (Result.isInvalid())
1388        return true;
1389
1390      Args[i] = Result.takeAs<Expr>();
1391    }
1392    Operator = FnDecl;
1393    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl,
1394                          Diagnose);
1395    return false;
1396  }
1397
1398  case OR_No_Viable_Function:
1399    if (Diagnose)
1400      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1401        << Name << Range;
1402    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1403    return true;
1404
1405  case OR_Ambiguous:
1406    if (Diagnose)
1407      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1408        << Name << Range;
1409    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1410    return true;
1411
1412  case OR_Deleted: {
1413    if (Diagnose)
1414      Diag(StartLoc, diag::err_ovl_deleted_call)
1415        << Best->Function->isDeleted()
1416        << Name
1417        << getDeletedOrUnavailableSuffix(Best->Function)
1418        << Range;
1419    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1420    return true;
1421  }
1422  }
1423  assert(false && "Unreachable, bad result from BestViableFunction");
1424  return true;
1425}
1426
1427
1428/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1429/// delete. These are:
1430/// @code
1431///   // C++03:
1432///   void* operator new(std::size_t) throw(std::bad_alloc);
1433///   void* operator new[](std::size_t) throw(std::bad_alloc);
1434///   void operator delete(void *) throw();
1435///   void operator delete[](void *) throw();
1436///   // C++0x:
1437///   void* operator new(std::size_t);
1438///   void* operator new[](std::size_t);
1439///   void operator delete(void *);
1440///   void operator delete[](void *);
1441/// @endcode
1442/// C++0x operator delete is implicitly noexcept.
1443/// Note that the placement and nothrow forms of new are *not* implicitly
1444/// declared. Their use requires including \<new\>.
1445void Sema::DeclareGlobalNewDelete() {
1446  if (GlobalNewDeleteDeclared)
1447    return;
1448
1449  // C++ [basic.std.dynamic]p2:
1450  //   [...] The following allocation and deallocation functions (18.4) are
1451  //   implicitly declared in global scope in each translation unit of a
1452  //   program
1453  //
1454  //     C++03:
1455  //     void* operator new(std::size_t) throw(std::bad_alloc);
1456  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1457  //     void  operator delete(void*) throw();
1458  //     void  operator delete[](void*) throw();
1459  //     C++0x:
1460  //     void* operator new(std::size_t);
1461  //     void* operator new[](std::size_t);
1462  //     void  operator delete(void*);
1463  //     void  operator delete[](void*);
1464  //
1465  //   These implicit declarations introduce only the function names operator
1466  //   new, operator new[], operator delete, operator delete[].
1467  //
1468  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1469  // "std" or "bad_alloc" as necessary to form the exception specification.
1470  // However, we do not make these implicit declarations visible to name
1471  // lookup.
1472  // Note that the C++0x versions of operator delete are deallocation functions,
1473  // and thus are implicitly noexcept.
1474  if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
1475    // The "std::bad_alloc" class has not yet been declared, so build it
1476    // implicitly.
1477    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1478                                        getOrCreateStdNamespace(),
1479                                        SourceLocation(), SourceLocation(),
1480                                      &PP.getIdentifierTable().get("bad_alloc"),
1481                                        0);
1482    getStdBadAlloc()->setImplicit(true);
1483  }
1484
1485  GlobalNewDeleteDeclared = true;
1486
1487  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1488  QualType SizeT = Context.getSizeType();
1489  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1490
1491  DeclareGlobalAllocationFunction(
1492      Context.DeclarationNames.getCXXOperatorName(OO_New),
1493      VoidPtr, SizeT, AssumeSaneOperatorNew);
1494  DeclareGlobalAllocationFunction(
1495      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1496      VoidPtr, SizeT, AssumeSaneOperatorNew);
1497  DeclareGlobalAllocationFunction(
1498      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1499      Context.VoidTy, VoidPtr);
1500  DeclareGlobalAllocationFunction(
1501      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1502      Context.VoidTy, VoidPtr);
1503}
1504
1505/// DeclareGlobalAllocationFunction - Declares a single implicit global
1506/// allocation function if it doesn't already exist.
1507void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1508                                           QualType Return, QualType Argument,
1509                                           bool AddMallocAttr) {
1510  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1511
1512  // Check if this function is already declared.
1513  {
1514    DeclContext::lookup_iterator Alloc, AllocEnd;
1515    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1516         Alloc != AllocEnd; ++Alloc) {
1517      // Only look at non-template functions, as it is the predefined,
1518      // non-templated allocation function we are trying to declare here.
1519      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1520        QualType InitialParamType =
1521          Context.getCanonicalType(
1522            Func->getParamDecl(0)->getType().getUnqualifiedType());
1523        // FIXME: Do we need to check for default arguments here?
1524        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1525          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1526            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1527          return;
1528        }
1529      }
1530    }
1531  }
1532
1533  QualType BadAllocType;
1534  bool HasBadAllocExceptionSpec
1535    = (Name.getCXXOverloadedOperator() == OO_New ||
1536       Name.getCXXOverloadedOperator() == OO_Array_New);
1537  if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
1538    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1539    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1540  }
1541
1542  FunctionProtoType::ExtProtoInfo EPI;
1543  if (HasBadAllocExceptionSpec) {
1544    if (!getLangOptions().CPlusPlus0x) {
1545      EPI.ExceptionSpecType = EST_Dynamic;
1546      EPI.NumExceptions = 1;
1547      EPI.Exceptions = &BadAllocType;
1548    }
1549  } else {
1550    EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
1551                                EST_BasicNoexcept : EST_DynamicNone;
1552  }
1553
1554  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1555  FunctionDecl *Alloc =
1556    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1557                         SourceLocation(), Name,
1558                         FnType, /*TInfo=*/0, SC_None,
1559                         SC_None, false, true);
1560  Alloc->setImplicit();
1561
1562  if (AddMallocAttr)
1563    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1564
1565  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1566                                           SourceLocation(), 0,
1567                                           Argument, /*TInfo=*/0,
1568                                           SC_None, SC_None, 0);
1569  Alloc->setParams(&Param, 1);
1570
1571  // FIXME: Also add this declaration to the IdentifierResolver, but
1572  // make sure it is at the end of the chain to coincide with the
1573  // global scope.
1574  Context.getTranslationUnitDecl()->addDecl(Alloc);
1575}
1576
1577bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1578                                    DeclarationName Name,
1579                                    FunctionDecl* &Operator, bool Diagnose) {
1580  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1581  // Try to find operator delete/operator delete[] in class scope.
1582  LookupQualifiedName(Found, RD);
1583
1584  if (Found.isAmbiguous())
1585    return true;
1586
1587  Found.suppressDiagnostics();
1588
1589  llvm::SmallVector<DeclAccessPair,4> Matches;
1590  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1591       F != FEnd; ++F) {
1592    NamedDecl *ND = (*F)->getUnderlyingDecl();
1593
1594    // Ignore template operator delete members from the check for a usual
1595    // deallocation function.
1596    if (isa<FunctionTemplateDecl>(ND))
1597      continue;
1598
1599    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1600      Matches.push_back(F.getPair());
1601  }
1602
1603  // There's exactly one suitable operator;  pick it.
1604  if (Matches.size() == 1) {
1605    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1606
1607    if (Operator->isDeleted()) {
1608      if (Diagnose) {
1609        Diag(StartLoc, diag::err_deleted_function_use);
1610        Diag(Operator->getLocation(), diag::note_unavailable_here) << true;
1611      }
1612      return true;
1613    }
1614
1615    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1616                          Matches[0], Diagnose);
1617    return false;
1618
1619  // We found multiple suitable operators;  complain about the ambiguity.
1620  } else if (!Matches.empty()) {
1621    if (Diagnose) {
1622      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1623        << Name << RD;
1624
1625      for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1626             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1627        Diag((*F)->getUnderlyingDecl()->getLocation(),
1628             diag::note_member_declared_here) << Name;
1629    }
1630    return true;
1631  }
1632
1633  // We did find operator delete/operator delete[] declarations, but
1634  // none of them were suitable.
1635  if (!Found.empty()) {
1636    if (Diagnose) {
1637      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1638        << Name << RD;
1639
1640      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1641           F != FEnd; ++F)
1642        Diag((*F)->getUnderlyingDecl()->getLocation(),
1643             diag::note_member_declared_here) << Name;
1644    }
1645    return true;
1646  }
1647
1648  // Look for a global declaration.
1649  DeclareGlobalNewDelete();
1650  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1651
1652  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1653  Expr* DeallocArgs[1];
1654  DeallocArgs[0] = &Null;
1655  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1656                             DeallocArgs, 1, TUDecl, !Diagnose,
1657                             Operator, Diagnose))
1658    return true;
1659
1660  assert(Operator && "Did not find a deallocation function!");
1661  return false;
1662}
1663
1664/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1665/// @code ::delete ptr; @endcode
1666/// or
1667/// @code delete [] ptr; @endcode
1668ExprResult
1669Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1670                     bool ArrayForm, Expr *ExE) {
1671  // C++ [expr.delete]p1:
1672  //   The operand shall have a pointer type, or a class type having a single
1673  //   conversion function to a pointer type. The result has type void.
1674  //
1675  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1676
1677  ExprResult Ex = Owned(ExE);
1678  FunctionDecl *OperatorDelete = 0;
1679  bool ArrayFormAsWritten = ArrayForm;
1680  bool UsualArrayDeleteWantsSize = false;
1681
1682  if (!Ex.get()->isTypeDependent()) {
1683    QualType Type = Ex.get()->getType();
1684
1685    if (const RecordType *Record = Type->getAs<RecordType>()) {
1686      if (RequireCompleteType(StartLoc, Type,
1687                              PDiag(diag::err_delete_incomplete_class_type)))
1688        return ExprError();
1689
1690      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1691
1692      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1693      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1694      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1695             E = Conversions->end(); I != E; ++I) {
1696        NamedDecl *D = I.getDecl();
1697        if (isa<UsingShadowDecl>(D))
1698          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1699
1700        // Skip over templated conversion functions; they aren't considered.
1701        if (isa<FunctionTemplateDecl>(D))
1702          continue;
1703
1704        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1705
1706        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1707        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1708          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1709            ObjectPtrConversions.push_back(Conv);
1710      }
1711      if (ObjectPtrConversions.size() == 1) {
1712        // We have a single conversion to a pointer-to-object type. Perform
1713        // that conversion.
1714        // TODO: don't redo the conversion calculation.
1715        ExprResult Res =
1716          PerformImplicitConversion(Ex.get(),
1717                            ObjectPtrConversions.front()->getConversionType(),
1718                                    AA_Converting);
1719        if (Res.isUsable()) {
1720          Ex = move(Res);
1721          Type = Ex.get()->getType();
1722        }
1723      }
1724      else if (ObjectPtrConversions.size() > 1) {
1725        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1726              << Type << Ex.get()->getSourceRange();
1727        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1728          NoteOverloadCandidate(ObjectPtrConversions[i]);
1729        return ExprError();
1730      }
1731    }
1732
1733    if (!Type->isPointerType())
1734      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1735        << Type << Ex.get()->getSourceRange());
1736
1737    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1738    if (Pointee->isVoidType() && !isSFINAEContext()) {
1739      // The C++ standard bans deleting a pointer to a non-object type, which
1740      // effectively bans deletion of "void*". However, most compilers support
1741      // this, so we treat it as a warning unless we're in a SFINAE context.
1742      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1743        << Type << Ex.get()->getSourceRange();
1744    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1745      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1746        << Type << Ex.get()->getSourceRange());
1747    else if (!Pointee->isDependentType() &&
1748             RequireCompleteType(StartLoc, Pointee,
1749                                 PDiag(diag::warn_delete_incomplete)
1750                                   << Ex.get()->getSourceRange()))
1751      return ExprError();
1752    else if (unsigned AddressSpace = Pointee.getAddressSpace())
1753      return Diag(Ex.get()->getLocStart(),
1754                  diag::err_address_space_qualified_delete)
1755               << Pointee.getUnqualifiedType() << AddressSpace;
1756    // C++ [expr.delete]p2:
1757    //   [Note: a pointer to a const type can be the operand of a
1758    //   delete-expression; it is not necessary to cast away the constness
1759    //   (5.2.11) of the pointer expression before it is used as the operand
1760    //   of the delete-expression. ]
1761    Ex = ImpCastExprToType(Ex.take(), Context.getPointerType(Context.VoidTy),
1762                      CK_NoOp);
1763
1764    if (Pointee->isArrayType() && !ArrayForm) {
1765      Diag(StartLoc, diag::warn_delete_array_type)
1766          << Type << Ex.get()->getSourceRange()
1767          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1768      ArrayForm = true;
1769    }
1770
1771    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1772                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1773
1774    QualType PointeeElem = Context.getBaseElementType(Pointee);
1775    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1776      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1777
1778      if (!UseGlobal &&
1779          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1780        return ExprError();
1781
1782      // If we're allocating an array of records, check whether the
1783      // usual operator delete[] has a size_t parameter.
1784      if (ArrayForm) {
1785        // If the user specifically asked to use the global allocator,
1786        // we'll need to do the lookup into the class.
1787        if (UseGlobal)
1788          UsualArrayDeleteWantsSize =
1789            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1790
1791        // Otherwise, the usual operator delete[] should be the
1792        // function we just found.
1793        else if (isa<CXXMethodDecl>(OperatorDelete))
1794          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1795      }
1796
1797      if (!RD->hasTrivialDestructor())
1798        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1799          MarkDeclarationReferenced(StartLoc,
1800                                    const_cast<CXXDestructorDecl*>(Dtor));
1801          DiagnoseUseOfDecl(Dtor, StartLoc);
1802        }
1803
1804      // C++ [expr.delete]p3:
1805      //   In the first alternative (delete object), if the static type of the
1806      //   object to be deleted is different from its dynamic type, the static
1807      //   type shall be a base class of the dynamic type of the object to be
1808      //   deleted and the static type shall have a virtual destructor or the
1809      //   behavior is undefined.
1810      //
1811      // Note: a final class cannot be derived from, no issue there
1812      if (!ArrayForm && RD->isPolymorphic() && !RD->hasAttr<FinalAttr>()) {
1813        CXXDestructorDecl *dtor = RD->getDestructor();
1814        if (!dtor || !dtor->isVirtual())
1815          Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
1816      }
1817    }
1818
1819    if (!OperatorDelete) {
1820      // Look for a global declaration.
1821      DeclareGlobalNewDelete();
1822      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1823      Expr *Arg = Ex.get();
1824      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1825                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
1826                                 OperatorDelete))
1827        return ExprError();
1828    }
1829
1830    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1831
1832    // Check access and ambiguity of operator delete and destructor.
1833    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1834      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1835      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1836          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
1837                      PDiag(diag::err_access_dtor) << PointeeElem);
1838      }
1839    }
1840
1841  }
1842
1843  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1844                                           ArrayFormAsWritten,
1845                                           UsualArrayDeleteWantsSize,
1846                                           OperatorDelete, Ex.take(), StartLoc));
1847}
1848
1849/// \brief Check the use of the given variable as a C++ condition in an if,
1850/// while, do-while, or switch statement.
1851ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1852                                        SourceLocation StmtLoc,
1853                                        bool ConvertToBoolean) {
1854  QualType T = ConditionVar->getType();
1855
1856  // C++ [stmt.select]p2:
1857  //   The declarator shall not specify a function or an array.
1858  if (T->isFunctionType())
1859    return ExprError(Diag(ConditionVar->getLocation(),
1860                          diag::err_invalid_use_of_function_type)
1861                       << ConditionVar->getSourceRange());
1862  else if (T->isArrayType())
1863    return ExprError(Diag(ConditionVar->getLocation(),
1864                          diag::err_invalid_use_of_array_type)
1865                     << ConditionVar->getSourceRange());
1866
1867  ExprResult Condition =
1868    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
1869                                        ConditionVar,
1870                                        ConditionVar->getLocation(),
1871                            ConditionVar->getType().getNonReferenceType(),
1872                              VK_LValue));
1873  if (ConvertToBoolean) {
1874    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
1875    if (Condition.isInvalid())
1876      return ExprError();
1877  }
1878
1879  return move(Condition);
1880}
1881
1882/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1883ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
1884  // C++ 6.4p4:
1885  // The value of a condition that is an initialized declaration in a statement
1886  // other than a switch statement is the value of the declared variable
1887  // implicitly converted to type bool. If that conversion is ill-formed, the
1888  // program is ill-formed.
1889  // The value of a condition that is an expression is the value of the
1890  // expression, implicitly converted to bool.
1891  //
1892  return PerformContextuallyConvertToBool(CondExpr);
1893}
1894
1895/// Helper function to determine whether this is the (deprecated) C++
1896/// conversion from a string literal to a pointer to non-const char or
1897/// non-const wchar_t (for narrow and wide string literals,
1898/// respectively).
1899bool
1900Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1901  // Look inside the implicit cast, if it exists.
1902  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1903    From = Cast->getSubExpr();
1904
1905  // A string literal (2.13.4) that is not a wide string literal can
1906  // be converted to an rvalue of type "pointer to char"; a wide
1907  // string literal can be converted to an rvalue of type "pointer
1908  // to wchar_t" (C++ 4.2p2).
1909  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1910    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1911      if (const BuiltinType *ToPointeeType
1912          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1913        // This conversion is considered only when there is an
1914        // explicit appropriate pointer target type (C++ 4.2p2).
1915        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1916            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1917             (!StrLit->isWide() &&
1918              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1919               ToPointeeType->getKind() == BuiltinType::Char_S))))
1920          return true;
1921      }
1922
1923  return false;
1924}
1925
1926static ExprResult BuildCXXCastArgument(Sema &S,
1927                                       SourceLocation CastLoc,
1928                                       QualType Ty,
1929                                       CastKind Kind,
1930                                       CXXMethodDecl *Method,
1931                                       NamedDecl *FoundDecl,
1932                                       Expr *From) {
1933  switch (Kind) {
1934  default: assert(0 && "Unhandled cast kind!");
1935  case CK_ConstructorConversion: {
1936    ASTOwningVector<Expr*> ConstructorArgs(S);
1937
1938    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1939                                  MultiExprArg(&From, 1),
1940                                  CastLoc, ConstructorArgs))
1941      return ExprError();
1942
1943    ExprResult Result =
1944    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1945                            move_arg(ConstructorArgs),
1946                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1947                            SourceRange());
1948    if (Result.isInvalid())
1949      return ExprError();
1950
1951    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1952  }
1953
1954  case CK_UserDefinedConversion: {
1955    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1956
1957    // Create an implicit call expr that calls it.
1958    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
1959    if (Result.isInvalid())
1960      return ExprError();
1961
1962    return S.MaybeBindToTemporary(Result.get());
1963  }
1964  }
1965}
1966
1967/// PerformImplicitConversion - Perform an implicit conversion of the
1968/// expression From to the type ToType using the pre-computed implicit
1969/// conversion sequence ICS. Returns the converted
1970/// expression. Action is the kind of conversion we're performing,
1971/// used in the error message.
1972ExprResult
1973Sema::PerformImplicitConversion(Expr *From, QualType ToType,
1974                                const ImplicitConversionSequence &ICS,
1975                                AssignmentAction Action, bool CStyle) {
1976  switch (ICS.getKind()) {
1977  case ImplicitConversionSequence::StandardConversion: {
1978    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
1979                                               Action, CStyle);
1980    if (Res.isInvalid())
1981      return ExprError();
1982    From = Res.take();
1983    break;
1984  }
1985
1986  case ImplicitConversionSequence::UserDefinedConversion: {
1987
1988      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1989      CastKind CastKind;
1990      QualType BeforeToType;
1991      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1992        CastKind = CK_UserDefinedConversion;
1993
1994        // If the user-defined conversion is specified by a conversion function,
1995        // the initial standard conversion sequence converts the source type to
1996        // the implicit object parameter of the conversion function.
1997        BeforeToType = Context.getTagDeclType(Conv->getParent());
1998      } else {
1999        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2000        CastKind = CK_ConstructorConversion;
2001        // Do no conversion if dealing with ... for the first conversion.
2002        if (!ICS.UserDefined.EllipsisConversion) {
2003          // If the user-defined conversion is specified by a constructor, the
2004          // initial standard conversion sequence converts the source type to the
2005          // type required by the argument of the constructor
2006          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2007        }
2008      }
2009      // Watch out for elipsis conversion.
2010      if (!ICS.UserDefined.EllipsisConversion) {
2011        ExprResult Res =
2012          PerformImplicitConversion(From, BeforeToType,
2013                                    ICS.UserDefined.Before, AA_Converting,
2014                                    CStyle);
2015        if (Res.isInvalid())
2016          return ExprError();
2017        From = Res.take();
2018      }
2019
2020      ExprResult CastArg
2021        = BuildCXXCastArgument(*this,
2022                               From->getLocStart(),
2023                               ToType.getNonReferenceType(),
2024                               CastKind, cast<CXXMethodDecl>(FD),
2025                               ICS.UserDefined.FoundConversionFunction,
2026                               From);
2027
2028      if (CastArg.isInvalid())
2029        return ExprError();
2030
2031      From = CastArg.take();
2032
2033      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2034                                       AA_Converting, CStyle);
2035  }
2036
2037  case ImplicitConversionSequence::AmbiguousConversion:
2038    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2039                          PDiag(diag::err_typecheck_ambiguous_condition)
2040                            << From->getSourceRange());
2041     return ExprError();
2042
2043  case ImplicitConversionSequence::EllipsisConversion:
2044    assert(false && "Cannot perform an ellipsis conversion");
2045    return Owned(From);
2046
2047  case ImplicitConversionSequence::BadConversion:
2048    return ExprError();
2049  }
2050
2051  // Everything went well.
2052  return Owned(From);
2053}
2054
2055/// PerformImplicitConversion - Perform an implicit conversion of the
2056/// expression From to the type ToType by following the standard
2057/// conversion sequence SCS. Returns the converted
2058/// expression. Flavor is the context in which we're performing this
2059/// conversion, for use in error messages.
2060ExprResult
2061Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2062                                const StandardConversionSequence& SCS,
2063                                AssignmentAction Action, bool CStyle) {
2064  // Overall FIXME: we are recomputing too many types here and doing far too
2065  // much extra work. What this means is that we need to keep track of more
2066  // information that is computed when we try the implicit conversion initially,
2067  // so that we don't need to recompute anything here.
2068  QualType FromType = From->getType();
2069
2070  if (SCS.CopyConstructor) {
2071    // FIXME: When can ToType be a reference type?
2072    assert(!ToType->isReferenceType());
2073    if (SCS.Second == ICK_Derived_To_Base) {
2074      ASTOwningVector<Expr*> ConstructorArgs(*this);
2075      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2076                                  MultiExprArg(*this, &From, 1),
2077                                  /*FIXME:ConstructLoc*/SourceLocation(),
2078                                  ConstructorArgs))
2079        return ExprError();
2080      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2081                                   ToType, SCS.CopyConstructor,
2082                                   move_arg(ConstructorArgs),
2083                                   /*ZeroInit*/ false,
2084                                   CXXConstructExpr::CK_Complete,
2085                                   SourceRange());
2086    }
2087    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2088                                 ToType, SCS.CopyConstructor,
2089                                 MultiExprArg(*this, &From, 1),
2090                                 /*ZeroInit*/ false,
2091                                 CXXConstructExpr::CK_Complete,
2092                                 SourceRange());
2093  }
2094
2095  // Resolve overloaded function references.
2096  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2097    DeclAccessPair Found;
2098    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2099                                                          true, Found);
2100    if (!Fn)
2101      return ExprError();
2102
2103    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2104      return ExprError();
2105
2106    From = FixOverloadedFunctionReference(From, Found, Fn);
2107    FromType = From->getType();
2108  }
2109
2110  // Perform the first implicit conversion.
2111  switch (SCS.First) {
2112  case ICK_Identity:
2113    // Nothing to do.
2114    break;
2115
2116  case ICK_Lvalue_To_Rvalue:
2117    // Should this get its own ICK?
2118    if (From->getObjectKind() == OK_ObjCProperty) {
2119      ExprResult FromRes = ConvertPropertyForRValue(From);
2120      if (FromRes.isInvalid())
2121        return ExprError();
2122      From = FromRes.take();
2123      if (!From->isGLValue()) break;
2124    }
2125
2126    // Check for trivial buffer overflows.
2127    CheckArrayAccess(From);
2128
2129    FromType = FromType.getUnqualifiedType();
2130    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2131                                    From, 0, VK_RValue);
2132    break;
2133
2134  case ICK_Array_To_Pointer:
2135    FromType = Context.getArrayDecayedType(FromType);
2136    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay).take();
2137    break;
2138
2139  case ICK_Function_To_Pointer:
2140    FromType = Context.getPointerType(FromType);
2141    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay).take();
2142    break;
2143
2144  default:
2145    assert(false && "Improper first standard conversion");
2146    break;
2147  }
2148
2149  // Perform the second implicit conversion
2150  switch (SCS.Second) {
2151  case ICK_Identity:
2152    // If both sides are functions (or pointers/references to them), there could
2153    // be incompatible exception declarations.
2154    if (CheckExceptionSpecCompatibility(From, ToType))
2155      return ExprError();
2156    // Nothing else to do.
2157    break;
2158
2159  case ICK_NoReturn_Adjustment:
2160    // If both sides are functions (or pointers/references to them), there could
2161    // be incompatible exception declarations.
2162    if (CheckExceptionSpecCompatibility(From, ToType))
2163      return ExprError();
2164
2165    From = ImpCastExprToType(From, ToType, CK_NoOp).take();
2166    break;
2167
2168  case ICK_Integral_Promotion:
2169  case ICK_Integral_Conversion:
2170    From = ImpCastExprToType(From, ToType, CK_IntegralCast).take();
2171    break;
2172
2173  case ICK_Floating_Promotion:
2174  case ICK_Floating_Conversion:
2175    From = ImpCastExprToType(From, ToType, CK_FloatingCast).take();
2176    break;
2177
2178  case ICK_Complex_Promotion:
2179  case ICK_Complex_Conversion: {
2180    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2181    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2182    CastKind CK;
2183    if (FromEl->isRealFloatingType()) {
2184      if (ToEl->isRealFloatingType())
2185        CK = CK_FloatingComplexCast;
2186      else
2187        CK = CK_FloatingComplexToIntegralComplex;
2188    } else if (ToEl->isRealFloatingType()) {
2189      CK = CK_IntegralComplexToFloatingComplex;
2190    } else {
2191      CK = CK_IntegralComplexCast;
2192    }
2193    From = ImpCastExprToType(From, ToType, CK).take();
2194    break;
2195  }
2196
2197  case ICK_Floating_Integral:
2198    if (ToType->isRealFloatingType())
2199      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating).take();
2200    else
2201      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral).take();
2202    break;
2203
2204  case ICK_Compatible_Conversion:
2205    From = ImpCastExprToType(From, ToType, CK_NoOp).take();
2206    break;
2207
2208  case ICK_Pointer_Conversion: {
2209    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2210      // Diagnose incompatible Objective-C conversions
2211      if (Action == AA_Initializing)
2212        Diag(From->getSourceRange().getBegin(),
2213             diag::ext_typecheck_convert_incompatible_pointer)
2214          << ToType << From->getType() << Action
2215          << From->getSourceRange();
2216      else
2217        Diag(From->getSourceRange().getBegin(),
2218             diag::ext_typecheck_convert_incompatible_pointer)
2219          << From->getType() << ToType << Action
2220          << From->getSourceRange();
2221    }
2222
2223    CastKind Kind = CK_Invalid;
2224    CXXCastPath BasePath;
2225    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2226      return ExprError();
2227    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath).take();
2228    break;
2229  }
2230
2231  case ICK_Pointer_Member: {
2232    CastKind Kind = CK_Invalid;
2233    CXXCastPath BasePath;
2234    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2235      return ExprError();
2236    if (CheckExceptionSpecCompatibility(From, ToType))
2237      return ExprError();
2238    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath).take();
2239    break;
2240  }
2241
2242  case ICK_Boolean_Conversion:
2243    From = ImpCastExprToType(From, Context.BoolTy,
2244                             ScalarTypeToBooleanCastKind(FromType)).take();
2245    break;
2246
2247  case ICK_Derived_To_Base: {
2248    CXXCastPath BasePath;
2249    if (CheckDerivedToBaseConversion(From->getType(),
2250                                     ToType.getNonReferenceType(),
2251                                     From->getLocStart(),
2252                                     From->getSourceRange(),
2253                                     &BasePath,
2254                                     CStyle))
2255      return ExprError();
2256
2257    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2258                      CK_DerivedToBase, CastCategory(From),
2259                      &BasePath).take();
2260    break;
2261  }
2262
2263  case ICK_Vector_Conversion:
2264    From = ImpCastExprToType(From, ToType, CK_BitCast).take();
2265    break;
2266
2267  case ICK_Vector_Splat:
2268    From = ImpCastExprToType(From, ToType, CK_VectorSplat).take();
2269    break;
2270
2271  case ICK_Complex_Real:
2272    // Case 1.  x -> _Complex y
2273    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2274      QualType ElType = ToComplex->getElementType();
2275      bool isFloatingComplex = ElType->isRealFloatingType();
2276
2277      // x -> y
2278      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2279        // do nothing
2280      } else if (From->getType()->isRealFloatingType()) {
2281        From = ImpCastExprToType(From, ElType,
2282                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2283      } else {
2284        assert(From->getType()->isIntegerType());
2285        From = ImpCastExprToType(From, ElType,
2286                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2287      }
2288      // y -> _Complex y
2289      From = ImpCastExprToType(From, ToType,
2290                   isFloatingComplex ? CK_FloatingRealToComplex
2291                                     : CK_IntegralRealToComplex).take();
2292
2293    // Case 2.  _Complex x -> y
2294    } else {
2295      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2296      assert(FromComplex);
2297
2298      QualType ElType = FromComplex->getElementType();
2299      bool isFloatingComplex = ElType->isRealFloatingType();
2300
2301      // _Complex x -> x
2302      From = ImpCastExprToType(From, ElType,
2303                   isFloatingComplex ? CK_FloatingComplexToReal
2304                                     : CK_IntegralComplexToReal).take();
2305
2306      // x -> y
2307      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2308        // do nothing
2309      } else if (ToType->isRealFloatingType()) {
2310        From = ImpCastExprToType(From, ToType,
2311                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating).take();
2312      } else {
2313        assert(ToType->isIntegerType());
2314        From = ImpCastExprToType(From, ToType,
2315                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast).take();
2316      }
2317    }
2318    break;
2319
2320  case ICK_Block_Pointer_Conversion: {
2321      From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2322                               VK_RValue).take();
2323      break;
2324    }
2325
2326  case ICK_TransparentUnionConversion: {
2327    ExprResult FromRes = Owned(From);
2328    Sema::AssignConvertType ConvTy =
2329      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2330    if (FromRes.isInvalid())
2331      return ExprError();
2332    From = FromRes.take();
2333    assert ((ConvTy == Sema::Compatible) &&
2334            "Improper transparent union conversion");
2335    (void)ConvTy;
2336    break;
2337  }
2338
2339  case ICK_Lvalue_To_Rvalue:
2340  case ICK_Array_To_Pointer:
2341  case ICK_Function_To_Pointer:
2342  case ICK_Qualification:
2343  case ICK_Num_Conversion_Kinds:
2344    assert(false && "Improper second standard conversion");
2345    break;
2346  }
2347
2348  switch (SCS.Third) {
2349  case ICK_Identity:
2350    // Nothing to do.
2351    break;
2352
2353  case ICK_Qualification: {
2354    // The qualification keeps the category of the inner expression, unless the
2355    // target type isn't a reference.
2356    ExprValueKind VK = ToType->isReferenceType() ?
2357                                  CastCategory(From) : VK_RValue;
2358    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2359                             CK_NoOp, VK).take();
2360
2361    if (SCS.DeprecatedStringLiteralToCharPtr &&
2362        !getLangOptions().WritableStrings)
2363      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2364        << ToType.getNonReferenceType();
2365
2366    break;
2367    }
2368
2369  default:
2370    assert(false && "Improper third standard conversion");
2371    break;
2372  }
2373
2374  return Owned(From);
2375}
2376
2377ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2378                                     SourceLocation KWLoc,
2379                                     ParsedType Ty,
2380                                     SourceLocation RParen) {
2381  TypeSourceInfo *TSInfo;
2382  QualType T = GetTypeFromParser(Ty, &TSInfo);
2383
2384  if (!TSInfo)
2385    TSInfo = Context.getTrivialTypeSourceInfo(T);
2386  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2387}
2388
2389/// \brief Check the completeness of a type in a unary type trait.
2390///
2391/// If the particular type trait requires a complete type, tries to complete
2392/// it. If completing the type fails, a diagnostic is emitted and false
2393/// returned. If completing the type succeeds or no completion was required,
2394/// returns true.
2395static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2396                                                UnaryTypeTrait UTT,
2397                                                SourceLocation Loc,
2398                                                QualType ArgTy) {
2399  // C++0x [meta.unary.prop]p3:
2400  //   For all of the class templates X declared in this Clause, instantiating
2401  //   that template with a template argument that is a class template
2402  //   specialization may result in the implicit instantiation of the template
2403  //   argument if and only if the semantics of X require that the argument
2404  //   must be a complete type.
2405  // We apply this rule to all the type trait expressions used to implement
2406  // these class templates. We also try to follow any GCC documented behavior
2407  // in these expressions to ensure portability of standard libraries.
2408  switch (UTT) {
2409    // is_complete_type somewhat obviously cannot require a complete type.
2410  case UTT_IsCompleteType:
2411    // Fall-through
2412
2413    // These traits are modeled on the type predicates in C++0x
2414    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2415    // requiring a complete type, as whether or not they return true cannot be
2416    // impacted by the completeness of the type.
2417  case UTT_IsVoid:
2418  case UTT_IsIntegral:
2419  case UTT_IsFloatingPoint:
2420  case UTT_IsArray:
2421  case UTT_IsPointer:
2422  case UTT_IsLvalueReference:
2423  case UTT_IsRvalueReference:
2424  case UTT_IsMemberFunctionPointer:
2425  case UTT_IsMemberObjectPointer:
2426  case UTT_IsEnum:
2427  case UTT_IsUnion:
2428  case UTT_IsClass:
2429  case UTT_IsFunction:
2430  case UTT_IsReference:
2431  case UTT_IsArithmetic:
2432  case UTT_IsFundamental:
2433  case UTT_IsObject:
2434  case UTT_IsScalar:
2435  case UTT_IsCompound:
2436  case UTT_IsMemberPointer:
2437    // Fall-through
2438
2439    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2440    // which requires some of its traits to have the complete type. However,
2441    // the completeness of the type cannot impact these traits' semantics, and
2442    // so they don't require it. This matches the comments on these traits in
2443    // Table 49.
2444  case UTT_IsConst:
2445  case UTT_IsVolatile:
2446  case UTT_IsSigned:
2447  case UTT_IsUnsigned:
2448    return true;
2449
2450    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2451    // applied to a complete type.
2452  case UTT_IsTrivial:
2453  case UTT_IsTriviallyCopyable:
2454  case UTT_IsStandardLayout:
2455  case UTT_IsPOD:
2456  case UTT_IsLiteral:
2457  case UTT_IsEmpty:
2458  case UTT_IsPolymorphic:
2459  case UTT_IsAbstract:
2460    // Fall-through
2461
2462    // These trait expressions are designed to help implement predicates in
2463    // [meta.unary.prop] despite not being named the same. They are specified
2464    // by both GCC and the Embarcadero C++ compiler, and require the complete
2465    // type due to the overarching C++0x type predicates being implemented
2466    // requiring the complete type.
2467  case UTT_HasNothrowAssign:
2468  case UTT_HasNothrowConstructor:
2469  case UTT_HasNothrowCopy:
2470  case UTT_HasTrivialAssign:
2471  case UTT_HasTrivialDefaultConstructor:
2472  case UTT_HasTrivialCopy:
2473  case UTT_HasTrivialDestructor:
2474  case UTT_HasVirtualDestructor:
2475    // Arrays of unknown bound are expressly allowed.
2476    QualType ElTy = ArgTy;
2477    if (ArgTy->isIncompleteArrayType())
2478      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2479
2480    // The void type is expressly allowed.
2481    if (ElTy->isVoidType())
2482      return true;
2483
2484    return !S.RequireCompleteType(
2485      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2486  }
2487  llvm_unreachable("Type trait not handled by switch");
2488}
2489
2490static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2491                                   SourceLocation KeyLoc, QualType T) {
2492  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2493
2494  ASTContext &C = Self.Context;
2495  switch(UTT) {
2496    // Type trait expressions corresponding to the primary type category
2497    // predicates in C++0x [meta.unary.cat].
2498  case UTT_IsVoid:
2499    return T->isVoidType();
2500  case UTT_IsIntegral:
2501    return T->isIntegralType(C);
2502  case UTT_IsFloatingPoint:
2503    return T->isFloatingType();
2504  case UTT_IsArray:
2505    return T->isArrayType();
2506  case UTT_IsPointer:
2507    return T->isPointerType();
2508  case UTT_IsLvalueReference:
2509    return T->isLValueReferenceType();
2510  case UTT_IsRvalueReference:
2511    return T->isRValueReferenceType();
2512  case UTT_IsMemberFunctionPointer:
2513    return T->isMemberFunctionPointerType();
2514  case UTT_IsMemberObjectPointer:
2515    return T->isMemberDataPointerType();
2516  case UTT_IsEnum:
2517    return T->isEnumeralType();
2518  case UTT_IsUnion:
2519    return T->isUnionType();
2520  case UTT_IsClass:
2521    return T->isClassType() || T->isStructureType();
2522  case UTT_IsFunction:
2523    return T->isFunctionType();
2524
2525    // Type trait expressions which correspond to the convenient composition
2526    // predicates in C++0x [meta.unary.comp].
2527  case UTT_IsReference:
2528    return T->isReferenceType();
2529  case UTT_IsArithmetic:
2530    return T->isArithmeticType() && !T->isEnumeralType();
2531  case UTT_IsFundamental:
2532    return T->isFundamentalType();
2533  case UTT_IsObject:
2534    return T->isObjectType();
2535  case UTT_IsScalar:
2536    return T->isScalarType();
2537  case UTT_IsCompound:
2538    return T->isCompoundType();
2539  case UTT_IsMemberPointer:
2540    return T->isMemberPointerType();
2541
2542    // Type trait expressions which correspond to the type property predicates
2543    // in C++0x [meta.unary.prop].
2544  case UTT_IsConst:
2545    return T.isConstQualified();
2546  case UTT_IsVolatile:
2547    return T.isVolatileQualified();
2548  case UTT_IsTrivial:
2549    return T->isTrivialType();
2550  case UTT_IsTriviallyCopyable:
2551    return T->isTriviallyCopyableType();
2552  case UTT_IsStandardLayout:
2553    return T->isStandardLayoutType();
2554  case UTT_IsPOD:
2555    return T->isPODType();
2556  case UTT_IsLiteral:
2557    return T->isLiteralType();
2558  case UTT_IsEmpty:
2559    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2560      return !RD->isUnion() && RD->isEmpty();
2561    return false;
2562  case UTT_IsPolymorphic:
2563    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2564      return RD->isPolymorphic();
2565    return false;
2566  case UTT_IsAbstract:
2567    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2568      return RD->isAbstract();
2569    return false;
2570  case UTT_IsSigned:
2571    return T->isSignedIntegerType();
2572  case UTT_IsUnsigned:
2573    return T->isUnsignedIntegerType();
2574
2575    // Type trait expressions which query classes regarding their construction,
2576    // destruction, and copying. Rather than being based directly on the
2577    // related type predicates in the standard, they are specified by both
2578    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
2579    // specifications.
2580    //
2581    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
2582    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2583  case UTT_HasTrivialDefaultConstructor:
2584    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2585    //   If __is_pod (type) is true then the trait is true, else if type is
2586    //   a cv class or union type (or array thereof) with a trivial default
2587    //   constructor ([class.ctor]) then the trait is true, else it is false.
2588    if (T->isPODType())
2589      return true;
2590    if (const RecordType *RT =
2591          C.getBaseElementType(T)->getAs<RecordType>())
2592      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
2593    return false;
2594  case UTT_HasTrivialCopy:
2595    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2596    //   If __is_pod (type) is true or type is a reference type then
2597    //   the trait is true, else if type is a cv class or union type
2598    //   with a trivial copy constructor ([class.copy]) then the trait
2599    //   is true, else it is false.
2600    if (T->isPODType() || T->isReferenceType())
2601      return true;
2602    if (const RecordType *RT = T->getAs<RecordType>())
2603      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2604    return false;
2605  case UTT_HasTrivialAssign:
2606    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2607    //   If type is const qualified or is a reference type then the
2608    //   trait is false. Otherwise if __is_pod (type) is true then the
2609    //   trait is true, else if type is a cv class or union type with
2610    //   a trivial copy assignment ([class.copy]) then the trait is
2611    //   true, else it is false.
2612    // Note: the const and reference restrictions are interesting,
2613    // given that const and reference members don't prevent a class
2614    // from having a trivial copy assignment operator (but do cause
2615    // errors if the copy assignment operator is actually used, q.v.
2616    // [class.copy]p12).
2617
2618    if (C.getBaseElementType(T).isConstQualified())
2619      return false;
2620    if (T->isPODType())
2621      return true;
2622    if (const RecordType *RT = T->getAs<RecordType>())
2623      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2624    return false;
2625  case UTT_HasTrivialDestructor:
2626    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2627    //   If __is_pod (type) is true or type is a reference type
2628    //   then the trait is true, else if type is a cv class or union
2629    //   type (or array thereof) with a trivial destructor
2630    //   ([class.dtor]) then the trait is true, else it is
2631    //   false.
2632    if (T->isPODType() || T->isReferenceType())
2633      return true;
2634    if (const RecordType *RT =
2635          C.getBaseElementType(T)->getAs<RecordType>())
2636      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2637    return false;
2638  // TODO: Propagate nothrowness for implicitly declared special members.
2639  case UTT_HasNothrowAssign:
2640    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2641    //   If type is const qualified or is a reference type then the
2642    //   trait is false. Otherwise if __has_trivial_assign (type)
2643    //   is true then the trait is true, else if type is a cv class
2644    //   or union type with copy assignment operators that are known
2645    //   not to throw an exception then the trait is true, else it is
2646    //   false.
2647    if (C.getBaseElementType(T).isConstQualified())
2648      return false;
2649    if (T->isReferenceType())
2650      return false;
2651    if (T->isPODType())
2652      return true;
2653    if (const RecordType *RT = T->getAs<RecordType>()) {
2654      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2655      if (RD->hasTrivialCopyAssignment())
2656        return true;
2657
2658      bool FoundAssign = false;
2659      bool AllNoThrow = true;
2660      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2661      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2662                       Sema::LookupOrdinaryName);
2663      if (Self.LookupQualifiedName(Res, RD)) {
2664        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2665             Op != OpEnd; ++Op) {
2666          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2667          if (Operator->isCopyAssignmentOperator()) {
2668            FoundAssign = true;
2669            const FunctionProtoType *CPT
2670                = Operator->getType()->getAs<FunctionProtoType>();
2671            if (!CPT->isNothrow(Self.Context)) {
2672              AllNoThrow = false;
2673              break;
2674            }
2675          }
2676        }
2677      }
2678
2679      return FoundAssign && AllNoThrow;
2680    }
2681    return false;
2682  case UTT_HasNothrowCopy:
2683    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2684    //   If __has_trivial_copy (type) is true then the trait is true, else
2685    //   if type is a cv class or union type with copy constructors that are
2686    //   known not to throw an exception then the trait is true, else it is
2687    //   false.
2688    if (T->isPODType() || T->isReferenceType())
2689      return true;
2690    if (const RecordType *RT = T->getAs<RecordType>()) {
2691      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2692      if (RD->hasTrivialCopyConstructor())
2693        return true;
2694
2695      bool FoundConstructor = false;
2696      bool AllNoThrow = true;
2697      unsigned FoundTQs;
2698      DeclContext::lookup_const_iterator Con, ConEnd;
2699      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2700           Con != ConEnd; ++Con) {
2701        // A template constructor is never a copy constructor.
2702        // FIXME: However, it may actually be selected at the actual overload
2703        // resolution point.
2704        if (isa<FunctionTemplateDecl>(*Con))
2705          continue;
2706        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2707        if (Constructor->isCopyConstructor(FoundTQs)) {
2708          FoundConstructor = true;
2709          const FunctionProtoType *CPT
2710              = Constructor->getType()->getAs<FunctionProtoType>();
2711          // FIXME: check whether evaluating default arguments can throw.
2712          // For now, we'll be conservative and assume that they can throw.
2713          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1) {
2714            AllNoThrow = false;
2715            break;
2716          }
2717        }
2718      }
2719
2720      return FoundConstructor && AllNoThrow;
2721    }
2722    return false;
2723  case UTT_HasNothrowConstructor:
2724    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2725    //   If __has_trivial_constructor (type) is true then the trait is
2726    //   true, else if type is a cv class or union type (or array
2727    //   thereof) with a default constructor that is known not to
2728    //   throw an exception then the trait is true, else it is false.
2729    if (T->isPODType())
2730      return true;
2731    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2732      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2733      if (RD->hasTrivialDefaultConstructor())
2734        return true;
2735
2736      DeclContext::lookup_const_iterator Con, ConEnd;
2737      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2738           Con != ConEnd; ++Con) {
2739        // FIXME: In C++0x, a constructor template can be a default constructor.
2740        if (isa<FunctionTemplateDecl>(*Con))
2741          continue;
2742        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2743        if (Constructor->isDefaultConstructor()) {
2744          const FunctionProtoType *CPT
2745              = Constructor->getType()->getAs<FunctionProtoType>();
2746          // TODO: check whether evaluating default arguments can throw.
2747          // For now, we'll be conservative and assume that they can throw.
2748          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
2749        }
2750      }
2751    }
2752    return false;
2753  case UTT_HasVirtualDestructor:
2754    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2755    //   If type is a class type with a virtual destructor ([class.dtor])
2756    //   then the trait is true, else it is false.
2757    if (const RecordType *Record = T->getAs<RecordType>()) {
2758      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2759      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2760        return Destructor->isVirtual();
2761    }
2762    return false;
2763
2764    // These type trait expressions are modeled on the specifications for the
2765    // Embarcadero C++0x type trait functions:
2766    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2767  case UTT_IsCompleteType:
2768    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
2769    //   Returns True if and only if T is a complete type at the point of the
2770    //   function call.
2771    return !T->isIncompleteType();
2772  }
2773  llvm_unreachable("Type trait not covered by switch");
2774}
2775
2776ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2777                                     SourceLocation KWLoc,
2778                                     TypeSourceInfo *TSInfo,
2779                                     SourceLocation RParen) {
2780  QualType T = TSInfo->getType();
2781  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
2782    return ExprError();
2783
2784  bool Value = false;
2785  if (!T->isDependentType())
2786    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
2787
2788  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2789                                                RParen, Context.BoolTy));
2790}
2791
2792ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2793                                      SourceLocation KWLoc,
2794                                      ParsedType LhsTy,
2795                                      ParsedType RhsTy,
2796                                      SourceLocation RParen) {
2797  TypeSourceInfo *LhsTSInfo;
2798  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2799  if (!LhsTSInfo)
2800    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2801
2802  TypeSourceInfo *RhsTSInfo;
2803  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2804  if (!RhsTSInfo)
2805    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2806
2807  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2808}
2809
2810static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2811                                    QualType LhsT, QualType RhsT,
2812                                    SourceLocation KeyLoc) {
2813  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
2814         "Cannot evaluate traits of dependent types");
2815
2816  switch(BTT) {
2817  case BTT_IsBaseOf: {
2818    // C++0x [meta.rel]p2
2819    // Base is a base class of Derived without regard to cv-qualifiers or
2820    // Base and Derived are not unions and name the same class type without
2821    // regard to cv-qualifiers.
2822
2823    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2824    if (!lhsRecord) return false;
2825
2826    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
2827    if (!rhsRecord) return false;
2828
2829    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
2830             == (lhsRecord == rhsRecord));
2831
2832    if (lhsRecord == rhsRecord)
2833      return !lhsRecord->getDecl()->isUnion();
2834
2835    // C++0x [meta.rel]p2:
2836    //   If Base and Derived are class types and are different types
2837    //   (ignoring possible cv-qualifiers) then Derived shall be a
2838    //   complete type.
2839    if (Self.RequireCompleteType(KeyLoc, RhsT,
2840                          diag::err_incomplete_type_used_in_type_trait_expr))
2841      return false;
2842
2843    return cast<CXXRecordDecl>(rhsRecord->getDecl())
2844      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
2845  }
2846  case BTT_IsSame:
2847    return Self.Context.hasSameType(LhsT, RhsT);
2848  case BTT_TypeCompatible:
2849    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2850                                           RhsT.getUnqualifiedType());
2851  case BTT_IsConvertible:
2852  case BTT_IsConvertibleTo: {
2853    // C++0x [meta.rel]p4:
2854    //   Given the following function prototype:
2855    //
2856    //     template <class T>
2857    //       typename add_rvalue_reference<T>::type create();
2858    //
2859    //   the predicate condition for a template specialization
2860    //   is_convertible<From, To> shall be satisfied if and only if
2861    //   the return expression in the following code would be
2862    //   well-formed, including any implicit conversions to the return
2863    //   type of the function:
2864    //
2865    //     To test() {
2866    //       return create<From>();
2867    //     }
2868    //
2869    //   Access checking is performed as if in a context unrelated to To and
2870    //   From. Only the validity of the immediate context of the expression
2871    //   of the return-statement (including conversions to the return type)
2872    //   is considered.
2873    //
2874    // We model the initialization as a copy-initialization of a temporary
2875    // of the appropriate type, which for this expression is identical to the
2876    // return statement (since NRVO doesn't apply).
2877    if (LhsT->isObjectType() || LhsT->isFunctionType())
2878      LhsT = Self.Context.getRValueReferenceType(LhsT);
2879
2880    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
2881    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
2882                         Expr::getValueKindForType(LhsT));
2883    Expr *FromPtr = &From;
2884    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
2885                                                           SourceLocation()));
2886
2887    // Perform the initialization within a SFINAE trap at translation unit
2888    // scope.
2889    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
2890    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
2891    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
2892    if (Init.Failed())
2893      return false;
2894
2895    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
2896    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
2897  }
2898  }
2899  llvm_unreachable("Unknown type trait or not implemented");
2900}
2901
2902ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
2903                                      SourceLocation KWLoc,
2904                                      TypeSourceInfo *LhsTSInfo,
2905                                      TypeSourceInfo *RhsTSInfo,
2906                                      SourceLocation RParen) {
2907  QualType LhsT = LhsTSInfo->getType();
2908  QualType RhsT = RhsTSInfo->getType();
2909
2910  if (BTT == BTT_TypeCompatible) {
2911    if (getLangOptions().CPlusPlus) {
2912      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
2913        << SourceRange(KWLoc, RParen);
2914      return ExprError();
2915    }
2916  }
2917
2918  bool Value = false;
2919  if (!LhsT->isDependentType() && !RhsT->isDependentType())
2920    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
2921
2922  // Select trait result type.
2923  QualType ResultType;
2924  switch (BTT) {
2925  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
2926  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
2927  case BTT_IsSame:         ResultType = Context.BoolTy; break;
2928  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
2929  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
2930  }
2931
2932  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
2933                                                 RhsTSInfo, Value, RParen,
2934                                                 ResultType));
2935}
2936
2937ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
2938                                     SourceLocation KWLoc,
2939                                     ParsedType Ty,
2940                                     Expr* DimExpr,
2941                                     SourceLocation RParen) {
2942  TypeSourceInfo *TSInfo;
2943  QualType T = GetTypeFromParser(Ty, &TSInfo);
2944  if (!TSInfo)
2945    TSInfo = Context.getTrivialTypeSourceInfo(T);
2946
2947  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
2948}
2949
2950static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
2951                                           QualType T, Expr *DimExpr,
2952                                           SourceLocation KeyLoc) {
2953  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2954
2955  switch(ATT) {
2956  case ATT_ArrayRank:
2957    if (T->isArrayType()) {
2958      unsigned Dim = 0;
2959      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
2960        ++Dim;
2961        T = AT->getElementType();
2962      }
2963      return Dim;
2964    }
2965    return 0;
2966
2967  case ATT_ArrayExtent: {
2968    llvm::APSInt Value;
2969    uint64_t Dim;
2970    if (DimExpr->isIntegerConstantExpr(Value, Self.Context, 0, false)) {
2971      if (Value < llvm::APSInt(Value.getBitWidth(), Value.isUnsigned())) {
2972        Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
2973          DimExpr->getSourceRange();
2974        return false;
2975      }
2976      Dim = Value.getLimitedValue();
2977    } else {
2978      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) <<
2979        DimExpr->getSourceRange();
2980      return false;
2981    }
2982
2983    if (T->isArrayType()) {
2984      unsigned D = 0;
2985      bool Matched = false;
2986      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
2987        if (Dim == D) {
2988          Matched = true;
2989          break;
2990        }
2991        ++D;
2992        T = AT->getElementType();
2993      }
2994
2995      if (Matched && T->isArrayType()) {
2996        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
2997          return CAT->getSize().getLimitedValue();
2998      }
2999    }
3000    return 0;
3001  }
3002  }
3003  llvm_unreachable("Unknown type trait or not implemented");
3004}
3005
3006ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3007                                     SourceLocation KWLoc,
3008                                     TypeSourceInfo *TSInfo,
3009                                     Expr* DimExpr,
3010                                     SourceLocation RParen) {
3011  QualType T = TSInfo->getType();
3012
3013  // FIXME: This should likely be tracked as an APInt to remove any host
3014  // assumptions about the width of size_t on the target.
3015  uint64_t Value = 0;
3016  if (!T->isDependentType())
3017    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3018
3019  // While the specification for these traits from the Embarcadero C++
3020  // compiler's documentation says the return type is 'unsigned int', Clang
3021  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3022  // compiler, there is no difference. On several other platforms this is an
3023  // important distinction.
3024  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3025                                                DimExpr, RParen,
3026                                                Context.getSizeType()));
3027}
3028
3029ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3030                                      SourceLocation KWLoc,
3031                                      Expr *Queried,
3032                                      SourceLocation RParen) {
3033  // If error parsing the expression, ignore.
3034  if (!Queried)
3035    return ExprError();
3036
3037  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3038
3039  return move(Result);
3040}
3041
3042static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3043  switch (ET) {
3044  case ET_IsLValueExpr: return E->isLValue();
3045  case ET_IsRValueExpr: return E->isRValue();
3046  }
3047  llvm_unreachable("Expression trait not covered by switch");
3048}
3049
3050ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3051                                      SourceLocation KWLoc,
3052                                      Expr *Queried,
3053                                      SourceLocation RParen) {
3054  if (Queried->isTypeDependent()) {
3055    // Delay type-checking for type-dependent expressions.
3056  } else if (Queried->getType()->isPlaceholderType()) {
3057    ExprResult PE = CheckPlaceholderExpr(Queried);
3058    if (PE.isInvalid()) return ExprError();
3059    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3060  }
3061
3062  bool Value = EvaluateExpressionTrait(ET, Queried);
3063
3064  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3065                                                 RParen, Context.BoolTy));
3066}
3067
3068QualType Sema::CheckPointerToMemberOperands(ExprResult &lex, ExprResult &rex,
3069                                            ExprValueKind &VK,
3070                                            SourceLocation Loc,
3071                                            bool isIndirect) {
3072  const char *OpSpelling = isIndirect ? "->*" : ".*";
3073  // C++ 5.5p2
3074  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3075  //   be of type "pointer to member of T" (where T is a completely-defined
3076  //   class type) [...]
3077  QualType RType = rex.get()->getType();
3078  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
3079  if (!MemPtr) {
3080    Diag(Loc, diag::err_bad_memptr_rhs)
3081      << OpSpelling << RType << rex.get()->getSourceRange();
3082    return QualType();
3083  }
3084
3085  QualType Class(MemPtr->getClass(), 0);
3086
3087  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3088  // member pointer points must be completely-defined. However, there is no
3089  // reason for this semantic distinction, and the rule is not enforced by
3090  // other compilers. Therefore, we do not check this property, as it is
3091  // likely to be considered a defect.
3092
3093  // C++ 5.5p2
3094  //   [...] to its first operand, which shall be of class T or of a class of
3095  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3096  //   such a class]
3097  QualType LType = lex.get()->getType();
3098  if (isIndirect) {
3099    if (const PointerType *Ptr = LType->getAs<PointerType>())
3100      LType = Ptr->getPointeeType();
3101    else {
3102      Diag(Loc, diag::err_bad_memptr_lhs)
3103        << OpSpelling << 1 << LType
3104        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3105      return QualType();
3106    }
3107  }
3108
3109  if (!Context.hasSameUnqualifiedType(Class, LType)) {
3110    // If we want to check the hierarchy, we need a complete type.
3111    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
3112        << OpSpelling << (int)isIndirect)) {
3113      return QualType();
3114    }
3115    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3116                       /*DetectVirtual=*/false);
3117    // FIXME: Would it be useful to print full ambiguity paths, or is that
3118    // overkill?
3119    if (!IsDerivedFrom(LType, Class, Paths) ||
3120        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3121      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3122        << (int)isIndirect << lex.get()->getType();
3123      return QualType();
3124    }
3125    // Cast LHS to type of use.
3126    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3127    ExprValueKind VK =
3128        isIndirect ? VK_RValue : CastCategory(lex.get());
3129
3130    CXXCastPath BasePath;
3131    BuildBasePathArray(Paths, BasePath);
3132    lex = ImpCastExprToType(lex.take(), UseType, CK_DerivedToBase, VK, &BasePath);
3133  }
3134
3135  if (isa<CXXScalarValueInitExpr>(rex.get()->IgnoreParens())) {
3136    // Diagnose use of pointer-to-member type which when used as
3137    // the functional cast in a pointer-to-member expression.
3138    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3139     return QualType();
3140  }
3141
3142  // C++ 5.5p2
3143  //   The result is an object or a function of the type specified by the
3144  //   second operand.
3145  // The cv qualifiers are the union of those in the pointer and the left side,
3146  // in accordance with 5.5p5 and 5.2.5.
3147  QualType Result = MemPtr->getPointeeType();
3148  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
3149
3150  // C++0x [expr.mptr.oper]p6:
3151  //   In a .* expression whose object expression is an rvalue, the program is
3152  //   ill-formed if the second operand is a pointer to member function with
3153  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3154  //   expression is an lvalue, the program is ill-formed if the second operand
3155  //   is a pointer to member function with ref-qualifier &&.
3156  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3157    switch (Proto->getRefQualifier()) {
3158    case RQ_None:
3159      // Do nothing
3160      break;
3161
3162    case RQ_LValue:
3163      if (!isIndirect && !lex.get()->Classify(Context).isLValue())
3164        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3165          << RType << 1 << lex.get()->getSourceRange();
3166      break;
3167
3168    case RQ_RValue:
3169      if (isIndirect || !lex.get()->Classify(Context).isRValue())
3170        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3171          << RType << 0 << lex.get()->getSourceRange();
3172      break;
3173    }
3174  }
3175
3176  // C++ [expr.mptr.oper]p6:
3177  //   The result of a .* expression whose second operand is a pointer
3178  //   to a data member is of the same value category as its
3179  //   first operand. The result of a .* expression whose second
3180  //   operand is a pointer to a member function is a prvalue. The
3181  //   result of an ->* expression is an lvalue if its second operand
3182  //   is a pointer to data member and a prvalue otherwise.
3183  if (Result->isFunctionType()) {
3184    VK = VK_RValue;
3185    return Context.BoundMemberTy;
3186  } else if (isIndirect) {
3187    VK = VK_LValue;
3188  } else {
3189    VK = lex.get()->getValueKind();
3190  }
3191
3192  return Result;
3193}
3194
3195/// \brief Try to convert a type to another according to C++0x 5.16p3.
3196///
3197/// This is part of the parameter validation for the ? operator. If either
3198/// value operand is a class type, the two operands are attempted to be
3199/// converted to each other. This function does the conversion in one direction.
3200/// It returns true if the program is ill-formed and has already been diagnosed
3201/// as such.
3202static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3203                                SourceLocation QuestionLoc,
3204                                bool &HaveConversion,
3205                                QualType &ToType) {
3206  HaveConversion = false;
3207  ToType = To->getType();
3208
3209  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3210                                                           SourceLocation());
3211  // C++0x 5.16p3
3212  //   The process for determining whether an operand expression E1 of type T1
3213  //   can be converted to match an operand expression E2 of type T2 is defined
3214  //   as follows:
3215  //   -- If E2 is an lvalue:
3216  bool ToIsLvalue = To->isLValue();
3217  if (ToIsLvalue) {
3218    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3219    //   type "lvalue reference to T2", subject to the constraint that in the
3220    //   conversion the reference must bind directly to E1.
3221    QualType T = Self.Context.getLValueReferenceType(ToType);
3222    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3223
3224    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3225    if (InitSeq.isDirectReferenceBinding()) {
3226      ToType = T;
3227      HaveConversion = true;
3228      return false;
3229    }
3230
3231    if (InitSeq.isAmbiguous())
3232      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3233  }
3234
3235  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3236  //      -- if E1 and E2 have class type, and the underlying class types are
3237  //         the same or one is a base class of the other:
3238  QualType FTy = From->getType();
3239  QualType TTy = To->getType();
3240  const RecordType *FRec = FTy->getAs<RecordType>();
3241  const RecordType *TRec = TTy->getAs<RecordType>();
3242  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3243                       Self.IsDerivedFrom(FTy, TTy);
3244  if (FRec && TRec &&
3245      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3246    //         E1 can be converted to match E2 if the class of T2 is the
3247    //         same type as, or a base class of, the class of T1, and
3248    //         [cv2 > cv1].
3249    if (FRec == TRec || FDerivedFromT) {
3250      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3251        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3252        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3253        if (InitSeq) {
3254          HaveConversion = true;
3255          return false;
3256        }
3257
3258        if (InitSeq.isAmbiguous())
3259          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3260      }
3261    }
3262
3263    return false;
3264  }
3265
3266  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
3267  //        implicitly converted to the type that expression E2 would have
3268  //        if E2 were converted to an rvalue (or the type it has, if E2 is
3269  //        an rvalue).
3270  //
3271  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3272  // to the array-to-pointer or function-to-pointer conversions.
3273  if (!TTy->getAs<TagType>())
3274    TTy = TTy.getUnqualifiedType();
3275
3276  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3277  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3278  HaveConversion = !InitSeq.Failed();
3279  ToType = TTy;
3280  if (InitSeq.isAmbiguous())
3281    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3282
3283  return false;
3284}
3285
3286/// \brief Try to find a common type for two according to C++0x 5.16p5.
3287///
3288/// This is part of the parameter validation for the ? operator. If either
3289/// value operand is a class type, overload resolution is used to find a
3290/// conversion to a common type.
3291static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3292                                    SourceLocation QuestionLoc) {
3293  Expr *Args[2] = { LHS.get(), RHS.get() };
3294  OverloadCandidateSet CandidateSet(QuestionLoc);
3295  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3296                                    CandidateSet);
3297
3298  OverloadCandidateSet::iterator Best;
3299  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
3300    case OR_Success: {
3301      // We found a match. Perform the conversions on the arguments and move on.
3302      ExprResult LHSRes =
3303        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
3304                                       Best->Conversions[0], Sema::AA_Converting);
3305      if (LHSRes.isInvalid())
3306        break;
3307      LHS = move(LHSRes);
3308
3309      ExprResult RHSRes =
3310        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
3311                                       Best->Conversions[1], Sema::AA_Converting);
3312      if (RHSRes.isInvalid())
3313        break;
3314      RHS = move(RHSRes);
3315      if (Best->Function)
3316        Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
3317      return false;
3318    }
3319
3320    case OR_No_Viable_Function:
3321
3322      // Emit a better diagnostic if one of the expressions is a null pointer
3323      // constant and the other is a pointer type. In this case, the user most
3324      // likely forgot to take the address of the other expression.
3325      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3326        return true;
3327
3328      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3329        << LHS.get()->getType() << RHS.get()->getType()
3330        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3331      return true;
3332
3333    case OR_Ambiguous:
3334      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
3335        << LHS.get()->getType() << RHS.get()->getType()
3336        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3337      // FIXME: Print the possible common types by printing the return types of
3338      // the viable candidates.
3339      break;
3340
3341    case OR_Deleted:
3342      assert(false && "Conditional operator has only built-in overloads");
3343      break;
3344  }
3345  return true;
3346}
3347
3348/// \brief Perform an "extended" implicit conversion as returned by
3349/// TryClassUnification.
3350static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
3351  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3352  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
3353                                                           SourceLocation());
3354  Expr *Arg = E.take();
3355  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
3356  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
3357  if (Result.isInvalid())
3358    return true;
3359
3360  E = Result;
3361  return false;
3362}
3363
3364/// \brief Check the operands of ?: under C++ semantics.
3365///
3366/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
3367/// extension. In this case, LHS == Cond. (But they're not aliases.)
3368QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
3369                                           ExprValueKind &VK, ExprObjectKind &OK,
3370                                           SourceLocation QuestionLoc) {
3371  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
3372  // interface pointers.
3373
3374  // C++0x 5.16p1
3375  //   The first expression is contextually converted to bool.
3376  if (!Cond.get()->isTypeDependent()) {
3377    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
3378    if (CondRes.isInvalid())
3379      return QualType();
3380    Cond = move(CondRes);
3381  }
3382
3383  // Assume r-value.
3384  VK = VK_RValue;
3385  OK = OK_Ordinary;
3386
3387  // Either of the arguments dependent?
3388  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
3389    return Context.DependentTy;
3390
3391  // C++0x 5.16p2
3392  //   If either the second or the third operand has type (cv) void, ...
3393  QualType LTy = LHS.get()->getType();
3394  QualType RTy = RHS.get()->getType();
3395  bool LVoid = LTy->isVoidType();
3396  bool RVoid = RTy->isVoidType();
3397  if (LVoid || RVoid) {
3398    //   ... then the [l2r] conversions are performed on the second and third
3399    //   operands ...
3400    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3401    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3402    if (LHS.isInvalid() || RHS.isInvalid())
3403      return QualType();
3404    LTy = LHS.get()->getType();
3405    RTy = RHS.get()->getType();
3406
3407    //   ... and one of the following shall hold:
3408    //   -- The second or the third operand (but not both) is a throw-
3409    //      expression; the result is of the type of the other and is an rvalue.
3410    bool LThrow = isa<CXXThrowExpr>(LHS.get());
3411    bool RThrow = isa<CXXThrowExpr>(RHS.get());
3412    if (LThrow && !RThrow)
3413      return RTy;
3414    if (RThrow && !LThrow)
3415      return LTy;
3416
3417    //   -- Both the second and third operands have type void; the result is of
3418    //      type void and is an rvalue.
3419    if (LVoid && RVoid)
3420      return Context.VoidTy;
3421
3422    // Neither holds, error.
3423    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3424      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3425      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3426    return QualType();
3427  }
3428
3429  // Neither is void.
3430
3431  // C++0x 5.16p3
3432  //   Otherwise, if the second and third operand have different types, and
3433  //   either has (cv) class type, and attempt is made to convert each of those
3434  //   operands to the other.
3435  if (!Context.hasSameType(LTy, RTy) &&
3436      (LTy->isRecordType() || RTy->isRecordType())) {
3437    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3438    // These return true if a single direction is already ambiguous.
3439    QualType L2RType, R2LType;
3440    bool HaveL2R, HaveR2L;
3441    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
3442      return QualType();
3443    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
3444      return QualType();
3445
3446    //   If both can be converted, [...] the program is ill-formed.
3447    if (HaveL2R && HaveR2L) {
3448      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3449        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3450      return QualType();
3451    }
3452
3453    //   If exactly one conversion is possible, that conversion is applied to
3454    //   the chosen operand and the converted operands are used in place of the
3455    //   original operands for the remainder of this section.
3456    if (HaveL2R) {
3457      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
3458        return QualType();
3459      LTy = LHS.get()->getType();
3460    } else if (HaveR2L) {
3461      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
3462        return QualType();
3463      RTy = RHS.get()->getType();
3464    }
3465  }
3466
3467  // C++0x 5.16p4
3468  //   If the second and third operands are glvalues of the same value
3469  //   category and have the same type, the result is of that type and
3470  //   value category and it is a bit-field if the second or the third
3471  //   operand is a bit-field, or if both are bit-fields.
3472  // We only extend this to bitfields, not to the crazy other kinds of
3473  // l-values.
3474  bool Same = Context.hasSameType(LTy, RTy);
3475  if (Same &&
3476      LHS.get()->isGLValue() &&
3477      LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
3478      LHS.get()->isOrdinaryOrBitFieldObject() &&
3479      RHS.get()->isOrdinaryOrBitFieldObject()) {
3480    VK = LHS.get()->getValueKind();
3481    if (LHS.get()->getObjectKind() == OK_BitField ||
3482        RHS.get()->getObjectKind() == OK_BitField)
3483      OK = OK_BitField;
3484    return LTy;
3485  }
3486
3487  // C++0x 5.16p5
3488  //   Otherwise, the result is an rvalue. If the second and third operands
3489  //   do not have the same type, and either has (cv) class type, ...
3490  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3491    //   ... overload resolution is used to determine the conversions (if any)
3492    //   to be applied to the operands. If the overload resolution fails, the
3493    //   program is ill-formed.
3494    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3495      return QualType();
3496  }
3497
3498  // C++0x 5.16p6
3499  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3500  //   conversions are performed on the second and third operands.
3501  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3502  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3503  if (LHS.isInvalid() || RHS.isInvalid())
3504    return QualType();
3505  LTy = LHS.get()->getType();
3506  RTy = RHS.get()->getType();
3507
3508  //   After those conversions, one of the following shall hold:
3509  //   -- The second and third operands have the same type; the result
3510  //      is of that type. If the operands have class type, the result
3511  //      is a prvalue temporary of the result type, which is
3512  //      copy-initialized from either the second operand or the third
3513  //      operand depending on the value of the first operand.
3514  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3515    if (LTy->isRecordType()) {
3516      // The operands have class type. Make a temporary copy.
3517      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3518      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3519                                                     SourceLocation(),
3520                                                     LHS);
3521      if (LHSCopy.isInvalid())
3522        return QualType();
3523
3524      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3525                                                     SourceLocation(),
3526                                                     RHS);
3527      if (RHSCopy.isInvalid())
3528        return QualType();
3529
3530      LHS = LHSCopy;
3531      RHS = RHSCopy;
3532    }
3533
3534    return LTy;
3535  }
3536
3537  // Extension: conditional operator involving vector types.
3538  if (LTy->isVectorType() || RTy->isVectorType())
3539    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3540
3541  //   -- The second and third operands have arithmetic or enumeration type;
3542  //      the usual arithmetic conversions are performed to bring them to a
3543  //      common type, and the result is of that type.
3544  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3545    UsualArithmeticConversions(LHS, RHS);
3546    if (LHS.isInvalid() || RHS.isInvalid())
3547      return QualType();
3548    return LHS.get()->getType();
3549  }
3550
3551  //   -- The second and third operands have pointer type, or one has pointer
3552  //      type and the other is a null pointer constant; pointer conversions
3553  //      and qualification conversions are performed to bring them to their
3554  //      composite pointer type. The result is of the composite pointer type.
3555  //   -- The second and third operands have pointer to member type, or one has
3556  //      pointer to member type and the other is a null pointer constant;
3557  //      pointer to member conversions and qualification conversions are
3558  //      performed to bring them to a common type, whose cv-qualification
3559  //      shall match the cv-qualification of either the second or the third
3560  //      operand. The result is of the common type.
3561  bool NonStandardCompositeType = false;
3562  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3563                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3564  if (!Composite.isNull()) {
3565    if (NonStandardCompositeType)
3566      Diag(QuestionLoc,
3567           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3568        << LTy << RTy << Composite
3569        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3570
3571    return Composite;
3572  }
3573
3574  // Similarly, attempt to find composite type of two objective-c pointers.
3575  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3576  if (!Composite.isNull())
3577    return Composite;
3578
3579  // Check if we are using a null with a non-pointer type.
3580  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3581    return QualType();
3582
3583  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3584    << LHS.get()->getType() << RHS.get()->getType()
3585    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3586  return QualType();
3587}
3588
3589/// \brief Find a merged pointer type and convert the two expressions to it.
3590///
3591/// This finds the composite pointer type (or member pointer type) for @p E1
3592/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3593/// type and returns it.
3594/// It does not emit diagnostics.
3595///
3596/// \param Loc The location of the operator requiring these two expressions to
3597/// be converted to the composite pointer type.
3598///
3599/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3600/// a non-standard (but still sane) composite type to which both expressions
3601/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3602/// will be set true.
3603QualType Sema::FindCompositePointerType(SourceLocation Loc,
3604                                        Expr *&E1, Expr *&E2,
3605                                        bool *NonStandardCompositeType) {
3606  if (NonStandardCompositeType)
3607    *NonStandardCompositeType = false;
3608
3609  assert(getLangOptions().CPlusPlus && "This function assumes C++");
3610  QualType T1 = E1->getType(), T2 = E2->getType();
3611
3612  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3613      !T2->isAnyPointerType() && !T2->isMemberPointerType())
3614   return QualType();
3615
3616  // C++0x 5.9p2
3617  //   Pointer conversions and qualification conversions are performed on
3618  //   pointer operands to bring them to their composite pointer type. If
3619  //   one operand is a null pointer constant, the composite pointer type is
3620  //   the type of the other operand.
3621  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3622    if (T2->isMemberPointerType())
3623      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
3624    else
3625      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
3626    return T2;
3627  }
3628  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3629    if (T1->isMemberPointerType())
3630      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
3631    else
3632      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
3633    return T1;
3634  }
3635
3636  // Now both have to be pointers or member pointers.
3637  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3638      (!T2->isPointerType() && !T2->isMemberPointerType()))
3639    return QualType();
3640
3641  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3642  //   the other has type "pointer to cv2 T" and the composite pointer type is
3643  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3644  //   Otherwise, the composite pointer type is a pointer type similar to the
3645  //   type of one of the operands, with a cv-qualification signature that is
3646  //   the union of the cv-qualification signatures of the operand types.
3647  // In practice, the first part here is redundant; it's subsumed by the second.
3648  // What we do here is, we build the two possible composite types, and try the
3649  // conversions in both directions. If only one works, or if the two composite
3650  // types are the same, we have succeeded.
3651  // FIXME: extended qualifiers?
3652  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3653  QualifierVector QualifierUnion;
3654  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3655      ContainingClassVector;
3656  ContainingClassVector MemberOfClass;
3657  QualType Composite1 = Context.getCanonicalType(T1),
3658           Composite2 = Context.getCanonicalType(T2);
3659  unsigned NeedConstBefore = 0;
3660  do {
3661    const PointerType *Ptr1, *Ptr2;
3662    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3663        (Ptr2 = Composite2->getAs<PointerType>())) {
3664      Composite1 = Ptr1->getPointeeType();
3665      Composite2 = Ptr2->getPointeeType();
3666
3667      // If we're allowed to create a non-standard composite type, keep track
3668      // of where we need to fill in additional 'const' qualifiers.
3669      if (NonStandardCompositeType &&
3670          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3671        NeedConstBefore = QualifierUnion.size();
3672
3673      QualifierUnion.push_back(
3674                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3675      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3676      continue;
3677    }
3678
3679    const MemberPointerType *MemPtr1, *MemPtr2;
3680    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3681        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3682      Composite1 = MemPtr1->getPointeeType();
3683      Composite2 = MemPtr2->getPointeeType();
3684
3685      // If we're allowed to create a non-standard composite type, keep track
3686      // of where we need to fill in additional 'const' qualifiers.
3687      if (NonStandardCompositeType &&
3688          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3689        NeedConstBefore = QualifierUnion.size();
3690
3691      QualifierUnion.push_back(
3692                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3693      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3694                                             MemPtr2->getClass()));
3695      continue;
3696    }
3697
3698    // FIXME: block pointer types?
3699
3700    // Cannot unwrap any more types.
3701    break;
3702  } while (true);
3703
3704  if (NeedConstBefore && NonStandardCompositeType) {
3705    // Extension: Add 'const' to qualifiers that come before the first qualifier
3706    // mismatch, so that our (non-standard!) composite type meets the
3707    // requirements of C++ [conv.qual]p4 bullet 3.
3708    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3709      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3710        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3711        *NonStandardCompositeType = true;
3712      }
3713    }
3714  }
3715
3716  // Rewrap the composites as pointers or member pointers with the union CVRs.
3717  ContainingClassVector::reverse_iterator MOC
3718    = MemberOfClass.rbegin();
3719  for (QualifierVector::reverse_iterator
3720         I = QualifierUnion.rbegin(),
3721         E = QualifierUnion.rend();
3722       I != E; (void)++I, ++MOC) {
3723    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3724    if (MOC->first && MOC->second) {
3725      // Rebuild member pointer type
3726      Composite1 = Context.getMemberPointerType(
3727                                    Context.getQualifiedType(Composite1, Quals),
3728                                    MOC->first);
3729      Composite2 = Context.getMemberPointerType(
3730                                    Context.getQualifiedType(Composite2, Quals),
3731                                    MOC->second);
3732    } else {
3733      // Rebuild pointer type
3734      Composite1
3735        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3736      Composite2
3737        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3738    }
3739  }
3740
3741  // Try to convert to the first composite pointer type.
3742  InitializedEntity Entity1
3743    = InitializedEntity::InitializeTemporary(Composite1);
3744  InitializationKind Kind
3745    = InitializationKind::CreateCopy(Loc, SourceLocation());
3746  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3747  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3748
3749  if (E1ToC1 && E2ToC1) {
3750    // Conversion to Composite1 is viable.
3751    if (!Context.hasSameType(Composite1, Composite2)) {
3752      // Composite2 is a different type from Composite1. Check whether
3753      // Composite2 is also viable.
3754      InitializedEntity Entity2
3755        = InitializedEntity::InitializeTemporary(Composite2);
3756      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3757      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3758      if (E1ToC2 && E2ToC2) {
3759        // Both Composite1 and Composite2 are viable and are different;
3760        // this is an ambiguity.
3761        return QualType();
3762      }
3763    }
3764
3765    // Convert E1 to Composite1
3766    ExprResult E1Result
3767      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3768    if (E1Result.isInvalid())
3769      return QualType();
3770    E1 = E1Result.takeAs<Expr>();
3771
3772    // Convert E2 to Composite1
3773    ExprResult E2Result
3774      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3775    if (E2Result.isInvalid())
3776      return QualType();
3777    E2 = E2Result.takeAs<Expr>();
3778
3779    return Composite1;
3780  }
3781
3782  // Check whether Composite2 is viable.
3783  InitializedEntity Entity2
3784    = InitializedEntity::InitializeTemporary(Composite2);
3785  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3786  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3787  if (!E1ToC2 || !E2ToC2)
3788    return QualType();
3789
3790  // Convert E1 to Composite2
3791  ExprResult E1Result
3792    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3793  if (E1Result.isInvalid())
3794    return QualType();
3795  E1 = E1Result.takeAs<Expr>();
3796
3797  // Convert E2 to Composite2
3798  ExprResult E2Result
3799    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3800  if (E2Result.isInvalid())
3801    return QualType();
3802  E2 = E2Result.takeAs<Expr>();
3803
3804  return Composite2;
3805}
3806
3807ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3808  if (!E)
3809    return ExprError();
3810
3811  if (!Context.getLangOptions().CPlusPlus)
3812    return Owned(E);
3813
3814  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3815
3816  const RecordType *RT = E->getType()->getAs<RecordType>();
3817  if (!RT)
3818    return Owned(E);
3819
3820  // If the result is a glvalue, we shouldn't bind it.
3821  if (E->Classify(Context).isGLValue())
3822    return Owned(E);
3823
3824  // That should be enough to guarantee that this type is complete.
3825  // If it has a trivial destructor, we can avoid the extra copy.
3826  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3827  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3828    return Owned(E);
3829
3830  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
3831  ExprTemporaries.push_back(Temp);
3832  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
3833    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
3834    CheckDestructorAccess(E->getExprLoc(), Destructor,
3835                          PDiag(diag::err_access_dtor_temp)
3836                            << E->getType());
3837  }
3838  // FIXME: Add the temporary to the temporaries vector.
3839  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
3840}
3841
3842Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
3843  assert(SubExpr && "sub expression can't be null!");
3844
3845  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3846  assert(ExprTemporaries.size() >= FirstTemporary);
3847  if (ExprTemporaries.size() == FirstTemporary)
3848    return SubExpr;
3849
3850  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
3851                                     &ExprTemporaries[FirstTemporary],
3852                                     ExprTemporaries.size() - FirstTemporary);
3853  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3854                        ExprTemporaries.end());
3855
3856  return E;
3857}
3858
3859ExprResult
3860Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
3861  if (SubExpr.isInvalid())
3862    return ExprError();
3863
3864  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
3865}
3866
3867Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
3868  assert(SubStmt && "sub statement can't be null!");
3869
3870  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3871  assert(ExprTemporaries.size() >= FirstTemporary);
3872  if (ExprTemporaries.size() == FirstTemporary)
3873    return SubStmt;
3874
3875  // FIXME: In order to attach the temporaries, wrap the statement into
3876  // a StmtExpr; currently this is only used for asm statements.
3877  // This is hacky, either create a new CXXStmtWithTemporaries statement or
3878  // a new AsmStmtWithTemporaries.
3879  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
3880                                                      SourceLocation(),
3881                                                      SourceLocation());
3882  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
3883                                   SourceLocation());
3884  return MaybeCreateExprWithCleanups(E);
3885}
3886
3887ExprResult
3888Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3889                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3890                                   bool &MayBePseudoDestructor) {
3891  // Since this might be a postfix expression, get rid of ParenListExprs.
3892  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3893  if (Result.isInvalid()) return ExprError();
3894  Base = Result.get();
3895
3896  QualType BaseType = Base->getType();
3897  MayBePseudoDestructor = false;
3898  if (BaseType->isDependentType()) {
3899    // If we have a pointer to a dependent type and are using the -> operator,
3900    // the object type is the type that the pointer points to. We might still
3901    // have enough information about that type to do something useful.
3902    if (OpKind == tok::arrow)
3903      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3904        BaseType = Ptr->getPointeeType();
3905
3906    ObjectType = ParsedType::make(BaseType);
3907    MayBePseudoDestructor = true;
3908    return Owned(Base);
3909  }
3910
3911  // C++ [over.match.oper]p8:
3912  //   [...] When operator->returns, the operator-> is applied  to the value
3913  //   returned, with the original second operand.
3914  if (OpKind == tok::arrow) {
3915    // The set of types we've considered so far.
3916    llvm::SmallPtrSet<CanQualType,8> CTypes;
3917    llvm::SmallVector<SourceLocation, 8> Locations;
3918    CTypes.insert(Context.getCanonicalType(BaseType));
3919
3920    while (BaseType->isRecordType()) {
3921      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3922      if (Result.isInvalid())
3923        return ExprError();
3924      Base = Result.get();
3925      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3926        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3927      BaseType = Base->getType();
3928      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3929      if (!CTypes.insert(CBaseType)) {
3930        Diag(OpLoc, diag::err_operator_arrow_circular);
3931        for (unsigned i = 0; i < Locations.size(); i++)
3932          Diag(Locations[i], diag::note_declared_at);
3933        return ExprError();
3934      }
3935    }
3936
3937    if (BaseType->isPointerType())
3938      BaseType = BaseType->getPointeeType();
3939  }
3940
3941  // We could end up with various non-record types here, such as extended
3942  // vector types or Objective-C interfaces. Just return early and let
3943  // ActOnMemberReferenceExpr do the work.
3944  if (!BaseType->isRecordType()) {
3945    // C++ [basic.lookup.classref]p2:
3946    //   [...] If the type of the object expression is of pointer to scalar
3947    //   type, the unqualified-id is looked up in the context of the complete
3948    //   postfix-expression.
3949    //
3950    // This also indicates that we should be parsing a
3951    // pseudo-destructor-name.
3952    ObjectType = ParsedType();
3953    MayBePseudoDestructor = true;
3954    return Owned(Base);
3955  }
3956
3957  // The object type must be complete (or dependent).
3958  if (!BaseType->isDependentType() &&
3959      RequireCompleteType(OpLoc, BaseType,
3960                          PDiag(diag::err_incomplete_member_access)))
3961    return ExprError();
3962
3963  // C++ [basic.lookup.classref]p2:
3964  //   If the id-expression in a class member access (5.2.5) is an
3965  //   unqualified-id, and the type of the object expression is of a class
3966  //   type C (or of pointer to a class type C), the unqualified-id is looked
3967  //   up in the scope of class C. [...]
3968  ObjectType = ParsedType::make(BaseType);
3969  return move(Base);
3970}
3971
3972ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3973                                                   Expr *MemExpr) {
3974  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3975  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3976    << isa<CXXPseudoDestructorExpr>(MemExpr)
3977    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3978
3979  return ActOnCallExpr(/*Scope*/ 0,
3980                       MemExpr,
3981                       /*LPLoc*/ ExpectedLParenLoc,
3982                       MultiExprArg(),
3983                       /*RPLoc*/ ExpectedLParenLoc);
3984}
3985
3986ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3987                                           SourceLocation OpLoc,
3988                                           tok::TokenKind OpKind,
3989                                           const CXXScopeSpec &SS,
3990                                           TypeSourceInfo *ScopeTypeInfo,
3991                                           SourceLocation CCLoc,
3992                                           SourceLocation TildeLoc,
3993                                         PseudoDestructorTypeStorage Destructed,
3994                                           bool HasTrailingLParen) {
3995  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3996
3997  // C++ [expr.pseudo]p2:
3998  //   The left-hand side of the dot operator shall be of scalar type. The
3999  //   left-hand side of the arrow operator shall be of pointer to scalar type.
4000  //   This scalar type is the object type.
4001  QualType ObjectType = Base->getType();
4002  if (OpKind == tok::arrow) {
4003    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4004      ObjectType = Ptr->getPointeeType();
4005    } else if (!Base->isTypeDependent()) {
4006      // The user wrote "p->" when she probably meant "p."; fix it.
4007      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4008        << ObjectType << true
4009        << FixItHint::CreateReplacement(OpLoc, ".");
4010      if (isSFINAEContext())
4011        return ExprError();
4012
4013      OpKind = tok::period;
4014    }
4015  }
4016
4017  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4018    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4019      << ObjectType << Base->getSourceRange();
4020    return ExprError();
4021  }
4022
4023  // C++ [expr.pseudo]p2:
4024  //   [...] The cv-unqualified versions of the object type and of the type
4025  //   designated by the pseudo-destructor-name shall be the same type.
4026  if (DestructedTypeInfo) {
4027    QualType DestructedType = DestructedTypeInfo->getType();
4028    SourceLocation DestructedTypeStart
4029      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4030    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
4031        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4032      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4033        << ObjectType << DestructedType << Base->getSourceRange()
4034        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4035
4036      // Recover by setting the destructed type to the object type.
4037      DestructedType = ObjectType;
4038      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4039                                                           DestructedTypeStart);
4040      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4041    }
4042  }
4043
4044  // C++ [expr.pseudo]p2:
4045  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
4046  //   form
4047  //
4048  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
4049  //
4050  //   shall designate the same scalar type.
4051  if (ScopeTypeInfo) {
4052    QualType ScopeType = ScopeTypeInfo->getType();
4053    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
4054        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
4055
4056      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
4057           diag::err_pseudo_dtor_type_mismatch)
4058        << ObjectType << ScopeType << Base->getSourceRange()
4059        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
4060
4061      ScopeType = QualType();
4062      ScopeTypeInfo = 0;
4063    }
4064  }
4065
4066  Expr *Result
4067    = new (Context) CXXPseudoDestructorExpr(Context, Base,
4068                                            OpKind == tok::arrow, OpLoc,
4069                                            SS.getWithLocInContext(Context),
4070                                            ScopeTypeInfo,
4071                                            CCLoc,
4072                                            TildeLoc,
4073                                            Destructed);
4074
4075  if (HasTrailingLParen)
4076    return Owned(Result);
4077
4078  return DiagnoseDtorReference(Destructed.getLocation(), Result);
4079}
4080
4081ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4082                                           SourceLocation OpLoc,
4083                                           tok::TokenKind OpKind,
4084                                           CXXScopeSpec &SS,
4085                                           UnqualifiedId &FirstTypeName,
4086                                           SourceLocation CCLoc,
4087                                           SourceLocation TildeLoc,
4088                                           UnqualifiedId &SecondTypeName,
4089                                           bool HasTrailingLParen) {
4090  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4091          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4092         "Invalid first type name in pseudo-destructor");
4093  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4094          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4095         "Invalid second type name in pseudo-destructor");
4096
4097  // C++ [expr.pseudo]p2:
4098  //   The left-hand side of the dot operator shall be of scalar type. The
4099  //   left-hand side of the arrow operator shall be of pointer to scalar type.
4100  //   This scalar type is the object type.
4101  QualType ObjectType = Base->getType();
4102  if (OpKind == tok::arrow) {
4103    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4104      ObjectType = Ptr->getPointeeType();
4105    } else if (!ObjectType->isDependentType()) {
4106      // The user wrote "p->" when she probably meant "p."; fix it.
4107      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4108        << ObjectType << true
4109        << FixItHint::CreateReplacement(OpLoc, ".");
4110      if (isSFINAEContext())
4111        return ExprError();
4112
4113      OpKind = tok::period;
4114    }
4115  }
4116
4117  // Compute the object type that we should use for name lookup purposes. Only
4118  // record types and dependent types matter.
4119  ParsedType ObjectTypePtrForLookup;
4120  if (!SS.isSet()) {
4121    if (ObjectType->isRecordType())
4122      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
4123    else if (ObjectType->isDependentType())
4124      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
4125  }
4126
4127  // Convert the name of the type being destructed (following the ~) into a
4128  // type (with source-location information).
4129  QualType DestructedType;
4130  TypeSourceInfo *DestructedTypeInfo = 0;
4131  PseudoDestructorTypeStorage Destructed;
4132  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4133    ParsedType T = getTypeName(*SecondTypeName.Identifier,
4134                               SecondTypeName.StartLocation,
4135                               S, &SS, true, false, ObjectTypePtrForLookup);
4136    if (!T &&
4137        ((SS.isSet() && !computeDeclContext(SS, false)) ||
4138         (!SS.isSet() && ObjectType->isDependentType()))) {
4139      // The name of the type being destroyed is a dependent name, and we
4140      // couldn't find anything useful in scope. Just store the identifier and
4141      // it's location, and we'll perform (qualified) name lookup again at
4142      // template instantiation time.
4143      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
4144                                               SecondTypeName.StartLocation);
4145    } else if (!T) {
4146      Diag(SecondTypeName.StartLocation,
4147           diag::err_pseudo_dtor_destructor_non_type)
4148        << SecondTypeName.Identifier << ObjectType;
4149      if (isSFINAEContext())
4150        return ExprError();
4151
4152      // Recover by assuming we had the right type all along.
4153      DestructedType = ObjectType;
4154    } else
4155      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
4156  } else {
4157    // Resolve the template-id to a type.
4158    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
4159    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4160                                       TemplateId->getTemplateArgs(),
4161                                       TemplateId->NumArgs);
4162    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4163                                       TemplateId->Template,
4164                                       TemplateId->TemplateNameLoc,
4165                                       TemplateId->LAngleLoc,
4166                                       TemplateArgsPtr,
4167                                       TemplateId->RAngleLoc);
4168    if (T.isInvalid() || !T.get()) {
4169      // Recover by assuming we had the right type all along.
4170      DestructedType = ObjectType;
4171    } else
4172      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
4173  }
4174
4175  // If we've performed some kind of recovery, (re-)build the type source
4176  // information.
4177  if (!DestructedType.isNull()) {
4178    if (!DestructedTypeInfo)
4179      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
4180                                                  SecondTypeName.StartLocation);
4181    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4182  }
4183
4184  // Convert the name of the scope type (the type prior to '::') into a type.
4185  TypeSourceInfo *ScopeTypeInfo = 0;
4186  QualType ScopeType;
4187  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4188      FirstTypeName.Identifier) {
4189    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4190      ParsedType T = getTypeName(*FirstTypeName.Identifier,
4191                                 FirstTypeName.StartLocation,
4192                                 S, &SS, true, false, ObjectTypePtrForLookup);
4193      if (!T) {
4194        Diag(FirstTypeName.StartLocation,
4195             diag::err_pseudo_dtor_destructor_non_type)
4196          << FirstTypeName.Identifier << ObjectType;
4197
4198        if (isSFINAEContext())
4199          return ExprError();
4200
4201        // Just drop this type. It's unnecessary anyway.
4202        ScopeType = QualType();
4203      } else
4204        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
4205    } else {
4206      // Resolve the template-id to a type.
4207      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
4208      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4209                                         TemplateId->getTemplateArgs(),
4210                                         TemplateId->NumArgs);
4211      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4212                                         TemplateId->Template,
4213                                         TemplateId->TemplateNameLoc,
4214                                         TemplateId->LAngleLoc,
4215                                         TemplateArgsPtr,
4216                                         TemplateId->RAngleLoc);
4217      if (T.isInvalid() || !T.get()) {
4218        // Recover by dropping this type.
4219        ScopeType = QualType();
4220      } else
4221        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
4222    }
4223  }
4224
4225  if (!ScopeType.isNull() && !ScopeTypeInfo)
4226    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
4227                                                  FirstTypeName.StartLocation);
4228
4229
4230  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
4231                                   ScopeTypeInfo, CCLoc, TildeLoc,
4232                                   Destructed, HasTrailingLParen);
4233}
4234
4235ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
4236                                        CXXMethodDecl *Method) {
4237  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
4238                                          FoundDecl, Method);
4239  if (Exp.isInvalid())
4240    return true;
4241
4242  MemberExpr *ME =
4243      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
4244                               SourceLocation(), Method->getType(),
4245                               VK_RValue, OK_Ordinary);
4246  QualType ResultType = Method->getResultType();
4247  ExprValueKind VK = Expr::getValueKindForType(ResultType);
4248  ResultType = ResultType.getNonLValueExprType(Context);
4249
4250  MarkDeclarationReferenced(Exp.get()->getLocStart(), Method);
4251  CXXMemberCallExpr *CE =
4252    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
4253                                    Exp.get()->getLocEnd());
4254  return CE;
4255}
4256
4257ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
4258                                      SourceLocation RParen) {
4259  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
4260                                             Operand->CanThrow(Context),
4261                                             KeyLoc, RParen));
4262}
4263
4264ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
4265                                   Expr *Operand, SourceLocation RParen) {
4266  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
4267}
4268
4269/// Perform the conversions required for an expression used in a
4270/// context that ignores the result.
4271ExprResult Sema::IgnoredValueConversions(Expr *E) {
4272  // C99 6.3.2.1:
4273  //   [Except in specific positions,] an lvalue that does not have
4274  //   array type is converted to the value stored in the
4275  //   designated object (and is no longer an lvalue).
4276  if (E->isRValue()) return Owned(E);
4277
4278  // We always want to do this on ObjC property references.
4279  if (E->getObjectKind() == OK_ObjCProperty) {
4280    ExprResult Res = ConvertPropertyForRValue(E);
4281    if (Res.isInvalid()) return Owned(E);
4282    E = Res.take();
4283    if (E->isRValue()) return Owned(E);
4284  }
4285
4286  // Otherwise, this rule does not apply in C++, at least not for the moment.
4287  if (getLangOptions().CPlusPlus) return Owned(E);
4288
4289  // GCC seems to also exclude expressions of incomplete enum type.
4290  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
4291    if (!T->getDecl()->isComplete()) {
4292      // FIXME: stupid workaround for a codegen bug!
4293      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
4294      return Owned(E);
4295    }
4296  }
4297
4298  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
4299  if (Res.isInvalid())
4300    return Owned(E);
4301  E = Res.take();
4302
4303  if (!E->getType()->isVoidType())
4304    RequireCompleteType(E->getExprLoc(), E->getType(),
4305                        diag::err_incomplete_type);
4306  return Owned(E);
4307}
4308
4309ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
4310  ExprResult FullExpr = Owned(FE);
4311
4312  if (!FullExpr.get())
4313    return ExprError();
4314
4315  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
4316    return ExprError();
4317
4318  FullExpr = CheckPlaceholderExpr(FullExpr.take());
4319  if (FullExpr.isInvalid())
4320    return ExprError();
4321
4322  FullExpr = IgnoredValueConversions(FullExpr.take());
4323  if (FullExpr.isInvalid())
4324    return ExprError();
4325
4326  CheckImplicitConversions(FullExpr.get());
4327  return MaybeCreateExprWithCleanups(FullExpr);
4328}
4329
4330StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
4331  if (!FullStmt) return StmtError();
4332
4333  return MaybeCreateStmtWithCleanups(FullStmt);
4334}
4335
4336bool Sema::CheckMicrosoftIfExistsSymbol(CXXScopeSpec &SS,
4337                                        UnqualifiedId &Name) {
4338  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
4339  DeclarationName TargetName = TargetNameInfo.getName();
4340  if (!TargetName)
4341    return false;
4342
4343  // Do the redeclaration lookup in the current scope.
4344  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
4345                 Sema::NotForRedeclaration);
4346  R.suppressDiagnostics();
4347  LookupParsedName(R, getCurScope(), &SS);
4348  return !R.empty();
4349}
4350