SemaExprCXX.cpp revision 4ebf3c46ddb1a95cb90f9489996d36db8803747a
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/TemplateDeduction.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30using namespace clang;
31using namespace sema;
32
33ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
34                                   IdentifierInfo &II,
35                                   SourceLocation NameLoc,
36                                   Scope *S, CXXScopeSpec &SS,
37                                   ParsedType ObjectTypePtr,
38                                   bool EnteringContext) {
39  // Determine where to perform name lookup.
40
41  // FIXME: This area of the standard is very messy, and the current
42  // wording is rather unclear about which scopes we search for the
43  // destructor name; see core issues 399 and 555. Issue 399 in
44  // particular shows where the current description of destructor name
45  // lookup is completely out of line with existing practice, e.g.,
46  // this appears to be ill-formed:
47  //
48  //   namespace N {
49  //     template <typename T> struct S {
50  //       ~S();
51  //     };
52  //   }
53  //
54  //   void f(N::S<int>* s) {
55  //     s->N::S<int>::~S();
56  //   }
57  //
58  // See also PR6358 and PR6359.
59  // For this reason, we're currently only doing the C++03 version of this
60  // code; the C++0x version has to wait until we get a proper spec.
61  QualType SearchType;
62  DeclContext *LookupCtx = 0;
63  bool isDependent = false;
64  bool LookInScope = false;
65
66  // If we have an object type, it's because we are in a
67  // pseudo-destructor-expression or a member access expression, and
68  // we know what type we're looking for.
69  if (ObjectTypePtr)
70    SearchType = GetTypeFromParser(ObjectTypePtr);
71
72  if (SS.isSet()) {
73    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
74
75    bool AlreadySearched = false;
76    bool LookAtPrefix = true;
77    // C++ [basic.lookup.qual]p6:
78    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
79    //   the type-names are looked up as types in the scope designated by the
80    //   nested-name-specifier. In a qualified-id of the form:
81    //
82    //     ::[opt] nested-name-specifier  ̃ class-name
83    //
84    //   where the nested-name-specifier designates a namespace scope, and in
85    //   a qualified-id of the form:
86    //
87    //     ::opt nested-name-specifier class-name ::  ̃ class-name
88    //
89    //   the class-names are looked up as types in the scope designated by
90    //   the nested-name-specifier.
91    //
92    // Here, we check the first case (completely) and determine whether the
93    // code below is permitted to look at the prefix of the
94    // nested-name-specifier.
95    DeclContext *DC = computeDeclContext(SS, EnteringContext);
96    if (DC && DC->isFileContext()) {
97      AlreadySearched = true;
98      LookupCtx = DC;
99      isDependent = false;
100    } else if (DC && isa<CXXRecordDecl>(DC))
101      LookAtPrefix = false;
102
103    // The second case from the C++03 rules quoted further above.
104    NestedNameSpecifier *Prefix = 0;
105    if (AlreadySearched) {
106      // Nothing left to do.
107    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
108      CXXScopeSpec PrefixSS;
109      PrefixSS.setScopeRep(Prefix);
110      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
111      isDependent = isDependentScopeSpecifier(PrefixSS);
112    } else if (ObjectTypePtr) {
113      LookupCtx = computeDeclContext(SearchType);
114      isDependent = SearchType->isDependentType();
115    } else {
116      LookupCtx = computeDeclContext(SS, EnteringContext);
117      isDependent = LookupCtx && LookupCtx->isDependentContext();
118    }
119
120    LookInScope = false;
121  } else if (ObjectTypePtr) {
122    // C++ [basic.lookup.classref]p3:
123    //   If the unqualified-id is ~type-name, the type-name is looked up
124    //   in the context of the entire postfix-expression. If the type T
125    //   of the object expression is of a class type C, the type-name is
126    //   also looked up in the scope of class C. At least one of the
127    //   lookups shall find a name that refers to (possibly
128    //   cv-qualified) T.
129    LookupCtx = computeDeclContext(SearchType);
130    isDependent = SearchType->isDependentType();
131    assert((isDependent || !SearchType->isIncompleteType()) &&
132           "Caller should have completed object type");
133
134    LookInScope = true;
135  } else {
136    // Perform lookup into the current scope (only).
137    LookInScope = true;
138  }
139
140  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
141  for (unsigned Step = 0; Step != 2; ++Step) {
142    // Look for the name first in the computed lookup context (if we
143    // have one) and, if that fails to find a match, in the sope (if
144    // we're allowed to look there).
145    Found.clear();
146    if (Step == 0 && LookupCtx)
147      LookupQualifiedName(Found, LookupCtx);
148    else if (Step == 1 && LookInScope && S)
149      LookupName(Found, S);
150    else
151      continue;
152
153    // FIXME: Should we be suppressing ambiguities here?
154    if (Found.isAmbiguous())
155      return ParsedType();
156
157    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
158      QualType T = Context.getTypeDeclType(Type);
159
160      if (SearchType.isNull() || SearchType->isDependentType() ||
161          Context.hasSameUnqualifiedType(T, SearchType)) {
162        // We found our type!
163
164        return ParsedType::make(T);
165      }
166    }
167
168    // If the name that we found is a class template name, and it is
169    // the same name as the template name in the last part of the
170    // nested-name-specifier (if present) or the object type, then
171    // this is the destructor for that class.
172    // FIXME: This is a workaround until we get real drafting for core
173    // issue 399, for which there isn't even an obvious direction.
174    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
175      QualType MemberOfType;
176      if (SS.isSet()) {
177        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
178          // Figure out the type of the context, if it has one.
179          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
180            MemberOfType = Context.getTypeDeclType(Record);
181        }
182      }
183      if (MemberOfType.isNull())
184        MemberOfType = SearchType;
185
186      if (MemberOfType.isNull())
187        continue;
188
189      // We're referring into a class template specialization. If the
190      // class template we found is the same as the template being
191      // specialized, we found what we are looking for.
192      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
193        if (ClassTemplateSpecializationDecl *Spec
194              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
195          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
196                Template->getCanonicalDecl())
197            return ParsedType::make(MemberOfType);
198        }
199
200        continue;
201      }
202
203      // We're referring to an unresolved class template
204      // specialization. Determine whether we class template we found
205      // is the same as the template being specialized or, if we don't
206      // know which template is being specialized, that it at least
207      // has the same name.
208      if (const TemplateSpecializationType *SpecType
209            = MemberOfType->getAs<TemplateSpecializationType>()) {
210        TemplateName SpecName = SpecType->getTemplateName();
211
212        // The class template we found is the same template being
213        // specialized.
214        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
215          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
216            return ParsedType::make(MemberOfType);
217
218          continue;
219        }
220
221        // The class template we found has the same name as the
222        // (dependent) template name being specialized.
223        if (DependentTemplateName *DepTemplate
224                                    = SpecName.getAsDependentTemplateName()) {
225          if (DepTemplate->isIdentifier() &&
226              DepTemplate->getIdentifier() == Template->getIdentifier())
227            return ParsedType::make(MemberOfType);
228
229          continue;
230        }
231      }
232    }
233  }
234
235  if (isDependent) {
236    // We didn't find our type, but that's okay: it's dependent
237    // anyway.
238    NestedNameSpecifier *NNS = 0;
239    SourceRange Range;
240    if (SS.isSet()) {
241      NNS = (NestedNameSpecifier *)SS.getScopeRep();
242      Range = SourceRange(SS.getRange().getBegin(), NameLoc);
243    } else {
244      NNS = NestedNameSpecifier::Create(Context, &II);
245      Range = SourceRange(NameLoc);
246    }
247
248    QualType T = CheckTypenameType(ETK_None, NNS, II,
249                                   SourceLocation(),
250                                   Range, NameLoc);
251    return ParsedType::make(T);
252  }
253
254  if (ObjectTypePtr)
255    Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
256      << &II;
257  else
258    Diag(NameLoc, diag::err_destructor_class_name);
259
260  return ParsedType();
261}
262
263/// \brief Build a C++ typeid expression with a type operand.
264ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
265                                SourceLocation TypeidLoc,
266                                TypeSourceInfo *Operand,
267                                SourceLocation RParenLoc) {
268  // C++ [expr.typeid]p4:
269  //   The top-level cv-qualifiers of the lvalue expression or the type-id
270  //   that is the operand of typeid are always ignored.
271  //   If the type of the type-id is a class type or a reference to a class
272  //   type, the class shall be completely-defined.
273  Qualifiers Quals;
274  QualType T
275    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
276                                      Quals);
277  if (T->getAs<RecordType>() &&
278      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
279    return ExprError();
280
281  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
282                                           Operand,
283                                           SourceRange(TypeidLoc, RParenLoc)));
284}
285
286/// \brief Build a C++ typeid expression with an expression operand.
287ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
288                                SourceLocation TypeidLoc,
289                                Expr *E,
290                                SourceLocation RParenLoc) {
291  bool isUnevaluatedOperand = true;
292  if (E && !E->isTypeDependent()) {
293    QualType T = E->getType();
294    if (const RecordType *RecordT = T->getAs<RecordType>()) {
295      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
296      // C++ [expr.typeid]p3:
297      //   [...] If the type of the expression is a class type, the class
298      //   shall be completely-defined.
299      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
300        return ExprError();
301
302      // C++ [expr.typeid]p3:
303      //   When typeid is applied to an expression other than an glvalue of a
304      //   polymorphic class type [...] [the] expression is an unevaluated
305      //   operand. [...]
306      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
307        isUnevaluatedOperand = false;
308
309        // We require a vtable to query the type at run time.
310        MarkVTableUsed(TypeidLoc, RecordD);
311      }
312    }
313
314    // C++ [expr.typeid]p4:
315    //   [...] If the type of the type-id is a reference to a possibly
316    //   cv-qualified type, the result of the typeid expression refers to a
317    //   std::type_info object representing the cv-unqualified referenced
318    //   type.
319    Qualifiers Quals;
320    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
321    if (!Context.hasSameType(T, UnqualT)) {
322      T = UnqualT;
323      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
324    }
325  }
326
327  // If this is an unevaluated operand, clear out the set of
328  // declaration references we have been computing and eliminate any
329  // temporaries introduced in its computation.
330  if (isUnevaluatedOperand)
331    ExprEvalContexts.back().Context = Unevaluated;
332
333  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
334                                           E,
335                                           SourceRange(TypeidLoc, RParenLoc)));
336}
337
338/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
339ExprResult
340Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
341                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
342  // Find the std::type_info type.
343  if (!StdNamespace)
344    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
345
346  if (!CXXTypeInfoDecl) {
347    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
348    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
349    LookupQualifiedName(R, getStdNamespace());
350    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
351    if (!CXXTypeInfoDecl)
352      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
353  }
354
355  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
356
357  if (isType) {
358    // The operand is a type; handle it as such.
359    TypeSourceInfo *TInfo = 0;
360    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
361                                   &TInfo);
362    if (T.isNull())
363      return ExprError();
364
365    if (!TInfo)
366      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
367
368    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
369  }
370
371  // The operand is an expression.
372  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
373}
374
375/// \brief Build a Microsoft __uuidof expression with a type operand.
376ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
377                                SourceLocation TypeidLoc,
378                                TypeSourceInfo *Operand,
379                                SourceLocation RParenLoc) {
380  // FIXME: add __uuidof semantic analysis for type operand.
381  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
382                                           Operand,
383                                           SourceRange(TypeidLoc, RParenLoc)));
384}
385
386/// \brief Build a Microsoft __uuidof expression with an expression operand.
387ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
388                                SourceLocation TypeidLoc,
389                                Expr *E,
390                                SourceLocation RParenLoc) {
391  // FIXME: add __uuidof semantic analysis for expr operand.
392  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
393                                           E,
394                                           SourceRange(TypeidLoc, RParenLoc)));
395}
396
397/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
398ExprResult
399Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
400                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
401  // If MSVCGuidDecl has not been cached, do the lookup.
402  if (!MSVCGuidDecl) {
403    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
404    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
405    LookupQualifiedName(R, Context.getTranslationUnitDecl());
406    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
407    if (!MSVCGuidDecl)
408      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
409  }
410
411  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
412
413  if (isType) {
414    // The operand is a type; handle it as such.
415    TypeSourceInfo *TInfo = 0;
416    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
417                                   &TInfo);
418    if (T.isNull())
419      return ExprError();
420
421    if (!TInfo)
422      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
423
424    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
425  }
426
427  // The operand is an expression.
428  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
429}
430
431/// ActOnCXXBoolLiteral - Parse {true,false} literals.
432ExprResult
433Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
434  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
435         "Unknown C++ Boolean value!");
436  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
437                                                Context.BoolTy, OpLoc));
438}
439
440/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
441ExprResult
442Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
443  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
444}
445
446/// ActOnCXXThrow - Parse throw expressions.
447ExprResult
448Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
449  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
450    return ExprError();
451  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
452}
453
454/// CheckCXXThrowOperand - Validate the operand of a throw.
455bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
456  // C++ [except.throw]p3:
457  //   A throw-expression initializes a temporary object, called the exception
458  //   object, the type of which is determined by removing any top-level
459  //   cv-qualifiers from the static type of the operand of throw and adjusting
460  //   the type from "array of T" or "function returning T" to "pointer to T"
461  //   or "pointer to function returning T", [...]
462  if (E->getType().hasQualifiers())
463    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
464                      CastCategory(E));
465
466  DefaultFunctionArrayConversion(E);
467
468  //   If the type of the exception would be an incomplete type or a pointer
469  //   to an incomplete type other than (cv) void the program is ill-formed.
470  QualType Ty = E->getType();
471  bool isPointer = false;
472  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
473    Ty = Ptr->getPointeeType();
474    isPointer = true;
475  }
476  if (!isPointer || !Ty->isVoidType()) {
477    if (RequireCompleteType(ThrowLoc, Ty,
478                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
479                                            : diag::err_throw_incomplete)
480                              << E->getSourceRange()))
481      return true;
482
483    if (RequireNonAbstractType(ThrowLoc, E->getType(),
484                               PDiag(diag::err_throw_abstract_type)
485                                 << E->getSourceRange()))
486      return true;
487  }
488
489  // Initialize the exception result.  This implicitly weeds out
490  // abstract types or types with inaccessible copy constructors.
491  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p34.
492  InitializedEntity Entity =
493    InitializedEntity::InitializeException(ThrowLoc, E->getType(),
494                                           /*NRVO=*/false);
495  ExprResult Res = PerformCopyInitialization(Entity,
496                                                   SourceLocation(),
497                                                   Owned(E));
498  if (Res.isInvalid())
499    return true;
500  E = Res.takeAs<Expr>();
501
502  // If the exception has class type, we need additional handling.
503  const RecordType *RecordTy = Ty->getAs<RecordType>();
504  if (!RecordTy)
505    return false;
506  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
507
508  // If we are throwing a polymorphic class type or pointer thereof,
509  // exception handling will make use of the vtable.
510  MarkVTableUsed(ThrowLoc, RD);
511
512  // If the class has a non-trivial destructor, we must be able to call it.
513  if (RD->hasTrivialDestructor())
514    return false;
515
516  CXXDestructorDecl *Destructor
517    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
518  if (!Destructor)
519    return false;
520
521  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
522  CheckDestructorAccess(E->getExprLoc(), Destructor,
523                        PDiag(diag::err_access_dtor_exception) << Ty);
524  return false;
525}
526
527ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
528  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
529  /// is a non-lvalue expression whose value is the address of the object for
530  /// which the function is called.
531
532  DeclContext *DC = getFunctionLevelDeclContext();
533  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
534    if (MD->isInstance())
535      return Owned(new (Context) CXXThisExpr(ThisLoc,
536                                             MD->getThisType(Context),
537                                             /*isImplicit=*/false));
538
539  return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
540}
541
542ExprResult
543Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
544                                SourceLocation LParenLoc,
545                                MultiExprArg exprs,
546                                SourceLocation RParenLoc) {
547  if (!TypeRep)
548    return ExprError();
549
550  TypeSourceInfo *TInfo;
551  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
552  if (!TInfo)
553    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
554
555  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
556}
557
558/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
559/// Can be interpreted either as function-style casting ("int(x)")
560/// or class type construction ("ClassType(x,y,z)")
561/// or creation of a value-initialized type ("int()").
562ExprResult
563Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
564                                SourceLocation LParenLoc,
565                                MultiExprArg exprs,
566                                SourceLocation RParenLoc) {
567  QualType Ty = TInfo->getType();
568  unsigned NumExprs = exprs.size();
569  Expr **Exprs = (Expr**)exprs.get();
570  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
571  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
572
573  if (Ty->isDependentType() ||
574      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
575    exprs.release();
576
577    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
578                                                    LParenLoc,
579                                                    Exprs, NumExprs,
580                                                    RParenLoc));
581  }
582
583  if (Ty->isArrayType())
584    return ExprError(Diag(TyBeginLoc,
585                          diag::err_value_init_for_array_type) << FullRange);
586  if (!Ty->isVoidType() &&
587      RequireCompleteType(TyBeginLoc, Ty,
588                          PDiag(diag::err_invalid_incomplete_type_use)
589                            << FullRange))
590    return ExprError();
591
592  if (RequireNonAbstractType(TyBeginLoc, Ty,
593                             diag::err_allocation_of_abstract_type))
594    return ExprError();
595
596
597  // C++ [expr.type.conv]p1:
598  // If the expression list is a single expression, the type conversion
599  // expression is equivalent (in definedness, and if defined in meaning) to the
600  // corresponding cast expression.
601  //
602  if (NumExprs == 1) {
603    CastKind Kind = CK_Unknown;
604    CXXCastPath BasePath;
605    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
606                       Kind, BasePath,
607                       /*FunctionalStyle=*/true))
608      return ExprError();
609
610    exprs.release();
611
612    return Owned(CXXFunctionalCastExpr::Create(Context,
613                                               Ty.getNonLValueExprType(Context),
614                                               TInfo, TyBeginLoc, Kind,
615                                               Exprs[0], &BasePath,
616                                               RParenLoc));
617  }
618
619  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
620  InitializationKind Kind
621    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
622                                                  LParenLoc, RParenLoc)
623               : InitializationKind::CreateValue(TyBeginLoc,
624                                                 LParenLoc, RParenLoc);
625  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
626  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
627
628  // FIXME: Improve AST representation?
629  return move(Result);
630}
631
632
633/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
634/// @code new (memory) int[size][4] @endcode
635/// or
636/// @code ::new Foo(23, "hello") @endcode
637/// For the interpretation of this heap of arguments, consult the base version.
638ExprResult
639Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
640                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
641                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
642                  Declarator &D, SourceLocation ConstructorLParen,
643                  MultiExprArg ConstructorArgs,
644                  SourceLocation ConstructorRParen) {
645  Expr *ArraySize = 0;
646  // If the specified type is an array, unwrap it and save the expression.
647  if (D.getNumTypeObjects() > 0 &&
648      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
649    DeclaratorChunk &Chunk = D.getTypeObject(0);
650    if (Chunk.Arr.hasStatic)
651      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
652        << D.getSourceRange());
653    if (!Chunk.Arr.NumElts)
654      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
655        << D.getSourceRange());
656
657    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
658    D.DropFirstTypeObject();
659  }
660
661  // Every dimension shall be of constant size.
662  if (ArraySize) {
663    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
664      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
665        break;
666
667      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
668      if (Expr *NumElts = (Expr *)Array.NumElts) {
669        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
670            !NumElts->isIntegerConstantExpr(Context)) {
671          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
672            << NumElts->getSourceRange();
673          return ExprError();
674        }
675      }
676    }
677  }
678
679  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
680  QualType AllocType = TInfo->getType();
681  if (D.isInvalidType())
682    return ExprError();
683
684  if (!TInfo)
685    TInfo = Context.getTrivialTypeSourceInfo(AllocType);
686
687  SourceRange R = TInfo->getTypeLoc().getSourceRange();
688  return BuildCXXNew(StartLoc, UseGlobal,
689                     PlacementLParen,
690                     move(PlacementArgs),
691                     PlacementRParen,
692                     TypeIdParens,
693                     AllocType,
694                     TInfo,
695                     ArraySize,
696                     ConstructorLParen,
697                     move(ConstructorArgs),
698                     ConstructorRParen);
699}
700
701ExprResult
702Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
703                  SourceLocation PlacementLParen,
704                  MultiExprArg PlacementArgs,
705                  SourceLocation PlacementRParen,
706                  SourceRange TypeIdParens,
707                  QualType AllocType,
708                  TypeSourceInfo *AllocTypeInfo,
709                  Expr *ArraySize,
710                  SourceLocation ConstructorLParen,
711                  MultiExprArg ConstructorArgs,
712                  SourceLocation ConstructorRParen) {
713  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
714  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
715    return ExprError();
716
717  // Per C++0x [expr.new]p5, the type being constructed may be a
718  // typedef of an array type.
719  if (!ArraySize) {
720    if (const ConstantArrayType *Array
721                              = Context.getAsConstantArrayType(AllocType)) {
722      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
723                                         Context.getSizeType(),
724                                         TypeRange.getEnd());
725      AllocType = Array->getElementType();
726    }
727  }
728
729  QualType ResultType = Context.getPointerType(AllocType);
730
731  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
732  //   or enumeration type with a non-negative value."
733  if (ArraySize && !ArraySize->isTypeDependent()) {
734
735    QualType SizeType = ArraySize->getType();
736
737    ExprResult ConvertedSize
738      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
739                                       PDiag(diag::err_array_size_not_integral),
740                                     PDiag(diag::err_array_size_incomplete_type)
741                                       << ArraySize->getSourceRange(),
742                               PDiag(diag::err_array_size_explicit_conversion),
743                                       PDiag(diag::note_array_size_conversion),
744                               PDiag(diag::err_array_size_ambiguous_conversion),
745                                       PDiag(diag::note_array_size_conversion),
746                          PDiag(getLangOptions().CPlusPlus0x? 0
747                                            : diag::ext_array_size_conversion));
748    if (ConvertedSize.isInvalid())
749      return ExprError();
750
751    ArraySize = ConvertedSize.take();
752    SizeType = ArraySize->getType();
753    if (!SizeType->isIntegralOrEnumerationType())
754      return ExprError();
755
756    // Let's see if this is a constant < 0. If so, we reject it out of hand.
757    // We don't care about special rules, so we tell the machinery it's not
758    // evaluated - it gives us a result in more cases.
759    if (!ArraySize->isValueDependent()) {
760      llvm::APSInt Value;
761      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
762        if (Value < llvm::APSInt(
763                        llvm::APInt::getNullValue(Value.getBitWidth()),
764                                 Value.isUnsigned()))
765          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
766                                diag::err_typecheck_negative_array_size)
767            << ArraySize->getSourceRange());
768
769        if (!AllocType->isDependentType()) {
770          unsigned ActiveSizeBits
771            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
772          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
773            Diag(ArraySize->getSourceRange().getBegin(),
774                 diag::err_array_too_large)
775              << Value.toString(10)
776              << ArraySize->getSourceRange();
777            return ExprError();
778          }
779        }
780      } else if (TypeIdParens.isValid()) {
781        // Can't have dynamic array size when the type-id is in parentheses.
782        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
783          << ArraySize->getSourceRange()
784          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
785          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
786
787        TypeIdParens = SourceRange();
788      }
789    }
790
791    ImpCastExprToType(ArraySize, Context.getSizeType(),
792                      CK_IntegralCast);
793  }
794
795  FunctionDecl *OperatorNew = 0;
796  FunctionDecl *OperatorDelete = 0;
797  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
798  unsigned NumPlaceArgs = PlacementArgs.size();
799
800  if (!AllocType->isDependentType() &&
801      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
802      FindAllocationFunctions(StartLoc,
803                              SourceRange(PlacementLParen, PlacementRParen),
804                              UseGlobal, AllocType, ArraySize, PlaceArgs,
805                              NumPlaceArgs, OperatorNew, OperatorDelete))
806    return ExprError();
807  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
808  if (OperatorNew) {
809    // Add default arguments, if any.
810    const FunctionProtoType *Proto =
811      OperatorNew->getType()->getAs<FunctionProtoType>();
812    VariadicCallType CallType =
813      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
814
815    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
816                               Proto, 1, PlaceArgs, NumPlaceArgs,
817                               AllPlaceArgs, CallType))
818      return ExprError();
819
820    NumPlaceArgs = AllPlaceArgs.size();
821    if (NumPlaceArgs > 0)
822      PlaceArgs = &AllPlaceArgs[0];
823  }
824
825  bool Init = ConstructorLParen.isValid();
826  // --- Choosing a constructor ---
827  CXXConstructorDecl *Constructor = 0;
828  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
829  unsigned NumConsArgs = ConstructorArgs.size();
830  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
831
832  // Array 'new' can't have any initializers.
833  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
834    SourceRange InitRange(ConsArgs[0]->getLocStart(),
835                          ConsArgs[NumConsArgs - 1]->getLocEnd());
836
837    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
838    return ExprError();
839  }
840
841  if (!AllocType->isDependentType() &&
842      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
843    // C++0x [expr.new]p15:
844    //   A new-expression that creates an object of type T initializes that
845    //   object as follows:
846    InitializationKind Kind
847    //     - If the new-initializer is omitted, the object is default-
848    //       initialized (8.5); if no initialization is performed,
849    //       the object has indeterminate value
850      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
851    //     - Otherwise, the new-initializer is interpreted according to the
852    //       initialization rules of 8.5 for direct-initialization.
853             : InitializationKind::CreateDirect(TypeRange.getBegin(),
854                                                ConstructorLParen,
855                                                ConstructorRParen);
856
857    InitializedEntity Entity
858      = InitializedEntity::InitializeNew(StartLoc, AllocType);
859    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
860    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
861                                                move(ConstructorArgs));
862    if (FullInit.isInvalid())
863      return ExprError();
864
865    // FullInit is our initializer; walk through it to determine if it's a
866    // constructor call, which CXXNewExpr handles directly.
867    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
868      if (CXXBindTemporaryExpr *Binder
869            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
870        FullInitExpr = Binder->getSubExpr();
871      if (CXXConstructExpr *Construct
872                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
873        Constructor = Construct->getConstructor();
874        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
875                                         AEnd = Construct->arg_end();
876             A != AEnd; ++A)
877          ConvertedConstructorArgs.push_back(A->Retain());
878      } else {
879        // Take the converted initializer.
880        ConvertedConstructorArgs.push_back(FullInit.release());
881      }
882    } else {
883      // No initialization required.
884    }
885
886    // Take the converted arguments and use them for the new expression.
887    NumConsArgs = ConvertedConstructorArgs.size();
888    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
889  }
890
891  // Mark the new and delete operators as referenced.
892  if (OperatorNew)
893    MarkDeclarationReferenced(StartLoc, OperatorNew);
894  if (OperatorDelete)
895    MarkDeclarationReferenced(StartLoc, OperatorDelete);
896
897  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
898
899  PlacementArgs.release();
900  ConstructorArgs.release();
901
902  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
903                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
904                                        ArraySize, Constructor, Init,
905                                        ConsArgs, NumConsArgs, OperatorDelete,
906                                        ResultType, AllocTypeInfo,
907                                        StartLoc,
908                                        Init ? ConstructorRParen :
909                                               TypeRange.getEnd()));
910}
911
912/// CheckAllocatedType - Checks that a type is suitable as the allocated type
913/// in a new-expression.
914/// dimension off and stores the size expression in ArraySize.
915bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
916                              SourceRange R) {
917  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
918  //   abstract class type or array thereof.
919  if (AllocType->isFunctionType())
920    return Diag(Loc, diag::err_bad_new_type)
921      << AllocType << 0 << R;
922  else if (AllocType->isReferenceType())
923    return Diag(Loc, diag::err_bad_new_type)
924      << AllocType << 1 << R;
925  else if (!AllocType->isDependentType() &&
926           RequireCompleteType(Loc, AllocType,
927                               PDiag(diag::err_new_incomplete_type)
928                                 << R))
929    return true;
930  else if (RequireNonAbstractType(Loc, AllocType,
931                                  diag::err_allocation_of_abstract_type))
932    return true;
933
934  return false;
935}
936
937/// \brief Determine whether the given function is a non-placement
938/// deallocation function.
939static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
940  if (FD->isInvalidDecl())
941    return false;
942
943  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
944    return Method->isUsualDeallocationFunction();
945
946  return ((FD->getOverloadedOperator() == OO_Delete ||
947           FD->getOverloadedOperator() == OO_Array_Delete) &&
948          FD->getNumParams() == 1);
949}
950
951/// FindAllocationFunctions - Finds the overloads of operator new and delete
952/// that are appropriate for the allocation.
953bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
954                                   bool UseGlobal, QualType AllocType,
955                                   bool IsArray, Expr **PlaceArgs,
956                                   unsigned NumPlaceArgs,
957                                   FunctionDecl *&OperatorNew,
958                                   FunctionDecl *&OperatorDelete) {
959  // --- Choosing an allocation function ---
960  // C++ 5.3.4p8 - 14 & 18
961  // 1) If UseGlobal is true, only look in the global scope. Else, also look
962  //   in the scope of the allocated class.
963  // 2) If an array size is given, look for operator new[], else look for
964  //   operator new.
965  // 3) The first argument is always size_t. Append the arguments from the
966  //   placement form.
967
968  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
969  // We don't care about the actual value of this argument.
970  // FIXME: Should the Sema create the expression and embed it in the syntax
971  // tree? Or should the consumer just recalculate the value?
972  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
973                      Context.Target.getPointerWidth(0)),
974                      Context.getSizeType(),
975                      SourceLocation());
976  AllocArgs[0] = &Size;
977  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
978
979  // C++ [expr.new]p8:
980  //   If the allocated type is a non-array type, the allocation
981  //   function’s name is operator new and the deallocation function’s
982  //   name is operator delete. If the allocated type is an array
983  //   type, the allocation function’s name is operator new[] and the
984  //   deallocation function’s name is operator delete[].
985  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
986                                        IsArray ? OO_Array_New : OO_New);
987  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
988                                        IsArray ? OO_Array_Delete : OO_Delete);
989
990  QualType AllocElemType = Context.getBaseElementType(AllocType);
991
992  if (AllocElemType->isRecordType() && !UseGlobal) {
993    CXXRecordDecl *Record
994      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
995    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
996                          AllocArgs.size(), Record, /*AllowMissing=*/true,
997                          OperatorNew))
998      return true;
999  }
1000  if (!OperatorNew) {
1001    // Didn't find a member overload. Look for a global one.
1002    DeclareGlobalNewDelete();
1003    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1004    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1005                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1006                          OperatorNew))
1007      return true;
1008  }
1009
1010  // We don't need an operator delete if we're running under
1011  // -fno-exceptions.
1012  if (!getLangOptions().Exceptions) {
1013    OperatorDelete = 0;
1014    return false;
1015  }
1016
1017  // FindAllocationOverload can change the passed in arguments, so we need to
1018  // copy them back.
1019  if (NumPlaceArgs > 0)
1020    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1021
1022  // C++ [expr.new]p19:
1023  //
1024  //   If the new-expression begins with a unary :: operator, the
1025  //   deallocation function’s name is looked up in the global
1026  //   scope. Otherwise, if the allocated type is a class type T or an
1027  //   array thereof, the deallocation function’s name is looked up in
1028  //   the scope of T. If this lookup fails to find the name, or if
1029  //   the allocated type is not a class type or array thereof, the
1030  //   deallocation function’s name is looked up in the global scope.
1031  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1032  if (AllocElemType->isRecordType() && !UseGlobal) {
1033    CXXRecordDecl *RD
1034      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1035    LookupQualifiedName(FoundDelete, RD);
1036  }
1037  if (FoundDelete.isAmbiguous())
1038    return true; // FIXME: clean up expressions?
1039
1040  if (FoundDelete.empty()) {
1041    DeclareGlobalNewDelete();
1042    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1043  }
1044
1045  FoundDelete.suppressDiagnostics();
1046
1047  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1048
1049  // Whether we're looking for a placement operator delete is dictated
1050  // by whether we selected a placement operator new, not by whether
1051  // we had explicit placement arguments.  This matters for things like
1052  //   struct A { void *operator new(size_t, int = 0); ... };
1053  //   A *a = new A()
1054  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1055
1056  if (isPlacementNew) {
1057    // C++ [expr.new]p20:
1058    //   A declaration of a placement deallocation function matches the
1059    //   declaration of a placement allocation function if it has the
1060    //   same number of parameters and, after parameter transformations
1061    //   (8.3.5), all parameter types except the first are
1062    //   identical. [...]
1063    //
1064    // To perform this comparison, we compute the function type that
1065    // the deallocation function should have, and use that type both
1066    // for template argument deduction and for comparison purposes.
1067    QualType ExpectedFunctionType;
1068    {
1069      const FunctionProtoType *Proto
1070        = OperatorNew->getType()->getAs<FunctionProtoType>();
1071      llvm::SmallVector<QualType, 4> ArgTypes;
1072      ArgTypes.push_back(Context.VoidPtrTy);
1073      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1074        ArgTypes.push_back(Proto->getArgType(I));
1075
1076      ExpectedFunctionType
1077        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1078                                  ArgTypes.size(),
1079                                  Proto->isVariadic(),
1080                                  0, false, false, 0, 0,
1081                                  FunctionType::ExtInfo());
1082    }
1083
1084    for (LookupResult::iterator D = FoundDelete.begin(),
1085                             DEnd = FoundDelete.end();
1086         D != DEnd; ++D) {
1087      FunctionDecl *Fn = 0;
1088      if (FunctionTemplateDecl *FnTmpl
1089            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1090        // Perform template argument deduction to try to match the
1091        // expected function type.
1092        TemplateDeductionInfo Info(Context, StartLoc);
1093        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1094          continue;
1095      } else
1096        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1097
1098      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1099        Matches.push_back(std::make_pair(D.getPair(), Fn));
1100    }
1101  } else {
1102    // C++ [expr.new]p20:
1103    //   [...] Any non-placement deallocation function matches a
1104    //   non-placement allocation function. [...]
1105    for (LookupResult::iterator D = FoundDelete.begin(),
1106                             DEnd = FoundDelete.end();
1107         D != DEnd; ++D) {
1108      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1109        if (isNonPlacementDeallocationFunction(Fn))
1110          Matches.push_back(std::make_pair(D.getPair(), Fn));
1111    }
1112  }
1113
1114  // C++ [expr.new]p20:
1115  //   [...] If the lookup finds a single matching deallocation
1116  //   function, that function will be called; otherwise, no
1117  //   deallocation function will be called.
1118  if (Matches.size() == 1) {
1119    OperatorDelete = Matches[0].second;
1120
1121    // C++0x [expr.new]p20:
1122    //   If the lookup finds the two-parameter form of a usual
1123    //   deallocation function (3.7.4.2) and that function, considered
1124    //   as a placement deallocation function, would have been
1125    //   selected as a match for the allocation function, the program
1126    //   is ill-formed.
1127    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1128        isNonPlacementDeallocationFunction(OperatorDelete)) {
1129      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1130        << SourceRange(PlaceArgs[0]->getLocStart(),
1131                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1132      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1133        << DeleteName;
1134    } else {
1135      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1136                            Matches[0].first);
1137    }
1138  }
1139
1140  return false;
1141}
1142
1143/// FindAllocationOverload - Find an fitting overload for the allocation
1144/// function in the specified scope.
1145bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1146                                  DeclarationName Name, Expr** Args,
1147                                  unsigned NumArgs, DeclContext *Ctx,
1148                                  bool AllowMissing, FunctionDecl *&Operator) {
1149  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1150  LookupQualifiedName(R, Ctx);
1151  if (R.empty()) {
1152    if (AllowMissing)
1153      return false;
1154    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1155      << Name << Range;
1156  }
1157
1158  if (R.isAmbiguous())
1159    return true;
1160
1161  R.suppressDiagnostics();
1162
1163  OverloadCandidateSet Candidates(StartLoc);
1164  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1165       Alloc != AllocEnd; ++Alloc) {
1166    // Even member operator new/delete are implicitly treated as
1167    // static, so don't use AddMemberCandidate.
1168    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1169
1170    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1171      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1172                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1173                                   Candidates,
1174                                   /*SuppressUserConversions=*/false);
1175      continue;
1176    }
1177
1178    FunctionDecl *Fn = cast<FunctionDecl>(D);
1179    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1180                         /*SuppressUserConversions=*/false);
1181  }
1182
1183  // Do the resolution.
1184  OverloadCandidateSet::iterator Best;
1185  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1186  case OR_Success: {
1187    // Got one!
1188    FunctionDecl *FnDecl = Best->Function;
1189    // The first argument is size_t, and the first parameter must be size_t,
1190    // too. This is checked on declaration and can be assumed. (It can't be
1191    // asserted on, though, since invalid decls are left in there.)
1192    // Watch out for variadic allocator function.
1193    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1194    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1195      ExprResult Result
1196        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1197                                                       FnDecl->getParamDecl(i)),
1198                                    SourceLocation(),
1199                                    Owned(Args[i]->Retain()));
1200      if (Result.isInvalid())
1201        return true;
1202
1203      Args[i] = Result.takeAs<Expr>();
1204    }
1205    Operator = FnDecl;
1206    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1207    return false;
1208  }
1209
1210  case OR_No_Viable_Function:
1211    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1212      << Name << Range;
1213    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1214    return true;
1215
1216  case OR_Ambiguous:
1217    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1218      << Name << Range;
1219    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1220    return true;
1221
1222  case OR_Deleted:
1223    Diag(StartLoc, diag::err_ovl_deleted_call)
1224      << Best->Function->isDeleted()
1225      << Name << Range;
1226    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1227    return true;
1228  }
1229  assert(false && "Unreachable, bad result from BestViableFunction");
1230  return true;
1231}
1232
1233
1234/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1235/// delete. These are:
1236/// @code
1237///   void* operator new(std::size_t) throw(std::bad_alloc);
1238///   void* operator new[](std::size_t) throw(std::bad_alloc);
1239///   void operator delete(void *) throw();
1240///   void operator delete[](void *) throw();
1241/// @endcode
1242/// Note that the placement and nothrow forms of new are *not* implicitly
1243/// declared. Their use requires including \<new\>.
1244void Sema::DeclareGlobalNewDelete() {
1245  if (GlobalNewDeleteDeclared)
1246    return;
1247
1248  // C++ [basic.std.dynamic]p2:
1249  //   [...] The following allocation and deallocation functions (18.4) are
1250  //   implicitly declared in global scope in each translation unit of a
1251  //   program
1252  //
1253  //     void* operator new(std::size_t) throw(std::bad_alloc);
1254  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1255  //     void  operator delete(void*) throw();
1256  //     void  operator delete[](void*) throw();
1257  //
1258  //   These implicit declarations introduce only the function names operator
1259  //   new, operator new[], operator delete, operator delete[].
1260  //
1261  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1262  // "std" or "bad_alloc" as necessary to form the exception specification.
1263  // However, we do not make these implicit declarations visible to name
1264  // lookup.
1265  if (!StdBadAlloc) {
1266    // The "std::bad_alloc" class has not yet been declared, so build it
1267    // implicitly.
1268    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1269                                        getOrCreateStdNamespace(),
1270                                        SourceLocation(),
1271                                      &PP.getIdentifierTable().get("bad_alloc"),
1272                                        SourceLocation(), 0);
1273    getStdBadAlloc()->setImplicit(true);
1274  }
1275
1276  GlobalNewDeleteDeclared = true;
1277
1278  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1279  QualType SizeT = Context.getSizeType();
1280  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1281
1282  DeclareGlobalAllocationFunction(
1283      Context.DeclarationNames.getCXXOperatorName(OO_New),
1284      VoidPtr, SizeT, AssumeSaneOperatorNew);
1285  DeclareGlobalAllocationFunction(
1286      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1287      VoidPtr, SizeT, AssumeSaneOperatorNew);
1288  DeclareGlobalAllocationFunction(
1289      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1290      Context.VoidTy, VoidPtr);
1291  DeclareGlobalAllocationFunction(
1292      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1293      Context.VoidTy, VoidPtr);
1294}
1295
1296/// DeclareGlobalAllocationFunction - Declares a single implicit global
1297/// allocation function if it doesn't already exist.
1298void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1299                                           QualType Return, QualType Argument,
1300                                           bool AddMallocAttr) {
1301  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1302
1303  // Check if this function is already declared.
1304  {
1305    DeclContext::lookup_iterator Alloc, AllocEnd;
1306    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1307         Alloc != AllocEnd; ++Alloc) {
1308      // Only look at non-template functions, as it is the predefined,
1309      // non-templated allocation function we are trying to declare here.
1310      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1311        QualType InitialParamType =
1312          Context.getCanonicalType(
1313            Func->getParamDecl(0)->getType().getUnqualifiedType());
1314        // FIXME: Do we need to check for default arguments here?
1315        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1316          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1317            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1318          return;
1319        }
1320      }
1321    }
1322  }
1323
1324  QualType BadAllocType;
1325  bool HasBadAllocExceptionSpec
1326    = (Name.getCXXOverloadedOperator() == OO_New ||
1327       Name.getCXXOverloadedOperator() == OO_Array_New);
1328  if (HasBadAllocExceptionSpec) {
1329    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1330    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1331  }
1332
1333  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0,
1334                                            true, false,
1335                                            HasBadAllocExceptionSpec? 1 : 0,
1336                                            &BadAllocType,
1337                                            FunctionType::ExtInfo());
1338  FunctionDecl *Alloc =
1339    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
1340                         FnType, /*TInfo=*/0, SC_None,
1341                         SC_None, false, true);
1342  Alloc->setImplicit();
1343
1344  if (AddMallocAttr)
1345    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1346
1347  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1348                                           0, Argument, /*TInfo=*/0,
1349                                           SC_None,
1350                                           SC_None, 0);
1351  Alloc->setParams(&Param, 1);
1352
1353  // FIXME: Also add this declaration to the IdentifierResolver, but
1354  // make sure it is at the end of the chain to coincide with the
1355  // global scope.
1356  Context.getTranslationUnitDecl()->addDecl(Alloc);
1357}
1358
1359bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1360                                    DeclarationName Name,
1361                                    FunctionDecl* &Operator) {
1362  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1363  // Try to find operator delete/operator delete[] in class scope.
1364  LookupQualifiedName(Found, RD);
1365
1366  if (Found.isAmbiguous())
1367    return true;
1368
1369  Found.suppressDiagnostics();
1370
1371  llvm::SmallVector<DeclAccessPair,4> Matches;
1372  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1373       F != FEnd; ++F) {
1374    NamedDecl *ND = (*F)->getUnderlyingDecl();
1375
1376    // Ignore template operator delete members from the check for a usual
1377    // deallocation function.
1378    if (isa<FunctionTemplateDecl>(ND))
1379      continue;
1380
1381    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1382      Matches.push_back(F.getPair());
1383  }
1384
1385  // There's exactly one suitable operator;  pick it.
1386  if (Matches.size() == 1) {
1387    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1388    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1389                          Matches[0]);
1390    return false;
1391
1392  // We found multiple suitable operators;  complain about the ambiguity.
1393  } else if (!Matches.empty()) {
1394    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1395      << Name << RD;
1396
1397    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1398           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1399      Diag((*F)->getUnderlyingDecl()->getLocation(),
1400           diag::note_member_declared_here) << Name;
1401    return true;
1402  }
1403
1404  // We did find operator delete/operator delete[] declarations, but
1405  // none of them were suitable.
1406  if (!Found.empty()) {
1407    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1408      << Name << RD;
1409
1410    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1411         F != FEnd; ++F)
1412      Diag((*F)->getUnderlyingDecl()->getLocation(),
1413           diag::note_member_declared_here) << Name;
1414
1415    return true;
1416  }
1417
1418  // Look for a global declaration.
1419  DeclareGlobalNewDelete();
1420  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1421
1422  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1423  Expr* DeallocArgs[1];
1424  DeallocArgs[0] = &Null;
1425  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1426                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1427                             Operator))
1428    return true;
1429
1430  assert(Operator && "Did not find a deallocation function!");
1431  return false;
1432}
1433
1434/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1435/// @code ::delete ptr; @endcode
1436/// or
1437/// @code delete [] ptr; @endcode
1438ExprResult
1439Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1440                     bool ArrayForm, Expr *Ex) {
1441  // C++ [expr.delete]p1:
1442  //   The operand shall have a pointer type, or a class type having a single
1443  //   conversion function to a pointer type. The result has type void.
1444  //
1445  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1446
1447  FunctionDecl *OperatorDelete = 0;
1448  bool ArrayFormAsWritten = ArrayForm;
1449
1450  if (!Ex->isTypeDependent()) {
1451    QualType Type = Ex->getType();
1452
1453    if (const RecordType *Record = Type->getAs<RecordType>()) {
1454      if (RequireCompleteType(StartLoc, Type,
1455                              PDiag(diag::err_delete_incomplete_class_type)))
1456        return ExprError();
1457
1458      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1459
1460      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1461      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1462      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1463             E = Conversions->end(); I != E; ++I) {
1464        NamedDecl *D = I.getDecl();
1465        if (isa<UsingShadowDecl>(D))
1466          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1467
1468        // Skip over templated conversion functions; they aren't considered.
1469        if (isa<FunctionTemplateDecl>(D))
1470          continue;
1471
1472        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1473
1474        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1475        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1476          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1477            ObjectPtrConversions.push_back(Conv);
1478      }
1479      if (ObjectPtrConversions.size() == 1) {
1480        // We have a single conversion to a pointer-to-object type. Perform
1481        // that conversion.
1482        // TODO: don't redo the conversion calculation.
1483        if (!PerformImplicitConversion(Ex,
1484                            ObjectPtrConversions.front()->getConversionType(),
1485                                      AA_Converting)) {
1486          Type = Ex->getType();
1487        }
1488      }
1489      else if (ObjectPtrConversions.size() > 1) {
1490        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1491              << Type << Ex->getSourceRange();
1492        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1493          NoteOverloadCandidate(ObjectPtrConversions[i]);
1494        return ExprError();
1495      }
1496    }
1497
1498    if (!Type->isPointerType())
1499      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1500        << Type << Ex->getSourceRange());
1501
1502    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1503    if (Pointee->isVoidType() && !isSFINAEContext()) {
1504      // The C++ standard bans deleting a pointer to a non-object type, which
1505      // effectively bans deletion of "void*". However, most compilers support
1506      // this, so we treat it as a warning unless we're in a SFINAE context.
1507      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1508        << Type << Ex->getSourceRange();
1509    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1510      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1511        << Type << Ex->getSourceRange());
1512    else if (!Pointee->isDependentType() &&
1513             RequireCompleteType(StartLoc, Pointee,
1514                                 PDiag(diag::warn_delete_incomplete)
1515                                   << Ex->getSourceRange()))
1516      return ExprError();
1517
1518    // C++ [expr.delete]p2:
1519    //   [Note: a pointer to a const type can be the operand of a
1520    //   delete-expression; it is not necessary to cast away the constness
1521    //   (5.2.11) of the pointer expression before it is used as the operand
1522    //   of the delete-expression. ]
1523    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1524                      CK_NoOp);
1525
1526    if (Pointee->isArrayType() && !ArrayForm) {
1527      Diag(StartLoc, diag::warn_delete_array_type)
1528          << Type << Ex->getSourceRange()
1529          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1530      ArrayForm = true;
1531    }
1532
1533    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1534                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1535
1536    QualType PointeeElem = Context.getBaseElementType(Pointee);
1537    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1538      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1539
1540      if (!UseGlobal &&
1541          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1542        return ExprError();
1543
1544      if (!RD->hasTrivialDestructor())
1545        if (const CXXDestructorDecl *Dtor = LookupDestructor(RD))
1546          MarkDeclarationReferenced(StartLoc,
1547                                    const_cast<CXXDestructorDecl*>(Dtor));
1548    }
1549
1550    if (!OperatorDelete) {
1551      // Look for a global declaration.
1552      DeclareGlobalNewDelete();
1553      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1554      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1555                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1556                                 OperatorDelete))
1557        return ExprError();
1558    }
1559
1560    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1561
1562    // FIXME: Check access and ambiguity of operator delete and destructor.
1563  }
1564
1565  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1566                                           ArrayFormAsWritten, OperatorDelete,
1567                                           Ex, StartLoc));
1568}
1569
1570/// \brief Check the use of the given variable as a C++ condition in an if,
1571/// while, do-while, or switch statement.
1572ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1573                                                      SourceLocation StmtLoc,
1574                                                      bool ConvertToBoolean) {
1575  QualType T = ConditionVar->getType();
1576
1577  // C++ [stmt.select]p2:
1578  //   The declarator shall not specify a function or an array.
1579  if (T->isFunctionType())
1580    return ExprError(Diag(ConditionVar->getLocation(),
1581                          diag::err_invalid_use_of_function_type)
1582                       << ConditionVar->getSourceRange());
1583  else if (T->isArrayType())
1584    return ExprError(Diag(ConditionVar->getLocation(),
1585                          diag::err_invalid_use_of_array_type)
1586                     << ConditionVar->getSourceRange());
1587
1588  Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
1589                                        ConditionVar->getLocation(),
1590                                 ConditionVar->getType().getNonReferenceType());
1591  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1592    return ExprError();
1593
1594  return Owned(Condition);
1595}
1596
1597/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1598bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1599  // C++ 6.4p4:
1600  // The value of a condition that is an initialized declaration in a statement
1601  // other than a switch statement is the value of the declared variable
1602  // implicitly converted to type bool. If that conversion is ill-formed, the
1603  // program is ill-formed.
1604  // The value of a condition that is an expression is the value of the
1605  // expression, implicitly converted to bool.
1606  //
1607  return PerformContextuallyConvertToBool(CondExpr);
1608}
1609
1610/// Helper function to determine whether this is the (deprecated) C++
1611/// conversion from a string literal to a pointer to non-const char or
1612/// non-const wchar_t (for narrow and wide string literals,
1613/// respectively).
1614bool
1615Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1616  // Look inside the implicit cast, if it exists.
1617  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1618    From = Cast->getSubExpr();
1619
1620  // A string literal (2.13.4) that is not a wide string literal can
1621  // be converted to an rvalue of type "pointer to char"; a wide
1622  // string literal can be converted to an rvalue of type "pointer
1623  // to wchar_t" (C++ 4.2p2).
1624  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1625    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1626      if (const BuiltinType *ToPointeeType
1627          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1628        // This conversion is considered only when there is an
1629        // explicit appropriate pointer target type (C++ 4.2p2).
1630        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1631            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1632             (!StrLit->isWide() &&
1633              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1634               ToPointeeType->getKind() == BuiltinType::Char_S))))
1635          return true;
1636      }
1637
1638  return false;
1639}
1640
1641static ExprResult BuildCXXCastArgument(Sema &S,
1642                                       SourceLocation CastLoc,
1643                                       QualType Ty,
1644                                       CastKind Kind,
1645                                       CXXMethodDecl *Method,
1646                                       Expr *From) {
1647  switch (Kind) {
1648  default: assert(0 && "Unhandled cast kind!");
1649  case CK_ConstructorConversion: {
1650    ASTOwningVector<Expr*> ConstructorArgs(S);
1651
1652    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1653                                  MultiExprArg(&From, 1),
1654                                  CastLoc, ConstructorArgs))
1655      return ExprError();
1656
1657    ExprResult Result =
1658    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1659                            move_arg(ConstructorArgs),
1660                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete);
1661    if (Result.isInvalid())
1662      return ExprError();
1663
1664    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1665  }
1666
1667  case CK_UserDefinedConversion: {
1668    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1669
1670    // Create an implicit call expr that calls it.
1671    // FIXME: pass the FoundDecl for the user-defined conversion here
1672    CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method);
1673    return S.MaybeBindToTemporary(CE);
1674  }
1675  }
1676}
1677
1678/// PerformImplicitConversion - Perform an implicit conversion of the
1679/// expression From to the type ToType using the pre-computed implicit
1680/// conversion sequence ICS. Returns true if there was an error, false
1681/// otherwise. The expression From is replaced with the converted
1682/// expression. Action is the kind of conversion we're performing,
1683/// used in the error message.
1684bool
1685Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1686                                const ImplicitConversionSequence &ICS,
1687                                AssignmentAction Action, bool IgnoreBaseAccess) {
1688  switch (ICS.getKind()) {
1689  case ImplicitConversionSequence::StandardConversion:
1690    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1691                                  IgnoreBaseAccess))
1692      return true;
1693    break;
1694
1695  case ImplicitConversionSequence::UserDefinedConversion: {
1696
1697      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1698      CastKind CastKind = CK_Unknown;
1699      QualType BeforeToType;
1700      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1701        CastKind = CK_UserDefinedConversion;
1702
1703        // If the user-defined conversion is specified by a conversion function,
1704        // the initial standard conversion sequence converts the source type to
1705        // the implicit object parameter of the conversion function.
1706        BeforeToType = Context.getTagDeclType(Conv->getParent());
1707      } else if (const CXXConstructorDecl *Ctor =
1708                  dyn_cast<CXXConstructorDecl>(FD)) {
1709        CastKind = CK_ConstructorConversion;
1710        // Do no conversion if dealing with ... for the first conversion.
1711        if (!ICS.UserDefined.EllipsisConversion) {
1712          // If the user-defined conversion is specified by a constructor, the
1713          // initial standard conversion sequence converts the source type to the
1714          // type required by the argument of the constructor
1715          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1716        }
1717      }
1718      else
1719        assert(0 && "Unknown conversion function kind!");
1720      // Whatch out for elipsis conversion.
1721      if (!ICS.UserDefined.EllipsisConversion) {
1722        if (PerformImplicitConversion(From, BeforeToType,
1723                                      ICS.UserDefined.Before, AA_Converting,
1724                                      IgnoreBaseAccess))
1725          return true;
1726      }
1727
1728      ExprResult CastArg
1729        = BuildCXXCastArgument(*this,
1730                               From->getLocStart(),
1731                               ToType.getNonReferenceType(),
1732                               CastKind, cast<CXXMethodDecl>(FD),
1733                               From);
1734
1735      if (CastArg.isInvalid())
1736        return true;
1737
1738      From = CastArg.takeAs<Expr>();
1739
1740      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1741                                       AA_Converting, IgnoreBaseAccess);
1742  }
1743
1744  case ImplicitConversionSequence::AmbiguousConversion:
1745    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1746                          PDiag(diag::err_typecheck_ambiguous_condition)
1747                            << From->getSourceRange());
1748     return true;
1749
1750  case ImplicitConversionSequence::EllipsisConversion:
1751    assert(false && "Cannot perform an ellipsis conversion");
1752    return false;
1753
1754  case ImplicitConversionSequence::BadConversion:
1755    return true;
1756  }
1757
1758  // Everything went well.
1759  return false;
1760}
1761
1762/// PerformImplicitConversion - Perform an implicit conversion of the
1763/// expression From to the type ToType by following the standard
1764/// conversion sequence SCS. Returns true if there was an error, false
1765/// otherwise. The expression From is replaced with the converted
1766/// expression. Flavor is the context in which we're performing this
1767/// conversion, for use in error messages.
1768bool
1769Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1770                                const StandardConversionSequence& SCS,
1771                                AssignmentAction Action, bool IgnoreBaseAccess) {
1772  // Overall FIXME: we are recomputing too many types here and doing far too
1773  // much extra work. What this means is that we need to keep track of more
1774  // information that is computed when we try the implicit conversion initially,
1775  // so that we don't need to recompute anything here.
1776  QualType FromType = From->getType();
1777
1778  if (SCS.CopyConstructor) {
1779    // FIXME: When can ToType be a reference type?
1780    assert(!ToType->isReferenceType());
1781    if (SCS.Second == ICK_Derived_To_Base) {
1782      ASTOwningVector<Expr*> ConstructorArgs(*this);
1783      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1784                                  MultiExprArg(*this, &From, 1),
1785                                  /*FIXME:ConstructLoc*/SourceLocation(),
1786                                  ConstructorArgs))
1787        return true;
1788      ExprResult FromResult =
1789        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1790                              ToType, SCS.CopyConstructor,
1791                              move_arg(ConstructorArgs),
1792                              /*ZeroInit*/ false,
1793                              CXXConstructExpr::CK_Complete);
1794      if (FromResult.isInvalid())
1795        return true;
1796      From = FromResult.takeAs<Expr>();
1797      return false;
1798    }
1799    ExprResult FromResult =
1800      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1801                            ToType, SCS.CopyConstructor,
1802                            MultiExprArg(*this, &From, 1),
1803                            /*ZeroInit*/ false,
1804                            CXXConstructExpr::CK_Complete);
1805
1806    if (FromResult.isInvalid())
1807      return true;
1808
1809    From = FromResult.takeAs<Expr>();
1810    return false;
1811  }
1812
1813  // Resolve overloaded function references.
1814  if (Context.hasSameType(FromType, Context.OverloadTy)) {
1815    DeclAccessPair Found;
1816    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
1817                                                          true, Found);
1818    if (!Fn)
1819      return true;
1820
1821    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
1822      return true;
1823
1824    From = FixOverloadedFunctionReference(From, Found, Fn);
1825    FromType = From->getType();
1826  }
1827
1828  // Perform the first implicit conversion.
1829  switch (SCS.First) {
1830  case ICK_Identity:
1831  case ICK_Lvalue_To_Rvalue:
1832    // Nothing to do.
1833    break;
1834
1835  case ICK_Array_To_Pointer:
1836    FromType = Context.getArrayDecayedType(FromType);
1837    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
1838    break;
1839
1840  case ICK_Function_To_Pointer:
1841    FromType = Context.getPointerType(FromType);
1842    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
1843    break;
1844
1845  default:
1846    assert(false && "Improper first standard conversion");
1847    break;
1848  }
1849
1850  // Perform the second implicit conversion
1851  switch (SCS.Second) {
1852  case ICK_Identity:
1853    // If both sides are functions (or pointers/references to them), there could
1854    // be incompatible exception declarations.
1855    if (CheckExceptionSpecCompatibility(From, ToType))
1856      return true;
1857    // Nothing else to do.
1858    break;
1859
1860  case ICK_NoReturn_Adjustment:
1861    // If both sides are functions (or pointers/references to them), there could
1862    // be incompatible exception declarations.
1863    if (CheckExceptionSpecCompatibility(From, ToType))
1864      return true;
1865
1866    ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false),
1867                      CK_NoOp);
1868    break;
1869
1870  case ICK_Integral_Promotion:
1871  case ICK_Integral_Conversion:
1872    ImpCastExprToType(From, ToType, CK_IntegralCast);
1873    break;
1874
1875  case ICK_Floating_Promotion:
1876  case ICK_Floating_Conversion:
1877    ImpCastExprToType(From, ToType, CK_FloatingCast);
1878    break;
1879
1880  case ICK_Complex_Promotion:
1881  case ICK_Complex_Conversion:
1882    ImpCastExprToType(From, ToType, CK_Unknown);
1883    break;
1884
1885  case ICK_Floating_Integral:
1886    if (ToType->isRealFloatingType())
1887      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
1888    else
1889      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
1890    break;
1891
1892  case ICK_Compatible_Conversion:
1893    ImpCastExprToType(From, ToType, CK_NoOp);
1894    break;
1895
1896  case ICK_Pointer_Conversion: {
1897    if (SCS.IncompatibleObjC) {
1898      // Diagnose incompatible Objective-C conversions
1899      Diag(From->getSourceRange().getBegin(),
1900           diag::ext_typecheck_convert_incompatible_pointer)
1901        << From->getType() << ToType << Action
1902        << From->getSourceRange();
1903    }
1904
1905
1906    CastKind Kind = CK_Unknown;
1907    CXXCastPath BasePath;
1908    if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess))
1909      return true;
1910    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
1911    break;
1912  }
1913
1914  case ICK_Pointer_Member: {
1915    CastKind Kind = CK_Unknown;
1916    CXXCastPath BasePath;
1917    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath,
1918                                     IgnoreBaseAccess))
1919      return true;
1920    if (CheckExceptionSpecCompatibility(From, ToType))
1921      return true;
1922    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
1923    break;
1924  }
1925  case ICK_Boolean_Conversion: {
1926    CastKind Kind = CK_Unknown;
1927    if (FromType->isMemberPointerType())
1928      Kind = CK_MemberPointerToBoolean;
1929
1930    ImpCastExprToType(From, Context.BoolTy, Kind);
1931    break;
1932  }
1933
1934  case ICK_Derived_To_Base: {
1935    CXXCastPath BasePath;
1936    if (CheckDerivedToBaseConversion(From->getType(),
1937                                     ToType.getNonReferenceType(),
1938                                     From->getLocStart(),
1939                                     From->getSourceRange(),
1940                                     &BasePath,
1941                                     IgnoreBaseAccess))
1942      return true;
1943
1944    ImpCastExprToType(From, ToType.getNonReferenceType(),
1945                      CK_DerivedToBase, CastCategory(From),
1946                      &BasePath);
1947    break;
1948  }
1949
1950  case ICK_Vector_Conversion:
1951    ImpCastExprToType(From, ToType, CK_BitCast);
1952    break;
1953
1954  case ICK_Vector_Splat:
1955    ImpCastExprToType(From, ToType, CK_VectorSplat);
1956    break;
1957
1958  case ICK_Complex_Real:
1959    ImpCastExprToType(From, ToType, CK_Unknown);
1960    break;
1961
1962  case ICK_Lvalue_To_Rvalue:
1963  case ICK_Array_To_Pointer:
1964  case ICK_Function_To_Pointer:
1965  case ICK_Qualification:
1966  case ICK_Num_Conversion_Kinds:
1967    assert(false && "Improper second standard conversion");
1968    break;
1969  }
1970
1971  switch (SCS.Third) {
1972  case ICK_Identity:
1973    // Nothing to do.
1974    break;
1975
1976  case ICK_Qualification: {
1977    // The qualification keeps the category of the inner expression, unless the
1978    // target type isn't a reference.
1979    ExprValueKind VK = ToType->isReferenceType() ?
1980                                  CastCategory(From) : VK_RValue;
1981    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
1982                      CK_NoOp, VK);
1983
1984    if (SCS.DeprecatedStringLiteralToCharPtr)
1985      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
1986        << ToType.getNonReferenceType();
1987
1988    break;
1989    }
1990
1991  default:
1992    assert(false && "Improper third standard conversion");
1993    break;
1994  }
1995
1996  return false;
1997}
1998
1999ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2000                                     SourceLocation KWLoc,
2001                                     ParsedType Ty,
2002                                     SourceLocation RParen) {
2003  TypeSourceInfo *TSInfo;
2004  QualType T = GetTypeFromParser(Ty, &TSInfo);
2005
2006  if (!TSInfo)
2007    TSInfo = Context.getTrivialTypeSourceInfo(T);
2008  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2009}
2010
2011static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T) {
2012  assert(!T->isDependentType() &&
2013         "Cannot evaluate traits for dependent types.");
2014  ASTContext &C = Self.Context;
2015  switch(UTT) {
2016  default: assert(false && "Unknown type trait or not implemented");
2017  case UTT_IsPOD: return T->isPODType();
2018  case UTT_IsLiteral: return T->isLiteralType();
2019  case UTT_IsClass: // Fallthrough
2020  case UTT_IsUnion:
2021    if (const RecordType *Record = T->getAs<RecordType>()) {
2022      bool Union = Record->getDecl()->isUnion();
2023      return UTT == UTT_IsUnion ? Union : !Union;
2024    }
2025    return false;
2026  case UTT_IsEnum: return T->isEnumeralType();
2027  case UTT_IsPolymorphic:
2028    if (const RecordType *Record = T->getAs<RecordType>()) {
2029      // Type traits are only parsed in C++, so we've got CXXRecords.
2030      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2031    }
2032    return false;
2033  case UTT_IsAbstract:
2034    if (const RecordType *RT = T->getAs<RecordType>())
2035      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2036    return false;
2037  case UTT_IsEmpty:
2038    if (const RecordType *Record = T->getAs<RecordType>()) {
2039      return !Record->getDecl()->isUnion()
2040          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2041    }
2042    return false;
2043  case UTT_HasTrivialConstructor:
2044    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2045    //   If __is_pod (type) is true then the trait is true, else if type is
2046    //   a cv class or union type (or array thereof) with a trivial default
2047    //   constructor ([class.ctor]) then the trait is true, else it is false.
2048    if (T->isPODType())
2049      return true;
2050    if (const RecordType *RT =
2051          C.getBaseElementType(T)->getAs<RecordType>())
2052      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2053    return false;
2054  case UTT_HasTrivialCopy:
2055    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2056    //   If __is_pod (type) is true or type is a reference type then
2057    //   the trait is true, else if type is a cv class or union type
2058    //   with a trivial copy constructor ([class.copy]) then the trait
2059    //   is true, else it is false.
2060    if (T->isPODType() || T->isReferenceType())
2061      return true;
2062    if (const RecordType *RT = T->getAs<RecordType>())
2063      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2064    return false;
2065  case UTT_HasTrivialAssign:
2066    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2067    //   If type is const qualified or is a reference type then the
2068    //   trait is false. Otherwise if __is_pod (type) is true then the
2069    //   trait is true, else if type is a cv class or union type with
2070    //   a trivial copy assignment ([class.copy]) then the trait is
2071    //   true, else it is false.
2072    // Note: the const and reference restrictions are interesting,
2073    // given that const and reference members don't prevent a class
2074    // from having a trivial copy assignment operator (but do cause
2075    // errors if the copy assignment operator is actually used, q.v.
2076    // [class.copy]p12).
2077
2078    if (C.getBaseElementType(T).isConstQualified())
2079      return false;
2080    if (T->isPODType())
2081      return true;
2082    if (const RecordType *RT = T->getAs<RecordType>())
2083      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2084    return false;
2085  case UTT_HasTrivialDestructor:
2086    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2087    //   If __is_pod (type) is true or type is a reference type
2088    //   then the trait is true, else if type is a cv class or union
2089    //   type (or array thereof) with a trivial destructor
2090    //   ([class.dtor]) then the trait is true, else it is
2091    //   false.
2092    if (T->isPODType() || T->isReferenceType())
2093      return true;
2094    if (const RecordType *RT =
2095          C.getBaseElementType(T)->getAs<RecordType>())
2096      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2097    return false;
2098  // TODO: Propagate nothrowness for implicitly declared special members.
2099  case UTT_HasNothrowAssign:
2100    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2101    //   If type is const qualified or is a reference type then the
2102    //   trait is false. Otherwise if __has_trivial_assign (type)
2103    //   is true then the trait is true, else if type is a cv class
2104    //   or union type with copy assignment operators that are known
2105    //   not to throw an exception then the trait is true, else it is
2106    //   false.
2107    if (C.getBaseElementType(T).isConstQualified())
2108      return false;
2109    if (T->isReferenceType())
2110      return false;
2111    if (T->isPODType())
2112      return true;
2113    if (const RecordType *RT = T->getAs<RecordType>()) {
2114      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2115      if (RD->hasTrivialCopyAssignment())
2116        return true;
2117
2118      bool FoundAssign = false;
2119      bool AllNoThrow = true;
2120      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2121      DeclContext::lookup_const_iterator Op, OpEnd;
2122      for (llvm::tie(Op, OpEnd) = RD->lookup(Name);
2123           Op != OpEnd; ++Op) {
2124        CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2125        if (Operator->isCopyAssignmentOperator()) {
2126          FoundAssign = true;
2127          const FunctionProtoType *CPT
2128              = Operator->getType()->getAs<FunctionProtoType>();
2129          if (!CPT->hasEmptyExceptionSpec()) {
2130            AllNoThrow = false;
2131            break;
2132          }
2133        }
2134      }
2135
2136      return FoundAssign && AllNoThrow;
2137    }
2138    return false;
2139  case UTT_HasNothrowCopy:
2140    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2141    //   If __has_trivial_copy (type) is true then the trait is true, else
2142    //   if type is a cv class or union type with copy constructors that are
2143    //   known not to throw an exception then the trait is true, else it is
2144    //   false.
2145    if (T->isPODType() || T->isReferenceType())
2146      return true;
2147    if (const RecordType *RT = T->getAs<RecordType>()) {
2148      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2149      if (RD->hasTrivialCopyConstructor())
2150        return true;
2151
2152      bool FoundConstructor = false;
2153      bool AllNoThrow = true;
2154      unsigned FoundTQs;
2155      DeclContext::lookup_const_iterator Con, ConEnd;
2156      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2157           Con != ConEnd; ++Con) {
2158        // A template constructor is never a copy constructor.
2159        // FIXME: However, it may actually be selected at the actual overload
2160        // resolution point.
2161        if (isa<FunctionTemplateDecl>(*Con))
2162          continue;
2163        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2164        if (Constructor->isCopyConstructor(FoundTQs)) {
2165          FoundConstructor = true;
2166          const FunctionProtoType *CPT
2167              = Constructor->getType()->getAs<FunctionProtoType>();
2168          // TODO: check whether evaluating default arguments can throw.
2169          // For now, we'll be conservative and assume that they can throw.
2170          if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
2171            AllNoThrow = false;
2172            break;
2173          }
2174        }
2175      }
2176
2177      return FoundConstructor && AllNoThrow;
2178    }
2179    return false;
2180  case UTT_HasNothrowConstructor:
2181    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2182    //   If __has_trivial_constructor (type) is true then the trait is
2183    //   true, else if type is a cv class or union type (or array
2184    //   thereof) with a default constructor that is known not to
2185    //   throw an exception then the trait is true, else it is false.
2186    if (T->isPODType())
2187      return true;
2188    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2189      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2190      if (RD->hasTrivialConstructor())
2191        return true;
2192
2193      DeclContext::lookup_const_iterator Con, ConEnd;
2194      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2195           Con != ConEnd; ++Con) {
2196        // FIXME: In C++0x, a constructor template can be a default constructor.
2197        if (isa<FunctionTemplateDecl>(*Con))
2198          continue;
2199        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2200        if (Constructor->isDefaultConstructor()) {
2201          const FunctionProtoType *CPT
2202              = Constructor->getType()->getAs<FunctionProtoType>();
2203          // TODO: check whether evaluating default arguments can throw.
2204          // For now, we'll be conservative and assume that they can throw.
2205          return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
2206        }
2207      }
2208    }
2209    return false;
2210  case UTT_HasVirtualDestructor:
2211    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2212    //   If type is a class type with a virtual destructor ([class.dtor])
2213    //   then the trait is true, else it is false.
2214    if (const RecordType *Record = T->getAs<RecordType>()) {
2215      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2216      if (CXXDestructorDecl *Destructor = RD->getDestructor())
2217        return Destructor->isVirtual();
2218    }
2219    return false;
2220  }
2221}
2222
2223ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2224                                     SourceLocation KWLoc,
2225                                     TypeSourceInfo *TSInfo,
2226                                     SourceLocation RParen) {
2227  QualType T = TSInfo->getType();
2228
2229  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2230  // all traits except __is_class, __is_enum and __is_union require a the type
2231  // to be complete, an array of unknown bound, or void.
2232  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2233    QualType E = T;
2234    if (T->isIncompleteArrayType())
2235      E = Context.getAsArrayType(T)->getElementType();
2236    if (!T->isVoidType() &&
2237        RequireCompleteType(KWLoc, E,
2238                            diag::err_incomplete_type_used_in_type_trait_expr))
2239      return ExprError();
2240  }
2241
2242  bool Value = false;
2243  if (!T->isDependentType())
2244    Value = EvaluateUnaryTypeTrait(*this, UTT, T);
2245
2246  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2247                                                RParen, Context.BoolTy));
2248}
2249
2250QualType Sema::CheckPointerToMemberOperands(
2251  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) {
2252  const char *OpSpelling = isIndirect ? "->*" : ".*";
2253  // C++ 5.5p2
2254  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2255  //   be of type "pointer to member of T" (where T is a completely-defined
2256  //   class type) [...]
2257  QualType RType = rex->getType();
2258  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2259  if (!MemPtr) {
2260    Diag(Loc, diag::err_bad_memptr_rhs)
2261      << OpSpelling << RType << rex->getSourceRange();
2262    return QualType();
2263  }
2264
2265  QualType Class(MemPtr->getClass(), 0);
2266
2267  if (RequireCompleteType(Loc, Class, diag::err_memptr_rhs_to_incomplete))
2268    return QualType();
2269
2270  // C++ 5.5p2
2271  //   [...] to its first operand, which shall be of class T or of a class of
2272  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2273  //   such a class]
2274  QualType LType = lex->getType();
2275  if (isIndirect) {
2276    if (const PointerType *Ptr = LType->getAs<PointerType>())
2277      LType = Ptr->getPointeeType().getNonReferenceType();
2278    else {
2279      Diag(Loc, diag::err_bad_memptr_lhs)
2280        << OpSpelling << 1 << LType
2281        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2282      return QualType();
2283    }
2284  }
2285
2286  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2287    // If we want to check the hierarchy, we need a complete type.
2288    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2289        << OpSpelling << (int)isIndirect)) {
2290      return QualType();
2291    }
2292    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2293                       /*DetectVirtual=*/false);
2294    // FIXME: Would it be useful to print full ambiguity paths, or is that
2295    // overkill?
2296    if (!IsDerivedFrom(LType, Class, Paths) ||
2297        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2298      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2299        << (int)isIndirect << lex->getType();
2300      return QualType();
2301    }
2302    // Cast LHS to type of use.
2303    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2304    ExprValueKind VK =
2305        isIndirect ? VK_RValue : CastCategory(lex);
2306
2307    CXXCastPath BasePath;
2308    BuildBasePathArray(Paths, BasePath);
2309    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2310  }
2311
2312  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2313    // Diagnose use of pointer-to-member type which when used as
2314    // the functional cast in a pointer-to-member expression.
2315    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2316     return QualType();
2317  }
2318  // C++ 5.5p2
2319  //   The result is an object or a function of the type specified by the
2320  //   second operand.
2321  // The cv qualifiers are the union of those in the pointer and the left side,
2322  // in accordance with 5.5p5 and 5.2.5.
2323  // FIXME: This returns a dereferenced member function pointer as a normal
2324  // function type. However, the only operation valid on such functions is
2325  // calling them. There's also a GCC extension to get a function pointer to the
2326  // thing, which is another complication, because this type - unlike the type
2327  // that is the result of this expression - takes the class as the first
2328  // argument.
2329  // We probably need a "MemberFunctionClosureType" or something like that.
2330  QualType Result = MemPtr->getPointeeType();
2331  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2332  return Result;
2333}
2334
2335/// \brief Try to convert a type to another according to C++0x 5.16p3.
2336///
2337/// This is part of the parameter validation for the ? operator. If either
2338/// value operand is a class type, the two operands are attempted to be
2339/// converted to each other. This function does the conversion in one direction.
2340/// It returns true if the program is ill-formed and has already been diagnosed
2341/// as such.
2342static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2343                                SourceLocation QuestionLoc,
2344                                bool &HaveConversion,
2345                                QualType &ToType) {
2346  HaveConversion = false;
2347  ToType = To->getType();
2348
2349  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2350                                                           SourceLocation());
2351  // C++0x 5.16p3
2352  //   The process for determining whether an operand expression E1 of type T1
2353  //   can be converted to match an operand expression E2 of type T2 is defined
2354  //   as follows:
2355  //   -- If E2 is an lvalue:
2356  bool ToIsLvalue = (To->isLvalue(Self.Context) == Expr::LV_Valid);
2357  if (ToIsLvalue) {
2358    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2359    //   type "lvalue reference to T2", subject to the constraint that in the
2360    //   conversion the reference must bind directly to E1.
2361    QualType T = Self.Context.getLValueReferenceType(ToType);
2362    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2363
2364    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2365    if (InitSeq.isDirectReferenceBinding()) {
2366      ToType = T;
2367      HaveConversion = true;
2368      return false;
2369    }
2370
2371    if (InitSeq.isAmbiguous())
2372      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2373  }
2374
2375  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2376  //      -- if E1 and E2 have class type, and the underlying class types are
2377  //         the same or one is a base class of the other:
2378  QualType FTy = From->getType();
2379  QualType TTy = To->getType();
2380  const RecordType *FRec = FTy->getAs<RecordType>();
2381  const RecordType *TRec = TTy->getAs<RecordType>();
2382  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2383                       Self.IsDerivedFrom(FTy, TTy);
2384  if (FRec && TRec &&
2385      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2386    //         E1 can be converted to match E2 if the class of T2 is the
2387    //         same type as, or a base class of, the class of T1, and
2388    //         [cv2 > cv1].
2389    if (FRec == TRec || FDerivedFromT) {
2390      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2391        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2392        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2393        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2394          HaveConversion = true;
2395          return false;
2396        }
2397
2398        if (InitSeq.isAmbiguous())
2399          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2400      }
2401    }
2402
2403    return false;
2404  }
2405
2406  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2407  //        implicitly converted to the type that expression E2 would have
2408  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2409  //        an rvalue).
2410  //
2411  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2412  // to the array-to-pointer or function-to-pointer conversions.
2413  if (!TTy->getAs<TagType>())
2414    TTy = TTy.getUnqualifiedType();
2415
2416  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2417  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2418  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2419  ToType = TTy;
2420  if (InitSeq.isAmbiguous())
2421    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2422
2423  return false;
2424}
2425
2426/// \brief Try to find a common type for two according to C++0x 5.16p5.
2427///
2428/// This is part of the parameter validation for the ? operator. If either
2429/// value operand is a class type, overload resolution is used to find a
2430/// conversion to a common type.
2431static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2432                                    SourceLocation Loc) {
2433  Expr *Args[2] = { LHS, RHS };
2434  OverloadCandidateSet CandidateSet(Loc);
2435  Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
2436
2437  OverloadCandidateSet::iterator Best;
2438  switch (CandidateSet.BestViableFunction(Self, Loc, Best)) {
2439    case OR_Success:
2440      // We found a match. Perform the conversions on the arguments and move on.
2441      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2442                                         Best->Conversions[0], Sema::AA_Converting) ||
2443          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2444                                         Best->Conversions[1], Sema::AA_Converting))
2445        break;
2446      return false;
2447
2448    case OR_No_Viable_Function:
2449      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
2450        << LHS->getType() << RHS->getType()
2451        << LHS->getSourceRange() << RHS->getSourceRange();
2452      return true;
2453
2454    case OR_Ambiguous:
2455      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
2456        << LHS->getType() << RHS->getType()
2457        << LHS->getSourceRange() << RHS->getSourceRange();
2458      // FIXME: Print the possible common types by printing the return types of
2459      // the viable candidates.
2460      break;
2461
2462    case OR_Deleted:
2463      assert(false && "Conditional operator has only built-in overloads");
2464      break;
2465  }
2466  return true;
2467}
2468
2469/// \brief Perform an "extended" implicit conversion as returned by
2470/// TryClassUnification.
2471static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2472  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2473  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2474                                                           SourceLocation());
2475  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2476  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2477  if (Result.isInvalid())
2478    return true;
2479
2480  E = Result.takeAs<Expr>();
2481  return false;
2482}
2483
2484/// \brief Check the operands of ?: under C++ semantics.
2485///
2486/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2487/// extension. In this case, LHS == Cond. (But they're not aliases.)
2488QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2489                                           SourceLocation QuestionLoc) {
2490  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2491  // interface pointers.
2492
2493  // C++0x 5.16p1
2494  //   The first expression is contextually converted to bool.
2495  if (!Cond->isTypeDependent()) {
2496    if (CheckCXXBooleanCondition(Cond))
2497      return QualType();
2498  }
2499
2500  // Either of the arguments dependent?
2501  if (LHS->isTypeDependent() || RHS->isTypeDependent())
2502    return Context.DependentTy;
2503
2504  // C++0x 5.16p2
2505  //   If either the second or the third operand has type (cv) void, ...
2506  QualType LTy = LHS->getType();
2507  QualType RTy = RHS->getType();
2508  bool LVoid = LTy->isVoidType();
2509  bool RVoid = RTy->isVoidType();
2510  if (LVoid || RVoid) {
2511    //   ... then the [l2r] conversions are performed on the second and third
2512    //   operands ...
2513    DefaultFunctionArrayLvalueConversion(LHS);
2514    DefaultFunctionArrayLvalueConversion(RHS);
2515    LTy = LHS->getType();
2516    RTy = RHS->getType();
2517
2518    //   ... and one of the following shall hold:
2519    //   -- The second or the third operand (but not both) is a throw-
2520    //      expression; the result is of the type of the other and is an rvalue.
2521    bool LThrow = isa<CXXThrowExpr>(LHS);
2522    bool RThrow = isa<CXXThrowExpr>(RHS);
2523    if (LThrow && !RThrow)
2524      return RTy;
2525    if (RThrow && !LThrow)
2526      return LTy;
2527
2528    //   -- Both the second and third operands have type void; the result is of
2529    //      type void and is an rvalue.
2530    if (LVoid && RVoid)
2531      return Context.VoidTy;
2532
2533    // Neither holds, error.
2534    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
2535      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
2536      << LHS->getSourceRange() << RHS->getSourceRange();
2537    return QualType();
2538  }
2539
2540  // Neither is void.
2541
2542  // C++0x 5.16p3
2543  //   Otherwise, if the second and third operand have different types, and
2544  //   either has (cv) class type, and attempt is made to convert each of those
2545  //   operands to the other.
2546  if (!Context.hasSameType(LTy, RTy) &&
2547      (LTy->isRecordType() || RTy->isRecordType())) {
2548    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
2549    // These return true if a single direction is already ambiguous.
2550    QualType L2RType, R2LType;
2551    bool HaveL2R, HaveR2L;
2552    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
2553      return QualType();
2554    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
2555      return QualType();
2556
2557    //   If both can be converted, [...] the program is ill-formed.
2558    if (HaveL2R && HaveR2L) {
2559      Diag(QuestionLoc, diag::err_conditional_ambiguous)
2560        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
2561      return QualType();
2562    }
2563
2564    //   If exactly one conversion is possible, that conversion is applied to
2565    //   the chosen operand and the converted operands are used in place of the
2566    //   original operands for the remainder of this section.
2567    if (HaveL2R) {
2568      if (ConvertForConditional(*this, LHS, L2RType))
2569        return QualType();
2570      LTy = LHS->getType();
2571    } else if (HaveR2L) {
2572      if (ConvertForConditional(*this, RHS, R2LType))
2573        return QualType();
2574      RTy = RHS->getType();
2575    }
2576  }
2577
2578  // C++0x 5.16p4
2579  //   If the second and third operands are lvalues and have the same type,
2580  //   the result is of that type [...]
2581  bool Same = Context.hasSameType(LTy, RTy);
2582  if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
2583      RHS->isLvalue(Context) == Expr::LV_Valid)
2584    return LTy;
2585
2586  // C++0x 5.16p5
2587  //   Otherwise, the result is an rvalue. If the second and third operands
2588  //   do not have the same type, and either has (cv) class type, ...
2589  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
2590    //   ... overload resolution is used to determine the conversions (if any)
2591    //   to be applied to the operands. If the overload resolution fails, the
2592    //   program is ill-formed.
2593    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
2594      return QualType();
2595  }
2596
2597  // C++0x 5.16p6
2598  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
2599  //   conversions are performed on the second and third operands.
2600  DefaultFunctionArrayLvalueConversion(LHS);
2601  DefaultFunctionArrayLvalueConversion(RHS);
2602  LTy = LHS->getType();
2603  RTy = RHS->getType();
2604
2605  //   After those conversions, one of the following shall hold:
2606  //   -- The second and third operands have the same type; the result
2607  //      is of that type. If the operands have class type, the result
2608  //      is a prvalue temporary of the result type, which is
2609  //      copy-initialized from either the second operand or the third
2610  //      operand depending on the value of the first operand.
2611  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
2612    if (LTy->isRecordType()) {
2613      // The operands have class type. Make a temporary copy.
2614      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
2615      ExprResult LHSCopy = PerformCopyInitialization(Entity,
2616                                                           SourceLocation(),
2617                                                           Owned(LHS));
2618      if (LHSCopy.isInvalid())
2619        return QualType();
2620
2621      ExprResult RHSCopy = PerformCopyInitialization(Entity,
2622                                                           SourceLocation(),
2623                                                           Owned(RHS));
2624      if (RHSCopy.isInvalid())
2625        return QualType();
2626
2627      LHS = LHSCopy.takeAs<Expr>();
2628      RHS = RHSCopy.takeAs<Expr>();
2629    }
2630
2631    return LTy;
2632  }
2633
2634  // Extension: conditional operator involving vector types.
2635  if (LTy->isVectorType() || RTy->isVectorType())
2636    return CheckVectorOperands(QuestionLoc, LHS, RHS);
2637
2638  //   -- The second and third operands have arithmetic or enumeration type;
2639  //      the usual arithmetic conversions are performed to bring them to a
2640  //      common type, and the result is of that type.
2641  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
2642    UsualArithmeticConversions(LHS, RHS);
2643    return LHS->getType();
2644  }
2645
2646  //   -- The second and third operands have pointer type, or one has pointer
2647  //      type and the other is a null pointer constant; pointer conversions
2648  //      and qualification conversions are performed to bring them to their
2649  //      composite pointer type. The result is of the composite pointer type.
2650  //   -- The second and third operands have pointer to member type, or one has
2651  //      pointer to member type and the other is a null pointer constant;
2652  //      pointer to member conversions and qualification conversions are
2653  //      performed to bring them to a common type, whose cv-qualification
2654  //      shall match the cv-qualification of either the second or the third
2655  //      operand. The result is of the common type.
2656  bool NonStandardCompositeType = false;
2657  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
2658                              isSFINAEContext()? 0 : &NonStandardCompositeType);
2659  if (!Composite.isNull()) {
2660    if (NonStandardCompositeType)
2661      Diag(QuestionLoc,
2662           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
2663        << LTy << RTy << Composite
2664        << LHS->getSourceRange() << RHS->getSourceRange();
2665
2666    return Composite;
2667  }
2668
2669  // Similarly, attempt to find composite type of two objective-c pointers.
2670  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
2671  if (!Composite.isNull())
2672    return Composite;
2673
2674  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2675    << LHS->getType() << RHS->getType()
2676    << LHS->getSourceRange() << RHS->getSourceRange();
2677  return QualType();
2678}
2679
2680/// \brief Find a merged pointer type and convert the two expressions to it.
2681///
2682/// This finds the composite pointer type (or member pointer type) for @p E1
2683/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
2684/// type and returns it.
2685/// It does not emit diagnostics.
2686///
2687/// \param Loc The location of the operator requiring these two expressions to
2688/// be converted to the composite pointer type.
2689///
2690/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
2691/// a non-standard (but still sane) composite type to which both expressions
2692/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
2693/// will be set true.
2694QualType Sema::FindCompositePointerType(SourceLocation Loc,
2695                                        Expr *&E1, Expr *&E2,
2696                                        bool *NonStandardCompositeType) {
2697  if (NonStandardCompositeType)
2698    *NonStandardCompositeType = false;
2699
2700  assert(getLangOptions().CPlusPlus && "This function assumes C++");
2701  QualType T1 = E1->getType(), T2 = E2->getType();
2702
2703  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
2704      !T2->isAnyPointerType() && !T2->isMemberPointerType())
2705   return QualType();
2706
2707  // C++0x 5.9p2
2708  //   Pointer conversions and qualification conversions are performed on
2709  //   pointer operands to bring them to their composite pointer type. If
2710  //   one operand is a null pointer constant, the composite pointer type is
2711  //   the type of the other operand.
2712  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
2713    if (T2->isMemberPointerType())
2714      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
2715    else
2716      ImpCastExprToType(E1, T2, CK_IntegralToPointer);
2717    return T2;
2718  }
2719  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
2720    if (T1->isMemberPointerType())
2721      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
2722    else
2723      ImpCastExprToType(E2, T1, CK_IntegralToPointer);
2724    return T1;
2725  }
2726
2727  // Now both have to be pointers or member pointers.
2728  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
2729      (!T2->isPointerType() && !T2->isMemberPointerType()))
2730    return QualType();
2731
2732  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
2733  //   the other has type "pointer to cv2 T" and the composite pointer type is
2734  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
2735  //   Otherwise, the composite pointer type is a pointer type similar to the
2736  //   type of one of the operands, with a cv-qualification signature that is
2737  //   the union of the cv-qualification signatures of the operand types.
2738  // In practice, the first part here is redundant; it's subsumed by the second.
2739  // What we do here is, we build the two possible composite types, and try the
2740  // conversions in both directions. If only one works, or if the two composite
2741  // types are the same, we have succeeded.
2742  // FIXME: extended qualifiers?
2743  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
2744  QualifierVector QualifierUnion;
2745  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
2746      ContainingClassVector;
2747  ContainingClassVector MemberOfClass;
2748  QualType Composite1 = Context.getCanonicalType(T1),
2749           Composite2 = Context.getCanonicalType(T2);
2750  unsigned NeedConstBefore = 0;
2751  do {
2752    const PointerType *Ptr1, *Ptr2;
2753    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
2754        (Ptr2 = Composite2->getAs<PointerType>())) {
2755      Composite1 = Ptr1->getPointeeType();
2756      Composite2 = Ptr2->getPointeeType();
2757
2758      // If we're allowed to create a non-standard composite type, keep track
2759      // of where we need to fill in additional 'const' qualifiers.
2760      if (NonStandardCompositeType &&
2761          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
2762        NeedConstBefore = QualifierUnion.size();
2763
2764      QualifierUnion.push_back(
2765                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
2766      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
2767      continue;
2768    }
2769
2770    const MemberPointerType *MemPtr1, *MemPtr2;
2771    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
2772        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
2773      Composite1 = MemPtr1->getPointeeType();
2774      Composite2 = MemPtr2->getPointeeType();
2775
2776      // If we're allowed to create a non-standard composite type, keep track
2777      // of where we need to fill in additional 'const' qualifiers.
2778      if (NonStandardCompositeType &&
2779          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
2780        NeedConstBefore = QualifierUnion.size();
2781
2782      QualifierUnion.push_back(
2783                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
2784      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
2785                                             MemPtr2->getClass()));
2786      continue;
2787    }
2788
2789    // FIXME: block pointer types?
2790
2791    // Cannot unwrap any more types.
2792    break;
2793  } while (true);
2794
2795  if (NeedConstBefore && NonStandardCompositeType) {
2796    // Extension: Add 'const' to qualifiers that come before the first qualifier
2797    // mismatch, so that our (non-standard!) composite type meets the
2798    // requirements of C++ [conv.qual]p4 bullet 3.
2799    for (unsigned I = 0; I != NeedConstBefore; ++I) {
2800      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
2801        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
2802        *NonStandardCompositeType = true;
2803      }
2804    }
2805  }
2806
2807  // Rewrap the composites as pointers or member pointers with the union CVRs.
2808  ContainingClassVector::reverse_iterator MOC
2809    = MemberOfClass.rbegin();
2810  for (QualifierVector::reverse_iterator
2811         I = QualifierUnion.rbegin(),
2812         E = QualifierUnion.rend();
2813       I != E; (void)++I, ++MOC) {
2814    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
2815    if (MOC->first && MOC->second) {
2816      // Rebuild member pointer type
2817      Composite1 = Context.getMemberPointerType(
2818                                    Context.getQualifiedType(Composite1, Quals),
2819                                    MOC->first);
2820      Composite2 = Context.getMemberPointerType(
2821                                    Context.getQualifiedType(Composite2, Quals),
2822                                    MOC->second);
2823    } else {
2824      // Rebuild pointer type
2825      Composite1
2826        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
2827      Composite2
2828        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
2829    }
2830  }
2831
2832  // Try to convert to the first composite pointer type.
2833  InitializedEntity Entity1
2834    = InitializedEntity::InitializeTemporary(Composite1);
2835  InitializationKind Kind
2836    = InitializationKind::CreateCopy(Loc, SourceLocation());
2837  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
2838  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
2839
2840  if (E1ToC1 && E2ToC1) {
2841    // Conversion to Composite1 is viable.
2842    if (!Context.hasSameType(Composite1, Composite2)) {
2843      // Composite2 is a different type from Composite1. Check whether
2844      // Composite2 is also viable.
2845      InitializedEntity Entity2
2846        = InitializedEntity::InitializeTemporary(Composite2);
2847      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
2848      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
2849      if (E1ToC2 && E2ToC2) {
2850        // Both Composite1 and Composite2 are viable and are different;
2851        // this is an ambiguity.
2852        return QualType();
2853      }
2854    }
2855
2856    // Convert E1 to Composite1
2857    ExprResult E1Result
2858      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
2859    if (E1Result.isInvalid())
2860      return QualType();
2861    E1 = E1Result.takeAs<Expr>();
2862
2863    // Convert E2 to Composite1
2864    ExprResult E2Result
2865      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
2866    if (E2Result.isInvalid())
2867      return QualType();
2868    E2 = E2Result.takeAs<Expr>();
2869
2870    return Composite1;
2871  }
2872
2873  // Check whether Composite2 is viable.
2874  InitializedEntity Entity2
2875    = InitializedEntity::InitializeTemporary(Composite2);
2876  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
2877  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
2878  if (!E1ToC2 || !E2ToC2)
2879    return QualType();
2880
2881  // Convert E1 to Composite2
2882  ExprResult E1Result
2883    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
2884  if (E1Result.isInvalid())
2885    return QualType();
2886  E1 = E1Result.takeAs<Expr>();
2887
2888  // Convert E2 to Composite2
2889  ExprResult E2Result
2890    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
2891  if (E2Result.isInvalid())
2892    return QualType();
2893  E2 = E2Result.takeAs<Expr>();
2894
2895  return Composite2;
2896}
2897
2898ExprResult Sema::MaybeBindToTemporary(Expr *E) {
2899  if (!Context.getLangOptions().CPlusPlus)
2900    return Owned(E);
2901
2902  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
2903
2904  const RecordType *RT = E->getType()->getAs<RecordType>();
2905  if (!RT)
2906    return Owned(E);
2907
2908  // If this is the result of a call or an Objective-C message send expression,
2909  // our source might actually be a reference, in which case we shouldn't bind.
2910  if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
2911    if (CE->getCallReturnType()->isReferenceType())
2912      return Owned(E);
2913  } else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
2914    if (const ObjCMethodDecl *MD = ME->getMethodDecl()) {
2915      if (MD->getResultType()->isReferenceType())
2916        return Owned(E);
2917    }
2918  }
2919
2920  // That should be enough to guarantee that this type is complete.
2921  // If it has a trivial destructor, we can avoid the extra copy.
2922  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2923  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
2924    return Owned(E);
2925
2926  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
2927  ExprTemporaries.push_back(Temp);
2928  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
2929    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
2930    CheckDestructorAccess(E->getExprLoc(), Destructor,
2931                          PDiag(diag::err_access_dtor_temp)
2932                            << E->getType());
2933  }
2934  // FIXME: Add the temporary to the temporaries vector.
2935  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
2936}
2937
2938Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) {
2939  assert(SubExpr && "sub expression can't be null!");
2940
2941  // Check any implicit conversions within the expression.
2942  CheckImplicitConversions(SubExpr);
2943
2944  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
2945  assert(ExprTemporaries.size() >= FirstTemporary);
2946  if (ExprTemporaries.size() == FirstTemporary)
2947    return SubExpr;
2948
2949  Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr,
2950                                           &ExprTemporaries[FirstTemporary],
2951                                       ExprTemporaries.size() - FirstTemporary);
2952  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
2953                        ExprTemporaries.end());
2954
2955  return E;
2956}
2957
2958ExprResult
2959Sema::MaybeCreateCXXExprWithTemporaries(ExprResult SubExpr) {
2960  if (SubExpr.isInvalid())
2961    return ExprError();
2962
2963  return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>()));
2964}
2965
2966FullExpr Sema::CreateFullExpr(Expr *SubExpr) {
2967  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
2968  assert(ExprTemporaries.size() >= FirstTemporary);
2969
2970  unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary;
2971  CXXTemporary **Temporaries =
2972    NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary];
2973
2974  FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries);
2975
2976  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
2977                        ExprTemporaries.end());
2978
2979  return E;
2980}
2981
2982ExprResult
2983Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
2984                                   tok::TokenKind OpKind, ParsedType &ObjectType,
2985                                   bool &MayBePseudoDestructor) {
2986  // Since this might be a postfix expression, get rid of ParenListExprs.
2987  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
2988  if (Result.isInvalid()) return ExprError();
2989  Base = Result.get();
2990
2991  QualType BaseType = Base->getType();
2992  MayBePseudoDestructor = false;
2993  if (BaseType->isDependentType()) {
2994    // If we have a pointer to a dependent type and are using the -> operator,
2995    // the object type is the type that the pointer points to. We might still
2996    // have enough information about that type to do something useful.
2997    if (OpKind == tok::arrow)
2998      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
2999        BaseType = Ptr->getPointeeType();
3000
3001    ObjectType = ParsedType::make(BaseType);
3002    MayBePseudoDestructor = true;
3003    return Owned(Base);
3004  }
3005
3006  // C++ [over.match.oper]p8:
3007  //   [...] When operator->returns, the operator-> is applied  to the value
3008  //   returned, with the original second operand.
3009  if (OpKind == tok::arrow) {
3010    // The set of types we've considered so far.
3011    llvm::SmallPtrSet<CanQualType,8> CTypes;
3012    llvm::SmallVector<SourceLocation, 8> Locations;
3013    CTypes.insert(Context.getCanonicalType(BaseType));
3014
3015    while (BaseType->isRecordType()) {
3016      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3017      if (Result.isInvalid())
3018        return ExprError();
3019      Base = Result.get();
3020      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3021        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3022      BaseType = Base->getType();
3023      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3024      if (!CTypes.insert(CBaseType)) {
3025        Diag(OpLoc, diag::err_operator_arrow_circular);
3026        for (unsigned i = 0; i < Locations.size(); i++)
3027          Diag(Locations[i], diag::note_declared_at);
3028        return ExprError();
3029      }
3030    }
3031
3032    if (BaseType->isPointerType())
3033      BaseType = BaseType->getPointeeType();
3034  }
3035
3036  // We could end up with various non-record types here, such as extended
3037  // vector types or Objective-C interfaces. Just return early and let
3038  // ActOnMemberReferenceExpr do the work.
3039  if (!BaseType->isRecordType()) {
3040    // C++ [basic.lookup.classref]p2:
3041    //   [...] If the type of the object expression is of pointer to scalar
3042    //   type, the unqualified-id is looked up in the context of the complete
3043    //   postfix-expression.
3044    //
3045    // This also indicates that we should be parsing a
3046    // pseudo-destructor-name.
3047    ObjectType = ParsedType();
3048    MayBePseudoDestructor = true;
3049    return Owned(Base);
3050  }
3051
3052  // The object type must be complete (or dependent).
3053  if (!BaseType->isDependentType() &&
3054      RequireCompleteType(OpLoc, BaseType,
3055                          PDiag(diag::err_incomplete_member_access)))
3056    return ExprError();
3057
3058  // C++ [basic.lookup.classref]p2:
3059  //   If the id-expression in a class member access (5.2.5) is an
3060  //   unqualified-id, and the type of the object expression is of a class
3061  //   type C (or of pointer to a class type C), the unqualified-id is looked
3062  //   up in the scope of class C. [...]
3063  ObjectType = ParsedType::make(BaseType);
3064  return move(Base);
3065}
3066
3067ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3068                                                   Expr *MemExpr) {
3069  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3070  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3071    << isa<CXXPseudoDestructorExpr>(MemExpr)
3072    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3073
3074  return ActOnCallExpr(/*Scope*/ 0,
3075                       MemExpr,
3076                       /*LPLoc*/ ExpectedLParenLoc,
3077                       MultiExprArg(),
3078                       /*RPLoc*/ ExpectedLParenLoc);
3079}
3080
3081ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3082                                                       SourceLocation OpLoc,
3083                                                       tok::TokenKind OpKind,
3084                                                       const CXXScopeSpec &SS,
3085                                                 TypeSourceInfo *ScopeTypeInfo,
3086                                                       SourceLocation CCLoc,
3087                                                       SourceLocation TildeLoc,
3088                                         PseudoDestructorTypeStorage Destructed,
3089                                                       bool HasTrailingLParen) {
3090  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3091
3092  // C++ [expr.pseudo]p2:
3093  //   The left-hand side of the dot operator shall be of scalar type. The
3094  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3095  //   This scalar type is the object type.
3096  QualType ObjectType = Base->getType();
3097  if (OpKind == tok::arrow) {
3098    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3099      ObjectType = Ptr->getPointeeType();
3100    } else if (!Base->isTypeDependent()) {
3101      // The user wrote "p->" when she probably meant "p."; fix it.
3102      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3103        << ObjectType << true
3104        << FixItHint::CreateReplacement(OpLoc, ".");
3105      if (isSFINAEContext())
3106        return ExprError();
3107
3108      OpKind = tok::period;
3109    }
3110  }
3111
3112  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3113    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3114      << ObjectType << Base->getSourceRange();
3115    return ExprError();
3116  }
3117
3118  // C++ [expr.pseudo]p2:
3119  //   [...] The cv-unqualified versions of the object type and of the type
3120  //   designated by the pseudo-destructor-name shall be the same type.
3121  if (DestructedTypeInfo) {
3122    QualType DestructedType = DestructedTypeInfo->getType();
3123    SourceLocation DestructedTypeStart
3124      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3125    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3126        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3127      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3128        << ObjectType << DestructedType << Base->getSourceRange()
3129        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3130
3131      // Recover by setting the destructed type to the object type.
3132      DestructedType = ObjectType;
3133      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3134                                                           DestructedTypeStart);
3135      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3136    }
3137  }
3138
3139  // C++ [expr.pseudo]p2:
3140  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3141  //   form
3142  //
3143  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3144  //
3145  //   shall designate the same scalar type.
3146  if (ScopeTypeInfo) {
3147    QualType ScopeType = ScopeTypeInfo->getType();
3148    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3149        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3150
3151      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3152           diag::err_pseudo_dtor_type_mismatch)
3153        << ObjectType << ScopeType << Base->getSourceRange()
3154        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3155
3156      ScopeType = QualType();
3157      ScopeTypeInfo = 0;
3158    }
3159  }
3160
3161  Expr *Result
3162    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3163                                            OpKind == tok::arrow, OpLoc,
3164                                            SS.getScopeRep(), SS.getRange(),
3165                                            ScopeTypeInfo,
3166                                            CCLoc,
3167                                            TildeLoc,
3168                                            Destructed);
3169
3170  if (HasTrailingLParen)
3171    return Owned(Result);
3172
3173  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3174}
3175
3176ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3177                                                       SourceLocation OpLoc,
3178                                                       tok::TokenKind OpKind,
3179                                                       CXXScopeSpec &SS,
3180                                                  UnqualifiedId &FirstTypeName,
3181                                                       SourceLocation CCLoc,
3182                                                       SourceLocation TildeLoc,
3183                                                 UnqualifiedId &SecondTypeName,
3184                                                       bool HasTrailingLParen) {
3185  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3186          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3187         "Invalid first type name in pseudo-destructor");
3188  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3189          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3190         "Invalid second type name in pseudo-destructor");
3191
3192  // C++ [expr.pseudo]p2:
3193  //   The left-hand side of the dot operator shall be of scalar type. The
3194  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3195  //   This scalar type is the object type.
3196  QualType ObjectType = Base->getType();
3197  if (OpKind == tok::arrow) {
3198    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3199      ObjectType = Ptr->getPointeeType();
3200    } else if (!ObjectType->isDependentType()) {
3201      // The user wrote "p->" when she probably meant "p."; fix it.
3202      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3203        << ObjectType << true
3204        << FixItHint::CreateReplacement(OpLoc, ".");
3205      if (isSFINAEContext())
3206        return ExprError();
3207
3208      OpKind = tok::period;
3209    }
3210  }
3211
3212  // Compute the object type that we should use for name lookup purposes. Only
3213  // record types and dependent types matter.
3214  ParsedType ObjectTypePtrForLookup;
3215  if (!SS.isSet()) {
3216    if (const Type *T = ObjectType->getAs<RecordType>())
3217      ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0));
3218    else if (ObjectType->isDependentType())
3219      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3220  }
3221
3222  // Convert the name of the type being destructed (following the ~) into a
3223  // type (with source-location information).
3224  QualType DestructedType;
3225  TypeSourceInfo *DestructedTypeInfo = 0;
3226  PseudoDestructorTypeStorage Destructed;
3227  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3228    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3229                               SecondTypeName.StartLocation,
3230                               S, &SS, true, ObjectTypePtrForLookup);
3231    if (!T &&
3232        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3233         (!SS.isSet() && ObjectType->isDependentType()))) {
3234      // The name of the type being destroyed is a dependent name, and we
3235      // couldn't find anything useful in scope. Just store the identifier and
3236      // it's location, and we'll perform (qualified) name lookup again at
3237      // template instantiation time.
3238      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3239                                               SecondTypeName.StartLocation);
3240    } else if (!T) {
3241      Diag(SecondTypeName.StartLocation,
3242           diag::err_pseudo_dtor_destructor_non_type)
3243        << SecondTypeName.Identifier << ObjectType;
3244      if (isSFINAEContext())
3245        return ExprError();
3246
3247      // Recover by assuming we had the right type all along.
3248      DestructedType = ObjectType;
3249    } else
3250      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3251  } else {
3252    // Resolve the template-id to a type.
3253    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3254    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3255                                       TemplateId->getTemplateArgs(),
3256                                       TemplateId->NumArgs);
3257    TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3258                                       TemplateId->TemplateNameLoc,
3259                                       TemplateId->LAngleLoc,
3260                                       TemplateArgsPtr,
3261                                       TemplateId->RAngleLoc);
3262    if (T.isInvalid() || !T.get()) {
3263      // Recover by assuming we had the right type all along.
3264      DestructedType = ObjectType;
3265    } else
3266      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3267  }
3268
3269  // If we've performed some kind of recovery, (re-)build the type source
3270  // information.
3271  if (!DestructedType.isNull()) {
3272    if (!DestructedTypeInfo)
3273      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3274                                                  SecondTypeName.StartLocation);
3275    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3276  }
3277
3278  // Convert the name of the scope type (the type prior to '::') into a type.
3279  TypeSourceInfo *ScopeTypeInfo = 0;
3280  QualType ScopeType;
3281  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3282      FirstTypeName.Identifier) {
3283    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3284      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3285                                 FirstTypeName.StartLocation,
3286                                 S, &SS, false, ObjectTypePtrForLookup);
3287      if (!T) {
3288        Diag(FirstTypeName.StartLocation,
3289             diag::err_pseudo_dtor_destructor_non_type)
3290          << FirstTypeName.Identifier << ObjectType;
3291
3292        if (isSFINAEContext())
3293          return ExprError();
3294
3295        // Just drop this type. It's unnecessary anyway.
3296        ScopeType = QualType();
3297      } else
3298        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3299    } else {
3300      // Resolve the template-id to a type.
3301      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3302      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3303                                         TemplateId->getTemplateArgs(),
3304                                         TemplateId->NumArgs);
3305      TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3306                                         TemplateId->TemplateNameLoc,
3307                                         TemplateId->LAngleLoc,
3308                                         TemplateArgsPtr,
3309                                         TemplateId->RAngleLoc);
3310      if (T.isInvalid() || !T.get()) {
3311        // Recover by dropping this type.
3312        ScopeType = QualType();
3313      } else
3314        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3315    }
3316  }
3317
3318  if (!ScopeType.isNull() && !ScopeTypeInfo)
3319    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3320                                                  FirstTypeName.StartLocation);
3321
3322
3323  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3324                                   ScopeTypeInfo, CCLoc, TildeLoc,
3325                                   Destructed, HasTrailingLParen);
3326}
3327
3328CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp,
3329                                                NamedDecl *FoundDecl,
3330                                                CXXMethodDecl *Method) {
3331  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3332                                          FoundDecl, Method))
3333    assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");
3334
3335  MemberExpr *ME =
3336      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3337                               SourceLocation(), Method->getType());
3338  QualType ResultType = Method->getCallResultType();
3339  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3340  CXXMemberCallExpr *CE =
3341    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType,
3342                                    Exp->getLocEnd());
3343  return CE;
3344}
3345
3346ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3347                                      SourceLocation RParen) {
3348  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3349                                             Operand->CanThrow(Context),
3350                                             KeyLoc, RParen));
3351}
3352
3353ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3354                                   Expr *Operand, SourceLocation RParen) {
3355  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3356}
3357
3358ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3359  if (!FullExpr) return ExprError();
3360  return MaybeCreateCXXExprWithTemporaries(FullExpr);
3361}
3362