SemaExprCXX.cpp revision 428c620478d513081399798db5550bf0c779f244
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/TemplateDeduction.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/Preprocessor.h"
32#include "TypeLocBuilder.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/ErrorHandling.h"
36using namespace clang;
37using namespace sema;
38
39ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
40                                   IdentifierInfo &II,
41                                   SourceLocation NameLoc,
42                                   Scope *S, CXXScopeSpec &SS,
43                                   ParsedType ObjectTypePtr,
44                                   bool EnteringContext) {
45  // Determine where to perform name lookup.
46
47  // FIXME: This area of the standard is very messy, and the current
48  // wording is rather unclear about which scopes we search for the
49  // destructor name; see core issues 399 and 555. Issue 399 in
50  // particular shows where the current description of destructor name
51  // lookup is completely out of line with existing practice, e.g.,
52  // this appears to be ill-formed:
53  //
54  //   namespace N {
55  //     template <typename T> struct S {
56  //       ~S();
57  //     };
58  //   }
59  //
60  //   void f(N::S<int>* s) {
61  //     s->N::S<int>::~S();
62  //   }
63  //
64  // See also PR6358 and PR6359.
65  // For this reason, we're currently only doing the C++03 version of this
66  // code; the C++0x version has to wait until we get a proper spec.
67  QualType SearchType;
68  DeclContext *LookupCtx = 0;
69  bool isDependent = false;
70  bool LookInScope = false;
71
72  // If we have an object type, it's because we are in a
73  // pseudo-destructor-expression or a member access expression, and
74  // we know what type we're looking for.
75  if (ObjectTypePtr)
76    SearchType = GetTypeFromParser(ObjectTypePtr);
77
78  if (SS.isSet()) {
79    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
80
81    bool AlreadySearched = false;
82    bool LookAtPrefix = true;
83    // C++ [basic.lookup.qual]p6:
84    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
85    //   the type-names are looked up as types in the scope designated by the
86    //   nested-name-specifier. In a qualified-id of the form:
87    //
88    //     ::[opt] nested-name-specifier  ~ class-name
89    //
90    //   where the nested-name-specifier designates a namespace scope, and in
91    //   a qualified-id of the form:
92    //
93    //     ::opt nested-name-specifier class-name ::  ~ class-name
94    //
95    //   the class-names are looked up as types in the scope designated by
96    //   the nested-name-specifier.
97    //
98    // Here, we check the first case (completely) and determine whether the
99    // code below is permitted to look at the prefix of the
100    // nested-name-specifier.
101    DeclContext *DC = computeDeclContext(SS, EnteringContext);
102    if (DC && DC->isFileContext()) {
103      AlreadySearched = true;
104      LookupCtx = DC;
105      isDependent = false;
106    } else if (DC && isa<CXXRecordDecl>(DC))
107      LookAtPrefix = false;
108
109    // The second case from the C++03 rules quoted further above.
110    NestedNameSpecifier *Prefix = 0;
111    if (AlreadySearched) {
112      // Nothing left to do.
113    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
114      CXXScopeSpec PrefixSS;
115      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
116      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
117      isDependent = isDependentScopeSpecifier(PrefixSS);
118    } else if (ObjectTypePtr) {
119      LookupCtx = computeDeclContext(SearchType);
120      isDependent = SearchType->isDependentType();
121    } else {
122      LookupCtx = computeDeclContext(SS, EnteringContext);
123      isDependent = LookupCtx && LookupCtx->isDependentContext();
124    }
125
126    LookInScope = false;
127  } else if (ObjectTypePtr) {
128    // C++ [basic.lookup.classref]p3:
129    //   If the unqualified-id is ~type-name, the type-name is looked up
130    //   in the context of the entire postfix-expression. If the type T
131    //   of the object expression is of a class type C, the type-name is
132    //   also looked up in the scope of class C. At least one of the
133    //   lookups shall find a name that refers to (possibly
134    //   cv-qualified) T.
135    LookupCtx = computeDeclContext(SearchType);
136    isDependent = SearchType->isDependentType();
137    assert((isDependent || !SearchType->isIncompleteType()) &&
138           "Caller should have completed object type");
139
140    LookInScope = true;
141  } else {
142    // Perform lookup into the current scope (only).
143    LookInScope = true;
144  }
145
146  TypeDecl *NonMatchingTypeDecl = 0;
147  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
148  for (unsigned Step = 0; Step != 2; ++Step) {
149    // Look for the name first in the computed lookup context (if we
150    // have one) and, if that fails to find a match, in the scope (if
151    // we're allowed to look there).
152    Found.clear();
153    if (Step == 0 && LookupCtx)
154      LookupQualifiedName(Found, LookupCtx);
155    else if (Step == 1 && LookInScope && S)
156      LookupName(Found, S);
157    else
158      continue;
159
160    // FIXME: Should we be suppressing ambiguities here?
161    if (Found.isAmbiguous())
162      return ParsedType();
163
164    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
165      QualType T = Context.getTypeDeclType(Type);
166
167      if (SearchType.isNull() || SearchType->isDependentType() ||
168          Context.hasSameUnqualifiedType(T, SearchType)) {
169        // We found our type!
170
171        return ParsedType::make(T);
172      }
173
174      if (!SearchType.isNull())
175        NonMatchingTypeDecl = Type;
176    }
177
178    // If the name that we found is a class template name, and it is
179    // the same name as the template name in the last part of the
180    // nested-name-specifier (if present) or the object type, then
181    // this is the destructor for that class.
182    // FIXME: This is a workaround until we get real drafting for core
183    // issue 399, for which there isn't even an obvious direction.
184    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
185      QualType MemberOfType;
186      if (SS.isSet()) {
187        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
188          // Figure out the type of the context, if it has one.
189          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
190            MemberOfType = Context.getTypeDeclType(Record);
191        }
192      }
193      if (MemberOfType.isNull())
194        MemberOfType = SearchType;
195
196      if (MemberOfType.isNull())
197        continue;
198
199      // We're referring into a class template specialization. If the
200      // class template we found is the same as the template being
201      // specialized, we found what we are looking for.
202      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
203        if (ClassTemplateSpecializationDecl *Spec
204              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
205          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
206                Template->getCanonicalDecl())
207            return ParsedType::make(MemberOfType);
208        }
209
210        continue;
211      }
212
213      // We're referring to an unresolved class template
214      // specialization. Determine whether we class template we found
215      // is the same as the template being specialized or, if we don't
216      // know which template is being specialized, that it at least
217      // has the same name.
218      if (const TemplateSpecializationType *SpecType
219            = MemberOfType->getAs<TemplateSpecializationType>()) {
220        TemplateName SpecName = SpecType->getTemplateName();
221
222        // The class template we found is the same template being
223        // specialized.
224        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
225          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
226            return ParsedType::make(MemberOfType);
227
228          continue;
229        }
230
231        // The class template we found has the same name as the
232        // (dependent) template name being specialized.
233        if (DependentTemplateName *DepTemplate
234                                    = SpecName.getAsDependentTemplateName()) {
235          if (DepTemplate->isIdentifier() &&
236              DepTemplate->getIdentifier() == Template->getIdentifier())
237            return ParsedType::make(MemberOfType);
238
239          continue;
240        }
241      }
242    }
243  }
244
245  if (isDependent) {
246    // We didn't find our type, but that's okay: it's dependent
247    // anyway.
248
249    // FIXME: What if we have no nested-name-specifier?
250    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
251                                   SS.getWithLocInContext(Context),
252                                   II, NameLoc);
253    return ParsedType::make(T);
254  }
255
256  if (NonMatchingTypeDecl) {
257    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
258    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
259      << T << SearchType;
260    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
261      << T;
262  } else if (ObjectTypePtr)
263    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
264      << &II;
265  else
266    Diag(NameLoc, diag::err_destructor_class_name);
267
268  return ParsedType();
269}
270
271ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
272    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
273      return ParsedType();
274    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
275           && "only get destructor types from declspecs");
276    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
277    QualType SearchType = GetTypeFromParser(ObjectType);
278    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
279      return ParsedType::make(T);
280    }
281
282    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
283      << T << SearchType;
284    return ParsedType();
285}
286
287/// \brief Build a C++ typeid expression with a type operand.
288ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
289                                SourceLocation TypeidLoc,
290                                TypeSourceInfo *Operand,
291                                SourceLocation RParenLoc) {
292  // C++ [expr.typeid]p4:
293  //   The top-level cv-qualifiers of the lvalue expression or the type-id
294  //   that is the operand of typeid are always ignored.
295  //   If the type of the type-id is a class type or a reference to a class
296  //   type, the class shall be completely-defined.
297  Qualifiers Quals;
298  QualType T
299    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
300                                      Quals);
301  if (T->getAs<RecordType>() &&
302      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
303    return ExprError();
304
305  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
306                                           Operand,
307                                           SourceRange(TypeidLoc, RParenLoc)));
308}
309
310/// \brief Build a C++ typeid expression with an expression operand.
311ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
312                                SourceLocation TypeidLoc,
313                                Expr *E,
314                                SourceLocation RParenLoc) {
315  if (E && !E->isTypeDependent()) {
316    if (E->getType()->isPlaceholderType()) {
317      ExprResult result = CheckPlaceholderExpr(E);
318      if (result.isInvalid()) return ExprError();
319      E = result.take();
320    }
321
322    QualType T = E->getType();
323    if (const RecordType *RecordT = T->getAs<RecordType>()) {
324      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
325      // C++ [expr.typeid]p3:
326      //   [...] If the type of the expression is a class type, the class
327      //   shall be completely-defined.
328      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
329        return ExprError();
330
331      // C++ [expr.typeid]p3:
332      //   When typeid is applied to an expression other than an glvalue of a
333      //   polymorphic class type [...] [the] expression is an unevaluated
334      //   operand. [...]
335      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
336        // The subexpression is potentially evaluated; switch the context
337        // and recheck the subexpression.
338        ExprResult Result = TranformToPotentiallyEvaluated(E);
339        if (Result.isInvalid()) return ExprError();
340        E = Result.take();
341
342        // We require a vtable to query the type at run time.
343        MarkVTableUsed(TypeidLoc, RecordD);
344      }
345    }
346
347    // C++ [expr.typeid]p4:
348    //   [...] If the type of the type-id is a reference to a possibly
349    //   cv-qualified type, the result of the typeid expression refers to a
350    //   std::type_info object representing the cv-unqualified referenced
351    //   type.
352    Qualifiers Quals;
353    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
354    if (!Context.hasSameType(T, UnqualT)) {
355      T = UnqualT;
356      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
357    }
358  }
359
360  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
361                                           E,
362                                           SourceRange(TypeidLoc, RParenLoc)));
363}
364
365/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
366ExprResult
367Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
368                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
369  // Find the std::type_info type.
370  if (!getStdNamespace())
371    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
372
373  if (!CXXTypeInfoDecl) {
374    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
375    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
376    LookupQualifiedName(R, getStdNamespace());
377    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
378    if (!CXXTypeInfoDecl)
379      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
380  }
381
382  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
383
384  if (isType) {
385    // The operand is a type; handle it as such.
386    TypeSourceInfo *TInfo = 0;
387    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
388                                   &TInfo);
389    if (T.isNull())
390      return ExprError();
391
392    if (!TInfo)
393      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
394
395    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
396  }
397
398  // The operand is an expression.
399  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
400}
401
402/// Retrieve the UuidAttr associated with QT.
403static UuidAttr *GetUuidAttrOfType(QualType QT) {
404  // Optionally remove one level of pointer, reference or array indirection.
405  const Type *Ty = QT.getTypePtr();;
406  if (QT->isPointerType() || QT->isReferenceType())
407    Ty = QT->getPointeeType().getTypePtr();
408  else if (QT->isArrayType())
409    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
410
411  // Loop all record redeclaration looking for an uuid attribute.
412  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
413  for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
414       E = RD->redecls_end(); I != E; ++I) {
415    if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
416      return Uuid;
417  }
418
419  return 0;
420}
421
422/// \brief Build a Microsoft __uuidof expression with a type operand.
423ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
424                                SourceLocation TypeidLoc,
425                                TypeSourceInfo *Operand,
426                                SourceLocation RParenLoc) {
427  if (!Operand->getType()->isDependentType()) {
428    if (!GetUuidAttrOfType(Operand->getType()))
429      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
430  }
431
432  // FIXME: add __uuidof semantic analysis for type operand.
433  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
434                                           Operand,
435                                           SourceRange(TypeidLoc, RParenLoc)));
436}
437
438/// \brief Build a Microsoft __uuidof expression with an expression operand.
439ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
440                                SourceLocation TypeidLoc,
441                                Expr *E,
442                                SourceLocation RParenLoc) {
443  if (!E->getType()->isDependentType()) {
444    if (!GetUuidAttrOfType(E->getType()) &&
445        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
446      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
447  }
448  // FIXME: add __uuidof semantic analysis for type operand.
449  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
450                                           E,
451                                           SourceRange(TypeidLoc, RParenLoc)));
452}
453
454/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
455ExprResult
456Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
457                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
458  // If MSVCGuidDecl has not been cached, do the lookup.
459  if (!MSVCGuidDecl) {
460    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
461    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
462    LookupQualifiedName(R, Context.getTranslationUnitDecl());
463    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
464    if (!MSVCGuidDecl)
465      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
466  }
467
468  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
469
470  if (isType) {
471    // The operand is a type; handle it as such.
472    TypeSourceInfo *TInfo = 0;
473    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
474                                   &TInfo);
475    if (T.isNull())
476      return ExprError();
477
478    if (!TInfo)
479      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
480
481    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
482  }
483
484  // The operand is an expression.
485  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
486}
487
488/// ActOnCXXBoolLiteral - Parse {true,false} literals.
489ExprResult
490Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
491  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
492         "Unknown C++ Boolean value!");
493  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
494                                                Context.BoolTy, OpLoc));
495}
496
497/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
498ExprResult
499Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
500  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
501}
502
503/// ActOnCXXThrow - Parse throw expressions.
504ExprResult
505Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
506  bool IsThrownVarInScope = false;
507  if (Ex) {
508    // C++0x [class.copymove]p31:
509    //   When certain criteria are met, an implementation is allowed to omit the
510    //   copy/move construction of a class object [...]
511    //
512    //     - in a throw-expression, when the operand is the name of a
513    //       non-volatile automatic object (other than a function or catch-
514    //       clause parameter) whose scope does not extend beyond the end of the
515    //       innermost enclosing try-block (if there is one), the copy/move
516    //       operation from the operand to the exception object (15.1) can be
517    //       omitted by constructing the automatic object directly into the
518    //       exception object
519    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
520      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
521        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
522          for( ; S; S = S->getParent()) {
523            if (S->isDeclScope(Var)) {
524              IsThrownVarInScope = true;
525              break;
526            }
527
528            if (S->getFlags() &
529                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
530                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
531                 Scope::TryScope))
532              break;
533          }
534        }
535      }
536  }
537
538  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
539}
540
541ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
542                               bool IsThrownVarInScope) {
543  // Don't report an error if 'throw' is used in system headers.
544  if (!getLangOptions().CXXExceptions &&
545      !getSourceManager().isInSystemHeader(OpLoc))
546    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
547
548  if (Ex && !Ex->isTypeDependent()) {
549    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
550    if (ExRes.isInvalid())
551      return ExprError();
552    Ex = ExRes.take();
553  }
554
555  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
556                                          IsThrownVarInScope));
557}
558
559/// CheckCXXThrowOperand - Validate the operand of a throw.
560ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
561                                      bool IsThrownVarInScope) {
562  // C++ [except.throw]p3:
563  //   A throw-expression initializes a temporary object, called the exception
564  //   object, the type of which is determined by removing any top-level
565  //   cv-qualifiers from the static type of the operand of throw and adjusting
566  //   the type from "array of T" or "function returning T" to "pointer to T"
567  //   or "pointer to function returning T", [...]
568  if (E->getType().hasQualifiers())
569    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
570                          E->getValueKind()).take();
571
572  ExprResult Res = DefaultFunctionArrayConversion(E);
573  if (Res.isInvalid())
574    return ExprError();
575  E = Res.take();
576
577  //   If the type of the exception would be an incomplete type or a pointer
578  //   to an incomplete type other than (cv) void the program is ill-formed.
579  QualType Ty = E->getType();
580  bool isPointer = false;
581  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
582    Ty = Ptr->getPointeeType();
583    isPointer = true;
584  }
585  if (!isPointer || !Ty->isVoidType()) {
586    if (RequireCompleteType(ThrowLoc, Ty,
587                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
588                                            : diag::err_throw_incomplete)
589                              << E->getSourceRange()))
590      return ExprError();
591
592    if (RequireNonAbstractType(ThrowLoc, E->getType(),
593                               PDiag(diag::err_throw_abstract_type)
594                                 << E->getSourceRange()))
595      return ExprError();
596  }
597
598  // Initialize the exception result.  This implicitly weeds out
599  // abstract types or types with inaccessible copy constructors.
600
601  // C++0x [class.copymove]p31:
602  //   When certain criteria are met, an implementation is allowed to omit the
603  //   copy/move construction of a class object [...]
604  //
605  //     - in a throw-expression, when the operand is the name of a
606  //       non-volatile automatic object (other than a function or catch-clause
607  //       parameter) whose scope does not extend beyond the end of the
608  //       innermost enclosing try-block (if there is one), the copy/move
609  //       operation from the operand to the exception object (15.1) can be
610  //       omitted by constructing the automatic object directly into the
611  //       exception object
612  const VarDecl *NRVOVariable = 0;
613  if (IsThrownVarInScope)
614    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
615
616  InitializedEntity Entity =
617      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
618                                             /*NRVO=*/NRVOVariable != 0);
619  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
620                                        QualType(), E,
621                                        IsThrownVarInScope);
622  if (Res.isInvalid())
623    return ExprError();
624  E = Res.take();
625
626  // If the exception has class type, we need additional handling.
627  const RecordType *RecordTy = Ty->getAs<RecordType>();
628  if (!RecordTy)
629    return Owned(E);
630  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
631
632  // If we are throwing a polymorphic class type or pointer thereof,
633  // exception handling will make use of the vtable.
634  MarkVTableUsed(ThrowLoc, RD);
635
636  // If a pointer is thrown, the referenced object will not be destroyed.
637  if (isPointer)
638    return Owned(E);
639
640  // If the class has a destructor, we must be able to call it.
641  if (RD->hasIrrelevantDestructor())
642    return Owned(E);
643
644  CXXDestructorDecl *Destructor
645    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
646  if (!Destructor)
647    return Owned(E);
648
649  MarkFunctionReferenced(E->getExprLoc(), Destructor);
650  CheckDestructorAccess(E->getExprLoc(), Destructor,
651                        PDiag(diag::err_access_dtor_exception) << Ty);
652  DiagnoseUseOfDecl(Destructor, E->getExprLoc());
653  return Owned(E);
654}
655
656QualType Sema::getCurrentThisType() {
657  DeclContext *DC = getFunctionLevelDeclContext();
658  QualType ThisTy;
659  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
660    if (method && method->isInstance())
661      ThisTy = method->getThisType(Context);
662  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
663    // C++0x [expr.prim]p4:
664    //   Otherwise, if a member-declarator declares a non-static data member
665    // of a class X, the expression this is a prvalue of type "pointer to X"
666    // within the optional brace-or-equal-initializer.
667    Scope *S = getScopeForContext(DC);
668    if (!S || S->getFlags() & Scope::ThisScope)
669      ThisTy = Context.getPointerType(Context.getRecordType(RD));
670  }
671
672  return ThisTy;
673}
674
675void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
676  // We don't need to capture this in an unevaluated context.
677  if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
678    return;
679
680  // Otherwise, check that we can capture 'this'.
681  unsigned NumClosures = 0;
682  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
683    if (CapturingScopeInfo *CSI =
684            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
685      if (CSI->CXXThisCaptureIndex != 0) {
686        // 'this' is already being captured; there isn't anything more to do.
687        break;
688      }
689
690      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
691          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
692          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
693          Explicit) {
694        // This closure can capture 'this'; continue looking upwards.
695        NumClosures++;
696        Explicit = false;
697        continue;
698      }
699      // This context can't implicitly capture 'this'; fail out.
700      Diag(Loc, diag::err_this_capture) << Explicit;
701      return;
702    }
703    break;
704  }
705
706  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
707  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
708  // contexts.
709  for (unsigned idx = FunctionScopes.size() - 1;
710       NumClosures; --idx, --NumClosures) {
711    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
712    Expr *ThisExpr = 0;
713    QualType ThisTy = getCurrentThisType();
714    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
715      // For lambda expressions, build a field and an initializing expression.
716      CXXRecordDecl *Lambda = LSI->Lambda;
717      FieldDecl *Field
718        = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
719                            Context.getTrivialTypeSourceInfo(ThisTy, Loc),
720                            0, false, false);
721      Field->setImplicit(true);
722      Field->setAccess(AS_private);
723      Lambda->addDecl(Field);
724      ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
725    }
726    bool isNested = NumClosures > 1;
727    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
728  }
729}
730
731ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
732  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
733  /// is a non-lvalue expression whose value is the address of the object for
734  /// which the function is called.
735
736  QualType ThisTy = getCurrentThisType();
737  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
738
739  CheckCXXThisCapture(Loc);
740  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
741}
742
743ExprResult
744Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
745                                SourceLocation LParenLoc,
746                                MultiExprArg exprs,
747                                SourceLocation RParenLoc) {
748  if (!TypeRep)
749    return ExprError();
750
751  TypeSourceInfo *TInfo;
752  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
753  if (!TInfo)
754    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
755
756  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
757}
758
759/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
760/// Can be interpreted either as function-style casting ("int(x)")
761/// or class type construction ("ClassType(x,y,z)")
762/// or creation of a value-initialized type ("int()").
763ExprResult
764Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
765                                SourceLocation LParenLoc,
766                                MultiExprArg exprs,
767                                SourceLocation RParenLoc) {
768  QualType Ty = TInfo->getType();
769  unsigned NumExprs = exprs.size();
770  Expr **Exprs = (Expr**)exprs.get();
771  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
772
773  if (Ty->isDependentType() ||
774      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
775    exprs.release();
776
777    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
778                                                    LParenLoc,
779                                                    Exprs, NumExprs,
780                                                    RParenLoc));
781  }
782
783  bool ListInitialization = LParenLoc.isInvalid();
784  assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
785         && "List initialization must have initializer list as expression.");
786  SourceRange FullRange = SourceRange(TyBeginLoc,
787      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
788
789  if (Ty->isArrayType())
790    return ExprError(Diag(TyBeginLoc,
791                          diag::err_value_init_for_array_type) << FullRange);
792  if (!Ty->isVoidType() &&
793      RequireCompleteType(TyBeginLoc, Ty,
794                          PDiag(diag::err_invalid_incomplete_type_use)
795                            << FullRange))
796    return ExprError();
797
798  if (RequireNonAbstractType(TyBeginLoc, Ty,
799                             diag::err_allocation_of_abstract_type))
800    return ExprError();
801
802
803  // C++ [expr.type.conv]p1:
804  // If the expression list is a single expression, the type conversion
805  // expression is equivalent (in definedness, and if defined in meaning) to the
806  // corresponding cast expression.
807  if (NumExprs == 1 && !ListInitialization) {
808    Expr *Arg = Exprs[0];
809    exprs.release();
810    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
811  }
812
813  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
814  InitializationKind Kind
815    = NumExprs ? ListInitialization
816                    ? InitializationKind::CreateDirectList(TyBeginLoc)
817                    : InitializationKind::CreateDirect(TyBeginLoc,
818                                                       LParenLoc, RParenLoc)
819               : InitializationKind::CreateValue(TyBeginLoc,
820                                                 LParenLoc, RParenLoc);
821  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
822  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
823
824  if (!Result.isInvalid() && ListInitialization &&
825      isa<InitListExpr>(Result.get())) {
826    // If the list-initialization doesn't involve a constructor call, we'll get
827    // the initializer-list (with corrected type) back, but that's not what we
828    // want, since it will be treated as an initializer list in further
829    // processing. Explicitly insert a cast here.
830    InitListExpr *List = cast<InitListExpr>(Result.take());
831    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
832                                    Expr::getValueKindForType(TInfo->getType()),
833                                                 TInfo, TyBeginLoc, CK_NoOp,
834                                                 List, /*Path=*/0, RParenLoc));
835  }
836
837  // FIXME: Improve AST representation?
838  return move(Result);
839}
840
841/// doesUsualArrayDeleteWantSize - Answers whether the usual
842/// operator delete[] for the given type has a size_t parameter.
843static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
844                                         QualType allocType) {
845  const RecordType *record =
846    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
847  if (!record) return false;
848
849  // Try to find an operator delete[] in class scope.
850
851  DeclarationName deleteName =
852    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
853  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
854  S.LookupQualifiedName(ops, record->getDecl());
855
856  // We're just doing this for information.
857  ops.suppressDiagnostics();
858
859  // Very likely: there's no operator delete[].
860  if (ops.empty()) return false;
861
862  // If it's ambiguous, it should be illegal to call operator delete[]
863  // on this thing, so it doesn't matter if we allocate extra space or not.
864  if (ops.isAmbiguous()) return false;
865
866  LookupResult::Filter filter = ops.makeFilter();
867  while (filter.hasNext()) {
868    NamedDecl *del = filter.next()->getUnderlyingDecl();
869
870    // C++0x [basic.stc.dynamic.deallocation]p2:
871    //   A template instance is never a usual deallocation function,
872    //   regardless of its signature.
873    if (isa<FunctionTemplateDecl>(del)) {
874      filter.erase();
875      continue;
876    }
877
878    // C++0x [basic.stc.dynamic.deallocation]p2:
879    //   If class T does not declare [an operator delete[] with one
880    //   parameter] but does declare a member deallocation function
881    //   named operator delete[] with exactly two parameters, the
882    //   second of which has type std::size_t, then this function
883    //   is a usual deallocation function.
884    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
885      filter.erase();
886      continue;
887    }
888  }
889  filter.done();
890
891  if (!ops.isSingleResult()) return false;
892
893  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
894  return (del->getNumParams() == 2);
895}
896
897/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
898
899/// E.g.:
900/// @code new (memory) int[size][4] @endcode
901/// or
902/// @code ::new Foo(23, "hello") @endcode
903///
904/// \param StartLoc The first location of the expression.
905/// \param UseGlobal True if 'new' was prefixed with '::'.
906/// \param PlacementLParen Opening paren of the placement arguments.
907/// \param PlacementArgs Placement new arguments.
908/// \param PlacementRParen Closing paren of the placement arguments.
909/// \param TypeIdParens If the type is in parens, the source range.
910/// \param D The type to be allocated, as well as array dimensions.
911/// \param ConstructorLParen Opening paren of the constructor args, empty if
912///                          initializer-list syntax is used.
913/// \param ConstructorArgs Constructor/initialization arguments.
914/// \param ConstructorRParen Closing paren of the constructor args.
915ExprResult
916Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
917                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
918                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
919                  Declarator &D, Expr *Initializer) {
920  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
921
922  Expr *ArraySize = 0;
923  // If the specified type is an array, unwrap it and save the expression.
924  if (D.getNumTypeObjects() > 0 &&
925      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
926    DeclaratorChunk &Chunk = D.getTypeObject(0);
927    if (TypeContainsAuto)
928      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
929        << D.getSourceRange());
930    if (Chunk.Arr.hasStatic)
931      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
932        << D.getSourceRange());
933    if (!Chunk.Arr.NumElts)
934      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
935        << D.getSourceRange());
936
937    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
938    D.DropFirstTypeObject();
939  }
940
941  // Every dimension shall be of constant size.
942  if (ArraySize) {
943    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
944      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
945        break;
946
947      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
948      if (Expr *NumElts = (Expr *)Array.NumElts) {
949        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
950          Array.NumElts = VerifyIntegerConstantExpression(NumElts, 0,
951            PDiag(diag::err_new_array_nonconst)).take();
952          if (!Array.NumElts)
953            return ExprError();
954        }
955      }
956    }
957  }
958
959  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
960  QualType AllocType = TInfo->getType();
961  if (D.isInvalidType())
962    return ExprError();
963
964  SourceRange DirectInitRange;
965  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
966    DirectInitRange = List->getSourceRange();
967
968  return BuildCXXNew(StartLoc, UseGlobal,
969                     PlacementLParen,
970                     move(PlacementArgs),
971                     PlacementRParen,
972                     TypeIdParens,
973                     AllocType,
974                     TInfo,
975                     ArraySize,
976                     DirectInitRange,
977                     Initializer,
978                     TypeContainsAuto);
979}
980
981static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
982                                       Expr *Init) {
983  if (!Init)
984    return true;
985  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
986    return PLE->getNumExprs() == 0;
987  if (isa<ImplicitValueInitExpr>(Init))
988    return true;
989  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
990    return !CCE->isListInitialization() &&
991           CCE->getConstructor()->isDefaultConstructor();
992  else if (Style == CXXNewExpr::ListInit) {
993    assert(isa<InitListExpr>(Init) &&
994           "Shouldn't create list CXXConstructExprs for arrays.");
995    return true;
996  }
997  return false;
998}
999
1000ExprResult
1001Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
1002                  SourceLocation PlacementLParen,
1003                  MultiExprArg PlacementArgs,
1004                  SourceLocation PlacementRParen,
1005                  SourceRange TypeIdParens,
1006                  QualType AllocType,
1007                  TypeSourceInfo *AllocTypeInfo,
1008                  Expr *ArraySize,
1009                  SourceRange DirectInitRange,
1010                  Expr *Initializer,
1011                  bool TypeMayContainAuto) {
1012  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1013
1014  CXXNewExpr::InitializationStyle initStyle;
1015  if (DirectInitRange.isValid()) {
1016    assert(Initializer && "Have parens but no initializer.");
1017    initStyle = CXXNewExpr::CallInit;
1018  } else if (Initializer && isa<InitListExpr>(Initializer))
1019    initStyle = CXXNewExpr::ListInit;
1020  else {
1021    // In template instantiation, the initializer could be a CXXDefaultArgExpr
1022    // unwrapped from a CXXConstructExpr that was implicitly built. There is no
1023    // particularly sane way we can handle this (especially since it can even
1024    // occur for array new), so we throw the initializer away and have it be
1025    // rebuilt.
1026    if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
1027      Initializer = 0;
1028    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1029            isa<CXXConstructExpr>(Initializer)) &&
1030           "Initializer expression that cannot have been implicitly created.");
1031    initStyle = CXXNewExpr::NoInit;
1032  }
1033
1034  Expr **Inits = &Initializer;
1035  unsigned NumInits = Initializer ? 1 : 0;
1036  if (initStyle == CXXNewExpr::CallInit) {
1037    if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
1038      Inits = List->getExprs();
1039      NumInits = List->getNumExprs();
1040    } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
1041      if (!isa<CXXTemporaryObjectExpr>(CCE)) {
1042        // Can happen in template instantiation. Since this is just an implicit
1043        // construction, we just take it apart and rebuild it.
1044        Inits = CCE->getArgs();
1045        NumInits = CCE->getNumArgs();
1046      }
1047    }
1048  }
1049
1050  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1051  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
1052    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1053      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1054                       << AllocType << TypeRange);
1055    if (initStyle == CXXNewExpr::ListInit)
1056      return ExprError(Diag(Inits[0]->getSourceRange().getBegin(),
1057                            diag::err_auto_new_requires_parens)
1058                       << AllocType << TypeRange);
1059    if (NumInits > 1) {
1060      Expr *FirstBad = Inits[1];
1061      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
1062                            diag::err_auto_new_ctor_multiple_expressions)
1063                       << AllocType << TypeRange);
1064    }
1065    Expr *Deduce = Inits[0];
1066    TypeSourceInfo *DeducedType = 0;
1067    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) ==
1068            DAR_Failed)
1069      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1070                       << AllocType << Deduce->getType()
1071                       << TypeRange << Deduce->getSourceRange());
1072    if (!DeducedType)
1073      return ExprError();
1074
1075    AllocTypeInfo = DeducedType;
1076    AllocType = AllocTypeInfo->getType();
1077  }
1078
1079  // Per C++0x [expr.new]p5, the type being constructed may be a
1080  // typedef of an array type.
1081  if (!ArraySize) {
1082    if (const ConstantArrayType *Array
1083                              = Context.getAsConstantArrayType(AllocType)) {
1084      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1085                                         Context.getSizeType(),
1086                                         TypeRange.getEnd());
1087      AllocType = Array->getElementType();
1088    }
1089  }
1090
1091  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1092    return ExprError();
1093
1094  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1095    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1096         diag::warn_dangling_std_initializer_list)
1097        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1098  }
1099
1100  // In ARC, infer 'retaining' for the allocated
1101  if (getLangOptions().ObjCAutoRefCount &&
1102      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1103      AllocType->isObjCLifetimeType()) {
1104    AllocType = Context.getLifetimeQualifiedType(AllocType,
1105                                    AllocType->getObjCARCImplicitLifetime());
1106  }
1107
1108  QualType ResultType = Context.getPointerType(AllocType);
1109
1110  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1111  //   integral or enumeration type with a non-negative value."
1112  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1113  //   enumeration type, or a class type for which a single non-explicit
1114  //   conversion function to integral or unscoped enumeration type exists.
1115  if (ArraySize && !ArraySize->isTypeDependent()) {
1116    ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType(
1117      StartLoc, ArraySize,
1118      PDiag(diag::err_array_size_not_integral) << getLangOptions().CPlusPlus0x,
1119      PDiag(diag::err_array_size_incomplete_type)
1120        << ArraySize->getSourceRange(),
1121      PDiag(diag::err_array_size_explicit_conversion),
1122      PDiag(diag::note_array_size_conversion),
1123      PDiag(diag::err_array_size_ambiguous_conversion),
1124      PDiag(diag::note_array_size_conversion),
1125      PDiag(getLangOptions().CPlusPlus0x ?
1126              diag::warn_cxx98_compat_array_size_conversion :
1127              diag::ext_array_size_conversion),
1128      /*AllowScopedEnumerations*/ false);
1129    if (ConvertedSize.isInvalid())
1130      return ExprError();
1131
1132    ArraySize = ConvertedSize.take();
1133    QualType SizeType = ArraySize->getType();
1134    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1135      return ExprError();
1136
1137    // C++98 [expr.new]p7:
1138    //   The expression in a direct-new-declarator shall have integral type
1139    //   with a non-negative value.
1140    //
1141    // Let's see if this is a constant < 0. If so, we reject it out of
1142    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1143    // array type.
1144    //
1145    // Note: such a construct has well-defined semantics in C++11: it throws
1146    // std::bad_array_new_length.
1147    if (!ArraySize->isValueDependent()) {
1148      llvm::APSInt Value;
1149      // We've already performed any required implicit conversion to integer or
1150      // unscoped enumeration type.
1151      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1152        if (Value < llvm::APSInt(
1153                        llvm::APInt::getNullValue(Value.getBitWidth()),
1154                                 Value.isUnsigned())) {
1155          if (getLangOptions().CPlusPlus0x)
1156            Diag(ArraySize->getSourceRange().getBegin(),
1157                 diag::warn_typecheck_negative_array_new_size)
1158              << ArraySize->getSourceRange();
1159          else
1160            return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
1161                                  diag::err_typecheck_negative_array_size)
1162                             << ArraySize->getSourceRange());
1163        } else if (!AllocType->isDependentType()) {
1164          unsigned ActiveSizeBits =
1165            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1166          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1167            if (getLangOptions().CPlusPlus0x)
1168              Diag(ArraySize->getSourceRange().getBegin(),
1169                   diag::warn_array_new_too_large)
1170                << Value.toString(10)
1171                << ArraySize->getSourceRange();
1172            else
1173              return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
1174                                    diag::err_array_too_large)
1175                               << Value.toString(10)
1176                               << ArraySize->getSourceRange());
1177          }
1178        }
1179      } else if (TypeIdParens.isValid()) {
1180        // Can't have dynamic array size when the type-id is in parentheses.
1181        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1182          << ArraySize->getSourceRange()
1183          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1184          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1185
1186        TypeIdParens = SourceRange();
1187      }
1188    }
1189
1190    // ARC: warn about ABI issues.
1191    if (getLangOptions().ObjCAutoRefCount) {
1192      QualType BaseAllocType = Context.getBaseElementType(AllocType);
1193      if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1194        Diag(StartLoc, diag::warn_err_new_delete_object_array)
1195          << 0 << BaseAllocType;
1196    }
1197
1198    // Note that we do *not* convert the argument in any way.  It can
1199    // be signed, larger than size_t, whatever.
1200  }
1201
1202  FunctionDecl *OperatorNew = 0;
1203  FunctionDecl *OperatorDelete = 0;
1204  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
1205  unsigned NumPlaceArgs = PlacementArgs.size();
1206
1207  if (!AllocType->isDependentType() &&
1208      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
1209      FindAllocationFunctions(StartLoc,
1210                              SourceRange(PlacementLParen, PlacementRParen),
1211                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1212                              NumPlaceArgs, OperatorNew, OperatorDelete))
1213    return ExprError();
1214
1215  // If this is an array allocation, compute whether the usual array
1216  // deallocation function for the type has a size_t parameter.
1217  bool UsualArrayDeleteWantsSize = false;
1218  if (ArraySize && !AllocType->isDependentType())
1219    UsualArrayDeleteWantsSize
1220      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1221
1222  SmallVector<Expr *, 8> AllPlaceArgs;
1223  if (OperatorNew) {
1224    // Add default arguments, if any.
1225    const FunctionProtoType *Proto =
1226      OperatorNew->getType()->getAs<FunctionProtoType>();
1227    VariadicCallType CallType =
1228      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1229
1230    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1231                               Proto, 1, PlaceArgs, NumPlaceArgs,
1232                               AllPlaceArgs, CallType))
1233      return ExprError();
1234
1235    NumPlaceArgs = AllPlaceArgs.size();
1236    if (NumPlaceArgs > 0)
1237      PlaceArgs = &AllPlaceArgs[0];
1238
1239    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1240                          PlaceArgs, NumPlaceArgs);
1241
1242    // FIXME: Missing call to CheckFunctionCall or equivalent
1243  }
1244
1245  // Warn if the type is over-aligned and is being allocated by global operator
1246  // new.
1247  if (NumPlaceArgs == 0 && OperatorNew &&
1248      (OperatorNew->isImplicit() ||
1249       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1250    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1251      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1252      if (Align > SuitableAlign)
1253        Diag(StartLoc, diag::warn_overaligned_type)
1254            << AllocType
1255            << unsigned(Align / Context.getCharWidth())
1256            << unsigned(SuitableAlign / Context.getCharWidth());
1257    }
1258  }
1259
1260  QualType InitType = AllocType;
1261  // Array 'new' can't have any initializers except empty parentheses.
1262  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1263  // dialect distinction.
1264  if (ResultType->isArrayType() || ArraySize) {
1265    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1266      SourceRange InitRange(Inits[0]->getLocStart(),
1267                            Inits[NumInits - 1]->getLocEnd());
1268      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1269      return ExprError();
1270    }
1271    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1272      // We do the initialization typechecking against the array type
1273      // corresponding to the number of initializers + 1 (to also check
1274      // default-initialization).
1275      unsigned NumElements = ILE->getNumInits() + 1;
1276      InitType = Context.getConstantArrayType(AllocType,
1277          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1278                                              ArrayType::Normal, 0);
1279    }
1280  }
1281
1282  if (!AllocType->isDependentType() &&
1283      !Expr::hasAnyTypeDependentArguments(Inits, NumInits)) {
1284    // C++11 [expr.new]p15:
1285    //   A new-expression that creates an object of type T initializes that
1286    //   object as follows:
1287    InitializationKind Kind
1288    //     - If the new-initializer is omitted, the object is default-
1289    //       initialized (8.5); if no initialization is performed,
1290    //       the object has indeterminate value
1291      = initStyle == CXXNewExpr::NoInit
1292          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1293    //     - Otherwise, the new-initializer is interpreted according to the
1294    //       initialization rules of 8.5 for direct-initialization.
1295          : initStyle == CXXNewExpr::ListInit
1296              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1297              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1298                                                 DirectInitRange.getBegin(),
1299                                                 DirectInitRange.getEnd());
1300
1301    InitializedEntity Entity
1302      = InitializedEntity::InitializeNew(StartLoc, InitType);
1303    InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1304    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1305                                          MultiExprArg(Inits, NumInits));
1306    if (FullInit.isInvalid())
1307      return ExprError();
1308
1309    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1310    // we don't want the initialized object to be destructed.
1311    if (CXXBindTemporaryExpr *Binder =
1312            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1313      FullInit = Owned(Binder->getSubExpr());
1314
1315    Initializer = FullInit.take();
1316  }
1317
1318  // Mark the new and delete operators as referenced.
1319  if (OperatorNew)
1320    MarkFunctionReferenced(StartLoc, OperatorNew);
1321  if (OperatorDelete)
1322    MarkFunctionReferenced(StartLoc, OperatorDelete);
1323
1324  // C++0x [expr.new]p17:
1325  //   If the new expression creates an array of objects of class type,
1326  //   access and ambiguity control are done for the destructor.
1327  if (ArraySize && AllocType->isRecordType() && !AllocType->isDependentType()) {
1328    if (CXXDestructorDecl *dtor = LookupDestructor(
1329            cast<CXXRecordDecl>(AllocType->getAs<RecordType>()->getDecl()))) {
1330      MarkFunctionReferenced(StartLoc, dtor);
1331      CheckDestructorAccess(StartLoc, dtor,
1332                            PDiag(diag::err_access_dtor)
1333                              << Context.getBaseElementType(AllocType));
1334      DiagnoseUseOfDecl(dtor, StartLoc);
1335    }
1336  }
1337
1338  PlacementArgs.release();
1339
1340  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1341                                        OperatorDelete,
1342                                        UsualArrayDeleteWantsSize,
1343                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1344                                        ArraySize, initStyle, Initializer,
1345                                        ResultType, AllocTypeInfo,
1346                                        StartLoc, DirectInitRange));
1347}
1348
1349/// \brief Checks that a type is suitable as the allocated type
1350/// in a new-expression.
1351bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1352                              SourceRange R) {
1353  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1354  //   abstract class type or array thereof.
1355  if (AllocType->isFunctionType())
1356    return Diag(Loc, diag::err_bad_new_type)
1357      << AllocType << 0 << R;
1358  else if (AllocType->isReferenceType())
1359    return Diag(Loc, diag::err_bad_new_type)
1360      << AllocType << 1 << R;
1361  else if (!AllocType->isDependentType() &&
1362           RequireCompleteType(Loc, AllocType,
1363                               PDiag(diag::err_new_incomplete_type)
1364                                 << R))
1365    return true;
1366  else if (RequireNonAbstractType(Loc, AllocType,
1367                                  diag::err_allocation_of_abstract_type))
1368    return true;
1369  else if (AllocType->isVariablyModifiedType())
1370    return Diag(Loc, diag::err_variably_modified_new_type)
1371             << AllocType;
1372  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1373    return Diag(Loc, diag::err_address_space_qualified_new)
1374      << AllocType.getUnqualifiedType() << AddressSpace;
1375  else if (getLangOptions().ObjCAutoRefCount) {
1376    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1377      QualType BaseAllocType = Context.getBaseElementType(AT);
1378      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1379          BaseAllocType->isObjCLifetimeType())
1380        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1381          << BaseAllocType;
1382    }
1383  }
1384
1385  return false;
1386}
1387
1388/// \brief Determine whether the given function is a non-placement
1389/// deallocation function.
1390static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1391  if (FD->isInvalidDecl())
1392    return false;
1393
1394  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1395    return Method->isUsualDeallocationFunction();
1396
1397  return ((FD->getOverloadedOperator() == OO_Delete ||
1398           FD->getOverloadedOperator() == OO_Array_Delete) &&
1399          FD->getNumParams() == 1);
1400}
1401
1402/// FindAllocationFunctions - Finds the overloads of operator new and delete
1403/// that are appropriate for the allocation.
1404bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1405                                   bool UseGlobal, QualType AllocType,
1406                                   bool IsArray, Expr **PlaceArgs,
1407                                   unsigned NumPlaceArgs,
1408                                   FunctionDecl *&OperatorNew,
1409                                   FunctionDecl *&OperatorDelete) {
1410  // --- Choosing an allocation function ---
1411  // C++ 5.3.4p8 - 14 & 18
1412  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1413  //   in the scope of the allocated class.
1414  // 2) If an array size is given, look for operator new[], else look for
1415  //   operator new.
1416  // 3) The first argument is always size_t. Append the arguments from the
1417  //   placement form.
1418
1419  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1420  // We don't care about the actual value of this argument.
1421  // FIXME: Should the Sema create the expression and embed it in the syntax
1422  // tree? Or should the consumer just recalculate the value?
1423  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1424                      Context.getTargetInfo().getPointerWidth(0)),
1425                      Context.getSizeType(),
1426                      SourceLocation());
1427  AllocArgs[0] = &Size;
1428  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1429
1430  // C++ [expr.new]p8:
1431  //   If the allocated type is a non-array type, the allocation
1432  //   function's name is operator new and the deallocation function's
1433  //   name is operator delete. If the allocated type is an array
1434  //   type, the allocation function's name is operator new[] and the
1435  //   deallocation function's name is operator delete[].
1436  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1437                                        IsArray ? OO_Array_New : OO_New);
1438  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1439                                        IsArray ? OO_Array_Delete : OO_Delete);
1440
1441  QualType AllocElemType = Context.getBaseElementType(AllocType);
1442
1443  if (AllocElemType->isRecordType() && !UseGlobal) {
1444    CXXRecordDecl *Record
1445      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1446    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1447                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1448                          OperatorNew))
1449      return true;
1450  }
1451  if (!OperatorNew) {
1452    // Didn't find a member overload. Look for a global one.
1453    DeclareGlobalNewDelete();
1454    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1455    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1456                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1457                          OperatorNew))
1458      return true;
1459  }
1460
1461  // We don't need an operator delete if we're running under
1462  // -fno-exceptions.
1463  if (!getLangOptions().Exceptions) {
1464    OperatorDelete = 0;
1465    return false;
1466  }
1467
1468  // FindAllocationOverload can change the passed in arguments, so we need to
1469  // copy them back.
1470  if (NumPlaceArgs > 0)
1471    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1472
1473  // C++ [expr.new]p19:
1474  //
1475  //   If the new-expression begins with a unary :: operator, the
1476  //   deallocation function's name is looked up in the global
1477  //   scope. Otherwise, if the allocated type is a class type T or an
1478  //   array thereof, the deallocation function's name is looked up in
1479  //   the scope of T. If this lookup fails to find the name, or if
1480  //   the allocated type is not a class type or array thereof, the
1481  //   deallocation function's name is looked up in the global scope.
1482  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1483  if (AllocElemType->isRecordType() && !UseGlobal) {
1484    CXXRecordDecl *RD
1485      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1486    LookupQualifiedName(FoundDelete, RD);
1487  }
1488  if (FoundDelete.isAmbiguous())
1489    return true; // FIXME: clean up expressions?
1490
1491  if (FoundDelete.empty()) {
1492    DeclareGlobalNewDelete();
1493    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1494  }
1495
1496  FoundDelete.suppressDiagnostics();
1497
1498  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1499
1500  // Whether we're looking for a placement operator delete is dictated
1501  // by whether we selected a placement operator new, not by whether
1502  // we had explicit placement arguments.  This matters for things like
1503  //   struct A { void *operator new(size_t, int = 0); ... };
1504  //   A *a = new A()
1505  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1506
1507  if (isPlacementNew) {
1508    // C++ [expr.new]p20:
1509    //   A declaration of a placement deallocation function matches the
1510    //   declaration of a placement allocation function if it has the
1511    //   same number of parameters and, after parameter transformations
1512    //   (8.3.5), all parameter types except the first are
1513    //   identical. [...]
1514    //
1515    // To perform this comparison, we compute the function type that
1516    // the deallocation function should have, and use that type both
1517    // for template argument deduction and for comparison purposes.
1518    //
1519    // FIXME: this comparison should ignore CC and the like.
1520    QualType ExpectedFunctionType;
1521    {
1522      const FunctionProtoType *Proto
1523        = OperatorNew->getType()->getAs<FunctionProtoType>();
1524
1525      SmallVector<QualType, 4> ArgTypes;
1526      ArgTypes.push_back(Context.VoidPtrTy);
1527      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1528        ArgTypes.push_back(Proto->getArgType(I));
1529
1530      FunctionProtoType::ExtProtoInfo EPI;
1531      EPI.Variadic = Proto->isVariadic();
1532
1533      ExpectedFunctionType
1534        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1535                                  ArgTypes.size(), EPI);
1536    }
1537
1538    for (LookupResult::iterator D = FoundDelete.begin(),
1539                             DEnd = FoundDelete.end();
1540         D != DEnd; ++D) {
1541      FunctionDecl *Fn = 0;
1542      if (FunctionTemplateDecl *FnTmpl
1543            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1544        // Perform template argument deduction to try to match the
1545        // expected function type.
1546        TemplateDeductionInfo Info(Context, StartLoc);
1547        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1548          continue;
1549      } else
1550        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1551
1552      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1553        Matches.push_back(std::make_pair(D.getPair(), Fn));
1554    }
1555  } else {
1556    // C++ [expr.new]p20:
1557    //   [...] Any non-placement deallocation function matches a
1558    //   non-placement allocation function. [...]
1559    for (LookupResult::iterator D = FoundDelete.begin(),
1560                             DEnd = FoundDelete.end();
1561         D != DEnd; ++D) {
1562      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1563        if (isNonPlacementDeallocationFunction(Fn))
1564          Matches.push_back(std::make_pair(D.getPair(), Fn));
1565    }
1566  }
1567
1568  // C++ [expr.new]p20:
1569  //   [...] If the lookup finds a single matching deallocation
1570  //   function, that function will be called; otherwise, no
1571  //   deallocation function will be called.
1572  if (Matches.size() == 1) {
1573    OperatorDelete = Matches[0].second;
1574
1575    // C++0x [expr.new]p20:
1576    //   If the lookup finds the two-parameter form of a usual
1577    //   deallocation function (3.7.4.2) and that function, considered
1578    //   as a placement deallocation function, would have been
1579    //   selected as a match for the allocation function, the program
1580    //   is ill-formed.
1581    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1582        isNonPlacementDeallocationFunction(OperatorDelete)) {
1583      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1584        << SourceRange(PlaceArgs[0]->getLocStart(),
1585                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1586      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1587        << DeleteName;
1588    } else {
1589      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1590                            Matches[0].first);
1591    }
1592  }
1593
1594  return false;
1595}
1596
1597/// FindAllocationOverload - Find an fitting overload for the allocation
1598/// function in the specified scope.
1599bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1600                                  DeclarationName Name, Expr** Args,
1601                                  unsigned NumArgs, DeclContext *Ctx,
1602                                  bool AllowMissing, FunctionDecl *&Operator,
1603                                  bool Diagnose) {
1604  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1605  LookupQualifiedName(R, Ctx);
1606  if (R.empty()) {
1607    if (AllowMissing || !Diagnose)
1608      return false;
1609    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1610      << Name << Range;
1611  }
1612
1613  if (R.isAmbiguous())
1614    return true;
1615
1616  R.suppressDiagnostics();
1617
1618  OverloadCandidateSet Candidates(StartLoc);
1619  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1620       Alloc != AllocEnd; ++Alloc) {
1621    // Even member operator new/delete are implicitly treated as
1622    // static, so don't use AddMemberCandidate.
1623    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1624
1625    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1626      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1627                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1628                                   Candidates,
1629                                   /*SuppressUserConversions=*/false);
1630      continue;
1631    }
1632
1633    FunctionDecl *Fn = cast<FunctionDecl>(D);
1634    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1635                         /*SuppressUserConversions=*/false);
1636  }
1637
1638  // Do the resolution.
1639  OverloadCandidateSet::iterator Best;
1640  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1641  case OR_Success: {
1642    // Got one!
1643    FunctionDecl *FnDecl = Best->Function;
1644    MarkFunctionReferenced(StartLoc, FnDecl);
1645    // The first argument is size_t, and the first parameter must be size_t,
1646    // too. This is checked on declaration and can be assumed. (It can't be
1647    // asserted on, though, since invalid decls are left in there.)
1648    // Watch out for variadic allocator function.
1649    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1650    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1651      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1652                                                       FnDecl->getParamDecl(i));
1653
1654      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1655        return true;
1656
1657      ExprResult Result
1658        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1659      if (Result.isInvalid())
1660        return true;
1661
1662      Args[i] = Result.takeAs<Expr>();
1663    }
1664    Operator = FnDecl;
1665    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl,
1666                          Diagnose);
1667    return false;
1668  }
1669
1670  case OR_No_Viable_Function:
1671    if (Diagnose) {
1672      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1673        << Name << Range;
1674      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1675    }
1676    return true;
1677
1678  case OR_Ambiguous:
1679    if (Diagnose) {
1680      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1681        << Name << Range;
1682      Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1683    }
1684    return true;
1685
1686  case OR_Deleted: {
1687    if (Diagnose) {
1688      Diag(StartLoc, diag::err_ovl_deleted_call)
1689        << Best->Function->isDeleted()
1690        << Name
1691        << getDeletedOrUnavailableSuffix(Best->Function)
1692        << Range;
1693      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1694    }
1695    return true;
1696  }
1697  }
1698  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1699}
1700
1701
1702/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1703/// delete. These are:
1704/// @code
1705///   // C++03:
1706///   void* operator new(std::size_t) throw(std::bad_alloc);
1707///   void* operator new[](std::size_t) throw(std::bad_alloc);
1708///   void operator delete(void *) throw();
1709///   void operator delete[](void *) throw();
1710///   // C++0x:
1711///   void* operator new(std::size_t);
1712///   void* operator new[](std::size_t);
1713///   void operator delete(void *);
1714///   void operator delete[](void *);
1715/// @endcode
1716/// C++0x operator delete is implicitly noexcept.
1717/// Note that the placement and nothrow forms of new are *not* implicitly
1718/// declared. Their use requires including \<new\>.
1719void Sema::DeclareGlobalNewDelete() {
1720  if (GlobalNewDeleteDeclared)
1721    return;
1722
1723  // C++ [basic.std.dynamic]p2:
1724  //   [...] The following allocation and deallocation functions (18.4) are
1725  //   implicitly declared in global scope in each translation unit of a
1726  //   program
1727  //
1728  //     C++03:
1729  //     void* operator new(std::size_t) throw(std::bad_alloc);
1730  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1731  //     void  operator delete(void*) throw();
1732  //     void  operator delete[](void*) throw();
1733  //     C++0x:
1734  //     void* operator new(std::size_t);
1735  //     void* operator new[](std::size_t);
1736  //     void  operator delete(void*);
1737  //     void  operator delete[](void*);
1738  //
1739  //   These implicit declarations introduce only the function names operator
1740  //   new, operator new[], operator delete, operator delete[].
1741  //
1742  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1743  // "std" or "bad_alloc" as necessary to form the exception specification.
1744  // However, we do not make these implicit declarations visible to name
1745  // lookup.
1746  // Note that the C++0x versions of operator delete are deallocation functions,
1747  // and thus are implicitly noexcept.
1748  if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
1749    // The "std::bad_alloc" class has not yet been declared, so build it
1750    // implicitly.
1751    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1752                                        getOrCreateStdNamespace(),
1753                                        SourceLocation(), SourceLocation(),
1754                                      &PP.getIdentifierTable().get("bad_alloc"),
1755                                        0);
1756    getStdBadAlloc()->setImplicit(true);
1757  }
1758
1759  GlobalNewDeleteDeclared = true;
1760
1761  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1762  QualType SizeT = Context.getSizeType();
1763  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1764
1765  DeclareGlobalAllocationFunction(
1766      Context.DeclarationNames.getCXXOperatorName(OO_New),
1767      VoidPtr, SizeT, AssumeSaneOperatorNew);
1768  DeclareGlobalAllocationFunction(
1769      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1770      VoidPtr, SizeT, AssumeSaneOperatorNew);
1771  DeclareGlobalAllocationFunction(
1772      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1773      Context.VoidTy, VoidPtr);
1774  DeclareGlobalAllocationFunction(
1775      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1776      Context.VoidTy, VoidPtr);
1777}
1778
1779/// DeclareGlobalAllocationFunction - Declares a single implicit global
1780/// allocation function if it doesn't already exist.
1781void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1782                                           QualType Return, QualType Argument,
1783                                           bool AddMallocAttr) {
1784  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1785
1786  // Check if this function is already declared.
1787  {
1788    DeclContext::lookup_iterator Alloc, AllocEnd;
1789    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1790         Alloc != AllocEnd; ++Alloc) {
1791      // Only look at non-template functions, as it is the predefined,
1792      // non-templated allocation function we are trying to declare here.
1793      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1794        QualType InitialParamType =
1795          Context.getCanonicalType(
1796            Func->getParamDecl(0)->getType().getUnqualifiedType());
1797        // FIXME: Do we need to check for default arguments here?
1798        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1799          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1800            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1801          return;
1802        }
1803      }
1804    }
1805  }
1806
1807  QualType BadAllocType;
1808  bool HasBadAllocExceptionSpec
1809    = (Name.getCXXOverloadedOperator() == OO_New ||
1810       Name.getCXXOverloadedOperator() == OO_Array_New);
1811  if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
1812    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1813    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1814  }
1815
1816  FunctionProtoType::ExtProtoInfo EPI;
1817  if (HasBadAllocExceptionSpec) {
1818    if (!getLangOptions().CPlusPlus0x) {
1819      EPI.ExceptionSpecType = EST_Dynamic;
1820      EPI.NumExceptions = 1;
1821      EPI.Exceptions = &BadAllocType;
1822    }
1823  } else {
1824    EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
1825                                EST_BasicNoexcept : EST_DynamicNone;
1826  }
1827
1828  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1829  FunctionDecl *Alloc =
1830    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1831                         SourceLocation(), Name,
1832                         FnType, /*TInfo=*/0, SC_None,
1833                         SC_None, false, true);
1834  Alloc->setImplicit();
1835
1836  if (AddMallocAttr)
1837    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1838
1839  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1840                                           SourceLocation(), 0,
1841                                           Argument, /*TInfo=*/0,
1842                                           SC_None, SC_None, 0);
1843  Alloc->setParams(Param);
1844
1845  // FIXME: Also add this declaration to the IdentifierResolver, but
1846  // make sure it is at the end of the chain to coincide with the
1847  // global scope.
1848  Context.getTranslationUnitDecl()->addDecl(Alloc);
1849}
1850
1851bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1852                                    DeclarationName Name,
1853                                    FunctionDecl* &Operator, bool Diagnose) {
1854  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1855  // Try to find operator delete/operator delete[] in class scope.
1856  LookupQualifiedName(Found, RD);
1857
1858  if (Found.isAmbiguous())
1859    return true;
1860
1861  Found.suppressDiagnostics();
1862
1863  SmallVector<DeclAccessPair,4> Matches;
1864  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1865       F != FEnd; ++F) {
1866    NamedDecl *ND = (*F)->getUnderlyingDecl();
1867
1868    // Ignore template operator delete members from the check for a usual
1869    // deallocation function.
1870    if (isa<FunctionTemplateDecl>(ND))
1871      continue;
1872
1873    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1874      Matches.push_back(F.getPair());
1875  }
1876
1877  // There's exactly one suitable operator;  pick it.
1878  if (Matches.size() == 1) {
1879    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1880
1881    if (Operator->isDeleted()) {
1882      if (Diagnose) {
1883        Diag(StartLoc, diag::err_deleted_function_use);
1884        Diag(Operator->getLocation(), diag::note_unavailable_here) << true;
1885      }
1886      return true;
1887    }
1888
1889    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1890                          Matches[0], Diagnose);
1891    return false;
1892
1893  // We found multiple suitable operators;  complain about the ambiguity.
1894  } else if (!Matches.empty()) {
1895    if (Diagnose) {
1896      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1897        << Name << RD;
1898
1899      for (SmallVectorImpl<DeclAccessPair>::iterator
1900             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1901        Diag((*F)->getUnderlyingDecl()->getLocation(),
1902             diag::note_member_declared_here) << Name;
1903    }
1904    return true;
1905  }
1906
1907  // We did find operator delete/operator delete[] declarations, but
1908  // none of them were suitable.
1909  if (!Found.empty()) {
1910    if (Diagnose) {
1911      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1912        << Name << RD;
1913
1914      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1915           F != FEnd; ++F)
1916        Diag((*F)->getUnderlyingDecl()->getLocation(),
1917             diag::note_member_declared_here) << Name;
1918    }
1919    return true;
1920  }
1921
1922  // Look for a global declaration.
1923  DeclareGlobalNewDelete();
1924  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1925
1926  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1927  Expr* DeallocArgs[1];
1928  DeallocArgs[0] = &Null;
1929  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1930                             DeallocArgs, 1, TUDecl, !Diagnose,
1931                             Operator, Diagnose))
1932    return true;
1933
1934  assert(Operator && "Did not find a deallocation function!");
1935  return false;
1936}
1937
1938/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1939/// @code ::delete ptr; @endcode
1940/// or
1941/// @code delete [] ptr; @endcode
1942ExprResult
1943Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1944                     bool ArrayForm, Expr *ExE) {
1945  // C++ [expr.delete]p1:
1946  //   The operand shall have a pointer type, or a class type having a single
1947  //   conversion function to a pointer type. The result has type void.
1948  //
1949  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1950
1951  ExprResult Ex = Owned(ExE);
1952  FunctionDecl *OperatorDelete = 0;
1953  bool ArrayFormAsWritten = ArrayForm;
1954  bool UsualArrayDeleteWantsSize = false;
1955
1956  if (!Ex.get()->isTypeDependent()) {
1957    QualType Type = Ex.get()->getType();
1958
1959    if (const RecordType *Record = Type->getAs<RecordType>()) {
1960      if (RequireCompleteType(StartLoc, Type,
1961                              PDiag(diag::err_delete_incomplete_class_type)))
1962        return ExprError();
1963
1964      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1965
1966      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1967      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1968      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1969             E = Conversions->end(); I != E; ++I) {
1970        NamedDecl *D = I.getDecl();
1971        if (isa<UsingShadowDecl>(D))
1972          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1973
1974        // Skip over templated conversion functions; they aren't considered.
1975        if (isa<FunctionTemplateDecl>(D))
1976          continue;
1977
1978        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1979
1980        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1981        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1982          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1983            ObjectPtrConversions.push_back(Conv);
1984      }
1985      if (ObjectPtrConversions.size() == 1) {
1986        // We have a single conversion to a pointer-to-object type. Perform
1987        // that conversion.
1988        // TODO: don't redo the conversion calculation.
1989        ExprResult Res =
1990          PerformImplicitConversion(Ex.get(),
1991                            ObjectPtrConversions.front()->getConversionType(),
1992                                    AA_Converting);
1993        if (Res.isUsable()) {
1994          Ex = move(Res);
1995          Type = Ex.get()->getType();
1996        }
1997      }
1998      else if (ObjectPtrConversions.size() > 1) {
1999        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2000              << Type << Ex.get()->getSourceRange();
2001        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2002          NoteOverloadCandidate(ObjectPtrConversions[i]);
2003        return ExprError();
2004      }
2005    }
2006
2007    if (!Type->isPointerType())
2008      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2009        << Type << Ex.get()->getSourceRange());
2010
2011    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2012    QualType PointeeElem = Context.getBaseElementType(Pointee);
2013
2014    if (unsigned AddressSpace = Pointee.getAddressSpace())
2015      return Diag(Ex.get()->getLocStart(),
2016                  diag::err_address_space_qualified_delete)
2017               << Pointee.getUnqualifiedType() << AddressSpace;
2018
2019    CXXRecordDecl *PointeeRD = 0;
2020    if (Pointee->isVoidType() && !isSFINAEContext()) {
2021      // The C++ standard bans deleting a pointer to a non-object type, which
2022      // effectively bans deletion of "void*". However, most compilers support
2023      // this, so we treat it as a warning unless we're in a SFINAE context.
2024      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2025        << Type << Ex.get()->getSourceRange();
2026    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2027      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2028        << Type << Ex.get()->getSourceRange());
2029    } else if (!Pointee->isDependentType()) {
2030      if (!RequireCompleteType(StartLoc, Pointee,
2031                               PDiag(diag::warn_delete_incomplete)
2032                                 << Ex.get()->getSourceRange())) {
2033        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2034          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2035      }
2036    }
2037
2038    // Perform lvalue-to-rvalue cast, if needed.
2039    Ex = DefaultLvalueConversion(Ex.take());
2040
2041    // C++ [expr.delete]p2:
2042    //   [Note: a pointer to a const type can be the operand of a
2043    //   delete-expression; it is not necessary to cast away the constness
2044    //   (5.2.11) of the pointer expression before it is used as the operand
2045    //   of the delete-expression. ]
2046    if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
2047      Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2048                                          CK_BitCast, Ex.take(), 0, VK_RValue));
2049
2050    if (Pointee->isArrayType() && !ArrayForm) {
2051      Diag(StartLoc, diag::warn_delete_array_type)
2052          << Type << Ex.get()->getSourceRange()
2053          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2054      ArrayForm = true;
2055    }
2056
2057    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2058                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2059
2060    if (PointeeRD) {
2061      if (!UseGlobal &&
2062          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2063                                   OperatorDelete))
2064        return ExprError();
2065
2066      // If we're allocating an array of records, check whether the
2067      // usual operator delete[] has a size_t parameter.
2068      if (ArrayForm) {
2069        // If the user specifically asked to use the global allocator,
2070        // we'll need to do the lookup into the class.
2071        if (UseGlobal)
2072          UsualArrayDeleteWantsSize =
2073            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2074
2075        // Otherwise, the usual operator delete[] should be the
2076        // function we just found.
2077        else if (isa<CXXMethodDecl>(OperatorDelete))
2078          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2079      }
2080
2081      if (!PointeeRD->hasIrrelevantDestructor())
2082        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2083          MarkFunctionReferenced(StartLoc,
2084                                    const_cast<CXXDestructorDecl*>(Dtor));
2085          DiagnoseUseOfDecl(Dtor, StartLoc);
2086        }
2087
2088      // C++ [expr.delete]p3:
2089      //   In the first alternative (delete object), if the static type of the
2090      //   object to be deleted is different from its dynamic type, the static
2091      //   type shall be a base class of the dynamic type of the object to be
2092      //   deleted and the static type shall have a virtual destructor or the
2093      //   behavior is undefined.
2094      //
2095      // Note: a final class cannot be derived from, no issue there
2096      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2097        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2098        if (dtor && !dtor->isVirtual()) {
2099          if (PointeeRD->isAbstract()) {
2100            // If the class is abstract, we warn by default, because we're
2101            // sure the code has undefined behavior.
2102            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2103                << PointeeElem;
2104          } else if (!ArrayForm) {
2105            // Otherwise, if this is not an array delete, it's a bit suspect,
2106            // but not necessarily wrong.
2107            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2108          }
2109        }
2110      }
2111
2112    } else if (getLangOptions().ObjCAutoRefCount &&
2113               PointeeElem->isObjCLifetimeType() &&
2114               (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
2115                PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
2116               ArrayForm) {
2117      Diag(StartLoc, diag::warn_err_new_delete_object_array)
2118        << 1 << PointeeElem;
2119    }
2120
2121    if (!OperatorDelete) {
2122      // Look for a global declaration.
2123      DeclareGlobalNewDelete();
2124      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2125      Expr *Arg = Ex.get();
2126      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2127                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2128                                 OperatorDelete))
2129        return ExprError();
2130    }
2131
2132    MarkFunctionReferenced(StartLoc, OperatorDelete);
2133
2134    // Check access and ambiguity of operator delete and destructor.
2135    if (PointeeRD) {
2136      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2137          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2138                      PDiag(diag::err_access_dtor) << PointeeElem);
2139      }
2140    }
2141
2142  }
2143
2144  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2145                                           ArrayFormAsWritten,
2146                                           UsualArrayDeleteWantsSize,
2147                                           OperatorDelete, Ex.take(), StartLoc));
2148}
2149
2150/// \brief Check the use of the given variable as a C++ condition in an if,
2151/// while, do-while, or switch statement.
2152ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2153                                        SourceLocation StmtLoc,
2154                                        bool ConvertToBoolean) {
2155  QualType T = ConditionVar->getType();
2156
2157  // C++ [stmt.select]p2:
2158  //   The declarator shall not specify a function or an array.
2159  if (T->isFunctionType())
2160    return ExprError(Diag(ConditionVar->getLocation(),
2161                          diag::err_invalid_use_of_function_type)
2162                       << ConditionVar->getSourceRange());
2163  else if (T->isArrayType())
2164    return ExprError(Diag(ConditionVar->getLocation(),
2165                          diag::err_invalid_use_of_array_type)
2166                     << ConditionVar->getSourceRange());
2167
2168  ExprResult Condition =
2169    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2170                              SourceLocation(),
2171                              ConditionVar,
2172                              ConditionVar->getLocation(),
2173                              ConditionVar->getType().getNonReferenceType(),
2174                              VK_LValue));
2175
2176  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2177
2178  if (ConvertToBoolean) {
2179    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2180    if (Condition.isInvalid())
2181      return ExprError();
2182  }
2183
2184  return move(Condition);
2185}
2186
2187/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2188ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2189  // C++ 6.4p4:
2190  // The value of a condition that is an initialized declaration in a statement
2191  // other than a switch statement is the value of the declared variable
2192  // implicitly converted to type bool. If that conversion is ill-formed, the
2193  // program is ill-formed.
2194  // The value of a condition that is an expression is the value of the
2195  // expression, implicitly converted to bool.
2196  //
2197  return PerformContextuallyConvertToBool(CondExpr);
2198}
2199
2200/// Helper function to determine whether this is the (deprecated) C++
2201/// conversion from a string literal to a pointer to non-const char or
2202/// non-const wchar_t (for narrow and wide string literals,
2203/// respectively).
2204bool
2205Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2206  // Look inside the implicit cast, if it exists.
2207  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2208    From = Cast->getSubExpr();
2209
2210  // A string literal (2.13.4) that is not a wide string literal can
2211  // be converted to an rvalue of type "pointer to char"; a wide
2212  // string literal can be converted to an rvalue of type "pointer
2213  // to wchar_t" (C++ 4.2p2).
2214  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2215    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2216      if (const BuiltinType *ToPointeeType
2217          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2218        // This conversion is considered only when there is an
2219        // explicit appropriate pointer target type (C++ 4.2p2).
2220        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2221          switch (StrLit->getKind()) {
2222            case StringLiteral::UTF8:
2223            case StringLiteral::UTF16:
2224            case StringLiteral::UTF32:
2225              // We don't allow UTF literals to be implicitly converted
2226              break;
2227            case StringLiteral::Ascii:
2228              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2229                      ToPointeeType->getKind() == BuiltinType::Char_S);
2230            case StringLiteral::Wide:
2231              return ToPointeeType->isWideCharType();
2232          }
2233        }
2234      }
2235
2236  return false;
2237}
2238
2239static ExprResult BuildCXXCastArgument(Sema &S,
2240                                       SourceLocation CastLoc,
2241                                       QualType Ty,
2242                                       CastKind Kind,
2243                                       CXXMethodDecl *Method,
2244                                       DeclAccessPair FoundDecl,
2245                                       bool HadMultipleCandidates,
2246                                       Expr *From) {
2247  switch (Kind) {
2248  default: llvm_unreachable("Unhandled cast kind!");
2249  case CK_ConstructorConversion: {
2250    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2251    ASTOwningVector<Expr*> ConstructorArgs(S);
2252
2253    if (S.CompleteConstructorCall(Constructor,
2254                                  MultiExprArg(&From, 1),
2255                                  CastLoc, ConstructorArgs))
2256      return ExprError();
2257
2258    S.CheckConstructorAccess(CastLoc, Constructor, Constructor->getAccess(),
2259                             S.PDiag(diag::err_access_ctor));
2260
2261    ExprResult Result
2262      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2263                                move_arg(ConstructorArgs),
2264                                HadMultipleCandidates, /*ZeroInit*/ false,
2265                                CXXConstructExpr::CK_Complete, SourceRange());
2266    if (Result.isInvalid())
2267      return ExprError();
2268
2269    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2270  }
2271
2272  case CK_UserDefinedConversion: {
2273    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2274
2275    // Create an implicit call expr that calls it.
2276    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method,
2277                                                 HadMultipleCandidates);
2278    if (Result.isInvalid())
2279      return ExprError();
2280    // Record usage of conversion in an implicit cast.
2281    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2282                                              Result.get()->getType(),
2283                                              CK_UserDefinedConversion,
2284                                              Result.get(), 0,
2285                                              Result.get()->getValueKind()));
2286
2287    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2288
2289    return S.MaybeBindToTemporary(Result.get());
2290  }
2291  }
2292}
2293
2294/// PerformImplicitConversion - Perform an implicit conversion of the
2295/// expression From to the type ToType using the pre-computed implicit
2296/// conversion sequence ICS. Returns the converted
2297/// expression. Action is the kind of conversion we're performing,
2298/// used in the error message.
2299ExprResult
2300Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2301                                const ImplicitConversionSequence &ICS,
2302                                AssignmentAction Action,
2303                                CheckedConversionKind CCK) {
2304  switch (ICS.getKind()) {
2305  case ImplicitConversionSequence::StandardConversion: {
2306    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2307                                               Action, CCK);
2308    if (Res.isInvalid())
2309      return ExprError();
2310    From = Res.take();
2311    break;
2312  }
2313
2314  case ImplicitConversionSequence::UserDefinedConversion: {
2315
2316      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2317      CastKind CastKind;
2318      QualType BeforeToType;
2319      assert(FD && "FIXME: aggregate initialization from init list");
2320      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2321        CastKind = CK_UserDefinedConversion;
2322
2323        // If the user-defined conversion is specified by a conversion function,
2324        // the initial standard conversion sequence converts the source type to
2325        // the implicit object parameter of the conversion function.
2326        BeforeToType = Context.getTagDeclType(Conv->getParent());
2327      } else {
2328        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2329        CastKind = CK_ConstructorConversion;
2330        // Do no conversion if dealing with ... for the first conversion.
2331        if (!ICS.UserDefined.EllipsisConversion) {
2332          // If the user-defined conversion is specified by a constructor, the
2333          // initial standard conversion sequence converts the source type to the
2334          // type required by the argument of the constructor
2335          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2336        }
2337      }
2338      // Watch out for elipsis conversion.
2339      if (!ICS.UserDefined.EllipsisConversion) {
2340        ExprResult Res =
2341          PerformImplicitConversion(From, BeforeToType,
2342                                    ICS.UserDefined.Before, AA_Converting,
2343                                    CCK);
2344        if (Res.isInvalid())
2345          return ExprError();
2346        From = Res.take();
2347      }
2348
2349      ExprResult CastArg
2350        = BuildCXXCastArgument(*this,
2351                               From->getLocStart(),
2352                               ToType.getNonReferenceType(),
2353                               CastKind, cast<CXXMethodDecl>(FD),
2354                               ICS.UserDefined.FoundConversionFunction,
2355                               ICS.UserDefined.HadMultipleCandidates,
2356                               From);
2357
2358      if (CastArg.isInvalid())
2359        return ExprError();
2360
2361      From = CastArg.take();
2362
2363      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2364                                       AA_Converting, CCK);
2365  }
2366
2367  case ImplicitConversionSequence::AmbiguousConversion:
2368    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2369                          PDiag(diag::err_typecheck_ambiguous_condition)
2370                            << From->getSourceRange());
2371     return ExprError();
2372
2373  case ImplicitConversionSequence::EllipsisConversion:
2374    llvm_unreachable("Cannot perform an ellipsis conversion");
2375
2376  case ImplicitConversionSequence::BadConversion:
2377    return ExprError();
2378  }
2379
2380  // Everything went well.
2381  return Owned(From);
2382}
2383
2384/// PerformImplicitConversion - Perform an implicit conversion of the
2385/// expression From to the type ToType by following the standard
2386/// conversion sequence SCS. Returns the converted
2387/// expression. Flavor is the context in which we're performing this
2388/// conversion, for use in error messages.
2389ExprResult
2390Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2391                                const StandardConversionSequence& SCS,
2392                                AssignmentAction Action,
2393                                CheckedConversionKind CCK) {
2394  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2395
2396  // Overall FIXME: we are recomputing too many types here and doing far too
2397  // much extra work. What this means is that we need to keep track of more
2398  // information that is computed when we try the implicit conversion initially,
2399  // so that we don't need to recompute anything here.
2400  QualType FromType = From->getType();
2401
2402  if (SCS.CopyConstructor) {
2403    // FIXME: When can ToType be a reference type?
2404    assert(!ToType->isReferenceType());
2405    if (SCS.Second == ICK_Derived_To_Base) {
2406      ASTOwningVector<Expr*> ConstructorArgs(*this);
2407      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2408                                  MultiExprArg(*this, &From, 1),
2409                                  /*FIXME:ConstructLoc*/SourceLocation(),
2410                                  ConstructorArgs))
2411        return ExprError();
2412      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2413                                   ToType, SCS.CopyConstructor,
2414                                   move_arg(ConstructorArgs),
2415                                   /*HadMultipleCandidates*/ false,
2416                                   /*ZeroInit*/ false,
2417                                   CXXConstructExpr::CK_Complete,
2418                                   SourceRange());
2419    }
2420    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2421                                 ToType, SCS.CopyConstructor,
2422                                 MultiExprArg(*this, &From, 1),
2423                                 /*HadMultipleCandidates*/ false,
2424                                 /*ZeroInit*/ false,
2425                                 CXXConstructExpr::CK_Complete,
2426                                 SourceRange());
2427  }
2428
2429  // Resolve overloaded function references.
2430  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2431    DeclAccessPair Found;
2432    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2433                                                          true, Found);
2434    if (!Fn)
2435      return ExprError();
2436
2437    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2438      return ExprError();
2439
2440    From = FixOverloadedFunctionReference(From, Found, Fn);
2441    FromType = From->getType();
2442  }
2443
2444  // Perform the first implicit conversion.
2445  switch (SCS.First) {
2446  case ICK_Identity:
2447    // Nothing to do.
2448    break;
2449
2450  case ICK_Lvalue_To_Rvalue: {
2451    assert(From->getObjectKind() != OK_ObjCProperty);
2452    FromType = FromType.getUnqualifiedType();
2453    ExprResult FromRes = DefaultLvalueConversion(From);
2454    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2455    From = FromRes.take();
2456    break;
2457  }
2458
2459  case ICK_Array_To_Pointer:
2460    FromType = Context.getArrayDecayedType(FromType);
2461    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2462                             VK_RValue, /*BasePath=*/0, CCK).take();
2463    break;
2464
2465  case ICK_Function_To_Pointer:
2466    FromType = Context.getPointerType(FromType);
2467    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2468                             VK_RValue, /*BasePath=*/0, CCK).take();
2469    break;
2470
2471  default:
2472    llvm_unreachable("Improper first standard conversion");
2473  }
2474
2475  // Perform the second implicit conversion
2476  switch (SCS.Second) {
2477  case ICK_Identity:
2478    // If both sides are functions (or pointers/references to them), there could
2479    // be incompatible exception declarations.
2480    if (CheckExceptionSpecCompatibility(From, ToType))
2481      return ExprError();
2482    // Nothing else to do.
2483    break;
2484
2485  case ICK_NoReturn_Adjustment:
2486    // If both sides are functions (or pointers/references to them), there could
2487    // be incompatible exception declarations.
2488    if (CheckExceptionSpecCompatibility(From, ToType))
2489      return ExprError();
2490
2491    From = ImpCastExprToType(From, ToType, CK_NoOp,
2492                             VK_RValue, /*BasePath=*/0, CCK).take();
2493    break;
2494
2495  case ICK_Integral_Promotion:
2496  case ICK_Integral_Conversion:
2497    From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2498                             VK_RValue, /*BasePath=*/0, CCK).take();
2499    break;
2500
2501  case ICK_Floating_Promotion:
2502  case ICK_Floating_Conversion:
2503    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2504                             VK_RValue, /*BasePath=*/0, CCK).take();
2505    break;
2506
2507  case ICK_Complex_Promotion:
2508  case ICK_Complex_Conversion: {
2509    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2510    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2511    CastKind CK;
2512    if (FromEl->isRealFloatingType()) {
2513      if (ToEl->isRealFloatingType())
2514        CK = CK_FloatingComplexCast;
2515      else
2516        CK = CK_FloatingComplexToIntegralComplex;
2517    } else if (ToEl->isRealFloatingType()) {
2518      CK = CK_IntegralComplexToFloatingComplex;
2519    } else {
2520      CK = CK_IntegralComplexCast;
2521    }
2522    From = ImpCastExprToType(From, ToType, CK,
2523                             VK_RValue, /*BasePath=*/0, CCK).take();
2524    break;
2525  }
2526
2527  case ICK_Floating_Integral:
2528    if (ToType->isRealFloatingType())
2529      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2530                               VK_RValue, /*BasePath=*/0, CCK).take();
2531    else
2532      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2533                               VK_RValue, /*BasePath=*/0, CCK).take();
2534    break;
2535
2536  case ICK_Compatible_Conversion:
2537      From = ImpCastExprToType(From, ToType, CK_NoOp,
2538                               VK_RValue, /*BasePath=*/0, CCK).take();
2539    break;
2540
2541  case ICK_Writeback_Conversion:
2542  case ICK_Pointer_Conversion: {
2543    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2544      // Diagnose incompatible Objective-C conversions
2545      if (Action == AA_Initializing || Action == AA_Assigning)
2546        Diag(From->getSourceRange().getBegin(),
2547             diag::ext_typecheck_convert_incompatible_pointer)
2548          << ToType << From->getType() << Action
2549          << From->getSourceRange() << 0;
2550      else
2551        Diag(From->getSourceRange().getBegin(),
2552             diag::ext_typecheck_convert_incompatible_pointer)
2553          << From->getType() << ToType << Action
2554          << From->getSourceRange() << 0;
2555
2556      if (From->getType()->isObjCObjectPointerType() &&
2557          ToType->isObjCObjectPointerType())
2558        EmitRelatedResultTypeNote(From);
2559    }
2560    else if (getLangOptions().ObjCAutoRefCount &&
2561             !CheckObjCARCUnavailableWeakConversion(ToType,
2562                                                    From->getType())) {
2563      if (Action == AA_Initializing)
2564        Diag(From->getSourceRange().getBegin(),
2565             diag::err_arc_weak_unavailable_assign);
2566      else
2567        Diag(From->getSourceRange().getBegin(),
2568             diag::err_arc_convesion_of_weak_unavailable)
2569          << (Action == AA_Casting) << From->getType() << ToType
2570          << From->getSourceRange();
2571    }
2572
2573    CastKind Kind = CK_Invalid;
2574    CXXCastPath BasePath;
2575    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2576      return ExprError();
2577
2578    // Make sure we extend blocks if necessary.
2579    // FIXME: doing this here is really ugly.
2580    if (Kind == CK_BlockPointerToObjCPointerCast) {
2581      ExprResult E = From;
2582      (void) PrepareCastToObjCObjectPointer(E);
2583      From = E.take();
2584    }
2585
2586    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2587             .take();
2588    break;
2589  }
2590
2591  case ICK_Pointer_Member: {
2592    CastKind Kind = CK_Invalid;
2593    CXXCastPath BasePath;
2594    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2595      return ExprError();
2596    if (CheckExceptionSpecCompatibility(From, ToType))
2597      return ExprError();
2598    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2599             .take();
2600    break;
2601  }
2602
2603  case ICK_Boolean_Conversion:
2604    // Perform half-to-boolean conversion via float.
2605    if (From->getType()->isHalfType()) {
2606      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2607      FromType = Context.FloatTy;
2608    }
2609
2610    From = ImpCastExprToType(From, Context.BoolTy,
2611                             ScalarTypeToBooleanCastKind(FromType),
2612                             VK_RValue, /*BasePath=*/0, CCK).take();
2613    break;
2614
2615  case ICK_Derived_To_Base: {
2616    CXXCastPath BasePath;
2617    if (CheckDerivedToBaseConversion(From->getType(),
2618                                     ToType.getNonReferenceType(),
2619                                     From->getLocStart(),
2620                                     From->getSourceRange(),
2621                                     &BasePath,
2622                                     CStyle))
2623      return ExprError();
2624
2625    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2626                      CK_DerivedToBase, From->getValueKind(),
2627                      &BasePath, CCK).take();
2628    break;
2629  }
2630
2631  case ICK_Vector_Conversion:
2632    From = ImpCastExprToType(From, ToType, CK_BitCast,
2633                             VK_RValue, /*BasePath=*/0, CCK).take();
2634    break;
2635
2636  case ICK_Vector_Splat:
2637    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2638                             VK_RValue, /*BasePath=*/0, CCK).take();
2639    break;
2640
2641  case ICK_Complex_Real:
2642    // Case 1.  x -> _Complex y
2643    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2644      QualType ElType = ToComplex->getElementType();
2645      bool isFloatingComplex = ElType->isRealFloatingType();
2646
2647      // x -> y
2648      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2649        // do nothing
2650      } else if (From->getType()->isRealFloatingType()) {
2651        From = ImpCastExprToType(From, ElType,
2652                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2653      } else {
2654        assert(From->getType()->isIntegerType());
2655        From = ImpCastExprToType(From, ElType,
2656                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2657      }
2658      // y -> _Complex y
2659      From = ImpCastExprToType(From, ToType,
2660                   isFloatingComplex ? CK_FloatingRealToComplex
2661                                     : CK_IntegralRealToComplex).take();
2662
2663    // Case 2.  _Complex x -> y
2664    } else {
2665      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2666      assert(FromComplex);
2667
2668      QualType ElType = FromComplex->getElementType();
2669      bool isFloatingComplex = ElType->isRealFloatingType();
2670
2671      // _Complex x -> x
2672      From = ImpCastExprToType(From, ElType,
2673                   isFloatingComplex ? CK_FloatingComplexToReal
2674                                     : CK_IntegralComplexToReal,
2675                               VK_RValue, /*BasePath=*/0, CCK).take();
2676
2677      // x -> y
2678      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2679        // do nothing
2680      } else if (ToType->isRealFloatingType()) {
2681        From = ImpCastExprToType(From, ToType,
2682                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2683                                 VK_RValue, /*BasePath=*/0, CCK).take();
2684      } else {
2685        assert(ToType->isIntegerType());
2686        From = ImpCastExprToType(From, ToType,
2687                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2688                                 VK_RValue, /*BasePath=*/0, CCK).take();
2689      }
2690    }
2691    break;
2692
2693  case ICK_Block_Pointer_Conversion: {
2694    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2695                             VK_RValue, /*BasePath=*/0, CCK).take();
2696    break;
2697  }
2698
2699  case ICK_TransparentUnionConversion: {
2700    ExprResult FromRes = Owned(From);
2701    Sema::AssignConvertType ConvTy =
2702      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2703    if (FromRes.isInvalid())
2704      return ExprError();
2705    From = FromRes.take();
2706    assert ((ConvTy == Sema::Compatible) &&
2707            "Improper transparent union conversion");
2708    (void)ConvTy;
2709    break;
2710  }
2711
2712  case ICK_Lvalue_To_Rvalue:
2713  case ICK_Array_To_Pointer:
2714  case ICK_Function_To_Pointer:
2715  case ICK_Qualification:
2716  case ICK_Num_Conversion_Kinds:
2717    llvm_unreachable("Improper second standard conversion");
2718  }
2719
2720  switch (SCS.Third) {
2721  case ICK_Identity:
2722    // Nothing to do.
2723    break;
2724
2725  case ICK_Qualification: {
2726    // The qualification keeps the category of the inner expression, unless the
2727    // target type isn't a reference.
2728    ExprValueKind VK = ToType->isReferenceType() ?
2729                                  From->getValueKind() : VK_RValue;
2730    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2731                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2732
2733    if (SCS.DeprecatedStringLiteralToCharPtr &&
2734        !getLangOptions().WritableStrings)
2735      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2736        << ToType.getNonReferenceType();
2737
2738    break;
2739    }
2740
2741  default:
2742    llvm_unreachable("Improper third standard conversion");
2743  }
2744
2745  return Owned(From);
2746}
2747
2748ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2749                                     SourceLocation KWLoc,
2750                                     ParsedType Ty,
2751                                     SourceLocation RParen) {
2752  TypeSourceInfo *TSInfo;
2753  QualType T = GetTypeFromParser(Ty, &TSInfo);
2754
2755  if (!TSInfo)
2756    TSInfo = Context.getTrivialTypeSourceInfo(T);
2757  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2758}
2759
2760/// \brief Check the completeness of a type in a unary type trait.
2761///
2762/// If the particular type trait requires a complete type, tries to complete
2763/// it. If completing the type fails, a diagnostic is emitted and false
2764/// returned. If completing the type succeeds or no completion was required,
2765/// returns true.
2766static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2767                                                UnaryTypeTrait UTT,
2768                                                SourceLocation Loc,
2769                                                QualType ArgTy) {
2770  // C++0x [meta.unary.prop]p3:
2771  //   For all of the class templates X declared in this Clause, instantiating
2772  //   that template with a template argument that is a class template
2773  //   specialization may result in the implicit instantiation of the template
2774  //   argument if and only if the semantics of X require that the argument
2775  //   must be a complete type.
2776  // We apply this rule to all the type trait expressions used to implement
2777  // these class templates. We also try to follow any GCC documented behavior
2778  // in these expressions to ensure portability of standard libraries.
2779  switch (UTT) {
2780    // is_complete_type somewhat obviously cannot require a complete type.
2781  case UTT_IsCompleteType:
2782    // Fall-through
2783
2784    // These traits are modeled on the type predicates in C++0x
2785    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2786    // requiring a complete type, as whether or not they return true cannot be
2787    // impacted by the completeness of the type.
2788  case UTT_IsVoid:
2789  case UTT_IsIntegral:
2790  case UTT_IsFloatingPoint:
2791  case UTT_IsArray:
2792  case UTT_IsPointer:
2793  case UTT_IsLvalueReference:
2794  case UTT_IsRvalueReference:
2795  case UTT_IsMemberFunctionPointer:
2796  case UTT_IsMemberObjectPointer:
2797  case UTT_IsEnum:
2798  case UTT_IsUnion:
2799  case UTT_IsClass:
2800  case UTT_IsFunction:
2801  case UTT_IsReference:
2802  case UTT_IsArithmetic:
2803  case UTT_IsFundamental:
2804  case UTT_IsObject:
2805  case UTT_IsScalar:
2806  case UTT_IsCompound:
2807  case UTT_IsMemberPointer:
2808    // Fall-through
2809
2810    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2811    // which requires some of its traits to have the complete type. However,
2812    // the completeness of the type cannot impact these traits' semantics, and
2813    // so they don't require it. This matches the comments on these traits in
2814    // Table 49.
2815  case UTT_IsConst:
2816  case UTT_IsVolatile:
2817  case UTT_IsSigned:
2818  case UTT_IsUnsigned:
2819    return true;
2820
2821    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2822    // applied to a complete type.
2823  case UTT_IsTrivial:
2824  case UTT_IsTriviallyCopyable:
2825  case UTT_IsStandardLayout:
2826  case UTT_IsPOD:
2827  case UTT_IsLiteral:
2828  case UTT_IsEmpty:
2829  case UTT_IsPolymorphic:
2830  case UTT_IsAbstract:
2831    // Fall-through
2832
2833  // These traits require a complete type.
2834  case UTT_IsFinal:
2835
2836    // These trait expressions are designed to help implement predicates in
2837    // [meta.unary.prop] despite not being named the same. They are specified
2838    // by both GCC and the Embarcadero C++ compiler, and require the complete
2839    // type due to the overarching C++0x type predicates being implemented
2840    // requiring the complete type.
2841  case UTT_HasNothrowAssign:
2842  case UTT_HasNothrowConstructor:
2843  case UTT_HasNothrowCopy:
2844  case UTT_HasTrivialAssign:
2845  case UTT_HasTrivialDefaultConstructor:
2846  case UTT_HasTrivialCopy:
2847  case UTT_HasTrivialDestructor:
2848  case UTT_HasVirtualDestructor:
2849    // Arrays of unknown bound are expressly allowed.
2850    QualType ElTy = ArgTy;
2851    if (ArgTy->isIncompleteArrayType())
2852      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2853
2854    // The void type is expressly allowed.
2855    if (ElTy->isVoidType())
2856      return true;
2857
2858    return !S.RequireCompleteType(
2859      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2860  }
2861  llvm_unreachable("Type trait not handled by switch");
2862}
2863
2864static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2865                                   SourceLocation KeyLoc, QualType T) {
2866  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2867
2868  ASTContext &C = Self.Context;
2869  switch(UTT) {
2870    // Type trait expressions corresponding to the primary type category
2871    // predicates in C++0x [meta.unary.cat].
2872  case UTT_IsVoid:
2873    return T->isVoidType();
2874  case UTT_IsIntegral:
2875    return T->isIntegralType(C);
2876  case UTT_IsFloatingPoint:
2877    return T->isFloatingType();
2878  case UTT_IsArray:
2879    return T->isArrayType();
2880  case UTT_IsPointer:
2881    return T->isPointerType();
2882  case UTT_IsLvalueReference:
2883    return T->isLValueReferenceType();
2884  case UTT_IsRvalueReference:
2885    return T->isRValueReferenceType();
2886  case UTT_IsMemberFunctionPointer:
2887    return T->isMemberFunctionPointerType();
2888  case UTT_IsMemberObjectPointer:
2889    return T->isMemberDataPointerType();
2890  case UTT_IsEnum:
2891    return T->isEnumeralType();
2892  case UTT_IsUnion:
2893    return T->isUnionType();
2894  case UTT_IsClass:
2895    return T->isClassType() || T->isStructureType();
2896  case UTT_IsFunction:
2897    return T->isFunctionType();
2898
2899    // Type trait expressions which correspond to the convenient composition
2900    // predicates in C++0x [meta.unary.comp].
2901  case UTT_IsReference:
2902    return T->isReferenceType();
2903  case UTT_IsArithmetic:
2904    return T->isArithmeticType() && !T->isEnumeralType();
2905  case UTT_IsFundamental:
2906    return T->isFundamentalType();
2907  case UTT_IsObject:
2908    return T->isObjectType();
2909  case UTT_IsScalar:
2910    // Note: semantic analysis depends on Objective-C lifetime types to be
2911    // considered scalar types. However, such types do not actually behave
2912    // like scalar types at run time (since they may require retain/release
2913    // operations), so we report them as non-scalar.
2914    if (T->isObjCLifetimeType()) {
2915      switch (T.getObjCLifetime()) {
2916      case Qualifiers::OCL_None:
2917      case Qualifiers::OCL_ExplicitNone:
2918        return true;
2919
2920      case Qualifiers::OCL_Strong:
2921      case Qualifiers::OCL_Weak:
2922      case Qualifiers::OCL_Autoreleasing:
2923        return false;
2924      }
2925    }
2926
2927    return T->isScalarType();
2928  case UTT_IsCompound:
2929    return T->isCompoundType();
2930  case UTT_IsMemberPointer:
2931    return T->isMemberPointerType();
2932
2933    // Type trait expressions which correspond to the type property predicates
2934    // in C++0x [meta.unary.prop].
2935  case UTT_IsConst:
2936    return T.isConstQualified();
2937  case UTT_IsVolatile:
2938    return T.isVolatileQualified();
2939  case UTT_IsTrivial:
2940    return T.isTrivialType(Self.Context);
2941  case UTT_IsTriviallyCopyable:
2942    return T.isTriviallyCopyableType(Self.Context);
2943  case UTT_IsStandardLayout:
2944    return T->isStandardLayoutType();
2945  case UTT_IsPOD:
2946    return T.isPODType(Self.Context);
2947  case UTT_IsLiteral:
2948    return T->isLiteralType();
2949  case UTT_IsEmpty:
2950    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2951      return !RD->isUnion() && RD->isEmpty();
2952    return false;
2953  case UTT_IsPolymorphic:
2954    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2955      return RD->isPolymorphic();
2956    return false;
2957  case UTT_IsAbstract:
2958    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2959      return RD->isAbstract();
2960    return false;
2961  case UTT_IsFinal:
2962    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2963      return RD->hasAttr<FinalAttr>();
2964    return false;
2965  case UTT_IsSigned:
2966    return T->isSignedIntegerType();
2967  case UTT_IsUnsigned:
2968    return T->isUnsignedIntegerType();
2969
2970    // Type trait expressions which query classes regarding their construction,
2971    // destruction, and copying. Rather than being based directly on the
2972    // related type predicates in the standard, they are specified by both
2973    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
2974    // specifications.
2975    //
2976    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
2977    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
2978  case UTT_HasTrivialDefaultConstructor:
2979    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2980    //   If __is_pod (type) is true then the trait is true, else if type is
2981    //   a cv class or union type (or array thereof) with a trivial default
2982    //   constructor ([class.ctor]) then the trait is true, else it is false.
2983    if (T.isPODType(Self.Context))
2984      return true;
2985    if (const RecordType *RT =
2986          C.getBaseElementType(T)->getAs<RecordType>())
2987      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
2988    return false;
2989  case UTT_HasTrivialCopy:
2990    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2991    //   If __is_pod (type) is true or type is a reference type then
2992    //   the trait is true, else if type is a cv class or union type
2993    //   with a trivial copy constructor ([class.copy]) then the trait
2994    //   is true, else it is false.
2995    if (T.isPODType(Self.Context) || T->isReferenceType())
2996      return true;
2997    if (const RecordType *RT = T->getAs<RecordType>())
2998      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2999    return false;
3000  case UTT_HasTrivialAssign:
3001    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3002    //   If type is const qualified or is a reference type then the
3003    //   trait is false. Otherwise if __is_pod (type) is true then the
3004    //   trait is true, else if type is a cv class or union type with
3005    //   a trivial copy assignment ([class.copy]) then the trait is
3006    //   true, else it is false.
3007    // Note: the const and reference restrictions are interesting,
3008    // given that const and reference members don't prevent a class
3009    // from having a trivial copy assignment operator (but do cause
3010    // errors if the copy assignment operator is actually used, q.v.
3011    // [class.copy]p12).
3012
3013    if (C.getBaseElementType(T).isConstQualified())
3014      return false;
3015    if (T.isPODType(Self.Context))
3016      return true;
3017    if (const RecordType *RT = T->getAs<RecordType>())
3018      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
3019    return false;
3020  case UTT_HasTrivialDestructor:
3021    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3022    //   If __is_pod (type) is true or type is a reference type
3023    //   then the trait is true, else if type is a cv class or union
3024    //   type (or array thereof) with a trivial destructor
3025    //   ([class.dtor]) then the trait is true, else it is
3026    //   false.
3027    if (T.isPODType(Self.Context) || T->isReferenceType())
3028      return true;
3029
3030    // Objective-C++ ARC: autorelease types don't require destruction.
3031    if (T->isObjCLifetimeType() &&
3032        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3033      return true;
3034
3035    if (const RecordType *RT =
3036          C.getBaseElementType(T)->getAs<RecordType>())
3037      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
3038    return false;
3039  // TODO: Propagate nothrowness for implicitly declared special members.
3040  case UTT_HasNothrowAssign:
3041    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3042    //   If type is const qualified or is a reference type then the
3043    //   trait is false. Otherwise if __has_trivial_assign (type)
3044    //   is true then the trait is true, else if type is a cv class
3045    //   or union type with copy assignment operators that are known
3046    //   not to throw an exception then the trait is true, else it is
3047    //   false.
3048    if (C.getBaseElementType(T).isConstQualified())
3049      return false;
3050    if (T->isReferenceType())
3051      return false;
3052    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3053      return true;
3054    if (const RecordType *RT = T->getAs<RecordType>()) {
3055      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
3056      if (RD->hasTrivialCopyAssignment())
3057        return true;
3058
3059      bool FoundAssign = false;
3060      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3061      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3062                       Sema::LookupOrdinaryName);
3063      if (Self.LookupQualifiedName(Res, RD)) {
3064        Res.suppressDiagnostics();
3065        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3066             Op != OpEnd; ++Op) {
3067          if (isa<FunctionTemplateDecl>(*Op))
3068            continue;
3069
3070          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3071          if (Operator->isCopyAssignmentOperator()) {
3072            FoundAssign = true;
3073            const FunctionProtoType *CPT
3074                = Operator->getType()->getAs<FunctionProtoType>();
3075            if (CPT->getExceptionSpecType() == EST_Delayed)
3076              return false;
3077            if (!CPT->isNothrow(Self.Context))
3078              return false;
3079          }
3080        }
3081      }
3082
3083      return FoundAssign;
3084    }
3085    return false;
3086  case UTT_HasNothrowCopy:
3087    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3088    //   If __has_trivial_copy (type) is true then the trait is true, else
3089    //   if type is a cv class or union type with copy constructors that are
3090    //   known not to throw an exception then the trait is true, else it is
3091    //   false.
3092    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3093      return true;
3094    if (const RecordType *RT = T->getAs<RecordType>()) {
3095      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3096      if (RD->hasTrivialCopyConstructor())
3097        return true;
3098
3099      bool FoundConstructor = false;
3100      unsigned FoundTQs;
3101      DeclContext::lookup_const_iterator Con, ConEnd;
3102      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3103           Con != ConEnd; ++Con) {
3104        // A template constructor is never a copy constructor.
3105        // FIXME: However, it may actually be selected at the actual overload
3106        // resolution point.
3107        if (isa<FunctionTemplateDecl>(*Con))
3108          continue;
3109        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3110        if (Constructor->isCopyConstructor(FoundTQs)) {
3111          FoundConstructor = true;
3112          const FunctionProtoType *CPT
3113              = Constructor->getType()->getAs<FunctionProtoType>();
3114          if (CPT->getExceptionSpecType() == EST_Delayed)
3115            return false;
3116          // FIXME: check whether evaluating default arguments can throw.
3117          // For now, we'll be conservative and assume that they can throw.
3118          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3119            return false;
3120        }
3121      }
3122
3123      return FoundConstructor;
3124    }
3125    return false;
3126  case UTT_HasNothrowConstructor:
3127    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3128    //   If __has_trivial_constructor (type) is true then the trait is
3129    //   true, else if type is a cv class or union type (or array
3130    //   thereof) with a default constructor that is known not to
3131    //   throw an exception then the trait is true, else it is false.
3132    if (T.isPODType(C) || T->isObjCLifetimeType())
3133      return true;
3134    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
3135      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3136      if (RD->hasTrivialDefaultConstructor())
3137        return true;
3138
3139      DeclContext::lookup_const_iterator Con, ConEnd;
3140      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3141           Con != ConEnd; ++Con) {
3142        // FIXME: In C++0x, a constructor template can be a default constructor.
3143        if (isa<FunctionTemplateDecl>(*Con))
3144          continue;
3145        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3146        if (Constructor->isDefaultConstructor()) {
3147          const FunctionProtoType *CPT
3148              = Constructor->getType()->getAs<FunctionProtoType>();
3149          if (CPT->getExceptionSpecType() == EST_Delayed)
3150            return false;
3151          // TODO: check whether evaluating default arguments can throw.
3152          // For now, we'll be conservative and assume that they can throw.
3153          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3154        }
3155      }
3156    }
3157    return false;
3158  case UTT_HasVirtualDestructor:
3159    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3160    //   If type is a class type with a virtual destructor ([class.dtor])
3161    //   then the trait is true, else it is false.
3162    if (const RecordType *Record = T->getAs<RecordType>()) {
3163      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
3164      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3165        return Destructor->isVirtual();
3166    }
3167    return false;
3168
3169    // These type trait expressions are modeled on the specifications for the
3170    // Embarcadero C++0x type trait functions:
3171    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3172  case UTT_IsCompleteType:
3173    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3174    //   Returns True if and only if T is a complete type at the point of the
3175    //   function call.
3176    return !T->isIncompleteType();
3177  }
3178  llvm_unreachable("Type trait not covered by switch");
3179}
3180
3181ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3182                                     SourceLocation KWLoc,
3183                                     TypeSourceInfo *TSInfo,
3184                                     SourceLocation RParen) {
3185  QualType T = TSInfo->getType();
3186  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3187    return ExprError();
3188
3189  bool Value = false;
3190  if (!T->isDependentType())
3191    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3192
3193  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3194                                                RParen, Context.BoolTy));
3195}
3196
3197ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3198                                      SourceLocation KWLoc,
3199                                      ParsedType LhsTy,
3200                                      ParsedType RhsTy,
3201                                      SourceLocation RParen) {
3202  TypeSourceInfo *LhsTSInfo;
3203  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3204  if (!LhsTSInfo)
3205    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3206
3207  TypeSourceInfo *RhsTSInfo;
3208  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3209  if (!RhsTSInfo)
3210    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3211
3212  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3213}
3214
3215static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3216                                    QualType LhsT, QualType RhsT,
3217                                    SourceLocation KeyLoc) {
3218  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3219         "Cannot evaluate traits of dependent types");
3220
3221  switch(BTT) {
3222  case BTT_IsBaseOf: {
3223    // C++0x [meta.rel]p2
3224    // Base is a base class of Derived without regard to cv-qualifiers or
3225    // Base and Derived are not unions and name the same class type without
3226    // regard to cv-qualifiers.
3227
3228    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3229    if (!lhsRecord) return false;
3230
3231    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3232    if (!rhsRecord) return false;
3233
3234    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3235             == (lhsRecord == rhsRecord));
3236
3237    if (lhsRecord == rhsRecord)
3238      return !lhsRecord->getDecl()->isUnion();
3239
3240    // C++0x [meta.rel]p2:
3241    //   If Base and Derived are class types and are different types
3242    //   (ignoring possible cv-qualifiers) then Derived shall be a
3243    //   complete type.
3244    if (Self.RequireCompleteType(KeyLoc, RhsT,
3245                          diag::err_incomplete_type_used_in_type_trait_expr))
3246      return false;
3247
3248    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3249      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3250  }
3251  case BTT_IsSame:
3252    return Self.Context.hasSameType(LhsT, RhsT);
3253  case BTT_TypeCompatible:
3254    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3255                                           RhsT.getUnqualifiedType());
3256  case BTT_IsConvertible:
3257  case BTT_IsConvertibleTo: {
3258    // C++0x [meta.rel]p4:
3259    //   Given the following function prototype:
3260    //
3261    //     template <class T>
3262    //       typename add_rvalue_reference<T>::type create();
3263    //
3264    //   the predicate condition for a template specialization
3265    //   is_convertible<From, To> shall be satisfied if and only if
3266    //   the return expression in the following code would be
3267    //   well-formed, including any implicit conversions to the return
3268    //   type of the function:
3269    //
3270    //     To test() {
3271    //       return create<From>();
3272    //     }
3273    //
3274    //   Access checking is performed as if in a context unrelated to To and
3275    //   From. Only the validity of the immediate context of the expression
3276    //   of the return-statement (including conversions to the return type)
3277    //   is considered.
3278    //
3279    // We model the initialization as a copy-initialization of a temporary
3280    // of the appropriate type, which for this expression is identical to the
3281    // return statement (since NRVO doesn't apply).
3282    if (LhsT->isObjectType() || LhsT->isFunctionType())
3283      LhsT = Self.Context.getRValueReferenceType(LhsT);
3284
3285    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3286    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3287                         Expr::getValueKindForType(LhsT));
3288    Expr *FromPtr = &From;
3289    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3290                                                           SourceLocation()));
3291
3292    // Perform the initialization in an unevaluated context within a SFINAE
3293    // trap at translation unit scope.
3294    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3295    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3296    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3297    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3298    if (Init.Failed())
3299      return false;
3300
3301    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
3302    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3303  }
3304  }
3305  llvm_unreachable("Unknown type trait or not implemented");
3306}
3307
3308ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3309                                      SourceLocation KWLoc,
3310                                      TypeSourceInfo *LhsTSInfo,
3311                                      TypeSourceInfo *RhsTSInfo,
3312                                      SourceLocation RParen) {
3313  QualType LhsT = LhsTSInfo->getType();
3314  QualType RhsT = RhsTSInfo->getType();
3315
3316  if (BTT == BTT_TypeCompatible) {
3317    if (getLangOptions().CPlusPlus) {
3318      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3319        << SourceRange(KWLoc, RParen);
3320      return ExprError();
3321    }
3322  }
3323
3324  bool Value = false;
3325  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3326    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3327
3328  // Select trait result type.
3329  QualType ResultType;
3330  switch (BTT) {
3331  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3332  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3333  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3334  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3335  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3336  }
3337
3338  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3339                                                 RhsTSInfo, Value, RParen,
3340                                                 ResultType));
3341}
3342
3343ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3344                                     SourceLocation KWLoc,
3345                                     ParsedType Ty,
3346                                     Expr* DimExpr,
3347                                     SourceLocation RParen) {
3348  TypeSourceInfo *TSInfo;
3349  QualType T = GetTypeFromParser(Ty, &TSInfo);
3350  if (!TSInfo)
3351    TSInfo = Context.getTrivialTypeSourceInfo(T);
3352
3353  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3354}
3355
3356static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3357                                           QualType T, Expr *DimExpr,
3358                                           SourceLocation KeyLoc) {
3359  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3360
3361  switch(ATT) {
3362  case ATT_ArrayRank:
3363    if (T->isArrayType()) {
3364      unsigned Dim = 0;
3365      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3366        ++Dim;
3367        T = AT->getElementType();
3368      }
3369      return Dim;
3370    }
3371    return 0;
3372
3373  case ATT_ArrayExtent: {
3374    llvm::APSInt Value;
3375    uint64_t Dim;
3376    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3377          Self.PDiag(diag::err_dimension_expr_not_constant_integer),
3378          false).isInvalid())
3379      return 0;
3380    if (Value.isSigned() && Value.isNegative()) {
3381      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer),
3382        DimExpr->getSourceRange();
3383      return 0;
3384    }
3385    Dim = Value.getLimitedValue();
3386
3387    if (T->isArrayType()) {
3388      unsigned D = 0;
3389      bool Matched = false;
3390      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3391        if (Dim == D) {
3392          Matched = true;
3393          break;
3394        }
3395        ++D;
3396        T = AT->getElementType();
3397      }
3398
3399      if (Matched && T->isArrayType()) {
3400        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3401          return CAT->getSize().getLimitedValue();
3402      }
3403    }
3404    return 0;
3405  }
3406  }
3407  llvm_unreachable("Unknown type trait or not implemented");
3408}
3409
3410ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3411                                     SourceLocation KWLoc,
3412                                     TypeSourceInfo *TSInfo,
3413                                     Expr* DimExpr,
3414                                     SourceLocation RParen) {
3415  QualType T = TSInfo->getType();
3416
3417  // FIXME: This should likely be tracked as an APInt to remove any host
3418  // assumptions about the width of size_t on the target.
3419  uint64_t Value = 0;
3420  if (!T->isDependentType())
3421    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3422
3423  // While the specification for these traits from the Embarcadero C++
3424  // compiler's documentation says the return type is 'unsigned int', Clang
3425  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3426  // compiler, there is no difference. On several other platforms this is an
3427  // important distinction.
3428  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3429                                                DimExpr, RParen,
3430                                                Context.getSizeType()));
3431}
3432
3433ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3434                                      SourceLocation KWLoc,
3435                                      Expr *Queried,
3436                                      SourceLocation RParen) {
3437  // If error parsing the expression, ignore.
3438  if (!Queried)
3439    return ExprError();
3440
3441  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3442
3443  return move(Result);
3444}
3445
3446static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3447  switch (ET) {
3448  case ET_IsLValueExpr: return E->isLValue();
3449  case ET_IsRValueExpr: return E->isRValue();
3450  }
3451  llvm_unreachable("Expression trait not covered by switch");
3452}
3453
3454ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3455                                      SourceLocation KWLoc,
3456                                      Expr *Queried,
3457                                      SourceLocation RParen) {
3458  if (Queried->isTypeDependent()) {
3459    // Delay type-checking for type-dependent expressions.
3460  } else if (Queried->getType()->isPlaceholderType()) {
3461    ExprResult PE = CheckPlaceholderExpr(Queried);
3462    if (PE.isInvalid()) return ExprError();
3463    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3464  }
3465
3466  bool Value = EvaluateExpressionTrait(ET, Queried);
3467
3468  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3469                                                 RParen, Context.BoolTy));
3470}
3471
3472QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3473                                            ExprValueKind &VK,
3474                                            SourceLocation Loc,
3475                                            bool isIndirect) {
3476  assert(!LHS.get()->getType()->isPlaceholderType() &&
3477         !RHS.get()->getType()->isPlaceholderType() &&
3478         "placeholders should have been weeded out by now");
3479
3480  // The LHS undergoes lvalue conversions if this is ->*.
3481  if (isIndirect) {
3482    LHS = DefaultLvalueConversion(LHS.take());
3483    if (LHS.isInvalid()) return QualType();
3484  }
3485
3486  // The RHS always undergoes lvalue conversions.
3487  RHS = DefaultLvalueConversion(RHS.take());
3488  if (RHS.isInvalid()) return QualType();
3489
3490  const char *OpSpelling = isIndirect ? "->*" : ".*";
3491  // C++ 5.5p2
3492  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3493  //   be of type "pointer to member of T" (where T is a completely-defined
3494  //   class type) [...]
3495  QualType RHSType = RHS.get()->getType();
3496  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3497  if (!MemPtr) {
3498    Diag(Loc, diag::err_bad_memptr_rhs)
3499      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3500    return QualType();
3501  }
3502
3503  QualType Class(MemPtr->getClass(), 0);
3504
3505  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3506  // member pointer points must be completely-defined. However, there is no
3507  // reason for this semantic distinction, and the rule is not enforced by
3508  // other compilers. Therefore, we do not check this property, as it is
3509  // likely to be considered a defect.
3510
3511  // C++ 5.5p2
3512  //   [...] to its first operand, which shall be of class T or of a class of
3513  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3514  //   such a class]
3515  QualType LHSType = LHS.get()->getType();
3516  if (isIndirect) {
3517    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3518      LHSType = Ptr->getPointeeType();
3519    else {
3520      Diag(Loc, diag::err_bad_memptr_lhs)
3521        << OpSpelling << 1 << LHSType
3522        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3523      return QualType();
3524    }
3525  }
3526
3527  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3528    // If we want to check the hierarchy, we need a complete type.
3529    if (RequireCompleteType(Loc, LHSType, PDiag(diag::err_bad_memptr_lhs)
3530        << OpSpelling << (int)isIndirect)) {
3531      return QualType();
3532    }
3533    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3534                       /*DetectVirtual=*/false);
3535    // FIXME: Would it be useful to print full ambiguity paths, or is that
3536    // overkill?
3537    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3538        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3539      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3540        << (int)isIndirect << LHS.get()->getType();
3541      return QualType();
3542    }
3543    // Cast LHS to type of use.
3544    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3545    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3546
3547    CXXCastPath BasePath;
3548    BuildBasePathArray(Paths, BasePath);
3549    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3550                            &BasePath);
3551  }
3552
3553  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3554    // Diagnose use of pointer-to-member type which when used as
3555    // the functional cast in a pointer-to-member expression.
3556    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3557     return QualType();
3558  }
3559
3560  // C++ 5.5p2
3561  //   The result is an object or a function of the type specified by the
3562  //   second operand.
3563  // The cv qualifiers are the union of those in the pointer and the left side,
3564  // in accordance with 5.5p5 and 5.2.5.
3565  QualType Result = MemPtr->getPointeeType();
3566  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3567
3568  // C++0x [expr.mptr.oper]p6:
3569  //   In a .* expression whose object expression is an rvalue, the program is
3570  //   ill-formed if the second operand is a pointer to member function with
3571  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3572  //   expression is an lvalue, the program is ill-formed if the second operand
3573  //   is a pointer to member function with ref-qualifier &&.
3574  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3575    switch (Proto->getRefQualifier()) {
3576    case RQ_None:
3577      // Do nothing
3578      break;
3579
3580    case RQ_LValue:
3581      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3582        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3583          << RHSType << 1 << LHS.get()->getSourceRange();
3584      break;
3585
3586    case RQ_RValue:
3587      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3588        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3589          << RHSType << 0 << LHS.get()->getSourceRange();
3590      break;
3591    }
3592  }
3593
3594  // C++ [expr.mptr.oper]p6:
3595  //   The result of a .* expression whose second operand is a pointer
3596  //   to a data member is of the same value category as its
3597  //   first operand. The result of a .* expression whose second
3598  //   operand is a pointer to a member function is a prvalue. The
3599  //   result of an ->* expression is an lvalue if its second operand
3600  //   is a pointer to data member and a prvalue otherwise.
3601  if (Result->isFunctionType()) {
3602    VK = VK_RValue;
3603    return Context.BoundMemberTy;
3604  } else if (isIndirect) {
3605    VK = VK_LValue;
3606  } else {
3607    VK = LHS.get()->getValueKind();
3608  }
3609
3610  return Result;
3611}
3612
3613/// \brief Try to convert a type to another according to C++0x 5.16p3.
3614///
3615/// This is part of the parameter validation for the ? operator. If either
3616/// value operand is a class type, the two operands are attempted to be
3617/// converted to each other. This function does the conversion in one direction.
3618/// It returns true if the program is ill-formed and has already been diagnosed
3619/// as such.
3620static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3621                                SourceLocation QuestionLoc,
3622                                bool &HaveConversion,
3623                                QualType &ToType) {
3624  HaveConversion = false;
3625  ToType = To->getType();
3626
3627  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3628                                                           SourceLocation());
3629  // C++0x 5.16p3
3630  //   The process for determining whether an operand expression E1 of type T1
3631  //   can be converted to match an operand expression E2 of type T2 is defined
3632  //   as follows:
3633  //   -- If E2 is an lvalue:
3634  bool ToIsLvalue = To->isLValue();
3635  if (ToIsLvalue) {
3636    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3637    //   type "lvalue reference to T2", subject to the constraint that in the
3638    //   conversion the reference must bind directly to E1.
3639    QualType T = Self.Context.getLValueReferenceType(ToType);
3640    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3641
3642    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3643    if (InitSeq.isDirectReferenceBinding()) {
3644      ToType = T;
3645      HaveConversion = true;
3646      return false;
3647    }
3648
3649    if (InitSeq.isAmbiguous())
3650      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3651  }
3652
3653  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3654  //      -- if E1 and E2 have class type, and the underlying class types are
3655  //         the same or one is a base class of the other:
3656  QualType FTy = From->getType();
3657  QualType TTy = To->getType();
3658  const RecordType *FRec = FTy->getAs<RecordType>();
3659  const RecordType *TRec = TTy->getAs<RecordType>();
3660  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3661                       Self.IsDerivedFrom(FTy, TTy);
3662  if (FRec && TRec &&
3663      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3664    //         E1 can be converted to match E2 if the class of T2 is the
3665    //         same type as, or a base class of, the class of T1, and
3666    //         [cv2 > cv1].
3667    if (FRec == TRec || FDerivedFromT) {
3668      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3669        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3670        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3671        if (InitSeq) {
3672          HaveConversion = true;
3673          return false;
3674        }
3675
3676        if (InitSeq.isAmbiguous())
3677          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3678      }
3679    }
3680
3681    return false;
3682  }
3683
3684  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
3685  //        implicitly converted to the type that expression E2 would have
3686  //        if E2 were converted to an rvalue (or the type it has, if E2 is
3687  //        an rvalue).
3688  //
3689  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3690  // to the array-to-pointer or function-to-pointer conversions.
3691  if (!TTy->getAs<TagType>())
3692    TTy = TTy.getUnqualifiedType();
3693
3694  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3695  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3696  HaveConversion = !InitSeq.Failed();
3697  ToType = TTy;
3698  if (InitSeq.isAmbiguous())
3699    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3700
3701  return false;
3702}
3703
3704/// \brief Try to find a common type for two according to C++0x 5.16p5.
3705///
3706/// This is part of the parameter validation for the ? operator. If either
3707/// value operand is a class type, overload resolution is used to find a
3708/// conversion to a common type.
3709static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3710                                    SourceLocation QuestionLoc) {
3711  Expr *Args[2] = { LHS.get(), RHS.get() };
3712  OverloadCandidateSet CandidateSet(QuestionLoc);
3713  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3714                                    CandidateSet);
3715
3716  OverloadCandidateSet::iterator Best;
3717  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
3718    case OR_Success: {
3719      // We found a match. Perform the conversions on the arguments and move on.
3720      ExprResult LHSRes =
3721        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
3722                                       Best->Conversions[0], Sema::AA_Converting);
3723      if (LHSRes.isInvalid())
3724        break;
3725      LHS = move(LHSRes);
3726
3727      ExprResult RHSRes =
3728        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
3729                                       Best->Conversions[1], Sema::AA_Converting);
3730      if (RHSRes.isInvalid())
3731        break;
3732      RHS = move(RHSRes);
3733      if (Best->Function)
3734        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
3735      return false;
3736    }
3737
3738    case OR_No_Viable_Function:
3739
3740      // Emit a better diagnostic if one of the expressions is a null pointer
3741      // constant and the other is a pointer type. In this case, the user most
3742      // likely forgot to take the address of the other expression.
3743      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3744        return true;
3745
3746      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3747        << LHS.get()->getType() << RHS.get()->getType()
3748        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3749      return true;
3750
3751    case OR_Ambiguous:
3752      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
3753        << LHS.get()->getType() << RHS.get()->getType()
3754        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3755      // FIXME: Print the possible common types by printing the return types of
3756      // the viable candidates.
3757      break;
3758
3759    case OR_Deleted:
3760      llvm_unreachable("Conditional operator has only built-in overloads");
3761  }
3762  return true;
3763}
3764
3765/// \brief Perform an "extended" implicit conversion as returned by
3766/// TryClassUnification.
3767static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
3768  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3769  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
3770                                                           SourceLocation());
3771  Expr *Arg = E.take();
3772  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
3773  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
3774  if (Result.isInvalid())
3775    return true;
3776
3777  E = Result;
3778  return false;
3779}
3780
3781/// \brief Check the operands of ?: under C++ semantics.
3782///
3783/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
3784/// extension. In this case, LHS == Cond. (But they're not aliases.)
3785QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
3786                                           ExprValueKind &VK, ExprObjectKind &OK,
3787                                           SourceLocation QuestionLoc) {
3788  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
3789  // interface pointers.
3790
3791  // C++0x 5.16p1
3792  //   The first expression is contextually converted to bool.
3793  if (!Cond.get()->isTypeDependent()) {
3794    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
3795    if (CondRes.isInvalid())
3796      return QualType();
3797    Cond = move(CondRes);
3798  }
3799
3800  // Assume r-value.
3801  VK = VK_RValue;
3802  OK = OK_Ordinary;
3803
3804  // Either of the arguments dependent?
3805  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
3806    return Context.DependentTy;
3807
3808  // C++0x 5.16p2
3809  //   If either the second or the third operand has type (cv) void, ...
3810  QualType LTy = LHS.get()->getType();
3811  QualType RTy = RHS.get()->getType();
3812  bool LVoid = LTy->isVoidType();
3813  bool RVoid = RTy->isVoidType();
3814  if (LVoid || RVoid) {
3815    //   ... then the [l2r] conversions are performed on the second and third
3816    //   operands ...
3817    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3818    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3819    if (LHS.isInvalid() || RHS.isInvalid())
3820      return QualType();
3821    LTy = LHS.get()->getType();
3822    RTy = RHS.get()->getType();
3823
3824    //   ... and one of the following shall hold:
3825    //   -- The second or the third operand (but not both) is a throw-
3826    //      expression; the result is of the type of the other and is an rvalue.
3827    bool LThrow = isa<CXXThrowExpr>(LHS.get());
3828    bool RThrow = isa<CXXThrowExpr>(RHS.get());
3829    if (LThrow && !RThrow)
3830      return RTy;
3831    if (RThrow && !LThrow)
3832      return LTy;
3833
3834    //   -- Both the second and third operands have type void; the result is of
3835    //      type void and is an rvalue.
3836    if (LVoid && RVoid)
3837      return Context.VoidTy;
3838
3839    // Neither holds, error.
3840    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3841      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3842      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3843    return QualType();
3844  }
3845
3846  // Neither is void.
3847
3848  // C++0x 5.16p3
3849  //   Otherwise, if the second and third operand have different types, and
3850  //   either has (cv) class type, and attempt is made to convert each of those
3851  //   operands to the other.
3852  if (!Context.hasSameType(LTy, RTy) &&
3853      (LTy->isRecordType() || RTy->isRecordType())) {
3854    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3855    // These return true if a single direction is already ambiguous.
3856    QualType L2RType, R2LType;
3857    bool HaveL2R, HaveR2L;
3858    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
3859      return QualType();
3860    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
3861      return QualType();
3862
3863    //   If both can be converted, [...] the program is ill-formed.
3864    if (HaveL2R && HaveR2L) {
3865      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3866        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3867      return QualType();
3868    }
3869
3870    //   If exactly one conversion is possible, that conversion is applied to
3871    //   the chosen operand and the converted operands are used in place of the
3872    //   original operands for the remainder of this section.
3873    if (HaveL2R) {
3874      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
3875        return QualType();
3876      LTy = LHS.get()->getType();
3877    } else if (HaveR2L) {
3878      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
3879        return QualType();
3880      RTy = RHS.get()->getType();
3881    }
3882  }
3883
3884  // C++0x 5.16p4
3885  //   If the second and third operands are glvalues of the same value
3886  //   category and have the same type, the result is of that type and
3887  //   value category and it is a bit-field if the second or the third
3888  //   operand is a bit-field, or if both are bit-fields.
3889  // We only extend this to bitfields, not to the crazy other kinds of
3890  // l-values.
3891  bool Same = Context.hasSameType(LTy, RTy);
3892  if (Same &&
3893      LHS.get()->isGLValue() &&
3894      LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
3895      LHS.get()->isOrdinaryOrBitFieldObject() &&
3896      RHS.get()->isOrdinaryOrBitFieldObject()) {
3897    VK = LHS.get()->getValueKind();
3898    if (LHS.get()->getObjectKind() == OK_BitField ||
3899        RHS.get()->getObjectKind() == OK_BitField)
3900      OK = OK_BitField;
3901    return LTy;
3902  }
3903
3904  // C++0x 5.16p5
3905  //   Otherwise, the result is an rvalue. If the second and third operands
3906  //   do not have the same type, and either has (cv) class type, ...
3907  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3908    //   ... overload resolution is used to determine the conversions (if any)
3909    //   to be applied to the operands. If the overload resolution fails, the
3910    //   program is ill-formed.
3911    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3912      return QualType();
3913  }
3914
3915  // C++0x 5.16p6
3916  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3917  //   conversions are performed on the second and third operands.
3918  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
3919  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
3920  if (LHS.isInvalid() || RHS.isInvalid())
3921    return QualType();
3922  LTy = LHS.get()->getType();
3923  RTy = RHS.get()->getType();
3924
3925  //   After those conversions, one of the following shall hold:
3926  //   -- The second and third operands have the same type; the result
3927  //      is of that type. If the operands have class type, the result
3928  //      is a prvalue temporary of the result type, which is
3929  //      copy-initialized from either the second operand or the third
3930  //      operand depending on the value of the first operand.
3931  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3932    if (LTy->isRecordType()) {
3933      // The operands have class type. Make a temporary copy.
3934      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3935      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3936                                                     SourceLocation(),
3937                                                     LHS);
3938      if (LHSCopy.isInvalid())
3939        return QualType();
3940
3941      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3942                                                     SourceLocation(),
3943                                                     RHS);
3944      if (RHSCopy.isInvalid())
3945        return QualType();
3946
3947      LHS = LHSCopy;
3948      RHS = RHSCopy;
3949    }
3950
3951    return LTy;
3952  }
3953
3954  // Extension: conditional operator involving vector types.
3955  if (LTy->isVectorType() || RTy->isVectorType())
3956    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
3957
3958  //   -- The second and third operands have arithmetic or enumeration type;
3959  //      the usual arithmetic conversions are performed to bring them to a
3960  //      common type, and the result is of that type.
3961  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3962    UsualArithmeticConversions(LHS, RHS);
3963    if (LHS.isInvalid() || RHS.isInvalid())
3964      return QualType();
3965    return LHS.get()->getType();
3966  }
3967
3968  //   -- The second and third operands have pointer type, or one has pointer
3969  //      type and the other is a null pointer constant; pointer conversions
3970  //      and qualification conversions are performed to bring them to their
3971  //      composite pointer type. The result is of the composite pointer type.
3972  //   -- The second and third operands have pointer to member type, or one has
3973  //      pointer to member type and the other is a null pointer constant;
3974  //      pointer to member conversions and qualification conversions are
3975  //      performed to bring them to a common type, whose cv-qualification
3976  //      shall match the cv-qualification of either the second or the third
3977  //      operand. The result is of the common type.
3978  bool NonStandardCompositeType = false;
3979  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3980                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3981  if (!Composite.isNull()) {
3982    if (NonStandardCompositeType)
3983      Diag(QuestionLoc,
3984           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3985        << LTy << RTy << Composite
3986        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3987
3988    return Composite;
3989  }
3990
3991  // Similarly, attempt to find composite type of two objective-c pointers.
3992  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3993  if (!Composite.isNull())
3994    return Composite;
3995
3996  // Check if we are using a null with a non-pointer type.
3997  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3998    return QualType();
3999
4000  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4001    << LHS.get()->getType() << RHS.get()->getType()
4002    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4003  return QualType();
4004}
4005
4006/// \brief Find a merged pointer type and convert the two expressions to it.
4007///
4008/// This finds the composite pointer type (or member pointer type) for @p E1
4009/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
4010/// type and returns it.
4011/// It does not emit diagnostics.
4012///
4013/// \param Loc The location of the operator requiring these two expressions to
4014/// be converted to the composite pointer type.
4015///
4016/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4017/// a non-standard (but still sane) composite type to which both expressions
4018/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4019/// will be set true.
4020QualType Sema::FindCompositePointerType(SourceLocation Loc,
4021                                        Expr *&E1, Expr *&E2,
4022                                        bool *NonStandardCompositeType) {
4023  if (NonStandardCompositeType)
4024    *NonStandardCompositeType = false;
4025
4026  assert(getLangOptions().CPlusPlus && "This function assumes C++");
4027  QualType T1 = E1->getType(), T2 = E2->getType();
4028
4029  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4030      !T2->isAnyPointerType() && !T2->isMemberPointerType())
4031   return QualType();
4032
4033  // C++0x 5.9p2
4034  //   Pointer conversions and qualification conversions are performed on
4035  //   pointer operands to bring them to their composite pointer type. If
4036  //   one operand is a null pointer constant, the composite pointer type is
4037  //   the type of the other operand.
4038  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4039    if (T2->isMemberPointerType())
4040      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4041    else
4042      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4043    return T2;
4044  }
4045  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4046    if (T1->isMemberPointerType())
4047      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4048    else
4049      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4050    return T1;
4051  }
4052
4053  // Now both have to be pointers or member pointers.
4054  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4055      (!T2->isPointerType() && !T2->isMemberPointerType()))
4056    return QualType();
4057
4058  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4059  //   the other has type "pointer to cv2 T" and the composite pointer type is
4060  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4061  //   Otherwise, the composite pointer type is a pointer type similar to the
4062  //   type of one of the operands, with a cv-qualification signature that is
4063  //   the union of the cv-qualification signatures of the operand types.
4064  // In practice, the first part here is redundant; it's subsumed by the second.
4065  // What we do here is, we build the two possible composite types, and try the
4066  // conversions in both directions. If only one works, or if the two composite
4067  // types are the same, we have succeeded.
4068  // FIXME: extended qualifiers?
4069  typedef SmallVector<unsigned, 4> QualifierVector;
4070  QualifierVector QualifierUnion;
4071  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4072      ContainingClassVector;
4073  ContainingClassVector MemberOfClass;
4074  QualType Composite1 = Context.getCanonicalType(T1),
4075           Composite2 = Context.getCanonicalType(T2);
4076  unsigned NeedConstBefore = 0;
4077  do {
4078    const PointerType *Ptr1, *Ptr2;
4079    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4080        (Ptr2 = Composite2->getAs<PointerType>())) {
4081      Composite1 = Ptr1->getPointeeType();
4082      Composite2 = Ptr2->getPointeeType();
4083
4084      // If we're allowed to create a non-standard composite type, keep track
4085      // of where we need to fill in additional 'const' qualifiers.
4086      if (NonStandardCompositeType &&
4087          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4088        NeedConstBefore = QualifierUnion.size();
4089
4090      QualifierUnion.push_back(
4091                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4092      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4093      continue;
4094    }
4095
4096    const MemberPointerType *MemPtr1, *MemPtr2;
4097    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4098        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4099      Composite1 = MemPtr1->getPointeeType();
4100      Composite2 = MemPtr2->getPointeeType();
4101
4102      // If we're allowed to create a non-standard composite type, keep track
4103      // of where we need to fill in additional 'const' qualifiers.
4104      if (NonStandardCompositeType &&
4105          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4106        NeedConstBefore = QualifierUnion.size();
4107
4108      QualifierUnion.push_back(
4109                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4110      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4111                                             MemPtr2->getClass()));
4112      continue;
4113    }
4114
4115    // FIXME: block pointer types?
4116
4117    // Cannot unwrap any more types.
4118    break;
4119  } while (true);
4120
4121  if (NeedConstBefore && NonStandardCompositeType) {
4122    // Extension: Add 'const' to qualifiers that come before the first qualifier
4123    // mismatch, so that our (non-standard!) composite type meets the
4124    // requirements of C++ [conv.qual]p4 bullet 3.
4125    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4126      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4127        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4128        *NonStandardCompositeType = true;
4129      }
4130    }
4131  }
4132
4133  // Rewrap the composites as pointers or member pointers with the union CVRs.
4134  ContainingClassVector::reverse_iterator MOC
4135    = MemberOfClass.rbegin();
4136  for (QualifierVector::reverse_iterator
4137         I = QualifierUnion.rbegin(),
4138         E = QualifierUnion.rend();
4139       I != E; (void)++I, ++MOC) {
4140    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4141    if (MOC->first && MOC->second) {
4142      // Rebuild member pointer type
4143      Composite1 = Context.getMemberPointerType(
4144                                    Context.getQualifiedType(Composite1, Quals),
4145                                    MOC->first);
4146      Composite2 = Context.getMemberPointerType(
4147                                    Context.getQualifiedType(Composite2, Quals),
4148                                    MOC->second);
4149    } else {
4150      // Rebuild pointer type
4151      Composite1
4152        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4153      Composite2
4154        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4155    }
4156  }
4157
4158  // Try to convert to the first composite pointer type.
4159  InitializedEntity Entity1
4160    = InitializedEntity::InitializeTemporary(Composite1);
4161  InitializationKind Kind
4162    = InitializationKind::CreateCopy(Loc, SourceLocation());
4163  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4164  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4165
4166  if (E1ToC1 && E2ToC1) {
4167    // Conversion to Composite1 is viable.
4168    if (!Context.hasSameType(Composite1, Composite2)) {
4169      // Composite2 is a different type from Composite1. Check whether
4170      // Composite2 is also viable.
4171      InitializedEntity Entity2
4172        = InitializedEntity::InitializeTemporary(Composite2);
4173      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4174      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4175      if (E1ToC2 && E2ToC2) {
4176        // Both Composite1 and Composite2 are viable and are different;
4177        // this is an ambiguity.
4178        return QualType();
4179      }
4180    }
4181
4182    // Convert E1 to Composite1
4183    ExprResult E1Result
4184      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
4185    if (E1Result.isInvalid())
4186      return QualType();
4187    E1 = E1Result.takeAs<Expr>();
4188
4189    // Convert E2 to Composite1
4190    ExprResult E2Result
4191      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
4192    if (E2Result.isInvalid())
4193      return QualType();
4194    E2 = E2Result.takeAs<Expr>();
4195
4196    return Composite1;
4197  }
4198
4199  // Check whether Composite2 is viable.
4200  InitializedEntity Entity2
4201    = InitializedEntity::InitializeTemporary(Composite2);
4202  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4203  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4204  if (!E1ToC2 || !E2ToC2)
4205    return QualType();
4206
4207  // Convert E1 to Composite2
4208  ExprResult E1Result
4209    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
4210  if (E1Result.isInvalid())
4211    return QualType();
4212  E1 = E1Result.takeAs<Expr>();
4213
4214  // Convert E2 to Composite2
4215  ExprResult E2Result
4216    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
4217  if (E2Result.isInvalid())
4218    return QualType();
4219  E2 = E2Result.takeAs<Expr>();
4220
4221  return Composite2;
4222}
4223
4224ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4225  if (!E)
4226    return ExprError();
4227
4228  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4229
4230  // If the result is a glvalue, we shouldn't bind it.
4231  if (!E->isRValue())
4232    return Owned(E);
4233
4234  // In ARC, calls that return a retainable type can return retained,
4235  // in which case we have to insert a consuming cast.
4236  if (getLangOptions().ObjCAutoRefCount &&
4237      E->getType()->isObjCRetainableType()) {
4238
4239    bool ReturnsRetained;
4240
4241    // For actual calls, we compute this by examining the type of the
4242    // called value.
4243    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4244      Expr *Callee = Call->getCallee()->IgnoreParens();
4245      QualType T = Callee->getType();
4246
4247      if (T == Context.BoundMemberTy) {
4248        // Handle pointer-to-members.
4249        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4250          T = BinOp->getRHS()->getType();
4251        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4252          T = Mem->getMemberDecl()->getType();
4253      }
4254
4255      if (const PointerType *Ptr = T->getAs<PointerType>())
4256        T = Ptr->getPointeeType();
4257      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4258        T = Ptr->getPointeeType();
4259      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4260        T = MemPtr->getPointeeType();
4261
4262      const FunctionType *FTy = T->getAs<FunctionType>();
4263      assert(FTy && "call to value not of function type?");
4264      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4265
4266    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4267    // type always produce a +1 object.
4268    } else if (isa<StmtExpr>(E)) {
4269      ReturnsRetained = true;
4270
4271    // For message sends and property references, we try to find an
4272    // actual method.  FIXME: we should infer retention by selector in
4273    // cases where we don't have an actual method.
4274    } else {
4275      ObjCMethodDecl *D = 0;
4276      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4277        D = Send->getMethodDecl();
4278      }
4279
4280      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4281
4282      // Don't do reclaims on performSelector calls; despite their
4283      // return type, the invoked method doesn't necessarily actually
4284      // return an object.
4285      if (!ReturnsRetained &&
4286          D && D->getMethodFamily() == OMF_performSelector)
4287        return Owned(E);
4288    }
4289
4290    // Don't reclaim an object of Class type.
4291    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4292      return Owned(E);
4293
4294    ExprNeedsCleanups = true;
4295
4296    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4297                                   : CK_ARCReclaimReturnedObject);
4298    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4299                                          VK_RValue));
4300  }
4301
4302  if (!getLangOptions().CPlusPlus)
4303    return Owned(E);
4304
4305  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4306  // a fast path for the common case that the type is directly a RecordType.
4307  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4308  const RecordType *RT = 0;
4309  while (!RT) {
4310    switch (T->getTypeClass()) {
4311    case Type::Record:
4312      RT = cast<RecordType>(T);
4313      break;
4314    case Type::ConstantArray:
4315    case Type::IncompleteArray:
4316    case Type::VariableArray:
4317    case Type::DependentSizedArray:
4318      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4319      break;
4320    default:
4321      return Owned(E);
4322    }
4323  }
4324
4325  // That should be enough to guarantee that this type is complete, if we're
4326  // not processing a decltype expression.
4327  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4328  if (RD->isInvalidDecl() || RD->isDependentContext())
4329    return Owned(E);
4330
4331  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4332  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4333
4334  if (Destructor) {
4335    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4336    CheckDestructorAccess(E->getExprLoc(), Destructor,
4337                          PDiag(diag::err_access_dtor_temp)
4338                            << E->getType());
4339    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4340
4341    // If destructor is trivial, we can avoid the extra copy.
4342    if (Destructor->isTrivial())
4343      return Owned(E);
4344
4345    // We need a cleanup, but we don't need to remember the temporary.
4346    ExprNeedsCleanups = true;
4347  }
4348
4349  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4350  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4351
4352  if (IsDecltype)
4353    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4354
4355  return Owned(Bind);
4356}
4357
4358ExprResult
4359Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4360  if (SubExpr.isInvalid())
4361    return ExprError();
4362
4363  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4364}
4365
4366Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4367  assert(SubExpr && "sub expression can't be null!");
4368
4369  CleanupVarDeclMarking();
4370
4371  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4372  assert(ExprCleanupObjects.size() >= FirstCleanup);
4373  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4374  if (!ExprNeedsCleanups)
4375    return SubExpr;
4376
4377  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4378    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4379                         ExprCleanupObjects.size() - FirstCleanup);
4380
4381  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4382  DiscardCleanupsInEvaluationContext();
4383
4384  return E;
4385}
4386
4387Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4388  assert(SubStmt && "sub statement can't be null!");
4389
4390  CleanupVarDeclMarking();
4391
4392  if (!ExprNeedsCleanups)
4393    return SubStmt;
4394
4395  // FIXME: In order to attach the temporaries, wrap the statement into
4396  // a StmtExpr; currently this is only used for asm statements.
4397  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4398  // a new AsmStmtWithTemporaries.
4399  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4400                                                      SourceLocation(),
4401                                                      SourceLocation());
4402  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4403                                   SourceLocation());
4404  return MaybeCreateExprWithCleanups(E);
4405}
4406
4407/// Process the expression contained within a decltype. For such expressions,
4408/// certain semantic checks on temporaries are delayed until this point, and
4409/// are omitted for the 'topmost' call in the decltype expression. If the
4410/// topmost call bound a temporary, strip that temporary off the expression.
4411ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4412  ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
4413  assert(Rec.IsDecltype && "not in a decltype expression");
4414
4415  // C++11 [expr.call]p11:
4416  //   If a function call is a prvalue of object type,
4417  // -- if the function call is either
4418  //   -- the operand of a decltype-specifier, or
4419  //   -- the right operand of a comma operator that is the operand of a
4420  //      decltype-specifier,
4421  //   a temporary object is not introduced for the prvalue.
4422
4423  // Recursively rebuild ParenExprs and comma expressions to strip out the
4424  // outermost CXXBindTemporaryExpr, if any.
4425  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4426    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4427    if (SubExpr.isInvalid())
4428      return ExprError();
4429    if (SubExpr.get() == PE->getSubExpr())
4430      return Owned(E);
4431    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4432  }
4433  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4434    if (BO->getOpcode() == BO_Comma) {
4435      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4436      if (RHS.isInvalid())
4437        return ExprError();
4438      if (RHS.get() == BO->getRHS())
4439        return Owned(E);
4440      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4441                                                BO_Comma, BO->getType(),
4442                                                BO->getValueKind(),
4443                                                BO->getObjectKind(),
4444                                                BO->getOperatorLoc()));
4445    }
4446  }
4447
4448  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4449  if (TopBind)
4450    E = TopBind->getSubExpr();
4451
4452  // Disable the special decltype handling now.
4453  Rec.IsDecltype = false;
4454
4455  // Perform the semantic checks we delayed until this point.
4456  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4457  for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
4458    CallExpr *Call = Rec.DelayedDecltypeCalls[I];
4459    if (Call == TopCall)
4460      continue;
4461
4462    if (CheckCallReturnType(Call->getCallReturnType(),
4463                            Call->getSourceRange().getBegin(),
4464                            Call, Call->getDirectCallee()))
4465      return ExprError();
4466  }
4467
4468  // Now all relevant types are complete, check the destructors are accessible
4469  // and non-deleted, and annotate them on the temporaries.
4470  for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
4471    CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
4472    if (Bind == TopBind)
4473      continue;
4474
4475    CXXTemporary *Temp = Bind->getTemporary();
4476
4477    CXXRecordDecl *RD =
4478      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4479    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4480    Temp->setDestructor(Destructor);
4481
4482    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4483    CheckDestructorAccess(E->getExprLoc(), Destructor,
4484                          PDiag(diag::err_access_dtor_temp)
4485                            << E->getType());
4486    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4487
4488    // We need a cleanup, but we don't need to remember the temporary.
4489    ExprNeedsCleanups = true;
4490  }
4491
4492  // Possibly strip off the top CXXBindTemporaryExpr.
4493  return Owned(E);
4494}
4495
4496ExprResult
4497Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4498                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4499                                   bool &MayBePseudoDestructor) {
4500  // Since this might be a postfix expression, get rid of ParenListExprs.
4501  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4502  if (Result.isInvalid()) return ExprError();
4503  Base = Result.get();
4504
4505  Result = CheckPlaceholderExpr(Base);
4506  if (Result.isInvalid()) return ExprError();
4507  Base = Result.take();
4508
4509  QualType BaseType = Base->getType();
4510  MayBePseudoDestructor = false;
4511  if (BaseType->isDependentType()) {
4512    // If we have a pointer to a dependent type and are using the -> operator,
4513    // the object type is the type that the pointer points to. We might still
4514    // have enough information about that type to do something useful.
4515    if (OpKind == tok::arrow)
4516      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4517        BaseType = Ptr->getPointeeType();
4518
4519    ObjectType = ParsedType::make(BaseType);
4520    MayBePseudoDestructor = true;
4521    return Owned(Base);
4522  }
4523
4524  // C++ [over.match.oper]p8:
4525  //   [...] When operator->returns, the operator-> is applied  to the value
4526  //   returned, with the original second operand.
4527  if (OpKind == tok::arrow) {
4528    // The set of types we've considered so far.
4529    llvm::SmallPtrSet<CanQualType,8> CTypes;
4530    SmallVector<SourceLocation, 8> Locations;
4531    CTypes.insert(Context.getCanonicalType(BaseType));
4532
4533    while (BaseType->isRecordType()) {
4534      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4535      if (Result.isInvalid())
4536        return ExprError();
4537      Base = Result.get();
4538      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4539        Locations.push_back(OpCall->getDirectCallee()->getLocation());
4540      BaseType = Base->getType();
4541      CanQualType CBaseType = Context.getCanonicalType(BaseType);
4542      if (!CTypes.insert(CBaseType)) {
4543        Diag(OpLoc, diag::err_operator_arrow_circular);
4544        for (unsigned i = 0; i < Locations.size(); i++)
4545          Diag(Locations[i], diag::note_declared_at);
4546        return ExprError();
4547      }
4548    }
4549
4550    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4551      BaseType = BaseType->getPointeeType();
4552  }
4553
4554  // Objective-C properties allow "." access on Objective-C pointer types,
4555  // so adjust the base type to the object type itself.
4556  if (BaseType->isObjCObjectPointerType())
4557    BaseType = BaseType->getPointeeType();
4558
4559  // C++ [basic.lookup.classref]p2:
4560  //   [...] If the type of the object expression is of pointer to scalar
4561  //   type, the unqualified-id is looked up in the context of the complete
4562  //   postfix-expression.
4563  //
4564  // This also indicates that we could be parsing a pseudo-destructor-name.
4565  // Note that Objective-C class and object types can be pseudo-destructor
4566  // expressions or normal member (ivar or property) access expressions.
4567  if (BaseType->isObjCObjectOrInterfaceType()) {
4568    MayBePseudoDestructor = true;
4569  } else if (!BaseType->isRecordType()) {
4570    ObjectType = ParsedType();
4571    MayBePseudoDestructor = true;
4572    return Owned(Base);
4573  }
4574
4575  // The object type must be complete (or dependent).
4576  if (!BaseType->isDependentType() &&
4577      RequireCompleteType(OpLoc, BaseType,
4578                          PDiag(diag::err_incomplete_member_access)))
4579    return ExprError();
4580
4581  // C++ [basic.lookup.classref]p2:
4582  //   If the id-expression in a class member access (5.2.5) is an
4583  //   unqualified-id, and the type of the object expression is of a class
4584  //   type C (or of pointer to a class type C), the unqualified-id is looked
4585  //   up in the scope of class C. [...]
4586  ObjectType = ParsedType::make(BaseType);
4587  return move(Base);
4588}
4589
4590ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4591                                                   Expr *MemExpr) {
4592  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4593  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4594    << isa<CXXPseudoDestructorExpr>(MemExpr)
4595    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4596
4597  return ActOnCallExpr(/*Scope*/ 0,
4598                       MemExpr,
4599                       /*LPLoc*/ ExpectedLParenLoc,
4600                       MultiExprArg(),
4601                       /*RPLoc*/ ExpectedLParenLoc);
4602}
4603
4604static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
4605                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
4606  if (Base->hasPlaceholderType()) {
4607    ExprResult result = S.CheckPlaceholderExpr(Base);
4608    if (result.isInvalid()) return true;
4609    Base = result.take();
4610  }
4611  ObjectType = Base->getType();
4612
4613  // C++ [expr.pseudo]p2:
4614  //   The left-hand side of the dot operator shall be of scalar type. The
4615  //   left-hand side of the arrow operator shall be of pointer to scalar type.
4616  //   This scalar type is the object type.
4617  // Note that this is rather different from the normal handling for the
4618  // arrow operator.
4619  if (OpKind == tok::arrow) {
4620    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4621      ObjectType = Ptr->getPointeeType();
4622    } else if (!Base->isTypeDependent()) {
4623      // The user wrote "p->" when she probably meant "p."; fix it.
4624      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4625        << ObjectType << true
4626        << FixItHint::CreateReplacement(OpLoc, ".");
4627      if (S.isSFINAEContext())
4628        return true;
4629
4630      OpKind = tok::period;
4631    }
4632  }
4633
4634  return false;
4635}
4636
4637ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
4638                                           SourceLocation OpLoc,
4639                                           tok::TokenKind OpKind,
4640                                           const CXXScopeSpec &SS,
4641                                           TypeSourceInfo *ScopeTypeInfo,
4642                                           SourceLocation CCLoc,
4643                                           SourceLocation TildeLoc,
4644                                         PseudoDestructorTypeStorage Destructed,
4645                                           bool HasTrailingLParen) {
4646  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
4647
4648  QualType ObjectType;
4649  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
4650    return ExprError();
4651
4652  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4653    if (getLangOptions().MicrosoftMode && ObjectType->isVoidType())
4654      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
4655    else
4656      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4657        << ObjectType << Base->getSourceRange();
4658    return ExprError();
4659  }
4660
4661  // C++ [expr.pseudo]p2:
4662  //   [...] The cv-unqualified versions of the object type and of the type
4663  //   designated by the pseudo-destructor-name shall be the same type.
4664  if (DestructedTypeInfo) {
4665    QualType DestructedType = DestructedTypeInfo->getType();
4666    SourceLocation DestructedTypeStart
4667      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4668    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
4669      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4670        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4671          << ObjectType << DestructedType << Base->getSourceRange()
4672          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4673
4674        // Recover by setting the destructed type to the object type.
4675        DestructedType = ObjectType;
4676        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4677                                                           DestructedTypeStart);
4678        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4679      } else if (DestructedType.getObjCLifetime() !=
4680                                                ObjectType.getObjCLifetime()) {
4681
4682        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
4683          // Okay: just pretend that the user provided the correctly-qualified
4684          // type.
4685        } else {
4686          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
4687            << ObjectType << DestructedType << Base->getSourceRange()
4688            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4689        }
4690
4691        // Recover by setting the destructed type to the object type.
4692        DestructedType = ObjectType;
4693        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4694                                                           DestructedTypeStart);
4695        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4696      }
4697    }
4698  }
4699
4700  // C++ [expr.pseudo]p2:
4701  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
4702  //   form
4703  //
4704  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
4705  //
4706  //   shall designate the same scalar type.
4707  if (ScopeTypeInfo) {
4708    QualType ScopeType = ScopeTypeInfo->getType();
4709    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
4710        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
4711
4712      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
4713           diag::err_pseudo_dtor_type_mismatch)
4714        << ObjectType << ScopeType << Base->getSourceRange()
4715        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
4716
4717      ScopeType = QualType();
4718      ScopeTypeInfo = 0;
4719    }
4720  }
4721
4722  Expr *Result
4723    = new (Context) CXXPseudoDestructorExpr(Context, Base,
4724                                            OpKind == tok::arrow, OpLoc,
4725                                            SS.getWithLocInContext(Context),
4726                                            ScopeTypeInfo,
4727                                            CCLoc,
4728                                            TildeLoc,
4729                                            Destructed);
4730
4731  if (HasTrailingLParen)
4732    return Owned(Result);
4733
4734  return DiagnoseDtorReference(Destructed.getLocation(), Result);
4735}
4736
4737ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4738                                           SourceLocation OpLoc,
4739                                           tok::TokenKind OpKind,
4740                                           CXXScopeSpec &SS,
4741                                           UnqualifiedId &FirstTypeName,
4742                                           SourceLocation CCLoc,
4743                                           SourceLocation TildeLoc,
4744                                           UnqualifiedId &SecondTypeName,
4745                                           bool HasTrailingLParen) {
4746  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4747          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4748         "Invalid first type name in pseudo-destructor");
4749  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4750          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4751         "Invalid second type name in pseudo-destructor");
4752
4753  QualType ObjectType;
4754  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
4755    return ExprError();
4756
4757  // Compute the object type that we should use for name lookup purposes. Only
4758  // record types and dependent types matter.
4759  ParsedType ObjectTypePtrForLookup;
4760  if (!SS.isSet()) {
4761    if (ObjectType->isRecordType())
4762      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
4763    else if (ObjectType->isDependentType())
4764      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
4765  }
4766
4767  // Convert the name of the type being destructed (following the ~) into a
4768  // type (with source-location information).
4769  QualType DestructedType;
4770  TypeSourceInfo *DestructedTypeInfo = 0;
4771  PseudoDestructorTypeStorage Destructed;
4772  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4773    ParsedType T = getTypeName(*SecondTypeName.Identifier,
4774                               SecondTypeName.StartLocation,
4775                               S, &SS, true, false, ObjectTypePtrForLookup);
4776    if (!T &&
4777        ((SS.isSet() && !computeDeclContext(SS, false)) ||
4778         (!SS.isSet() && ObjectType->isDependentType()))) {
4779      // The name of the type being destroyed is a dependent name, and we
4780      // couldn't find anything useful in scope. Just store the identifier and
4781      // it's location, and we'll perform (qualified) name lookup again at
4782      // template instantiation time.
4783      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
4784                                               SecondTypeName.StartLocation);
4785    } else if (!T) {
4786      Diag(SecondTypeName.StartLocation,
4787           diag::err_pseudo_dtor_destructor_non_type)
4788        << SecondTypeName.Identifier << ObjectType;
4789      if (isSFINAEContext())
4790        return ExprError();
4791
4792      // Recover by assuming we had the right type all along.
4793      DestructedType = ObjectType;
4794    } else
4795      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
4796  } else {
4797    // Resolve the template-id to a type.
4798    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
4799    ASTTemplateArgsPtr TemplateArgsPtr(*this,
4800                                       TemplateId->getTemplateArgs(),
4801                                       TemplateId->NumArgs);
4802    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4803                                       TemplateId->TemplateKWLoc,
4804                                       TemplateId->Template,
4805                                       TemplateId->TemplateNameLoc,
4806                                       TemplateId->LAngleLoc,
4807                                       TemplateArgsPtr,
4808                                       TemplateId->RAngleLoc);
4809    if (T.isInvalid() || !T.get()) {
4810      // Recover by assuming we had the right type all along.
4811      DestructedType = ObjectType;
4812    } else
4813      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
4814  }
4815
4816  // If we've performed some kind of recovery, (re-)build the type source
4817  // information.
4818  if (!DestructedType.isNull()) {
4819    if (!DestructedTypeInfo)
4820      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
4821                                                  SecondTypeName.StartLocation);
4822    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4823  }
4824
4825  // Convert the name of the scope type (the type prior to '::') into a type.
4826  TypeSourceInfo *ScopeTypeInfo = 0;
4827  QualType ScopeType;
4828  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4829      FirstTypeName.Identifier) {
4830    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4831      ParsedType T = getTypeName(*FirstTypeName.Identifier,
4832                                 FirstTypeName.StartLocation,
4833                                 S, &SS, true, false, ObjectTypePtrForLookup);
4834      if (!T) {
4835        Diag(FirstTypeName.StartLocation,
4836             diag::err_pseudo_dtor_destructor_non_type)
4837          << FirstTypeName.Identifier << ObjectType;
4838
4839        if (isSFINAEContext())
4840          return ExprError();
4841
4842        // Just drop this type. It's unnecessary anyway.
4843        ScopeType = QualType();
4844      } else
4845        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
4846    } else {
4847      // Resolve the template-id to a type.
4848      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
4849      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4850                                         TemplateId->getTemplateArgs(),
4851                                         TemplateId->NumArgs);
4852      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
4853                                         TemplateId->TemplateKWLoc,
4854                                         TemplateId->Template,
4855                                         TemplateId->TemplateNameLoc,
4856                                         TemplateId->LAngleLoc,
4857                                         TemplateArgsPtr,
4858                                         TemplateId->RAngleLoc);
4859      if (T.isInvalid() || !T.get()) {
4860        // Recover by dropping this type.
4861        ScopeType = QualType();
4862      } else
4863        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
4864    }
4865  }
4866
4867  if (!ScopeType.isNull() && !ScopeTypeInfo)
4868    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
4869                                                  FirstTypeName.StartLocation);
4870
4871
4872  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
4873                                   ScopeTypeInfo, CCLoc, TildeLoc,
4874                                   Destructed, HasTrailingLParen);
4875}
4876
4877ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4878                                           SourceLocation OpLoc,
4879                                           tok::TokenKind OpKind,
4880                                           SourceLocation TildeLoc,
4881                                           const DeclSpec& DS,
4882                                           bool HasTrailingLParen) {
4883  QualType ObjectType;
4884  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
4885    return ExprError();
4886
4887  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
4888
4889  TypeLocBuilder TLB;
4890  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
4891  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
4892  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
4893  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
4894
4895  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
4896                                   0, SourceLocation(), TildeLoc,
4897                                   Destructed, HasTrailingLParen);
4898}
4899
4900ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
4901                                        CXXMethodDecl *Method,
4902                                        bool HadMultipleCandidates) {
4903  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
4904                                          FoundDecl, Method);
4905  if (Exp.isInvalid())
4906    return true;
4907
4908  MemberExpr *ME =
4909      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
4910                               SourceLocation(), Context.BoundMemberTy,
4911                               VK_RValue, OK_Ordinary);
4912  if (HadMultipleCandidates)
4913    ME->setHadMultipleCandidates(true);
4914
4915  QualType ResultType = Method->getResultType();
4916  ExprValueKind VK = Expr::getValueKindForType(ResultType);
4917  ResultType = ResultType.getNonLValueExprType(Context);
4918
4919  MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
4920  CXXMemberCallExpr *CE =
4921    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
4922                                    Exp.get()->getLocEnd());
4923  return CE;
4924}
4925
4926ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
4927                                      SourceLocation RParen) {
4928  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
4929                                             Operand->CanThrow(Context),
4930                                             KeyLoc, RParen));
4931}
4932
4933ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
4934                                   Expr *Operand, SourceLocation RParen) {
4935  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
4936}
4937
4938/// Perform the conversions required for an expression used in a
4939/// context that ignores the result.
4940ExprResult Sema::IgnoredValueConversions(Expr *E) {
4941  if (E->hasPlaceholderType()) {
4942    ExprResult result = CheckPlaceholderExpr(E);
4943    if (result.isInvalid()) return Owned(E);
4944    E = result.take();
4945  }
4946
4947  // C99 6.3.2.1:
4948  //   [Except in specific positions,] an lvalue that does not have
4949  //   array type is converted to the value stored in the
4950  //   designated object (and is no longer an lvalue).
4951  if (E->isRValue()) {
4952    // In C, function designators (i.e. expressions of function type)
4953    // are r-values, but we still want to do function-to-pointer decay
4954    // on them.  This is both technically correct and convenient for
4955    // some clients.
4956    if (!getLangOptions().CPlusPlus && E->getType()->isFunctionType())
4957      return DefaultFunctionArrayConversion(E);
4958
4959    return Owned(E);
4960  }
4961
4962  // Otherwise, this rule does not apply in C++, at least not for the moment.
4963  if (getLangOptions().CPlusPlus) return Owned(E);
4964
4965  // GCC seems to also exclude expressions of incomplete enum type.
4966  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
4967    if (!T->getDecl()->isComplete()) {
4968      // FIXME: stupid workaround for a codegen bug!
4969      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
4970      return Owned(E);
4971    }
4972  }
4973
4974  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
4975  if (Res.isInvalid())
4976    return Owned(E);
4977  E = Res.take();
4978
4979  if (!E->getType()->isVoidType())
4980    RequireCompleteType(E->getExprLoc(), E->getType(),
4981                        diag::err_incomplete_type);
4982  return Owned(E);
4983}
4984
4985ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
4986  ExprResult FullExpr = Owned(FE);
4987
4988  if (!FullExpr.get())
4989    return ExprError();
4990
4991  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
4992    return ExprError();
4993
4994  // Top-level message sends default to 'id' when we're in a debugger.
4995  if (getLangOptions().DebuggerCastResultToId &&
4996      FullExpr.get()->getType() == Context.UnknownAnyTy &&
4997      isa<ObjCMessageExpr>(FullExpr.get())) {
4998    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
4999    if (FullExpr.isInvalid())
5000      return ExprError();
5001  }
5002
5003  FullExpr = CheckPlaceholderExpr(FullExpr.take());
5004  if (FullExpr.isInvalid())
5005    return ExprError();
5006
5007  FullExpr = IgnoredValueConversions(FullExpr.take());
5008  if (FullExpr.isInvalid())
5009    return ExprError();
5010
5011  CheckImplicitConversions(FullExpr.get(), FullExpr.get()->getExprLoc());
5012  return MaybeCreateExprWithCleanups(FullExpr);
5013}
5014
5015StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5016  if (!FullStmt) return StmtError();
5017
5018  return MaybeCreateStmtWithCleanups(FullStmt);
5019}
5020
5021Sema::IfExistsResult
5022Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5023                                   CXXScopeSpec &SS,
5024                                   const DeclarationNameInfo &TargetNameInfo) {
5025  DeclarationName TargetName = TargetNameInfo.getName();
5026  if (!TargetName)
5027    return IER_DoesNotExist;
5028
5029  // If the name itself is dependent, then the result is dependent.
5030  if (TargetName.isDependentName())
5031    return IER_Dependent;
5032
5033  // Do the redeclaration lookup in the current scope.
5034  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5035                 Sema::NotForRedeclaration);
5036  LookupParsedName(R, S, &SS);
5037  R.suppressDiagnostics();
5038
5039  switch (R.getResultKind()) {
5040  case LookupResult::Found:
5041  case LookupResult::FoundOverloaded:
5042  case LookupResult::FoundUnresolvedValue:
5043  case LookupResult::Ambiguous:
5044    return IER_Exists;
5045
5046  case LookupResult::NotFound:
5047    return IER_DoesNotExist;
5048
5049  case LookupResult::NotFoundInCurrentInstantiation:
5050    return IER_Dependent;
5051  }
5052
5053  llvm_unreachable("Invalid LookupResult Kind!");
5054}
5055
5056Sema::IfExistsResult
5057Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5058                                   bool IsIfExists, CXXScopeSpec &SS,
5059                                   UnqualifiedId &Name) {
5060  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5061
5062  // Check for unexpanded parameter packs.
5063  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5064  collectUnexpandedParameterPacks(SS, Unexpanded);
5065  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5066  if (!Unexpanded.empty()) {
5067    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5068                                     IsIfExists? UPPC_IfExists
5069                                               : UPPC_IfNotExists,
5070                                     Unexpanded);
5071    return IER_Error;
5072  }
5073
5074  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5075}
5076