SemaExprCXX.cpp revision 6915c529dbb43073dad148c2e83a1c56bfcc05c8
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/TemplateDeduction.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30using namespace clang;
31using namespace sema;
32
33ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
34                                   IdentifierInfo &II,
35                                   SourceLocation NameLoc,
36                                   Scope *S, CXXScopeSpec &SS,
37                                   ParsedType ObjectTypePtr,
38                                   bool EnteringContext) {
39  // Determine where to perform name lookup.
40
41  // FIXME: This area of the standard is very messy, and the current
42  // wording is rather unclear about which scopes we search for the
43  // destructor name; see core issues 399 and 555. Issue 399 in
44  // particular shows where the current description of destructor name
45  // lookup is completely out of line with existing practice, e.g.,
46  // this appears to be ill-formed:
47  //
48  //   namespace N {
49  //     template <typename T> struct S {
50  //       ~S();
51  //     };
52  //   }
53  //
54  //   void f(N::S<int>* s) {
55  //     s->N::S<int>::~S();
56  //   }
57  //
58  // See also PR6358 and PR6359.
59  // For this reason, we're currently only doing the C++03 version of this
60  // code; the C++0x version has to wait until we get a proper spec.
61  QualType SearchType;
62  DeclContext *LookupCtx = 0;
63  bool isDependent = false;
64  bool LookInScope = false;
65
66  // If we have an object type, it's because we are in a
67  // pseudo-destructor-expression or a member access expression, and
68  // we know what type we're looking for.
69  if (ObjectTypePtr)
70    SearchType = GetTypeFromParser(ObjectTypePtr);
71
72  if (SS.isSet()) {
73    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
74
75    bool AlreadySearched = false;
76    bool LookAtPrefix = true;
77    // C++ [basic.lookup.qual]p6:
78    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
79    //   the type-names are looked up as types in the scope designated by the
80    //   nested-name-specifier. In a qualified-id of the form:
81    //
82    //     ::[opt] nested-name-specifier  ̃ class-name
83    //
84    //   where the nested-name-specifier designates a namespace scope, and in
85    //   a qualified-id of the form:
86    //
87    //     ::opt nested-name-specifier class-name ::  ̃ class-name
88    //
89    //   the class-names are looked up as types in the scope designated by
90    //   the nested-name-specifier.
91    //
92    // Here, we check the first case (completely) and determine whether the
93    // code below is permitted to look at the prefix of the
94    // nested-name-specifier.
95    DeclContext *DC = computeDeclContext(SS, EnteringContext);
96    if (DC && DC->isFileContext()) {
97      AlreadySearched = true;
98      LookupCtx = DC;
99      isDependent = false;
100    } else if (DC && isa<CXXRecordDecl>(DC))
101      LookAtPrefix = false;
102
103    // The second case from the C++03 rules quoted further above.
104    NestedNameSpecifier *Prefix = 0;
105    if (AlreadySearched) {
106      // Nothing left to do.
107    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
108      CXXScopeSpec PrefixSS;
109      PrefixSS.setScopeRep(Prefix);
110      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
111      isDependent = isDependentScopeSpecifier(PrefixSS);
112    } else if (ObjectTypePtr) {
113      LookupCtx = computeDeclContext(SearchType);
114      isDependent = SearchType->isDependentType();
115    } else {
116      LookupCtx = computeDeclContext(SS, EnteringContext);
117      isDependent = LookupCtx && LookupCtx->isDependentContext();
118    }
119
120    LookInScope = false;
121  } else if (ObjectTypePtr) {
122    // C++ [basic.lookup.classref]p3:
123    //   If the unqualified-id is ~type-name, the type-name is looked up
124    //   in the context of the entire postfix-expression. If the type T
125    //   of the object expression is of a class type C, the type-name is
126    //   also looked up in the scope of class C. At least one of the
127    //   lookups shall find a name that refers to (possibly
128    //   cv-qualified) T.
129    LookupCtx = computeDeclContext(SearchType);
130    isDependent = SearchType->isDependentType();
131    assert((isDependent || !SearchType->isIncompleteType()) &&
132           "Caller should have completed object type");
133
134    LookInScope = true;
135  } else {
136    // Perform lookup into the current scope (only).
137    LookInScope = true;
138  }
139
140  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
141  for (unsigned Step = 0; Step != 2; ++Step) {
142    // Look for the name first in the computed lookup context (if we
143    // have one) and, if that fails to find a match, in the sope (if
144    // we're allowed to look there).
145    Found.clear();
146    if (Step == 0 && LookupCtx)
147      LookupQualifiedName(Found, LookupCtx);
148    else if (Step == 1 && LookInScope && S)
149      LookupName(Found, S);
150    else
151      continue;
152
153    // FIXME: Should we be suppressing ambiguities here?
154    if (Found.isAmbiguous())
155      return ParsedType();
156
157    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
158      QualType T = Context.getTypeDeclType(Type);
159
160      if (SearchType.isNull() || SearchType->isDependentType() ||
161          Context.hasSameUnqualifiedType(T, SearchType)) {
162        // We found our type!
163
164        return ParsedType::make(T);
165      }
166    }
167
168    // If the name that we found is a class template name, and it is
169    // the same name as the template name in the last part of the
170    // nested-name-specifier (if present) or the object type, then
171    // this is the destructor for that class.
172    // FIXME: This is a workaround until we get real drafting for core
173    // issue 399, for which there isn't even an obvious direction.
174    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
175      QualType MemberOfType;
176      if (SS.isSet()) {
177        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
178          // Figure out the type of the context, if it has one.
179          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
180            MemberOfType = Context.getTypeDeclType(Record);
181        }
182      }
183      if (MemberOfType.isNull())
184        MemberOfType = SearchType;
185
186      if (MemberOfType.isNull())
187        continue;
188
189      // We're referring into a class template specialization. If the
190      // class template we found is the same as the template being
191      // specialized, we found what we are looking for.
192      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
193        if (ClassTemplateSpecializationDecl *Spec
194              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
195          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
196                Template->getCanonicalDecl())
197            return ParsedType::make(MemberOfType);
198        }
199
200        continue;
201      }
202
203      // We're referring to an unresolved class template
204      // specialization. Determine whether we class template we found
205      // is the same as the template being specialized or, if we don't
206      // know which template is being specialized, that it at least
207      // has the same name.
208      if (const TemplateSpecializationType *SpecType
209            = MemberOfType->getAs<TemplateSpecializationType>()) {
210        TemplateName SpecName = SpecType->getTemplateName();
211
212        // The class template we found is the same template being
213        // specialized.
214        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
215          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
216            return ParsedType::make(MemberOfType);
217
218          continue;
219        }
220
221        // The class template we found has the same name as the
222        // (dependent) template name being specialized.
223        if (DependentTemplateName *DepTemplate
224                                    = SpecName.getAsDependentTemplateName()) {
225          if (DepTemplate->isIdentifier() &&
226              DepTemplate->getIdentifier() == Template->getIdentifier())
227            return ParsedType::make(MemberOfType);
228
229          continue;
230        }
231      }
232    }
233  }
234
235  if (isDependent) {
236    // We didn't find our type, but that's okay: it's dependent
237    // anyway.
238    NestedNameSpecifier *NNS = 0;
239    SourceRange Range;
240    if (SS.isSet()) {
241      NNS = (NestedNameSpecifier *)SS.getScopeRep();
242      Range = SourceRange(SS.getRange().getBegin(), NameLoc);
243    } else {
244      NNS = NestedNameSpecifier::Create(Context, &II);
245      Range = SourceRange(NameLoc);
246    }
247
248    QualType T = CheckTypenameType(ETK_None, NNS, II,
249                                   SourceLocation(),
250                                   Range, NameLoc);
251    return ParsedType::make(T);
252  }
253
254  if (ObjectTypePtr)
255    Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
256      << &II;
257  else
258    Diag(NameLoc, diag::err_destructor_class_name);
259
260  return ParsedType();
261}
262
263/// \brief Build a C++ typeid expression with a type operand.
264ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
265                                SourceLocation TypeidLoc,
266                                TypeSourceInfo *Operand,
267                                SourceLocation RParenLoc) {
268  // C++ [expr.typeid]p4:
269  //   The top-level cv-qualifiers of the lvalue expression or the type-id
270  //   that is the operand of typeid are always ignored.
271  //   If the type of the type-id is a class type or a reference to a class
272  //   type, the class shall be completely-defined.
273  Qualifiers Quals;
274  QualType T
275    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
276                                      Quals);
277  if (T->getAs<RecordType>() &&
278      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
279    return ExprError();
280
281  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
282                                           Operand,
283                                           SourceRange(TypeidLoc, RParenLoc)));
284}
285
286/// \brief Build a C++ typeid expression with an expression operand.
287ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
288                                SourceLocation TypeidLoc,
289                                Expr *E,
290                                SourceLocation RParenLoc) {
291  bool isUnevaluatedOperand = true;
292  if (E && !E->isTypeDependent()) {
293    QualType T = E->getType();
294    if (const RecordType *RecordT = T->getAs<RecordType>()) {
295      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
296      // C++ [expr.typeid]p3:
297      //   [...] If the type of the expression is a class type, the class
298      //   shall be completely-defined.
299      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
300        return ExprError();
301
302      // C++ [expr.typeid]p3:
303      //   When typeid is applied to an expression other than an glvalue of a
304      //   polymorphic class type [...] [the] expression is an unevaluated
305      //   operand. [...]
306      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
307        isUnevaluatedOperand = false;
308
309        // We require a vtable to query the type at run time.
310        MarkVTableUsed(TypeidLoc, RecordD);
311      }
312    }
313
314    // C++ [expr.typeid]p4:
315    //   [...] If the type of the type-id is a reference to a possibly
316    //   cv-qualified type, the result of the typeid expression refers to a
317    //   std::type_info object representing the cv-unqualified referenced
318    //   type.
319    Qualifiers Quals;
320    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
321    if (!Context.hasSameType(T, UnqualT)) {
322      T = UnqualT;
323      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
324    }
325  }
326
327  // If this is an unevaluated operand, clear out the set of
328  // declaration references we have been computing and eliminate any
329  // temporaries introduced in its computation.
330  if (isUnevaluatedOperand)
331    ExprEvalContexts.back().Context = Unevaluated;
332
333  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
334                                           E,
335                                           SourceRange(TypeidLoc, RParenLoc)));
336}
337
338/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
339ExprResult
340Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
341                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
342  // Find the std::type_info type.
343  if (!StdNamespace)
344    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
345
346  if (!CXXTypeInfoDecl) {
347    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
348    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
349    LookupQualifiedName(R, getStdNamespace());
350    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
351    if (!CXXTypeInfoDecl)
352      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
353  }
354
355  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
356
357  if (isType) {
358    // The operand is a type; handle it as such.
359    TypeSourceInfo *TInfo = 0;
360    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
361                                   &TInfo);
362    if (T.isNull())
363      return ExprError();
364
365    if (!TInfo)
366      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
367
368    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
369  }
370
371  // The operand is an expression.
372  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
373}
374
375/// Retrieve the UuidAttr associated with QT.
376static UuidAttr *GetUuidAttrOfType(QualType QT) {
377  // Optionally remove one level of pointer, reference or array indirection.
378  Type *Ty = QT.getTypePtr();;
379  if (QT->isPointerType() || QT->isReferenceType())
380    Ty = QT->getPointeeType().getTypePtr();
381  else if (QT->isArrayType())
382    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
383
384  // Loop all class definition and declaration looking for an uuid attribute.
385  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
386  while (RD) {
387    if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
388      return Uuid;
389    RD = RD->getPreviousDeclaration();
390  }
391  return 0;
392}
393
394/// \brief Build a Microsoft __uuidof expression with a type operand.
395ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
396                                SourceLocation TypeidLoc,
397                                TypeSourceInfo *Operand,
398                                SourceLocation RParenLoc) {
399  if (!Operand->getType()->isDependentType()) {
400    if (!GetUuidAttrOfType(Operand->getType()))
401      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
402  }
403
404  // FIXME: add __uuidof semantic analysis for type operand.
405  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
406                                           Operand,
407                                           SourceRange(TypeidLoc, RParenLoc)));
408}
409
410/// \brief Build a Microsoft __uuidof expression with an expression operand.
411ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
412                                SourceLocation TypeidLoc,
413                                Expr *E,
414                                SourceLocation RParenLoc) {
415  if (!E->getType()->isDependentType()) {
416    if (!GetUuidAttrOfType(E->getType()) &&
417        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
418      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
419  }
420  // FIXME: add __uuidof semantic analysis for type operand.
421  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
422                                           E,
423                                           SourceRange(TypeidLoc, RParenLoc)));
424}
425
426/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
427ExprResult
428Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
429                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
430  // If MSVCGuidDecl has not been cached, do the lookup.
431  if (!MSVCGuidDecl) {
432    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
433    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
434    LookupQualifiedName(R, Context.getTranslationUnitDecl());
435    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
436    if (!MSVCGuidDecl)
437      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
438  }
439
440  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
441
442  if (isType) {
443    // The operand is a type; handle it as such.
444    TypeSourceInfo *TInfo = 0;
445    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
446                                   &TInfo);
447    if (T.isNull())
448      return ExprError();
449
450    if (!TInfo)
451      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
452
453    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
454  }
455
456  // The operand is an expression.
457  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
458}
459
460/// ActOnCXXBoolLiteral - Parse {true,false} literals.
461ExprResult
462Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
463  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
464         "Unknown C++ Boolean value!");
465  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
466                                                Context.BoolTy, OpLoc));
467}
468
469/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
470ExprResult
471Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
472  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
473}
474
475/// ActOnCXXThrow - Parse throw expressions.
476ExprResult
477Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
478  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
479    return ExprError();
480  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
481}
482
483/// CheckCXXThrowOperand - Validate the operand of a throw.
484bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
485  // C++ [except.throw]p3:
486  //   A throw-expression initializes a temporary object, called the exception
487  //   object, the type of which is determined by removing any top-level
488  //   cv-qualifiers from the static type of the operand of throw and adjusting
489  //   the type from "array of T" or "function returning T" to "pointer to T"
490  //   or "pointer to function returning T", [...]
491  if (E->getType().hasQualifiers())
492    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
493                      CastCategory(E));
494
495  DefaultFunctionArrayConversion(E);
496
497  //   If the type of the exception would be an incomplete type or a pointer
498  //   to an incomplete type other than (cv) void the program is ill-formed.
499  QualType Ty = E->getType();
500  bool isPointer = false;
501  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
502    Ty = Ptr->getPointeeType();
503    isPointer = true;
504  }
505  if (!isPointer || !Ty->isVoidType()) {
506    if (RequireCompleteType(ThrowLoc, Ty,
507                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
508                                            : diag::err_throw_incomplete)
509                              << E->getSourceRange()))
510      return true;
511
512    if (RequireNonAbstractType(ThrowLoc, E->getType(),
513                               PDiag(diag::err_throw_abstract_type)
514                                 << E->getSourceRange()))
515      return true;
516  }
517
518  // Initialize the exception result.  This implicitly weeds out
519  // abstract types or types with inaccessible copy constructors.
520  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p34.
521  InitializedEntity Entity =
522    InitializedEntity::InitializeException(ThrowLoc, E->getType(),
523                                           /*NRVO=*/false);
524  ExprResult Res = PerformCopyInitialization(Entity,
525                                                   SourceLocation(),
526                                                   Owned(E));
527  if (Res.isInvalid())
528    return true;
529  E = Res.takeAs<Expr>();
530
531  // If the exception has class type, we need additional handling.
532  const RecordType *RecordTy = Ty->getAs<RecordType>();
533  if (!RecordTy)
534    return false;
535  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
536
537  // If we are throwing a polymorphic class type or pointer thereof,
538  // exception handling will make use of the vtable.
539  MarkVTableUsed(ThrowLoc, RD);
540
541  // If a pointer is thrown, the referenced object will not be destroyed.
542  if (isPointer)
543    return false;
544
545  // If the class has a non-trivial destructor, we must be able to call it.
546  if (RD->hasTrivialDestructor())
547    return false;
548
549  CXXDestructorDecl *Destructor
550    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
551  if (!Destructor)
552    return false;
553
554  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
555  CheckDestructorAccess(E->getExprLoc(), Destructor,
556                        PDiag(diag::err_access_dtor_exception) << Ty);
557  return false;
558}
559
560ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
561  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
562  /// is a non-lvalue expression whose value is the address of the object for
563  /// which the function is called.
564
565  DeclContext *DC = getFunctionLevelDeclContext();
566  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
567    if (MD->isInstance())
568      return Owned(new (Context) CXXThisExpr(ThisLoc,
569                                             MD->getThisType(Context),
570                                             /*isImplicit=*/false));
571
572  return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
573}
574
575ExprResult
576Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
577                                SourceLocation LParenLoc,
578                                MultiExprArg exprs,
579                                SourceLocation RParenLoc) {
580  if (!TypeRep)
581    return ExprError();
582
583  TypeSourceInfo *TInfo;
584  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
585  if (!TInfo)
586    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
587
588  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
589}
590
591/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
592/// Can be interpreted either as function-style casting ("int(x)")
593/// or class type construction ("ClassType(x,y,z)")
594/// or creation of a value-initialized type ("int()").
595ExprResult
596Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
597                                SourceLocation LParenLoc,
598                                MultiExprArg exprs,
599                                SourceLocation RParenLoc) {
600  QualType Ty = TInfo->getType();
601  unsigned NumExprs = exprs.size();
602  Expr **Exprs = (Expr**)exprs.get();
603  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
604  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
605
606  if (Ty->isDependentType() ||
607      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
608    exprs.release();
609
610    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
611                                                    LParenLoc,
612                                                    Exprs, NumExprs,
613                                                    RParenLoc));
614  }
615
616  if (Ty->isArrayType())
617    return ExprError(Diag(TyBeginLoc,
618                          diag::err_value_init_for_array_type) << FullRange);
619  if (!Ty->isVoidType() &&
620      RequireCompleteType(TyBeginLoc, Ty,
621                          PDiag(diag::err_invalid_incomplete_type_use)
622                            << FullRange))
623    return ExprError();
624
625  if (RequireNonAbstractType(TyBeginLoc, Ty,
626                             diag::err_allocation_of_abstract_type))
627    return ExprError();
628
629
630  // C++ [expr.type.conv]p1:
631  // If the expression list is a single expression, the type conversion
632  // expression is equivalent (in definedness, and if defined in meaning) to the
633  // corresponding cast expression.
634  //
635  if (NumExprs == 1) {
636    CastKind Kind = CK_Invalid;
637    ExprValueKind VK = VK_RValue;
638    CXXCastPath BasePath;
639    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
640                       Kind, VK, BasePath,
641                       /*FunctionalStyle=*/true))
642      return ExprError();
643
644    exprs.release();
645
646    return Owned(CXXFunctionalCastExpr::Create(Context,
647                                               Ty.getNonLValueExprType(Context),
648                                               VK, TInfo, TyBeginLoc, Kind,
649                                               Exprs[0], &BasePath,
650                                               RParenLoc));
651  }
652
653  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
654  InitializationKind Kind
655    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
656                                                  LParenLoc, RParenLoc)
657               : InitializationKind::CreateValue(TyBeginLoc,
658                                                 LParenLoc, RParenLoc);
659  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
660  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
661
662  // FIXME: Improve AST representation?
663  return move(Result);
664}
665
666
667/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
668/// @code new (memory) int[size][4] @endcode
669/// or
670/// @code ::new Foo(23, "hello") @endcode
671/// For the interpretation of this heap of arguments, consult the base version.
672ExprResult
673Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
674                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
675                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
676                  Declarator &D, SourceLocation ConstructorLParen,
677                  MultiExprArg ConstructorArgs,
678                  SourceLocation ConstructorRParen) {
679  Expr *ArraySize = 0;
680  // If the specified type is an array, unwrap it and save the expression.
681  if (D.getNumTypeObjects() > 0 &&
682      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
683    DeclaratorChunk &Chunk = D.getTypeObject(0);
684    if (Chunk.Arr.hasStatic)
685      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
686        << D.getSourceRange());
687    if (!Chunk.Arr.NumElts)
688      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
689        << D.getSourceRange());
690
691    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
692    D.DropFirstTypeObject();
693  }
694
695  // Every dimension shall be of constant size.
696  if (ArraySize) {
697    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
698      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
699        break;
700
701      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
702      if (Expr *NumElts = (Expr *)Array.NumElts) {
703        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
704            !NumElts->isIntegerConstantExpr(Context)) {
705          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
706            << NumElts->getSourceRange();
707          return ExprError();
708        }
709      }
710    }
711  }
712
713  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
714  QualType AllocType = TInfo->getType();
715  if (D.isInvalidType())
716    return ExprError();
717
718  if (!TInfo)
719    TInfo = Context.getTrivialTypeSourceInfo(AllocType);
720
721  SourceRange R = TInfo->getTypeLoc().getSourceRange();
722  return BuildCXXNew(StartLoc, UseGlobal,
723                     PlacementLParen,
724                     move(PlacementArgs),
725                     PlacementRParen,
726                     TypeIdParens,
727                     AllocType,
728                     TInfo,
729                     ArraySize,
730                     ConstructorLParen,
731                     move(ConstructorArgs),
732                     ConstructorRParen);
733}
734
735ExprResult
736Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
737                  SourceLocation PlacementLParen,
738                  MultiExprArg PlacementArgs,
739                  SourceLocation PlacementRParen,
740                  SourceRange TypeIdParens,
741                  QualType AllocType,
742                  TypeSourceInfo *AllocTypeInfo,
743                  Expr *ArraySize,
744                  SourceLocation ConstructorLParen,
745                  MultiExprArg ConstructorArgs,
746                  SourceLocation ConstructorRParen) {
747  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
748
749  // Per C++0x [expr.new]p5, the type being constructed may be a
750  // typedef of an array type.
751  if (!ArraySize) {
752    if (const ConstantArrayType *Array
753                              = Context.getAsConstantArrayType(AllocType)) {
754      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
755                                         Context.getSizeType(),
756                                         TypeRange.getEnd());
757      AllocType = Array->getElementType();
758    }
759  }
760
761  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
762    return ExprError();
763
764  QualType ResultType = Context.getPointerType(AllocType);
765
766  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
767  //   or enumeration type with a non-negative value."
768  if (ArraySize && !ArraySize->isTypeDependent()) {
769
770    QualType SizeType = ArraySize->getType();
771
772    ExprResult ConvertedSize
773      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
774                                       PDiag(diag::err_array_size_not_integral),
775                                     PDiag(diag::err_array_size_incomplete_type)
776                                       << ArraySize->getSourceRange(),
777                               PDiag(diag::err_array_size_explicit_conversion),
778                                       PDiag(diag::note_array_size_conversion),
779                               PDiag(diag::err_array_size_ambiguous_conversion),
780                                       PDiag(diag::note_array_size_conversion),
781                          PDiag(getLangOptions().CPlusPlus0x? 0
782                                            : diag::ext_array_size_conversion));
783    if (ConvertedSize.isInvalid())
784      return ExprError();
785
786    ArraySize = ConvertedSize.take();
787    SizeType = ArraySize->getType();
788    if (!SizeType->isIntegralOrUnscopedEnumerationType())
789      return ExprError();
790
791    // Let's see if this is a constant < 0. If so, we reject it out of hand.
792    // We don't care about special rules, so we tell the machinery it's not
793    // evaluated - it gives us a result in more cases.
794    if (!ArraySize->isValueDependent()) {
795      llvm::APSInt Value;
796      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
797        if (Value < llvm::APSInt(
798                        llvm::APInt::getNullValue(Value.getBitWidth()),
799                                 Value.isUnsigned()))
800          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
801                                diag::err_typecheck_negative_array_size)
802            << ArraySize->getSourceRange());
803
804        if (!AllocType->isDependentType()) {
805          unsigned ActiveSizeBits
806            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
807          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
808            Diag(ArraySize->getSourceRange().getBegin(),
809                 diag::err_array_too_large)
810              << Value.toString(10)
811              << ArraySize->getSourceRange();
812            return ExprError();
813          }
814        }
815      } else if (TypeIdParens.isValid()) {
816        // Can't have dynamic array size when the type-id is in parentheses.
817        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
818          << ArraySize->getSourceRange()
819          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
820          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
821
822        TypeIdParens = SourceRange();
823      }
824    }
825
826    ImpCastExprToType(ArraySize, Context.getSizeType(),
827                      CK_IntegralCast);
828  }
829
830  FunctionDecl *OperatorNew = 0;
831  FunctionDecl *OperatorDelete = 0;
832  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
833  unsigned NumPlaceArgs = PlacementArgs.size();
834
835  if (!AllocType->isDependentType() &&
836      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
837      FindAllocationFunctions(StartLoc,
838                              SourceRange(PlacementLParen, PlacementRParen),
839                              UseGlobal, AllocType, ArraySize, PlaceArgs,
840                              NumPlaceArgs, OperatorNew, OperatorDelete))
841    return ExprError();
842  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
843  if (OperatorNew) {
844    // Add default arguments, if any.
845    const FunctionProtoType *Proto =
846      OperatorNew->getType()->getAs<FunctionProtoType>();
847    VariadicCallType CallType =
848      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
849
850    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
851                               Proto, 1, PlaceArgs, NumPlaceArgs,
852                               AllPlaceArgs, CallType))
853      return ExprError();
854
855    NumPlaceArgs = AllPlaceArgs.size();
856    if (NumPlaceArgs > 0)
857      PlaceArgs = &AllPlaceArgs[0];
858  }
859
860  bool Init = ConstructorLParen.isValid();
861  // --- Choosing a constructor ---
862  CXXConstructorDecl *Constructor = 0;
863  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
864  unsigned NumConsArgs = ConstructorArgs.size();
865  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
866
867  // Array 'new' can't have any initializers.
868  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
869    SourceRange InitRange(ConsArgs[0]->getLocStart(),
870                          ConsArgs[NumConsArgs - 1]->getLocEnd());
871
872    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
873    return ExprError();
874  }
875
876  if (!AllocType->isDependentType() &&
877      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
878    // C++0x [expr.new]p15:
879    //   A new-expression that creates an object of type T initializes that
880    //   object as follows:
881    InitializationKind Kind
882    //     - If the new-initializer is omitted, the object is default-
883    //       initialized (8.5); if no initialization is performed,
884    //       the object has indeterminate value
885      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
886    //     - Otherwise, the new-initializer is interpreted according to the
887    //       initialization rules of 8.5 for direct-initialization.
888             : InitializationKind::CreateDirect(TypeRange.getBegin(),
889                                                ConstructorLParen,
890                                                ConstructorRParen);
891
892    InitializedEntity Entity
893      = InitializedEntity::InitializeNew(StartLoc, AllocType);
894    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
895    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
896                                                move(ConstructorArgs));
897    if (FullInit.isInvalid())
898      return ExprError();
899
900    // FullInit is our initializer; walk through it to determine if it's a
901    // constructor call, which CXXNewExpr handles directly.
902    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
903      if (CXXBindTemporaryExpr *Binder
904            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
905        FullInitExpr = Binder->getSubExpr();
906      if (CXXConstructExpr *Construct
907                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
908        Constructor = Construct->getConstructor();
909        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
910                                         AEnd = Construct->arg_end();
911             A != AEnd; ++A)
912          ConvertedConstructorArgs.push_back(*A);
913      } else {
914        // Take the converted initializer.
915        ConvertedConstructorArgs.push_back(FullInit.release());
916      }
917    } else {
918      // No initialization required.
919    }
920
921    // Take the converted arguments and use them for the new expression.
922    NumConsArgs = ConvertedConstructorArgs.size();
923    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
924  }
925
926  // Mark the new and delete operators as referenced.
927  if (OperatorNew)
928    MarkDeclarationReferenced(StartLoc, OperatorNew);
929  if (OperatorDelete)
930    MarkDeclarationReferenced(StartLoc, OperatorDelete);
931
932  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
933
934  PlacementArgs.release();
935  ConstructorArgs.release();
936
937  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
938                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
939                                        ArraySize, Constructor, Init,
940                                        ConsArgs, NumConsArgs, OperatorDelete,
941                                        ResultType, AllocTypeInfo,
942                                        StartLoc,
943                                        Init ? ConstructorRParen :
944                                               TypeRange.getEnd(),
945                                        ConstructorLParen, ConstructorRParen));
946}
947
948/// CheckAllocatedType - Checks that a type is suitable as the allocated type
949/// in a new-expression.
950/// dimension off and stores the size expression in ArraySize.
951bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
952                              SourceRange R) {
953  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
954  //   abstract class type or array thereof.
955  if (AllocType->isFunctionType())
956    return Diag(Loc, diag::err_bad_new_type)
957      << AllocType << 0 << R;
958  else if (AllocType->isReferenceType())
959    return Diag(Loc, diag::err_bad_new_type)
960      << AllocType << 1 << R;
961  else if (!AllocType->isDependentType() &&
962           RequireCompleteType(Loc, AllocType,
963                               PDiag(diag::err_new_incomplete_type)
964                                 << R))
965    return true;
966  else if (RequireNonAbstractType(Loc, AllocType,
967                                  diag::err_allocation_of_abstract_type))
968    return true;
969  else if (AllocType->isVariablyModifiedType())
970    return Diag(Loc, diag::err_variably_modified_new_type)
971             << AllocType;
972
973  return false;
974}
975
976/// \brief Determine whether the given function is a non-placement
977/// deallocation function.
978static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
979  if (FD->isInvalidDecl())
980    return false;
981
982  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
983    return Method->isUsualDeallocationFunction();
984
985  return ((FD->getOverloadedOperator() == OO_Delete ||
986           FD->getOverloadedOperator() == OO_Array_Delete) &&
987          FD->getNumParams() == 1);
988}
989
990/// FindAllocationFunctions - Finds the overloads of operator new and delete
991/// that are appropriate for the allocation.
992bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
993                                   bool UseGlobal, QualType AllocType,
994                                   bool IsArray, Expr **PlaceArgs,
995                                   unsigned NumPlaceArgs,
996                                   FunctionDecl *&OperatorNew,
997                                   FunctionDecl *&OperatorDelete) {
998  // --- Choosing an allocation function ---
999  // C++ 5.3.4p8 - 14 & 18
1000  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1001  //   in the scope of the allocated class.
1002  // 2) If an array size is given, look for operator new[], else look for
1003  //   operator new.
1004  // 3) The first argument is always size_t. Append the arguments from the
1005  //   placement form.
1006
1007  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1008  // We don't care about the actual value of this argument.
1009  // FIXME: Should the Sema create the expression and embed it in the syntax
1010  // tree? Or should the consumer just recalculate the value?
1011  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1012                      Context.Target.getPointerWidth(0)),
1013                      Context.getSizeType(),
1014                      SourceLocation());
1015  AllocArgs[0] = &Size;
1016  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1017
1018  // C++ [expr.new]p8:
1019  //   If the allocated type is a non-array type, the allocation
1020  //   function’s name is operator new and the deallocation function’s
1021  //   name is operator delete. If the allocated type is an array
1022  //   type, the allocation function’s name is operator new[] and the
1023  //   deallocation function’s name is operator delete[].
1024  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1025                                        IsArray ? OO_Array_New : OO_New);
1026  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1027                                        IsArray ? OO_Array_Delete : OO_Delete);
1028
1029  QualType AllocElemType = Context.getBaseElementType(AllocType);
1030
1031  if (AllocElemType->isRecordType() && !UseGlobal) {
1032    CXXRecordDecl *Record
1033      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1034    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1035                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1036                          OperatorNew))
1037      return true;
1038  }
1039  if (!OperatorNew) {
1040    // Didn't find a member overload. Look for a global one.
1041    DeclareGlobalNewDelete();
1042    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1043    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1044                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1045                          OperatorNew))
1046      return true;
1047  }
1048
1049  // We don't need an operator delete if we're running under
1050  // -fno-exceptions.
1051  if (!getLangOptions().Exceptions) {
1052    OperatorDelete = 0;
1053    return false;
1054  }
1055
1056  // FindAllocationOverload can change the passed in arguments, so we need to
1057  // copy them back.
1058  if (NumPlaceArgs > 0)
1059    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1060
1061  // C++ [expr.new]p19:
1062  //
1063  //   If the new-expression begins with a unary :: operator, the
1064  //   deallocation function’s name is looked up in the global
1065  //   scope. Otherwise, if the allocated type is a class type T or an
1066  //   array thereof, the deallocation function’s name is looked up in
1067  //   the scope of T. If this lookup fails to find the name, or if
1068  //   the allocated type is not a class type or array thereof, the
1069  //   deallocation function’s name is looked up in the global scope.
1070  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1071  if (AllocElemType->isRecordType() && !UseGlobal) {
1072    CXXRecordDecl *RD
1073      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1074    LookupQualifiedName(FoundDelete, RD);
1075  }
1076  if (FoundDelete.isAmbiguous())
1077    return true; // FIXME: clean up expressions?
1078
1079  if (FoundDelete.empty()) {
1080    DeclareGlobalNewDelete();
1081    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1082  }
1083
1084  FoundDelete.suppressDiagnostics();
1085
1086  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1087
1088  // Whether we're looking for a placement operator delete is dictated
1089  // by whether we selected a placement operator new, not by whether
1090  // we had explicit placement arguments.  This matters for things like
1091  //   struct A { void *operator new(size_t, int = 0); ... };
1092  //   A *a = new A()
1093  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1094
1095  if (isPlacementNew) {
1096    // C++ [expr.new]p20:
1097    //   A declaration of a placement deallocation function matches the
1098    //   declaration of a placement allocation function if it has the
1099    //   same number of parameters and, after parameter transformations
1100    //   (8.3.5), all parameter types except the first are
1101    //   identical. [...]
1102    //
1103    // To perform this comparison, we compute the function type that
1104    // the deallocation function should have, and use that type both
1105    // for template argument deduction and for comparison purposes.
1106    //
1107    // FIXME: this comparison should ignore CC and the like.
1108    QualType ExpectedFunctionType;
1109    {
1110      const FunctionProtoType *Proto
1111        = OperatorNew->getType()->getAs<FunctionProtoType>();
1112
1113      llvm::SmallVector<QualType, 4> ArgTypes;
1114      ArgTypes.push_back(Context.VoidPtrTy);
1115      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1116        ArgTypes.push_back(Proto->getArgType(I));
1117
1118      FunctionProtoType::ExtProtoInfo EPI;
1119      EPI.Variadic = Proto->isVariadic();
1120
1121      ExpectedFunctionType
1122        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1123                                  ArgTypes.size(), EPI);
1124    }
1125
1126    for (LookupResult::iterator D = FoundDelete.begin(),
1127                             DEnd = FoundDelete.end();
1128         D != DEnd; ++D) {
1129      FunctionDecl *Fn = 0;
1130      if (FunctionTemplateDecl *FnTmpl
1131            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1132        // Perform template argument deduction to try to match the
1133        // expected function type.
1134        TemplateDeductionInfo Info(Context, StartLoc);
1135        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1136          continue;
1137      } else
1138        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1139
1140      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1141        Matches.push_back(std::make_pair(D.getPair(), Fn));
1142    }
1143  } else {
1144    // C++ [expr.new]p20:
1145    //   [...] Any non-placement deallocation function matches a
1146    //   non-placement allocation function. [...]
1147    for (LookupResult::iterator D = FoundDelete.begin(),
1148                             DEnd = FoundDelete.end();
1149         D != DEnd; ++D) {
1150      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1151        if (isNonPlacementDeallocationFunction(Fn))
1152          Matches.push_back(std::make_pair(D.getPair(), Fn));
1153    }
1154  }
1155
1156  // C++ [expr.new]p20:
1157  //   [...] If the lookup finds a single matching deallocation
1158  //   function, that function will be called; otherwise, no
1159  //   deallocation function will be called.
1160  if (Matches.size() == 1) {
1161    OperatorDelete = Matches[0].second;
1162
1163    // C++0x [expr.new]p20:
1164    //   If the lookup finds the two-parameter form of a usual
1165    //   deallocation function (3.7.4.2) and that function, considered
1166    //   as a placement deallocation function, would have been
1167    //   selected as a match for the allocation function, the program
1168    //   is ill-formed.
1169    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1170        isNonPlacementDeallocationFunction(OperatorDelete)) {
1171      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1172        << SourceRange(PlaceArgs[0]->getLocStart(),
1173                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1174      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1175        << DeleteName;
1176    } else {
1177      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1178                            Matches[0].first);
1179    }
1180  }
1181
1182  return false;
1183}
1184
1185/// FindAllocationOverload - Find an fitting overload for the allocation
1186/// function in the specified scope.
1187bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1188                                  DeclarationName Name, Expr** Args,
1189                                  unsigned NumArgs, DeclContext *Ctx,
1190                                  bool AllowMissing, FunctionDecl *&Operator) {
1191  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1192  LookupQualifiedName(R, Ctx);
1193  if (R.empty()) {
1194    if (AllowMissing)
1195      return false;
1196    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1197      << Name << Range;
1198  }
1199
1200  if (R.isAmbiguous())
1201    return true;
1202
1203  R.suppressDiagnostics();
1204
1205  OverloadCandidateSet Candidates(StartLoc);
1206  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1207       Alloc != AllocEnd; ++Alloc) {
1208    // Even member operator new/delete are implicitly treated as
1209    // static, so don't use AddMemberCandidate.
1210    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1211
1212    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1213      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1214                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1215                                   Candidates,
1216                                   /*SuppressUserConversions=*/false);
1217      continue;
1218    }
1219
1220    FunctionDecl *Fn = cast<FunctionDecl>(D);
1221    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1222                         /*SuppressUserConversions=*/false);
1223  }
1224
1225  // Do the resolution.
1226  OverloadCandidateSet::iterator Best;
1227  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1228  case OR_Success: {
1229    // Got one!
1230    FunctionDecl *FnDecl = Best->Function;
1231    // The first argument is size_t, and the first parameter must be size_t,
1232    // too. This is checked on declaration and can be assumed. (It can't be
1233    // asserted on, though, since invalid decls are left in there.)
1234    // Watch out for variadic allocator function.
1235    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1236    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1237      ExprResult Result
1238        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1239                                                       Context,
1240                                                       FnDecl->getParamDecl(i)),
1241                                    SourceLocation(),
1242                                    Owned(Args[i]));
1243      if (Result.isInvalid())
1244        return true;
1245
1246      Args[i] = Result.takeAs<Expr>();
1247    }
1248    Operator = FnDecl;
1249    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1250    return false;
1251  }
1252
1253  case OR_No_Viable_Function:
1254    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1255      << Name << Range;
1256    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1257    return true;
1258
1259  case OR_Ambiguous:
1260    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1261      << Name << Range;
1262    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1263    return true;
1264
1265  case OR_Deleted:
1266    Diag(StartLoc, diag::err_ovl_deleted_call)
1267      << Best->Function->isDeleted()
1268      << Name << Range;
1269    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1270    return true;
1271  }
1272  assert(false && "Unreachable, bad result from BestViableFunction");
1273  return true;
1274}
1275
1276
1277/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1278/// delete. These are:
1279/// @code
1280///   void* operator new(std::size_t) throw(std::bad_alloc);
1281///   void* operator new[](std::size_t) throw(std::bad_alloc);
1282///   void operator delete(void *) throw();
1283///   void operator delete[](void *) throw();
1284/// @endcode
1285/// Note that the placement and nothrow forms of new are *not* implicitly
1286/// declared. Their use requires including \<new\>.
1287void Sema::DeclareGlobalNewDelete() {
1288  if (GlobalNewDeleteDeclared)
1289    return;
1290
1291  // C++ [basic.std.dynamic]p2:
1292  //   [...] The following allocation and deallocation functions (18.4) are
1293  //   implicitly declared in global scope in each translation unit of a
1294  //   program
1295  //
1296  //     void* operator new(std::size_t) throw(std::bad_alloc);
1297  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1298  //     void  operator delete(void*) throw();
1299  //     void  operator delete[](void*) throw();
1300  //
1301  //   These implicit declarations introduce only the function names operator
1302  //   new, operator new[], operator delete, operator delete[].
1303  //
1304  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1305  // "std" or "bad_alloc" as necessary to form the exception specification.
1306  // However, we do not make these implicit declarations visible to name
1307  // lookup.
1308  if (!StdBadAlloc) {
1309    // The "std::bad_alloc" class has not yet been declared, so build it
1310    // implicitly.
1311    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1312                                        getOrCreateStdNamespace(),
1313                                        SourceLocation(),
1314                                      &PP.getIdentifierTable().get("bad_alloc"),
1315                                        SourceLocation(), 0);
1316    getStdBadAlloc()->setImplicit(true);
1317  }
1318
1319  GlobalNewDeleteDeclared = true;
1320
1321  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1322  QualType SizeT = Context.getSizeType();
1323  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1324
1325  DeclareGlobalAllocationFunction(
1326      Context.DeclarationNames.getCXXOperatorName(OO_New),
1327      VoidPtr, SizeT, AssumeSaneOperatorNew);
1328  DeclareGlobalAllocationFunction(
1329      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1330      VoidPtr, SizeT, AssumeSaneOperatorNew);
1331  DeclareGlobalAllocationFunction(
1332      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1333      Context.VoidTy, VoidPtr);
1334  DeclareGlobalAllocationFunction(
1335      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1336      Context.VoidTy, VoidPtr);
1337}
1338
1339/// DeclareGlobalAllocationFunction - Declares a single implicit global
1340/// allocation function if it doesn't already exist.
1341void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1342                                           QualType Return, QualType Argument,
1343                                           bool AddMallocAttr) {
1344  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1345
1346  // Check if this function is already declared.
1347  {
1348    DeclContext::lookup_iterator Alloc, AllocEnd;
1349    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1350         Alloc != AllocEnd; ++Alloc) {
1351      // Only look at non-template functions, as it is the predefined,
1352      // non-templated allocation function we are trying to declare here.
1353      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1354        QualType InitialParamType =
1355          Context.getCanonicalType(
1356            Func->getParamDecl(0)->getType().getUnqualifiedType());
1357        // FIXME: Do we need to check for default arguments here?
1358        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1359          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1360            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1361          return;
1362        }
1363      }
1364    }
1365  }
1366
1367  QualType BadAllocType;
1368  bool HasBadAllocExceptionSpec
1369    = (Name.getCXXOverloadedOperator() == OO_New ||
1370       Name.getCXXOverloadedOperator() == OO_Array_New);
1371  if (HasBadAllocExceptionSpec) {
1372    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1373    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1374  }
1375
1376  FunctionProtoType::ExtProtoInfo EPI;
1377  EPI.HasExceptionSpec = true;
1378  if (HasBadAllocExceptionSpec) {
1379    EPI.NumExceptions = 1;
1380    EPI.Exceptions = &BadAllocType;
1381  }
1382
1383  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1384  FunctionDecl *Alloc =
1385    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
1386                         FnType, /*TInfo=*/0, SC_None,
1387                         SC_None, false, true);
1388  Alloc->setImplicit();
1389
1390  if (AddMallocAttr)
1391    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1392
1393  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1394                                           0, Argument, /*TInfo=*/0,
1395                                           SC_None,
1396                                           SC_None, 0);
1397  Alloc->setParams(&Param, 1);
1398
1399  // FIXME: Also add this declaration to the IdentifierResolver, but
1400  // make sure it is at the end of the chain to coincide with the
1401  // global scope.
1402  Context.getTranslationUnitDecl()->addDecl(Alloc);
1403}
1404
1405bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1406                                    DeclarationName Name,
1407                                    FunctionDecl* &Operator) {
1408  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1409  // Try to find operator delete/operator delete[] in class scope.
1410  LookupQualifiedName(Found, RD);
1411
1412  if (Found.isAmbiguous())
1413    return true;
1414
1415  Found.suppressDiagnostics();
1416
1417  llvm::SmallVector<DeclAccessPair,4> Matches;
1418  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1419       F != FEnd; ++F) {
1420    NamedDecl *ND = (*F)->getUnderlyingDecl();
1421
1422    // Ignore template operator delete members from the check for a usual
1423    // deallocation function.
1424    if (isa<FunctionTemplateDecl>(ND))
1425      continue;
1426
1427    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1428      Matches.push_back(F.getPair());
1429  }
1430
1431  // There's exactly one suitable operator;  pick it.
1432  if (Matches.size() == 1) {
1433    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1434    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1435                          Matches[0]);
1436    return false;
1437
1438  // We found multiple suitable operators;  complain about the ambiguity.
1439  } else if (!Matches.empty()) {
1440    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1441      << Name << RD;
1442
1443    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1444           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1445      Diag((*F)->getUnderlyingDecl()->getLocation(),
1446           diag::note_member_declared_here) << Name;
1447    return true;
1448  }
1449
1450  // We did find operator delete/operator delete[] declarations, but
1451  // none of them were suitable.
1452  if (!Found.empty()) {
1453    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1454      << Name << RD;
1455
1456    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1457         F != FEnd; ++F)
1458      Diag((*F)->getUnderlyingDecl()->getLocation(),
1459           diag::note_member_declared_here) << Name;
1460
1461    return true;
1462  }
1463
1464  // Look for a global declaration.
1465  DeclareGlobalNewDelete();
1466  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1467
1468  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1469  Expr* DeallocArgs[1];
1470  DeallocArgs[0] = &Null;
1471  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1472                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1473                             Operator))
1474    return true;
1475
1476  assert(Operator && "Did not find a deallocation function!");
1477  return false;
1478}
1479
1480/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1481/// @code ::delete ptr; @endcode
1482/// or
1483/// @code delete [] ptr; @endcode
1484ExprResult
1485Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1486                     bool ArrayForm, Expr *Ex) {
1487  // C++ [expr.delete]p1:
1488  //   The operand shall have a pointer type, or a class type having a single
1489  //   conversion function to a pointer type. The result has type void.
1490  //
1491  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1492
1493  FunctionDecl *OperatorDelete = 0;
1494  bool ArrayFormAsWritten = ArrayForm;
1495
1496  if (!Ex->isTypeDependent()) {
1497    QualType Type = Ex->getType();
1498
1499    if (const RecordType *Record = Type->getAs<RecordType>()) {
1500      if (RequireCompleteType(StartLoc, Type,
1501                              PDiag(diag::err_delete_incomplete_class_type)))
1502        return ExprError();
1503
1504      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1505
1506      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1507      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1508      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1509             E = Conversions->end(); I != E; ++I) {
1510        NamedDecl *D = I.getDecl();
1511        if (isa<UsingShadowDecl>(D))
1512          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1513
1514        // Skip over templated conversion functions; they aren't considered.
1515        if (isa<FunctionTemplateDecl>(D))
1516          continue;
1517
1518        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1519
1520        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1521        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1522          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1523            ObjectPtrConversions.push_back(Conv);
1524      }
1525      if (ObjectPtrConversions.size() == 1) {
1526        // We have a single conversion to a pointer-to-object type. Perform
1527        // that conversion.
1528        // TODO: don't redo the conversion calculation.
1529        if (!PerformImplicitConversion(Ex,
1530                            ObjectPtrConversions.front()->getConversionType(),
1531                                      AA_Converting)) {
1532          Type = Ex->getType();
1533        }
1534      }
1535      else if (ObjectPtrConversions.size() > 1) {
1536        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1537              << Type << Ex->getSourceRange();
1538        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1539          NoteOverloadCandidate(ObjectPtrConversions[i]);
1540        return ExprError();
1541      }
1542    }
1543
1544    if (!Type->isPointerType())
1545      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1546        << Type << Ex->getSourceRange());
1547
1548    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1549    if (Pointee->isVoidType() && !isSFINAEContext()) {
1550      // The C++ standard bans deleting a pointer to a non-object type, which
1551      // effectively bans deletion of "void*". However, most compilers support
1552      // this, so we treat it as a warning unless we're in a SFINAE context.
1553      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1554        << Type << Ex->getSourceRange();
1555    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1556      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1557        << Type << Ex->getSourceRange());
1558    else if (!Pointee->isDependentType() &&
1559             RequireCompleteType(StartLoc, Pointee,
1560                                 PDiag(diag::warn_delete_incomplete)
1561                                   << Ex->getSourceRange()))
1562      return ExprError();
1563
1564    // C++ [expr.delete]p2:
1565    //   [Note: a pointer to a const type can be the operand of a
1566    //   delete-expression; it is not necessary to cast away the constness
1567    //   (5.2.11) of the pointer expression before it is used as the operand
1568    //   of the delete-expression. ]
1569    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1570                      CK_NoOp);
1571
1572    if (Pointee->isArrayType() && !ArrayForm) {
1573      Diag(StartLoc, diag::warn_delete_array_type)
1574          << Type << Ex->getSourceRange()
1575          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1576      ArrayForm = true;
1577    }
1578
1579    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1580                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1581
1582    QualType PointeeElem = Context.getBaseElementType(Pointee);
1583    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1584      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1585
1586      if (!UseGlobal &&
1587          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1588        return ExprError();
1589
1590      if (!RD->hasTrivialDestructor())
1591        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1592          MarkDeclarationReferenced(StartLoc,
1593                                    const_cast<CXXDestructorDecl*>(Dtor));
1594          DiagnoseUseOfDecl(Dtor, StartLoc);
1595        }
1596    }
1597
1598    if (!OperatorDelete) {
1599      // Look for a global declaration.
1600      DeclareGlobalNewDelete();
1601      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1602      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1603                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1604                                 OperatorDelete))
1605        return ExprError();
1606    }
1607
1608    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1609
1610    // FIXME: Check access and ambiguity of operator delete and destructor.
1611  }
1612
1613  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1614                                           ArrayFormAsWritten, OperatorDelete,
1615                                           Ex, StartLoc));
1616}
1617
1618/// \brief Check the use of the given variable as a C++ condition in an if,
1619/// while, do-while, or switch statement.
1620ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1621                                        SourceLocation StmtLoc,
1622                                        bool ConvertToBoolean) {
1623  QualType T = ConditionVar->getType();
1624
1625  // C++ [stmt.select]p2:
1626  //   The declarator shall not specify a function or an array.
1627  if (T->isFunctionType())
1628    return ExprError(Diag(ConditionVar->getLocation(),
1629                          diag::err_invalid_use_of_function_type)
1630                       << ConditionVar->getSourceRange());
1631  else if (T->isArrayType())
1632    return ExprError(Diag(ConditionVar->getLocation(),
1633                          diag::err_invalid_use_of_array_type)
1634                     << ConditionVar->getSourceRange());
1635
1636  Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
1637                                        ConditionVar->getLocation(),
1638                            ConditionVar->getType().getNonReferenceType(),
1639                                        VK_LValue);
1640  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1641    return ExprError();
1642
1643  return Owned(Condition);
1644}
1645
1646/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1647bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1648  // C++ 6.4p4:
1649  // The value of a condition that is an initialized declaration in a statement
1650  // other than a switch statement is the value of the declared variable
1651  // implicitly converted to type bool. If that conversion is ill-formed, the
1652  // program is ill-formed.
1653  // The value of a condition that is an expression is the value of the
1654  // expression, implicitly converted to bool.
1655  //
1656  return PerformContextuallyConvertToBool(CondExpr);
1657}
1658
1659/// Helper function to determine whether this is the (deprecated) C++
1660/// conversion from a string literal to a pointer to non-const char or
1661/// non-const wchar_t (for narrow and wide string literals,
1662/// respectively).
1663bool
1664Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1665  // Look inside the implicit cast, if it exists.
1666  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1667    From = Cast->getSubExpr();
1668
1669  // A string literal (2.13.4) that is not a wide string literal can
1670  // be converted to an rvalue of type "pointer to char"; a wide
1671  // string literal can be converted to an rvalue of type "pointer
1672  // to wchar_t" (C++ 4.2p2).
1673  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1674    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1675      if (const BuiltinType *ToPointeeType
1676          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1677        // This conversion is considered only when there is an
1678        // explicit appropriate pointer target type (C++ 4.2p2).
1679        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1680            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1681             (!StrLit->isWide() &&
1682              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1683               ToPointeeType->getKind() == BuiltinType::Char_S))))
1684          return true;
1685      }
1686
1687  return false;
1688}
1689
1690static ExprResult BuildCXXCastArgument(Sema &S,
1691                                       SourceLocation CastLoc,
1692                                       QualType Ty,
1693                                       CastKind Kind,
1694                                       CXXMethodDecl *Method,
1695                                       Expr *From) {
1696  switch (Kind) {
1697  default: assert(0 && "Unhandled cast kind!");
1698  case CK_ConstructorConversion: {
1699    ASTOwningVector<Expr*> ConstructorArgs(S);
1700
1701    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1702                                  MultiExprArg(&From, 1),
1703                                  CastLoc, ConstructorArgs))
1704      return ExprError();
1705
1706    ExprResult Result =
1707    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1708                            move_arg(ConstructorArgs),
1709                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1710                            SourceRange());
1711    if (Result.isInvalid())
1712      return ExprError();
1713
1714    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1715  }
1716
1717  case CK_UserDefinedConversion: {
1718    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1719
1720    // Create an implicit call expr that calls it.
1721    // FIXME: pass the FoundDecl for the user-defined conversion here
1722    CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method);
1723    return S.MaybeBindToTemporary(CE);
1724  }
1725  }
1726}
1727
1728/// PerformImplicitConversion - Perform an implicit conversion of the
1729/// expression From to the type ToType using the pre-computed implicit
1730/// conversion sequence ICS. Returns true if there was an error, false
1731/// otherwise. The expression From is replaced with the converted
1732/// expression. Action is the kind of conversion we're performing,
1733/// used in the error message.
1734bool
1735Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1736                                const ImplicitConversionSequence &ICS,
1737                                AssignmentAction Action, bool IgnoreBaseAccess) {
1738  switch (ICS.getKind()) {
1739  case ImplicitConversionSequence::StandardConversion:
1740    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1741                                  IgnoreBaseAccess))
1742      return true;
1743    break;
1744
1745  case ImplicitConversionSequence::UserDefinedConversion: {
1746
1747      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1748      CastKind CastKind;
1749      QualType BeforeToType;
1750      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1751        CastKind = CK_UserDefinedConversion;
1752
1753        // If the user-defined conversion is specified by a conversion function,
1754        // the initial standard conversion sequence converts the source type to
1755        // the implicit object parameter of the conversion function.
1756        BeforeToType = Context.getTagDeclType(Conv->getParent());
1757      } else {
1758        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
1759        CastKind = CK_ConstructorConversion;
1760        // Do no conversion if dealing with ... for the first conversion.
1761        if (!ICS.UserDefined.EllipsisConversion) {
1762          // If the user-defined conversion is specified by a constructor, the
1763          // initial standard conversion sequence converts the source type to the
1764          // type required by the argument of the constructor
1765          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1766        }
1767      }
1768      // Watch out for elipsis conversion.
1769      if (!ICS.UserDefined.EllipsisConversion) {
1770        if (PerformImplicitConversion(From, BeforeToType,
1771                                      ICS.UserDefined.Before, AA_Converting,
1772                                      IgnoreBaseAccess))
1773          return true;
1774      }
1775
1776      ExprResult CastArg
1777        = BuildCXXCastArgument(*this,
1778                               From->getLocStart(),
1779                               ToType.getNonReferenceType(),
1780                               CastKind, cast<CXXMethodDecl>(FD),
1781                               From);
1782
1783      if (CastArg.isInvalid())
1784        return true;
1785
1786      From = CastArg.takeAs<Expr>();
1787
1788      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1789                                       AA_Converting, IgnoreBaseAccess);
1790  }
1791
1792  case ImplicitConversionSequence::AmbiguousConversion:
1793    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1794                          PDiag(diag::err_typecheck_ambiguous_condition)
1795                            << From->getSourceRange());
1796     return true;
1797
1798  case ImplicitConversionSequence::EllipsisConversion:
1799    assert(false && "Cannot perform an ellipsis conversion");
1800    return false;
1801
1802  case ImplicitConversionSequence::BadConversion:
1803    return true;
1804  }
1805
1806  // Everything went well.
1807  return false;
1808}
1809
1810/// PerformImplicitConversion - Perform an implicit conversion of the
1811/// expression From to the type ToType by following the standard
1812/// conversion sequence SCS. Returns true if there was an error, false
1813/// otherwise. The expression From is replaced with the converted
1814/// expression. Flavor is the context in which we're performing this
1815/// conversion, for use in error messages.
1816bool
1817Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1818                                const StandardConversionSequence& SCS,
1819                                AssignmentAction Action, bool IgnoreBaseAccess) {
1820  // Overall FIXME: we are recomputing too many types here and doing far too
1821  // much extra work. What this means is that we need to keep track of more
1822  // information that is computed when we try the implicit conversion initially,
1823  // so that we don't need to recompute anything here.
1824  QualType FromType = From->getType();
1825
1826  if (SCS.CopyConstructor) {
1827    // FIXME: When can ToType be a reference type?
1828    assert(!ToType->isReferenceType());
1829    if (SCS.Second == ICK_Derived_To_Base) {
1830      ASTOwningVector<Expr*> ConstructorArgs(*this);
1831      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1832                                  MultiExprArg(*this, &From, 1),
1833                                  /*FIXME:ConstructLoc*/SourceLocation(),
1834                                  ConstructorArgs))
1835        return true;
1836      ExprResult FromResult =
1837        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1838                              ToType, SCS.CopyConstructor,
1839                              move_arg(ConstructorArgs),
1840                              /*ZeroInit*/ false,
1841                              CXXConstructExpr::CK_Complete,
1842                              SourceRange());
1843      if (FromResult.isInvalid())
1844        return true;
1845      From = FromResult.takeAs<Expr>();
1846      return false;
1847    }
1848    ExprResult FromResult =
1849      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1850                            ToType, SCS.CopyConstructor,
1851                            MultiExprArg(*this, &From, 1),
1852                            /*ZeroInit*/ false,
1853                            CXXConstructExpr::CK_Complete,
1854                            SourceRange());
1855
1856    if (FromResult.isInvalid())
1857      return true;
1858
1859    From = FromResult.takeAs<Expr>();
1860    return false;
1861  }
1862
1863  // Resolve overloaded function references.
1864  if (Context.hasSameType(FromType, Context.OverloadTy)) {
1865    DeclAccessPair Found;
1866    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
1867                                                          true, Found);
1868    if (!Fn)
1869      return true;
1870
1871    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
1872      return true;
1873
1874    From = FixOverloadedFunctionReference(From, Found, Fn);
1875    FromType = From->getType();
1876  }
1877
1878  // Perform the first implicit conversion.
1879  switch (SCS.First) {
1880  case ICK_Identity:
1881    // Nothing to do.
1882    break;
1883
1884  case ICK_Lvalue_To_Rvalue:
1885    // Should this get its own ICK?
1886    if (From->getObjectKind() == OK_ObjCProperty) {
1887      ConvertPropertyForRValue(From);
1888      if (!From->isGLValue()) break;
1889    }
1890
1891    FromType = FromType.getUnqualifiedType();
1892    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
1893                                    From, 0, VK_RValue);
1894    break;
1895
1896  case ICK_Array_To_Pointer:
1897    FromType = Context.getArrayDecayedType(FromType);
1898    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
1899    break;
1900
1901  case ICK_Function_To_Pointer:
1902    FromType = Context.getPointerType(FromType);
1903    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
1904    break;
1905
1906  default:
1907    assert(false && "Improper first standard conversion");
1908    break;
1909  }
1910
1911  // Perform the second implicit conversion
1912  switch (SCS.Second) {
1913  case ICK_Identity:
1914    // If both sides are functions (or pointers/references to them), there could
1915    // be incompatible exception declarations.
1916    if (CheckExceptionSpecCompatibility(From, ToType))
1917      return true;
1918    // Nothing else to do.
1919    break;
1920
1921  case ICK_NoReturn_Adjustment:
1922    // If both sides are functions (or pointers/references to them), there could
1923    // be incompatible exception declarations.
1924    if (CheckExceptionSpecCompatibility(From, ToType))
1925      return true;
1926
1927    ImpCastExprToType(From, ToType, CK_NoOp);
1928    break;
1929
1930  case ICK_Integral_Promotion:
1931  case ICK_Integral_Conversion:
1932    ImpCastExprToType(From, ToType, CK_IntegralCast);
1933    break;
1934
1935  case ICK_Floating_Promotion:
1936  case ICK_Floating_Conversion:
1937    ImpCastExprToType(From, ToType, CK_FloatingCast);
1938    break;
1939
1940  case ICK_Complex_Promotion:
1941  case ICK_Complex_Conversion: {
1942    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
1943    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
1944    CastKind CK;
1945    if (FromEl->isRealFloatingType()) {
1946      if (ToEl->isRealFloatingType())
1947        CK = CK_FloatingComplexCast;
1948      else
1949        CK = CK_FloatingComplexToIntegralComplex;
1950    } else if (ToEl->isRealFloatingType()) {
1951      CK = CK_IntegralComplexToFloatingComplex;
1952    } else {
1953      CK = CK_IntegralComplexCast;
1954    }
1955    ImpCastExprToType(From, ToType, CK);
1956    break;
1957  }
1958
1959  case ICK_Floating_Integral:
1960    if (ToType->isRealFloatingType())
1961      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
1962    else
1963      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
1964    break;
1965
1966  case ICK_Compatible_Conversion:
1967    ImpCastExprToType(From, ToType, CK_NoOp);
1968    break;
1969
1970  case ICK_Pointer_Conversion: {
1971    if (SCS.IncompatibleObjC && Action != AA_Casting) {
1972      // Diagnose incompatible Objective-C conversions
1973      Diag(From->getSourceRange().getBegin(),
1974           diag::ext_typecheck_convert_incompatible_pointer)
1975        << From->getType() << ToType << Action
1976        << From->getSourceRange();
1977    }
1978
1979    CastKind Kind = CK_Invalid;
1980    CXXCastPath BasePath;
1981    if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess))
1982      return true;
1983    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
1984    break;
1985  }
1986
1987  case ICK_Pointer_Member: {
1988    CastKind Kind = CK_Invalid;
1989    CXXCastPath BasePath;
1990    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath,
1991                                     IgnoreBaseAccess))
1992      return true;
1993    if (CheckExceptionSpecCompatibility(From, ToType))
1994      return true;
1995    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
1996    break;
1997  }
1998  case ICK_Boolean_Conversion: {
1999    CastKind Kind = CK_Invalid;
2000    switch (FromType->getScalarTypeKind()) {
2001    case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
2002    case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
2003    case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
2004    case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
2005    case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
2006    case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
2007    case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
2008    }
2009
2010    ImpCastExprToType(From, Context.BoolTy, Kind);
2011    break;
2012  }
2013
2014  case ICK_Derived_To_Base: {
2015    CXXCastPath BasePath;
2016    if (CheckDerivedToBaseConversion(From->getType(),
2017                                     ToType.getNonReferenceType(),
2018                                     From->getLocStart(),
2019                                     From->getSourceRange(),
2020                                     &BasePath,
2021                                     IgnoreBaseAccess))
2022      return true;
2023
2024    ImpCastExprToType(From, ToType.getNonReferenceType(),
2025                      CK_DerivedToBase, CastCategory(From),
2026                      &BasePath);
2027    break;
2028  }
2029
2030  case ICK_Vector_Conversion:
2031    ImpCastExprToType(From, ToType, CK_BitCast);
2032    break;
2033
2034  case ICK_Vector_Splat:
2035    ImpCastExprToType(From, ToType, CK_VectorSplat);
2036    break;
2037
2038  case ICK_Complex_Real:
2039    // Case 1.  x -> _Complex y
2040    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2041      QualType ElType = ToComplex->getElementType();
2042      bool isFloatingComplex = ElType->isRealFloatingType();
2043
2044      // x -> y
2045      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2046        // do nothing
2047      } else if (From->getType()->isRealFloatingType()) {
2048        ImpCastExprToType(From, ElType,
2049                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
2050      } else {
2051        assert(From->getType()->isIntegerType());
2052        ImpCastExprToType(From, ElType,
2053                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
2054      }
2055      // y -> _Complex y
2056      ImpCastExprToType(From, ToType,
2057                   isFloatingComplex ? CK_FloatingRealToComplex
2058                                     : CK_IntegralRealToComplex);
2059
2060    // Case 2.  _Complex x -> y
2061    } else {
2062      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2063      assert(FromComplex);
2064
2065      QualType ElType = FromComplex->getElementType();
2066      bool isFloatingComplex = ElType->isRealFloatingType();
2067
2068      // _Complex x -> x
2069      ImpCastExprToType(From, ElType,
2070                   isFloatingComplex ? CK_FloatingComplexToReal
2071                                     : CK_IntegralComplexToReal);
2072
2073      // x -> y
2074      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2075        // do nothing
2076      } else if (ToType->isRealFloatingType()) {
2077        ImpCastExprToType(From, ToType,
2078                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
2079      } else {
2080        assert(ToType->isIntegerType());
2081        ImpCastExprToType(From, ToType,
2082                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
2083      }
2084    }
2085    break;
2086
2087  case ICK_Lvalue_To_Rvalue:
2088  case ICK_Array_To_Pointer:
2089  case ICK_Function_To_Pointer:
2090  case ICK_Qualification:
2091  case ICK_Num_Conversion_Kinds:
2092    assert(false && "Improper second standard conversion");
2093    break;
2094  }
2095
2096  switch (SCS.Third) {
2097  case ICK_Identity:
2098    // Nothing to do.
2099    break;
2100
2101  case ICK_Qualification: {
2102    // The qualification keeps the category of the inner expression, unless the
2103    // target type isn't a reference.
2104    ExprValueKind VK = ToType->isReferenceType() ?
2105                                  CastCategory(From) : VK_RValue;
2106    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2107                      CK_NoOp, VK);
2108
2109    if (SCS.DeprecatedStringLiteralToCharPtr)
2110      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2111        << ToType.getNonReferenceType();
2112
2113    break;
2114    }
2115
2116  default:
2117    assert(false && "Improper third standard conversion");
2118    break;
2119  }
2120
2121  return false;
2122}
2123
2124ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2125                                     SourceLocation KWLoc,
2126                                     ParsedType Ty,
2127                                     SourceLocation RParen) {
2128  TypeSourceInfo *TSInfo;
2129  QualType T = GetTypeFromParser(Ty, &TSInfo);
2130
2131  if (!TSInfo)
2132    TSInfo = Context.getTrivialTypeSourceInfo(T);
2133  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2134}
2135
2136static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2137                                   SourceLocation KeyLoc) {
2138  assert(!T->isDependentType() &&
2139         "Cannot evaluate traits for dependent types.");
2140  ASTContext &C = Self.Context;
2141  switch(UTT) {
2142  default: assert(false && "Unknown type trait or not implemented");
2143  case UTT_IsPOD: return T->isPODType();
2144  case UTT_IsLiteral: return T->isLiteralType();
2145  case UTT_IsClass: // Fallthrough
2146  case UTT_IsUnion:
2147    if (const RecordType *Record = T->getAs<RecordType>()) {
2148      bool Union = Record->getDecl()->isUnion();
2149      return UTT == UTT_IsUnion ? Union : !Union;
2150    }
2151    return false;
2152  case UTT_IsEnum: return T->isEnumeralType();
2153  case UTT_IsPolymorphic:
2154    if (const RecordType *Record = T->getAs<RecordType>()) {
2155      // Type traits are only parsed in C++, so we've got CXXRecords.
2156      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2157    }
2158    return false;
2159  case UTT_IsAbstract:
2160    if (const RecordType *RT = T->getAs<RecordType>())
2161      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2162    return false;
2163  case UTT_IsEmpty:
2164    if (const RecordType *Record = T->getAs<RecordType>()) {
2165      return !Record->getDecl()->isUnion()
2166          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2167    }
2168    return false;
2169  case UTT_HasTrivialConstructor:
2170    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2171    //   If __is_pod (type) is true then the trait is true, else if type is
2172    //   a cv class or union type (or array thereof) with a trivial default
2173    //   constructor ([class.ctor]) then the trait is true, else it is false.
2174    if (T->isPODType())
2175      return true;
2176    if (const RecordType *RT =
2177          C.getBaseElementType(T)->getAs<RecordType>())
2178      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2179    return false;
2180  case UTT_HasTrivialCopy:
2181    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2182    //   If __is_pod (type) is true or type is a reference type then
2183    //   the trait is true, else if type is a cv class or union type
2184    //   with a trivial copy constructor ([class.copy]) then the trait
2185    //   is true, else it is false.
2186    if (T->isPODType() || T->isReferenceType())
2187      return true;
2188    if (const RecordType *RT = T->getAs<RecordType>())
2189      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2190    return false;
2191  case UTT_HasTrivialAssign:
2192    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2193    //   If type is const qualified or is a reference type then the
2194    //   trait is false. Otherwise if __is_pod (type) is true then the
2195    //   trait is true, else if type is a cv class or union type with
2196    //   a trivial copy assignment ([class.copy]) then the trait is
2197    //   true, else it is false.
2198    // Note: the const and reference restrictions are interesting,
2199    // given that const and reference members don't prevent a class
2200    // from having a trivial copy assignment operator (but do cause
2201    // errors if the copy assignment operator is actually used, q.v.
2202    // [class.copy]p12).
2203
2204    if (C.getBaseElementType(T).isConstQualified())
2205      return false;
2206    if (T->isPODType())
2207      return true;
2208    if (const RecordType *RT = T->getAs<RecordType>())
2209      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2210    return false;
2211  case UTT_HasTrivialDestructor:
2212    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2213    //   If __is_pod (type) is true or type is a reference type
2214    //   then the trait is true, else if type is a cv class or union
2215    //   type (or array thereof) with a trivial destructor
2216    //   ([class.dtor]) then the trait is true, else it is
2217    //   false.
2218    if (T->isPODType() || T->isReferenceType())
2219      return true;
2220    if (const RecordType *RT =
2221          C.getBaseElementType(T)->getAs<RecordType>())
2222      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2223    return false;
2224  // TODO: Propagate nothrowness for implicitly declared special members.
2225  case UTT_HasNothrowAssign:
2226    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2227    //   If type is const qualified or is a reference type then the
2228    //   trait is false. Otherwise if __has_trivial_assign (type)
2229    //   is true then the trait is true, else if type is a cv class
2230    //   or union type with copy assignment operators that are known
2231    //   not to throw an exception then the trait is true, else it is
2232    //   false.
2233    if (C.getBaseElementType(T).isConstQualified())
2234      return false;
2235    if (T->isReferenceType())
2236      return false;
2237    if (T->isPODType())
2238      return true;
2239    if (const RecordType *RT = T->getAs<RecordType>()) {
2240      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2241      if (RD->hasTrivialCopyAssignment())
2242        return true;
2243
2244      bool FoundAssign = false;
2245      bool AllNoThrow = true;
2246      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2247      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2248                       Sema::LookupOrdinaryName);
2249      if (Self.LookupQualifiedName(Res, RD)) {
2250        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2251             Op != OpEnd; ++Op) {
2252          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2253          if (Operator->isCopyAssignmentOperator()) {
2254            FoundAssign = true;
2255            const FunctionProtoType *CPT
2256                = Operator->getType()->getAs<FunctionProtoType>();
2257            if (!CPT->hasEmptyExceptionSpec()) {
2258              AllNoThrow = false;
2259              break;
2260            }
2261          }
2262        }
2263      }
2264
2265      return FoundAssign && AllNoThrow;
2266    }
2267    return false;
2268  case UTT_HasNothrowCopy:
2269    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2270    //   If __has_trivial_copy (type) is true then the trait is true, else
2271    //   if type is a cv class or union type with copy constructors that are
2272    //   known not to throw an exception then the trait is true, else it is
2273    //   false.
2274    if (T->isPODType() || T->isReferenceType())
2275      return true;
2276    if (const RecordType *RT = T->getAs<RecordType>()) {
2277      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2278      if (RD->hasTrivialCopyConstructor())
2279        return true;
2280
2281      bool FoundConstructor = false;
2282      bool AllNoThrow = true;
2283      unsigned FoundTQs;
2284      DeclContext::lookup_const_iterator Con, ConEnd;
2285      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2286           Con != ConEnd; ++Con) {
2287        // A template constructor is never a copy constructor.
2288        // FIXME: However, it may actually be selected at the actual overload
2289        // resolution point.
2290        if (isa<FunctionTemplateDecl>(*Con))
2291          continue;
2292        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2293        if (Constructor->isCopyConstructor(FoundTQs)) {
2294          FoundConstructor = true;
2295          const FunctionProtoType *CPT
2296              = Constructor->getType()->getAs<FunctionProtoType>();
2297          // TODO: check whether evaluating default arguments can throw.
2298          // For now, we'll be conservative and assume that they can throw.
2299          if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
2300            AllNoThrow = false;
2301            break;
2302          }
2303        }
2304      }
2305
2306      return FoundConstructor && AllNoThrow;
2307    }
2308    return false;
2309  case UTT_HasNothrowConstructor:
2310    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2311    //   If __has_trivial_constructor (type) is true then the trait is
2312    //   true, else if type is a cv class or union type (or array
2313    //   thereof) with a default constructor that is known not to
2314    //   throw an exception then the trait is true, else it is false.
2315    if (T->isPODType())
2316      return true;
2317    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2318      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2319      if (RD->hasTrivialConstructor())
2320        return true;
2321
2322      DeclContext::lookup_const_iterator Con, ConEnd;
2323      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2324           Con != ConEnd; ++Con) {
2325        // FIXME: In C++0x, a constructor template can be a default constructor.
2326        if (isa<FunctionTemplateDecl>(*Con))
2327          continue;
2328        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2329        if (Constructor->isDefaultConstructor()) {
2330          const FunctionProtoType *CPT
2331              = Constructor->getType()->getAs<FunctionProtoType>();
2332          // TODO: check whether evaluating default arguments can throw.
2333          // For now, we'll be conservative and assume that they can throw.
2334          return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
2335        }
2336      }
2337    }
2338    return false;
2339  case UTT_HasVirtualDestructor:
2340    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2341    //   If type is a class type with a virtual destructor ([class.dtor])
2342    //   then the trait is true, else it is false.
2343    if (const RecordType *Record = T->getAs<RecordType>()) {
2344      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2345      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2346        return Destructor->isVirtual();
2347    }
2348    return false;
2349  }
2350}
2351
2352ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2353                                     SourceLocation KWLoc,
2354                                     TypeSourceInfo *TSInfo,
2355                                     SourceLocation RParen) {
2356  QualType T = TSInfo->getType();
2357
2358  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2359  // all traits except __is_class, __is_enum and __is_union require a the type
2360  // to be complete, an array of unknown bound, or void.
2361  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2362    QualType E = T;
2363    if (T->isIncompleteArrayType())
2364      E = Context.getAsArrayType(T)->getElementType();
2365    if (!T->isVoidType() &&
2366        RequireCompleteType(KWLoc, E,
2367                            diag::err_incomplete_type_used_in_type_trait_expr))
2368      return ExprError();
2369  }
2370
2371  bool Value = false;
2372  if (!T->isDependentType())
2373    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2374
2375  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2376                                                RParen, Context.BoolTy));
2377}
2378
2379ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2380                                      SourceLocation KWLoc,
2381                                      ParsedType LhsTy,
2382                                      ParsedType RhsTy,
2383                                      SourceLocation RParen) {
2384  TypeSourceInfo *LhsTSInfo;
2385  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2386  if (!LhsTSInfo)
2387    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2388
2389  TypeSourceInfo *RhsTSInfo;
2390  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2391  if (!RhsTSInfo)
2392    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2393
2394  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2395}
2396
2397static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2398                                    QualType LhsT, QualType RhsT,
2399                                    SourceLocation KeyLoc) {
2400  assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
2401         "Cannot evaluate traits for dependent types.");
2402
2403  switch(BTT) {
2404  case BTT_IsBaseOf:
2405    // C++0x [meta.rel]p2
2406    // Base is a base class of Derived  without regard to cv-qualifiers or
2407    // Base and Derived are not unions and name the same class type without
2408    // regard to cv-qualifiers.
2409    if (Self.IsDerivedFrom(RhsT, LhsT) ||
2410        (!LhsT->isUnionType() &&  !RhsT->isUnionType()
2411         && LhsT->getAsCXXRecordDecl() == RhsT->getAsCXXRecordDecl()))
2412      return true;
2413
2414    return false;
2415  case BTT_TypeCompatible:
2416    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2417                                           RhsT.getUnqualifiedType());
2418  }
2419  llvm_unreachable("Unknown type trait or not implemented");
2420}
2421
2422ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
2423                                      SourceLocation KWLoc,
2424                                      TypeSourceInfo *LhsTSInfo,
2425                                      TypeSourceInfo *RhsTSInfo,
2426                                      SourceLocation RParen) {
2427  QualType LhsT = LhsTSInfo->getType();
2428  QualType RhsT = RhsTSInfo->getType();
2429
2430  if (BTT == BTT_IsBaseOf) {
2431    // C++0x [meta.rel]p2
2432    // If Base and Derived are class types and are different types
2433    // (ignoring possible cv-qualifiers) then Derived shall be a complete
2434    // type. []
2435    CXXRecordDecl *LhsDecl = LhsT->getAsCXXRecordDecl();
2436    CXXRecordDecl *RhsDecl = RhsT->getAsCXXRecordDecl();
2437    if (!LhsT->isDependentType() && !RhsT->isDependentType() &&
2438        LhsDecl && RhsDecl && LhsT != RhsT &&
2439        RequireCompleteType(KWLoc, RhsT,
2440                            diag::err_incomplete_type_used_in_type_trait_expr))
2441      return ExprError();
2442  } else if (BTT == BTT_TypeCompatible) {
2443    if (getLangOptions().CPlusPlus) {
2444      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
2445        << SourceRange(KWLoc, RParen);
2446      return ExprError();
2447    }
2448  }
2449
2450  bool Value = false;
2451  if (!LhsT->isDependentType() && !RhsT->isDependentType())
2452    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
2453
2454  // Select trait result type.
2455  QualType ResultType;
2456  switch (BTT) {
2457  default: llvm_unreachable("Unknown type trait or not implemented");
2458  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
2459  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
2460  }
2461
2462  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
2463                                                 RhsTSInfo, Value, RParen,
2464                                                 ResultType));
2465}
2466
2467QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
2468                                            ExprValueKind &VK,
2469                                            SourceLocation Loc,
2470                                            bool isIndirect) {
2471  const char *OpSpelling = isIndirect ? "->*" : ".*";
2472  // C++ 5.5p2
2473  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2474  //   be of type "pointer to member of T" (where T is a completely-defined
2475  //   class type) [...]
2476  QualType RType = rex->getType();
2477  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2478  if (!MemPtr) {
2479    Diag(Loc, diag::err_bad_memptr_rhs)
2480      << OpSpelling << RType << rex->getSourceRange();
2481    return QualType();
2482  }
2483
2484  QualType Class(MemPtr->getClass(), 0);
2485
2486  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
2487  // member pointer points must be completely-defined. However, there is no
2488  // reason for this semantic distinction, and the rule is not enforced by
2489  // other compilers. Therefore, we do not check this property, as it is
2490  // likely to be considered a defect.
2491
2492  // C++ 5.5p2
2493  //   [...] to its first operand, which shall be of class T or of a class of
2494  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2495  //   such a class]
2496  QualType LType = lex->getType();
2497  if (isIndirect) {
2498    if (const PointerType *Ptr = LType->getAs<PointerType>())
2499      LType = Ptr->getPointeeType();
2500    else {
2501      Diag(Loc, diag::err_bad_memptr_lhs)
2502        << OpSpelling << 1 << LType
2503        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2504      return QualType();
2505    }
2506  }
2507
2508  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2509    // If we want to check the hierarchy, we need a complete type.
2510    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2511        << OpSpelling << (int)isIndirect)) {
2512      return QualType();
2513    }
2514    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2515                       /*DetectVirtual=*/false);
2516    // FIXME: Would it be useful to print full ambiguity paths, or is that
2517    // overkill?
2518    if (!IsDerivedFrom(LType, Class, Paths) ||
2519        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2520      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2521        << (int)isIndirect << lex->getType();
2522      return QualType();
2523    }
2524    // Cast LHS to type of use.
2525    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2526    ExprValueKind VK =
2527        isIndirect ? VK_RValue : CastCategory(lex);
2528
2529    CXXCastPath BasePath;
2530    BuildBasePathArray(Paths, BasePath);
2531    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2532  }
2533
2534  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2535    // Diagnose use of pointer-to-member type which when used as
2536    // the functional cast in a pointer-to-member expression.
2537    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2538     return QualType();
2539  }
2540
2541  // C++ 5.5p2
2542  //   The result is an object or a function of the type specified by the
2543  //   second operand.
2544  // The cv qualifiers are the union of those in the pointer and the left side,
2545  // in accordance with 5.5p5 and 5.2.5.
2546  // FIXME: This returns a dereferenced member function pointer as a normal
2547  // function type. However, the only operation valid on such functions is
2548  // calling them. There's also a GCC extension to get a function pointer to the
2549  // thing, which is another complication, because this type - unlike the type
2550  // that is the result of this expression - takes the class as the first
2551  // argument.
2552  // We probably need a "MemberFunctionClosureType" or something like that.
2553  QualType Result = MemPtr->getPointeeType();
2554  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2555
2556  // C++ [expr.mptr.oper]p6:
2557  //   The result of a .* expression whose second operand is a pointer
2558  //   to a data member is of the same value category as its
2559  //   first operand. The result of a .* expression whose second
2560  //   operand is a pointer to a member function is a prvalue. The
2561  //   result of an ->* expression is an lvalue if its second operand
2562  //   is a pointer to data member and a prvalue otherwise.
2563  if (Result->isFunctionType())
2564    VK = VK_RValue;
2565  else if (isIndirect)
2566    VK = VK_LValue;
2567  else
2568    VK = lex->getValueKind();
2569
2570  return Result;
2571}
2572
2573/// \brief Try to convert a type to another according to C++0x 5.16p3.
2574///
2575/// This is part of the parameter validation for the ? operator. If either
2576/// value operand is a class type, the two operands are attempted to be
2577/// converted to each other. This function does the conversion in one direction.
2578/// It returns true if the program is ill-formed and has already been diagnosed
2579/// as such.
2580static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2581                                SourceLocation QuestionLoc,
2582                                bool &HaveConversion,
2583                                QualType &ToType) {
2584  HaveConversion = false;
2585  ToType = To->getType();
2586
2587  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2588                                                           SourceLocation());
2589  // C++0x 5.16p3
2590  //   The process for determining whether an operand expression E1 of type T1
2591  //   can be converted to match an operand expression E2 of type T2 is defined
2592  //   as follows:
2593  //   -- If E2 is an lvalue:
2594  bool ToIsLvalue = To->isLValue();
2595  if (ToIsLvalue) {
2596    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2597    //   type "lvalue reference to T2", subject to the constraint that in the
2598    //   conversion the reference must bind directly to E1.
2599    QualType T = Self.Context.getLValueReferenceType(ToType);
2600    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2601
2602    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2603    if (InitSeq.isDirectReferenceBinding()) {
2604      ToType = T;
2605      HaveConversion = true;
2606      return false;
2607    }
2608
2609    if (InitSeq.isAmbiguous())
2610      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2611  }
2612
2613  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2614  //      -- if E1 and E2 have class type, and the underlying class types are
2615  //         the same or one is a base class of the other:
2616  QualType FTy = From->getType();
2617  QualType TTy = To->getType();
2618  const RecordType *FRec = FTy->getAs<RecordType>();
2619  const RecordType *TRec = TTy->getAs<RecordType>();
2620  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2621                       Self.IsDerivedFrom(FTy, TTy);
2622  if (FRec && TRec &&
2623      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2624    //         E1 can be converted to match E2 if the class of T2 is the
2625    //         same type as, or a base class of, the class of T1, and
2626    //         [cv2 > cv1].
2627    if (FRec == TRec || FDerivedFromT) {
2628      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2629        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2630        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2631        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2632          HaveConversion = true;
2633          return false;
2634        }
2635
2636        if (InitSeq.isAmbiguous())
2637          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2638      }
2639    }
2640
2641    return false;
2642  }
2643
2644  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2645  //        implicitly converted to the type that expression E2 would have
2646  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2647  //        an rvalue).
2648  //
2649  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2650  // to the array-to-pointer or function-to-pointer conversions.
2651  if (!TTy->getAs<TagType>())
2652    TTy = TTy.getUnqualifiedType();
2653
2654  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2655  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2656  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2657  ToType = TTy;
2658  if (InitSeq.isAmbiguous())
2659    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2660
2661  return false;
2662}
2663
2664/// \brief Try to find a common type for two according to C++0x 5.16p5.
2665///
2666/// This is part of the parameter validation for the ? operator. If either
2667/// value operand is a class type, overload resolution is used to find a
2668/// conversion to a common type.
2669static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2670                                    SourceLocation Loc) {
2671  Expr *Args[2] = { LHS, RHS };
2672  OverloadCandidateSet CandidateSet(Loc);
2673  Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
2674
2675  OverloadCandidateSet::iterator Best;
2676  switch (CandidateSet.BestViableFunction(Self, Loc, Best)) {
2677    case OR_Success:
2678      // We found a match. Perform the conversions on the arguments and move on.
2679      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2680                                         Best->Conversions[0], Sema::AA_Converting) ||
2681          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2682                                         Best->Conversions[1], Sema::AA_Converting))
2683        break;
2684      return false;
2685
2686    case OR_No_Viable_Function:
2687      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
2688        << LHS->getType() << RHS->getType()
2689        << LHS->getSourceRange() << RHS->getSourceRange();
2690      return true;
2691
2692    case OR_Ambiguous:
2693      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
2694        << LHS->getType() << RHS->getType()
2695        << LHS->getSourceRange() << RHS->getSourceRange();
2696      // FIXME: Print the possible common types by printing the return types of
2697      // the viable candidates.
2698      break;
2699
2700    case OR_Deleted:
2701      assert(false && "Conditional operator has only built-in overloads");
2702      break;
2703  }
2704  return true;
2705}
2706
2707/// \brief Perform an "extended" implicit conversion as returned by
2708/// TryClassUnification.
2709static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2710  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2711  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2712                                                           SourceLocation());
2713  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2714  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2715  if (Result.isInvalid())
2716    return true;
2717
2718  E = Result.takeAs<Expr>();
2719  return false;
2720}
2721
2722/// \brief Check the operands of ?: under C++ semantics.
2723///
2724/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2725/// extension. In this case, LHS == Cond. (But they're not aliases.)
2726QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2727                                           Expr *&SAVE, ExprValueKind &VK,
2728                                           ExprObjectKind &OK,
2729                                           SourceLocation QuestionLoc) {
2730  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2731  // interface pointers.
2732
2733  // C++0x 5.16p1
2734  //   The first expression is contextually converted to bool.
2735  if (!Cond->isTypeDependent()) {
2736    if (SAVE && Cond->getType()->isArrayType()) {
2737      QualType CondTy = Cond->getType();
2738      CondTy = Context.getArrayDecayedType(CondTy);
2739      ImpCastExprToType(Cond, CondTy, CK_ArrayToPointerDecay);
2740      SAVE = LHS = Cond;
2741    }
2742    if (CheckCXXBooleanCondition(Cond))
2743      return QualType();
2744  }
2745
2746  // Assume r-value.
2747  VK = VK_RValue;
2748  OK = OK_Ordinary;
2749
2750  // Either of the arguments dependent?
2751  if (LHS->isTypeDependent() || RHS->isTypeDependent())
2752    return Context.DependentTy;
2753
2754  // C++0x 5.16p2
2755  //   If either the second or the third operand has type (cv) void, ...
2756  QualType LTy = LHS->getType();
2757  QualType RTy = RHS->getType();
2758  bool LVoid = LTy->isVoidType();
2759  bool RVoid = RTy->isVoidType();
2760  if (LVoid || RVoid) {
2761    //   ... then the [l2r] conversions are performed on the second and third
2762    //   operands ...
2763    DefaultFunctionArrayLvalueConversion(LHS);
2764    DefaultFunctionArrayLvalueConversion(RHS);
2765    LTy = LHS->getType();
2766    RTy = RHS->getType();
2767
2768    //   ... and one of the following shall hold:
2769    //   -- The second or the third operand (but not both) is a throw-
2770    //      expression; the result is of the type of the other and is an rvalue.
2771    bool LThrow = isa<CXXThrowExpr>(LHS);
2772    bool RThrow = isa<CXXThrowExpr>(RHS);
2773    if (LThrow && !RThrow)
2774      return RTy;
2775    if (RThrow && !LThrow)
2776      return LTy;
2777
2778    //   -- Both the second and third operands have type void; the result is of
2779    //      type void and is an rvalue.
2780    if (LVoid && RVoid)
2781      return Context.VoidTy;
2782
2783    // Neither holds, error.
2784    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
2785      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
2786      << LHS->getSourceRange() << RHS->getSourceRange();
2787    return QualType();
2788  }
2789
2790  // Neither is void.
2791
2792  // C++0x 5.16p3
2793  //   Otherwise, if the second and third operand have different types, and
2794  //   either has (cv) class type, and attempt is made to convert each of those
2795  //   operands to the other.
2796  if (!Context.hasSameType(LTy, RTy) &&
2797      (LTy->isRecordType() || RTy->isRecordType())) {
2798    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
2799    // These return true if a single direction is already ambiguous.
2800    QualType L2RType, R2LType;
2801    bool HaveL2R, HaveR2L;
2802    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
2803      return QualType();
2804    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
2805      return QualType();
2806
2807    //   If both can be converted, [...] the program is ill-formed.
2808    if (HaveL2R && HaveR2L) {
2809      Diag(QuestionLoc, diag::err_conditional_ambiguous)
2810        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
2811      return QualType();
2812    }
2813
2814    //   If exactly one conversion is possible, that conversion is applied to
2815    //   the chosen operand and the converted operands are used in place of the
2816    //   original operands for the remainder of this section.
2817    if (HaveL2R) {
2818      if (ConvertForConditional(*this, LHS, L2RType))
2819        return QualType();
2820      LTy = LHS->getType();
2821    } else if (HaveR2L) {
2822      if (ConvertForConditional(*this, RHS, R2LType))
2823        return QualType();
2824      RTy = RHS->getType();
2825    }
2826  }
2827
2828  // C++0x 5.16p4
2829  //   If the second and third operands are glvalues of the same value
2830  //   category and have the same type, the result is of that type and
2831  //   value category and it is a bit-field if the second or the third
2832  //   operand is a bit-field, or if both are bit-fields.
2833  // We only extend this to bitfields, not to the crazy other kinds of
2834  // l-values.
2835  bool Same = Context.hasSameType(LTy, RTy);
2836  if (Same &&
2837      LHS->getValueKind() != VK_RValue &&
2838      LHS->getValueKind() == RHS->getValueKind() &&
2839      (LHS->getObjectKind() == OK_Ordinary ||
2840       LHS->getObjectKind() == OK_BitField) &&
2841      (RHS->getObjectKind() == OK_Ordinary ||
2842       RHS->getObjectKind() == OK_BitField)) {
2843    VK = LHS->getValueKind();
2844    if (LHS->getObjectKind() == OK_BitField ||
2845        RHS->getObjectKind() == OK_BitField)
2846      OK = OK_BitField;
2847    return LTy;
2848  }
2849
2850  // C++0x 5.16p5
2851  //   Otherwise, the result is an rvalue. If the second and third operands
2852  //   do not have the same type, and either has (cv) class type, ...
2853  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
2854    //   ... overload resolution is used to determine the conversions (if any)
2855    //   to be applied to the operands. If the overload resolution fails, the
2856    //   program is ill-formed.
2857    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
2858      return QualType();
2859  }
2860
2861  // C++0x 5.16p6
2862  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
2863  //   conversions are performed on the second and third operands.
2864  DefaultFunctionArrayLvalueConversion(LHS);
2865  DefaultFunctionArrayLvalueConversion(RHS);
2866  LTy = LHS->getType();
2867  RTy = RHS->getType();
2868
2869  //   After those conversions, one of the following shall hold:
2870  //   -- The second and third operands have the same type; the result
2871  //      is of that type. If the operands have class type, the result
2872  //      is a prvalue temporary of the result type, which is
2873  //      copy-initialized from either the second operand or the third
2874  //      operand depending on the value of the first operand.
2875  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
2876    if (LTy->isRecordType()) {
2877      // The operands have class type. Make a temporary copy.
2878      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
2879      ExprResult LHSCopy = PerformCopyInitialization(Entity,
2880                                                     SourceLocation(),
2881                                                     Owned(LHS));
2882      if (LHSCopy.isInvalid())
2883        return QualType();
2884
2885      ExprResult RHSCopy = PerformCopyInitialization(Entity,
2886                                                     SourceLocation(),
2887                                                     Owned(RHS));
2888      if (RHSCopy.isInvalid())
2889        return QualType();
2890
2891      LHS = LHSCopy.takeAs<Expr>();
2892      RHS = RHSCopy.takeAs<Expr>();
2893    }
2894
2895    return LTy;
2896  }
2897
2898  // Extension: conditional operator involving vector types.
2899  if (LTy->isVectorType() || RTy->isVectorType())
2900    return CheckVectorOperands(QuestionLoc, LHS, RHS);
2901
2902  //   -- The second and third operands have arithmetic or enumeration type;
2903  //      the usual arithmetic conversions are performed to bring them to a
2904  //      common type, and the result is of that type.
2905  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
2906    UsualArithmeticConversions(LHS, RHS);
2907    return LHS->getType();
2908  }
2909
2910  //   -- The second and third operands have pointer type, or one has pointer
2911  //      type and the other is a null pointer constant; pointer conversions
2912  //      and qualification conversions are performed to bring them to their
2913  //      composite pointer type. The result is of the composite pointer type.
2914  //   -- The second and third operands have pointer to member type, or one has
2915  //      pointer to member type and the other is a null pointer constant;
2916  //      pointer to member conversions and qualification conversions are
2917  //      performed to bring them to a common type, whose cv-qualification
2918  //      shall match the cv-qualification of either the second or the third
2919  //      operand. The result is of the common type.
2920  bool NonStandardCompositeType = false;
2921  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
2922                              isSFINAEContext()? 0 : &NonStandardCompositeType);
2923  if (!Composite.isNull()) {
2924    if (NonStandardCompositeType)
2925      Diag(QuestionLoc,
2926           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
2927        << LTy << RTy << Composite
2928        << LHS->getSourceRange() << RHS->getSourceRange();
2929
2930    return Composite;
2931  }
2932
2933  // Similarly, attempt to find composite type of two objective-c pointers.
2934  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
2935  if (!Composite.isNull())
2936    return Composite;
2937
2938  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2939    << LHS->getType() << RHS->getType()
2940    << LHS->getSourceRange() << RHS->getSourceRange();
2941  return QualType();
2942}
2943
2944/// \brief Find a merged pointer type and convert the two expressions to it.
2945///
2946/// This finds the composite pointer type (or member pointer type) for @p E1
2947/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
2948/// type and returns it.
2949/// It does not emit diagnostics.
2950///
2951/// \param Loc The location of the operator requiring these two expressions to
2952/// be converted to the composite pointer type.
2953///
2954/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
2955/// a non-standard (but still sane) composite type to which both expressions
2956/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
2957/// will be set true.
2958QualType Sema::FindCompositePointerType(SourceLocation Loc,
2959                                        Expr *&E1, Expr *&E2,
2960                                        bool *NonStandardCompositeType) {
2961  if (NonStandardCompositeType)
2962    *NonStandardCompositeType = false;
2963
2964  assert(getLangOptions().CPlusPlus && "This function assumes C++");
2965  QualType T1 = E1->getType(), T2 = E2->getType();
2966
2967  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
2968      !T2->isAnyPointerType() && !T2->isMemberPointerType())
2969   return QualType();
2970
2971  // C++0x 5.9p2
2972  //   Pointer conversions and qualification conversions are performed on
2973  //   pointer operands to bring them to their composite pointer type. If
2974  //   one operand is a null pointer constant, the composite pointer type is
2975  //   the type of the other operand.
2976  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
2977    if (T2->isMemberPointerType())
2978      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
2979    else
2980      ImpCastExprToType(E1, T2, CK_NullToPointer);
2981    return T2;
2982  }
2983  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
2984    if (T1->isMemberPointerType())
2985      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
2986    else
2987      ImpCastExprToType(E2, T1, CK_NullToPointer);
2988    return T1;
2989  }
2990
2991  // Now both have to be pointers or member pointers.
2992  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
2993      (!T2->isPointerType() && !T2->isMemberPointerType()))
2994    return QualType();
2995
2996  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
2997  //   the other has type "pointer to cv2 T" and the composite pointer type is
2998  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
2999  //   Otherwise, the composite pointer type is a pointer type similar to the
3000  //   type of one of the operands, with a cv-qualification signature that is
3001  //   the union of the cv-qualification signatures of the operand types.
3002  // In practice, the first part here is redundant; it's subsumed by the second.
3003  // What we do here is, we build the two possible composite types, and try the
3004  // conversions in both directions. If only one works, or if the two composite
3005  // types are the same, we have succeeded.
3006  // FIXME: extended qualifiers?
3007  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3008  QualifierVector QualifierUnion;
3009  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3010      ContainingClassVector;
3011  ContainingClassVector MemberOfClass;
3012  QualType Composite1 = Context.getCanonicalType(T1),
3013           Composite2 = Context.getCanonicalType(T2);
3014  unsigned NeedConstBefore = 0;
3015  do {
3016    const PointerType *Ptr1, *Ptr2;
3017    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3018        (Ptr2 = Composite2->getAs<PointerType>())) {
3019      Composite1 = Ptr1->getPointeeType();
3020      Composite2 = Ptr2->getPointeeType();
3021
3022      // If we're allowed to create a non-standard composite type, keep track
3023      // of where we need to fill in additional 'const' qualifiers.
3024      if (NonStandardCompositeType &&
3025          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3026        NeedConstBefore = QualifierUnion.size();
3027
3028      QualifierUnion.push_back(
3029                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3030      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3031      continue;
3032    }
3033
3034    const MemberPointerType *MemPtr1, *MemPtr2;
3035    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3036        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3037      Composite1 = MemPtr1->getPointeeType();
3038      Composite2 = MemPtr2->getPointeeType();
3039
3040      // If we're allowed to create a non-standard composite type, keep track
3041      // of where we need to fill in additional 'const' qualifiers.
3042      if (NonStandardCompositeType &&
3043          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3044        NeedConstBefore = QualifierUnion.size();
3045
3046      QualifierUnion.push_back(
3047                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3048      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3049                                             MemPtr2->getClass()));
3050      continue;
3051    }
3052
3053    // FIXME: block pointer types?
3054
3055    // Cannot unwrap any more types.
3056    break;
3057  } while (true);
3058
3059  if (NeedConstBefore && NonStandardCompositeType) {
3060    // Extension: Add 'const' to qualifiers that come before the first qualifier
3061    // mismatch, so that our (non-standard!) composite type meets the
3062    // requirements of C++ [conv.qual]p4 bullet 3.
3063    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3064      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3065        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3066        *NonStandardCompositeType = true;
3067      }
3068    }
3069  }
3070
3071  // Rewrap the composites as pointers or member pointers with the union CVRs.
3072  ContainingClassVector::reverse_iterator MOC
3073    = MemberOfClass.rbegin();
3074  for (QualifierVector::reverse_iterator
3075         I = QualifierUnion.rbegin(),
3076         E = QualifierUnion.rend();
3077       I != E; (void)++I, ++MOC) {
3078    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3079    if (MOC->first && MOC->second) {
3080      // Rebuild member pointer type
3081      Composite1 = Context.getMemberPointerType(
3082                                    Context.getQualifiedType(Composite1, Quals),
3083                                    MOC->first);
3084      Composite2 = Context.getMemberPointerType(
3085                                    Context.getQualifiedType(Composite2, Quals),
3086                                    MOC->second);
3087    } else {
3088      // Rebuild pointer type
3089      Composite1
3090        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3091      Composite2
3092        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3093    }
3094  }
3095
3096  // Try to convert to the first composite pointer type.
3097  InitializedEntity Entity1
3098    = InitializedEntity::InitializeTemporary(Composite1);
3099  InitializationKind Kind
3100    = InitializationKind::CreateCopy(Loc, SourceLocation());
3101  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3102  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3103
3104  if (E1ToC1 && E2ToC1) {
3105    // Conversion to Composite1 is viable.
3106    if (!Context.hasSameType(Composite1, Composite2)) {
3107      // Composite2 is a different type from Composite1. Check whether
3108      // Composite2 is also viable.
3109      InitializedEntity Entity2
3110        = InitializedEntity::InitializeTemporary(Composite2);
3111      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3112      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3113      if (E1ToC2 && E2ToC2) {
3114        // Both Composite1 and Composite2 are viable and are different;
3115        // this is an ambiguity.
3116        return QualType();
3117      }
3118    }
3119
3120    // Convert E1 to Composite1
3121    ExprResult E1Result
3122      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3123    if (E1Result.isInvalid())
3124      return QualType();
3125    E1 = E1Result.takeAs<Expr>();
3126
3127    // Convert E2 to Composite1
3128    ExprResult E2Result
3129      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3130    if (E2Result.isInvalid())
3131      return QualType();
3132    E2 = E2Result.takeAs<Expr>();
3133
3134    return Composite1;
3135  }
3136
3137  // Check whether Composite2 is viable.
3138  InitializedEntity Entity2
3139    = InitializedEntity::InitializeTemporary(Composite2);
3140  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3141  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3142  if (!E1ToC2 || !E2ToC2)
3143    return QualType();
3144
3145  // Convert E1 to Composite2
3146  ExprResult E1Result
3147    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3148  if (E1Result.isInvalid())
3149    return QualType();
3150  E1 = E1Result.takeAs<Expr>();
3151
3152  // Convert E2 to Composite2
3153  ExprResult E2Result
3154    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3155  if (E2Result.isInvalid())
3156    return QualType();
3157  E2 = E2Result.takeAs<Expr>();
3158
3159  return Composite2;
3160}
3161
3162ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3163  if (!E)
3164    return ExprError();
3165
3166  if (!Context.getLangOptions().CPlusPlus)
3167    return Owned(E);
3168
3169  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3170
3171  const RecordType *RT = E->getType()->getAs<RecordType>();
3172  if (!RT)
3173    return Owned(E);
3174
3175  // If this is the result of a call or an Objective-C message send expression,
3176  // our source might actually be a reference, in which case we shouldn't bind.
3177  if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
3178    if (CE->getCallReturnType()->isReferenceType())
3179      return Owned(E);
3180  } else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
3181    if (const ObjCMethodDecl *MD = ME->getMethodDecl()) {
3182      if (MD->getResultType()->isReferenceType())
3183        return Owned(E);
3184    }
3185  }
3186
3187  // That should be enough to guarantee that this type is complete.
3188  // If it has a trivial destructor, we can avoid the extra copy.
3189  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3190  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3191    return Owned(E);
3192
3193  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
3194  ExprTemporaries.push_back(Temp);
3195  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
3196    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
3197    CheckDestructorAccess(E->getExprLoc(), Destructor,
3198                          PDiag(diag::err_access_dtor_temp)
3199                            << E->getType());
3200  }
3201  // FIXME: Add the temporary to the temporaries vector.
3202  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
3203}
3204
3205Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
3206  assert(SubExpr && "sub expression can't be null!");
3207
3208  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3209  assert(ExprTemporaries.size() >= FirstTemporary);
3210  if (ExprTemporaries.size() == FirstTemporary)
3211    return SubExpr;
3212
3213  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
3214                                     &ExprTemporaries[FirstTemporary],
3215                                     ExprTemporaries.size() - FirstTemporary);
3216  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3217                        ExprTemporaries.end());
3218
3219  return E;
3220}
3221
3222ExprResult
3223Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
3224  if (SubExpr.isInvalid())
3225    return ExprError();
3226
3227  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
3228}
3229
3230Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
3231  assert(SubStmt && "sub statement can't be null!");
3232
3233  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3234  assert(ExprTemporaries.size() >= FirstTemporary);
3235  if (ExprTemporaries.size() == FirstTemporary)
3236    return SubStmt;
3237
3238  // FIXME: In order to attach the temporaries, wrap the statement into
3239  // a StmtExpr; currently this is only used for asm statements.
3240  // This is hacky, either create a new CXXStmtWithTemporaries statement or
3241  // a new AsmStmtWithTemporaries.
3242  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
3243                                                      SourceLocation(),
3244                                                      SourceLocation());
3245  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
3246                                   SourceLocation());
3247  return MaybeCreateExprWithCleanups(E);
3248}
3249
3250ExprResult
3251Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3252                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3253                                   bool &MayBePseudoDestructor) {
3254  // Since this might be a postfix expression, get rid of ParenListExprs.
3255  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3256  if (Result.isInvalid()) return ExprError();
3257  Base = Result.get();
3258
3259  QualType BaseType = Base->getType();
3260  MayBePseudoDestructor = false;
3261  if (BaseType->isDependentType()) {
3262    // If we have a pointer to a dependent type and are using the -> operator,
3263    // the object type is the type that the pointer points to. We might still
3264    // have enough information about that type to do something useful.
3265    if (OpKind == tok::arrow)
3266      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3267        BaseType = Ptr->getPointeeType();
3268
3269    ObjectType = ParsedType::make(BaseType);
3270    MayBePseudoDestructor = true;
3271    return Owned(Base);
3272  }
3273
3274  // C++ [over.match.oper]p8:
3275  //   [...] When operator->returns, the operator-> is applied  to the value
3276  //   returned, with the original second operand.
3277  if (OpKind == tok::arrow) {
3278    // The set of types we've considered so far.
3279    llvm::SmallPtrSet<CanQualType,8> CTypes;
3280    llvm::SmallVector<SourceLocation, 8> Locations;
3281    CTypes.insert(Context.getCanonicalType(BaseType));
3282
3283    while (BaseType->isRecordType()) {
3284      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3285      if (Result.isInvalid())
3286        return ExprError();
3287      Base = Result.get();
3288      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3289        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3290      BaseType = Base->getType();
3291      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3292      if (!CTypes.insert(CBaseType)) {
3293        Diag(OpLoc, diag::err_operator_arrow_circular);
3294        for (unsigned i = 0; i < Locations.size(); i++)
3295          Diag(Locations[i], diag::note_declared_at);
3296        return ExprError();
3297      }
3298    }
3299
3300    if (BaseType->isPointerType())
3301      BaseType = BaseType->getPointeeType();
3302  }
3303
3304  // We could end up with various non-record types here, such as extended
3305  // vector types or Objective-C interfaces. Just return early and let
3306  // ActOnMemberReferenceExpr do the work.
3307  if (!BaseType->isRecordType()) {
3308    // C++ [basic.lookup.classref]p2:
3309    //   [...] If the type of the object expression is of pointer to scalar
3310    //   type, the unqualified-id is looked up in the context of the complete
3311    //   postfix-expression.
3312    //
3313    // This also indicates that we should be parsing a
3314    // pseudo-destructor-name.
3315    ObjectType = ParsedType();
3316    MayBePseudoDestructor = true;
3317    return Owned(Base);
3318  }
3319
3320  // The object type must be complete (or dependent).
3321  if (!BaseType->isDependentType() &&
3322      RequireCompleteType(OpLoc, BaseType,
3323                          PDiag(diag::err_incomplete_member_access)))
3324    return ExprError();
3325
3326  // C++ [basic.lookup.classref]p2:
3327  //   If the id-expression in a class member access (5.2.5) is an
3328  //   unqualified-id, and the type of the object expression is of a class
3329  //   type C (or of pointer to a class type C), the unqualified-id is looked
3330  //   up in the scope of class C. [...]
3331  ObjectType = ParsedType::make(BaseType);
3332  return move(Base);
3333}
3334
3335ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3336                                                   Expr *MemExpr) {
3337  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3338  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3339    << isa<CXXPseudoDestructorExpr>(MemExpr)
3340    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3341
3342  return ActOnCallExpr(/*Scope*/ 0,
3343                       MemExpr,
3344                       /*LPLoc*/ ExpectedLParenLoc,
3345                       MultiExprArg(),
3346                       /*RPLoc*/ ExpectedLParenLoc);
3347}
3348
3349ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3350                                                       SourceLocation OpLoc,
3351                                                       tok::TokenKind OpKind,
3352                                                       const CXXScopeSpec &SS,
3353                                                 TypeSourceInfo *ScopeTypeInfo,
3354                                                       SourceLocation CCLoc,
3355                                                       SourceLocation TildeLoc,
3356                                         PseudoDestructorTypeStorage Destructed,
3357                                                       bool HasTrailingLParen) {
3358  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3359
3360  // C++ [expr.pseudo]p2:
3361  //   The left-hand side of the dot operator shall be of scalar type. The
3362  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3363  //   This scalar type is the object type.
3364  QualType ObjectType = Base->getType();
3365  if (OpKind == tok::arrow) {
3366    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3367      ObjectType = Ptr->getPointeeType();
3368    } else if (!Base->isTypeDependent()) {
3369      // The user wrote "p->" when she probably meant "p."; fix it.
3370      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3371        << ObjectType << true
3372        << FixItHint::CreateReplacement(OpLoc, ".");
3373      if (isSFINAEContext())
3374        return ExprError();
3375
3376      OpKind = tok::period;
3377    }
3378  }
3379
3380  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3381    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3382      << ObjectType << Base->getSourceRange();
3383    return ExprError();
3384  }
3385
3386  // C++ [expr.pseudo]p2:
3387  //   [...] The cv-unqualified versions of the object type and of the type
3388  //   designated by the pseudo-destructor-name shall be the same type.
3389  if (DestructedTypeInfo) {
3390    QualType DestructedType = DestructedTypeInfo->getType();
3391    SourceLocation DestructedTypeStart
3392      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3393    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3394        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3395      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3396        << ObjectType << DestructedType << Base->getSourceRange()
3397        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3398
3399      // Recover by setting the destructed type to the object type.
3400      DestructedType = ObjectType;
3401      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3402                                                           DestructedTypeStart);
3403      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3404    }
3405  }
3406
3407  // C++ [expr.pseudo]p2:
3408  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3409  //   form
3410  //
3411  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3412  //
3413  //   shall designate the same scalar type.
3414  if (ScopeTypeInfo) {
3415    QualType ScopeType = ScopeTypeInfo->getType();
3416    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3417        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3418
3419      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3420           diag::err_pseudo_dtor_type_mismatch)
3421        << ObjectType << ScopeType << Base->getSourceRange()
3422        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3423
3424      ScopeType = QualType();
3425      ScopeTypeInfo = 0;
3426    }
3427  }
3428
3429  Expr *Result
3430    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3431                                            OpKind == tok::arrow, OpLoc,
3432                                            SS.getScopeRep(), SS.getRange(),
3433                                            ScopeTypeInfo,
3434                                            CCLoc,
3435                                            TildeLoc,
3436                                            Destructed);
3437
3438  if (HasTrailingLParen)
3439    return Owned(Result);
3440
3441  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3442}
3443
3444ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3445                                                       SourceLocation OpLoc,
3446                                                       tok::TokenKind OpKind,
3447                                                       CXXScopeSpec &SS,
3448                                                  UnqualifiedId &FirstTypeName,
3449                                                       SourceLocation CCLoc,
3450                                                       SourceLocation TildeLoc,
3451                                                 UnqualifiedId &SecondTypeName,
3452                                                       bool HasTrailingLParen) {
3453  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3454          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3455         "Invalid first type name in pseudo-destructor");
3456  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3457          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3458         "Invalid second type name in pseudo-destructor");
3459
3460  // C++ [expr.pseudo]p2:
3461  //   The left-hand side of the dot operator shall be of scalar type. The
3462  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3463  //   This scalar type is the object type.
3464  QualType ObjectType = Base->getType();
3465  if (OpKind == tok::arrow) {
3466    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3467      ObjectType = Ptr->getPointeeType();
3468    } else if (!ObjectType->isDependentType()) {
3469      // The user wrote "p->" when she probably meant "p."; fix it.
3470      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3471        << ObjectType << true
3472        << FixItHint::CreateReplacement(OpLoc, ".");
3473      if (isSFINAEContext())
3474        return ExprError();
3475
3476      OpKind = tok::period;
3477    }
3478  }
3479
3480  // Compute the object type that we should use for name lookup purposes. Only
3481  // record types and dependent types matter.
3482  ParsedType ObjectTypePtrForLookup;
3483  if (!SS.isSet()) {
3484    if (const Type *T = ObjectType->getAs<RecordType>())
3485      ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0));
3486    else if (ObjectType->isDependentType())
3487      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3488  }
3489
3490  // Convert the name of the type being destructed (following the ~) into a
3491  // type (with source-location information).
3492  QualType DestructedType;
3493  TypeSourceInfo *DestructedTypeInfo = 0;
3494  PseudoDestructorTypeStorage Destructed;
3495  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3496    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3497                               SecondTypeName.StartLocation,
3498                               S, &SS, true, ObjectTypePtrForLookup);
3499    if (!T &&
3500        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3501         (!SS.isSet() && ObjectType->isDependentType()))) {
3502      // The name of the type being destroyed is a dependent name, and we
3503      // couldn't find anything useful in scope. Just store the identifier and
3504      // it's location, and we'll perform (qualified) name lookup again at
3505      // template instantiation time.
3506      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3507                                               SecondTypeName.StartLocation);
3508    } else if (!T) {
3509      Diag(SecondTypeName.StartLocation,
3510           diag::err_pseudo_dtor_destructor_non_type)
3511        << SecondTypeName.Identifier << ObjectType;
3512      if (isSFINAEContext())
3513        return ExprError();
3514
3515      // Recover by assuming we had the right type all along.
3516      DestructedType = ObjectType;
3517    } else
3518      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3519  } else {
3520    // Resolve the template-id to a type.
3521    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3522    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3523                                       TemplateId->getTemplateArgs(),
3524                                       TemplateId->NumArgs);
3525    TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3526                                       TemplateId->TemplateNameLoc,
3527                                       TemplateId->LAngleLoc,
3528                                       TemplateArgsPtr,
3529                                       TemplateId->RAngleLoc);
3530    if (T.isInvalid() || !T.get()) {
3531      // Recover by assuming we had the right type all along.
3532      DestructedType = ObjectType;
3533    } else
3534      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3535  }
3536
3537  // If we've performed some kind of recovery, (re-)build the type source
3538  // information.
3539  if (!DestructedType.isNull()) {
3540    if (!DestructedTypeInfo)
3541      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3542                                                  SecondTypeName.StartLocation);
3543    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3544  }
3545
3546  // Convert the name of the scope type (the type prior to '::') into a type.
3547  TypeSourceInfo *ScopeTypeInfo = 0;
3548  QualType ScopeType;
3549  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3550      FirstTypeName.Identifier) {
3551    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3552      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3553                                 FirstTypeName.StartLocation,
3554                                 S, &SS, false, ObjectTypePtrForLookup);
3555      if (!T) {
3556        Diag(FirstTypeName.StartLocation,
3557             diag::err_pseudo_dtor_destructor_non_type)
3558          << FirstTypeName.Identifier << ObjectType;
3559
3560        if (isSFINAEContext())
3561          return ExprError();
3562
3563        // Just drop this type. It's unnecessary anyway.
3564        ScopeType = QualType();
3565      } else
3566        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3567    } else {
3568      // Resolve the template-id to a type.
3569      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3570      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3571                                         TemplateId->getTemplateArgs(),
3572                                         TemplateId->NumArgs);
3573      TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3574                                         TemplateId->TemplateNameLoc,
3575                                         TemplateId->LAngleLoc,
3576                                         TemplateArgsPtr,
3577                                         TemplateId->RAngleLoc);
3578      if (T.isInvalid() || !T.get()) {
3579        // Recover by dropping this type.
3580        ScopeType = QualType();
3581      } else
3582        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3583    }
3584  }
3585
3586  if (!ScopeType.isNull() && !ScopeTypeInfo)
3587    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3588                                                  FirstTypeName.StartLocation);
3589
3590
3591  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3592                                   ScopeTypeInfo, CCLoc, TildeLoc,
3593                                   Destructed, HasTrailingLParen);
3594}
3595
3596CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp,
3597                                                NamedDecl *FoundDecl,
3598                                                CXXMethodDecl *Method) {
3599  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3600                                          FoundDecl, Method))
3601    assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");
3602
3603  MemberExpr *ME =
3604      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3605                               SourceLocation(), Method->getType(),
3606                               VK_RValue, OK_Ordinary);
3607  QualType ResultType = Method->getResultType();
3608  ExprValueKind VK = Expr::getValueKindForType(ResultType);
3609  ResultType = ResultType.getNonLValueExprType(Context);
3610
3611  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3612  CXXMemberCallExpr *CE =
3613    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
3614                                    Exp->getLocEnd());
3615  return CE;
3616}
3617
3618ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3619                                      SourceLocation RParen) {
3620  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3621                                             Operand->CanThrow(Context),
3622                                             KeyLoc, RParen));
3623}
3624
3625ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3626                                   Expr *Operand, SourceLocation RParen) {
3627  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3628}
3629
3630/// Perform the conversions required for an expression used in a
3631/// context that ignores the result.
3632void Sema::IgnoredValueConversions(Expr *&E) {
3633  // C99 6.3.2.1:
3634  //   [Except in specific positions,] an lvalue that does not have
3635  //   array type is converted to the value stored in the
3636  //   designated object (and is no longer an lvalue).
3637  if (E->isRValue()) return;
3638
3639  // We always want to do this on ObjC property references.
3640  if (E->getObjectKind() == OK_ObjCProperty) {
3641    ConvertPropertyForRValue(E);
3642    if (E->isRValue()) return;
3643  }
3644
3645  // Otherwise, this rule does not apply in C++, at least not for the moment.
3646  if (getLangOptions().CPlusPlus) return;
3647
3648  // GCC seems to also exclude expressions of incomplete enum type.
3649  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
3650    if (!T->getDecl()->isComplete()) {
3651      // FIXME: stupid workaround for a codegen bug!
3652      ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
3653      return;
3654    }
3655  }
3656
3657  DefaultFunctionArrayLvalueConversion(E);
3658  if (!E->getType()->isVoidType())
3659    RequireCompleteType(E->getExprLoc(), E->getType(),
3660                        diag::err_incomplete_type);
3661}
3662
3663ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3664  if (!FullExpr)
3665    return ExprError();
3666
3667  if (DiagnoseUnexpandedParameterPack(FullExpr))
3668    return ExprError();
3669
3670  IgnoredValueConversions(FullExpr);
3671  CheckImplicitConversions(FullExpr);
3672  return MaybeCreateExprWithCleanups(FullExpr);
3673}
3674
3675StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
3676  if (!FullStmt) return StmtError();
3677
3678  return MaybeCreateStmtWithCleanups(FullStmt);
3679}
3680