SemaExprCXX.cpp revision 6959acd4bb0979361365e675968173ede7183489
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TypeLocBuilder.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/Initialization.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/TemplateDeduction.h"
35#include "llvm/ADT/APInt.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Support/ErrorHandling.h"
38using namespace clang;
39using namespace sema;
40
41ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
42                                   IdentifierInfo &II,
43                                   SourceLocation NameLoc,
44                                   Scope *S, CXXScopeSpec &SS,
45                                   ParsedType ObjectTypePtr,
46                                   bool EnteringContext) {
47  // Determine where to perform name lookup.
48
49  // FIXME: This area of the standard is very messy, and the current
50  // wording is rather unclear about which scopes we search for the
51  // destructor name; see core issues 399 and 555. Issue 399 in
52  // particular shows where the current description of destructor name
53  // lookup is completely out of line with existing practice, e.g.,
54  // this appears to be ill-formed:
55  //
56  //   namespace N {
57  //     template <typename T> struct S {
58  //       ~S();
59  //     };
60  //   }
61  //
62  //   void f(N::S<int>* s) {
63  //     s->N::S<int>::~S();
64  //   }
65  //
66  // See also PR6358 and PR6359.
67  // For this reason, we're currently only doing the C++03 version of this
68  // code; the C++0x version has to wait until we get a proper spec.
69  QualType SearchType;
70  DeclContext *LookupCtx = 0;
71  bool isDependent = false;
72  bool LookInScope = false;
73
74  // If we have an object type, it's because we are in a
75  // pseudo-destructor-expression or a member access expression, and
76  // we know what type we're looking for.
77  if (ObjectTypePtr)
78    SearchType = GetTypeFromParser(ObjectTypePtr);
79
80  if (SS.isSet()) {
81    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
82
83    bool AlreadySearched = false;
84    bool LookAtPrefix = true;
85    // C++ [basic.lookup.qual]p6:
86    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
87    //   the type-names are looked up as types in the scope designated by the
88    //   nested-name-specifier. In a qualified-id of the form:
89    //
90    //     ::[opt] nested-name-specifier  ~ class-name
91    //
92    //   where the nested-name-specifier designates a namespace scope, and in
93    //   a qualified-id of the form:
94    //
95    //     ::opt nested-name-specifier class-name ::  ~ class-name
96    //
97    //   the class-names are looked up as types in the scope designated by
98    //   the nested-name-specifier.
99    //
100    // Here, we check the first case (completely) and determine whether the
101    // code below is permitted to look at the prefix of the
102    // nested-name-specifier.
103    DeclContext *DC = computeDeclContext(SS, EnteringContext);
104    if (DC && DC->isFileContext()) {
105      AlreadySearched = true;
106      LookupCtx = DC;
107      isDependent = false;
108    } else if (DC && isa<CXXRecordDecl>(DC))
109      LookAtPrefix = false;
110
111    // The second case from the C++03 rules quoted further above.
112    NestedNameSpecifier *Prefix = 0;
113    if (AlreadySearched) {
114      // Nothing left to do.
115    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
116      CXXScopeSpec PrefixSS;
117      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
118      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
119      isDependent = isDependentScopeSpecifier(PrefixSS);
120    } else if (ObjectTypePtr) {
121      LookupCtx = computeDeclContext(SearchType);
122      isDependent = SearchType->isDependentType();
123    } else {
124      LookupCtx = computeDeclContext(SS, EnteringContext);
125      isDependent = LookupCtx && LookupCtx->isDependentContext();
126    }
127
128    LookInScope = false;
129  } else if (ObjectTypePtr) {
130    // C++ [basic.lookup.classref]p3:
131    //   If the unqualified-id is ~type-name, the type-name is looked up
132    //   in the context of the entire postfix-expression. If the type T
133    //   of the object expression is of a class type C, the type-name is
134    //   also looked up in the scope of class C. At least one of the
135    //   lookups shall find a name that refers to (possibly
136    //   cv-qualified) T.
137    LookupCtx = computeDeclContext(SearchType);
138    isDependent = SearchType->isDependentType();
139    assert((isDependent || !SearchType->isIncompleteType()) &&
140           "Caller should have completed object type");
141
142    LookInScope = true;
143  } else {
144    // Perform lookup into the current scope (only).
145    LookInScope = true;
146  }
147
148  TypeDecl *NonMatchingTypeDecl = 0;
149  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
150  for (unsigned Step = 0; Step != 2; ++Step) {
151    // Look for the name first in the computed lookup context (if we
152    // have one) and, if that fails to find a match, in the scope (if
153    // we're allowed to look there).
154    Found.clear();
155    if (Step == 0 && LookupCtx)
156      LookupQualifiedName(Found, LookupCtx);
157    else if (Step == 1 && LookInScope && S)
158      LookupName(Found, S);
159    else
160      continue;
161
162    // FIXME: Should we be suppressing ambiguities here?
163    if (Found.isAmbiguous())
164      return ParsedType();
165
166    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
167      QualType T = Context.getTypeDeclType(Type);
168
169      if (SearchType.isNull() || SearchType->isDependentType() ||
170          Context.hasSameUnqualifiedType(T, SearchType)) {
171        // We found our type!
172
173        return ParsedType::make(T);
174      }
175
176      if (!SearchType.isNull())
177        NonMatchingTypeDecl = Type;
178    }
179
180    // If the name that we found is a class template name, and it is
181    // the same name as the template name in the last part of the
182    // nested-name-specifier (if present) or the object type, then
183    // this is the destructor for that class.
184    // FIXME: This is a workaround until we get real drafting for core
185    // issue 399, for which there isn't even an obvious direction.
186    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
187      QualType MemberOfType;
188      if (SS.isSet()) {
189        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
190          // Figure out the type of the context, if it has one.
191          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
192            MemberOfType = Context.getTypeDeclType(Record);
193        }
194      }
195      if (MemberOfType.isNull())
196        MemberOfType = SearchType;
197
198      if (MemberOfType.isNull())
199        continue;
200
201      // We're referring into a class template specialization. If the
202      // class template we found is the same as the template being
203      // specialized, we found what we are looking for.
204      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
205        if (ClassTemplateSpecializationDecl *Spec
206              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
207          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
208                Template->getCanonicalDecl())
209            return ParsedType::make(MemberOfType);
210        }
211
212        continue;
213      }
214
215      // We're referring to an unresolved class template
216      // specialization. Determine whether we class template we found
217      // is the same as the template being specialized or, if we don't
218      // know which template is being specialized, that it at least
219      // has the same name.
220      if (const TemplateSpecializationType *SpecType
221            = MemberOfType->getAs<TemplateSpecializationType>()) {
222        TemplateName SpecName = SpecType->getTemplateName();
223
224        // The class template we found is the same template being
225        // specialized.
226        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
227          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
228            return ParsedType::make(MemberOfType);
229
230          continue;
231        }
232
233        // The class template we found has the same name as the
234        // (dependent) template name being specialized.
235        if (DependentTemplateName *DepTemplate
236                                    = SpecName.getAsDependentTemplateName()) {
237          if (DepTemplate->isIdentifier() &&
238              DepTemplate->getIdentifier() == Template->getIdentifier())
239            return ParsedType::make(MemberOfType);
240
241          continue;
242        }
243      }
244    }
245  }
246
247  if (isDependent) {
248    // We didn't find our type, but that's okay: it's dependent
249    // anyway.
250
251    // FIXME: What if we have no nested-name-specifier?
252    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
253                                   SS.getWithLocInContext(Context),
254                                   II, NameLoc);
255    return ParsedType::make(T);
256  }
257
258  if (NonMatchingTypeDecl) {
259    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
260    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
261      << T << SearchType;
262    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
263      << T;
264  } else if (ObjectTypePtr)
265    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
266      << &II;
267  else
268    Diag(NameLoc, diag::err_destructor_class_name);
269
270  return ParsedType();
271}
272
273ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
274    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
275      return ParsedType();
276    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
277           && "only get destructor types from declspecs");
278    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
279    QualType SearchType = GetTypeFromParser(ObjectType);
280    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
281      return ParsedType::make(T);
282    }
283
284    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
285      << T << SearchType;
286    return ParsedType();
287}
288
289/// \brief Build a C++ typeid expression with a type operand.
290ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
291                                SourceLocation TypeidLoc,
292                                TypeSourceInfo *Operand,
293                                SourceLocation RParenLoc) {
294  // C++ [expr.typeid]p4:
295  //   The top-level cv-qualifiers of the lvalue expression or the type-id
296  //   that is the operand of typeid are always ignored.
297  //   If the type of the type-id is a class type or a reference to a class
298  //   type, the class shall be completely-defined.
299  Qualifiers Quals;
300  QualType T
301    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
302                                      Quals);
303  if (T->getAs<RecordType>() &&
304      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
305    return ExprError();
306
307  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
308                                           Operand,
309                                           SourceRange(TypeidLoc, RParenLoc)));
310}
311
312/// \brief Build a C++ typeid expression with an expression operand.
313ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
314                                SourceLocation TypeidLoc,
315                                Expr *E,
316                                SourceLocation RParenLoc) {
317  if (E && !E->isTypeDependent()) {
318    if (E->getType()->isPlaceholderType()) {
319      ExprResult result = CheckPlaceholderExpr(E);
320      if (result.isInvalid()) return ExprError();
321      E = result.take();
322    }
323
324    QualType T = E->getType();
325    if (const RecordType *RecordT = T->getAs<RecordType>()) {
326      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
327      // C++ [expr.typeid]p3:
328      //   [...] If the type of the expression is a class type, the class
329      //   shall be completely-defined.
330      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
331        return ExprError();
332
333      // C++ [expr.typeid]p3:
334      //   When typeid is applied to an expression other than an glvalue of a
335      //   polymorphic class type [...] [the] expression is an unevaluated
336      //   operand. [...]
337      if (RecordD->isPolymorphic() && E->isGLValue()) {
338        // The subexpression is potentially evaluated; switch the context
339        // and recheck the subexpression.
340        ExprResult Result = TransformToPotentiallyEvaluated(E);
341        if (Result.isInvalid()) return ExprError();
342        E = Result.take();
343
344        // We require a vtable to query the type at run time.
345        MarkVTableUsed(TypeidLoc, RecordD);
346      }
347    }
348
349    // C++ [expr.typeid]p4:
350    //   [...] If the type of the type-id is a reference to a possibly
351    //   cv-qualified type, the result of the typeid expression refers to a
352    //   std::type_info object representing the cv-unqualified referenced
353    //   type.
354    Qualifiers Quals;
355    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
356    if (!Context.hasSameType(T, UnqualT)) {
357      T = UnqualT;
358      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
359    }
360  }
361
362  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
363                                           E,
364                                           SourceRange(TypeidLoc, RParenLoc)));
365}
366
367/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
368ExprResult
369Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
370                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
371  // Find the std::type_info type.
372  if (!getStdNamespace())
373    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
374
375  if (!CXXTypeInfoDecl) {
376    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
377    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
378    LookupQualifiedName(R, getStdNamespace());
379    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
380    // Microsoft's typeinfo doesn't have type_info in std but in the global
381    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
382    if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
383      LookupQualifiedName(R, Context.getTranslationUnitDecl());
384      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
385    }
386    if (!CXXTypeInfoDecl)
387      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
388  }
389
390  if (!getLangOpts().RTTI) {
391    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
392  }
393
394  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
395
396  if (isType) {
397    // The operand is a type; handle it as such.
398    TypeSourceInfo *TInfo = 0;
399    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
400                                   &TInfo);
401    if (T.isNull())
402      return ExprError();
403
404    if (!TInfo)
405      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
406
407    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
408  }
409
410  // The operand is an expression.
411  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
412}
413
414/// \brief Build a Microsoft __uuidof expression with a type operand.
415ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
416                                SourceLocation TypeidLoc,
417                                TypeSourceInfo *Operand,
418                                SourceLocation RParenLoc) {
419  if (!Operand->getType()->isDependentType()) {
420    if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
421      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
422  }
423
424  // FIXME: add __uuidof semantic analysis for type operand.
425  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
426                                           Operand,
427                                           SourceRange(TypeidLoc, RParenLoc)));
428}
429
430/// \brief Build a Microsoft __uuidof expression with an expression operand.
431ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
432                                SourceLocation TypeidLoc,
433                                Expr *E,
434                                SourceLocation RParenLoc) {
435  if (!E->getType()->isDependentType()) {
436    if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
437        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
438      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
439  }
440  // FIXME: add __uuidof semantic analysis for type operand.
441  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
442                                           E,
443                                           SourceRange(TypeidLoc, RParenLoc)));
444}
445
446/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
447ExprResult
448Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
449                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
450  // If MSVCGuidDecl has not been cached, do the lookup.
451  if (!MSVCGuidDecl) {
452    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
453    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
454    LookupQualifiedName(R, Context.getTranslationUnitDecl());
455    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
456    if (!MSVCGuidDecl)
457      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
458  }
459
460  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
461
462  if (isType) {
463    // The operand is a type; handle it as such.
464    TypeSourceInfo *TInfo = 0;
465    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
466                                   &TInfo);
467    if (T.isNull())
468      return ExprError();
469
470    if (!TInfo)
471      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
472
473    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
474  }
475
476  // The operand is an expression.
477  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
478}
479
480/// ActOnCXXBoolLiteral - Parse {true,false} literals.
481ExprResult
482Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
483  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
484         "Unknown C++ Boolean value!");
485  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
486                                                Context.BoolTy, OpLoc));
487}
488
489/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
490ExprResult
491Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
492  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
493}
494
495/// ActOnCXXThrow - Parse throw expressions.
496ExprResult
497Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
498  bool IsThrownVarInScope = false;
499  if (Ex) {
500    // C++0x [class.copymove]p31:
501    //   When certain criteria are met, an implementation is allowed to omit the
502    //   copy/move construction of a class object [...]
503    //
504    //     - in a throw-expression, when the operand is the name of a
505    //       non-volatile automatic object (other than a function or catch-
506    //       clause parameter) whose scope does not extend beyond the end of the
507    //       innermost enclosing try-block (if there is one), the copy/move
508    //       operation from the operand to the exception object (15.1) can be
509    //       omitted by constructing the automatic object directly into the
510    //       exception object
511    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
512      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
513        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
514          for( ; S; S = S->getParent()) {
515            if (S->isDeclScope(Var)) {
516              IsThrownVarInScope = true;
517              break;
518            }
519
520            if (S->getFlags() &
521                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
522                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
523                 Scope::TryScope))
524              break;
525          }
526        }
527      }
528  }
529
530  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
531}
532
533ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
534                               bool IsThrownVarInScope) {
535  // Don't report an error if 'throw' is used in system headers.
536  if (!getLangOpts().CXXExceptions &&
537      !getSourceManager().isInSystemHeader(OpLoc))
538    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
539
540  if (Ex && !Ex->isTypeDependent()) {
541    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
542    if (ExRes.isInvalid())
543      return ExprError();
544    Ex = ExRes.take();
545  }
546
547  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
548                                          IsThrownVarInScope));
549}
550
551/// CheckCXXThrowOperand - Validate the operand of a throw.
552ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
553                                      bool IsThrownVarInScope) {
554  // C++ [except.throw]p3:
555  //   A throw-expression initializes a temporary object, called the exception
556  //   object, the type of which is determined by removing any top-level
557  //   cv-qualifiers from the static type of the operand of throw and adjusting
558  //   the type from "array of T" or "function returning T" to "pointer to T"
559  //   or "pointer to function returning T", [...]
560  if (E->getType().hasQualifiers())
561    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
562                          E->getValueKind()).take();
563
564  ExprResult Res = DefaultFunctionArrayConversion(E);
565  if (Res.isInvalid())
566    return ExprError();
567  E = Res.take();
568
569  //   If the type of the exception would be an incomplete type or a pointer
570  //   to an incomplete type other than (cv) void the program is ill-formed.
571  QualType Ty = E->getType();
572  bool isPointer = false;
573  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
574    Ty = Ptr->getPointeeType();
575    isPointer = true;
576  }
577  if (!isPointer || !Ty->isVoidType()) {
578    if (RequireCompleteType(ThrowLoc, Ty,
579                            isPointer? diag::err_throw_incomplete_ptr
580                                     : diag::err_throw_incomplete,
581                            E->getSourceRange()))
582      return ExprError();
583
584    if (RequireNonAbstractType(ThrowLoc, E->getType(),
585                               diag::err_throw_abstract_type, E))
586      return ExprError();
587  }
588
589  // Initialize the exception result.  This implicitly weeds out
590  // abstract types or types with inaccessible copy constructors.
591
592  // C++0x [class.copymove]p31:
593  //   When certain criteria are met, an implementation is allowed to omit the
594  //   copy/move construction of a class object [...]
595  //
596  //     - in a throw-expression, when the operand is the name of a
597  //       non-volatile automatic object (other than a function or catch-clause
598  //       parameter) whose scope does not extend beyond the end of the
599  //       innermost enclosing try-block (if there is one), the copy/move
600  //       operation from the operand to the exception object (15.1) can be
601  //       omitted by constructing the automatic object directly into the
602  //       exception object
603  const VarDecl *NRVOVariable = 0;
604  if (IsThrownVarInScope)
605    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
606
607  InitializedEntity Entity =
608      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
609                                             /*NRVO=*/NRVOVariable != 0);
610  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
611                                        QualType(), E,
612                                        IsThrownVarInScope);
613  if (Res.isInvalid())
614    return ExprError();
615  E = Res.take();
616
617  // If the exception has class type, we need additional handling.
618  const RecordType *RecordTy = Ty->getAs<RecordType>();
619  if (!RecordTy)
620    return Owned(E);
621  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
622
623  // If we are throwing a polymorphic class type or pointer thereof,
624  // exception handling will make use of the vtable.
625  MarkVTableUsed(ThrowLoc, RD);
626
627  // If a pointer is thrown, the referenced object will not be destroyed.
628  if (isPointer)
629    return Owned(E);
630
631  // If the class has a destructor, we must be able to call it.
632  if (RD->hasIrrelevantDestructor())
633    return Owned(E);
634
635  CXXDestructorDecl *Destructor = LookupDestructor(RD);
636  if (!Destructor)
637    return Owned(E);
638
639  MarkFunctionReferenced(E->getExprLoc(), Destructor);
640  CheckDestructorAccess(E->getExprLoc(), Destructor,
641                        PDiag(diag::err_access_dtor_exception) << Ty);
642  DiagnoseUseOfDecl(Destructor, E->getExprLoc());
643  return Owned(E);
644}
645
646QualType Sema::getCurrentThisType() {
647  DeclContext *DC = getFunctionLevelDeclContext();
648  QualType ThisTy = CXXThisTypeOverride;
649  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
650    if (method && method->isInstance())
651      ThisTy = method->getThisType(Context);
652  }
653
654  return ThisTy;
655}
656
657Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
658                                         Decl *ContextDecl,
659                                         unsigned CXXThisTypeQuals,
660                                         bool Enabled)
661  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
662{
663  if (!Enabled || !ContextDecl)
664    return;
665
666  CXXRecordDecl *Record = 0;
667  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
668    Record = Template->getTemplatedDecl();
669  else
670    Record = cast<CXXRecordDecl>(ContextDecl);
671
672  S.CXXThisTypeOverride
673    = S.Context.getPointerType(
674        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
675
676  this->Enabled = true;
677}
678
679
680Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
681  if (Enabled) {
682    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
683  }
684}
685
686void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
687  // We don't need to capture this in an unevaluated context.
688  if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
689    return;
690
691  // Otherwise, check that we can capture 'this'.
692  unsigned NumClosures = 0;
693  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
694    if (CapturingScopeInfo *CSI =
695            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
696      if (CSI->CXXThisCaptureIndex != 0) {
697        // 'this' is already being captured; there isn't anything more to do.
698        break;
699      }
700
701      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
702          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
703          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
704          Explicit) {
705        // This closure can capture 'this'; continue looking upwards.
706        NumClosures++;
707        Explicit = false;
708        continue;
709      }
710      // This context can't implicitly capture 'this'; fail out.
711      Diag(Loc, diag::err_this_capture) << Explicit;
712      return;
713    }
714    break;
715  }
716
717  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
718  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
719  // contexts.
720  for (unsigned idx = FunctionScopes.size() - 1;
721       NumClosures; --idx, --NumClosures) {
722    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
723    Expr *ThisExpr = 0;
724    QualType ThisTy = getCurrentThisType();
725    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
726      // For lambda expressions, build a field and an initializing expression.
727      CXXRecordDecl *Lambda = LSI->Lambda;
728      FieldDecl *Field
729        = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
730                            Context.getTrivialTypeSourceInfo(ThisTy, Loc),
731                            0, false, ICIS_NoInit);
732      Field->setImplicit(true);
733      Field->setAccess(AS_private);
734      Lambda->addDecl(Field);
735      ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
736    }
737    bool isNested = NumClosures > 1;
738    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
739  }
740}
741
742ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
743  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
744  /// is a non-lvalue expression whose value is the address of the object for
745  /// which the function is called.
746
747  QualType ThisTy = getCurrentThisType();
748  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
749
750  CheckCXXThisCapture(Loc);
751  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
752}
753
754bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
755  // If we're outside the body of a member function, then we'll have a specified
756  // type for 'this'.
757  if (CXXThisTypeOverride.isNull())
758    return false;
759
760  // Determine whether we're looking into a class that's currently being
761  // defined.
762  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
763  return Class && Class->isBeingDefined();
764}
765
766ExprResult
767Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
768                                SourceLocation LParenLoc,
769                                MultiExprArg exprs,
770                                SourceLocation RParenLoc) {
771  if (!TypeRep)
772    return ExprError();
773
774  TypeSourceInfo *TInfo;
775  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
776  if (!TInfo)
777    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
778
779  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
780}
781
782/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
783/// Can be interpreted either as function-style casting ("int(x)")
784/// or class type construction ("ClassType(x,y,z)")
785/// or creation of a value-initialized type ("int()").
786ExprResult
787Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
788                                SourceLocation LParenLoc,
789                                MultiExprArg exprs,
790                                SourceLocation RParenLoc) {
791  QualType Ty = TInfo->getType();
792  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
793
794  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(exprs)) {
795    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
796                                                    LParenLoc,
797                                                    exprs,
798                                                    RParenLoc));
799  }
800
801  unsigned NumExprs = exprs.size();
802  Expr **Exprs = exprs.data();
803
804  bool ListInitialization = LParenLoc.isInvalid();
805  assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
806         && "List initialization must have initializer list as expression.");
807  SourceRange FullRange = SourceRange(TyBeginLoc,
808      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
809
810  // C++ [expr.type.conv]p1:
811  // If the expression list is a single expression, the type conversion
812  // expression is equivalent (in definedness, and if defined in meaning) to the
813  // corresponding cast expression.
814  if (NumExprs == 1 && !ListInitialization) {
815    Expr *Arg = Exprs[0];
816    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
817  }
818
819  QualType ElemTy = Ty;
820  if (Ty->isArrayType()) {
821    if (!ListInitialization)
822      return ExprError(Diag(TyBeginLoc,
823                            diag::err_value_init_for_array_type) << FullRange);
824    ElemTy = Context.getBaseElementType(Ty);
825  }
826
827  if (!Ty->isVoidType() &&
828      RequireCompleteType(TyBeginLoc, ElemTy,
829                          diag::err_invalid_incomplete_type_use, FullRange))
830    return ExprError();
831
832  if (RequireNonAbstractType(TyBeginLoc, Ty,
833                             diag::err_allocation_of_abstract_type))
834    return ExprError();
835
836  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
837  InitializationKind Kind
838    = NumExprs ? ListInitialization
839                    ? InitializationKind::CreateDirectList(TyBeginLoc)
840                    : InitializationKind::CreateDirect(TyBeginLoc,
841                                                       LParenLoc, RParenLoc)
842               : InitializationKind::CreateValue(TyBeginLoc,
843                                                 LParenLoc, RParenLoc);
844  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
845  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, exprs);
846
847  if (!Result.isInvalid() && ListInitialization &&
848      isa<InitListExpr>(Result.get())) {
849    // If the list-initialization doesn't involve a constructor call, we'll get
850    // the initializer-list (with corrected type) back, but that's not what we
851    // want, since it will be treated as an initializer list in further
852    // processing. Explicitly insert a cast here.
853    InitListExpr *List = cast<InitListExpr>(Result.take());
854    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
855                                    Expr::getValueKindForType(TInfo->getType()),
856                                                 TInfo, TyBeginLoc, CK_NoOp,
857                                                 List, /*Path=*/0, RParenLoc));
858  }
859
860  // FIXME: Improve AST representation?
861  return Result;
862}
863
864/// doesUsualArrayDeleteWantSize - Answers whether the usual
865/// operator delete[] for the given type has a size_t parameter.
866static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
867                                         QualType allocType) {
868  const RecordType *record =
869    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
870  if (!record) return false;
871
872  // Try to find an operator delete[] in class scope.
873
874  DeclarationName deleteName =
875    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
876  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
877  S.LookupQualifiedName(ops, record->getDecl());
878
879  // We're just doing this for information.
880  ops.suppressDiagnostics();
881
882  // Very likely: there's no operator delete[].
883  if (ops.empty()) return false;
884
885  // If it's ambiguous, it should be illegal to call operator delete[]
886  // on this thing, so it doesn't matter if we allocate extra space or not.
887  if (ops.isAmbiguous()) return false;
888
889  LookupResult::Filter filter = ops.makeFilter();
890  while (filter.hasNext()) {
891    NamedDecl *del = filter.next()->getUnderlyingDecl();
892
893    // C++0x [basic.stc.dynamic.deallocation]p2:
894    //   A template instance is never a usual deallocation function,
895    //   regardless of its signature.
896    if (isa<FunctionTemplateDecl>(del)) {
897      filter.erase();
898      continue;
899    }
900
901    // C++0x [basic.stc.dynamic.deallocation]p2:
902    //   If class T does not declare [an operator delete[] with one
903    //   parameter] but does declare a member deallocation function
904    //   named operator delete[] with exactly two parameters, the
905    //   second of which has type std::size_t, then this function
906    //   is a usual deallocation function.
907    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
908      filter.erase();
909      continue;
910    }
911  }
912  filter.done();
913
914  if (!ops.isSingleResult()) return false;
915
916  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
917  return (del->getNumParams() == 2);
918}
919
920/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
921///
922/// E.g.:
923/// @code new (memory) int[size][4] @endcode
924/// or
925/// @code ::new Foo(23, "hello") @endcode
926///
927/// \param StartLoc The first location of the expression.
928/// \param UseGlobal True if 'new' was prefixed with '::'.
929/// \param PlacementLParen Opening paren of the placement arguments.
930/// \param PlacementArgs Placement new arguments.
931/// \param PlacementRParen Closing paren of the placement arguments.
932/// \param TypeIdParens If the type is in parens, the source range.
933/// \param D The type to be allocated, as well as array dimensions.
934/// \param Initializer The initializing expression or initializer-list, or null
935///   if there is none.
936ExprResult
937Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
938                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
939                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
940                  Declarator &D, Expr *Initializer) {
941  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
942
943  Expr *ArraySize = 0;
944  // If the specified type is an array, unwrap it and save the expression.
945  if (D.getNumTypeObjects() > 0 &&
946      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
947     DeclaratorChunk &Chunk = D.getTypeObject(0);
948    if (TypeContainsAuto)
949      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
950        << D.getSourceRange());
951    if (Chunk.Arr.hasStatic)
952      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
953        << D.getSourceRange());
954    if (!Chunk.Arr.NumElts)
955      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
956        << D.getSourceRange());
957
958    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
959    D.DropFirstTypeObject();
960  }
961
962  // Every dimension shall be of constant size.
963  if (ArraySize) {
964    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
965      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
966        break;
967
968      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
969      if (Expr *NumElts = (Expr *)Array.NumElts) {
970        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
971          Array.NumElts
972            = VerifyIntegerConstantExpression(NumElts, 0,
973                                              diag::err_new_array_nonconst)
974                .take();
975          if (!Array.NumElts)
976            return ExprError();
977        }
978      }
979    }
980  }
981
982  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
983  QualType AllocType = TInfo->getType();
984  if (D.isInvalidType())
985    return ExprError();
986
987  SourceRange DirectInitRange;
988  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
989    DirectInitRange = List->getSourceRange();
990
991  return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
992                     PlacementLParen,
993                     PlacementArgs,
994                     PlacementRParen,
995                     TypeIdParens,
996                     AllocType,
997                     TInfo,
998                     ArraySize,
999                     DirectInitRange,
1000                     Initializer,
1001                     TypeContainsAuto);
1002}
1003
1004static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1005                                       Expr *Init) {
1006  if (!Init)
1007    return true;
1008  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1009    return PLE->getNumExprs() == 0;
1010  if (isa<ImplicitValueInitExpr>(Init))
1011    return true;
1012  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1013    return !CCE->isListInitialization() &&
1014           CCE->getConstructor()->isDefaultConstructor();
1015  else if (Style == CXXNewExpr::ListInit) {
1016    assert(isa<InitListExpr>(Init) &&
1017           "Shouldn't create list CXXConstructExprs for arrays.");
1018    return true;
1019  }
1020  return false;
1021}
1022
1023ExprResult
1024Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1025                  SourceLocation PlacementLParen,
1026                  MultiExprArg PlacementArgs,
1027                  SourceLocation PlacementRParen,
1028                  SourceRange TypeIdParens,
1029                  QualType AllocType,
1030                  TypeSourceInfo *AllocTypeInfo,
1031                  Expr *ArraySize,
1032                  SourceRange DirectInitRange,
1033                  Expr *Initializer,
1034                  bool TypeMayContainAuto) {
1035  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1036  SourceLocation StartLoc = Range.getBegin();
1037
1038  CXXNewExpr::InitializationStyle initStyle;
1039  if (DirectInitRange.isValid()) {
1040    assert(Initializer && "Have parens but no initializer.");
1041    initStyle = CXXNewExpr::CallInit;
1042  } else if (Initializer && isa<InitListExpr>(Initializer))
1043    initStyle = CXXNewExpr::ListInit;
1044  else {
1045    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1046            isa<CXXConstructExpr>(Initializer)) &&
1047           "Initializer expression that cannot have been implicitly created.");
1048    initStyle = CXXNewExpr::NoInit;
1049  }
1050
1051  Expr **Inits = &Initializer;
1052  unsigned NumInits = Initializer ? 1 : 0;
1053  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1054    assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1055    Inits = List->getExprs();
1056    NumInits = List->getNumExprs();
1057  }
1058
1059  // Determine whether we've already built the initializer.
1060  bool HaveCompleteInit = false;
1061  if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1062      !isa<CXXTemporaryObjectExpr>(Initializer))
1063    HaveCompleteInit = true;
1064  else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1065    HaveCompleteInit = true;
1066
1067  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1068  AutoType *AT = 0;
1069  if (TypeMayContainAuto &&
1070      (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
1071    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1072      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1073                       << AllocType << TypeRange);
1074    if (initStyle == CXXNewExpr::ListInit)
1075      return ExprError(Diag(Inits[0]->getLocStart(),
1076                            diag::err_auto_new_requires_parens)
1077                       << AllocType << TypeRange);
1078    if (NumInits > 1) {
1079      Expr *FirstBad = Inits[1];
1080      return ExprError(Diag(FirstBad->getLocStart(),
1081                            diag::err_auto_new_ctor_multiple_expressions)
1082                       << AllocType << TypeRange);
1083    }
1084    Expr *Deduce = Inits[0];
1085    TypeSourceInfo *DeducedType = 0;
1086    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1087      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1088                       << AllocType << Deduce->getType()
1089                       << TypeRange << Deduce->getSourceRange());
1090    if (!DeducedType)
1091      return ExprError();
1092
1093    AllocTypeInfo = DeducedType;
1094    AllocType = AllocTypeInfo->getType();
1095  }
1096
1097  // Per C++0x [expr.new]p5, the type being constructed may be a
1098  // typedef of an array type.
1099  if (!ArraySize) {
1100    if (const ConstantArrayType *Array
1101                              = Context.getAsConstantArrayType(AllocType)) {
1102      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1103                                         Context.getSizeType(),
1104                                         TypeRange.getEnd());
1105      AllocType = Array->getElementType();
1106    }
1107  }
1108
1109  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1110    return ExprError();
1111
1112  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1113    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1114         diag::warn_dangling_std_initializer_list)
1115        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1116  }
1117
1118  // In ARC, infer 'retaining' for the allocated
1119  if (getLangOpts().ObjCAutoRefCount &&
1120      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1121      AllocType->isObjCLifetimeType()) {
1122    AllocType = Context.getLifetimeQualifiedType(AllocType,
1123                                    AllocType->getObjCARCImplicitLifetime());
1124  }
1125
1126  QualType ResultType = Context.getPointerType(AllocType);
1127
1128  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1129  //   integral or enumeration type with a non-negative value."
1130  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1131  //   enumeration type, or a class type for which a single non-explicit
1132  //   conversion function to integral or unscoped enumeration type exists.
1133  if (ArraySize && !ArraySize->isTypeDependent()) {
1134    class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1135      Expr *ArraySize;
1136
1137    public:
1138      SizeConvertDiagnoser(Expr *ArraySize)
1139        : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1140
1141      virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1142                                               QualType T) {
1143        return S.Diag(Loc, diag::err_array_size_not_integral)
1144                 << S.getLangOpts().CPlusPlus11 << T;
1145      }
1146
1147      virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1148                                                   QualType T) {
1149        return S.Diag(Loc, diag::err_array_size_incomplete_type)
1150                 << T << ArraySize->getSourceRange();
1151      }
1152
1153      virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1154                                                     SourceLocation Loc,
1155                                                     QualType T,
1156                                                     QualType ConvTy) {
1157        return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1158      }
1159
1160      virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1161                                                 CXXConversionDecl *Conv,
1162                                                 QualType ConvTy) {
1163        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1164                 << ConvTy->isEnumeralType() << ConvTy;
1165      }
1166
1167      virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1168                                                  QualType T) {
1169        return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1170      }
1171
1172      virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1173                                              QualType ConvTy) {
1174        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1175                 << ConvTy->isEnumeralType() << ConvTy;
1176      }
1177
1178      virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1179                                                   QualType T,
1180                                                   QualType ConvTy) {
1181        return S.Diag(Loc,
1182                      S.getLangOpts().CPlusPlus11
1183                        ? diag::warn_cxx98_compat_array_size_conversion
1184                        : diag::ext_array_size_conversion)
1185                 << T << ConvTy->isEnumeralType() << ConvTy;
1186      }
1187    } SizeDiagnoser(ArraySize);
1188
1189    ExprResult ConvertedSize
1190      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1191                                           /*AllowScopedEnumerations*/ false);
1192    if (ConvertedSize.isInvalid())
1193      return ExprError();
1194
1195    ArraySize = ConvertedSize.take();
1196    QualType SizeType = ArraySize->getType();
1197    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1198      return ExprError();
1199
1200    // C++98 [expr.new]p7:
1201    //   The expression in a direct-new-declarator shall have integral type
1202    //   with a non-negative value.
1203    //
1204    // Let's see if this is a constant < 0. If so, we reject it out of
1205    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1206    // array type.
1207    //
1208    // Note: such a construct has well-defined semantics in C++11: it throws
1209    // std::bad_array_new_length.
1210    if (!ArraySize->isValueDependent()) {
1211      llvm::APSInt Value;
1212      // We've already performed any required implicit conversion to integer or
1213      // unscoped enumeration type.
1214      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1215        if (Value < llvm::APSInt(
1216                        llvm::APInt::getNullValue(Value.getBitWidth()),
1217                                 Value.isUnsigned())) {
1218          if (getLangOpts().CPlusPlus11)
1219            Diag(ArraySize->getLocStart(),
1220                 diag::warn_typecheck_negative_array_new_size)
1221              << ArraySize->getSourceRange();
1222          else
1223            return ExprError(Diag(ArraySize->getLocStart(),
1224                                  diag::err_typecheck_negative_array_size)
1225                             << ArraySize->getSourceRange());
1226        } else if (!AllocType->isDependentType()) {
1227          unsigned ActiveSizeBits =
1228            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1229          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1230            if (getLangOpts().CPlusPlus11)
1231              Diag(ArraySize->getLocStart(),
1232                   diag::warn_array_new_too_large)
1233                << Value.toString(10)
1234                << ArraySize->getSourceRange();
1235            else
1236              return ExprError(Diag(ArraySize->getLocStart(),
1237                                    diag::err_array_too_large)
1238                               << Value.toString(10)
1239                               << ArraySize->getSourceRange());
1240          }
1241        }
1242      } else if (TypeIdParens.isValid()) {
1243        // Can't have dynamic array size when the type-id is in parentheses.
1244        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1245          << ArraySize->getSourceRange()
1246          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1247          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1248
1249        TypeIdParens = SourceRange();
1250      }
1251    }
1252
1253    // Note that we do *not* convert the argument in any way.  It can
1254    // be signed, larger than size_t, whatever.
1255  }
1256
1257  FunctionDecl *OperatorNew = 0;
1258  FunctionDecl *OperatorDelete = 0;
1259  Expr **PlaceArgs = PlacementArgs.data();
1260  unsigned NumPlaceArgs = PlacementArgs.size();
1261
1262  if (!AllocType->isDependentType() &&
1263      !Expr::hasAnyTypeDependentArguments(
1264        llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1265      FindAllocationFunctions(StartLoc,
1266                              SourceRange(PlacementLParen, PlacementRParen),
1267                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1268                              NumPlaceArgs, OperatorNew, OperatorDelete))
1269    return ExprError();
1270
1271  // If this is an array allocation, compute whether the usual array
1272  // deallocation function for the type has a size_t parameter.
1273  bool UsualArrayDeleteWantsSize = false;
1274  if (ArraySize && !AllocType->isDependentType())
1275    UsualArrayDeleteWantsSize
1276      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1277
1278  SmallVector<Expr *, 8> AllPlaceArgs;
1279  if (OperatorNew) {
1280    // Add default arguments, if any.
1281    const FunctionProtoType *Proto =
1282      OperatorNew->getType()->getAs<FunctionProtoType>();
1283    VariadicCallType CallType =
1284      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1285
1286    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1287                               Proto, 1, PlaceArgs, NumPlaceArgs,
1288                               AllPlaceArgs, CallType))
1289      return ExprError();
1290
1291    NumPlaceArgs = AllPlaceArgs.size();
1292    if (NumPlaceArgs > 0)
1293      PlaceArgs = &AllPlaceArgs[0];
1294
1295    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1296                          PlaceArgs, NumPlaceArgs);
1297
1298    // FIXME: Missing call to CheckFunctionCall or equivalent
1299  }
1300
1301  // Warn if the type is over-aligned and is being allocated by global operator
1302  // new.
1303  if (NumPlaceArgs == 0 && OperatorNew &&
1304      (OperatorNew->isImplicit() ||
1305       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1306    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1307      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1308      if (Align > SuitableAlign)
1309        Diag(StartLoc, diag::warn_overaligned_type)
1310            << AllocType
1311            << unsigned(Align / Context.getCharWidth())
1312            << unsigned(SuitableAlign / Context.getCharWidth());
1313    }
1314  }
1315
1316  QualType InitType = AllocType;
1317  // Array 'new' can't have any initializers except empty parentheses.
1318  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1319  // dialect distinction.
1320  if (ResultType->isArrayType() || ArraySize) {
1321    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1322      SourceRange InitRange(Inits[0]->getLocStart(),
1323                            Inits[NumInits - 1]->getLocEnd());
1324      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1325      return ExprError();
1326    }
1327    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1328      // We do the initialization typechecking against the array type
1329      // corresponding to the number of initializers + 1 (to also check
1330      // default-initialization).
1331      unsigned NumElements = ILE->getNumInits() + 1;
1332      InitType = Context.getConstantArrayType(AllocType,
1333          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1334                                              ArrayType::Normal, 0);
1335    }
1336  }
1337
1338  // If we can perform the initialization, and we've not already done so,
1339  // do it now.
1340  if (!AllocType->isDependentType() &&
1341      !Expr::hasAnyTypeDependentArguments(
1342        llvm::makeArrayRef(Inits, NumInits)) &&
1343      !HaveCompleteInit) {
1344    // C++11 [expr.new]p15:
1345    //   A new-expression that creates an object of type T initializes that
1346    //   object as follows:
1347    InitializationKind Kind
1348    //     - If the new-initializer is omitted, the object is default-
1349    //       initialized (8.5); if no initialization is performed,
1350    //       the object has indeterminate value
1351      = initStyle == CXXNewExpr::NoInit
1352          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1353    //     - Otherwise, the new-initializer is interpreted according to the
1354    //       initialization rules of 8.5 for direct-initialization.
1355          : initStyle == CXXNewExpr::ListInit
1356              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1357              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1358                                                 DirectInitRange.getBegin(),
1359                                                 DirectInitRange.getEnd());
1360
1361    InitializedEntity Entity
1362      = InitializedEntity::InitializeNew(StartLoc, InitType);
1363    InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1364    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1365                                          MultiExprArg(Inits, NumInits));
1366    if (FullInit.isInvalid())
1367      return ExprError();
1368
1369    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1370    // we don't want the initialized object to be destructed.
1371    if (CXXBindTemporaryExpr *Binder =
1372            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1373      FullInit = Owned(Binder->getSubExpr());
1374
1375    Initializer = FullInit.take();
1376  }
1377
1378  // Mark the new and delete operators as referenced.
1379  if (OperatorNew)
1380    MarkFunctionReferenced(StartLoc, OperatorNew);
1381  if (OperatorDelete)
1382    MarkFunctionReferenced(StartLoc, OperatorDelete);
1383
1384  // C++0x [expr.new]p17:
1385  //   If the new expression creates an array of objects of class type,
1386  //   access and ambiguity control are done for the destructor.
1387  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1388  if (ArraySize && !BaseAllocType->isDependentType()) {
1389    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1390      if (CXXDestructorDecl *dtor = LookupDestructor(
1391              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1392        MarkFunctionReferenced(StartLoc, dtor);
1393        CheckDestructorAccess(StartLoc, dtor,
1394                              PDiag(diag::err_access_dtor)
1395                                << BaseAllocType);
1396        DiagnoseUseOfDecl(dtor, StartLoc);
1397      }
1398    }
1399  }
1400
1401  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1402                                        OperatorDelete,
1403                                        UsualArrayDeleteWantsSize,
1404                                   llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1405                                        TypeIdParens,
1406                                        ArraySize, initStyle, Initializer,
1407                                        ResultType, AllocTypeInfo,
1408                                        Range, DirectInitRange));
1409}
1410
1411/// \brief Checks that a type is suitable as the allocated type
1412/// in a new-expression.
1413bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1414                              SourceRange R) {
1415  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1416  //   abstract class type or array thereof.
1417  if (AllocType->isFunctionType())
1418    return Diag(Loc, diag::err_bad_new_type)
1419      << AllocType << 0 << R;
1420  else if (AllocType->isReferenceType())
1421    return Diag(Loc, diag::err_bad_new_type)
1422      << AllocType << 1 << R;
1423  else if (!AllocType->isDependentType() &&
1424           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1425    return true;
1426  else if (RequireNonAbstractType(Loc, AllocType,
1427                                  diag::err_allocation_of_abstract_type))
1428    return true;
1429  else if (AllocType->isVariablyModifiedType())
1430    return Diag(Loc, diag::err_variably_modified_new_type)
1431             << AllocType;
1432  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1433    return Diag(Loc, diag::err_address_space_qualified_new)
1434      << AllocType.getUnqualifiedType() << AddressSpace;
1435  else if (getLangOpts().ObjCAutoRefCount) {
1436    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1437      QualType BaseAllocType = Context.getBaseElementType(AT);
1438      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1439          BaseAllocType->isObjCLifetimeType())
1440        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1441          << BaseAllocType;
1442    }
1443  }
1444
1445  return false;
1446}
1447
1448/// \brief Determine whether the given function is a non-placement
1449/// deallocation function.
1450static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1451  if (FD->isInvalidDecl())
1452    return false;
1453
1454  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1455    return Method->isUsualDeallocationFunction();
1456
1457  return ((FD->getOverloadedOperator() == OO_Delete ||
1458           FD->getOverloadedOperator() == OO_Array_Delete) &&
1459          FD->getNumParams() == 1);
1460}
1461
1462/// FindAllocationFunctions - Finds the overloads of operator new and delete
1463/// that are appropriate for the allocation.
1464bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1465                                   bool UseGlobal, QualType AllocType,
1466                                   bool IsArray, Expr **PlaceArgs,
1467                                   unsigned NumPlaceArgs,
1468                                   FunctionDecl *&OperatorNew,
1469                                   FunctionDecl *&OperatorDelete) {
1470  // --- Choosing an allocation function ---
1471  // C++ 5.3.4p8 - 14 & 18
1472  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1473  //   in the scope of the allocated class.
1474  // 2) If an array size is given, look for operator new[], else look for
1475  //   operator new.
1476  // 3) The first argument is always size_t. Append the arguments from the
1477  //   placement form.
1478
1479  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1480  // We don't care about the actual value of this argument.
1481  // FIXME: Should the Sema create the expression and embed it in the syntax
1482  // tree? Or should the consumer just recalculate the value?
1483  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1484                      Context.getTargetInfo().getPointerWidth(0)),
1485                      Context.getSizeType(),
1486                      SourceLocation());
1487  AllocArgs[0] = &Size;
1488  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1489
1490  // C++ [expr.new]p8:
1491  //   If the allocated type is a non-array type, the allocation
1492  //   function's name is operator new and the deallocation function's
1493  //   name is operator delete. If the allocated type is an array
1494  //   type, the allocation function's name is operator new[] and the
1495  //   deallocation function's name is operator delete[].
1496  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1497                                        IsArray ? OO_Array_New : OO_New);
1498  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1499                                        IsArray ? OO_Array_Delete : OO_Delete);
1500
1501  QualType AllocElemType = Context.getBaseElementType(AllocType);
1502
1503  if (AllocElemType->isRecordType() && !UseGlobal) {
1504    CXXRecordDecl *Record
1505      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1506    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1507                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1508                          OperatorNew))
1509      return true;
1510  }
1511  if (!OperatorNew) {
1512    // Didn't find a member overload. Look for a global one.
1513    DeclareGlobalNewDelete();
1514    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1515    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1516                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1517                          OperatorNew))
1518      return true;
1519  }
1520
1521  // We don't need an operator delete if we're running under
1522  // -fno-exceptions.
1523  if (!getLangOpts().Exceptions) {
1524    OperatorDelete = 0;
1525    return false;
1526  }
1527
1528  // FindAllocationOverload can change the passed in arguments, so we need to
1529  // copy them back.
1530  if (NumPlaceArgs > 0)
1531    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1532
1533  // C++ [expr.new]p19:
1534  //
1535  //   If the new-expression begins with a unary :: operator, the
1536  //   deallocation function's name is looked up in the global
1537  //   scope. Otherwise, if the allocated type is a class type T or an
1538  //   array thereof, the deallocation function's name is looked up in
1539  //   the scope of T. If this lookup fails to find the name, or if
1540  //   the allocated type is not a class type or array thereof, the
1541  //   deallocation function's name is looked up in the global scope.
1542  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1543  if (AllocElemType->isRecordType() && !UseGlobal) {
1544    CXXRecordDecl *RD
1545      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1546    LookupQualifiedName(FoundDelete, RD);
1547  }
1548  if (FoundDelete.isAmbiguous())
1549    return true; // FIXME: clean up expressions?
1550
1551  if (FoundDelete.empty()) {
1552    DeclareGlobalNewDelete();
1553    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1554  }
1555
1556  FoundDelete.suppressDiagnostics();
1557
1558  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1559
1560  // Whether we're looking for a placement operator delete is dictated
1561  // by whether we selected a placement operator new, not by whether
1562  // we had explicit placement arguments.  This matters for things like
1563  //   struct A { void *operator new(size_t, int = 0); ... };
1564  //   A *a = new A()
1565  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1566
1567  if (isPlacementNew) {
1568    // C++ [expr.new]p20:
1569    //   A declaration of a placement deallocation function matches the
1570    //   declaration of a placement allocation function if it has the
1571    //   same number of parameters and, after parameter transformations
1572    //   (8.3.5), all parameter types except the first are
1573    //   identical. [...]
1574    //
1575    // To perform this comparison, we compute the function type that
1576    // the deallocation function should have, and use that type both
1577    // for template argument deduction and for comparison purposes.
1578    //
1579    // FIXME: this comparison should ignore CC and the like.
1580    QualType ExpectedFunctionType;
1581    {
1582      const FunctionProtoType *Proto
1583        = OperatorNew->getType()->getAs<FunctionProtoType>();
1584
1585      SmallVector<QualType, 4> ArgTypes;
1586      ArgTypes.push_back(Context.VoidPtrTy);
1587      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1588        ArgTypes.push_back(Proto->getArgType(I));
1589
1590      FunctionProtoType::ExtProtoInfo EPI;
1591      EPI.Variadic = Proto->isVariadic();
1592
1593      ExpectedFunctionType
1594        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1595                                  ArgTypes.size(), EPI);
1596    }
1597
1598    for (LookupResult::iterator D = FoundDelete.begin(),
1599                             DEnd = FoundDelete.end();
1600         D != DEnd; ++D) {
1601      FunctionDecl *Fn = 0;
1602      if (FunctionTemplateDecl *FnTmpl
1603            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1604        // Perform template argument deduction to try to match the
1605        // expected function type.
1606        TemplateDeductionInfo Info(StartLoc);
1607        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1608          continue;
1609      } else
1610        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1611
1612      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1613        Matches.push_back(std::make_pair(D.getPair(), Fn));
1614    }
1615  } else {
1616    // C++ [expr.new]p20:
1617    //   [...] Any non-placement deallocation function matches a
1618    //   non-placement allocation function. [...]
1619    for (LookupResult::iterator D = FoundDelete.begin(),
1620                             DEnd = FoundDelete.end();
1621         D != DEnd; ++D) {
1622      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1623        if (isNonPlacementDeallocationFunction(Fn))
1624          Matches.push_back(std::make_pair(D.getPair(), Fn));
1625    }
1626  }
1627
1628  // C++ [expr.new]p20:
1629  //   [...] If the lookup finds a single matching deallocation
1630  //   function, that function will be called; otherwise, no
1631  //   deallocation function will be called.
1632  if (Matches.size() == 1) {
1633    OperatorDelete = Matches[0].second;
1634
1635    // C++0x [expr.new]p20:
1636    //   If the lookup finds the two-parameter form of a usual
1637    //   deallocation function (3.7.4.2) and that function, considered
1638    //   as a placement deallocation function, would have been
1639    //   selected as a match for the allocation function, the program
1640    //   is ill-formed.
1641    if (NumPlaceArgs && getLangOpts().CPlusPlus11 &&
1642        isNonPlacementDeallocationFunction(OperatorDelete)) {
1643      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1644        << SourceRange(PlaceArgs[0]->getLocStart(),
1645                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1646      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1647        << DeleteName;
1648    } else {
1649      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1650                            Matches[0].first);
1651    }
1652  }
1653
1654  return false;
1655}
1656
1657/// FindAllocationOverload - Find an fitting overload for the allocation
1658/// function in the specified scope.
1659bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1660                                  DeclarationName Name, Expr** Args,
1661                                  unsigned NumArgs, DeclContext *Ctx,
1662                                  bool AllowMissing, FunctionDecl *&Operator,
1663                                  bool Diagnose) {
1664  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1665  LookupQualifiedName(R, Ctx);
1666  if (R.empty()) {
1667    if (AllowMissing || !Diagnose)
1668      return false;
1669    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1670      << Name << Range;
1671  }
1672
1673  if (R.isAmbiguous())
1674    return true;
1675
1676  R.suppressDiagnostics();
1677
1678  OverloadCandidateSet Candidates(StartLoc);
1679  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1680       Alloc != AllocEnd; ++Alloc) {
1681    // Even member operator new/delete are implicitly treated as
1682    // static, so don't use AddMemberCandidate.
1683    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1684
1685    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1686      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1687                                   /*ExplicitTemplateArgs=*/0,
1688                                   llvm::makeArrayRef(Args, NumArgs),
1689                                   Candidates,
1690                                   /*SuppressUserConversions=*/false);
1691      continue;
1692    }
1693
1694    FunctionDecl *Fn = cast<FunctionDecl>(D);
1695    AddOverloadCandidate(Fn, Alloc.getPair(),
1696                         llvm::makeArrayRef(Args, NumArgs), Candidates,
1697                         /*SuppressUserConversions=*/false);
1698  }
1699
1700  // Do the resolution.
1701  OverloadCandidateSet::iterator Best;
1702  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1703  case OR_Success: {
1704    // Got one!
1705    FunctionDecl *FnDecl = Best->Function;
1706    MarkFunctionReferenced(StartLoc, FnDecl);
1707    // The first argument is size_t, and the first parameter must be size_t,
1708    // too. This is checked on declaration and can be assumed. (It can't be
1709    // asserted on, though, since invalid decls are left in there.)
1710    // Watch out for variadic allocator function.
1711    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1712    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1713      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1714                                                       FnDecl->getParamDecl(i));
1715
1716      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1717        return true;
1718
1719      ExprResult Result
1720        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1721      if (Result.isInvalid())
1722        return true;
1723
1724      Args[i] = Result.takeAs<Expr>();
1725    }
1726
1727    Operator = FnDecl;
1728
1729    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1730                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1731      return true;
1732
1733    return false;
1734  }
1735
1736  case OR_No_Viable_Function:
1737    if (Diagnose) {
1738      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1739        << Name << Range;
1740      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1741                                llvm::makeArrayRef(Args, NumArgs));
1742    }
1743    return true;
1744
1745  case OR_Ambiguous:
1746    if (Diagnose) {
1747      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1748        << Name << Range;
1749      Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1750                                llvm::makeArrayRef(Args, NumArgs));
1751    }
1752    return true;
1753
1754  case OR_Deleted: {
1755    if (Diagnose) {
1756      Diag(StartLoc, diag::err_ovl_deleted_call)
1757        << Best->Function->isDeleted()
1758        << Name
1759        << getDeletedOrUnavailableSuffix(Best->Function)
1760        << Range;
1761      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1762                                llvm::makeArrayRef(Args, NumArgs));
1763    }
1764    return true;
1765  }
1766  }
1767  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1768}
1769
1770
1771/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1772/// delete. These are:
1773/// @code
1774///   // C++03:
1775///   void* operator new(std::size_t) throw(std::bad_alloc);
1776///   void* operator new[](std::size_t) throw(std::bad_alloc);
1777///   void operator delete(void *) throw();
1778///   void operator delete[](void *) throw();
1779///   // C++0x:
1780///   void* operator new(std::size_t);
1781///   void* operator new[](std::size_t);
1782///   void operator delete(void *);
1783///   void operator delete[](void *);
1784/// @endcode
1785/// C++0x operator delete is implicitly noexcept.
1786/// Note that the placement and nothrow forms of new are *not* implicitly
1787/// declared. Their use requires including \<new\>.
1788void Sema::DeclareGlobalNewDelete() {
1789  if (GlobalNewDeleteDeclared)
1790    return;
1791
1792  // C++ [basic.std.dynamic]p2:
1793  //   [...] The following allocation and deallocation functions (18.4) are
1794  //   implicitly declared in global scope in each translation unit of a
1795  //   program
1796  //
1797  //     C++03:
1798  //     void* operator new(std::size_t) throw(std::bad_alloc);
1799  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1800  //     void  operator delete(void*) throw();
1801  //     void  operator delete[](void*) throw();
1802  //     C++0x:
1803  //     void* operator new(std::size_t);
1804  //     void* operator new[](std::size_t);
1805  //     void  operator delete(void*);
1806  //     void  operator delete[](void*);
1807  //
1808  //   These implicit declarations introduce only the function names operator
1809  //   new, operator new[], operator delete, operator delete[].
1810  //
1811  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1812  // "std" or "bad_alloc" as necessary to form the exception specification.
1813  // However, we do not make these implicit declarations visible to name
1814  // lookup.
1815  // Note that the C++0x versions of operator delete are deallocation functions,
1816  // and thus are implicitly noexcept.
1817  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1818    // The "std::bad_alloc" class has not yet been declared, so build it
1819    // implicitly.
1820    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1821                                        getOrCreateStdNamespace(),
1822                                        SourceLocation(), SourceLocation(),
1823                                      &PP.getIdentifierTable().get("bad_alloc"),
1824                                        0);
1825    getStdBadAlloc()->setImplicit(true);
1826  }
1827
1828  GlobalNewDeleteDeclared = true;
1829
1830  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1831  QualType SizeT = Context.getSizeType();
1832  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1833
1834  DeclareGlobalAllocationFunction(
1835      Context.DeclarationNames.getCXXOperatorName(OO_New),
1836      VoidPtr, SizeT, AssumeSaneOperatorNew);
1837  DeclareGlobalAllocationFunction(
1838      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1839      VoidPtr, SizeT, AssumeSaneOperatorNew);
1840  DeclareGlobalAllocationFunction(
1841      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1842      Context.VoidTy, VoidPtr);
1843  DeclareGlobalAllocationFunction(
1844      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1845      Context.VoidTy, VoidPtr);
1846}
1847
1848/// DeclareGlobalAllocationFunction - Declares a single implicit global
1849/// allocation function if it doesn't already exist.
1850void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1851                                           QualType Return, QualType Argument,
1852                                           bool AddMallocAttr) {
1853  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1854
1855  // Check if this function is already declared.
1856  {
1857    DeclContext::lookup_result R = GlobalCtx->lookup(Name);
1858    for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
1859         Alloc != AllocEnd; ++Alloc) {
1860      // Only look at non-template functions, as it is the predefined,
1861      // non-templated allocation function we are trying to declare here.
1862      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1863        QualType InitialParamType =
1864          Context.getCanonicalType(
1865            Func->getParamDecl(0)->getType().getUnqualifiedType());
1866        // FIXME: Do we need to check for default arguments here?
1867        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1868          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1869            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1870          return;
1871        }
1872      }
1873    }
1874  }
1875
1876  QualType BadAllocType;
1877  bool HasBadAllocExceptionSpec
1878    = (Name.getCXXOverloadedOperator() == OO_New ||
1879       Name.getCXXOverloadedOperator() == OO_Array_New);
1880  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
1881    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1882    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1883  }
1884
1885  FunctionProtoType::ExtProtoInfo EPI;
1886  if (HasBadAllocExceptionSpec) {
1887    if (!getLangOpts().CPlusPlus11) {
1888      EPI.ExceptionSpecType = EST_Dynamic;
1889      EPI.NumExceptions = 1;
1890      EPI.Exceptions = &BadAllocType;
1891    }
1892  } else {
1893    EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
1894                                EST_BasicNoexcept : EST_DynamicNone;
1895  }
1896
1897  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1898  FunctionDecl *Alloc =
1899    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1900                         SourceLocation(), Name,
1901                         FnType, /*TInfo=*/0, SC_None,
1902                         SC_None, false, true);
1903  Alloc->setImplicit();
1904
1905  if (AddMallocAttr)
1906    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1907
1908  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1909                                           SourceLocation(), 0,
1910                                           Argument, /*TInfo=*/0,
1911                                           SC_None, SC_None, 0);
1912  Alloc->setParams(Param);
1913
1914  // FIXME: Also add this declaration to the IdentifierResolver, but
1915  // make sure it is at the end of the chain to coincide with the
1916  // global scope.
1917  Context.getTranslationUnitDecl()->addDecl(Alloc);
1918}
1919
1920bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1921                                    DeclarationName Name,
1922                                    FunctionDecl* &Operator, bool Diagnose) {
1923  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1924  // Try to find operator delete/operator delete[] in class scope.
1925  LookupQualifiedName(Found, RD);
1926
1927  if (Found.isAmbiguous())
1928    return true;
1929
1930  Found.suppressDiagnostics();
1931
1932  SmallVector<DeclAccessPair,4> Matches;
1933  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1934       F != FEnd; ++F) {
1935    NamedDecl *ND = (*F)->getUnderlyingDecl();
1936
1937    // Ignore template operator delete members from the check for a usual
1938    // deallocation function.
1939    if (isa<FunctionTemplateDecl>(ND))
1940      continue;
1941
1942    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1943      Matches.push_back(F.getPair());
1944  }
1945
1946  // There's exactly one suitable operator;  pick it.
1947  if (Matches.size() == 1) {
1948    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1949
1950    if (Operator->isDeleted()) {
1951      if (Diagnose) {
1952        Diag(StartLoc, diag::err_deleted_function_use);
1953        NoteDeletedFunction(Operator);
1954      }
1955      return true;
1956    }
1957
1958    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1959                              Matches[0], Diagnose) == AR_inaccessible)
1960      return true;
1961
1962    return false;
1963
1964  // We found multiple suitable operators;  complain about the ambiguity.
1965  } else if (!Matches.empty()) {
1966    if (Diagnose) {
1967      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1968        << Name << RD;
1969
1970      for (SmallVectorImpl<DeclAccessPair>::iterator
1971             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1972        Diag((*F)->getUnderlyingDecl()->getLocation(),
1973             diag::note_member_declared_here) << Name;
1974    }
1975    return true;
1976  }
1977
1978  // We did find operator delete/operator delete[] declarations, but
1979  // none of them were suitable.
1980  if (!Found.empty()) {
1981    if (Diagnose) {
1982      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1983        << Name << RD;
1984
1985      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1986           F != FEnd; ++F)
1987        Diag((*F)->getUnderlyingDecl()->getLocation(),
1988             diag::note_member_declared_here) << Name;
1989    }
1990    return true;
1991  }
1992
1993  // Look for a global declaration.
1994  DeclareGlobalNewDelete();
1995  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1996
1997  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1998  Expr* DeallocArgs[1];
1999  DeallocArgs[0] = &Null;
2000  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2001                             DeallocArgs, 1, TUDecl, !Diagnose,
2002                             Operator, Diagnose))
2003    return true;
2004
2005  assert(Operator && "Did not find a deallocation function!");
2006  return false;
2007}
2008
2009/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2010/// @code ::delete ptr; @endcode
2011/// or
2012/// @code delete [] ptr; @endcode
2013ExprResult
2014Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2015                     bool ArrayForm, Expr *ExE) {
2016  // C++ [expr.delete]p1:
2017  //   The operand shall have a pointer type, or a class type having a single
2018  //   conversion function to a pointer type. The result has type void.
2019  //
2020  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2021
2022  ExprResult Ex = Owned(ExE);
2023  FunctionDecl *OperatorDelete = 0;
2024  bool ArrayFormAsWritten = ArrayForm;
2025  bool UsualArrayDeleteWantsSize = false;
2026
2027  if (!Ex.get()->isTypeDependent()) {
2028    // Perform lvalue-to-rvalue cast, if needed.
2029    Ex = DefaultLvalueConversion(Ex.take());
2030    if (Ex.isInvalid())
2031      return ExprError();
2032
2033    QualType Type = Ex.get()->getType();
2034
2035    if (const RecordType *Record = Type->getAs<RecordType>()) {
2036      if (RequireCompleteType(StartLoc, Type,
2037                              diag::err_delete_incomplete_class_type))
2038        return ExprError();
2039
2040      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2041
2042      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2043      std::pair<CXXRecordDecl::conversion_iterator,
2044                CXXRecordDecl::conversion_iterator>
2045        Conversions = RD->getVisibleConversionFunctions();
2046      for (CXXRecordDecl::conversion_iterator
2047             I = Conversions.first, E = Conversions.second; I != E; ++I) {
2048        NamedDecl *D = I.getDecl();
2049        if (isa<UsingShadowDecl>(D))
2050          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2051
2052        // Skip over templated conversion functions; they aren't considered.
2053        if (isa<FunctionTemplateDecl>(D))
2054          continue;
2055
2056        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2057
2058        QualType ConvType = Conv->getConversionType().getNonReferenceType();
2059        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2060          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2061            ObjectPtrConversions.push_back(Conv);
2062      }
2063      if (ObjectPtrConversions.size() == 1) {
2064        // We have a single conversion to a pointer-to-object type. Perform
2065        // that conversion.
2066        // TODO: don't redo the conversion calculation.
2067        ExprResult Res =
2068          PerformImplicitConversion(Ex.get(),
2069                            ObjectPtrConversions.front()->getConversionType(),
2070                                    AA_Converting);
2071        if (Res.isUsable()) {
2072          Ex = Res;
2073          Type = Ex.get()->getType();
2074        }
2075      }
2076      else if (ObjectPtrConversions.size() > 1) {
2077        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2078              << Type << Ex.get()->getSourceRange();
2079        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2080          NoteOverloadCandidate(ObjectPtrConversions[i]);
2081        return ExprError();
2082      }
2083    }
2084
2085    if (!Type->isPointerType())
2086      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2087        << Type << Ex.get()->getSourceRange());
2088
2089    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2090    QualType PointeeElem = Context.getBaseElementType(Pointee);
2091
2092    if (unsigned AddressSpace = Pointee.getAddressSpace())
2093      return Diag(Ex.get()->getLocStart(),
2094                  diag::err_address_space_qualified_delete)
2095               << Pointee.getUnqualifiedType() << AddressSpace;
2096
2097    CXXRecordDecl *PointeeRD = 0;
2098    if (Pointee->isVoidType() && !isSFINAEContext()) {
2099      // The C++ standard bans deleting a pointer to a non-object type, which
2100      // effectively bans deletion of "void*". However, most compilers support
2101      // this, so we treat it as a warning unless we're in a SFINAE context.
2102      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2103        << Type << Ex.get()->getSourceRange();
2104    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2105      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2106        << Type << Ex.get()->getSourceRange());
2107    } else if (!Pointee->isDependentType()) {
2108      if (!RequireCompleteType(StartLoc, Pointee,
2109                               diag::warn_delete_incomplete, Ex.get())) {
2110        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2111          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2112      }
2113    }
2114
2115    // C++ [expr.delete]p2:
2116    //   [Note: a pointer to a const type can be the operand of a
2117    //   delete-expression; it is not necessary to cast away the constness
2118    //   (5.2.11) of the pointer expression before it is used as the operand
2119    //   of the delete-expression. ]
2120
2121    if (Pointee->isArrayType() && !ArrayForm) {
2122      Diag(StartLoc, diag::warn_delete_array_type)
2123          << Type << Ex.get()->getSourceRange()
2124          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2125      ArrayForm = true;
2126    }
2127
2128    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2129                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2130
2131    if (PointeeRD) {
2132      if (!UseGlobal &&
2133          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2134                                   OperatorDelete))
2135        return ExprError();
2136
2137      // If we're allocating an array of records, check whether the
2138      // usual operator delete[] has a size_t parameter.
2139      if (ArrayForm) {
2140        // If the user specifically asked to use the global allocator,
2141        // we'll need to do the lookup into the class.
2142        if (UseGlobal)
2143          UsualArrayDeleteWantsSize =
2144            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2145
2146        // Otherwise, the usual operator delete[] should be the
2147        // function we just found.
2148        else if (isa<CXXMethodDecl>(OperatorDelete))
2149          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2150      }
2151
2152      if (!PointeeRD->hasIrrelevantDestructor())
2153        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2154          MarkFunctionReferenced(StartLoc,
2155                                    const_cast<CXXDestructorDecl*>(Dtor));
2156          DiagnoseUseOfDecl(Dtor, StartLoc);
2157        }
2158
2159      // C++ [expr.delete]p3:
2160      //   In the first alternative (delete object), if the static type of the
2161      //   object to be deleted is different from its dynamic type, the static
2162      //   type shall be a base class of the dynamic type of the object to be
2163      //   deleted and the static type shall have a virtual destructor or the
2164      //   behavior is undefined.
2165      //
2166      // Note: a final class cannot be derived from, no issue there
2167      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2168        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2169        if (dtor && !dtor->isVirtual()) {
2170          if (PointeeRD->isAbstract()) {
2171            // If the class is abstract, we warn by default, because we're
2172            // sure the code has undefined behavior.
2173            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2174                << PointeeElem;
2175          } else if (!ArrayForm) {
2176            // Otherwise, if this is not an array delete, it's a bit suspect,
2177            // but not necessarily wrong.
2178            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2179          }
2180        }
2181      }
2182
2183    }
2184
2185    if (!OperatorDelete) {
2186      // Look for a global declaration.
2187      DeclareGlobalNewDelete();
2188      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2189      Expr *Arg = Ex.get();
2190      if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2191        Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2192                                       CK_BitCast, Arg, 0, VK_RValue);
2193      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2194                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2195                                 OperatorDelete))
2196        return ExprError();
2197    }
2198
2199    MarkFunctionReferenced(StartLoc, OperatorDelete);
2200
2201    // Check access and ambiguity of operator delete and destructor.
2202    if (PointeeRD) {
2203      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2204          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2205                      PDiag(diag::err_access_dtor) << PointeeElem);
2206      }
2207    }
2208
2209  }
2210
2211  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2212                                           ArrayFormAsWritten,
2213                                           UsualArrayDeleteWantsSize,
2214                                           OperatorDelete, Ex.take(), StartLoc));
2215}
2216
2217/// \brief Check the use of the given variable as a C++ condition in an if,
2218/// while, do-while, or switch statement.
2219ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2220                                        SourceLocation StmtLoc,
2221                                        bool ConvertToBoolean) {
2222  QualType T = ConditionVar->getType();
2223
2224  // C++ [stmt.select]p2:
2225  //   The declarator shall not specify a function or an array.
2226  if (T->isFunctionType())
2227    return ExprError(Diag(ConditionVar->getLocation(),
2228                          diag::err_invalid_use_of_function_type)
2229                       << ConditionVar->getSourceRange());
2230  else if (T->isArrayType())
2231    return ExprError(Diag(ConditionVar->getLocation(),
2232                          diag::err_invalid_use_of_array_type)
2233                     << ConditionVar->getSourceRange());
2234
2235  ExprResult Condition =
2236    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2237                              SourceLocation(),
2238                              ConditionVar,
2239                              /*enclosing*/ false,
2240                              ConditionVar->getLocation(),
2241                              ConditionVar->getType().getNonReferenceType(),
2242                              VK_LValue));
2243
2244  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2245
2246  if (ConvertToBoolean) {
2247    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2248    if (Condition.isInvalid())
2249      return ExprError();
2250  }
2251
2252  return Condition;
2253}
2254
2255/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2256ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2257  // C++ 6.4p4:
2258  // The value of a condition that is an initialized declaration in a statement
2259  // other than a switch statement is the value of the declared variable
2260  // implicitly converted to type bool. If that conversion is ill-formed, the
2261  // program is ill-formed.
2262  // The value of a condition that is an expression is the value of the
2263  // expression, implicitly converted to bool.
2264  //
2265  return PerformContextuallyConvertToBool(CondExpr);
2266}
2267
2268/// Helper function to determine whether this is the (deprecated) C++
2269/// conversion from a string literal to a pointer to non-const char or
2270/// non-const wchar_t (for narrow and wide string literals,
2271/// respectively).
2272bool
2273Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2274  // Look inside the implicit cast, if it exists.
2275  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2276    From = Cast->getSubExpr();
2277
2278  // A string literal (2.13.4) that is not a wide string literal can
2279  // be converted to an rvalue of type "pointer to char"; a wide
2280  // string literal can be converted to an rvalue of type "pointer
2281  // to wchar_t" (C++ 4.2p2).
2282  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2283    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2284      if (const BuiltinType *ToPointeeType
2285          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2286        // This conversion is considered only when there is an
2287        // explicit appropriate pointer target type (C++ 4.2p2).
2288        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2289          switch (StrLit->getKind()) {
2290            case StringLiteral::UTF8:
2291            case StringLiteral::UTF16:
2292            case StringLiteral::UTF32:
2293              // We don't allow UTF literals to be implicitly converted
2294              break;
2295            case StringLiteral::Ascii:
2296              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2297                      ToPointeeType->getKind() == BuiltinType::Char_S);
2298            case StringLiteral::Wide:
2299              return ToPointeeType->isWideCharType();
2300          }
2301        }
2302      }
2303
2304  return false;
2305}
2306
2307static ExprResult BuildCXXCastArgument(Sema &S,
2308                                       SourceLocation CastLoc,
2309                                       QualType Ty,
2310                                       CastKind Kind,
2311                                       CXXMethodDecl *Method,
2312                                       DeclAccessPair FoundDecl,
2313                                       bool HadMultipleCandidates,
2314                                       Expr *From) {
2315  switch (Kind) {
2316  default: llvm_unreachable("Unhandled cast kind!");
2317  case CK_ConstructorConversion: {
2318    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2319    SmallVector<Expr*, 8> ConstructorArgs;
2320
2321    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2322      return ExprError();
2323
2324    S.CheckConstructorAccess(CastLoc, Constructor,
2325                             InitializedEntity::InitializeTemporary(Ty),
2326                             Constructor->getAccess());
2327
2328    ExprResult Result
2329      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2330                                ConstructorArgs, HadMultipleCandidates,
2331                                /*ListInit*/ false, /*ZeroInit*/ false,
2332                                CXXConstructExpr::CK_Complete, SourceRange());
2333    if (Result.isInvalid())
2334      return ExprError();
2335
2336    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2337  }
2338
2339  case CK_UserDefinedConversion: {
2340    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2341
2342    // Create an implicit call expr that calls it.
2343    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2344    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2345                                                 HadMultipleCandidates);
2346    if (Result.isInvalid())
2347      return ExprError();
2348    // Record usage of conversion in an implicit cast.
2349    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2350                                              Result.get()->getType(),
2351                                              CK_UserDefinedConversion,
2352                                              Result.get(), 0,
2353                                              Result.get()->getValueKind()));
2354
2355    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2356
2357    return S.MaybeBindToTemporary(Result.get());
2358  }
2359  }
2360}
2361
2362/// PerformImplicitConversion - Perform an implicit conversion of the
2363/// expression From to the type ToType using the pre-computed implicit
2364/// conversion sequence ICS. Returns the converted
2365/// expression. Action is the kind of conversion we're performing,
2366/// used in the error message.
2367ExprResult
2368Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2369                                const ImplicitConversionSequence &ICS,
2370                                AssignmentAction Action,
2371                                CheckedConversionKind CCK) {
2372  switch (ICS.getKind()) {
2373  case ImplicitConversionSequence::StandardConversion: {
2374    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2375                                               Action, CCK);
2376    if (Res.isInvalid())
2377      return ExprError();
2378    From = Res.take();
2379    break;
2380  }
2381
2382  case ImplicitConversionSequence::UserDefinedConversion: {
2383
2384      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2385      CastKind CastKind;
2386      QualType BeforeToType;
2387      assert(FD && "FIXME: aggregate initialization from init list");
2388      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2389        CastKind = CK_UserDefinedConversion;
2390
2391        // If the user-defined conversion is specified by a conversion function,
2392        // the initial standard conversion sequence converts the source type to
2393        // the implicit object parameter of the conversion function.
2394        BeforeToType = Context.getTagDeclType(Conv->getParent());
2395      } else {
2396        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2397        CastKind = CK_ConstructorConversion;
2398        // Do no conversion if dealing with ... for the first conversion.
2399        if (!ICS.UserDefined.EllipsisConversion) {
2400          // If the user-defined conversion is specified by a constructor, the
2401          // initial standard conversion sequence converts the source type to the
2402          // type required by the argument of the constructor
2403          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2404        }
2405      }
2406      // Watch out for elipsis conversion.
2407      if (!ICS.UserDefined.EllipsisConversion) {
2408        ExprResult Res =
2409          PerformImplicitConversion(From, BeforeToType,
2410                                    ICS.UserDefined.Before, AA_Converting,
2411                                    CCK);
2412        if (Res.isInvalid())
2413          return ExprError();
2414        From = Res.take();
2415      }
2416
2417      ExprResult CastArg
2418        = BuildCXXCastArgument(*this,
2419                               From->getLocStart(),
2420                               ToType.getNonReferenceType(),
2421                               CastKind, cast<CXXMethodDecl>(FD),
2422                               ICS.UserDefined.FoundConversionFunction,
2423                               ICS.UserDefined.HadMultipleCandidates,
2424                               From);
2425
2426      if (CastArg.isInvalid())
2427        return ExprError();
2428
2429      From = CastArg.take();
2430
2431      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2432                                       AA_Converting, CCK);
2433  }
2434
2435  case ImplicitConversionSequence::AmbiguousConversion:
2436    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2437                          PDiag(diag::err_typecheck_ambiguous_condition)
2438                            << From->getSourceRange());
2439     return ExprError();
2440
2441  case ImplicitConversionSequence::EllipsisConversion:
2442    llvm_unreachable("Cannot perform an ellipsis conversion");
2443
2444  case ImplicitConversionSequence::BadConversion:
2445    return ExprError();
2446  }
2447
2448  // Everything went well.
2449  return Owned(From);
2450}
2451
2452/// PerformImplicitConversion - Perform an implicit conversion of the
2453/// expression From to the type ToType by following the standard
2454/// conversion sequence SCS. Returns the converted
2455/// expression. Flavor is the context in which we're performing this
2456/// conversion, for use in error messages.
2457ExprResult
2458Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2459                                const StandardConversionSequence& SCS,
2460                                AssignmentAction Action,
2461                                CheckedConversionKind CCK) {
2462  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2463
2464  // Overall FIXME: we are recomputing too many types here and doing far too
2465  // much extra work. What this means is that we need to keep track of more
2466  // information that is computed when we try the implicit conversion initially,
2467  // so that we don't need to recompute anything here.
2468  QualType FromType = From->getType();
2469
2470  if (SCS.CopyConstructor) {
2471    // FIXME: When can ToType be a reference type?
2472    assert(!ToType->isReferenceType());
2473    if (SCS.Second == ICK_Derived_To_Base) {
2474      SmallVector<Expr*, 8> ConstructorArgs;
2475      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2476                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
2477                                  ConstructorArgs))
2478        return ExprError();
2479      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2480                                   ToType, SCS.CopyConstructor,
2481                                   ConstructorArgs,
2482                                   /*HadMultipleCandidates*/ false,
2483                                   /*ListInit*/ false, /*ZeroInit*/ false,
2484                                   CXXConstructExpr::CK_Complete,
2485                                   SourceRange());
2486    }
2487    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2488                                 ToType, SCS.CopyConstructor,
2489                                 From, /*HadMultipleCandidates*/ false,
2490                                 /*ListInit*/ false, /*ZeroInit*/ false,
2491                                 CXXConstructExpr::CK_Complete,
2492                                 SourceRange());
2493  }
2494
2495  // Resolve overloaded function references.
2496  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2497    DeclAccessPair Found;
2498    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2499                                                          true, Found);
2500    if (!Fn)
2501      return ExprError();
2502
2503    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2504      return ExprError();
2505
2506    From = FixOverloadedFunctionReference(From, Found, Fn);
2507    FromType = From->getType();
2508  }
2509
2510  // Perform the first implicit conversion.
2511  switch (SCS.First) {
2512  case ICK_Identity:
2513    // Nothing to do.
2514    break;
2515
2516  case ICK_Lvalue_To_Rvalue: {
2517    assert(From->getObjectKind() != OK_ObjCProperty);
2518    FromType = FromType.getUnqualifiedType();
2519    ExprResult FromRes = DefaultLvalueConversion(From);
2520    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2521    From = FromRes.take();
2522    break;
2523  }
2524
2525  case ICK_Array_To_Pointer:
2526    FromType = Context.getArrayDecayedType(FromType);
2527    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2528                             VK_RValue, /*BasePath=*/0, CCK).take();
2529    break;
2530
2531  case ICK_Function_To_Pointer:
2532    FromType = Context.getPointerType(FromType);
2533    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2534                             VK_RValue, /*BasePath=*/0, CCK).take();
2535    break;
2536
2537  default:
2538    llvm_unreachable("Improper first standard conversion");
2539  }
2540
2541  // Perform the second implicit conversion
2542  switch (SCS.Second) {
2543  case ICK_Identity:
2544    // If both sides are functions (or pointers/references to them), there could
2545    // be incompatible exception declarations.
2546    if (CheckExceptionSpecCompatibility(From, ToType))
2547      return ExprError();
2548    // Nothing else to do.
2549    break;
2550
2551  case ICK_NoReturn_Adjustment:
2552    // If both sides are functions (or pointers/references to them), there could
2553    // be incompatible exception declarations.
2554    if (CheckExceptionSpecCompatibility(From, ToType))
2555      return ExprError();
2556
2557    From = ImpCastExprToType(From, ToType, CK_NoOp,
2558                             VK_RValue, /*BasePath=*/0, CCK).take();
2559    break;
2560
2561  case ICK_Integral_Promotion:
2562  case ICK_Integral_Conversion:
2563    if (ToType->isBooleanType()) {
2564      assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2565             SCS.Second == ICK_Integral_Promotion &&
2566             "only enums with fixed underlying type can promote to bool");
2567      From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2568                               VK_RValue, /*BasePath=*/0, CCK).take();
2569    } else {
2570      From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2571                               VK_RValue, /*BasePath=*/0, CCK).take();
2572    }
2573    break;
2574
2575  case ICK_Floating_Promotion:
2576  case ICK_Floating_Conversion:
2577    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2578                             VK_RValue, /*BasePath=*/0, CCK).take();
2579    break;
2580
2581  case ICK_Complex_Promotion:
2582  case ICK_Complex_Conversion: {
2583    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2584    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2585    CastKind CK;
2586    if (FromEl->isRealFloatingType()) {
2587      if (ToEl->isRealFloatingType())
2588        CK = CK_FloatingComplexCast;
2589      else
2590        CK = CK_FloatingComplexToIntegralComplex;
2591    } else if (ToEl->isRealFloatingType()) {
2592      CK = CK_IntegralComplexToFloatingComplex;
2593    } else {
2594      CK = CK_IntegralComplexCast;
2595    }
2596    From = ImpCastExprToType(From, ToType, CK,
2597                             VK_RValue, /*BasePath=*/0, CCK).take();
2598    break;
2599  }
2600
2601  case ICK_Floating_Integral:
2602    if (ToType->isRealFloatingType())
2603      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2604                               VK_RValue, /*BasePath=*/0, CCK).take();
2605    else
2606      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2607                               VK_RValue, /*BasePath=*/0, CCK).take();
2608    break;
2609
2610  case ICK_Compatible_Conversion:
2611      From = ImpCastExprToType(From, ToType, CK_NoOp,
2612                               VK_RValue, /*BasePath=*/0, CCK).take();
2613    break;
2614
2615  case ICK_Writeback_Conversion:
2616  case ICK_Pointer_Conversion: {
2617    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2618      // Diagnose incompatible Objective-C conversions
2619      if (Action == AA_Initializing || Action == AA_Assigning)
2620        Diag(From->getLocStart(),
2621             diag::ext_typecheck_convert_incompatible_pointer)
2622          << ToType << From->getType() << Action
2623          << From->getSourceRange() << 0;
2624      else
2625        Diag(From->getLocStart(),
2626             diag::ext_typecheck_convert_incompatible_pointer)
2627          << From->getType() << ToType << Action
2628          << From->getSourceRange() << 0;
2629
2630      if (From->getType()->isObjCObjectPointerType() &&
2631          ToType->isObjCObjectPointerType())
2632        EmitRelatedResultTypeNote(From);
2633    }
2634    else if (getLangOpts().ObjCAutoRefCount &&
2635             !CheckObjCARCUnavailableWeakConversion(ToType,
2636                                                    From->getType())) {
2637      if (Action == AA_Initializing)
2638        Diag(From->getLocStart(),
2639             diag::err_arc_weak_unavailable_assign);
2640      else
2641        Diag(From->getLocStart(),
2642             diag::err_arc_convesion_of_weak_unavailable)
2643          << (Action == AA_Casting) << From->getType() << ToType
2644          << From->getSourceRange();
2645    }
2646
2647    CastKind Kind = CK_Invalid;
2648    CXXCastPath BasePath;
2649    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2650      return ExprError();
2651
2652    // Make sure we extend blocks if necessary.
2653    // FIXME: doing this here is really ugly.
2654    if (Kind == CK_BlockPointerToObjCPointerCast) {
2655      ExprResult E = From;
2656      (void) PrepareCastToObjCObjectPointer(E);
2657      From = E.take();
2658    }
2659
2660    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2661             .take();
2662    break;
2663  }
2664
2665  case ICK_Pointer_Member: {
2666    CastKind Kind = CK_Invalid;
2667    CXXCastPath BasePath;
2668    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2669      return ExprError();
2670    if (CheckExceptionSpecCompatibility(From, ToType))
2671      return ExprError();
2672    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2673             .take();
2674    break;
2675  }
2676
2677  case ICK_Boolean_Conversion:
2678    // Perform half-to-boolean conversion via float.
2679    if (From->getType()->isHalfType()) {
2680      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2681      FromType = Context.FloatTy;
2682    }
2683
2684    From = ImpCastExprToType(From, Context.BoolTy,
2685                             ScalarTypeToBooleanCastKind(FromType),
2686                             VK_RValue, /*BasePath=*/0, CCK).take();
2687    break;
2688
2689  case ICK_Derived_To_Base: {
2690    CXXCastPath BasePath;
2691    if (CheckDerivedToBaseConversion(From->getType(),
2692                                     ToType.getNonReferenceType(),
2693                                     From->getLocStart(),
2694                                     From->getSourceRange(),
2695                                     &BasePath,
2696                                     CStyle))
2697      return ExprError();
2698
2699    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2700                      CK_DerivedToBase, From->getValueKind(),
2701                      &BasePath, CCK).take();
2702    break;
2703  }
2704
2705  case ICK_Vector_Conversion:
2706    From = ImpCastExprToType(From, ToType, CK_BitCast,
2707                             VK_RValue, /*BasePath=*/0, CCK).take();
2708    break;
2709
2710  case ICK_Vector_Splat:
2711    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2712                             VK_RValue, /*BasePath=*/0, CCK).take();
2713    break;
2714
2715  case ICK_Complex_Real:
2716    // Case 1.  x -> _Complex y
2717    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2718      QualType ElType = ToComplex->getElementType();
2719      bool isFloatingComplex = ElType->isRealFloatingType();
2720
2721      // x -> y
2722      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2723        // do nothing
2724      } else if (From->getType()->isRealFloatingType()) {
2725        From = ImpCastExprToType(From, ElType,
2726                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2727      } else {
2728        assert(From->getType()->isIntegerType());
2729        From = ImpCastExprToType(From, ElType,
2730                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2731      }
2732      // y -> _Complex y
2733      From = ImpCastExprToType(From, ToType,
2734                   isFloatingComplex ? CK_FloatingRealToComplex
2735                                     : CK_IntegralRealToComplex).take();
2736
2737    // Case 2.  _Complex x -> y
2738    } else {
2739      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2740      assert(FromComplex);
2741
2742      QualType ElType = FromComplex->getElementType();
2743      bool isFloatingComplex = ElType->isRealFloatingType();
2744
2745      // _Complex x -> x
2746      From = ImpCastExprToType(From, ElType,
2747                   isFloatingComplex ? CK_FloatingComplexToReal
2748                                     : CK_IntegralComplexToReal,
2749                               VK_RValue, /*BasePath=*/0, CCK).take();
2750
2751      // x -> y
2752      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2753        // do nothing
2754      } else if (ToType->isRealFloatingType()) {
2755        From = ImpCastExprToType(From, ToType,
2756                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2757                                 VK_RValue, /*BasePath=*/0, CCK).take();
2758      } else {
2759        assert(ToType->isIntegerType());
2760        From = ImpCastExprToType(From, ToType,
2761                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2762                                 VK_RValue, /*BasePath=*/0, CCK).take();
2763      }
2764    }
2765    break;
2766
2767  case ICK_Block_Pointer_Conversion: {
2768    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2769                             VK_RValue, /*BasePath=*/0, CCK).take();
2770    break;
2771  }
2772
2773  case ICK_TransparentUnionConversion: {
2774    ExprResult FromRes = Owned(From);
2775    Sema::AssignConvertType ConvTy =
2776      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2777    if (FromRes.isInvalid())
2778      return ExprError();
2779    From = FromRes.take();
2780    assert ((ConvTy == Sema::Compatible) &&
2781            "Improper transparent union conversion");
2782    (void)ConvTy;
2783    break;
2784  }
2785
2786  case ICK_Zero_Event_Conversion:
2787    From = ImpCastExprToType(From, ToType,
2788                             CK_ZeroToOCLEvent,
2789                             From->getValueKind()).take();
2790    break;
2791
2792  case ICK_Lvalue_To_Rvalue:
2793  case ICK_Array_To_Pointer:
2794  case ICK_Function_To_Pointer:
2795  case ICK_Qualification:
2796  case ICK_Num_Conversion_Kinds:
2797    llvm_unreachable("Improper second standard conversion");
2798  }
2799
2800  switch (SCS.Third) {
2801  case ICK_Identity:
2802    // Nothing to do.
2803    break;
2804
2805  case ICK_Qualification: {
2806    // The qualification keeps the category of the inner expression, unless the
2807    // target type isn't a reference.
2808    ExprValueKind VK = ToType->isReferenceType() ?
2809                                  From->getValueKind() : VK_RValue;
2810    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2811                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2812
2813    if (SCS.DeprecatedStringLiteralToCharPtr &&
2814        !getLangOpts().WritableStrings)
2815      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2816        << ToType.getNonReferenceType();
2817
2818    break;
2819    }
2820
2821  default:
2822    llvm_unreachable("Improper third standard conversion");
2823  }
2824
2825  // If this conversion sequence involved a scalar -> atomic conversion, perform
2826  // that conversion now.
2827  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2828    if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2829      From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2830                               CCK).take();
2831
2832  return Owned(From);
2833}
2834
2835ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2836                                     SourceLocation KWLoc,
2837                                     ParsedType Ty,
2838                                     SourceLocation RParen) {
2839  TypeSourceInfo *TSInfo;
2840  QualType T = GetTypeFromParser(Ty, &TSInfo);
2841
2842  if (!TSInfo)
2843    TSInfo = Context.getTrivialTypeSourceInfo(T);
2844  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2845}
2846
2847/// \brief Check the completeness of a type in a unary type trait.
2848///
2849/// If the particular type trait requires a complete type, tries to complete
2850/// it. If completing the type fails, a diagnostic is emitted and false
2851/// returned. If completing the type succeeds or no completion was required,
2852/// returns true.
2853static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2854                                                UnaryTypeTrait UTT,
2855                                                SourceLocation Loc,
2856                                                QualType ArgTy) {
2857  // C++0x [meta.unary.prop]p3:
2858  //   For all of the class templates X declared in this Clause, instantiating
2859  //   that template with a template argument that is a class template
2860  //   specialization may result in the implicit instantiation of the template
2861  //   argument if and only if the semantics of X require that the argument
2862  //   must be a complete type.
2863  // We apply this rule to all the type trait expressions used to implement
2864  // these class templates. We also try to follow any GCC documented behavior
2865  // in these expressions to ensure portability of standard libraries.
2866  switch (UTT) {
2867    // is_complete_type somewhat obviously cannot require a complete type.
2868  case UTT_IsCompleteType:
2869    // Fall-through
2870
2871    // These traits are modeled on the type predicates in C++0x
2872    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2873    // requiring a complete type, as whether or not they return true cannot be
2874    // impacted by the completeness of the type.
2875  case UTT_IsVoid:
2876  case UTT_IsIntegral:
2877  case UTT_IsFloatingPoint:
2878  case UTT_IsArray:
2879  case UTT_IsPointer:
2880  case UTT_IsLvalueReference:
2881  case UTT_IsRvalueReference:
2882  case UTT_IsMemberFunctionPointer:
2883  case UTT_IsMemberObjectPointer:
2884  case UTT_IsEnum:
2885  case UTT_IsUnion:
2886  case UTT_IsClass:
2887  case UTT_IsFunction:
2888  case UTT_IsReference:
2889  case UTT_IsArithmetic:
2890  case UTT_IsFundamental:
2891  case UTT_IsObject:
2892  case UTT_IsScalar:
2893  case UTT_IsCompound:
2894  case UTT_IsMemberPointer:
2895    // Fall-through
2896
2897    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2898    // which requires some of its traits to have the complete type. However,
2899    // the completeness of the type cannot impact these traits' semantics, and
2900    // so they don't require it. This matches the comments on these traits in
2901    // Table 49.
2902  case UTT_IsConst:
2903  case UTT_IsVolatile:
2904  case UTT_IsSigned:
2905  case UTT_IsUnsigned:
2906    return true;
2907
2908    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2909    // applied to a complete type.
2910  case UTT_IsTrivial:
2911  case UTT_IsTriviallyCopyable:
2912  case UTT_IsStandardLayout:
2913  case UTT_IsPOD:
2914  case UTT_IsLiteral:
2915  case UTT_IsEmpty:
2916  case UTT_IsPolymorphic:
2917  case UTT_IsAbstract:
2918  case UTT_IsInterfaceClass:
2919    // Fall-through
2920
2921  // These traits require a complete type.
2922  case UTT_IsFinal:
2923
2924    // These trait expressions are designed to help implement predicates in
2925    // [meta.unary.prop] despite not being named the same. They are specified
2926    // by both GCC and the Embarcadero C++ compiler, and require the complete
2927    // type due to the overarching C++0x type predicates being implemented
2928    // requiring the complete type.
2929  case UTT_HasNothrowAssign:
2930  case UTT_HasNothrowConstructor:
2931  case UTT_HasNothrowCopy:
2932  case UTT_HasTrivialAssign:
2933  case UTT_HasTrivialDefaultConstructor:
2934  case UTT_HasTrivialCopy:
2935  case UTT_HasTrivialDestructor:
2936  case UTT_HasVirtualDestructor:
2937    // Arrays of unknown bound are expressly allowed.
2938    QualType ElTy = ArgTy;
2939    if (ArgTy->isIncompleteArrayType())
2940      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2941
2942    // The void type is expressly allowed.
2943    if (ElTy->isVoidType())
2944      return true;
2945
2946    return !S.RequireCompleteType(
2947      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2948  }
2949  llvm_unreachable("Type trait not handled by switch");
2950}
2951
2952static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2953                                   SourceLocation KeyLoc, QualType T) {
2954  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2955
2956  ASTContext &C = Self.Context;
2957  switch(UTT) {
2958    // Type trait expressions corresponding to the primary type category
2959    // predicates in C++0x [meta.unary.cat].
2960  case UTT_IsVoid:
2961    return T->isVoidType();
2962  case UTT_IsIntegral:
2963    return T->isIntegralType(C);
2964  case UTT_IsFloatingPoint:
2965    return T->isFloatingType();
2966  case UTT_IsArray:
2967    return T->isArrayType();
2968  case UTT_IsPointer:
2969    return T->isPointerType();
2970  case UTT_IsLvalueReference:
2971    return T->isLValueReferenceType();
2972  case UTT_IsRvalueReference:
2973    return T->isRValueReferenceType();
2974  case UTT_IsMemberFunctionPointer:
2975    return T->isMemberFunctionPointerType();
2976  case UTT_IsMemberObjectPointer:
2977    return T->isMemberDataPointerType();
2978  case UTT_IsEnum:
2979    return T->isEnumeralType();
2980  case UTT_IsUnion:
2981    return T->isUnionType();
2982  case UTT_IsClass:
2983    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
2984  case UTT_IsFunction:
2985    return T->isFunctionType();
2986
2987    // Type trait expressions which correspond to the convenient composition
2988    // predicates in C++0x [meta.unary.comp].
2989  case UTT_IsReference:
2990    return T->isReferenceType();
2991  case UTT_IsArithmetic:
2992    return T->isArithmeticType() && !T->isEnumeralType();
2993  case UTT_IsFundamental:
2994    return T->isFundamentalType();
2995  case UTT_IsObject:
2996    return T->isObjectType();
2997  case UTT_IsScalar:
2998    // Note: semantic analysis depends on Objective-C lifetime types to be
2999    // considered scalar types. However, such types do not actually behave
3000    // like scalar types at run time (since they may require retain/release
3001    // operations), so we report them as non-scalar.
3002    if (T->isObjCLifetimeType()) {
3003      switch (T.getObjCLifetime()) {
3004      case Qualifiers::OCL_None:
3005      case Qualifiers::OCL_ExplicitNone:
3006        return true;
3007
3008      case Qualifiers::OCL_Strong:
3009      case Qualifiers::OCL_Weak:
3010      case Qualifiers::OCL_Autoreleasing:
3011        return false;
3012      }
3013    }
3014
3015    return T->isScalarType();
3016  case UTT_IsCompound:
3017    return T->isCompoundType();
3018  case UTT_IsMemberPointer:
3019    return T->isMemberPointerType();
3020
3021    // Type trait expressions which correspond to the type property predicates
3022    // in C++0x [meta.unary.prop].
3023  case UTT_IsConst:
3024    return T.isConstQualified();
3025  case UTT_IsVolatile:
3026    return T.isVolatileQualified();
3027  case UTT_IsTrivial:
3028    return T.isTrivialType(Self.Context);
3029  case UTT_IsTriviallyCopyable:
3030    return T.isTriviallyCopyableType(Self.Context);
3031  case UTT_IsStandardLayout:
3032    return T->isStandardLayoutType();
3033  case UTT_IsPOD:
3034    return T.isPODType(Self.Context);
3035  case UTT_IsLiteral:
3036    return T->isLiteralType();
3037  case UTT_IsEmpty:
3038    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3039      return !RD->isUnion() && RD->isEmpty();
3040    return false;
3041  case UTT_IsPolymorphic:
3042    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3043      return RD->isPolymorphic();
3044    return false;
3045  case UTT_IsAbstract:
3046    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3047      return RD->isAbstract();
3048    return false;
3049  case UTT_IsInterfaceClass:
3050    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3051      return RD->isInterface();
3052    return false;
3053  case UTT_IsFinal:
3054    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3055      return RD->hasAttr<FinalAttr>();
3056    return false;
3057  case UTT_IsSigned:
3058    return T->isSignedIntegerType();
3059  case UTT_IsUnsigned:
3060    return T->isUnsignedIntegerType();
3061
3062    // Type trait expressions which query classes regarding their construction,
3063    // destruction, and copying. Rather than being based directly on the
3064    // related type predicates in the standard, they are specified by both
3065    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3066    // specifications.
3067    //
3068    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3069    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3070    //
3071    // Note that these builtins do not behave as documented in g++: if a class
3072    // has both a trivial and a non-trivial special member of a particular kind,
3073    // they return false! For now, we emulate this behavior.
3074    // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3075    // does not correctly compute triviality in the presence of multiple special
3076    // members of the same kind. Revisit this once the g++ bug is fixed.
3077  case UTT_HasTrivialDefaultConstructor:
3078    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3079    //   If __is_pod (type) is true then the trait is true, else if type is
3080    //   a cv class or union type (or array thereof) with a trivial default
3081    //   constructor ([class.ctor]) then the trait is true, else it is false.
3082    if (T.isPODType(Self.Context))
3083      return true;
3084    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3085      return RD->hasTrivialDefaultConstructor() &&
3086             !RD->hasNonTrivialDefaultConstructor();
3087    return false;
3088  case UTT_HasTrivialCopy:
3089    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3090    //   If __is_pod (type) is true or type is a reference type then
3091    //   the trait is true, else if type is a cv class or union type
3092    //   with a trivial copy constructor ([class.copy]) then the trait
3093    //   is true, else it is false.
3094    if (T.isPODType(Self.Context) || T->isReferenceType())
3095      return true;
3096    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3097      return RD->hasTrivialCopyConstructor() &&
3098             !RD->hasNonTrivialCopyConstructor();
3099    return false;
3100  case UTT_HasTrivialAssign:
3101    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3102    //   If type is const qualified or is a reference type then the
3103    //   trait is false. Otherwise if __is_pod (type) is true then the
3104    //   trait is true, else if type is a cv class or union type with
3105    //   a trivial copy assignment ([class.copy]) then the trait is
3106    //   true, else it is false.
3107    // Note: the const and reference restrictions are interesting,
3108    // given that const and reference members don't prevent a class
3109    // from having a trivial copy assignment operator (but do cause
3110    // errors if the copy assignment operator is actually used, q.v.
3111    // [class.copy]p12).
3112
3113    if (T.isConstQualified())
3114      return false;
3115    if (T.isPODType(Self.Context))
3116      return true;
3117    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3118      return RD->hasTrivialCopyAssignment() &&
3119             !RD->hasNonTrivialCopyAssignment();
3120    return false;
3121  case UTT_HasTrivialDestructor:
3122    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3123    //   If __is_pod (type) is true or type is a reference type
3124    //   then the trait is true, else if type is a cv class or union
3125    //   type (or array thereof) with a trivial destructor
3126    //   ([class.dtor]) then the trait is true, else it is
3127    //   false.
3128    if (T.isPODType(Self.Context) || T->isReferenceType())
3129      return true;
3130
3131    // Objective-C++ ARC: autorelease types don't require destruction.
3132    if (T->isObjCLifetimeType() &&
3133        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3134      return true;
3135
3136    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3137      return RD->hasTrivialDestructor();
3138    return false;
3139  // TODO: Propagate nothrowness for implicitly declared special members.
3140  case UTT_HasNothrowAssign:
3141    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3142    //   If type is const qualified or is a reference type then the
3143    //   trait is false. Otherwise if __has_trivial_assign (type)
3144    //   is true then the trait is true, else if type is a cv class
3145    //   or union type with copy assignment operators that are known
3146    //   not to throw an exception then the trait is true, else it is
3147    //   false.
3148    if (C.getBaseElementType(T).isConstQualified())
3149      return false;
3150    if (T->isReferenceType())
3151      return false;
3152    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3153      return true;
3154    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3155      if (RD->hasTrivialCopyAssignment() && !RD->hasNonTrivialCopyAssignment())
3156        return true;
3157
3158      bool FoundAssign = false;
3159      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3160      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3161                       Sema::LookupOrdinaryName);
3162      if (Self.LookupQualifiedName(Res, RD)) {
3163        Res.suppressDiagnostics();
3164        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3165             Op != OpEnd; ++Op) {
3166          if (isa<FunctionTemplateDecl>(*Op))
3167            continue;
3168
3169          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3170          if (Operator->isCopyAssignmentOperator()) {
3171            FoundAssign = true;
3172            const FunctionProtoType *CPT
3173                = Operator->getType()->getAs<FunctionProtoType>();
3174            CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3175            if (!CPT)
3176              return false;
3177            if (!CPT->isNothrow(Self.Context))
3178              return false;
3179          }
3180        }
3181      }
3182
3183      return FoundAssign;
3184    }
3185    return false;
3186  case UTT_HasNothrowCopy:
3187    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3188    //   If __has_trivial_copy (type) is true then the trait is true, else
3189    //   if type is a cv class or union type with copy constructors that are
3190    //   known not to throw an exception then the trait is true, else it is
3191    //   false.
3192    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3193      return true;
3194    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3195      if (RD->hasTrivialCopyConstructor() &&
3196          !RD->hasNonTrivialCopyConstructor())
3197        return true;
3198
3199      bool FoundConstructor = false;
3200      unsigned FoundTQs;
3201      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3202      for (DeclContext::lookup_const_iterator Con = R.begin(),
3203           ConEnd = R.end(); Con != ConEnd; ++Con) {
3204        // A template constructor is never a copy constructor.
3205        // FIXME: However, it may actually be selected at the actual overload
3206        // resolution point.
3207        if (isa<FunctionTemplateDecl>(*Con))
3208          continue;
3209        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3210        if (Constructor->isCopyConstructor(FoundTQs)) {
3211          FoundConstructor = true;
3212          const FunctionProtoType *CPT
3213              = Constructor->getType()->getAs<FunctionProtoType>();
3214          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3215          if (!CPT)
3216            return false;
3217          // FIXME: check whether evaluating default arguments can throw.
3218          // For now, we'll be conservative and assume that they can throw.
3219          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3220            return false;
3221        }
3222      }
3223
3224      return FoundConstructor;
3225    }
3226    return false;
3227  case UTT_HasNothrowConstructor:
3228    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3229    //   If __has_trivial_constructor (type) is true then the trait is
3230    //   true, else if type is a cv class or union type (or array
3231    //   thereof) with a default constructor that is known not to
3232    //   throw an exception then the trait is true, else it is false.
3233    if (T.isPODType(C) || T->isObjCLifetimeType())
3234      return true;
3235    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3236      if (RD->hasTrivialDefaultConstructor() &&
3237          !RD->hasNonTrivialDefaultConstructor())
3238        return true;
3239
3240      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3241      for (DeclContext::lookup_const_iterator Con = R.begin(),
3242           ConEnd = R.end(); Con != ConEnd; ++Con) {
3243        // FIXME: In C++0x, a constructor template can be a default constructor.
3244        if (isa<FunctionTemplateDecl>(*Con))
3245          continue;
3246        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3247        if (Constructor->isDefaultConstructor()) {
3248          const FunctionProtoType *CPT
3249              = Constructor->getType()->getAs<FunctionProtoType>();
3250          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3251          if (!CPT)
3252            return false;
3253          // TODO: check whether evaluating default arguments can throw.
3254          // For now, we'll be conservative and assume that they can throw.
3255          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3256        }
3257      }
3258    }
3259    return false;
3260  case UTT_HasVirtualDestructor:
3261    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3262    //   If type is a class type with a virtual destructor ([class.dtor])
3263    //   then the trait is true, else it is false.
3264    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3265      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3266        return Destructor->isVirtual();
3267    return false;
3268
3269    // These type trait expressions are modeled on the specifications for the
3270    // Embarcadero C++0x type trait functions:
3271    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3272  case UTT_IsCompleteType:
3273    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3274    //   Returns True if and only if T is a complete type at the point of the
3275    //   function call.
3276    return !T->isIncompleteType();
3277  }
3278  llvm_unreachable("Type trait not covered by switch");
3279}
3280
3281ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3282                                     SourceLocation KWLoc,
3283                                     TypeSourceInfo *TSInfo,
3284                                     SourceLocation RParen) {
3285  QualType T = TSInfo->getType();
3286  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3287    return ExprError();
3288
3289  bool Value = false;
3290  if (!T->isDependentType())
3291    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3292
3293  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3294                                                RParen, Context.BoolTy));
3295}
3296
3297ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3298                                      SourceLocation KWLoc,
3299                                      ParsedType LhsTy,
3300                                      ParsedType RhsTy,
3301                                      SourceLocation RParen) {
3302  TypeSourceInfo *LhsTSInfo;
3303  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3304  if (!LhsTSInfo)
3305    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3306
3307  TypeSourceInfo *RhsTSInfo;
3308  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3309  if (!RhsTSInfo)
3310    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3311
3312  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3313}
3314
3315/// \brief Determine whether T has a non-trivial Objective-C lifetime in
3316/// ARC mode.
3317static bool hasNontrivialObjCLifetime(QualType T) {
3318  switch (T.getObjCLifetime()) {
3319  case Qualifiers::OCL_ExplicitNone:
3320    return false;
3321
3322  case Qualifiers::OCL_Strong:
3323  case Qualifiers::OCL_Weak:
3324  case Qualifiers::OCL_Autoreleasing:
3325    return true;
3326
3327  case Qualifiers::OCL_None:
3328    return T->isObjCLifetimeType();
3329  }
3330
3331  llvm_unreachable("Unknown ObjC lifetime qualifier");
3332}
3333
3334static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3335                              ArrayRef<TypeSourceInfo *> Args,
3336                              SourceLocation RParenLoc) {
3337  switch (Kind) {
3338  case clang::TT_IsTriviallyConstructible: {
3339    // C++11 [meta.unary.prop]:
3340    //   is_trivially_constructible is defined as:
3341    //
3342    //     is_constructible<T, Args...>::value is true and the variable
3343    //     definition for is_constructible, as defined below, is known to call no
3344    //     operation that is not trivial.
3345    //
3346    //   The predicate condition for a template specialization
3347    //   is_constructible<T, Args...> shall be satisfied if and only if the
3348    //   following variable definition would be well-formed for some invented
3349    //   variable t:
3350    //
3351    //     T t(create<Args>()...);
3352    if (Args.empty()) {
3353      S.Diag(KWLoc, diag::err_type_trait_arity)
3354        << 1 << 1 << 1 << (int)Args.size();
3355      return false;
3356    }
3357
3358    bool SawVoid = false;
3359    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3360      if (Args[I]->getType()->isVoidType()) {
3361        SawVoid = true;
3362        continue;
3363      }
3364
3365      if (!Args[I]->getType()->isIncompleteType() &&
3366        S.RequireCompleteType(KWLoc, Args[I]->getType(),
3367          diag::err_incomplete_type_used_in_type_trait_expr))
3368        return false;
3369    }
3370
3371    // If any argument was 'void', of course it won't type-check.
3372    if (SawVoid)
3373      return false;
3374
3375    SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3376    SmallVector<Expr *, 2> ArgExprs;
3377    ArgExprs.reserve(Args.size() - 1);
3378    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3379      QualType T = Args[I]->getType();
3380      if (T->isObjectType() || T->isFunctionType())
3381        T = S.Context.getRValueReferenceType(T);
3382      OpaqueArgExprs.push_back(
3383        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3384                        T.getNonLValueExprType(S.Context),
3385                        Expr::getValueKindForType(T)));
3386      ArgExprs.push_back(&OpaqueArgExprs.back());
3387    }
3388
3389    // Perform the initialization in an unevaluated context within a SFINAE
3390    // trap at translation unit scope.
3391    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3392    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3393    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3394    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3395    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3396                                                                 RParenLoc));
3397    InitializationSequence Init(S, To, InitKind,
3398                                ArgExprs.begin(), ArgExprs.size());
3399    if (Init.Failed())
3400      return false;
3401
3402    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3403    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3404      return false;
3405
3406    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3407    // lifetime, this is a non-trivial construction.
3408    if (S.getLangOpts().ObjCAutoRefCount &&
3409        hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3410      return false;
3411
3412    // The initialization succeeded; now make sure there are no non-trivial
3413    // calls.
3414    return !Result.get()->hasNonTrivialCall(S.Context);
3415  }
3416  }
3417
3418  return false;
3419}
3420
3421ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3422                                ArrayRef<TypeSourceInfo *> Args,
3423                                SourceLocation RParenLoc) {
3424  bool Dependent = false;
3425  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3426    if (Args[I]->getType()->isDependentType()) {
3427      Dependent = true;
3428      break;
3429    }
3430  }
3431
3432  bool Value = false;
3433  if (!Dependent)
3434    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3435
3436  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3437                               Args, RParenLoc, Value);
3438}
3439
3440ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3441                                ArrayRef<ParsedType> Args,
3442                                SourceLocation RParenLoc) {
3443  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3444  ConvertedArgs.reserve(Args.size());
3445
3446  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3447    TypeSourceInfo *TInfo;
3448    QualType T = GetTypeFromParser(Args[I], &TInfo);
3449    if (!TInfo)
3450      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3451
3452    ConvertedArgs.push_back(TInfo);
3453  }
3454
3455  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3456}
3457
3458static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3459                                    QualType LhsT, QualType RhsT,
3460                                    SourceLocation KeyLoc) {
3461  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3462         "Cannot evaluate traits of dependent types");
3463
3464  switch(BTT) {
3465  case BTT_IsBaseOf: {
3466    // C++0x [meta.rel]p2
3467    // Base is a base class of Derived without regard to cv-qualifiers or
3468    // Base and Derived are not unions and name the same class type without
3469    // regard to cv-qualifiers.
3470
3471    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3472    if (!lhsRecord) return false;
3473
3474    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3475    if (!rhsRecord) return false;
3476
3477    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3478             == (lhsRecord == rhsRecord));
3479
3480    if (lhsRecord == rhsRecord)
3481      return !lhsRecord->getDecl()->isUnion();
3482
3483    // C++0x [meta.rel]p2:
3484    //   If Base and Derived are class types and are different types
3485    //   (ignoring possible cv-qualifiers) then Derived shall be a
3486    //   complete type.
3487    if (Self.RequireCompleteType(KeyLoc, RhsT,
3488                          diag::err_incomplete_type_used_in_type_trait_expr))
3489      return false;
3490
3491    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3492      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3493  }
3494  case BTT_IsSame:
3495    return Self.Context.hasSameType(LhsT, RhsT);
3496  case BTT_TypeCompatible:
3497    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3498                                           RhsT.getUnqualifiedType());
3499  case BTT_IsConvertible:
3500  case BTT_IsConvertibleTo: {
3501    // C++0x [meta.rel]p4:
3502    //   Given the following function prototype:
3503    //
3504    //     template <class T>
3505    //       typename add_rvalue_reference<T>::type create();
3506    //
3507    //   the predicate condition for a template specialization
3508    //   is_convertible<From, To> shall be satisfied if and only if
3509    //   the return expression in the following code would be
3510    //   well-formed, including any implicit conversions to the return
3511    //   type of the function:
3512    //
3513    //     To test() {
3514    //       return create<From>();
3515    //     }
3516    //
3517    //   Access checking is performed as if in a context unrelated to To and
3518    //   From. Only the validity of the immediate context of the expression
3519    //   of the return-statement (including conversions to the return type)
3520    //   is considered.
3521    //
3522    // We model the initialization as a copy-initialization of a temporary
3523    // of the appropriate type, which for this expression is identical to the
3524    // return statement (since NRVO doesn't apply).
3525
3526    // Functions aren't allowed to return function or array types.
3527    if (RhsT->isFunctionType() || RhsT->isArrayType())
3528      return false;
3529
3530    // A return statement in a void function must have void type.
3531    if (RhsT->isVoidType())
3532      return LhsT->isVoidType();
3533
3534    // A function definition requires a complete, non-abstract return type.
3535    if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3536        Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3537      return false;
3538
3539    // Compute the result of add_rvalue_reference.
3540    if (LhsT->isObjectType() || LhsT->isFunctionType())
3541      LhsT = Self.Context.getRValueReferenceType(LhsT);
3542
3543    // Build a fake source and destination for initialization.
3544    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3545    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3546                         Expr::getValueKindForType(LhsT));
3547    Expr *FromPtr = &From;
3548    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3549                                                           SourceLocation()));
3550
3551    // Perform the initialization in an unevaluated context within a SFINAE
3552    // trap at translation unit scope.
3553    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3554    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3555    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3556    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3557    if (Init.Failed())
3558      return false;
3559
3560    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3561    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3562  }
3563
3564  case BTT_IsTriviallyAssignable: {
3565    // C++11 [meta.unary.prop]p3:
3566    //   is_trivially_assignable is defined as:
3567    //     is_assignable<T, U>::value is true and the assignment, as defined by
3568    //     is_assignable, is known to call no operation that is not trivial
3569    //
3570    //   is_assignable is defined as:
3571    //     The expression declval<T>() = declval<U>() is well-formed when
3572    //     treated as an unevaluated operand (Clause 5).
3573    //
3574    //   For both, T and U shall be complete types, (possibly cv-qualified)
3575    //   void, or arrays of unknown bound.
3576    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3577        Self.RequireCompleteType(KeyLoc, LhsT,
3578          diag::err_incomplete_type_used_in_type_trait_expr))
3579      return false;
3580    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3581        Self.RequireCompleteType(KeyLoc, RhsT,
3582          diag::err_incomplete_type_used_in_type_trait_expr))
3583      return false;
3584
3585    // cv void is never assignable.
3586    if (LhsT->isVoidType() || RhsT->isVoidType())
3587      return false;
3588
3589    // Build expressions that emulate the effect of declval<T>() and
3590    // declval<U>().
3591    if (LhsT->isObjectType() || LhsT->isFunctionType())
3592      LhsT = Self.Context.getRValueReferenceType(LhsT);
3593    if (RhsT->isObjectType() || RhsT->isFunctionType())
3594      RhsT = Self.Context.getRValueReferenceType(RhsT);
3595    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3596                        Expr::getValueKindForType(LhsT));
3597    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3598                        Expr::getValueKindForType(RhsT));
3599
3600    // Attempt the assignment in an unevaluated context within a SFINAE
3601    // trap at translation unit scope.
3602    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3603    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3604    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3605    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3606    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3607      return false;
3608
3609    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3610    // lifetime, this is a non-trivial assignment.
3611    if (Self.getLangOpts().ObjCAutoRefCount &&
3612        hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3613      return false;
3614
3615    return !Result.get()->hasNonTrivialCall(Self.Context);
3616  }
3617  }
3618  llvm_unreachable("Unknown type trait or not implemented");
3619}
3620
3621ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3622                                      SourceLocation KWLoc,
3623                                      TypeSourceInfo *LhsTSInfo,
3624                                      TypeSourceInfo *RhsTSInfo,
3625                                      SourceLocation RParen) {
3626  QualType LhsT = LhsTSInfo->getType();
3627  QualType RhsT = RhsTSInfo->getType();
3628
3629  if (BTT == BTT_TypeCompatible) {
3630    if (getLangOpts().CPlusPlus) {
3631      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3632        << SourceRange(KWLoc, RParen);
3633      return ExprError();
3634    }
3635  }
3636
3637  bool Value = false;
3638  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3639    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3640
3641  // Select trait result type.
3642  QualType ResultType;
3643  switch (BTT) {
3644  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3645  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3646  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3647  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3648  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3649  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3650  }
3651
3652  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3653                                                 RhsTSInfo, Value, RParen,
3654                                                 ResultType));
3655}
3656
3657ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3658                                     SourceLocation KWLoc,
3659                                     ParsedType Ty,
3660                                     Expr* DimExpr,
3661                                     SourceLocation RParen) {
3662  TypeSourceInfo *TSInfo;
3663  QualType T = GetTypeFromParser(Ty, &TSInfo);
3664  if (!TSInfo)
3665    TSInfo = Context.getTrivialTypeSourceInfo(T);
3666
3667  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3668}
3669
3670static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3671                                           QualType T, Expr *DimExpr,
3672                                           SourceLocation KeyLoc) {
3673  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3674
3675  switch(ATT) {
3676  case ATT_ArrayRank:
3677    if (T->isArrayType()) {
3678      unsigned Dim = 0;
3679      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3680        ++Dim;
3681        T = AT->getElementType();
3682      }
3683      return Dim;
3684    }
3685    return 0;
3686
3687  case ATT_ArrayExtent: {
3688    llvm::APSInt Value;
3689    uint64_t Dim;
3690    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3691          diag::err_dimension_expr_not_constant_integer,
3692          false).isInvalid())
3693      return 0;
3694    if (Value.isSigned() && Value.isNegative()) {
3695      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3696        << DimExpr->getSourceRange();
3697      return 0;
3698    }
3699    Dim = Value.getLimitedValue();
3700
3701    if (T->isArrayType()) {
3702      unsigned D = 0;
3703      bool Matched = false;
3704      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3705        if (Dim == D) {
3706          Matched = true;
3707          break;
3708        }
3709        ++D;
3710        T = AT->getElementType();
3711      }
3712
3713      if (Matched && T->isArrayType()) {
3714        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3715          return CAT->getSize().getLimitedValue();
3716      }
3717    }
3718    return 0;
3719  }
3720  }
3721  llvm_unreachable("Unknown type trait or not implemented");
3722}
3723
3724ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3725                                     SourceLocation KWLoc,
3726                                     TypeSourceInfo *TSInfo,
3727                                     Expr* DimExpr,
3728                                     SourceLocation RParen) {
3729  QualType T = TSInfo->getType();
3730
3731  // FIXME: This should likely be tracked as an APInt to remove any host
3732  // assumptions about the width of size_t on the target.
3733  uint64_t Value = 0;
3734  if (!T->isDependentType())
3735    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3736
3737  // While the specification for these traits from the Embarcadero C++
3738  // compiler's documentation says the return type is 'unsigned int', Clang
3739  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3740  // compiler, there is no difference. On several other platforms this is an
3741  // important distinction.
3742  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3743                                                DimExpr, RParen,
3744                                                Context.getSizeType()));
3745}
3746
3747ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3748                                      SourceLocation KWLoc,
3749                                      Expr *Queried,
3750                                      SourceLocation RParen) {
3751  // If error parsing the expression, ignore.
3752  if (!Queried)
3753    return ExprError();
3754
3755  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3756
3757  return Result;
3758}
3759
3760static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3761  switch (ET) {
3762  case ET_IsLValueExpr: return E->isLValue();
3763  case ET_IsRValueExpr: return E->isRValue();
3764  }
3765  llvm_unreachable("Expression trait not covered by switch");
3766}
3767
3768ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3769                                      SourceLocation KWLoc,
3770                                      Expr *Queried,
3771                                      SourceLocation RParen) {
3772  if (Queried->isTypeDependent()) {
3773    // Delay type-checking for type-dependent expressions.
3774  } else if (Queried->getType()->isPlaceholderType()) {
3775    ExprResult PE = CheckPlaceholderExpr(Queried);
3776    if (PE.isInvalid()) return ExprError();
3777    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3778  }
3779
3780  bool Value = EvaluateExpressionTrait(ET, Queried);
3781
3782  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3783                                                 RParen, Context.BoolTy));
3784}
3785
3786QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3787                                            ExprValueKind &VK,
3788                                            SourceLocation Loc,
3789                                            bool isIndirect) {
3790  assert(!LHS.get()->getType()->isPlaceholderType() &&
3791         !RHS.get()->getType()->isPlaceholderType() &&
3792         "placeholders should have been weeded out by now");
3793
3794  // The LHS undergoes lvalue conversions if this is ->*.
3795  if (isIndirect) {
3796    LHS = DefaultLvalueConversion(LHS.take());
3797    if (LHS.isInvalid()) return QualType();
3798  }
3799
3800  // The RHS always undergoes lvalue conversions.
3801  RHS = DefaultLvalueConversion(RHS.take());
3802  if (RHS.isInvalid()) return QualType();
3803
3804  const char *OpSpelling = isIndirect ? "->*" : ".*";
3805  // C++ 5.5p2
3806  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3807  //   be of type "pointer to member of T" (where T is a completely-defined
3808  //   class type) [...]
3809  QualType RHSType = RHS.get()->getType();
3810  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3811  if (!MemPtr) {
3812    Diag(Loc, diag::err_bad_memptr_rhs)
3813      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3814    return QualType();
3815  }
3816
3817  QualType Class(MemPtr->getClass(), 0);
3818
3819  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3820  // member pointer points must be completely-defined. However, there is no
3821  // reason for this semantic distinction, and the rule is not enforced by
3822  // other compilers. Therefore, we do not check this property, as it is
3823  // likely to be considered a defect.
3824
3825  // C++ 5.5p2
3826  //   [...] to its first operand, which shall be of class T or of a class of
3827  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3828  //   such a class]
3829  QualType LHSType = LHS.get()->getType();
3830  if (isIndirect) {
3831    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3832      LHSType = Ptr->getPointeeType();
3833    else {
3834      Diag(Loc, diag::err_bad_memptr_lhs)
3835        << OpSpelling << 1 << LHSType
3836        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3837      return QualType();
3838    }
3839  }
3840
3841  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3842    // If we want to check the hierarchy, we need a complete type.
3843    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3844                            OpSpelling, (int)isIndirect)) {
3845      return QualType();
3846    }
3847    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3848                       /*DetectVirtual=*/false);
3849    // FIXME: Would it be useful to print full ambiguity paths, or is that
3850    // overkill?
3851    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3852        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3853      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3854        << (int)isIndirect << LHS.get()->getType();
3855      return QualType();
3856    }
3857    // Cast LHS to type of use.
3858    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3859    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3860
3861    CXXCastPath BasePath;
3862    BuildBasePathArray(Paths, BasePath);
3863    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3864                            &BasePath);
3865  }
3866
3867  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3868    // Diagnose use of pointer-to-member type which when used as
3869    // the functional cast in a pointer-to-member expression.
3870    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3871     return QualType();
3872  }
3873
3874  // C++ 5.5p2
3875  //   The result is an object or a function of the type specified by the
3876  //   second operand.
3877  // The cv qualifiers are the union of those in the pointer and the left side,
3878  // in accordance with 5.5p5 and 5.2.5.
3879  QualType Result = MemPtr->getPointeeType();
3880  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3881
3882  // C++0x [expr.mptr.oper]p6:
3883  //   In a .* expression whose object expression is an rvalue, the program is
3884  //   ill-formed if the second operand is a pointer to member function with
3885  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3886  //   expression is an lvalue, the program is ill-formed if the second operand
3887  //   is a pointer to member function with ref-qualifier &&.
3888  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3889    switch (Proto->getRefQualifier()) {
3890    case RQ_None:
3891      // Do nothing
3892      break;
3893
3894    case RQ_LValue:
3895      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3896        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3897          << RHSType << 1 << LHS.get()->getSourceRange();
3898      break;
3899
3900    case RQ_RValue:
3901      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3902        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3903          << RHSType << 0 << LHS.get()->getSourceRange();
3904      break;
3905    }
3906  }
3907
3908  // C++ [expr.mptr.oper]p6:
3909  //   The result of a .* expression whose second operand is a pointer
3910  //   to a data member is of the same value category as its
3911  //   first operand. The result of a .* expression whose second
3912  //   operand is a pointer to a member function is a prvalue. The
3913  //   result of an ->* expression is an lvalue if its second operand
3914  //   is a pointer to data member and a prvalue otherwise.
3915  if (Result->isFunctionType()) {
3916    VK = VK_RValue;
3917    return Context.BoundMemberTy;
3918  } else if (isIndirect) {
3919    VK = VK_LValue;
3920  } else {
3921    VK = LHS.get()->getValueKind();
3922  }
3923
3924  return Result;
3925}
3926
3927/// \brief Try to convert a type to another according to C++0x 5.16p3.
3928///
3929/// This is part of the parameter validation for the ? operator. If either
3930/// value operand is a class type, the two operands are attempted to be
3931/// converted to each other. This function does the conversion in one direction.
3932/// It returns true if the program is ill-formed and has already been diagnosed
3933/// as such.
3934static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3935                                SourceLocation QuestionLoc,
3936                                bool &HaveConversion,
3937                                QualType &ToType) {
3938  HaveConversion = false;
3939  ToType = To->getType();
3940
3941  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3942                                                           SourceLocation());
3943  // C++0x 5.16p3
3944  //   The process for determining whether an operand expression E1 of type T1
3945  //   can be converted to match an operand expression E2 of type T2 is defined
3946  //   as follows:
3947  //   -- If E2 is an lvalue:
3948  bool ToIsLvalue = To->isLValue();
3949  if (ToIsLvalue) {
3950    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3951    //   type "lvalue reference to T2", subject to the constraint that in the
3952    //   conversion the reference must bind directly to E1.
3953    QualType T = Self.Context.getLValueReferenceType(ToType);
3954    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3955
3956    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3957    if (InitSeq.isDirectReferenceBinding()) {
3958      ToType = T;
3959      HaveConversion = true;
3960      return false;
3961    }
3962
3963    if (InitSeq.isAmbiguous())
3964      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3965  }
3966
3967  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3968  //      -- if E1 and E2 have class type, and the underlying class types are
3969  //         the same or one is a base class of the other:
3970  QualType FTy = From->getType();
3971  QualType TTy = To->getType();
3972  const RecordType *FRec = FTy->getAs<RecordType>();
3973  const RecordType *TRec = TTy->getAs<RecordType>();
3974  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3975                       Self.IsDerivedFrom(FTy, TTy);
3976  if (FRec && TRec &&
3977      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3978    //         E1 can be converted to match E2 if the class of T2 is the
3979    //         same type as, or a base class of, the class of T1, and
3980    //         [cv2 > cv1].
3981    if (FRec == TRec || FDerivedFromT) {
3982      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3983        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3984        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3985        if (InitSeq) {
3986          HaveConversion = true;
3987          return false;
3988        }
3989
3990        if (InitSeq.isAmbiguous())
3991          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3992      }
3993    }
3994
3995    return false;
3996  }
3997
3998  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
3999  //        implicitly converted to the type that expression E2 would have
4000  //        if E2 were converted to an rvalue (or the type it has, if E2 is
4001  //        an rvalue).
4002  //
4003  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4004  // to the array-to-pointer or function-to-pointer conversions.
4005  if (!TTy->getAs<TagType>())
4006    TTy = TTy.getUnqualifiedType();
4007
4008  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4009  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
4010  HaveConversion = !InitSeq.Failed();
4011  ToType = TTy;
4012  if (InitSeq.isAmbiguous())
4013    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4014
4015  return false;
4016}
4017
4018/// \brief Try to find a common type for two according to C++0x 5.16p5.
4019///
4020/// This is part of the parameter validation for the ? operator. If either
4021/// value operand is a class type, overload resolution is used to find a
4022/// conversion to a common type.
4023static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4024                                    SourceLocation QuestionLoc) {
4025  Expr *Args[2] = { LHS.get(), RHS.get() };
4026  OverloadCandidateSet CandidateSet(QuestionLoc);
4027  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
4028                                    CandidateSet);
4029
4030  OverloadCandidateSet::iterator Best;
4031  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4032    case OR_Success: {
4033      // We found a match. Perform the conversions on the arguments and move on.
4034      ExprResult LHSRes =
4035        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4036                                       Best->Conversions[0], Sema::AA_Converting);
4037      if (LHSRes.isInvalid())
4038        break;
4039      LHS = LHSRes;
4040
4041      ExprResult RHSRes =
4042        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4043                                       Best->Conversions[1], Sema::AA_Converting);
4044      if (RHSRes.isInvalid())
4045        break;
4046      RHS = RHSRes;
4047      if (Best->Function)
4048        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4049      return false;
4050    }
4051
4052    case OR_No_Viable_Function:
4053
4054      // Emit a better diagnostic if one of the expressions is a null pointer
4055      // constant and the other is a pointer type. In this case, the user most
4056      // likely forgot to take the address of the other expression.
4057      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4058        return true;
4059
4060      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4061        << LHS.get()->getType() << RHS.get()->getType()
4062        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4063      return true;
4064
4065    case OR_Ambiguous:
4066      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4067        << LHS.get()->getType() << RHS.get()->getType()
4068        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4069      // FIXME: Print the possible common types by printing the return types of
4070      // the viable candidates.
4071      break;
4072
4073    case OR_Deleted:
4074      llvm_unreachable("Conditional operator has only built-in overloads");
4075  }
4076  return true;
4077}
4078
4079/// \brief Perform an "extended" implicit conversion as returned by
4080/// TryClassUnification.
4081static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4082  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4083  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4084                                                           SourceLocation());
4085  Expr *Arg = E.take();
4086  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4087  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4088  if (Result.isInvalid())
4089    return true;
4090
4091  E = Result;
4092  return false;
4093}
4094
4095/// \brief Check the operands of ?: under C++ semantics.
4096///
4097/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4098/// extension. In this case, LHS == Cond. (But they're not aliases.)
4099QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4100                                           ExprResult &RHS, ExprValueKind &VK,
4101                                           ExprObjectKind &OK,
4102                                           SourceLocation QuestionLoc) {
4103  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4104  // interface pointers.
4105
4106  // C++11 [expr.cond]p1
4107  //   The first expression is contextually converted to bool.
4108  if (!Cond.get()->isTypeDependent()) {
4109    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4110    if (CondRes.isInvalid())
4111      return QualType();
4112    Cond = CondRes;
4113  }
4114
4115  // Assume r-value.
4116  VK = VK_RValue;
4117  OK = OK_Ordinary;
4118
4119  // Either of the arguments dependent?
4120  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4121    return Context.DependentTy;
4122
4123  // C++11 [expr.cond]p2
4124  //   If either the second or the third operand has type (cv) void, ...
4125  QualType LTy = LHS.get()->getType();
4126  QualType RTy = RHS.get()->getType();
4127  bool LVoid = LTy->isVoidType();
4128  bool RVoid = RTy->isVoidType();
4129  if (LVoid || RVoid) {
4130    //   ... then the [l2r] conversions are performed on the second and third
4131    //   operands ...
4132    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4133    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4134    if (LHS.isInvalid() || RHS.isInvalid())
4135      return QualType();
4136
4137    // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4138    // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4139    // do this part for us.
4140    ExprResult &NonVoid = LVoid ? RHS : LHS;
4141    if (NonVoid.get()->getType()->isRecordType() &&
4142        NonVoid.get()->isGLValue()) {
4143      if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4144                             diag::err_allocation_of_abstract_type))
4145        return QualType();
4146      InitializedEntity Entity =
4147          InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4148      NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4149      if (NonVoid.isInvalid())
4150        return QualType();
4151    }
4152
4153    LTy = LHS.get()->getType();
4154    RTy = RHS.get()->getType();
4155
4156    //   ... and one of the following shall hold:
4157    //   -- The second or the third operand (but not both) is a throw-
4158    //      expression; the result is of the type of the other and is a prvalue.
4159    bool LThrow = isa<CXXThrowExpr>(LHS.get());
4160    bool RThrow = isa<CXXThrowExpr>(RHS.get());
4161    if (LThrow && !RThrow)
4162      return RTy;
4163    if (RThrow && !LThrow)
4164      return LTy;
4165
4166    //   -- Both the second and third operands have type void; the result is of
4167    //      type void and is a prvalue.
4168    if (LVoid && RVoid)
4169      return Context.VoidTy;
4170
4171    // Neither holds, error.
4172    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4173      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4174      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4175    return QualType();
4176  }
4177
4178  // Neither is void.
4179
4180  // C++11 [expr.cond]p3
4181  //   Otherwise, if the second and third operand have different types, and
4182  //   either has (cv) class type [...] an attempt is made to convert each of
4183  //   those operands to the type of the other.
4184  if (!Context.hasSameType(LTy, RTy) &&
4185      (LTy->isRecordType() || RTy->isRecordType())) {
4186    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4187    // These return true if a single direction is already ambiguous.
4188    QualType L2RType, R2LType;
4189    bool HaveL2R, HaveR2L;
4190    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4191      return QualType();
4192    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4193      return QualType();
4194
4195    //   If both can be converted, [...] the program is ill-formed.
4196    if (HaveL2R && HaveR2L) {
4197      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4198        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4199      return QualType();
4200    }
4201
4202    //   If exactly one conversion is possible, that conversion is applied to
4203    //   the chosen operand and the converted operands are used in place of the
4204    //   original operands for the remainder of this section.
4205    if (HaveL2R) {
4206      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4207        return QualType();
4208      LTy = LHS.get()->getType();
4209    } else if (HaveR2L) {
4210      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4211        return QualType();
4212      RTy = RHS.get()->getType();
4213    }
4214  }
4215
4216  // C++11 [expr.cond]p3
4217  //   if both are glvalues of the same value category and the same type except
4218  //   for cv-qualification, an attempt is made to convert each of those
4219  //   operands to the type of the other.
4220  ExprValueKind LVK = LHS.get()->getValueKind();
4221  ExprValueKind RVK = RHS.get()->getValueKind();
4222  if (!Context.hasSameType(LTy, RTy) &&
4223      Context.hasSameUnqualifiedType(LTy, RTy) &&
4224      LVK == RVK && LVK != VK_RValue) {
4225    // Since the unqualified types are reference-related and we require the
4226    // result to be as if a reference bound directly, the only conversion
4227    // we can perform is to add cv-qualifiers.
4228    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4229    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4230    if (RCVR.isStrictSupersetOf(LCVR)) {
4231      LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4232      LTy = LHS.get()->getType();
4233    }
4234    else if (LCVR.isStrictSupersetOf(RCVR)) {
4235      RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4236      RTy = RHS.get()->getType();
4237    }
4238  }
4239
4240  // C++11 [expr.cond]p4
4241  //   If the second and third operands are glvalues of the same value
4242  //   category and have the same type, the result is of that type and
4243  //   value category and it is a bit-field if the second or the third
4244  //   operand is a bit-field, or if both are bit-fields.
4245  // We only extend this to bitfields, not to the crazy other kinds of
4246  // l-values.
4247  bool Same = Context.hasSameType(LTy, RTy);
4248  if (Same && LVK == RVK && LVK != VK_RValue &&
4249      LHS.get()->isOrdinaryOrBitFieldObject() &&
4250      RHS.get()->isOrdinaryOrBitFieldObject()) {
4251    VK = LHS.get()->getValueKind();
4252    if (LHS.get()->getObjectKind() == OK_BitField ||
4253        RHS.get()->getObjectKind() == OK_BitField)
4254      OK = OK_BitField;
4255    return LTy;
4256  }
4257
4258  // C++11 [expr.cond]p5
4259  //   Otherwise, the result is a prvalue. If the second and third operands
4260  //   do not have the same type, and either has (cv) class type, ...
4261  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4262    //   ... overload resolution is used to determine the conversions (if any)
4263    //   to be applied to the operands. If the overload resolution fails, the
4264    //   program is ill-formed.
4265    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4266      return QualType();
4267  }
4268
4269  // C++11 [expr.cond]p6
4270  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4271  //   conversions are performed on the second and third operands.
4272  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4273  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4274  if (LHS.isInvalid() || RHS.isInvalid())
4275    return QualType();
4276  LTy = LHS.get()->getType();
4277  RTy = RHS.get()->getType();
4278
4279  //   After those conversions, one of the following shall hold:
4280  //   -- The second and third operands have the same type; the result
4281  //      is of that type. If the operands have class type, the result
4282  //      is a prvalue temporary of the result type, which is
4283  //      copy-initialized from either the second operand or the third
4284  //      operand depending on the value of the first operand.
4285  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4286    if (LTy->isRecordType()) {
4287      // The operands have class type. Make a temporary copy.
4288      if (RequireNonAbstractType(QuestionLoc, LTy,
4289                                 diag::err_allocation_of_abstract_type))
4290        return QualType();
4291      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4292
4293      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4294                                                     SourceLocation(),
4295                                                     LHS);
4296      if (LHSCopy.isInvalid())
4297        return QualType();
4298
4299      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4300                                                     SourceLocation(),
4301                                                     RHS);
4302      if (RHSCopy.isInvalid())
4303        return QualType();
4304
4305      LHS = LHSCopy;
4306      RHS = RHSCopy;
4307    }
4308
4309    return LTy;
4310  }
4311
4312  // Extension: conditional operator involving vector types.
4313  if (LTy->isVectorType() || RTy->isVectorType())
4314    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4315
4316  //   -- The second and third operands have arithmetic or enumeration type;
4317  //      the usual arithmetic conversions are performed to bring them to a
4318  //      common type, and the result is of that type.
4319  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4320    UsualArithmeticConversions(LHS, RHS);
4321    if (LHS.isInvalid() || RHS.isInvalid())
4322      return QualType();
4323    return LHS.get()->getType();
4324  }
4325
4326  //   -- The second and third operands have pointer type, or one has pointer
4327  //      type and the other is a null pointer constant, or both are null
4328  //      pointer constants, at least one of which is non-integral; pointer
4329  //      conversions and qualification conversions are performed to bring them
4330  //      to their composite pointer type. The result is of the composite
4331  //      pointer type.
4332  //   -- The second and third operands have pointer to member type, or one has
4333  //      pointer to member type and the other is a null pointer constant;
4334  //      pointer to member conversions and qualification conversions are
4335  //      performed to bring them to a common type, whose cv-qualification
4336  //      shall match the cv-qualification of either the second or the third
4337  //      operand. The result is of the common type.
4338  bool NonStandardCompositeType = false;
4339  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4340                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4341  if (!Composite.isNull()) {
4342    if (NonStandardCompositeType)
4343      Diag(QuestionLoc,
4344           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4345        << LTy << RTy << Composite
4346        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4347
4348    return Composite;
4349  }
4350
4351  // Similarly, attempt to find composite type of two objective-c pointers.
4352  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4353  if (!Composite.isNull())
4354    return Composite;
4355
4356  // Check if we are using a null with a non-pointer type.
4357  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4358    return QualType();
4359
4360  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4361    << LHS.get()->getType() << RHS.get()->getType()
4362    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4363  return QualType();
4364}
4365
4366/// \brief Find a merged pointer type and convert the two expressions to it.
4367///
4368/// This finds the composite pointer type (or member pointer type) for @p E1
4369/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4370/// type and returns it.
4371/// It does not emit diagnostics.
4372///
4373/// \param Loc The location of the operator requiring these two expressions to
4374/// be converted to the composite pointer type.
4375///
4376/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4377/// a non-standard (but still sane) composite type to which both expressions
4378/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4379/// will be set true.
4380QualType Sema::FindCompositePointerType(SourceLocation Loc,
4381                                        Expr *&E1, Expr *&E2,
4382                                        bool *NonStandardCompositeType) {
4383  if (NonStandardCompositeType)
4384    *NonStandardCompositeType = false;
4385
4386  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4387  QualType T1 = E1->getType(), T2 = E2->getType();
4388
4389  // C++11 5.9p2
4390  //   Pointer conversions and qualification conversions are performed on
4391  //   pointer operands to bring them to their composite pointer type. If
4392  //   one operand is a null pointer constant, the composite pointer type is
4393  //   std::nullptr_t if the other operand is also a null pointer constant or,
4394  //   if the other operand is a pointer, the type of the other operand.
4395  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4396      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4397    if (T1->isNullPtrType() &&
4398        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4399      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4400      return T1;
4401    }
4402    if (T2->isNullPtrType() &&
4403        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4404      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4405      return T2;
4406    }
4407    return QualType();
4408  }
4409
4410  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4411    if (T2->isMemberPointerType())
4412      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4413    else
4414      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4415    return T2;
4416  }
4417  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4418    if (T1->isMemberPointerType())
4419      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4420    else
4421      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4422    return T1;
4423  }
4424
4425  // Now both have to be pointers or member pointers.
4426  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4427      (!T2->isPointerType() && !T2->isMemberPointerType()))
4428    return QualType();
4429
4430  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4431  //   the other has type "pointer to cv2 T" and the composite pointer type is
4432  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4433  //   Otherwise, the composite pointer type is a pointer type similar to the
4434  //   type of one of the operands, with a cv-qualification signature that is
4435  //   the union of the cv-qualification signatures of the operand types.
4436  // In practice, the first part here is redundant; it's subsumed by the second.
4437  // What we do here is, we build the two possible composite types, and try the
4438  // conversions in both directions. If only one works, or if the two composite
4439  // types are the same, we have succeeded.
4440  // FIXME: extended qualifiers?
4441  typedef SmallVector<unsigned, 4> QualifierVector;
4442  QualifierVector QualifierUnion;
4443  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4444      ContainingClassVector;
4445  ContainingClassVector MemberOfClass;
4446  QualType Composite1 = Context.getCanonicalType(T1),
4447           Composite2 = Context.getCanonicalType(T2);
4448  unsigned NeedConstBefore = 0;
4449  do {
4450    const PointerType *Ptr1, *Ptr2;
4451    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4452        (Ptr2 = Composite2->getAs<PointerType>())) {
4453      Composite1 = Ptr1->getPointeeType();
4454      Composite2 = Ptr2->getPointeeType();
4455
4456      // If we're allowed to create a non-standard composite type, keep track
4457      // of where we need to fill in additional 'const' qualifiers.
4458      if (NonStandardCompositeType &&
4459          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4460        NeedConstBefore = QualifierUnion.size();
4461
4462      QualifierUnion.push_back(
4463                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4464      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4465      continue;
4466    }
4467
4468    const MemberPointerType *MemPtr1, *MemPtr2;
4469    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4470        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4471      Composite1 = MemPtr1->getPointeeType();
4472      Composite2 = MemPtr2->getPointeeType();
4473
4474      // If we're allowed to create a non-standard composite type, keep track
4475      // of where we need to fill in additional 'const' qualifiers.
4476      if (NonStandardCompositeType &&
4477          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4478        NeedConstBefore = QualifierUnion.size();
4479
4480      QualifierUnion.push_back(
4481                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4482      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4483                                             MemPtr2->getClass()));
4484      continue;
4485    }
4486
4487    // FIXME: block pointer types?
4488
4489    // Cannot unwrap any more types.
4490    break;
4491  } while (true);
4492
4493  if (NeedConstBefore && NonStandardCompositeType) {
4494    // Extension: Add 'const' to qualifiers that come before the first qualifier
4495    // mismatch, so that our (non-standard!) composite type meets the
4496    // requirements of C++ [conv.qual]p4 bullet 3.
4497    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4498      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4499        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4500        *NonStandardCompositeType = true;
4501      }
4502    }
4503  }
4504
4505  // Rewrap the composites as pointers or member pointers with the union CVRs.
4506  ContainingClassVector::reverse_iterator MOC
4507    = MemberOfClass.rbegin();
4508  for (QualifierVector::reverse_iterator
4509         I = QualifierUnion.rbegin(),
4510         E = QualifierUnion.rend();
4511       I != E; (void)++I, ++MOC) {
4512    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4513    if (MOC->first && MOC->second) {
4514      // Rebuild member pointer type
4515      Composite1 = Context.getMemberPointerType(
4516                                    Context.getQualifiedType(Composite1, Quals),
4517                                    MOC->first);
4518      Composite2 = Context.getMemberPointerType(
4519                                    Context.getQualifiedType(Composite2, Quals),
4520                                    MOC->second);
4521    } else {
4522      // Rebuild pointer type
4523      Composite1
4524        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4525      Composite2
4526        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4527    }
4528  }
4529
4530  // Try to convert to the first composite pointer type.
4531  InitializedEntity Entity1
4532    = InitializedEntity::InitializeTemporary(Composite1);
4533  InitializationKind Kind
4534    = InitializationKind::CreateCopy(Loc, SourceLocation());
4535  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4536  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4537
4538  if (E1ToC1 && E2ToC1) {
4539    // Conversion to Composite1 is viable.
4540    if (!Context.hasSameType(Composite1, Composite2)) {
4541      // Composite2 is a different type from Composite1. Check whether
4542      // Composite2 is also viable.
4543      InitializedEntity Entity2
4544        = InitializedEntity::InitializeTemporary(Composite2);
4545      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4546      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4547      if (E1ToC2 && E2ToC2) {
4548        // Both Composite1 and Composite2 are viable and are different;
4549        // this is an ambiguity.
4550        return QualType();
4551      }
4552    }
4553
4554    // Convert E1 to Composite1
4555    ExprResult E1Result
4556      = E1ToC1.Perform(*this, Entity1, Kind, E1);
4557    if (E1Result.isInvalid())
4558      return QualType();
4559    E1 = E1Result.takeAs<Expr>();
4560
4561    // Convert E2 to Composite1
4562    ExprResult E2Result
4563      = E2ToC1.Perform(*this, Entity1, Kind, E2);
4564    if (E2Result.isInvalid())
4565      return QualType();
4566    E2 = E2Result.takeAs<Expr>();
4567
4568    return Composite1;
4569  }
4570
4571  // Check whether Composite2 is viable.
4572  InitializedEntity Entity2
4573    = InitializedEntity::InitializeTemporary(Composite2);
4574  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4575  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4576  if (!E1ToC2 || !E2ToC2)
4577    return QualType();
4578
4579  // Convert E1 to Composite2
4580  ExprResult E1Result
4581    = E1ToC2.Perform(*this, Entity2, Kind, E1);
4582  if (E1Result.isInvalid())
4583    return QualType();
4584  E1 = E1Result.takeAs<Expr>();
4585
4586  // Convert E2 to Composite2
4587  ExprResult E2Result
4588    = E2ToC2.Perform(*this, Entity2, Kind, E2);
4589  if (E2Result.isInvalid())
4590    return QualType();
4591  E2 = E2Result.takeAs<Expr>();
4592
4593  return Composite2;
4594}
4595
4596ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4597  if (!E)
4598    return ExprError();
4599
4600  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4601
4602  // If the result is a glvalue, we shouldn't bind it.
4603  if (!E->isRValue())
4604    return Owned(E);
4605
4606  // In ARC, calls that return a retainable type can return retained,
4607  // in which case we have to insert a consuming cast.
4608  if (getLangOpts().ObjCAutoRefCount &&
4609      E->getType()->isObjCRetainableType()) {
4610
4611    bool ReturnsRetained;
4612
4613    // For actual calls, we compute this by examining the type of the
4614    // called value.
4615    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4616      Expr *Callee = Call->getCallee()->IgnoreParens();
4617      QualType T = Callee->getType();
4618
4619      if (T == Context.BoundMemberTy) {
4620        // Handle pointer-to-members.
4621        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4622          T = BinOp->getRHS()->getType();
4623        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4624          T = Mem->getMemberDecl()->getType();
4625      }
4626
4627      if (const PointerType *Ptr = T->getAs<PointerType>())
4628        T = Ptr->getPointeeType();
4629      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4630        T = Ptr->getPointeeType();
4631      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4632        T = MemPtr->getPointeeType();
4633
4634      const FunctionType *FTy = T->getAs<FunctionType>();
4635      assert(FTy && "call to value not of function type?");
4636      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4637
4638    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4639    // type always produce a +1 object.
4640    } else if (isa<StmtExpr>(E)) {
4641      ReturnsRetained = true;
4642
4643    // We hit this case with the lambda conversion-to-block optimization;
4644    // we don't want any extra casts here.
4645    } else if (isa<CastExpr>(E) &&
4646               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4647      return Owned(E);
4648
4649    // For message sends and property references, we try to find an
4650    // actual method.  FIXME: we should infer retention by selector in
4651    // cases where we don't have an actual method.
4652    } else {
4653      ObjCMethodDecl *D = 0;
4654      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4655        D = Send->getMethodDecl();
4656      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4657        D = BoxedExpr->getBoxingMethod();
4658      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4659        D = ArrayLit->getArrayWithObjectsMethod();
4660      } else if (ObjCDictionaryLiteral *DictLit
4661                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4662        D = DictLit->getDictWithObjectsMethod();
4663      }
4664
4665      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4666
4667      // Don't do reclaims on performSelector calls; despite their
4668      // return type, the invoked method doesn't necessarily actually
4669      // return an object.
4670      if (!ReturnsRetained &&
4671          D && D->getMethodFamily() == OMF_performSelector)
4672        return Owned(E);
4673    }
4674
4675    // Don't reclaim an object of Class type.
4676    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4677      return Owned(E);
4678
4679    ExprNeedsCleanups = true;
4680
4681    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4682                                   : CK_ARCReclaimReturnedObject);
4683    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4684                                          VK_RValue));
4685  }
4686
4687  if (!getLangOpts().CPlusPlus)
4688    return Owned(E);
4689
4690  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4691  // a fast path for the common case that the type is directly a RecordType.
4692  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4693  const RecordType *RT = 0;
4694  while (!RT) {
4695    switch (T->getTypeClass()) {
4696    case Type::Record:
4697      RT = cast<RecordType>(T);
4698      break;
4699    case Type::ConstantArray:
4700    case Type::IncompleteArray:
4701    case Type::VariableArray:
4702    case Type::DependentSizedArray:
4703      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4704      break;
4705    default:
4706      return Owned(E);
4707    }
4708  }
4709
4710  // That should be enough to guarantee that this type is complete, if we're
4711  // not processing a decltype expression.
4712  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4713  if (RD->isInvalidDecl() || RD->isDependentContext())
4714    return Owned(E);
4715
4716  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4717  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4718
4719  if (Destructor) {
4720    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4721    CheckDestructorAccess(E->getExprLoc(), Destructor,
4722                          PDiag(diag::err_access_dtor_temp)
4723                            << E->getType());
4724    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4725
4726    // If destructor is trivial, we can avoid the extra copy.
4727    if (Destructor->isTrivial())
4728      return Owned(E);
4729
4730    // We need a cleanup, but we don't need to remember the temporary.
4731    ExprNeedsCleanups = true;
4732  }
4733
4734  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4735  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4736
4737  if (IsDecltype)
4738    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4739
4740  return Owned(Bind);
4741}
4742
4743ExprResult
4744Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4745  if (SubExpr.isInvalid())
4746    return ExprError();
4747
4748  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4749}
4750
4751Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4752  assert(SubExpr && "sub expression can't be null!");
4753
4754  CleanupVarDeclMarking();
4755
4756  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4757  assert(ExprCleanupObjects.size() >= FirstCleanup);
4758  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4759  if (!ExprNeedsCleanups)
4760    return SubExpr;
4761
4762  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4763    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4764                         ExprCleanupObjects.size() - FirstCleanup);
4765
4766  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4767  DiscardCleanupsInEvaluationContext();
4768
4769  return E;
4770}
4771
4772Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4773  assert(SubStmt && "sub statement can't be null!");
4774
4775  CleanupVarDeclMarking();
4776
4777  if (!ExprNeedsCleanups)
4778    return SubStmt;
4779
4780  // FIXME: In order to attach the temporaries, wrap the statement into
4781  // a StmtExpr; currently this is only used for asm statements.
4782  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4783  // a new AsmStmtWithTemporaries.
4784  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
4785                                                      SourceLocation(),
4786                                                      SourceLocation());
4787  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4788                                   SourceLocation());
4789  return MaybeCreateExprWithCleanups(E);
4790}
4791
4792/// Process the expression contained within a decltype. For such expressions,
4793/// certain semantic checks on temporaries are delayed until this point, and
4794/// are omitted for the 'topmost' call in the decltype expression. If the
4795/// topmost call bound a temporary, strip that temporary off the expression.
4796ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4797  assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
4798
4799  // C++11 [expr.call]p11:
4800  //   If a function call is a prvalue of object type,
4801  // -- if the function call is either
4802  //   -- the operand of a decltype-specifier, or
4803  //   -- the right operand of a comma operator that is the operand of a
4804  //      decltype-specifier,
4805  //   a temporary object is not introduced for the prvalue.
4806
4807  // Recursively rebuild ParenExprs and comma expressions to strip out the
4808  // outermost CXXBindTemporaryExpr, if any.
4809  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4810    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4811    if (SubExpr.isInvalid())
4812      return ExprError();
4813    if (SubExpr.get() == PE->getSubExpr())
4814      return Owned(E);
4815    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4816  }
4817  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4818    if (BO->getOpcode() == BO_Comma) {
4819      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4820      if (RHS.isInvalid())
4821        return ExprError();
4822      if (RHS.get() == BO->getRHS())
4823        return Owned(E);
4824      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4825                                                BO_Comma, BO->getType(),
4826                                                BO->getValueKind(),
4827                                                BO->getObjectKind(),
4828                                                BO->getOperatorLoc(),
4829                                                BO->isFPContractable()));
4830    }
4831  }
4832
4833  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4834  if (TopBind)
4835    E = TopBind->getSubExpr();
4836
4837  // Disable the special decltype handling now.
4838  ExprEvalContexts.back().IsDecltype = false;
4839
4840  // In MS mode, don't perform any extra checking of call return types within a
4841  // decltype expression.
4842  if (getLangOpts().MicrosoftMode)
4843    return Owned(E);
4844
4845  // Perform the semantic checks we delayed until this point.
4846  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4847  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
4848       I != N; ++I) {
4849    CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
4850    if (Call == TopCall)
4851      continue;
4852
4853    if (CheckCallReturnType(Call->getCallReturnType(),
4854                            Call->getLocStart(),
4855                            Call, Call->getDirectCallee()))
4856      return ExprError();
4857  }
4858
4859  // Now all relevant types are complete, check the destructors are accessible
4860  // and non-deleted, and annotate them on the temporaries.
4861  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
4862       I != N; ++I) {
4863    CXXBindTemporaryExpr *Bind =
4864      ExprEvalContexts.back().DelayedDecltypeBinds[I];
4865    if (Bind == TopBind)
4866      continue;
4867
4868    CXXTemporary *Temp = Bind->getTemporary();
4869
4870    CXXRecordDecl *RD =
4871      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4872    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4873    Temp->setDestructor(Destructor);
4874
4875    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4876    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4877                          PDiag(diag::err_access_dtor_temp)
4878                            << Bind->getType());
4879    DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
4880
4881    // We need a cleanup, but we don't need to remember the temporary.
4882    ExprNeedsCleanups = true;
4883  }
4884
4885  // Possibly strip off the top CXXBindTemporaryExpr.
4886  return Owned(E);
4887}
4888
4889ExprResult
4890Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4891                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4892                                   bool &MayBePseudoDestructor) {
4893  // Since this might be a postfix expression, get rid of ParenListExprs.
4894  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4895  if (Result.isInvalid()) return ExprError();
4896  Base = Result.get();
4897
4898  Result = CheckPlaceholderExpr(Base);
4899  if (Result.isInvalid()) return ExprError();
4900  Base = Result.take();
4901
4902  QualType BaseType = Base->getType();
4903  MayBePseudoDestructor = false;
4904  if (BaseType->isDependentType()) {
4905    // If we have a pointer to a dependent type and are using the -> operator,
4906    // the object type is the type that the pointer points to. We might still
4907    // have enough information about that type to do something useful.
4908    if (OpKind == tok::arrow)
4909      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4910        BaseType = Ptr->getPointeeType();
4911
4912    ObjectType = ParsedType::make(BaseType);
4913    MayBePseudoDestructor = true;
4914    return Owned(Base);
4915  }
4916
4917  // C++ [over.match.oper]p8:
4918  //   [...] When operator->returns, the operator-> is applied  to the value
4919  //   returned, with the original second operand.
4920  if (OpKind == tok::arrow) {
4921    // The set of types we've considered so far.
4922    llvm::SmallPtrSet<CanQualType,8> CTypes;
4923    SmallVector<SourceLocation, 8> Locations;
4924    CTypes.insert(Context.getCanonicalType(BaseType));
4925
4926    while (BaseType->isRecordType()) {
4927      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4928      if (Result.isInvalid())
4929        return ExprError();
4930      Base = Result.get();
4931      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4932        Locations.push_back(OpCall->getDirectCallee()->getLocation());
4933      BaseType = Base->getType();
4934      CanQualType CBaseType = Context.getCanonicalType(BaseType);
4935      if (!CTypes.insert(CBaseType)) {
4936        Diag(OpLoc, diag::err_operator_arrow_circular);
4937        for (unsigned i = 0; i < Locations.size(); i++)
4938          Diag(Locations[i], diag::note_declared_at);
4939        return ExprError();
4940      }
4941    }
4942
4943    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4944      BaseType = BaseType->getPointeeType();
4945  }
4946
4947  // Objective-C properties allow "." access on Objective-C pointer types,
4948  // so adjust the base type to the object type itself.
4949  if (BaseType->isObjCObjectPointerType())
4950    BaseType = BaseType->getPointeeType();
4951
4952  // C++ [basic.lookup.classref]p2:
4953  //   [...] If the type of the object expression is of pointer to scalar
4954  //   type, the unqualified-id is looked up in the context of the complete
4955  //   postfix-expression.
4956  //
4957  // This also indicates that we could be parsing a pseudo-destructor-name.
4958  // Note that Objective-C class and object types can be pseudo-destructor
4959  // expressions or normal member (ivar or property) access expressions.
4960  if (BaseType->isObjCObjectOrInterfaceType()) {
4961    MayBePseudoDestructor = true;
4962  } else if (!BaseType->isRecordType()) {
4963    ObjectType = ParsedType();
4964    MayBePseudoDestructor = true;
4965    return Owned(Base);
4966  }
4967
4968  // The object type must be complete (or dependent), or
4969  // C++11 [expr.prim.general]p3:
4970  //   Unlike the object expression in other contexts, *this is not required to
4971  //   be of complete type for purposes of class member access (5.2.5) outside
4972  //   the member function body.
4973  if (!BaseType->isDependentType() &&
4974      !isThisOutsideMemberFunctionBody(BaseType) &&
4975      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
4976    return ExprError();
4977
4978  // C++ [basic.lookup.classref]p2:
4979  //   If the id-expression in a class member access (5.2.5) is an
4980  //   unqualified-id, and the type of the object expression is of a class
4981  //   type C (or of pointer to a class type C), the unqualified-id is looked
4982  //   up in the scope of class C. [...]
4983  ObjectType = ParsedType::make(BaseType);
4984  return Base;
4985}
4986
4987ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4988                                                   Expr *MemExpr) {
4989  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4990  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4991    << isa<CXXPseudoDestructorExpr>(MemExpr)
4992    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4993
4994  return ActOnCallExpr(/*Scope*/ 0,
4995                       MemExpr,
4996                       /*LPLoc*/ ExpectedLParenLoc,
4997                       MultiExprArg(),
4998                       /*RPLoc*/ ExpectedLParenLoc);
4999}
5000
5001static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5002                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
5003  if (Base->hasPlaceholderType()) {
5004    ExprResult result = S.CheckPlaceholderExpr(Base);
5005    if (result.isInvalid()) return true;
5006    Base = result.take();
5007  }
5008  ObjectType = Base->getType();
5009
5010  // C++ [expr.pseudo]p2:
5011  //   The left-hand side of the dot operator shall be of scalar type. The
5012  //   left-hand side of the arrow operator shall be of pointer to scalar type.
5013  //   This scalar type is the object type.
5014  // Note that this is rather different from the normal handling for the
5015  // arrow operator.
5016  if (OpKind == tok::arrow) {
5017    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5018      ObjectType = Ptr->getPointeeType();
5019    } else if (!Base->isTypeDependent()) {
5020      // The user wrote "p->" when she probably meant "p."; fix it.
5021      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5022        << ObjectType << true
5023        << FixItHint::CreateReplacement(OpLoc, ".");
5024      if (S.isSFINAEContext())
5025        return true;
5026
5027      OpKind = tok::period;
5028    }
5029  }
5030
5031  return false;
5032}
5033
5034ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5035                                           SourceLocation OpLoc,
5036                                           tok::TokenKind OpKind,
5037                                           const CXXScopeSpec &SS,
5038                                           TypeSourceInfo *ScopeTypeInfo,
5039                                           SourceLocation CCLoc,
5040                                           SourceLocation TildeLoc,
5041                                         PseudoDestructorTypeStorage Destructed,
5042                                           bool HasTrailingLParen) {
5043  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5044
5045  QualType ObjectType;
5046  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5047    return ExprError();
5048
5049  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5050      !ObjectType->isVectorType()) {
5051    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5052      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5053    else
5054      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5055        << ObjectType << Base->getSourceRange();
5056    return ExprError();
5057  }
5058
5059  // C++ [expr.pseudo]p2:
5060  //   [...] The cv-unqualified versions of the object type and of the type
5061  //   designated by the pseudo-destructor-name shall be the same type.
5062  if (DestructedTypeInfo) {
5063    QualType DestructedType = DestructedTypeInfo->getType();
5064    SourceLocation DestructedTypeStart
5065      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5066    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5067      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5068        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5069          << ObjectType << DestructedType << Base->getSourceRange()
5070          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5071
5072        // Recover by setting the destructed type to the object type.
5073        DestructedType = ObjectType;
5074        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5075                                                           DestructedTypeStart);
5076        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5077      } else if (DestructedType.getObjCLifetime() !=
5078                                                ObjectType.getObjCLifetime()) {
5079
5080        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5081          // Okay: just pretend that the user provided the correctly-qualified
5082          // type.
5083        } else {
5084          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5085            << ObjectType << DestructedType << Base->getSourceRange()
5086            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5087        }
5088
5089        // Recover by setting the destructed type to the object type.
5090        DestructedType = ObjectType;
5091        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5092                                                           DestructedTypeStart);
5093        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5094      }
5095    }
5096  }
5097
5098  // C++ [expr.pseudo]p2:
5099  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5100  //   form
5101  //
5102  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5103  //
5104  //   shall designate the same scalar type.
5105  if (ScopeTypeInfo) {
5106    QualType ScopeType = ScopeTypeInfo->getType();
5107    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5108        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5109
5110      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5111           diag::err_pseudo_dtor_type_mismatch)
5112        << ObjectType << ScopeType << Base->getSourceRange()
5113        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5114
5115      ScopeType = QualType();
5116      ScopeTypeInfo = 0;
5117    }
5118  }
5119
5120  Expr *Result
5121    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5122                                            OpKind == tok::arrow, OpLoc,
5123                                            SS.getWithLocInContext(Context),
5124                                            ScopeTypeInfo,
5125                                            CCLoc,
5126                                            TildeLoc,
5127                                            Destructed);
5128
5129  if (HasTrailingLParen)
5130    return Owned(Result);
5131
5132  return DiagnoseDtorReference(Destructed.getLocation(), Result);
5133}
5134
5135ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5136                                           SourceLocation OpLoc,
5137                                           tok::TokenKind OpKind,
5138                                           CXXScopeSpec &SS,
5139                                           UnqualifiedId &FirstTypeName,
5140                                           SourceLocation CCLoc,
5141                                           SourceLocation TildeLoc,
5142                                           UnqualifiedId &SecondTypeName,
5143                                           bool HasTrailingLParen) {
5144  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5145          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5146         "Invalid first type name in pseudo-destructor");
5147  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5148          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5149         "Invalid second type name in pseudo-destructor");
5150
5151  QualType ObjectType;
5152  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5153    return ExprError();
5154
5155  // Compute the object type that we should use for name lookup purposes. Only
5156  // record types and dependent types matter.
5157  ParsedType ObjectTypePtrForLookup;
5158  if (!SS.isSet()) {
5159    if (ObjectType->isRecordType())
5160      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5161    else if (ObjectType->isDependentType())
5162      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5163  }
5164
5165  // Convert the name of the type being destructed (following the ~) into a
5166  // type (with source-location information).
5167  QualType DestructedType;
5168  TypeSourceInfo *DestructedTypeInfo = 0;
5169  PseudoDestructorTypeStorage Destructed;
5170  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5171    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5172                               SecondTypeName.StartLocation,
5173                               S, &SS, true, false, ObjectTypePtrForLookup);
5174    if (!T &&
5175        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5176         (!SS.isSet() && ObjectType->isDependentType()))) {
5177      // The name of the type being destroyed is a dependent name, and we
5178      // couldn't find anything useful in scope. Just store the identifier and
5179      // it's location, and we'll perform (qualified) name lookup again at
5180      // template instantiation time.
5181      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5182                                               SecondTypeName.StartLocation);
5183    } else if (!T) {
5184      Diag(SecondTypeName.StartLocation,
5185           diag::err_pseudo_dtor_destructor_non_type)
5186        << SecondTypeName.Identifier << ObjectType;
5187      if (isSFINAEContext())
5188        return ExprError();
5189
5190      // Recover by assuming we had the right type all along.
5191      DestructedType = ObjectType;
5192    } else
5193      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5194  } else {
5195    // Resolve the template-id to a type.
5196    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5197    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5198                                       TemplateId->NumArgs);
5199    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5200                                       TemplateId->TemplateKWLoc,
5201                                       TemplateId->Template,
5202                                       TemplateId->TemplateNameLoc,
5203                                       TemplateId->LAngleLoc,
5204                                       TemplateArgsPtr,
5205                                       TemplateId->RAngleLoc);
5206    if (T.isInvalid() || !T.get()) {
5207      // Recover by assuming we had the right type all along.
5208      DestructedType = ObjectType;
5209    } else
5210      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5211  }
5212
5213  // If we've performed some kind of recovery, (re-)build the type source
5214  // information.
5215  if (!DestructedType.isNull()) {
5216    if (!DestructedTypeInfo)
5217      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5218                                                  SecondTypeName.StartLocation);
5219    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5220  }
5221
5222  // Convert the name of the scope type (the type prior to '::') into a type.
5223  TypeSourceInfo *ScopeTypeInfo = 0;
5224  QualType ScopeType;
5225  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5226      FirstTypeName.Identifier) {
5227    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5228      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5229                                 FirstTypeName.StartLocation,
5230                                 S, &SS, true, false, ObjectTypePtrForLookup);
5231      if (!T) {
5232        Diag(FirstTypeName.StartLocation,
5233             diag::err_pseudo_dtor_destructor_non_type)
5234          << FirstTypeName.Identifier << ObjectType;
5235
5236        if (isSFINAEContext())
5237          return ExprError();
5238
5239        // Just drop this type. It's unnecessary anyway.
5240        ScopeType = QualType();
5241      } else
5242        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5243    } else {
5244      // Resolve the template-id to a type.
5245      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5246      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5247                                         TemplateId->NumArgs);
5248      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5249                                         TemplateId->TemplateKWLoc,
5250                                         TemplateId->Template,
5251                                         TemplateId->TemplateNameLoc,
5252                                         TemplateId->LAngleLoc,
5253                                         TemplateArgsPtr,
5254                                         TemplateId->RAngleLoc);
5255      if (T.isInvalid() || !T.get()) {
5256        // Recover by dropping this type.
5257        ScopeType = QualType();
5258      } else
5259        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5260    }
5261  }
5262
5263  if (!ScopeType.isNull() && !ScopeTypeInfo)
5264    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5265                                                  FirstTypeName.StartLocation);
5266
5267
5268  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5269                                   ScopeTypeInfo, CCLoc, TildeLoc,
5270                                   Destructed, HasTrailingLParen);
5271}
5272
5273ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5274                                           SourceLocation OpLoc,
5275                                           tok::TokenKind OpKind,
5276                                           SourceLocation TildeLoc,
5277                                           const DeclSpec& DS,
5278                                           bool HasTrailingLParen) {
5279  QualType ObjectType;
5280  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5281    return ExprError();
5282
5283  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5284
5285  TypeLocBuilder TLB;
5286  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5287  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5288  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5289  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5290
5291  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5292                                   0, SourceLocation(), TildeLoc,
5293                                   Destructed, HasTrailingLParen);
5294}
5295
5296ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5297                                        CXXConversionDecl *Method,
5298                                        bool HadMultipleCandidates) {
5299  if (Method->getParent()->isLambda() &&
5300      Method->getConversionType()->isBlockPointerType()) {
5301    // This is a lambda coversion to block pointer; check if the argument
5302    // is a LambdaExpr.
5303    Expr *SubE = E;
5304    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5305    if (CE && CE->getCastKind() == CK_NoOp)
5306      SubE = CE->getSubExpr();
5307    SubE = SubE->IgnoreParens();
5308    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5309      SubE = BE->getSubExpr();
5310    if (isa<LambdaExpr>(SubE)) {
5311      // For the conversion to block pointer on a lambda expression, we
5312      // construct a special BlockLiteral instead; this doesn't really make
5313      // a difference in ARC, but outside of ARC the resulting block literal
5314      // follows the normal lifetime rules for block literals instead of being
5315      // autoreleased.
5316      DiagnosticErrorTrap Trap(Diags);
5317      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5318                                                     E->getExprLoc(),
5319                                                     Method, E);
5320      if (Exp.isInvalid())
5321        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5322      return Exp;
5323    }
5324  }
5325
5326
5327  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5328                                          FoundDecl, Method);
5329  if (Exp.isInvalid())
5330    return true;
5331
5332  MemberExpr *ME =
5333      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5334                               SourceLocation(), Context.BoundMemberTy,
5335                               VK_RValue, OK_Ordinary);
5336  if (HadMultipleCandidates)
5337    ME->setHadMultipleCandidates(true);
5338
5339  QualType ResultType = Method->getResultType();
5340  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5341  ResultType = ResultType.getNonLValueExprType(Context);
5342
5343  MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
5344  CXXMemberCallExpr *CE =
5345    new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
5346                                    Exp.get()->getLocEnd());
5347  return CE;
5348}
5349
5350ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5351                                      SourceLocation RParen) {
5352  CanThrowResult CanThrow = canThrow(Operand);
5353  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5354                                             CanThrow, KeyLoc, RParen));
5355}
5356
5357ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5358                                   Expr *Operand, SourceLocation RParen) {
5359  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5360}
5361
5362static bool IsSpecialDiscardedValue(Expr *E) {
5363  // In C++11, discarded-value expressions of a certain form are special,
5364  // according to [expr]p10:
5365  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5366  //   expression is an lvalue of volatile-qualified type and it has
5367  //   one of the following forms:
5368  E = E->IgnoreParens();
5369
5370  //   - id-expression (5.1.1),
5371  if (isa<DeclRefExpr>(E))
5372    return true;
5373
5374  //   - subscripting (5.2.1),
5375  if (isa<ArraySubscriptExpr>(E))
5376    return true;
5377
5378  //   - class member access (5.2.5),
5379  if (isa<MemberExpr>(E))
5380    return true;
5381
5382  //   - indirection (5.3.1),
5383  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5384    if (UO->getOpcode() == UO_Deref)
5385      return true;
5386
5387  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5388    //   - pointer-to-member operation (5.5),
5389    if (BO->isPtrMemOp())
5390      return true;
5391
5392    //   - comma expression (5.18) where the right operand is one of the above.
5393    if (BO->getOpcode() == BO_Comma)
5394      return IsSpecialDiscardedValue(BO->getRHS());
5395  }
5396
5397  //   - conditional expression (5.16) where both the second and the third
5398  //     operands are one of the above, or
5399  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5400    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5401           IsSpecialDiscardedValue(CO->getFalseExpr());
5402  // The related edge case of "*x ?: *x".
5403  if (BinaryConditionalOperator *BCO =
5404          dyn_cast<BinaryConditionalOperator>(E)) {
5405    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5406      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5407             IsSpecialDiscardedValue(BCO->getFalseExpr());
5408  }
5409
5410  // Objective-C++ extensions to the rule.
5411  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5412    return true;
5413
5414  return false;
5415}
5416
5417/// Perform the conversions required for an expression used in a
5418/// context that ignores the result.
5419ExprResult Sema::IgnoredValueConversions(Expr *E) {
5420  if (E->hasPlaceholderType()) {
5421    ExprResult result = CheckPlaceholderExpr(E);
5422    if (result.isInvalid()) return Owned(E);
5423    E = result.take();
5424  }
5425
5426  // C99 6.3.2.1:
5427  //   [Except in specific positions,] an lvalue that does not have
5428  //   array type is converted to the value stored in the
5429  //   designated object (and is no longer an lvalue).
5430  if (E->isRValue()) {
5431    // In C, function designators (i.e. expressions of function type)
5432    // are r-values, but we still want to do function-to-pointer decay
5433    // on them.  This is both technically correct and convenient for
5434    // some clients.
5435    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5436      return DefaultFunctionArrayConversion(E);
5437
5438    return Owned(E);
5439  }
5440
5441  if (getLangOpts().CPlusPlus)  {
5442    // The C++11 standard defines the notion of a discarded-value expression;
5443    // normally, we don't need to do anything to handle it, but if it is a
5444    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5445    // conversion.
5446    if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5447        E->getType().isVolatileQualified() &&
5448        IsSpecialDiscardedValue(E)) {
5449      ExprResult Res = DefaultLvalueConversion(E);
5450      if (Res.isInvalid())
5451        return Owned(E);
5452      E = Res.take();
5453    }
5454    return Owned(E);
5455  }
5456
5457  // GCC seems to also exclude expressions of incomplete enum type.
5458  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5459    if (!T->getDecl()->isComplete()) {
5460      // FIXME: stupid workaround for a codegen bug!
5461      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5462      return Owned(E);
5463    }
5464  }
5465
5466  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5467  if (Res.isInvalid())
5468    return Owned(E);
5469  E = Res.take();
5470
5471  if (!E->getType()->isVoidType())
5472    RequireCompleteType(E->getExprLoc(), E->getType(),
5473                        diag::err_incomplete_type);
5474  return Owned(E);
5475}
5476
5477ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5478                                     bool DiscardedValue,
5479                                     bool IsConstexpr) {
5480  ExprResult FullExpr = Owned(FE);
5481
5482  if (!FullExpr.get())
5483    return ExprError();
5484
5485  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5486    return ExprError();
5487
5488  // Top-level message sends default to 'id' when we're in a debugger.
5489  if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5490      FullExpr.get()->getType() == Context.UnknownAnyTy &&
5491      isa<ObjCMessageExpr>(FullExpr.get())) {
5492    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5493    if (FullExpr.isInvalid())
5494      return ExprError();
5495  }
5496
5497  if (DiscardedValue) {
5498    FullExpr = CheckPlaceholderExpr(FullExpr.take());
5499    if (FullExpr.isInvalid())
5500      return ExprError();
5501
5502    FullExpr = IgnoredValueConversions(FullExpr.take());
5503    if (FullExpr.isInvalid())
5504      return ExprError();
5505  }
5506
5507  CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5508  return MaybeCreateExprWithCleanups(FullExpr);
5509}
5510
5511StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5512  if (!FullStmt) return StmtError();
5513
5514  return MaybeCreateStmtWithCleanups(FullStmt);
5515}
5516
5517Sema::IfExistsResult
5518Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5519                                   CXXScopeSpec &SS,
5520                                   const DeclarationNameInfo &TargetNameInfo) {
5521  DeclarationName TargetName = TargetNameInfo.getName();
5522  if (!TargetName)
5523    return IER_DoesNotExist;
5524
5525  // If the name itself is dependent, then the result is dependent.
5526  if (TargetName.isDependentName())
5527    return IER_Dependent;
5528
5529  // Do the redeclaration lookup in the current scope.
5530  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5531                 Sema::NotForRedeclaration);
5532  LookupParsedName(R, S, &SS);
5533  R.suppressDiagnostics();
5534
5535  switch (R.getResultKind()) {
5536  case LookupResult::Found:
5537  case LookupResult::FoundOverloaded:
5538  case LookupResult::FoundUnresolvedValue:
5539  case LookupResult::Ambiguous:
5540    return IER_Exists;
5541
5542  case LookupResult::NotFound:
5543    return IER_DoesNotExist;
5544
5545  case LookupResult::NotFoundInCurrentInstantiation:
5546    return IER_Dependent;
5547  }
5548
5549  llvm_unreachable("Invalid LookupResult Kind!");
5550}
5551
5552Sema::IfExistsResult
5553Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5554                                   bool IsIfExists, CXXScopeSpec &SS,
5555                                   UnqualifiedId &Name) {
5556  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5557
5558  // Check for unexpanded parameter packs.
5559  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5560  collectUnexpandedParameterPacks(SS, Unexpanded);
5561  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5562  if (!Unexpanded.empty()) {
5563    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5564                                     IsIfExists? UPPC_IfExists
5565                                               : UPPC_IfNotExists,
5566                                     Unexpanded);
5567    return IER_Error;
5568  }
5569
5570  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5571}
5572