SemaExprCXX.cpp revision 4c921ae760cbdd9270c16d48417d7d527eb0ceb8
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/Parse/DeclSpec.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/Basic/TargetInfo.h"
20#include "llvm/ADT/STLExtras.h"
21using namespace clang;
22
23/// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function
24/// name (e.g., operator void const *) as an expression. This is
25/// very similar to ActOnIdentifierExpr, except that instead of
26/// providing an identifier the parser provides the type of the
27/// conversion function.
28Sema::OwningExprResult
29Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc,
30                                     TypeTy *Ty, bool HasTrailingLParen,
31                                     const CXXScopeSpec &SS) {
32  QualType ConvType = QualType::getFromOpaquePtr(Ty);
33  QualType ConvTypeCanon = Context.getCanonicalType(ConvType);
34  DeclarationName ConvName
35    = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon);
36  return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen,
37                                  &SS);
38}
39
40/// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator
41/// name (e.g., @c operator+ ) as an expression. This is very
42/// similar to ActOnIdentifierExpr, except that instead of providing
43/// an identifier the parser provides the kind of overloaded
44/// operator that was parsed.
45Sema::OwningExprResult
46Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc,
47                                     OverloadedOperatorKind Op,
48                                     bool HasTrailingLParen,
49                                     const CXXScopeSpec &SS) {
50  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op);
51  return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS);
52}
53
54/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
55Action::ExprResult
56Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
57                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
58  NamespaceDecl *StdNs = GetStdNamespace();
59  if (!StdNs)
60    return Diag(OpLoc, diag::err_need_header_before_typeid);
61
62  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
63  Decl *TypeInfoDecl = LookupQualifiedName(StdNs, TypeInfoII, LookupTagName);
64  RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null<RecordDecl>(TypeInfoDecl);
65  if (!TypeInfoRecordDecl)
66    return Diag(OpLoc, diag::err_need_header_before_typeid);
67
68  QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
69
70  return new CXXTypeidExpr(isType, TyOrExpr, TypeInfoType.withConst(),
71                           SourceRange(OpLoc, RParenLoc));
72}
73
74/// ActOnCXXBoolLiteral - Parse {true,false} literals.
75Action::ExprResult
76Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
77  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
78         "Unknown C++ Boolean value!");
79  return new CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
80}
81
82/// ActOnCXXThrow - Parse throw expressions.
83Action::ExprResult
84Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprTy *E) {
85  return new CXXThrowExpr((Expr*)E, Context.VoidTy, OpLoc);
86}
87
88Action::ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
89  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
90  /// is a non-lvalue expression whose value is the address of the object for
91  /// which the function is called.
92
93  if (!isa<FunctionDecl>(CurContext)) {
94    Diag(ThisLoc, diag::err_invalid_this_use);
95    return ExprResult(true);
96  }
97
98  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
99    if (MD->isInstance())
100      return new CXXThisExpr(ThisLoc, MD->getThisType(Context));
101
102  return Diag(ThisLoc, diag::err_invalid_this_use);
103}
104
105/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
106/// Can be interpreted either as function-style casting ("int(x)")
107/// or class type construction ("ClassType(x,y,z)")
108/// or creation of a value-initialized type ("int()").
109Action::ExprResult
110Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
111                                SourceLocation LParenLoc,
112                                ExprTy **ExprTys, unsigned NumExprs,
113                                SourceLocation *CommaLocs,
114                                SourceLocation RParenLoc) {
115  assert(TypeRep && "Missing type!");
116  QualType Ty = QualType::getFromOpaquePtr(TypeRep);
117  Expr **Exprs = (Expr**)ExprTys;
118  SourceLocation TyBeginLoc = TypeRange.getBegin();
119  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
120
121  // C++ [expr.type.conv]p1:
122  // If the expression list is a single expression, the type conversion
123  // expression is equivalent (in definedness, and if defined in meaning) to the
124  // corresponding cast expression.
125  //
126  if (NumExprs == 1) {
127    if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
128      return true;
129    return new CXXFunctionalCastExpr(Ty.getNonReferenceType(), Ty, TyBeginLoc,
130                                     Exprs[0], RParenLoc);
131  }
132
133  if (const RecordType *RT = Ty->getAsRecordType()) {
134    CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
135
136    if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) {
137      CXXConstructorDecl *Constructor
138        = PerformInitializationByConstructor(Ty, Exprs, NumExprs,
139                                             TypeRange.getBegin(),
140                                             SourceRange(TypeRange.getBegin(),
141                                                         RParenLoc),
142                                             DeclarationName(),
143                                             IK_Direct);
144
145      if (!Constructor)
146        return true;
147
148      return new CXXTemporaryObjectExpr(Constructor, Ty, TyBeginLoc,
149                                        Exprs, NumExprs, RParenLoc);
150    }
151
152    // Fall through to value-initialize an object of class type that
153    // doesn't have a user-declared default constructor.
154  }
155
156  // C++ [expr.type.conv]p1:
157  // If the expression list specifies more than a single value, the type shall
158  // be a class with a suitably declared constructor.
159  //
160  if (NumExprs > 1)
161    return Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg)
162      << FullRange;
163
164  assert(NumExprs == 0 && "Expected 0 expressions");
165
166  // C++ [expr.type.conv]p2:
167  // The expression T(), where T is a simple-type-specifier for a non-array
168  // complete object type or the (possibly cv-qualified) void type, creates an
169  // rvalue of the specified type, which is value-initialized.
170  //
171  if (Ty->isArrayType())
172    return Diag(TyBeginLoc, diag::err_value_init_for_array_type) << FullRange;
173  if (!Ty->isDependentType() && !Ty->isVoidType() &&
174      DiagnoseIncompleteType(TyBeginLoc, Ty,
175                             diag::err_invalid_incomplete_type_use, FullRange))
176    return true;
177
178  return new CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc);
179}
180
181
182/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
183/// @code new (memory) int[size][4] @endcode
184/// or
185/// @code ::new Foo(23, "hello") @endcode
186/// For the interpretation of this heap of arguments, consult the base version.
187Action::ExprResult
188Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
189                  SourceLocation PlacementLParen,
190                  ExprTy **PlacementArgs, unsigned NumPlaceArgs,
191                  SourceLocation PlacementRParen, bool ParenTypeId,
192                  Declarator &D, SourceLocation ConstructorLParen,
193                  ExprTy **ConstructorArgs, unsigned NumConsArgs,
194                  SourceLocation ConstructorRParen)
195{
196  // FIXME: Throughout this function, we have rather bad location information.
197  // Implementing Declarator::getSourceRange() would go a long way toward
198  // fixing that.
199
200  Expr *ArraySize = 0;
201  unsigned Skip = 0;
202  // If the specified type is an array, unwrap it and save the expression.
203  if (D.getNumTypeObjects() > 0 &&
204      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
205    DeclaratorChunk &Chunk = D.getTypeObject(0);
206    if (Chunk.Arr.hasStatic)
207      return Diag(Chunk.Loc, diag::err_static_illegal_in_new);
208    if (!Chunk.Arr.NumElts)
209      return Diag(Chunk.Loc, diag::err_array_new_needs_size);
210    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
211    Skip = 1;
212  }
213
214  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
215  if (D.getInvalidType())
216    return true;
217
218  if (CheckAllocatedType(AllocType, D))
219    return true;
220
221  QualType ResultType = Context.getPointerType(AllocType);
222
223  // That every array dimension except the first is constant was already
224  // checked by the type check above.
225
226  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
227  //   or enumeration type with a non-negative value."
228  if (ArraySize) {
229    QualType SizeType = ArraySize->getType();
230    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
231      return Diag(ArraySize->getSourceRange().getBegin(),
232                  diag::err_array_size_not_integral)
233        << SizeType << ArraySize->getSourceRange();
234    // Let's see if this is a constant < 0. If so, we reject it out of hand.
235    // We don't care about special rules, so we tell the machinery it's not
236    // evaluated - it gives us a result in more cases.
237    llvm::APSInt Value;
238    if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
239      if (Value < llvm::APSInt(
240                      llvm::APInt::getNullValue(Value.getBitWidth()), false))
241        return Diag(ArraySize->getSourceRange().getBegin(),
242                    diag::err_typecheck_negative_array_size)
243          << ArraySize->getSourceRange();
244    }
245  }
246
247  FunctionDecl *OperatorNew = 0;
248  FunctionDecl *OperatorDelete = 0;
249  Expr **PlaceArgs = (Expr**)PlacementArgs;
250  if (FindAllocationFunctions(StartLoc, UseGlobal, AllocType, ArraySize,
251                              PlaceArgs, NumPlaceArgs, OperatorNew,
252                              OperatorDelete))
253    return true;
254
255  bool Init = ConstructorLParen.isValid();
256  // --- Choosing a constructor ---
257  // C++ 5.3.4p15
258  // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
259  //   the object is not initialized. If the object, or any part of it, is
260  //   const-qualified, it's an error.
261  // 2) If T is a POD and there's an empty initializer, the object is value-
262  //   initialized.
263  // 3) If T is a POD and there's one initializer argument, the object is copy-
264  //   constructed.
265  // 4) If T is a POD and there's more initializer arguments, it's an error.
266  // 5) If T is not a POD, the initializer arguments are used as constructor
267  //   arguments.
268  //
269  // Or by the C++0x formulation:
270  // 1) If there's no initializer, the object is default-initialized according
271  //    to C++0x rules.
272  // 2) Otherwise, the object is direct-initialized.
273  CXXConstructorDecl *Constructor = 0;
274  Expr **ConsArgs = (Expr**)ConstructorArgs;
275  if (const RecordType *RT = AllocType->getAsRecordType()) {
276    // FIXME: This is incorrect for when there is an empty initializer and
277    // no user-defined constructor. Must zero-initialize, not default-construct.
278    Constructor = PerformInitializationByConstructor(
279                      AllocType, ConsArgs, NumConsArgs,
280                      D.getDeclSpec().getSourceRange().getBegin(),
281                      SourceRange(D.getDeclSpec().getSourceRange().getBegin(),
282                                  ConstructorRParen),
283                      RT->getDecl()->getDeclName(),
284                      NumConsArgs != 0 ? IK_Direct : IK_Default);
285    if (!Constructor)
286      return true;
287  } else {
288    if (!Init) {
289      // FIXME: Check that no subpart is const.
290      if (AllocType.isConstQualified()) {
291        Diag(StartLoc, diag::err_new_uninitialized_const)
292          << D.getSourceRange();
293        return true;
294      }
295    } else if (NumConsArgs == 0) {
296      // Object is value-initialized. Do nothing.
297    } else if (NumConsArgs == 1) {
298      // Object is direct-initialized.
299      // FIXME: WHAT DeclarationName do we pass in here?
300      if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
301                                DeclarationName() /*AllocType.getAsString()*/,
302                                /*DirectInit=*/true))
303        return true;
304    } else {
305      Diag(StartLoc, diag::err_builtin_direct_init_more_than_one_arg)
306        << SourceRange(ConstructorLParen, ConstructorRParen);
307    }
308  }
309
310  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
311
312  return new CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs, NumPlaceArgs,
313                        ParenTypeId, ArraySize, Constructor, Init,
314                        ConsArgs, NumConsArgs, OperatorDelete, ResultType,
315                        StartLoc, Init ? ConstructorRParen : SourceLocation());
316}
317
318/// CheckAllocatedType - Checks that a type is suitable as the allocated type
319/// in a new-expression.
320/// dimension off and stores the size expression in ArraySize.
321bool Sema::CheckAllocatedType(QualType AllocType, const Declarator &D)
322{
323  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
324  //   abstract class type or array thereof.
325  // FIXME: We don't have abstract types yet.
326  // FIXME: Under C++ semantics, an incomplete object type is still an object
327  // type. This code assumes the C semantics, where it's not.
328  if (!AllocType->isObjectType()) {
329    unsigned type; // For the select in the message.
330    if (AllocType->isFunctionType()) {
331      type = 0;
332    } else if(AllocType->isIncompleteType()) {
333      type = 1;
334    } else {
335      assert(AllocType->isReferenceType() && "What else could it be?");
336      type = 2;
337    }
338    SourceRange TyR = D.getDeclSpec().getSourceRange();
339    // FIXME: This is very much a guess and won't work for, e.g., pointers.
340    if (D.getNumTypeObjects() > 0)
341      TyR.setEnd(D.getTypeObject(0).Loc);
342    Diag(TyR.getBegin(), diag::err_bad_new_type)
343      << AllocType.getAsString() << type << TyR;
344    return true;
345  }
346
347  // Every dimension shall be of constant size.
348  unsigned i = 1;
349  while (const ArrayType *Array = Context.getAsArrayType(AllocType)) {
350    if (!Array->isConstantArrayType()) {
351      Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst)
352        << static_cast<Expr*>(D.getTypeObject(i).Arr.NumElts)->getSourceRange();
353      return true;
354    }
355    AllocType = Array->getElementType();
356    ++i;
357  }
358
359  return false;
360}
361
362/// FindAllocationFunctions - Finds the overloads of operator new and delete
363/// that are appropriate for the allocation.
364bool Sema::FindAllocationFunctions(SourceLocation StartLoc, bool UseGlobal,
365                                   QualType AllocType, bool IsArray,
366                                   Expr **PlaceArgs, unsigned NumPlaceArgs,
367                                   FunctionDecl *&OperatorNew,
368                                   FunctionDecl *&OperatorDelete)
369{
370  // --- Choosing an allocation function ---
371  // C++ 5.3.4p8 - 14 & 18
372  // 1) If UseGlobal is true, only look in the global scope. Else, also look
373  //   in the scope of the allocated class.
374  // 2) If an array size is given, look for operator new[], else look for
375  //   operator new.
376  // 3) The first argument is always size_t. Append the arguments from the
377  //   placement form.
378  // FIXME: Also find the appropriate delete operator.
379
380  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
381  // We don't care about the actual value of this argument.
382  // FIXME: Should the Sema create the expression and embed it in the syntax
383  // tree? Or should the consumer just recalculate the value?
384  AllocArgs[0] = new IntegerLiteral(llvm::APInt::getNullValue(
385                                        Context.Target.getPointerWidth(0)),
386                                    Context.getSizeType(),
387                                    SourceLocation());
388  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
389
390  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
391                                        IsArray ? OO_Array_New : OO_New);
392  if (AllocType->isRecordType() && !UseGlobal) {
393    CXXRecordDecl *Record = cast<CXXRecordType>(AllocType->getAsRecordType())
394                                ->getDecl();
395    // FIXME: We fail to find inherited overloads.
396    if (FindAllocationOverload(StartLoc, NewName, &AllocArgs[0],
397                          AllocArgs.size(), Record, /*AllowMissing=*/true,
398                          OperatorNew))
399      return true;
400  }
401  if (!OperatorNew) {
402    // Didn't find a member overload. Look for a global one.
403    DeclareGlobalNewDelete();
404    DeclContext *TUDecl = Context.getTranslationUnitDecl();
405    if (FindAllocationOverload(StartLoc, NewName, &AllocArgs[0],
406                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
407                          OperatorNew))
408      return true;
409  }
410
411  // FIXME: This is leaked on error. But so much is currently in Sema that it's
412  // easier to clean it in one go.
413  AllocArgs[0]->Destroy(Context);
414  return false;
415}
416
417/// FindAllocationOverload - Find an fitting overload for the allocation
418/// function in the specified scope.
419bool Sema::FindAllocationOverload(SourceLocation StartLoc, DeclarationName Name,
420                                  Expr** Args, unsigned NumArgs,
421                                  DeclContext *Ctx, bool AllowMissing,
422                                  FunctionDecl *&Operator)
423{
424  DeclContext::lookup_iterator Alloc, AllocEnd;
425  llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Name);
426  if (Alloc == AllocEnd) {
427    if (AllowMissing)
428      return false;
429    // FIXME: Bad location information.
430    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
431      << Name << 0;
432  }
433
434  OverloadCandidateSet Candidates;
435  for (; Alloc != AllocEnd; ++Alloc) {
436    // Even member operator new/delete are implicitly treated as
437    // static, so don't use AddMemberCandidate.
438    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc))
439      AddOverloadCandidate(Fn, Args, NumArgs, Candidates,
440                           /*SuppressUserConversions=*/false);
441  }
442
443  // Do the resolution.
444  OverloadCandidateSet::iterator Best;
445  switch(BestViableFunction(Candidates, Best)) {
446  case OR_Success: {
447    // Got one!
448    FunctionDecl *FnDecl = Best->Function;
449    // The first argument is size_t, and the first parameter must be size_t,
450    // too. This is checked on declaration and can be assumed. (It can't be
451    // asserted on, though, since invalid decls are left in there.)
452    for (unsigned i = 1; i < NumArgs; ++i) {
453      // FIXME: Passing word to diagnostic.
454      if (PerformCopyInitialization(Args[i-1],
455                                    FnDecl->getParamDecl(i)->getType(),
456                                    "passing"))
457        return true;
458    }
459    Operator = FnDecl;
460    return false;
461  }
462
463  case OR_No_Viable_Function:
464    if (AllowMissing)
465      return false;
466    // FIXME: Bad location information.
467    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
468      << Name << (unsigned)Candidates.size();
469    PrintOverloadCandidates(Candidates, /*OnlyViable=*/false);
470    return true;
471
472  case OR_Ambiguous:
473    // FIXME: Bad location information.
474    Diag(StartLoc, diag::err_ovl_ambiguous_call)
475      << Name;
476    PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
477    return true;
478  }
479  assert(false && "Unreachable, bad result from BestViableFunction");
480  return true;
481}
482
483
484/// DeclareGlobalNewDelete - Declare the global forms of operator new and
485/// delete. These are:
486/// @code
487///   void* operator new(std::size_t) throw(std::bad_alloc);
488///   void* operator new[](std::size_t) throw(std::bad_alloc);
489///   void operator delete(void *) throw();
490///   void operator delete[](void *) throw();
491/// @endcode
492/// Note that the placement and nothrow forms of new are *not* implicitly
493/// declared. Their use requires including \<new\>.
494void Sema::DeclareGlobalNewDelete()
495{
496  if (GlobalNewDeleteDeclared)
497    return;
498  GlobalNewDeleteDeclared = true;
499
500  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
501  QualType SizeT = Context.getSizeType();
502
503  // FIXME: Exception specifications are not added.
504  DeclareGlobalAllocationFunction(
505      Context.DeclarationNames.getCXXOperatorName(OO_New),
506      VoidPtr, SizeT);
507  DeclareGlobalAllocationFunction(
508      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
509      VoidPtr, SizeT);
510  DeclareGlobalAllocationFunction(
511      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
512      Context.VoidTy, VoidPtr);
513  DeclareGlobalAllocationFunction(
514      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
515      Context.VoidTy, VoidPtr);
516}
517
518/// DeclareGlobalAllocationFunction - Declares a single implicit global
519/// allocation function if it doesn't already exist.
520void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
521                                           QualType Return, QualType Argument)
522{
523  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
524
525  // Check if this function is already declared.
526  {
527    DeclContext::lookup_iterator Alloc, AllocEnd;
528    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
529         Alloc != AllocEnd; ++Alloc) {
530      // FIXME: Do we need to check for default arguments here?
531      FunctionDecl *Func = cast<FunctionDecl>(*Alloc);
532      if (Func->getNumParams() == 1 &&
533          Context.getCanonicalType(Func->getParamDecl(0)->getType()) == Argument)
534        return;
535    }
536  }
537
538  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0);
539  FunctionDecl *Alloc =
540    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
541                         FnType, FunctionDecl::None, false,
542                         SourceLocation());
543  Alloc->setImplicit();
544  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
545                                           0, Argument, VarDecl::None, 0);
546  Alloc->setParams(Context, &Param, 1);
547
548  // FIXME: Also add this declaration to the IdentifierResolver, but
549  // make sure it is at the end of the chain to coincide with the
550  // global scope.
551  ((DeclContext *)TUScope->getEntity())->addDecl(Alloc);
552}
553
554/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
555/// @code ::delete ptr; @endcode
556/// or
557/// @code delete [] ptr; @endcode
558Action::ExprResult
559Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
560                     bool ArrayForm, ExprTy *Operand)
561{
562  // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
563  //   having a single conversion function to a pointer type. The result has
564  //   type void."
565  // DR599 amends "pointer type" to "pointer to object type" in both cases.
566
567  Expr *Ex = (Expr *)Operand;
568  QualType Type = Ex->getType();
569
570  if (Type->isRecordType()) {
571    // FIXME: Find that one conversion function and amend the type.
572  }
573
574  if (!Type->isPointerType()) {
575    Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange();
576    return true;
577  }
578
579  QualType Pointee = Type->getAsPointerType()->getPointeeType();
580  if (!Pointee->isVoidType() &&
581      DiagnoseIncompleteType(StartLoc, Pointee, diag::warn_delete_incomplete,
582                             Ex->getSourceRange()))
583    return true;
584  else if (!Pointee->isObjectType()) {
585    Diag(StartLoc, diag::err_delete_operand)
586      << Type << Ex->getSourceRange();
587    return true;
588  }
589
590  // FIXME: Look up the correct operator delete overload and pass a pointer
591  // along.
592  // FIXME: Check access and ambiguity of operator delete and destructor.
593
594  return new CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, 0, Ex,
595                           StartLoc);
596}
597
598
599/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
600/// C++ if/switch/while/for statement.
601/// e.g: "if (int x = f()) {...}"
602Action::ExprResult
603Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc,
604                                       Declarator &D,
605                                       SourceLocation EqualLoc,
606                                       ExprTy *AssignExprVal) {
607  assert(AssignExprVal && "Null assignment expression");
608
609  // C++ 6.4p2:
610  // The declarator shall not specify a function or an array.
611  // The type-specifier-seq shall not contain typedef and shall not declare a
612  // new class or enumeration.
613
614  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
615         "Parser allowed 'typedef' as storage class of condition decl.");
616
617  QualType Ty = GetTypeForDeclarator(D, S);
618
619  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
620    // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
621    // would be created and CXXConditionDeclExpr wants a VarDecl.
622    return Diag(StartLoc, diag::err_invalid_use_of_function_type)
623      << SourceRange(StartLoc, EqualLoc);
624  } else if (Ty->isArrayType()) { // ...or an array.
625    Diag(StartLoc, diag::err_invalid_use_of_array_type)
626      << SourceRange(StartLoc, EqualLoc);
627  } else if (const RecordType *RT = Ty->getAsRecordType()) {
628    RecordDecl *RD = RT->getDecl();
629    // The type-specifier-seq shall not declare a new class...
630    if (RD->isDefinition() && (RD->getIdentifier() == 0 || S->isDeclScope(RD)))
631      Diag(RD->getLocation(), diag::err_type_defined_in_condition);
632  } else if (const EnumType *ET = Ty->getAsEnumType()) {
633    EnumDecl *ED = ET->getDecl();
634    // ...or enumeration.
635    if (ED->isDefinition() && (ED->getIdentifier() == 0 || S->isDeclScope(ED)))
636      Diag(ED->getLocation(), diag::err_type_defined_in_condition);
637  }
638
639  DeclTy *Dcl = ActOnDeclarator(S, D, 0);
640  if (!Dcl)
641    return true;
642  AddInitializerToDecl(Dcl, ExprArg(*this, AssignExprVal));
643
644  // Mark this variable as one that is declared within a conditional.
645  if (VarDecl *VD = dyn_cast<VarDecl>((Decl *)Dcl))
646    VD->setDeclaredInCondition(true);
647
648  return new CXXConditionDeclExpr(StartLoc, EqualLoc,
649                                       cast<VarDecl>(static_cast<Decl *>(Dcl)));
650}
651
652/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
653bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
654  // C++ 6.4p4:
655  // The value of a condition that is an initialized declaration in a statement
656  // other than a switch statement is the value of the declared variable
657  // implicitly converted to type bool. If that conversion is ill-formed, the
658  // program is ill-formed.
659  // The value of a condition that is an expression is the value of the
660  // expression, implicitly converted to bool.
661  //
662  return PerformContextuallyConvertToBool(CondExpr);
663}
664
665/// Helper function to determine whether this is the (deprecated) C++
666/// conversion from a string literal to a pointer to non-const char or
667/// non-const wchar_t (for narrow and wide string literals,
668/// respectively).
669bool
670Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
671  // Look inside the implicit cast, if it exists.
672  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
673    From = Cast->getSubExpr();
674
675  // A string literal (2.13.4) that is not a wide string literal can
676  // be converted to an rvalue of type "pointer to char"; a wide
677  // string literal can be converted to an rvalue of type "pointer
678  // to wchar_t" (C++ 4.2p2).
679  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
680    if (const PointerType *ToPtrType = ToType->getAsPointerType())
681      if (const BuiltinType *ToPointeeType
682          = ToPtrType->getPointeeType()->getAsBuiltinType()) {
683        // This conversion is considered only when there is an
684        // explicit appropriate pointer target type (C++ 4.2p2).
685        if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
686            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
687             (!StrLit->isWide() &&
688              (ToPointeeType->getKind() == BuiltinType::Char_U ||
689               ToPointeeType->getKind() == BuiltinType::Char_S))))
690          return true;
691      }
692
693  return false;
694}
695
696/// PerformImplicitConversion - Perform an implicit conversion of the
697/// expression From to the type ToType. Returns true if there was an
698/// error, false otherwise. The expression From is replaced with the
699/// converted expression. Flavor is the kind of conversion we're
700/// performing, used in the error message. If @p AllowExplicit,
701/// explicit user-defined conversions are permitted.
702bool
703Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
704                                const char *Flavor, bool AllowExplicit)
705{
706  ImplicitConversionSequence ICS = TryImplicitConversion(From, ToType, false,
707                                                         AllowExplicit);
708  return PerformImplicitConversion(From, ToType, ICS, Flavor);
709}
710
711/// PerformImplicitConversion - Perform an implicit conversion of the
712/// expression From to the type ToType using the pre-computed implicit
713/// conversion sequence ICS. Returns true if there was an error, false
714/// otherwise. The expression From is replaced with the converted
715/// expression. Flavor is the kind of conversion we're performing,
716/// used in the error message.
717bool
718Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
719                                const ImplicitConversionSequence &ICS,
720                                const char* Flavor) {
721  switch (ICS.ConversionKind) {
722  case ImplicitConversionSequence::StandardConversion:
723    if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor))
724      return true;
725    break;
726
727  case ImplicitConversionSequence::UserDefinedConversion:
728    // FIXME: This is, of course, wrong. We'll need to actually call
729    // the constructor or conversion operator, and then cope with the
730    // standard conversions.
731    ImpCastExprToType(From, ToType.getNonReferenceType(),
732                      ToType->isReferenceType());
733    return false;
734
735  case ImplicitConversionSequence::EllipsisConversion:
736    assert(false && "Cannot perform an ellipsis conversion");
737    return false;
738
739  case ImplicitConversionSequence::BadConversion:
740    return true;
741  }
742
743  // Everything went well.
744  return false;
745}
746
747/// PerformImplicitConversion - Perform an implicit conversion of the
748/// expression From to the type ToType by following the standard
749/// conversion sequence SCS. Returns true if there was an error, false
750/// otherwise. The expression From is replaced with the converted
751/// expression. Flavor is the context in which we're performing this
752/// conversion, for use in error messages.
753bool
754Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
755                                const StandardConversionSequence& SCS,
756                                const char *Flavor) {
757  // Overall FIXME: we are recomputing too many types here and doing
758  // far too much extra work. What this means is that we need to keep
759  // track of more information that is computed when we try the
760  // implicit conversion initially, so that we don't need to recompute
761  // anything here.
762  QualType FromType = From->getType();
763
764  if (SCS.CopyConstructor) {
765    // FIXME: Create a temporary object by calling the copy
766    // constructor.
767    ImpCastExprToType(From, ToType.getNonReferenceType(),
768                      ToType->isReferenceType());
769    return false;
770  }
771
772  // Perform the first implicit conversion.
773  switch (SCS.First) {
774  case ICK_Identity:
775  case ICK_Lvalue_To_Rvalue:
776    // Nothing to do.
777    break;
778
779  case ICK_Array_To_Pointer:
780    if (FromType->isOverloadType()) {
781      FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
782      if (!Fn)
783        return true;
784
785      FixOverloadedFunctionReference(From, Fn);
786      FromType = From->getType();
787    } else {
788      FromType = Context.getArrayDecayedType(FromType);
789    }
790    ImpCastExprToType(From, FromType);
791    break;
792
793  case ICK_Function_To_Pointer:
794    FromType = Context.getPointerType(FromType);
795    ImpCastExprToType(From, FromType);
796    break;
797
798  default:
799    assert(false && "Improper first standard conversion");
800    break;
801  }
802
803  // Perform the second implicit conversion
804  switch (SCS.Second) {
805  case ICK_Identity:
806    // Nothing to do.
807    break;
808
809  case ICK_Integral_Promotion:
810  case ICK_Floating_Promotion:
811  case ICK_Integral_Conversion:
812  case ICK_Floating_Conversion:
813  case ICK_Floating_Integral:
814    FromType = ToType.getUnqualifiedType();
815    ImpCastExprToType(From, FromType);
816    break;
817
818  case ICK_Pointer_Conversion:
819    if (SCS.IncompatibleObjC) {
820      // Diagnose incompatible Objective-C conversions
821      Diag(From->getSourceRange().getBegin(),
822           diag::ext_typecheck_convert_incompatible_pointer)
823        << From->getType() << ToType << Flavor
824        << From->getSourceRange();
825    }
826
827    if (CheckPointerConversion(From, ToType))
828      return true;
829    ImpCastExprToType(From, ToType);
830    break;
831
832  case ICK_Pointer_Member:
833    if (CheckMemberPointerConversion(From, ToType))
834      return true;
835    ImpCastExprToType(From, ToType);
836    break;
837
838  case ICK_Boolean_Conversion:
839    FromType = Context.BoolTy;
840    ImpCastExprToType(From, FromType);
841    break;
842
843  default:
844    assert(false && "Improper second standard conversion");
845    break;
846  }
847
848  switch (SCS.Third) {
849  case ICK_Identity:
850    // Nothing to do.
851    break;
852
853  case ICK_Qualification:
854    ImpCastExprToType(From, ToType.getNonReferenceType(),
855                      ToType->isReferenceType());
856    break;
857
858  default:
859    assert(false && "Improper second standard conversion");
860    break;
861  }
862
863  return false;
864}
865
866Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
867                                                 SourceLocation KWLoc,
868                                                 SourceLocation LParen,
869                                                 TypeTy *Ty,
870                                                 SourceLocation RParen) {
871  // FIXME: Some of the type traits have requirements. Interestingly, only the
872  // __is_base_of requirement is explicitly stated to be diagnosed. Indeed,
873  // G++ accepts __is_pod(Incomplete) without complaints, and claims that the
874  // type is indeed a POD.
875
876  // There is no point in eagerly computing the value. The traits are designed
877  // to be used from type trait templates, so Ty will be a template parameter
878  // 99% of the time.
879  return Owned(new UnaryTypeTraitExpr(KWLoc, OTT,
880                                      QualType::getFromOpaquePtr(Ty),
881                                      RParen, Context.BoolTy));
882}
883