SemaExprCXX.cpp revision 3b7ec4be3ab6a5f2c13fb22622456d13b43a1751
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SemaInherit.h"
15#include "Sema.h"
16#include "clang/AST/ExprCXX.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Parse/DeclSpec.h"
19#include "clang/Lex/Preprocessor.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/STLExtras.h"
22using namespace clang;
23
24/// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function
25/// name (e.g., operator void const *) as an expression. This is
26/// very similar to ActOnIdentifierExpr, except that instead of
27/// providing an identifier the parser provides the type of the
28/// conversion function.
29Sema::OwningExprResult
30Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc,
31                                     TypeTy *Ty, bool HasTrailingLParen,
32                                     const CXXScopeSpec &SS,
33                                     bool isAddressOfOperand) {
34  QualType ConvType = QualType::getFromOpaquePtr(Ty);
35  QualType ConvTypeCanon = Context.getCanonicalType(ConvType);
36  DeclarationName ConvName
37    = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon);
38  return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen,
39                                  &SS, isAddressOfOperand);
40}
41
42/// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator
43/// name (e.g., @c operator+ ) as an expression. This is very
44/// similar to ActOnIdentifierExpr, except that instead of providing
45/// an identifier the parser provides the kind of overloaded
46/// operator that was parsed.
47Sema::OwningExprResult
48Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc,
49                                     OverloadedOperatorKind Op,
50                                     bool HasTrailingLParen,
51                                     const CXXScopeSpec &SS,
52                                     bool isAddressOfOperand) {
53  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op);
54  return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS,
55                                  isAddressOfOperand);
56}
57
58/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
59Action::ExprResult
60Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
61                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
62  NamespaceDecl *StdNs = GetStdNamespace();
63  if (!StdNs)
64    return Diag(OpLoc, diag::err_need_header_before_typeid);
65
66  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
67  Decl *TypeInfoDecl = LookupQualifiedName(StdNs, TypeInfoII, LookupTagName);
68  RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null<RecordDecl>(TypeInfoDecl);
69  if (!TypeInfoRecordDecl)
70    return Diag(OpLoc, diag::err_need_header_before_typeid);
71
72  QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
73
74  return new (Context) CXXTypeidExpr(isType, TyOrExpr, TypeInfoType.withConst(),
75                                     SourceRange(OpLoc, RParenLoc));
76}
77
78/// ActOnCXXBoolLiteral - Parse {true,false} literals.
79Action::ExprResult
80Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
81  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
82         "Unknown C++ Boolean value!");
83  return new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
84}
85
86/// ActOnCXXThrow - Parse throw expressions.
87Action::ExprResult
88Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprTy *E) {
89  return new (Context) CXXThrowExpr((Expr*)E, Context.VoidTy, OpLoc);
90}
91
92Action::ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
93  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
94  /// is a non-lvalue expression whose value is the address of the object for
95  /// which the function is called.
96
97  if (!isa<FunctionDecl>(CurContext)) {
98    Diag(ThisLoc, diag::err_invalid_this_use);
99    return ExprResult(true);
100  }
101
102  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
103    if (MD->isInstance())
104      return new (Context) CXXThisExpr(ThisLoc, MD->getThisType(Context));
105
106  return Diag(ThisLoc, diag::err_invalid_this_use);
107}
108
109/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
110/// Can be interpreted either as function-style casting ("int(x)")
111/// or class type construction ("ClassType(x,y,z)")
112/// or creation of a value-initialized type ("int()").
113Action::ExprResult
114Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
115                                SourceLocation LParenLoc,
116                                ExprTy **ExprTys, unsigned NumExprs,
117                                SourceLocation *CommaLocs,
118                                SourceLocation RParenLoc) {
119  assert(TypeRep && "Missing type!");
120  QualType Ty = QualType::getFromOpaquePtr(TypeRep);
121  Expr **Exprs = (Expr**)ExprTys;
122  SourceLocation TyBeginLoc = TypeRange.getBegin();
123  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
124
125  // C++ [expr.type.conv]p1:
126  // If the expression list is a single expression, the type conversion
127  // expression is equivalent (in definedness, and if defined in meaning) to the
128  // corresponding cast expression.
129  //
130  if (NumExprs == 1) {
131    if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
132      return true;
133    return new (Context) CXXFunctionalCastExpr(Ty.getNonReferenceType(), Ty,
134                                               TyBeginLoc, Exprs[0], RParenLoc);
135  }
136
137  if (const RecordType *RT = Ty->getAsRecordType()) {
138    CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
139
140    if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) {
141      CXXConstructorDecl *Constructor
142        = PerformInitializationByConstructor(Ty, Exprs, NumExprs,
143                                             TypeRange.getBegin(),
144                                             SourceRange(TypeRange.getBegin(),
145                                                         RParenLoc),
146                                             DeclarationName(),
147                                             IK_Direct);
148
149      if (!Constructor)
150        return true;
151
152      return new (Context) CXXTemporaryObjectExpr(Constructor, Ty, TyBeginLoc,
153                                        Exprs, NumExprs, RParenLoc);
154    }
155
156    // Fall through to value-initialize an object of class type that
157    // doesn't have a user-declared default constructor.
158  }
159
160  // C++ [expr.type.conv]p1:
161  // If the expression list specifies more than a single value, the type shall
162  // be a class with a suitably declared constructor.
163  //
164  if (NumExprs > 1)
165    return Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg)
166      << FullRange;
167
168  assert(NumExprs == 0 && "Expected 0 expressions");
169
170  // C++ [expr.type.conv]p2:
171  // The expression T(), where T is a simple-type-specifier for a non-array
172  // complete object type or the (possibly cv-qualified) void type, creates an
173  // rvalue of the specified type, which is value-initialized.
174  //
175  if (Ty->isArrayType())
176    return Diag(TyBeginLoc, diag::err_value_init_for_array_type) << FullRange;
177  if (!Ty->isDependentType() && !Ty->isVoidType() &&
178      DiagnoseIncompleteType(TyBeginLoc, Ty,
179                             diag::err_invalid_incomplete_type_use, FullRange))
180    return true;
181
182  return new (Context) CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc);
183}
184
185
186/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
187/// @code new (memory) int[size][4] @endcode
188/// or
189/// @code ::new Foo(23, "hello") @endcode
190/// For the interpretation of this heap of arguments, consult the base version.
191Action::ExprResult
192Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
193                  SourceLocation PlacementLParen,
194                  ExprTy **PlacementArgs, unsigned NumPlaceArgs,
195                  SourceLocation PlacementRParen, bool ParenTypeId,
196                  Declarator &D, SourceLocation ConstructorLParen,
197                  ExprTy **ConstructorArgs, unsigned NumConsArgs,
198                  SourceLocation ConstructorRParen)
199{
200  Expr *ArraySize = 0;
201  unsigned Skip = 0;
202  // If the specified type is an array, unwrap it and save the expression.
203  if (D.getNumTypeObjects() > 0 &&
204      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
205    DeclaratorChunk &Chunk = D.getTypeObject(0);
206    if (Chunk.Arr.hasStatic)
207      return Diag(Chunk.Loc, diag::err_static_illegal_in_new)
208        << D.getSourceRange();
209    if (!Chunk.Arr.NumElts)
210      return Diag(Chunk.Loc, diag::err_array_new_needs_size)
211        << D.getSourceRange();
212    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
213    Skip = 1;
214  }
215
216  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
217  if (D.getInvalidType())
218    return true;
219
220  if (CheckAllocatedType(AllocType, D))
221    return true;
222
223  QualType ResultType = Context.getPointerType(AllocType);
224
225  // That every array dimension except the first is constant was already
226  // checked by the type check above.
227
228  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
229  //   or enumeration type with a non-negative value."
230  if (ArraySize) {
231    QualType SizeType = ArraySize->getType();
232    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
233      return Diag(ArraySize->getSourceRange().getBegin(),
234                  diag::err_array_size_not_integral)
235        << SizeType << ArraySize->getSourceRange();
236    // Let's see if this is a constant < 0. If so, we reject it out of hand.
237    // We don't care about special rules, so we tell the machinery it's not
238    // evaluated - it gives us a result in more cases.
239    llvm::APSInt Value;
240    if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
241      if (Value < llvm::APSInt(
242                      llvm::APInt::getNullValue(Value.getBitWidth()), false))
243        return Diag(ArraySize->getSourceRange().getBegin(),
244                    diag::err_typecheck_negative_array_size)
245          << ArraySize->getSourceRange();
246    }
247  }
248
249  FunctionDecl *OperatorNew = 0;
250  FunctionDecl *OperatorDelete = 0;
251  Expr **PlaceArgs = (Expr**)PlacementArgs;
252  if (FindAllocationFunctions(StartLoc,
253                              SourceRange(PlacementLParen, PlacementRParen),
254                              UseGlobal, AllocType, ArraySize, PlaceArgs,
255                              NumPlaceArgs, OperatorNew, OperatorDelete))
256    return true;
257
258  bool Init = ConstructorLParen.isValid();
259  // --- Choosing a constructor ---
260  // C++ 5.3.4p15
261  // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
262  //   the object is not initialized. If the object, or any part of it, is
263  //   const-qualified, it's an error.
264  // 2) If T is a POD and there's an empty initializer, the object is value-
265  //   initialized.
266  // 3) If T is a POD and there's one initializer argument, the object is copy-
267  //   constructed.
268  // 4) If T is a POD and there's more initializer arguments, it's an error.
269  // 5) If T is not a POD, the initializer arguments are used as constructor
270  //   arguments.
271  //
272  // Or by the C++0x formulation:
273  // 1) If there's no initializer, the object is default-initialized according
274  //    to C++0x rules.
275  // 2) Otherwise, the object is direct-initialized.
276  CXXConstructorDecl *Constructor = 0;
277  Expr **ConsArgs = (Expr**)ConstructorArgs;
278  // FIXME: Should check for primitive/aggregate here, not record.
279  if (const RecordType *RT = AllocType->getAsRecordType()) {
280    // FIXME: This is incorrect for when there is an empty initializer and
281    // no user-defined constructor. Must zero-initialize, not default-construct.
282    Constructor = PerformInitializationByConstructor(
283                      AllocType, ConsArgs, NumConsArgs,
284                      D.getSourceRange().getBegin(),
285                      SourceRange(D.getSourceRange().getBegin(),
286                                  ConstructorRParen),
287                      RT->getDecl()->getDeclName(),
288                      NumConsArgs != 0 ? IK_Direct : IK_Default);
289    if (!Constructor)
290      return true;
291  } else {
292    if (!Init) {
293      // FIXME: Check that no subpart is const.
294      if (AllocType.isConstQualified()) {
295        Diag(StartLoc, diag::err_new_uninitialized_const)
296          << D.getSourceRange();
297        return true;
298      }
299    } else if (NumConsArgs == 0) {
300      // Object is value-initialized. Do nothing.
301    } else if (NumConsArgs == 1) {
302      // Object is direct-initialized.
303      // FIXME: WHAT DeclarationName do we pass in here?
304      if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
305                                DeclarationName() /*AllocType.getAsString()*/,
306                                /*DirectInit=*/true))
307        return true;
308    } else {
309      Diag(StartLoc, diag::err_builtin_direct_init_more_than_one_arg)
310        << SourceRange(ConstructorLParen, ConstructorRParen);
311    }
312  }
313
314  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
315
316  return new (Context) CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs,
317                        NumPlaceArgs, ParenTypeId, ArraySize, Constructor, Init,
318                        ConsArgs, NumConsArgs, OperatorDelete, ResultType,
319                        StartLoc, Init ? ConstructorRParen : SourceLocation());
320}
321
322/// CheckAllocatedType - Checks that a type is suitable as the allocated type
323/// in a new-expression.
324/// dimension off and stores the size expression in ArraySize.
325bool Sema::CheckAllocatedType(QualType AllocType, const Declarator &D)
326{
327  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
328  //   abstract class type or array thereof.
329  // FIXME: We don't have abstract types yet.
330  // FIXME: Under C++ semantics, an incomplete object type is still an object
331  // type. This code assumes the C semantics, where it's not.
332  if (!AllocType->isObjectType()) {
333    unsigned type; // For the select in the message.
334    if (AllocType->isFunctionType()) {
335      type = 0;
336    } else if(AllocType->isIncompleteType()) {
337      type = 1;
338    } else {
339      assert(AllocType->isReferenceType() && "Unhandled non-object type.");
340      type = 2;
341    }
342    Diag(D.getSourceRange().getBegin(), diag::err_bad_new_type)
343      << AllocType << type << D.getSourceRange();
344    return true;
345  }
346
347  // Every dimension shall be of constant size.
348  unsigned i = 1;
349  while (const ArrayType *Array = Context.getAsArrayType(AllocType)) {
350    if (!Array->isConstantArrayType()) {
351      Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst)
352        << static_cast<Expr*>(D.getTypeObject(i).Arr.NumElts)->getSourceRange();
353      return true;
354    }
355    AllocType = Array->getElementType();
356    ++i;
357  }
358
359  return false;
360}
361
362/// FindAllocationFunctions - Finds the overloads of operator new and delete
363/// that are appropriate for the allocation.
364bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
365                                   bool UseGlobal, QualType AllocType,
366                                   bool IsArray, Expr **PlaceArgs,
367                                   unsigned NumPlaceArgs,
368                                   FunctionDecl *&OperatorNew,
369                                   FunctionDecl *&OperatorDelete)
370{
371  // --- Choosing an allocation function ---
372  // C++ 5.3.4p8 - 14 & 18
373  // 1) If UseGlobal is true, only look in the global scope. Else, also look
374  //   in the scope of the allocated class.
375  // 2) If an array size is given, look for operator new[], else look for
376  //   operator new.
377  // 3) The first argument is always size_t. Append the arguments from the
378  //   placement form.
379  // FIXME: Also find the appropriate delete operator.
380
381  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
382  // We don't care about the actual value of this argument.
383  // FIXME: Should the Sema create the expression and embed it in the syntax
384  // tree? Or should the consumer just recalculate the value?
385  AllocArgs[0] = new (Context) IntegerLiteral(llvm::APInt::getNullValue(
386                                        Context.Target.getPointerWidth(0)),
387                                    Context.getSizeType(),
388                                    SourceLocation());
389  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
390
391  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
392                                        IsArray ? OO_Array_New : OO_New);
393  if (AllocType->isRecordType() && !UseGlobal) {
394    CXXRecordDecl *Record = cast<CXXRecordType>(AllocType->getAsRecordType())
395                                ->getDecl();
396    // FIXME: We fail to find inherited overloads.
397    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
398                          AllocArgs.size(), Record, /*AllowMissing=*/true,
399                          OperatorNew))
400      return true;
401  }
402  if (!OperatorNew) {
403    // Didn't find a member overload. Look for a global one.
404    DeclareGlobalNewDelete();
405    DeclContext *TUDecl = Context.getTranslationUnitDecl();
406    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
407                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
408                          OperatorNew))
409      return true;
410  }
411
412  // FIXME: This is leaked on error. But so much is currently in Sema that it's
413  // easier to clean it in one go.
414  AllocArgs[0]->Destroy(Context);
415  return false;
416}
417
418/// FindAllocationOverload - Find an fitting overload for the allocation
419/// function in the specified scope.
420bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
421                                  DeclarationName Name, Expr** Args,
422                                  unsigned NumArgs, DeclContext *Ctx,
423                                  bool AllowMissing, FunctionDecl *&Operator)
424{
425  DeclContext::lookup_iterator Alloc, AllocEnd;
426  llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Name);
427  if (Alloc == AllocEnd) {
428    if (AllowMissing)
429      return false;
430    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
431      << Name << 0 << Range;
432  }
433
434  OverloadCandidateSet Candidates;
435  for (; Alloc != AllocEnd; ++Alloc) {
436    // Even member operator new/delete are implicitly treated as
437    // static, so don't use AddMemberCandidate.
438    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc))
439      AddOverloadCandidate(Fn, Args, NumArgs, Candidates,
440                           /*SuppressUserConversions=*/false);
441  }
442
443  // Do the resolution.
444  OverloadCandidateSet::iterator Best;
445  switch(BestViableFunction(Candidates, Best)) {
446  case OR_Success: {
447    // Got one!
448    FunctionDecl *FnDecl = Best->Function;
449    // The first argument is size_t, and the first parameter must be size_t,
450    // too. This is checked on declaration and can be assumed. (It can't be
451    // asserted on, though, since invalid decls are left in there.)
452    for (unsigned i = 1; i < NumArgs; ++i) {
453      // FIXME: Passing word to diagnostic.
454      if (PerformCopyInitialization(Args[i-1],
455                                    FnDecl->getParamDecl(i)->getType(),
456                                    "passing"))
457        return true;
458    }
459    Operator = FnDecl;
460    return false;
461  }
462
463  case OR_No_Viable_Function:
464    if (AllowMissing)
465      return false;
466    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
467      << Name << (unsigned)Candidates.size() << Range;
468    PrintOverloadCandidates(Candidates, /*OnlyViable=*/false);
469    return true;
470
471  case OR_Ambiguous:
472    Diag(StartLoc, diag::err_ovl_ambiguous_call)
473      << Name << Range;
474    PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
475    return true;
476  }
477  assert(false && "Unreachable, bad result from BestViableFunction");
478  return true;
479}
480
481
482/// DeclareGlobalNewDelete - Declare the global forms of operator new and
483/// delete. These are:
484/// @code
485///   void* operator new(std::size_t) throw(std::bad_alloc);
486///   void* operator new[](std::size_t) throw(std::bad_alloc);
487///   void operator delete(void *) throw();
488///   void operator delete[](void *) throw();
489/// @endcode
490/// Note that the placement and nothrow forms of new are *not* implicitly
491/// declared. Their use requires including \<new\>.
492void Sema::DeclareGlobalNewDelete()
493{
494  if (GlobalNewDeleteDeclared)
495    return;
496  GlobalNewDeleteDeclared = true;
497
498  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
499  QualType SizeT = Context.getSizeType();
500
501  // FIXME: Exception specifications are not added.
502  DeclareGlobalAllocationFunction(
503      Context.DeclarationNames.getCXXOperatorName(OO_New),
504      VoidPtr, SizeT);
505  DeclareGlobalAllocationFunction(
506      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
507      VoidPtr, SizeT);
508  DeclareGlobalAllocationFunction(
509      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
510      Context.VoidTy, VoidPtr);
511  DeclareGlobalAllocationFunction(
512      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
513      Context.VoidTy, VoidPtr);
514}
515
516/// DeclareGlobalAllocationFunction - Declares a single implicit global
517/// allocation function if it doesn't already exist.
518void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
519                                           QualType Return, QualType Argument)
520{
521  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
522
523  // Check if this function is already declared.
524  {
525    DeclContext::lookup_iterator Alloc, AllocEnd;
526    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
527         Alloc != AllocEnd; ++Alloc) {
528      // FIXME: Do we need to check for default arguments here?
529      FunctionDecl *Func = cast<FunctionDecl>(*Alloc);
530      if (Func->getNumParams() == 1 &&
531          Context.getCanonicalType(Func->getParamDecl(0)->getType())==Argument)
532        return;
533    }
534  }
535
536  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0);
537  FunctionDecl *Alloc =
538    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
539                         FnType, FunctionDecl::None, false,
540                         SourceLocation());
541  Alloc->setImplicit();
542  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
543                                           0, Argument, VarDecl::None, 0);
544  Alloc->setParams(Context, &Param, 1);
545
546  // FIXME: Also add this declaration to the IdentifierResolver, but
547  // make sure it is at the end of the chain to coincide with the
548  // global scope.
549  ((DeclContext *)TUScope->getEntity())->addDecl(Alloc);
550}
551
552/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
553/// @code ::delete ptr; @endcode
554/// or
555/// @code delete [] ptr; @endcode
556Action::ExprResult
557Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
558                     bool ArrayForm, ExprTy *Operand)
559{
560  // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
561  //   having a single conversion function to a pointer type. The result has
562  //   type void."
563  // DR599 amends "pointer type" to "pointer to object type" in both cases.
564
565  Expr *Ex = (Expr *)Operand;
566  QualType Type = Ex->getType();
567
568  if (Type->isRecordType()) {
569    // FIXME: Find that one conversion function and amend the type.
570  }
571
572  if (!Type->isPointerType()) {
573    Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange();
574    return true;
575  }
576
577  QualType Pointee = Type->getAsPointerType()->getPointeeType();
578  if (!Pointee->isVoidType() &&
579      DiagnoseIncompleteType(StartLoc, Pointee, diag::warn_delete_incomplete,
580                             Ex->getSourceRange()))
581    return true;
582  else if (!Pointee->isObjectType()) {
583    Diag(StartLoc, diag::err_delete_operand)
584      << Type << Ex->getSourceRange();
585    return true;
586  }
587
588  // FIXME: Look up the correct operator delete overload and pass a pointer
589  // along.
590  // FIXME: Check access and ambiguity of operator delete and destructor.
591
592  return new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, 0,
593                                     Ex, StartLoc);
594}
595
596
597/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
598/// C++ if/switch/while/for statement.
599/// e.g: "if (int x = f()) {...}"
600Action::ExprResult
601Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc,
602                                       Declarator &D,
603                                       SourceLocation EqualLoc,
604                                       ExprTy *AssignExprVal) {
605  assert(AssignExprVal && "Null assignment expression");
606
607  // C++ 6.4p2:
608  // The declarator shall not specify a function or an array.
609  // The type-specifier-seq shall not contain typedef and shall not declare a
610  // new class or enumeration.
611
612  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
613         "Parser allowed 'typedef' as storage class of condition decl.");
614
615  QualType Ty = GetTypeForDeclarator(D, S);
616
617  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
618    // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
619    // would be created and CXXConditionDeclExpr wants a VarDecl.
620    return Diag(StartLoc, diag::err_invalid_use_of_function_type)
621      << SourceRange(StartLoc, EqualLoc);
622  } else if (Ty->isArrayType()) { // ...or an array.
623    Diag(StartLoc, diag::err_invalid_use_of_array_type)
624      << SourceRange(StartLoc, EqualLoc);
625  } else if (const RecordType *RT = Ty->getAsRecordType()) {
626    RecordDecl *RD = RT->getDecl();
627    // The type-specifier-seq shall not declare a new class...
628    if (RD->isDefinition() && (RD->getIdentifier() == 0 || S->isDeclScope(RD)))
629      Diag(RD->getLocation(), diag::err_type_defined_in_condition);
630  } else if (const EnumType *ET = Ty->getAsEnumType()) {
631    EnumDecl *ED = ET->getDecl();
632    // ...or enumeration.
633    if (ED->isDefinition() && (ED->getIdentifier() == 0 || S->isDeclScope(ED)))
634      Diag(ED->getLocation(), diag::err_type_defined_in_condition);
635  }
636
637  DeclTy *Dcl = ActOnDeclarator(S, D, 0);
638  if (!Dcl)
639    return true;
640  AddInitializerToDecl(Dcl, ExprArg(*this, AssignExprVal));
641
642  // Mark this variable as one that is declared within a conditional.
643  if (VarDecl *VD = dyn_cast<VarDecl>((Decl *)Dcl))
644    VD->setDeclaredInCondition(true);
645
646  return new (Context) CXXConditionDeclExpr(StartLoc, EqualLoc,
647                                       cast<VarDecl>(static_cast<Decl *>(Dcl)));
648}
649
650/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
651bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
652  // C++ 6.4p4:
653  // The value of a condition that is an initialized declaration in a statement
654  // other than a switch statement is the value of the declared variable
655  // implicitly converted to type bool. If that conversion is ill-formed, the
656  // program is ill-formed.
657  // The value of a condition that is an expression is the value of the
658  // expression, implicitly converted to bool.
659  //
660  return PerformContextuallyConvertToBool(CondExpr);
661}
662
663/// Helper function to determine whether this is the (deprecated) C++
664/// conversion from a string literal to a pointer to non-const char or
665/// non-const wchar_t (for narrow and wide string literals,
666/// respectively).
667bool
668Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
669  // Look inside the implicit cast, if it exists.
670  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
671    From = Cast->getSubExpr();
672
673  // A string literal (2.13.4) that is not a wide string literal can
674  // be converted to an rvalue of type "pointer to char"; a wide
675  // string literal can be converted to an rvalue of type "pointer
676  // to wchar_t" (C++ 4.2p2).
677  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
678    if (const PointerType *ToPtrType = ToType->getAsPointerType())
679      if (const BuiltinType *ToPointeeType
680          = ToPtrType->getPointeeType()->getAsBuiltinType()) {
681        // This conversion is considered only when there is an
682        // explicit appropriate pointer target type (C++ 4.2p2).
683        if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
684            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
685             (!StrLit->isWide() &&
686              (ToPointeeType->getKind() == BuiltinType::Char_U ||
687               ToPointeeType->getKind() == BuiltinType::Char_S))))
688          return true;
689      }
690
691  return false;
692}
693
694/// PerformImplicitConversion - Perform an implicit conversion of the
695/// expression From to the type ToType. Returns true if there was an
696/// error, false otherwise. The expression From is replaced with the
697/// converted expression. Flavor is the kind of conversion we're
698/// performing, used in the error message. If @p AllowExplicit,
699/// explicit user-defined conversions are permitted.
700bool
701Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
702                                const char *Flavor, bool AllowExplicit)
703{
704  ImplicitConversionSequence ICS = TryImplicitConversion(From, ToType, false,
705                                                         AllowExplicit);
706  return PerformImplicitConversion(From, ToType, ICS, Flavor);
707}
708
709/// PerformImplicitConversion - Perform an implicit conversion of the
710/// expression From to the type ToType using the pre-computed implicit
711/// conversion sequence ICS. Returns true if there was an error, false
712/// otherwise. The expression From is replaced with the converted
713/// expression. Flavor is the kind of conversion we're performing,
714/// used in the error message.
715bool
716Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
717                                const ImplicitConversionSequence &ICS,
718                                const char* Flavor) {
719  switch (ICS.ConversionKind) {
720  case ImplicitConversionSequence::StandardConversion:
721    if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor))
722      return true;
723    break;
724
725  case ImplicitConversionSequence::UserDefinedConversion:
726    // FIXME: This is, of course, wrong. We'll need to actually call
727    // the constructor or conversion operator, and then cope with the
728    // standard conversions.
729    ImpCastExprToType(From, ToType.getNonReferenceType(),
730                      ToType->isReferenceType());
731    return false;
732
733  case ImplicitConversionSequence::EllipsisConversion:
734    assert(false && "Cannot perform an ellipsis conversion");
735    return false;
736
737  case ImplicitConversionSequence::BadConversion:
738    return true;
739  }
740
741  // Everything went well.
742  return false;
743}
744
745/// PerformImplicitConversion - Perform an implicit conversion of the
746/// expression From to the type ToType by following the standard
747/// conversion sequence SCS. Returns true if there was an error, false
748/// otherwise. The expression From is replaced with the converted
749/// expression. Flavor is the context in which we're performing this
750/// conversion, for use in error messages.
751bool
752Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
753                                const StandardConversionSequence& SCS,
754                                const char *Flavor) {
755  // Overall FIXME: we are recomputing too many types here and doing
756  // far too much extra work. What this means is that we need to keep
757  // track of more information that is computed when we try the
758  // implicit conversion initially, so that we don't need to recompute
759  // anything here.
760  QualType FromType = From->getType();
761
762  if (SCS.CopyConstructor) {
763    // FIXME: Create a temporary object by calling the copy
764    // constructor.
765    ImpCastExprToType(From, ToType.getNonReferenceType(),
766                      ToType->isReferenceType());
767    return false;
768  }
769
770  // Perform the first implicit conversion.
771  switch (SCS.First) {
772  case ICK_Identity:
773  case ICK_Lvalue_To_Rvalue:
774    // Nothing to do.
775    break;
776
777  case ICK_Array_To_Pointer:
778    if (FromType->isOverloadType()) {
779      FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
780      if (!Fn)
781        return true;
782
783      FixOverloadedFunctionReference(From, Fn);
784      FromType = From->getType();
785    } else {
786      FromType = Context.getArrayDecayedType(FromType);
787    }
788    ImpCastExprToType(From, FromType);
789    break;
790
791  case ICK_Function_To_Pointer:
792    FromType = Context.getPointerType(FromType);
793    ImpCastExprToType(From, FromType);
794    break;
795
796  default:
797    assert(false && "Improper first standard conversion");
798    break;
799  }
800
801  // Perform the second implicit conversion
802  switch (SCS.Second) {
803  case ICK_Identity:
804    // Nothing to do.
805    break;
806
807  case ICK_Integral_Promotion:
808  case ICK_Floating_Promotion:
809  case ICK_Integral_Conversion:
810  case ICK_Floating_Conversion:
811  case ICK_Floating_Integral:
812    FromType = ToType.getUnqualifiedType();
813    ImpCastExprToType(From, FromType);
814    break;
815
816  case ICK_Pointer_Conversion:
817    if (SCS.IncompatibleObjC) {
818      // Diagnose incompatible Objective-C conversions
819      Diag(From->getSourceRange().getBegin(),
820           diag::ext_typecheck_convert_incompatible_pointer)
821        << From->getType() << ToType << Flavor
822        << From->getSourceRange();
823    }
824
825    if (CheckPointerConversion(From, ToType))
826      return true;
827    ImpCastExprToType(From, ToType);
828    break;
829
830  case ICK_Pointer_Member:
831    if (CheckMemberPointerConversion(From, ToType))
832      return true;
833    ImpCastExprToType(From, ToType);
834    break;
835
836  case ICK_Boolean_Conversion:
837    FromType = Context.BoolTy;
838    ImpCastExprToType(From, FromType);
839    break;
840
841  default:
842    assert(false && "Improper second standard conversion");
843    break;
844  }
845
846  switch (SCS.Third) {
847  case ICK_Identity:
848    // Nothing to do.
849    break;
850
851  case ICK_Qualification:
852    ImpCastExprToType(From, ToType.getNonReferenceType(),
853                      ToType->isReferenceType());
854    break;
855
856  default:
857    assert(false && "Improper second standard conversion");
858    break;
859  }
860
861  return false;
862}
863
864Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
865                                                 SourceLocation KWLoc,
866                                                 SourceLocation LParen,
867                                                 TypeTy *Ty,
868                                                 SourceLocation RParen) {
869  // FIXME: Some of the type traits have requirements. Interestingly, only the
870  // __is_base_of requirement is explicitly stated to be diagnosed. Indeed,
871  // G++ accepts __is_pod(Incomplete) without complaints, and claims that the
872  // type is indeed a POD.
873
874  // There is no point in eagerly computing the value. The traits are designed
875  // to be used from type trait templates, so Ty will be a template parameter
876  // 99% of the time.
877  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, OTT,
878                                      QualType::getFromOpaquePtr(Ty),
879                                      RParen, Context.BoolTy));
880}
881
882QualType Sema::CheckPointerToMemberOperands(
883  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect)
884{
885  const char *OpSpelling = isIndirect ? "->*" : ".*";
886  // C++ 5.5p2
887  //   The binary operator .* [p3: ->*] binds its second operand, which shall
888  //   be of type "pointer to member of T" (where T is a completely-defined
889  //   class type) [...]
890  QualType RType = rex->getType();
891  const MemberPointerType *MemPtr = RType->getAsMemberPointerType();
892  if (!MemPtr || MemPtr->getClass()->isIncompleteType()) {
893    Diag(Loc, diag::err_bad_memptr_rhs)
894      << OpSpelling << RType << rex->getSourceRange();
895    return QualType();
896  }
897  QualType Class(MemPtr->getClass(), 0);
898
899  // C++ 5.5p2
900  //   [...] to its first operand, which shall be of class T or of a class of
901  //   which T is an unambiguous and accessible base class. [p3: a pointer to
902  //   such a class]
903  QualType LType = lex->getType();
904  if (isIndirect) {
905    if (const PointerType *Ptr = LType->getAsPointerType())
906      LType = Ptr->getPointeeType().getNonReferenceType();
907    else {
908      Diag(Loc, diag::err_bad_memptr_lhs)
909        << OpSpelling << 1 << LType << lex->getSourceRange();
910      return QualType();
911    }
912  }
913
914  if (Context.getCanonicalType(Class).getUnqualifiedType() !=
915      Context.getCanonicalType(LType).getUnqualifiedType()) {
916    BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
917                    /*DetectVirtual=*/false);
918    // FIXME: Would it be useful to print full ambiguity paths,
919    // or is that overkill?
920    if (!IsDerivedFrom(LType, Class, Paths) ||
921        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
922      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
923        << (int)isIndirect << lex->getType() << lex->getSourceRange();
924      return QualType();
925    }
926  }
927
928  // C++ 5.5p2
929  //   The result is an object or a function of the type specified by the
930  //   second operand.
931  // The cv qualifiers are the union of those in the pointer and the left side,
932  // in accordance with 5.5p5 and 5.2.5.
933  // FIXME: This returns a dereferenced member function pointer as a normal
934  // function type. However, the only operation valid on such functions is
935  // calling them. There's also a GCC extension to get a function pointer to
936  // the thing, which is another complication, because this type - unlike the
937  // type that is the result of this expression - takes the class as the first
938  // argument.
939  // We probably need a "MemberFunctionClosureType" or something like that.
940  QualType Result = MemPtr->getPointeeType();
941  if (LType.isConstQualified())
942    Result.addConst();
943  if (LType.isVolatileQualified())
944    Result.addVolatile();
945  return Result;
946}
947