SemaExprCXX.cpp revision 7e384943ac136f6c2ea55c309108b83939cd4c21
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31using namespace clang;
32using namespace sema;
33
34ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
35                                   IdentifierInfo &II,
36                                   SourceLocation NameLoc,
37                                   Scope *S, CXXScopeSpec &SS,
38                                   ParsedType ObjectTypePtr,
39                                   bool EnteringContext) {
40  // Determine where to perform name lookup.
41
42  // FIXME: This area of the standard is very messy, and the current
43  // wording is rather unclear about which scopes we search for the
44  // destructor name; see core issues 399 and 555. Issue 399 in
45  // particular shows where the current description of destructor name
46  // lookup is completely out of line with existing practice, e.g.,
47  // this appears to be ill-formed:
48  //
49  //   namespace N {
50  //     template <typename T> struct S {
51  //       ~S();
52  //     };
53  //   }
54  //
55  //   void f(N::S<int>* s) {
56  //     s->N::S<int>::~S();
57  //   }
58  //
59  // See also PR6358 and PR6359.
60  // For this reason, we're currently only doing the C++03 version of this
61  // code; the C++0x version has to wait until we get a proper spec.
62  QualType SearchType;
63  DeclContext *LookupCtx = 0;
64  bool isDependent = false;
65  bool LookInScope = false;
66
67  // If we have an object type, it's because we are in a
68  // pseudo-destructor-expression or a member access expression, and
69  // we know what type we're looking for.
70  if (ObjectTypePtr)
71    SearchType = GetTypeFromParser(ObjectTypePtr);
72
73  if (SS.isSet()) {
74    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
75
76    bool AlreadySearched = false;
77    bool LookAtPrefix = true;
78    // C++ [basic.lookup.qual]p6:
79    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
80    //   the type-names are looked up as types in the scope designated by the
81    //   nested-name-specifier. In a qualified-id of the form:
82    //
83    //     ::[opt] nested-name-specifier  ~ class-name
84    //
85    //   where the nested-name-specifier designates a namespace scope, and in
86    //   a qualified-id of the form:
87    //
88    //     ::opt nested-name-specifier class-name ::  ~ class-name
89    //
90    //   the class-names are looked up as types in the scope designated by
91    //   the nested-name-specifier.
92    //
93    // Here, we check the first case (completely) and determine whether the
94    // code below is permitted to look at the prefix of the
95    // nested-name-specifier.
96    DeclContext *DC = computeDeclContext(SS, EnteringContext);
97    if (DC && DC->isFileContext()) {
98      AlreadySearched = true;
99      LookupCtx = DC;
100      isDependent = false;
101    } else if (DC && isa<CXXRecordDecl>(DC))
102      LookAtPrefix = false;
103
104    // The second case from the C++03 rules quoted further above.
105    NestedNameSpecifier *Prefix = 0;
106    if (AlreadySearched) {
107      // Nothing left to do.
108    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
109      CXXScopeSpec PrefixSS;
110      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
111      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
112      isDependent = isDependentScopeSpecifier(PrefixSS);
113    } else if (ObjectTypePtr) {
114      LookupCtx = computeDeclContext(SearchType);
115      isDependent = SearchType->isDependentType();
116    } else {
117      LookupCtx = computeDeclContext(SS, EnteringContext);
118      isDependent = LookupCtx && LookupCtx->isDependentContext();
119    }
120
121    LookInScope = false;
122  } else if (ObjectTypePtr) {
123    // C++ [basic.lookup.classref]p3:
124    //   If the unqualified-id is ~type-name, the type-name is looked up
125    //   in the context of the entire postfix-expression. If the type T
126    //   of the object expression is of a class type C, the type-name is
127    //   also looked up in the scope of class C. At least one of the
128    //   lookups shall find a name that refers to (possibly
129    //   cv-qualified) T.
130    LookupCtx = computeDeclContext(SearchType);
131    isDependent = SearchType->isDependentType();
132    assert((isDependent || !SearchType->isIncompleteType()) &&
133           "Caller should have completed object type");
134
135    LookInScope = true;
136  } else {
137    // Perform lookup into the current scope (only).
138    LookInScope = true;
139  }
140
141  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
142  for (unsigned Step = 0; Step != 2; ++Step) {
143    // Look for the name first in the computed lookup context (if we
144    // have one) and, if that fails to find a match, in the sope (if
145    // we're allowed to look there).
146    Found.clear();
147    if (Step == 0 && LookupCtx)
148      LookupQualifiedName(Found, LookupCtx);
149    else if (Step == 1 && LookInScope && S)
150      LookupName(Found, S);
151    else
152      continue;
153
154    // FIXME: Should we be suppressing ambiguities here?
155    if (Found.isAmbiguous())
156      return ParsedType();
157
158    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
159      QualType T = Context.getTypeDeclType(Type);
160
161      if (SearchType.isNull() || SearchType->isDependentType() ||
162          Context.hasSameUnqualifiedType(T, SearchType)) {
163        // We found our type!
164
165        return ParsedType::make(T);
166      }
167    }
168
169    // If the name that we found is a class template name, and it is
170    // the same name as the template name in the last part of the
171    // nested-name-specifier (if present) or the object type, then
172    // this is the destructor for that class.
173    // FIXME: This is a workaround until we get real drafting for core
174    // issue 399, for which there isn't even an obvious direction.
175    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
176      QualType MemberOfType;
177      if (SS.isSet()) {
178        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
179          // Figure out the type of the context, if it has one.
180          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
181            MemberOfType = Context.getTypeDeclType(Record);
182        }
183      }
184      if (MemberOfType.isNull())
185        MemberOfType = SearchType;
186
187      if (MemberOfType.isNull())
188        continue;
189
190      // We're referring into a class template specialization. If the
191      // class template we found is the same as the template being
192      // specialized, we found what we are looking for.
193      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
194        if (ClassTemplateSpecializationDecl *Spec
195              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
196          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
197                Template->getCanonicalDecl())
198            return ParsedType::make(MemberOfType);
199        }
200
201        continue;
202      }
203
204      // We're referring to an unresolved class template
205      // specialization. Determine whether we class template we found
206      // is the same as the template being specialized or, if we don't
207      // know which template is being specialized, that it at least
208      // has the same name.
209      if (const TemplateSpecializationType *SpecType
210            = MemberOfType->getAs<TemplateSpecializationType>()) {
211        TemplateName SpecName = SpecType->getTemplateName();
212
213        // The class template we found is the same template being
214        // specialized.
215        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
216          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
217            return ParsedType::make(MemberOfType);
218
219          continue;
220        }
221
222        // The class template we found has the same name as the
223        // (dependent) template name being specialized.
224        if (DependentTemplateName *DepTemplate
225                                    = SpecName.getAsDependentTemplateName()) {
226          if (DepTemplate->isIdentifier() &&
227              DepTemplate->getIdentifier() == Template->getIdentifier())
228            return ParsedType::make(MemberOfType);
229
230          continue;
231        }
232      }
233    }
234  }
235
236  if (isDependent) {
237    // We didn't find our type, but that's okay: it's dependent
238    // anyway.
239    NestedNameSpecifier *NNS = 0;
240    SourceRange Range;
241    if (SS.isSet()) {
242      NNS = (NestedNameSpecifier *)SS.getScopeRep();
243      Range = SourceRange(SS.getRange().getBegin(), NameLoc);
244    } else {
245      NNS = NestedNameSpecifier::Create(Context, &II);
246      Range = SourceRange(NameLoc);
247    }
248
249    QualType T = CheckTypenameType(ETK_None, NNS, II,
250                                   SourceLocation(),
251                                   Range, NameLoc);
252    return ParsedType::make(T);
253  }
254
255  if (ObjectTypePtr)
256    Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
257      << &II;
258  else
259    Diag(NameLoc, diag::err_destructor_class_name);
260
261  return ParsedType();
262}
263
264/// \brief Build a C++ typeid expression with a type operand.
265ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
266                                SourceLocation TypeidLoc,
267                                TypeSourceInfo *Operand,
268                                SourceLocation RParenLoc) {
269  // C++ [expr.typeid]p4:
270  //   The top-level cv-qualifiers of the lvalue expression or the type-id
271  //   that is the operand of typeid are always ignored.
272  //   If the type of the type-id is a class type or a reference to a class
273  //   type, the class shall be completely-defined.
274  Qualifiers Quals;
275  QualType T
276    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
277                                      Quals);
278  if (T->getAs<RecordType>() &&
279      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
280    return ExprError();
281
282  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
283                                           Operand,
284                                           SourceRange(TypeidLoc, RParenLoc)));
285}
286
287/// \brief Build a C++ typeid expression with an expression operand.
288ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
289                                SourceLocation TypeidLoc,
290                                Expr *E,
291                                SourceLocation RParenLoc) {
292  bool isUnevaluatedOperand = true;
293  if (E && !E->isTypeDependent()) {
294    QualType T = E->getType();
295    if (const RecordType *RecordT = T->getAs<RecordType>()) {
296      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
297      // C++ [expr.typeid]p3:
298      //   [...] If the type of the expression is a class type, the class
299      //   shall be completely-defined.
300      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
301        return ExprError();
302
303      // C++ [expr.typeid]p3:
304      //   When typeid is applied to an expression other than an glvalue of a
305      //   polymorphic class type [...] [the] expression is an unevaluated
306      //   operand. [...]
307      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
308        isUnevaluatedOperand = false;
309
310        // We require a vtable to query the type at run time.
311        MarkVTableUsed(TypeidLoc, RecordD);
312      }
313    }
314
315    // C++ [expr.typeid]p4:
316    //   [...] If the type of the type-id is a reference to a possibly
317    //   cv-qualified type, the result of the typeid expression refers to a
318    //   std::type_info object representing the cv-unqualified referenced
319    //   type.
320    Qualifiers Quals;
321    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
322    if (!Context.hasSameType(T, UnqualT)) {
323      T = UnqualT;
324      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
325    }
326  }
327
328  // If this is an unevaluated operand, clear out the set of
329  // declaration references we have been computing and eliminate any
330  // temporaries introduced in its computation.
331  if (isUnevaluatedOperand)
332    ExprEvalContexts.back().Context = Unevaluated;
333
334  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
335                                           E,
336                                           SourceRange(TypeidLoc, RParenLoc)));
337}
338
339/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
340ExprResult
341Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
342                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
343  // Find the std::type_info type.
344  if (!StdNamespace)
345    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
346
347  if (!CXXTypeInfoDecl) {
348    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
349    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
350    LookupQualifiedName(R, getStdNamespace());
351    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
352    if (!CXXTypeInfoDecl)
353      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
354  }
355
356  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
357
358  if (isType) {
359    // The operand is a type; handle it as such.
360    TypeSourceInfo *TInfo = 0;
361    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
362                                   &TInfo);
363    if (T.isNull())
364      return ExprError();
365
366    if (!TInfo)
367      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
368
369    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
370  }
371
372  // The operand is an expression.
373  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
374}
375
376/// Retrieve the UuidAttr associated with QT.
377static UuidAttr *GetUuidAttrOfType(QualType QT) {
378  // Optionally remove one level of pointer, reference or array indirection.
379  const Type *Ty = QT.getTypePtr();;
380  if (QT->isPointerType() || QT->isReferenceType())
381    Ty = QT->getPointeeType().getTypePtr();
382  else if (QT->isArrayType())
383    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
384
385  // Loop all class definition and declaration looking for an uuid attribute.
386  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
387  while (RD) {
388    if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
389      return Uuid;
390    RD = RD->getPreviousDeclaration();
391  }
392  return 0;
393}
394
395/// \brief Build a Microsoft __uuidof expression with a type operand.
396ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
397                                SourceLocation TypeidLoc,
398                                TypeSourceInfo *Operand,
399                                SourceLocation RParenLoc) {
400  if (!Operand->getType()->isDependentType()) {
401    if (!GetUuidAttrOfType(Operand->getType()))
402      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
403  }
404
405  // FIXME: add __uuidof semantic analysis for type operand.
406  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
407                                           Operand,
408                                           SourceRange(TypeidLoc, RParenLoc)));
409}
410
411/// \brief Build a Microsoft __uuidof expression with an expression operand.
412ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
413                                SourceLocation TypeidLoc,
414                                Expr *E,
415                                SourceLocation RParenLoc) {
416  if (!E->getType()->isDependentType()) {
417    if (!GetUuidAttrOfType(E->getType()) &&
418        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
419      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
420  }
421  // FIXME: add __uuidof semantic analysis for type operand.
422  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
423                                           E,
424                                           SourceRange(TypeidLoc, RParenLoc)));
425}
426
427/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
428ExprResult
429Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
430                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
431  // If MSVCGuidDecl has not been cached, do the lookup.
432  if (!MSVCGuidDecl) {
433    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
434    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
435    LookupQualifiedName(R, Context.getTranslationUnitDecl());
436    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
437    if (!MSVCGuidDecl)
438      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
439  }
440
441  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
442
443  if (isType) {
444    // The operand is a type; handle it as such.
445    TypeSourceInfo *TInfo = 0;
446    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
447                                   &TInfo);
448    if (T.isNull())
449      return ExprError();
450
451    if (!TInfo)
452      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
453
454    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
455  }
456
457  // The operand is an expression.
458  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
459}
460
461/// ActOnCXXBoolLiteral - Parse {true,false} literals.
462ExprResult
463Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
464  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
465         "Unknown C++ Boolean value!");
466  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
467                                                Context.BoolTy, OpLoc));
468}
469
470/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
471ExprResult
472Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
473  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
474}
475
476/// ActOnCXXThrow - Parse throw expressions.
477ExprResult
478Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
479  // Don't report an error if 'throw' is used in system headers.
480  if (!getLangOptions().Exceptions &&
481      !getSourceManager().isInSystemHeader(OpLoc))
482    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
483
484  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
485    return ExprError();
486  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
487}
488
489/// CheckCXXThrowOperand - Validate the operand of a throw.
490bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
491  // C++ [except.throw]p3:
492  //   A throw-expression initializes a temporary object, called the exception
493  //   object, the type of which is determined by removing any top-level
494  //   cv-qualifiers from the static type of the operand of throw and adjusting
495  //   the type from "array of T" or "function returning T" to "pointer to T"
496  //   or "pointer to function returning T", [...]
497  if (E->getType().hasQualifiers())
498    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
499                      CastCategory(E));
500
501  DefaultFunctionArrayConversion(E);
502
503  //   If the type of the exception would be an incomplete type or a pointer
504  //   to an incomplete type other than (cv) void the program is ill-formed.
505  QualType Ty = E->getType();
506  bool isPointer = false;
507  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
508    Ty = Ptr->getPointeeType();
509    isPointer = true;
510  }
511  if (!isPointer || !Ty->isVoidType()) {
512    if (RequireCompleteType(ThrowLoc, Ty,
513                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
514                                            : diag::err_throw_incomplete)
515                              << E->getSourceRange()))
516      return true;
517
518    if (RequireNonAbstractType(ThrowLoc, E->getType(),
519                               PDiag(diag::err_throw_abstract_type)
520                                 << E->getSourceRange()))
521      return true;
522  }
523
524  // Initialize the exception result.  This implicitly weeds out
525  // abstract types or types with inaccessible copy constructors.
526  const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
527
528  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
529  InitializedEntity Entity =
530      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
531                                             /*NRVO=*/false);
532  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
533                                                   QualType(), E);
534  if (Res.isInvalid())
535    return true;
536  E = Res.takeAs<Expr>();
537
538  // If the exception has class type, we need additional handling.
539  const RecordType *RecordTy = Ty->getAs<RecordType>();
540  if (!RecordTy)
541    return false;
542  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
543
544  // If we are throwing a polymorphic class type or pointer thereof,
545  // exception handling will make use of the vtable.
546  MarkVTableUsed(ThrowLoc, RD);
547
548  // If a pointer is thrown, the referenced object will not be destroyed.
549  if (isPointer)
550    return false;
551
552  // If the class has a non-trivial destructor, we must be able to call it.
553  if (RD->hasTrivialDestructor())
554    return false;
555
556  CXXDestructorDecl *Destructor
557    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
558  if (!Destructor)
559    return false;
560
561  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
562  CheckDestructorAccess(E->getExprLoc(), Destructor,
563                        PDiag(diag::err_access_dtor_exception) << Ty);
564  return false;
565}
566
567CXXMethodDecl *Sema::tryCaptureCXXThis() {
568  // Ignore block scopes: we can capture through them.
569  // Ignore nested enum scopes: we'll diagnose non-constant expressions
570  // where they're invalid, and other uses are legitimate.
571  // Don't ignore nested class scopes: you can't use 'this' in a local class.
572  DeclContext *DC = CurContext;
573  while (true) {
574    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
575    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
576    else break;
577  }
578
579  // If we're not in an instance method, error out.
580  CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
581  if (!method || !method->isInstance())
582    return 0;
583
584  // Mark that we're closing on 'this' in all the block scopes, if applicable.
585  for (unsigned idx = FunctionScopes.size() - 1;
586       isa<BlockScopeInfo>(FunctionScopes[idx]);
587       --idx)
588    cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
589
590  return method;
591}
592
593ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
594  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
595  /// is a non-lvalue expression whose value is the address of the object for
596  /// which the function is called.
597
598  CXXMethodDecl *method = tryCaptureCXXThis();
599  if (!method) return Diag(loc, diag::err_invalid_this_use);
600
601  return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
602                                         /*isImplicit=*/false));
603}
604
605ExprResult
606Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
607                                SourceLocation LParenLoc,
608                                MultiExprArg exprs,
609                                SourceLocation RParenLoc) {
610  if (!TypeRep)
611    return ExprError();
612
613  TypeSourceInfo *TInfo;
614  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
615  if (!TInfo)
616    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
617
618  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
619}
620
621/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
622/// Can be interpreted either as function-style casting ("int(x)")
623/// or class type construction ("ClassType(x,y,z)")
624/// or creation of a value-initialized type ("int()").
625ExprResult
626Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
627                                SourceLocation LParenLoc,
628                                MultiExprArg exprs,
629                                SourceLocation RParenLoc) {
630  QualType Ty = TInfo->getType();
631  unsigned NumExprs = exprs.size();
632  Expr **Exprs = (Expr**)exprs.get();
633  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
634  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
635
636  if (Ty->isDependentType() ||
637      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
638    exprs.release();
639
640    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
641                                                    LParenLoc,
642                                                    Exprs, NumExprs,
643                                                    RParenLoc));
644  }
645
646  if (Ty->isArrayType())
647    return ExprError(Diag(TyBeginLoc,
648                          diag::err_value_init_for_array_type) << FullRange);
649  if (!Ty->isVoidType() &&
650      RequireCompleteType(TyBeginLoc, Ty,
651                          PDiag(diag::err_invalid_incomplete_type_use)
652                            << FullRange))
653    return ExprError();
654
655  if (RequireNonAbstractType(TyBeginLoc, Ty,
656                             diag::err_allocation_of_abstract_type))
657    return ExprError();
658
659
660  // C++ [expr.type.conv]p1:
661  // If the expression list is a single expression, the type conversion
662  // expression is equivalent (in definedness, and if defined in meaning) to the
663  // corresponding cast expression.
664  //
665  if (NumExprs == 1) {
666    CastKind Kind = CK_Invalid;
667    ExprValueKind VK = VK_RValue;
668    CXXCastPath BasePath;
669    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
670                       Kind, VK, BasePath,
671                       /*FunctionalStyle=*/true))
672      return ExprError();
673
674    exprs.release();
675
676    return Owned(CXXFunctionalCastExpr::Create(Context,
677                                               Ty.getNonLValueExprType(Context),
678                                               VK, TInfo, TyBeginLoc, Kind,
679                                               Exprs[0], &BasePath,
680                                               RParenLoc));
681  }
682
683  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
684  InitializationKind Kind
685    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
686                                                  LParenLoc, RParenLoc)
687               : InitializationKind::CreateValue(TyBeginLoc,
688                                                 LParenLoc, RParenLoc);
689  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
690  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
691
692  // FIXME: Improve AST representation?
693  return move(Result);
694}
695
696/// doesUsualArrayDeleteWantSize - Answers whether the usual
697/// operator delete[] for the given type has a size_t parameter.
698static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
699                                         QualType allocType) {
700  const RecordType *record =
701    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
702  if (!record) return false;
703
704  // Try to find an operator delete[] in class scope.
705
706  DeclarationName deleteName =
707    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
708  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
709  S.LookupQualifiedName(ops, record->getDecl());
710
711  // We're just doing this for information.
712  ops.suppressDiagnostics();
713
714  // Very likely: there's no operator delete[].
715  if (ops.empty()) return false;
716
717  // If it's ambiguous, it should be illegal to call operator delete[]
718  // on this thing, so it doesn't matter if we allocate extra space or not.
719  if (ops.isAmbiguous()) return false;
720
721  LookupResult::Filter filter = ops.makeFilter();
722  while (filter.hasNext()) {
723    NamedDecl *del = filter.next()->getUnderlyingDecl();
724
725    // C++0x [basic.stc.dynamic.deallocation]p2:
726    //   A template instance is never a usual deallocation function,
727    //   regardless of its signature.
728    if (isa<FunctionTemplateDecl>(del)) {
729      filter.erase();
730      continue;
731    }
732
733    // C++0x [basic.stc.dynamic.deallocation]p2:
734    //   If class T does not declare [an operator delete[] with one
735    //   parameter] but does declare a member deallocation function
736    //   named operator delete[] with exactly two parameters, the
737    //   second of which has type std::size_t, then this function
738    //   is a usual deallocation function.
739    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
740      filter.erase();
741      continue;
742    }
743  }
744  filter.done();
745
746  if (!ops.isSingleResult()) return false;
747
748  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
749  return (del->getNumParams() == 2);
750}
751
752/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
753/// @code new (memory) int[size][4] @endcode
754/// or
755/// @code ::new Foo(23, "hello") @endcode
756/// For the interpretation of this heap of arguments, consult the base version.
757ExprResult
758Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
759                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
760                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
761                  Declarator &D, SourceLocation ConstructorLParen,
762                  MultiExprArg ConstructorArgs,
763                  SourceLocation ConstructorRParen) {
764  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
765
766  Expr *ArraySize = 0;
767  // If the specified type is an array, unwrap it and save the expression.
768  if (D.getNumTypeObjects() > 0 &&
769      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
770    DeclaratorChunk &Chunk = D.getTypeObject(0);
771    if (TypeContainsAuto)
772      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
773        << D.getSourceRange());
774    if (Chunk.Arr.hasStatic)
775      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
776        << D.getSourceRange());
777    if (!Chunk.Arr.NumElts)
778      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
779        << D.getSourceRange());
780
781    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
782    D.DropFirstTypeObject();
783  }
784
785  // Every dimension shall be of constant size.
786  if (ArraySize) {
787    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
788      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
789        break;
790
791      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
792      if (Expr *NumElts = (Expr *)Array.NumElts) {
793        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
794            !NumElts->isIntegerConstantExpr(Context)) {
795          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
796            << NumElts->getSourceRange();
797          return ExprError();
798        }
799      }
800    }
801  }
802
803  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
804                                               /*AllowAuto=*/true);
805  QualType AllocType = TInfo->getType();
806  if (D.isInvalidType())
807    return ExprError();
808
809  return BuildCXXNew(StartLoc, UseGlobal,
810                     PlacementLParen,
811                     move(PlacementArgs),
812                     PlacementRParen,
813                     TypeIdParens,
814                     AllocType,
815                     TInfo,
816                     ArraySize,
817                     ConstructorLParen,
818                     move(ConstructorArgs),
819                     ConstructorRParen,
820                     TypeContainsAuto);
821}
822
823ExprResult
824Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
825                  SourceLocation PlacementLParen,
826                  MultiExprArg PlacementArgs,
827                  SourceLocation PlacementRParen,
828                  SourceRange TypeIdParens,
829                  QualType AllocType,
830                  TypeSourceInfo *AllocTypeInfo,
831                  Expr *ArraySize,
832                  SourceLocation ConstructorLParen,
833                  MultiExprArg ConstructorArgs,
834                  SourceLocation ConstructorRParen,
835                  bool TypeMayContainAuto) {
836  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
837
838  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
839  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
840    if (ConstructorArgs.size() == 0)
841      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
842                       << AllocType << TypeRange);
843    if (ConstructorArgs.size() != 1) {
844      Expr *FirstBad = ConstructorArgs.get()[1];
845      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
846                            diag::err_auto_new_ctor_multiple_expressions)
847                       << AllocType << TypeRange);
848    }
849    QualType DeducedType;
850    if (!DeduceAutoType(AllocType, ConstructorArgs.get()[0], DeducedType))
851      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
852                       << AllocType
853                       << ConstructorArgs.get()[0]->getType()
854                       << TypeRange
855                       << ConstructorArgs.get()[0]->getSourceRange());
856
857    AllocType = DeducedType;
858    AllocTypeInfo = Context.getTrivialTypeSourceInfo(AllocType, StartLoc);
859  }
860
861  // Per C++0x [expr.new]p5, the type being constructed may be a
862  // typedef of an array type.
863  if (!ArraySize) {
864    if (const ConstantArrayType *Array
865                              = Context.getAsConstantArrayType(AllocType)) {
866      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
867                                         Context.getSizeType(),
868                                         TypeRange.getEnd());
869      AllocType = Array->getElementType();
870    }
871  }
872
873  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
874    return ExprError();
875
876  QualType ResultType = Context.getPointerType(AllocType);
877
878  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
879  //   or enumeration type with a non-negative value."
880  if (ArraySize && !ArraySize->isTypeDependent()) {
881
882    QualType SizeType = ArraySize->getType();
883
884    ExprResult ConvertedSize
885      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
886                                       PDiag(diag::err_array_size_not_integral),
887                                     PDiag(diag::err_array_size_incomplete_type)
888                                       << ArraySize->getSourceRange(),
889                               PDiag(diag::err_array_size_explicit_conversion),
890                                       PDiag(diag::note_array_size_conversion),
891                               PDiag(diag::err_array_size_ambiguous_conversion),
892                                       PDiag(diag::note_array_size_conversion),
893                          PDiag(getLangOptions().CPlusPlus0x? 0
894                                            : diag::ext_array_size_conversion));
895    if (ConvertedSize.isInvalid())
896      return ExprError();
897
898    ArraySize = ConvertedSize.take();
899    SizeType = ArraySize->getType();
900    if (!SizeType->isIntegralOrUnscopedEnumerationType())
901      return ExprError();
902
903    // Let's see if this is a constant < 0. If so, we reject it out of hand.
904    // We don't care about special rules, so we tell the machinery it's not
905    // evaluated - it gives us a result in more cases.
906    if (!ArraySize->isValueDependent()) {
907      llvm::APSInt Value;
908      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
909        if (Value < llvm::APSInt(
910                        llvm::APInt::getNullValue(Value.getBitWidth()),
911                                 Value.isUnsigned()))
912          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
913                                diag::err_typecheck_negative_array_size)
914            << ArraySize->getSourceRange());
915
916        if (!AllocType->isDependentType()) {
917          unsigned ActiveSizeBits
918            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
919          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
920            Diag(ArraySize->getSourceRange().getBegin(),
921                 diag::err_array_too_large)
922              << Value.toString(10)
923              << ArraySize->getSourceRange();
924            return ExprError();
925          }
926        }
927      } else if (TypeIdParens.isValid()) {
928        // Can't have dynamic array size when the type-id is in parentheses.
929        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
930          << ArraySize->getSourceRange()
931          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
932          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
933
934        TypeIdParens = SourceRange();
935      }
936    }
937
938    ImpCastExprToType(ArraySize, Context.getSizeType(),
939                      CK_IntegralCast);
940  }
941
942  FunctionDecl *OperatorNew = 0;
943  FunctionDecl *OperatorDelete = 0;
944  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
945  unsigned NumPlaceArgs = PlacementArgs.size();
946
947  if (!AllocType->isDependentType() &&
948      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
949      FindAllocationFunctions(StartLoc,
950                              SourceRange(PlacementLParen, PlacementRParen),
951                              UseGlobal, AllocType, ArraySize, PlaceArgs,
952                              NumPlaceArgs, OperatorNew, OperatorDelete))
953    return ExprError();
954
955  // If this is an array allocation, compute whether the usual array
956  // deallocation function for the type has a size_t parameter.
957  bool UsualArrayDeleteWantsSize = false;
958  if (ArraySize && !AllocType->isDependentType())
959    UsualArrayDeleteWantsSize
960      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
961
962  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
963  if (OperatorNew) {
964    // Add default arguments, if any.
965    const FunctionProtoType *Proto =
966      OperatorNew->getType()->getAs<FunctionProtoType>();
967    VariadicCallType CallType =
968      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
969
970    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
971                               Proto, 1, PlaceArgs, NumPlaceArgs,
972                               AllPlaceArgs, CallType))
973      return ExprError();
974
975    NumPlaceArgs = AllPlaceArgs.size();
976    if (NumPlaceArgs > 0)
977      PlaceArgs = &AllPlaceArgs[0];
978  }
979
980  bool Init = ConstructorLParen.isValid();
981  // --- Choosing a constructor ---
982  CXXConstructorDecl *Constructor = 0;
983  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
984  unsigned NumConsArgs = ConstructorArgs.size();
985  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
986
987  // Array 'new' can't have any initializers.
988  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
989    SourceRange InitRange(ConsArgs[0]->getLocStart(),
990                          ConsArgs[NumConsArgs - 1]->getLocEnd());
991
992    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
993    return ExprError();
994  }
995
996  if (!AllocType->isDependentType() &&
997      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
998    // C++0x [expr.new]p15:
999    //   A new-expression that creates an object of type T initializes that
1000    //   object as follows:
1001    InitializationKind Kind
1002    //     - If the new-initializer is omitted, the object is default-
1003    //       initialized (8.5); if no initialization is performed,
1004    //       the object has indeterminate value
1005      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1006    //     - Otherwise, the new-initializer is interpreted according to the
1007    //       initialization rules of 8.5 for direct-initialization.
1008             : InitializationKind::CreateDirect(TypeRange.getBegin(),
1009                                                ConstructorLParen,
1010                                                ConstructorRParen);
1011
1012    InitializedEntity Entity
1013      = InitializedEntity::InitializeNew(StartLoc, AllocType);
1014    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1015    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1016                                                move(ConstructorArgs));
1017    if (FullInit.isInvalid())
1018      return ExprError();
1019
1020    // FullInit is our initializer; walk through it to determine if it's a
1021    // constructor call, which CXXNewExpr handles directly.
1022    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1023      if (CXXBindTemporaryExpr *Binder
1024            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1025        FullInitExpr = Binder->getSubExpr();
1026      if (CXXConstructExpr *Construct
1027                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1028        Constructor = Construct->getConstructor();
1029        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1030                                         AEnd = Construct->arg_end();
1031             A != AEnd; ++A)
1032          ConvertedConstructorArgs.push_back(*A);
1033      } else {
1034        // Take the converted initializer.
1035        ConvertedConstructorArgs.push_back(FullInit.release());
1036      }
1037    } else {
1038      // No initialization required.
1039    }
1040
1041    // Take the converted arguments and use them for the new expression.
1042    NumConsArgs = ConvertedConstructorArgs.size();
1043    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1044  }
1045
1046  // Mark the new and delete operators as referenced.
1047  if (OperatorNew)
1048    MarkDeclarationReferenced(StartLoc, OperatorNew);
1049  if (OperatorDelete)
1050    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1051
1052  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
1053
1054  PlacementArgs.release();
1055  ConstructorArgs.release();
1056
1057  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1058                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1059                                        ArraySize, Constructor, Init,
1060                                        ConsArgs, NumConsArgs, OperatorDelete,
1061                                        UsualArrayDeleteWantsSize,
1062                                        ResultType, AllocTypeInfo,
1063                                        StartLoc,
1064                                        Init ? ConstructorRParen :
1065                                               TypeRange.getEnd(),
1066                                        ConstructorLParen, ConstructorRParen));
1067}
1068
1069/// CheckAllocatedType - Checks that a type is suitable as the allocated type
1070/// in a new-expression.
1071/// dimension off and stores the size expression in ArraySize.
1072bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1073                              SourceRange R) {
1074  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1075  //   abstract class type or array thereof.
1076  if (AllocType->isFunctionType())
1077    return Diag(Loc, diag::err_bad_new_type)
1078      << AllocType << 0 << R;
1079  else if (AllocType->isReferenceType())
1080    return Diag(Loc, diag::err_bad_new_type)
1081      << AllocType << 1 << R;
1082  else if (!AllocType->isDependentType() &&
1083           RequireCompleteType(Loc, AllocType,
1084                               PDiag(diag::err_new_incomplete_type)
1085                                 << R))
1086    return true;
1087  else if (RequireNonAbstractType(Loc, AllocType,
1088                                  diag::err_allocation_of_abstract_type))
1089    return true;
1090  else if (AllocType->isVariablyModifiedType())
1091    return Diag(Loc, diag::err_variably_modified_new_type)
1092             << AllocType;
1093
1094  return false;
1095}
1096
1097/// \brief Determine whether the given function is a non-placement
1098/// deallocation function.
1099static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1100  if (FD->isInvalidDecl())
1101    return false;
1102
1103  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1104    return Method->isUsualDeallocationFunction();
1105
1106  return ((FD->getOverloadedOperator() == OO_Delete ||
1107           FD->getOverloadedOperator() == OO_Array_Delete) &&
1108          FD->getNumParams() == 1);
1109}
1110
1111/// FindAllocationFunctions - Finds the overloads of operator new and delete
1112/// that are appropriate for the allocation.
1113bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1114                                   bool UseGlobal, QualType AllocType,
1115                                   bool IsArray, Expr **PlaceArgs,
1116                                   unsigned NumPlaceArgs,
1117                                   FunctionDecl *&OperatorNew,
1118                                   FunctionDecl *&OperatorDelete) {
1119  // --- Choosing an allocation function ---
1120  // C++ 5.3.4p8 - 14 & 18
1121  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1122  //   in the scope of the allocated class.
1123  // 2) If an array size is given, look for operator new[], else look for
1124  //   operator new.
1125  // 3) The first argument is always size_t. Append the arguments from the
1126  //   placement form.
1127
1128  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1129  // We don't care about the actual value of this argument.
1130  // FIXME: Should the Sema create the expression and embed it in the syntax
1131  // tree? Or should the consumer just recalculate the value?
1132  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1133                      Context.Target.getPointerWidth(0)),
1134                      Context.getSizeType(),
1135                      SourceLocation());
1136  AllocArgs[0] = &Size;
1137  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1138
1139  // C++ [expr.new]p8:
1140  //   If the allocated type is a non-array type, the allocation
1141  //   function's name is operator new and the deallocation function's
1142  //   name is operator delete. If the allocated type is an array
1143  //   type, the allocation function's name is operator new[] and the
1144  //   deallocation function's name is operator delete[].
1145  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1146                                        IsArray ? OO_Array_New : OO_New);
1147  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1148                                        IsArray ? OO_Array_Delete : OO_Delete);
1149
1150  QualType AllocElemType = Context.getBaseElementType(AllocType);
1151
1152  if (AllocElemType->isRecordType() && !UseGlobal) {
1153    CXXRecordDecl *Record
1154      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1155    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1156                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1157                          OperatorNew))
1158      return true;
1159  }
1160  if (!OperatorNew) {
1161    // Didn't find a member overload. Look for a global one.
1162    DeclareGlobalNewDelete();
1163    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1164    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1165                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1166                          OperatorNew))
1167      return true;
1168  }
1169
1170  // We don't need an operator delete if we're running under
1171  // -fno-exceptions.
1172  if (!getLangOptions().Exceptions) {
1173    OperatorDelete = 0;
1174    return false;
1175  }
1176
1177  // FindAllocationOverload can change the passed in arguments, so we need to
1178  // copy them back.
1179  if (NumPlaceArgs > 0)
1180    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1181
1182  // C++ [expr.new]p19:
1183  //
1184  //   If the new-expression begins with a unary :: operator, the
1185  //   deallocation function's name is looked up in the global
1186  //   scope. Otherwise, if the allocated type is a class type T or an
1187  //   array thereof, the deallocation function's name is looked up in
1188  //   the scope of T. If this lookup fails to find the name, or if
1189  //   the allocated type is not a class type or array thereof, the
1190  //   deallocation function's name is looked up in the global scope.
1191  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1192  if (AllocElemType->isRecordType() && !UseGlobal) {
1193    CXXRecordDecl *RD
1194      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1195    LookupQualifiedName(FoundDelete, RD);
1196  }
1197  if (FoundDelete.isAmbiguous())
1198    return true; // FIXME: clean up expressions?
1199
1200  if (FoundDelete.empty()) {
1201    DeclareGlobalNewDelete();
1202    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1203  }
1204
1205  FoundDelete.suppressDiagnostics();
1206
1207  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1208
1209  // Whether we're looking for a placement operator delete is dictated
1210  // by whether we selected a placement operator new, not by whether
1211  // we had explicit placement arguments.  This matters for things like
1212  //   struct A { void *operator new(size_t, int = 0); ... };
1213  //   A *a = new A()
1214  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1215
1216  if (isPlacementNew) {
1217    // C++ [expr.new]p20:
1218    //   A declaration of a placement deallocation function matches the
1219    //   declaration of a placement allocation function if it has the
1220    //   same number of parameters and, after parameter transformations
1221    //   (8.3.5), all parameter types except the first are
1222    //   identical. [...]
1223    //
1224    // To perform this comparison, we compute the function type that
1225    // the deallocation function should have, and use that type both
1226    // for template argument deduction and for comparison purposes.
1227    //
1228    // FIXME: this comparison should ignore CC and the like.
1229    QualType ExpectedFunctionType;
1230    {
1231      const FunctionProtoType *Proto
1232        = OperatorNew->getType()->getAs<FunctionProtoType>();
1233
1234      llvm::SmallVector<QualType, 4> ArgTypes;
1235      ArgTypes.push_back(Context.VoidPtrTy);
1236      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1237        ArgTypes.push_back(Proto->getArgType(I));
1238
1239      FunctionProtoType::ExtProtoInfo EPI;
1240      EPI.Variadic = Proto->isVariadic();
1241
1242      ExpectedFunctionType
1243        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1244                                  ArgTypes.size(), EPI);
1245    }
1246
1247    for (LookupResult::iterator D = FoundDelete.begin(),
1248                             DEnd = FoundDelete.end();
1249         D != DEnd; ++D) {
1250      FunctionDecl *Fn = 0;
1251      if (FunctionTemplateDecl *FnTmpl
1252            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1253        // Perform template argument deduction to try to match the
1254        // expected function type.
1255        TemplateDeductionInfo Info(Context, StartLoc);
1256        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1257          continue;
1258      } else
1259        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1260
1261      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1262        Matches.push_back(std::make_pair(D.getPair(), Fn));
1263    }
1264  } else {
1265    // C++ [expr.new]p20:
1266    //   [...] Any non-placement deallocation function matches a
1267    //   non-placement allocation function. [...]
1268    for (LookupResult::iterator D = FoundDelete.begin(),
1269                             DEnd = FoundDelete.end();
1270         D != DEnd; ++D) {
1271      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1272        if (isNonPlacementDeallocationFunction(Fn))
1273          Matches.push_back(std::make_pair(D.getPair(), Fn));
1274    }
1275  }
1276
1277  // C++ [expr.new]p20:
1278  //   [...] If the lookup finds a single matching deallocation
1279  //   function, that function will be called; otherwise, no
1280  //   deallocation function will be called.
1281  if (Matches.size() == 1) {
1282    OperatorDelete = Matches[0].second;
1283
1284    // C++0x [expr.new]p20:
1285    //   If the lookup finds the two-parameter form of a usual
1286    //   deallocation function (3.7.4.2) and that function, considered
1287    //   as a placement deallocation function, would have been
1288    //   selected as a match for the allocation function, the program
1289    //   is ill-formed.
1290    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1291        isNonPlacementDeallocationFunction(OperatorDelete)) {
1292      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1293        << SourceRange(PlaceArgs[0]->getLocStart(),
1294                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1295      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1296        << DeleteName;
1297    } else {
1298      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1299                            Matches[0].first);
1300    }
1301  }
1302
1303  return false;
1304}
1305
1306/// FindAllocationOverload - Find an fitting overload for the allocation
1307/// function in the specified scope.
1308bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1309                                  DeclarationName Name, Expr** Args,
1310                                  unsigned NumArgs, DeclContext *Ctx,
1311                                  bool AllowMissing, FunctionDecl *&Operator) {
1312  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1313  LookupQualifiedName(R, Ctx);
1314  if (R.empty()) {
1315    if (AllowMissing)
1316      return false;
1317    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1318      << Name << Range;
1319  }
1320
1321  if (R.isAmbiguous())
1322    return true;
1323
1324  R.suppressDiagnostics();
1325
1326  OverloadCandidateSet Candidates(StartLoc);
1327  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1328       Alloc != AllocEnd; ++Alloc) {
1329    // Even member operator new/delete are implicitly treated as
1330    // static, so don't use AddMemberCandidate.
1331    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1332
1333    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1334      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1335                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1336                                   Candidates,
1337                                   /*SuppressUserConversions=*/false);
1338      continue;
1339    }
1340
1341    FunctionDecl *Fn = cast<FunctionDecl>(D);
1342    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1343                         /*SuppressUserConversions=*/false);
1344  }
1345
1346  // Do the resolution.
1347  OverloadCandidateSet::iterator Best;
1348  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1349  case OR_Success: {
1350    // Got one!
1351    FunctionDecl *FnDecl = Best->Function;
1352    // The first argument is size_t, and the first parameter must be size_t,
1353    // too. This is checked on declaration and can be assumed. (It can't be
1354    // asserted on, though, since invalid decls are left in there.)
1355    // Watch out for variadic allocator function.
1356    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1357    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1358      ExprResult Result
1359        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1360                                                       Context,
1361                                                       FnDecl->getParamDecl(i)),
1362                                    SourceLocation(),
1363                                    Owned(Args[i]));
1364      if (Result.isInvalid())
1365        return true;
1366
1367      Args[i] = Result.takeAs<Expr>();
1368    }
1369    Operator = FnDecl;
1370    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1371    return false;
1372  }
1373
1374  case OR_No_Viable_Function:
1375    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1376      << Name << Range;
1377    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1378    return true;
1379
1380  case OR_Ambiguous:
1381    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1382      << Name << Range;
1383    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1384    return true;
1385
1386  case OR_Deleted:
1387    Diag(StartLoc, diag::err_ovl_deleted_call)
1388      << Best->Function->isDeleted()
1389      << Name << Range;
1390    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1391    return true;
1392  }
1393  assert(false && "Unreachable, bad result from BestViableFunction");
1394  return true;
1395}
1396
1397
1398/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1399/// delete. These are:
1400/// @code
1401///   void* operator new(std::size_t) throw(std::bad_alloc);
1402///   void* operator new[](std::size_t) throw(std::bad_alloc);
1403///   void operator delete(void *) throw();
1404///   void operator delete[](void *) throw();
1405/// @endcode
1406/// Note that the placement and nothrow forms of new are *not* implicitly
1407/// declared. Their use requires including \<new\>.
1408void Sema::DeclareGlobalNewDelete() {
1409  if (GlobalNewDeleteDeclared)
1410    return;
1411
1412  // C++ [basic.std.dynamic]p2:
1413  //   [...] The following allocation and deallocation functions (18.4) are
1414  //   implicitly declared in global scope in each translation unit of a
1415  //   program
1416  //
1417  //     void* operator new(std::size_t) throw(std::bad_alloc);
1418  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1419  //     void  operator delete(void*) throw();
1420  //     void  operator delete[](void*) throw();
1421  //
1422  //   These implicit declarations introduce only the function names operator
1423  //   new, operator new[], operator delete, operator delete[].
1424  //
1425  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1426  // "std" or "bad_alloc" as necessary to form the exception specification.
1427  // However, we do not make these implicit declarations visible to name
1428  // lookup.
1429  if (!StdBadAlloc) {
1430    // The "std::bad_alloc" class has not yet been declared, so build it
1431    // implicitly.
1432    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1433                                        getOrCreateStdNamespace(),
1434                                        SourceLocation(),
1435                                      &PP.getIdentifierTable().get("bad_alloc"),
1436                                        SourceLocation(), 0);
1437    getStdBadAlloc()->setImplicit(true);
1438  }
1439
1440  GlobalNewDeleteDeclared = true;
1441
1442  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1443  QualType SizeT = Context.getSizeType();
1444  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1445
1446  DeclareGlobalAllocationFunction(
1447      Context.DeclarationNames.getCXXOperatorName(OO_New),
1448      VoidPtr, SizeT, AssumeSaneOperatorNew);
1449  DeclareGlobalAllocationFunction(
1450      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1451      VoidPtr, SizeT, AssumeSaneOperatorNew);
1452  DeclareGlobalAllocationFunction(
1453      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1454      Context.VoidTy, VoidPtr);
1455  DeclareGlobalAllocationFunction(
1456      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1457      Context.VoidTy, VoidPtr);
1458}
1459
1460/// DeclareGlobalAllocationFunction - Declares a single implicit global
1461/// allocation function if it doesn't already exist.
1462void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1463                                           QualType Return, QualType Argument,
1464                                           bool AddMallocAttr) {
1465  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1466
1467  // Check if this function is already declared.
1468  {
1469    DeclContext::lookup_iterator Alloc, AllocEnd;
1470    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1471         Alloc != AllocEnd; ++Alloc) {
1472      // Only look at non-template functions, as it is the predefined,
1473      // non-templated allocation function we are trying to declare here.
1474      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1475        QualType InitialParamType =
1476          Context.getCanonicalType(
1477            Func->getParamDecl(0)->getType().getUnqualifiedType());
1478        // FIXME: Do we need to check for default arguments here?
1479        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1480          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1481            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1482          return;
1483        }
1484      }
1485    }
1486  }
1487
1488  QualType BadAllocType;
1489  bool HasBadAllocExceptionSpec
1490    = (Name.getCXXOverloadedOperator() == OO_New ||
1491       Name.getCXXOverloadedOperator() == OO_Array_New);
1492  if (HasBadAllocExceptionSpec) {
1493    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1494    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1495  }
1496
1497  FunctionProtoType::ExtProtoInfo EPI;
1498  EPI.HasExceptionSpec = true;
1499  if (HasBadAllocExceptionSpec) {
1500    EPI.NumExceptions = 1;
1501    EPI.Exceptions = &BadAllocType;
1502  }
1503
1504  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1505  FunctionDecl *Alloc =
1506    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
1507                         FnType, /*TInfo=*/0, SC_None,
1508                         SC_None, false, true);
1509  Alloc->setImplicit();
1510
1511  if (AddMallocAttr)
1512    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1513
1514  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1515                                           0, Argument, /*TInfo=*/0,
1516                                           SC_None,
1517                                           SC_None, 0);
1518  Alloc->setParams(&Param, 1);
1519
1520  // FIXME: Also add this declaration to the IdentifierResolver, but
1521  // make sure it is at the end of the chain to coincide with the
1522  // global scope.
1523  Context.getTranslationUnitDecl()->addDecl(Alloc);
1524}
1525
1526bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1527                                    DeclarationName Name,
1528                                    FunctionDecl* &Operator) {
1529  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1530  // Try to find operator delete/operator delete[] in class scope.
1531  LookupQualifiedName(Found, RD);
1532
1533  if (Found.isAmbiguous())
1534    return true;
1535
1536  Found.suppressDiagnostics();
1537
1538  llvm::SmallVector<DeclAccessPair,4> Matches;
1539  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1540       F != FEnd; ++F) {
1541    NamedDecl *ND = (*F)->getUnderlyingDecl();
1542
1543    // Ignore template operator delete members from the check for a usual
1544    // deallocation function.
1545    if (isa<FunctionTemplateDecl>(ND))
1546      continue;
1547
1548    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1549      Matches.push_back(F.getPair());
1550  }
1551
1552  // There's exactly one suitable operator;  pick it.
1553  if (Matches.size() == 1) {
1554    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1555    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1556                          Matches[0]);
1557    return false;
1558
1559  // We found multiple suitable operators;  complain about the ambiguity.
1560  } else if (!Matches.empty()) {
1561    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1562      << Name << RD;
1563
1564    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1565           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1566      Diag((*F)->getUnderlyingDecl()->getLocation(),
1567           diag::note_member_declared_here) << Name;
1568    return true;
1569  }
1570
1571  // We did find operator delete/operator delete[] declarations, but
1572  // none of them were suitable.
1573  if (!Found.empty()) {
1574    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1575      << Name << RD;
1576
1577    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1578         F != FEnd; ++F)
1579      Diag((*F)->getUnderlyingDecl()->getLocation(),
1580           diag::note_member_declared_here) << Name;
1581
1582    return true;
1583  }
1584
1585  // Look for a global declaration.
1586  DeclareGlobalNewDelete();
1587  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1588
1589  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1590  Expr* DeallocArgs[1];
1591  DeallocArgs[0] = &Null;
1592  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1593                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1594                             Operator))
1595    return true;
1596
1597  assert(Operator && "Did not find a deallocation function!");
1598  return false;
1599}
1600
1601/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1602/// @code ::delete ptr; @endcode
1603/// or
1604/// @code delete [] ptr; @endcode
1605ExprResult
1606Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1607                     bool ArrayForm, Expr *Ex) {
1608  // C++ [expr.delete]p1:
1609  //   The operand shall have a pointer type, or a class type having a single
1610  //   conversion function to a pointer type. The result has type void.
1611  //
1612  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1613
1614  FunctionDecl *OperatorDelete = 0;
1615  bool ArrayFormAsWritten = ArrayForm;
1616  bool UsualArrayDeleteWantsSize = false;
1617
1618  if (!Ex->isTypeDependent()) {
1619    QualType Type = Ex->getType();
1620
1621    if (const RecordType *Record = Type->getAs<RecordType>()) {
1622      if (RequireCompleteType(StartLoc, Type,
1623                              PDiag(diag::err_delete_incomplete_class_type)))
1624        return ExprError();
1625
1626      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1627
1628      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1629      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1630      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1631             E = Conversions->end(); I != E; ++I) {
1632        NamedDecl *D = I.getDecl();
1633        if (isa<UsingShadowDecl>(D))
1634          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1635
1636        // Skip over templated conversion functions; they aren't considered.
1637        if (isa<FunctionTemplateDecl>(D))
1638          continue;
1639
1640        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1641
1642        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1643        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1644          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1645            ObjectPtrConversions.push_back(Conv);
1646      }
1647      if (ObjectPtrConversions.size() == 1) {
1648        // We have a single conversion to a pointer-to-object type. Perform
1649        // that conversion.
1650        // TODO: don't redo the conversion calculation.
1651        if (!PerformImplicitConversion(Ex,
1652                            ObjectPtrConversions.front()->getConversionType(),
1653                                      AA_Converting)) {
1654          Type = Ex->getType();
1655        }
1656      }
1657      else if (ObjectPtrConversions.size() > 1) {
1658        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1659              << Type << Ex->getSourceRange();
1660        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1661          NoteOverloadCandidate(ObjectPtrConversions[i]);
1662        return ExprError();
1663      }
1664    }
1665
1666    if (!Type->isPointerType())
1667      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1668        << Type << Ex->getSourceRange());
1669
1670    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1671    if (Pointee->isVoidType() && !isSFINAEContext()) {
1672      // The C++ standard bans deleting a pointer to a non-object type, which
1673      // effectively bans deletion of "void*". However, most compilers support
1674      // this, so we treat it as a warning unless we're in a SFINAE context.
1675      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1676        << Type << Ex->getSourceRange();
1677    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1678      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1679        << Type << Ex->getSourceRange());
1680    else if (!Pointee->isDependentType() &&
1681             RequireCompleteType(StartLoc, Pointee,
1682                                 PDiag(diag::warn_delete_incomplete)
1683                                   << Ex->getSourceRange()))
1684      return ExprError();
1685
1686    // C++ [expr.delete]p2:
1687    //   [Note: a pointer to a const type can be the operand of a
1688    //   delete-expression; it is not necessary to cast away the constness
1689    //   (5.2.11) of the pointer expression before it is used as the operand
1690    //   of the delete-expression. ]
1691    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1692                      CK_NoOp);
1693
1694    if (Pointee->isArrayType() && !ArrayForm) {
1695      Diag(StartLoc, diag::warn_delete_array_type)
1696          << Type << Ex->getSourceRange()
1697          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1698      ArrayForm = true;
1699    }
1700
1701    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1702                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1703
1704    QualType PointeeElem = Context.getBaseElementType(Pointee);
1705    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1706      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1707
1708      if (!UseGlobal &&
1709          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1710        return ExprError();
1711
1712      // If we're allocating an array of records, check whether the
1713      // usual operator delete[] has a size_t parameter.
1714      if (ArrayForm) {
1715        // If the user specifically asked to use the global allocator,
1716        // we'll need to do the lookup into the class.
1717        if (UseGlobal)
1718          UsualArrayDeleteWantsSize =
1719            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1720
1721        // Otherwise, the usual operator delete[] should be the
1722        // function we just found.
1723        else if (isa<CXXMethodDecl>(OperatorDelete))
1724          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1725      }
1726
1727      if (!RD->hasTrivialDestructor())
1728        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1729          MarkDeclarationReferenced(StartLoc,
1730                                    const_cast<CXXDestructorDecl*>(Dtor));
1731          DiagnoseUseOfDecl(Dtor, StartLoc);
1732        }
1733    }
1734
1735    if (!OperatorDelete) {
1736      // Look for a global declaration.
1737      DeclareGlobalNewDelete();
1738      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1739      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1740                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1741                                 OperatorDelete))
1742        return ExprError();
1743    }
1744
1745    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1746
1747    // Check access and ambiguity of operator delete and destructor.
1748    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1749      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1750      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1751          CheckDestructorAccess(Ex->getExprLoc(), Dtor,
1752                      PDiag(diag::err_access_dtor) << PointeeElem);
1753      }
1754    }
1755
1756  }
1757
1758  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1759                                           ArrayFormAsWritten,
1760                                           UsualArrayDeleteWantsSize,
1761                                           OperatorDelete, Ex, StartLoc));
1762}
1763
1764/// \brief Check the use of the given variable as a C++ condition in an if,
1765/// while, do-while, or switch statement.
1766ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1767                                        SourceLocation StmtLoc,
1768                                        bool ConvertToBoolean) {
1769  QualType T = ConditionVar->getType();
1770
1771  // C++ [stmt.select]p2:
1772  //   The declarator shall not specify a function or an array.
1773  if (T->isFunctionType())
1774    return ExprError(Diag(ConditionVar->getLocation(),
1775                          diag::err_invalid_use_of_function_type)
1776                       << ConditionVar->getSourceRange());
1777  else if (T->isArrayType())
1778    return ExprError(Diag(ConditionVar->getLocation(),
1779                          diag::err_invalid_use_of_array_type)
1780                     << ConditionVar->getSourceRange());
1781
1782  Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
1783                                        ConditionVar->getLocation(),
1784                            ConditionVar->getType().getNonReferenceType(),
1785                                        VK_LValue);
1786  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1787    return ExprError();
1788
1789  return Owned(Condition);
1790}
1791
1792/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1793bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1794  // C++ 6.4p4:
1795  // The value of a condition that is an initialized declaration in a statement
1796  // other than a switch statement is the value of the declared variable
1797  // implicitly converted to type bool. If that conversion is ill-formed, the
1798  // program is ill-formed.
1799  // The value of a condition that is an expression is the value of the
1800  // expression, implicitly converted to bool.
1801  //
1802  return PerformContextuallyConvertToBool(CondExpr);
1803}
1804
1805/// Helper function to determine whether this is the (deprecated) C++
1806/// conversion from a string literal to a pointer to non-const char or
1807/// non-const wchar_t (for narrow and wide string literals,
1808/// respectively).
1809bool
1810Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1811  // Look inside the implicit cast, if it exists.
1812  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1813    From = Cast->getSubExpr();
1814
1815  // A string literal (2.13.4) that is not a wide string literal can
1816  // be converted to an rvalue of type "pointer to char"; a wide
1817  // string literal can be converted to an rvalue of type "pointer
1818  // to wchar_t" (C++ 4.2p2).
1819  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1820    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1821      if (const BuiltinType *ToPointeeType
1822          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1823        // This conversion is considered only when there is an
1824        // explicit appropriate pointer target type (C++ 4.2p2).
1825        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1826            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1827             (!StrLit->isWide() &&
1828              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1829               ToPointeeType->getKind() == BuiltinType::Char_S))))
1830          return true;
1831      }
1832
1833  return false;
1834}
1835
1836static ExprResult BuildCXXCastArgument(Sema &S,
1837                                       SourceLocation CastLoc,
1838                                       QualType Ty,
1839                                       CastKind Kind,
1840                                       CXXMethodDecl *Method,
1841                                       NamedDecl *FoundDecl,
1842                                       Expr *From) {
1843  switch (Kind) {
1844  default: assert(0 && "Unhandled cast kind!");
1845  case CK_ConstructorConversion: {
1846    ASTOwningVector<Expr*> ConstructorArgs(S);
1847
1848    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1849                                  MultiExprArg(&From, 1),
1850                                  CastLoc, ConstructorArgs))
1851      return ExprError();
1852
1853    ExprResult Result =
1854    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1855                            move_arg(ConstructorArgs),
1856                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1857                            SourceRange());
1858    if (Result.isInvalid())
1859      return ExprError();
1860
1861    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1862  }
1863
1864  case CK_UserDefinedConversion: {
1865    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1866
1867    // Create an implicit call expr that calls it.
1868    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
1869    if (Result.isInvalid())
1870      return ExprError();
1871
1872    return S.MaybeBindToTemporary(Result.get());
1873  }
1874  }
1875}
1876
1877/// PerformImplicitConversion - Perform an implicit conversion of the
1878/// expression From to the type ToType using the pre-computed implicit
1879/// conversion sequence ICS. Returns true if there was an error, false
1880/// otherwise. The expression From is replaced with the converted
1881/// expression. Action is the kind of conversion we're performing,
1882/// used in the error message.
1883bool
1884Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1885                                const ImplicitConversionSequence &ICS,
1886                                AssignmentAction Action, bool CStyle) {
1887  switch (ICS.getKind()) {
1888  case ImplicitConversionSequence::StandardConversion:
1889    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1890                                  CStyle))
1891      return true;
1892    break;
1893
1894  case ImplicitConversionSequence::UserDefinedConversion: {
1895
1896      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1897      CastKind CastKind;
1898      QualType BeforeToType;
1899      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1900        CastKind = CK_UserDefinedConversion;
1901
1902        // If the user-defined conversion is specified by a conversion function,
1903        // the initial standard conversion sequence converts the source type to
1904        // the implicit object parameter of the conversion function.
1905        BeforeToType = Context.getTagDeclType(Conv->getParent());
1906      } else {
1907        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
1908        CastKind = CK_ConstructorConversion;
1909        // Do no conversion if dealing with ... for the first conversion.
1910        if (!ICS.UserDefined.EllipsisConversion) {
1911          // If the user-defined conversion is specified by a constructor, the
1912          // initial standard conversion sequence converts the source type to the
1913          // type required by the argument of the constructor
1914          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1915        }
1916      }
1917      // Watch out for elipsis conversion.
1918      if (!ICS.UserDefined.EllipsisConversion) {
1919        if (PerformImplicitConversion(From, BeforeToType,
1920                                      ICS.UserDefined.Before, AA_Converting,
1921                                      CStyle))
1922          return true;
1923      }
1924
1925      ExprResult CastArg
1926        = BuildCXXCastArgument(*this,
1927                               From->getLocStart(),
1928                               ToType.getNonReferenceType(),
1929                               CastKind, cast<CXXMethodDecl>(FD),
1930                               ICS.UserDefined.FoundConversionFunction,
1931                               From);
1932
1933      if (CastArg.isInvalid())
1934        return true;
1935
1936      From = CastArg.takeAs<Expr>();
1937
1938      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1939                                       AA_Converting, CStyle);
1940  }
1941
1942  case ImplicitConversionSequence::AmbiguousConversion:
1943    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1944                          PDiag(diag::err_typecheck_ambiguous_condition)
1945                            << From->getSourceRange());
1946     return true;
1947
1948  case ImplicitConversionSequence::EllipsisConversion:
1949    assert(false && "Cannot perform an ellipsis conversion");
1950    return false;
1951
1952  case ImplicitConversionSequence::BadConversion:
1953    return true;
1954  }
1955
1956  // Everything went well.
1957  return false;
1958}
1959
1960/// PerformImplicitConversion - Perform an implicit conversion of the
1961/// expression From to the type ToType by following the standard
1962/// conversion sequence SCS. Returns true if there was an error, false
1963/// otherwise. The expression From is replaced with the converted
1964/// expression. Flavor is the context in which we're performing this
1965/// conversion, for use in error messages.
1966bool
1967Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1968                                const StandardConversionSequence& SCS,
1969                                AssignmentAction Action, bool CStyle) {
1970  // Overall FIXME: we are recomputing too many types here and doing far too
1971  // much extra work. What this means is that we need to keep track of more
1972  // information that is computed when we try the implicit conversion initially,
1973  // so that we don't need to recompute anything here.
1974  QualType FromType = From->getType();
1975
1976  if (SCS.CopyConstructor) {
1977    // FIXME: When can ToType be a reference type?
1978    assert(!ToType->isReferenceType());
1979    if (SCS.Second == ICK_Derived_To_Base) {
1980      ASTOwningVector<Expr*> ConstructorArgs(*this);
1981      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1982                                  MultiExprArg(*this, &From, 1),
1983                                  /*FIXME:ConstructLoc*/SourceLocation(),
1984                                  ConstructorArgs))
1985        return true;
1986      ExprResult FromResult =
1987        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1988                              ToType, SCS.CopyConstructor,
1989                              move_arg(ConstructorArgs),
1990                              /*ZeroInit*/ false,
1991                              CXXConstructExpr::CK_Complete,
1992                              SourceRange());
1993      if (FromResult.isInvalid())
1994        return true;
1995      From = FromResult.takeAs<Expr>();
1996      return false;
1997    }
1998    ExprResult FromResult =
1999      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2000                            ToType, SCS.CopyConstructor,
2001                            MultiExprArg(*this, &From, 1),
2002                            /*ZeroInit*/ false,
2003                            CXXConstructExpr::CK_Complete,
2004                            SourceRange());
2005
2006    if (FromResult.isInvalid())
2007      return true;
2008
2009    From = FromResult.takeAs<Expr>();
2010    return false;
2011  }
2012
2013  // Resolve overloaded function references.
2014  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2015    DeclAccessPair Found;
2016    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2017                                                          true, Found);
2018    if (!Fn)
2019      return true;
2020
2021    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2022      return true;
2023
2024    From = FixOverloadedFunctionReference(From, Found, Fn);
2025    FromType = From->getType();
2026  }
2027
2028  // Perform the first implicit conversion.
2029  switch (SCS.First) {
2030  case ICK_Identity:
2031    // Nothing to do.
2032    break;
2033
2034  case ICK_Lvalue_To_Rvalue:
2035    // Should this get its own ICK?
2036    if (From->getObjectKind() == OK_ObjCProperty) {
2037      ConvertPropertyForRValue(From);
2038      if (!From->isGLValue()) break;
2039    }
2040
2041    // Check for trivial buffer overflows.
2042    if (const ArraySubscriptExpr *AE = dyn_cast<ArraySubscriptExpr>(From))
2043      CheckArrayAccess(AE);
2044
2045    FromType = FromType.getUnqualifiedType();
2046    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2047                                    From, 0, VK_RValue);
2048    break;
2049
2050  case ICK_Array_To_Pointer:
2051    FromType = Context.getArrayDecayedType(FromType);
2052    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
2053    break;
2054
2055  case ICK_Function_To_Pointer:
2056    FromType = Context.getPointerType(FromType);
2057    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
2058    break;
2059
2060  default:
2061    assert(false && "Improper first standard conversion");
2062    break;
2063  }
2064
2065  // Perform the second implicit conversion
2066  switch (SCS.Second) {
2067  case ICK_Identity:
2068    // If both sides are functions (or pointers/references to them), there could
2069    // be incompatible exception declarations.
2070    if (CheckExceptionSpecCompatibility(From, ToType))
2071      return true;
2072    // Nothing else to do.
2073    break;
2074
2075  case ICK_NoReturn_Adjustment:
2076    // If both sides are functions (or pointers/references to them), there could
2077    // be incompatible exception declarations.
2078    if (CheckExceptionSpecCompatibility(From, ToType))
2079      return true;
2080
2081    ImpCastExprToType(From, ToType, CK_NoOp);
2082    break;
2083
2084  case ICK_Integral_Promotion:
2085  case ICK_Integral_Conversion:
2086    ImpCastExprToType(From, ToType, CK_IntegralCast);
2087    break;
2088
2089  case ICK_Floating_Promotion:
2090  case ICK_Floating_Conversion:
2091    ImpCastExprToType(From, ToType, CK_FloatingCast);
2092    break;
2093
2094  case ICK_Complex_Promotion:
2095  case ICK_Complex_Conversion: {
2096    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2097    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2098    CastKind CK;
2099    if (FromEl->isRealFloatingType()) {
2100      if (ToEl->isRealFloatingType())
2101        CK = CK_FloatingComplexCast;
2102      else
2103        CK = CK_FloatingComplexToIntegralComplex;
2104    } else if (ToEl->isRealFloatingType()) {
2105      CK = CK_IntegralComplexToFloatingComplex;
2106    } else {
2107      CK = CK_IntegralComplexCast;
2108    }
2109    ImpCastExprToType(From, ToType, CK);
2110    break;
2111  }
2112
2113  case ICK_Floating_Integral:
2114    if (ToType->isRealFloatingType())
2115      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
2116    else
2117      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
2118    break;
2119
2120  case ICK_Compatible_Conversion:
2121    ImpCastExprToType(From, ToType, CK_NoOp);
2122    break;
2123
2124  case ICK_Pointer_Conversion: {
2125    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2126      // Diagnose incompatible Objective-C conversions
2127      Diag(From->getSourceRange().getBegin(),
2128           diag::ext_typecheck_convert_incompatible_pointer)
2129        << From->getType() << ToType << Action
2130        << From->getSourceRange();
2131    }
2132
2133    CastKind Kind = CK_Invalid;
2134    CXXCastPath BasePath;
2135    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2136      return true;
2137    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2138    break;
2139  }
2140
2141  case ICK_Pointer_Member: {
2142    CastKind Kind = CK_Invalid;
2143    CXXCastPath BasePath;
2144    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2145      return true;
2146    if (CheckExceptionSpecCompatibility(From, ToType))
2147      return true;
2148    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2149    break;
2150  }
2151  case ICK_Boolean_Conversion: {
2152    CastKind Kind = CK_Invalid;
2153    switch (FromType->getScalarTypeKind()) {
2154    case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
2155    case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
2156    case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
2157    case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
2158    case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
2159    case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
2160    case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
2161    }
2162
2163    ImpCastExprToType(From, Context.BoolTy, Kind);
2164    break;
2165  }
2166
2167  case ICK_Derived_To_Base: {
2168    CXXCastPath BasePath;
2169    if (CheckDerivedToBaseConversion(From->getType(),
2170                                     ToType.getNonReferenceType(),
2171                                     From->getLocStart(),
2172                                     From->getSourceRange(),
2173                                     &BasePath,
2174                                     CStyle))
2175      return true;
2176
2177    ImpCastExprToType(From, ToType.getNonReferenceType(),
2178                      CK_DerivedToBase, CastCategory(From),
2179                      &BasePath);
2180    break;
2181  }
2182
2183  case ICK_Vector_Conversion:
2184    ImpCastExprToType(From, ToType, CK_BitCast);
2185    break;
2186
2187  case ICK_Vector_Splat:
2188    ImpCastExprToType(From, ToType, CK_VectorSplat);
2189    break;
2190
2191  case ICK_Complex_Real:
2192    // Case 1.  x -> _Complex y
2193    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2194      QualType ElType = ToComplex->getElementType();
2195      bool isFloatingComplex = ElType->isRealFloatingType();
2196
2197      // x -> y
2198      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2199        // do nothing
2200      } else if (From->getType()->isRealFloatingType()) {
2201        ImpCastExprToType(From, ElType,
2202                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
2203      } else {
2204        assert(From->getType()->isIntegerType());
2205        ImpCastExprToType(From, ElType,
2206                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
2207      }
2208      // y -> _Complex y
2209      ImpCastExprToType(From, ToType,
2210                   isFloatingComplex ? CK_FloatingRealToComplex
2211                                     : CK_IntegralRealToComplex);
2212
2213    // Case 2.  _Complex x -> y
2214    } else {
2215      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2216      assert(FromComplex);
2217
2218      QualType ElType = FromComplex->getElementType();
2219      bool isFloatingComplex = ElType->isRealFloatingType();
2220
2221      // _Complex x -> x
2222      ImpCastExprToType(From, ElType,
2223                   isFloatingComplex ? CK_FloatingComplexToReal
2224                                     : CK_IntegralComplexToReal);
2225
2226      // x -> y
2227      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2228        // do nothing
2229      } else if (ToType->isRealFloatingType()) {
2230        ImpCastExprToType(From, ToType,
2231                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
2232      } else {
2233        assert(ToType->isIntegerType());
2234        ImpCastExprToType(From, ToType,
2235                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
2236      }
2237    }
2238    break;
2239
2240  case ICK_Block_Pointer_Conversion: {
2241      ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue);
2242      break;
2243    }
2244
2245  case ICK_Lvalue_To_Rvalue:
2246  case ICK_Array_To_Pointer:
2247  case ICK_Function_To_Pointer:
2248  case ICK_Qualification:
2249  case ICK_Num_Conversion_Kinds:
2250    assert(false && "Improper second standard conversion");
2251    break;
2252  }
2253
2254  switch (SCS.Third) {
2255  case ICK_Identity:
2256    // Nothing to do.
2257    break;
2258
2259  case ICK_Qualification: {
2260    // The qualification keeps the category of the inner expression, unless the
2261    // target type isn't a reference.
2262    ExprValueKind VK = ToType->isReferenceType() ?
2263                                  CastCategory(From) : VK_RValue;
2264    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2265                      CK_NoOp, VK);
2266
2267    if (SCS.DeprecatedStringLiteralToCharPtr)
2268      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2269        << ToType.getNonReferenceType();
2270
2271    break;
2272    }
2273
2274  default:
2275    assert(false && "Improper third standard conversion");
2276    break;
2277  }
2278
2279  return false;
2280}
2281
2282ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2283                                     SourceLocation KWLoc,
2284                                     ParsedType Ty,
2285                                     SourceLocation RParen) {
2286  TypeSourceInfo *TSInfo;
2287  QualType T = GetTypeFromParser(Ty, &TSInfo);
2288
2289  if (!TSInfo)
2290    TSInfo = Context.getTrivialTypeSourceInfo(T);
2291  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2292}
2293
2294static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2295                                   SourceLocation KeyLoc) {
2296  // FIXME: For many of these traits, we need a complete type before we can
2297  // check these properties.
2298  assert(!T->isDependentType() &&
2299         "Cannot evaluate traits for dependent types.");
2300  ASTContext &C = Self.Context;
2301  switch(UTT) {
2302  default: assert(false && "Unknown type trait or not implemented");
2303  case UTT_IsPOD: return T->isPODType();
2304  case UTT_IsLiteral: return T->isLiteralType();
2305  case UTT_IsClass: // Fallthrough
2306  case UTT_IsUnion:
2307    if (const RecordType *Record = T->getAs<RecordType>()) {
2308      bool Union = Record->getDecl()->isUnion();
2309      return UTT == UTT_IsUnion ? Union : !Union;
2310    }
2311    return false;
2312  case UTT_IsEnum: return T->isEnumeralType();
2313  case UTT_IsPolymorphic:
2314    if (const RecordType *Record = T->getAs<RecordType>()) {
2315      // Type traits are only parsed in C++, so we've got CXXRecords.
2316      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2317    }
2318    return false;
2319  case UTT_IsAbstract:
2320    if (const RecordType *RT = T->getAs<RecordType>())
2321      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2322    return false;
2323  case UTT_IsEmpty:
2324    if (const RecordType *Record = T->getAs<RecordType>()) {
2325      return !Record->getDecl()->isUnion()
2326          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2327    }
2328    return false;
2329  case UTT_HasTrivialConstructor:
2330    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2331    //   If __is_pod (type) is true then the trait is true, else if type is
2332    //   a cv class or union type (or array thereof) with a trivial default
2333    //   constructor ([class.ctor]) then the trait is true, else it is false.
2334    if (T->isPODType())
2335      return true;
2336    if (const RecordType *RT =
2337          C.getBaseElementType(T)->getAs<RecordType>())
2338      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2339    return false;
2340  case UTT_HasTrivialCopy:
2341    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2342    //   If __is_pod (type) is true or type is a reference type then
2343    //   the trait is true, else if type is a cv class or union type
2344    //   with a trivial copy constructor ([class.copy]) then the trait
2345    //   is true, else it is false.
2346    if (T->isPODType() || T->isReferenceType())
2347      return true;
2348    if (const RecordType *RT = T->getAs<RecordType>())
2349      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2350    return false;
2351  case UTT_HasTrivialAssign:
2352    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2353    //   If type is const qualified or is a reference type then the
2354    //   trait is false. Otherwise if __is_pod (type) is true then the
2355    //   trait is true, else if type is a cv class or union type with
2356    //   a trivial copy assignment ([class.copy]) then the trait is
2357    //   true, else it is false.
2358    // Note: the const and reference restrictions are interesting,
2359    // given that const and reference members don't prevent a class
2360    // from having a trivial copy assignment operator (but do cause
2361    // errors if the copy assignment operator is actually used, q.v.
2362    // [class.copy]p12).
2363
2364    if (C.getBaseElementType(T).isConstQualified())
2365      return false;
2366    if (T->isPODType())
2367      return true;
2368    if (const RecordType *RT = T->getAs<RecordType>())
2369      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2370    return false;
2371  case UTT_HasTrivialDestructor:
2372    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2373    //   If __is_pod (type) is true or type is a reference type
2374    //   then the trait is true, else if type is a cv class or union
2375    //   type (or array thereof) with a trivial destructor
2376    //   ([class.dtor]) then the trait is true, else it is
2377    //   false.
2378    if (T->isPODType() || T->isReferenceType())
2379      return true;
2380    if (const RecordType *RT =
2381          C.getBaseElementType(T)->getAs<RecordType>())
2382      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2383    return false;
2384  // TODO: Propagate nothrowness for implicitly declared special members.
2385  case UTT_HasNothrowAssign:
2386    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2387    //   If type is const qualified or is a reference type then the
2388    //   trait is false. Otherwise if __has_trivial_assign (type)
2389    //   is true then the trait is true, else if type is a cv class
2390    //   or union type with copy assignment operators that are known
2391    //   not to throw an exception then the trait is true, else it is
2392    //   false.
2393    if (C.getBaseElementType(T).isConstQualified())
2394      return false;
2395    if (T->isReferenceType())
2396      return false;
2397    if (T->isPODType())
2398      return true;
2399    if (const RecordType *RT = T->getAs<RecordType>()) {
2400      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2401      if (RD->hasTrivialCopyAssignment())
2402        return true;
2403
2404      bool FoundAssign = false;
2405      bool AllNoThrow = true;
2406      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2407      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2408                       Sema::LookupOrdinaryName);
2409      if (Self.LookupQualifiedName(Res, RD)) {
2410        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2411             Op != OpEnd; ++Op) {
2412          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2413          if (Operator->isCopyAssignmentOperator()) {
2414            FoundAssign = true;
2415            const FunctionProtoType *CPT
2416                = Operator->getType()->getAs<FunctionProtoType>();
2417            if (!CPT->hasEmptyExceptionSpec()) {
2418              AllNoThrow = false;
2419              break;
2420            }
2421          }
2422        }
2423      }
2424
2425      return FoundAssign && AllNoThrow;
2426    }
2427    return false;
2428  case UTT_HasNothrowCopy:
2429    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2430    //   If __has_trivial_copy (type) is true then the trait is true, else
2431    //   if type is a cv class or union type with copy constructors that are
2432    //   known not to throw an exception then the trait is true, else it is
2433    //   false.
2434    if (T->isPODType() || T->isReferenceType())
2435      return true;
2436    if (const RecordType *RT = T->getAs<RecordType>()) {
2437      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2438      if (RD->hasTrivialCopyConstructor())
2439        return true;
2440
2441      bool FoundConstructor = false;
2442      bool AllNoThrow = true;
2443      unsigned FoundTQs;
2444      DeclContext::lookup_const_iterator Con, ConEnd;
2445      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2446           Con != ConEnd; ++Con) {
2447        // A template constructor is never a copy constructor.
2448        // FIXME: However, it may actually be selected at the actual overload
2449        // resolution point.
2450        if (isa<FunctionTemplateDecl>(*Con))
2451          continue;
2452        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2453        if (Constructor->isCopyConstructor(FoundTQs)) {
2454          FoundConstructor = true;
2455          const FunctionProtoType *CPT
2456              = Constructor->getType()->getAs<FunctionProtoType>();
2457          // TODO: check whether evaluating default arguments can throw.
2458          // For now, we'll be conservative and assume that they can throw.
2459          if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
2460            AllNoThrow = false;
2461            break;
2462          }
2463        }
2464      }
2465
2466      return FoundConstructor && AllNoThrow;
2467    }
2468    return false;
2469  case UTT_HasNothrowConstructor:
2470    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2471    //   If __has_trivial_constructor (type) is true then the trait is
2472    //   true, else if type is a cv class or union type (or array
2473    //   thereof) with a default constructor that is known not to
2474    //   throw an exception then the trait is true, else it is false.
2475    if (T->isPODType())
2476      return true;
2477    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2478      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2479      if (RD->hasTrivialConstructor())
2480        return true;
2481
2482      DeclContext::lookup_const_iterator Con, ConEnd;
2483      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2484           Con != ConEnd; ++Con) {
2485        // FIXME: In C++0x, a constructor template can be a default constructor.
2486        if (isa<FunctionTemplateDecl>(*Con))
2487          continue;
2488        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2489        if (Constructor->isDefaultConstructor()) {
2490          const FunctionProtoType *CPT
2491              = Constructor->getType()->getAs<FunctionProtoType>();
2492          // TODO: check whether evaluating default arguments can throw.
2493          // For now, we'll be conservative and assume that they can throw.
2494          return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
2495        }
2496      }
2497    }
2498    return false;
2499  case UTT_HasVirtualDestructor:
2500    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2501    //   If type is a class type with a virtual destructor ([class.dtor])
2502    //   then the trait is true, else it is false.
2503    if (const RecordType *Record = T->getAs<RecordType>()) {
2504      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2505      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2506        return Destructor->isVirtual();
2507    }
2508    return false;
2509  }
2510}
2511
2512ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2513                                     SourceLocation KWLoc,
2514                                     TypeSourceInfo *TSInfo,
2515                                     SourceLocation RParen) {
2516  QualType T = TSInfo->getType();
2517
2518  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2519  // all traits except __is_class, __is_enum and __is_union require a the type
2520  // to be complete, an array of unknown bound, or void.
2521  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2522    QualType E = T;
2523    if (T->isIncompleteArrayType())
2524      E = Context.getAsArrayType(T)->getElementType();
2525    if (!T->isVoidType() &&
2526        RequireCompleteType(KWLoc, E,
2527                            diag::err_incomplete_type_used_in_type_trait_expr))
2528      return ExprError();
2529  }
2530
2531  bool Value = false;
2532  if (!T->isDependentType())
2533    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2534
2535  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2536                                                RParen, Context.BoolTy));
2537}
2538
2539ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2540                                      SourceLocation KWLoc,
2541                                      ParsedType LhsTy,
2542                                      ParsedType RhsTy,
2543                                      SourceLocation RParen) {
2544  TypeSourceInfo *LhsTSInfo;
2545  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2546  if (!LhsTSInfo)
2547    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2548
2549  TypeSourceInfo *RhsTSInfo;
2550  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2551  if (!RhsTSInfo)
2552    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2553
2554  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2555}
2556
2557static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2558                                    QualType LhsT, QualType RhsT,
2559                                    SourceLocation KeyLoc) {
2560  assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
2561         "Cannot evaluate traits for dependent types.");
2562
2563  switch(BTT) {
2564  case BTT_IsBaseOf: {
2565    // C++0x [meta.rel]p2
2566    // Base is a base class of Derived without regard to cv-qualifiers or
2567    // Base and Derived are not unions and name the same class type without
2568    // regard to cv-qualifiers.
2569
2570    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2571    if (!lhsRecord) return false;
2572
2573    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
2574    if (!rhsRecord) return false;
2575
2576    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
2577             == (lhsRecord == rhsRecord));
2578
2579    if (lhsRecord == rhsRecord)
2580      return !lhsRecord->getDecl()->isUnion();
2581
2582    // C++0x [meta.rel]p2:
2583    //   If Base and Derived are class types and are different types
2584    //   (ignoring possible cv-qualifiers) then Derived shall be a
2585    //   complete type.
2586    if (Self.RequireCompleteType(KeyLoc, RhsT,
2587                          diag::err_incomplete_type_used_in_type_trait_expr))
2588      return false;
2589
2590    return cast<CXXRecordDecl>(rhsRecord->getDecl())
2591      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
2592  }
2593
2594  case BTT_TypeCompatible:
2595    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2596                                           RhsT.getUnqualifiedType());
2597
2598  case BTT_IsConvertibleTo: {
2599    // C++0x [meta.rel]p4:
2600    //   Given the following function prototype:
2601    //
2602    //     template <class T>
2603    //       typename add_rvalue_reference<T>::type create();
2604    //
2605    //   the predicate condition for a template specialization
2606    //   is_convertible<From, To> shall be satisfied if and only if
2607    //   the return expression in the following code would be
2608    //   well-formed, including any implicit conversions to the return
2609    //   type of the function:
2610    //
2611    //     To test() {
2612    //       return create<From>();
2613    //     }
2614    //
2615    //   Access checking is performed as if in a context unrelated to To and
2616    //   From. Only the validity of the immediate context of the expression
2617    //   of the return-statement (including conversions to the return type)
2618    //   is considered.
2619    //
2620    // We model the initialization as a copy-initialization of a temporary
2621    // of the appropriate type, which for this expression is identical to the
2622    // return statement (since NRVO doesn't apply).
2623    if (LhsT->isObjectType() || LhsT->isFunctionType())
2624      LhsT = Self.Context.getRValueReferenceType(LhsT);
2625
2626    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
2627    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
2628                         Expr::getValueKindForType(LhsT));
2629    Expr *FromPtr = &From;
2630    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
2631                                                           SourceLocation()));
2632
2633    // Perform the initialization within a SFINAE trap at translation unit
2634    // scope.
2635    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
2636    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
2637    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
2638    if (Init.getKind() == InitializationSequence::FailedSequence)
2639      return false;
2640
2641    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
2642    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
2643  }
2644  }
2645  llvm_unreachable("Unknown type trait or not implemented");
2646}
2647
2648ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
2649                                      SourceLocation KWLoc,
2650                                      TypeSourceInfo *LhsTSInfo,
2651                                      TypeSourceInfo *RhsTSInfo,
2652                                      SourceLocation RParen) {
2653  QualType LhsT = LhsTSInfo->getType();
2654  QualType RhsT = RhsTSInfo->getType();
2655
2656  if (BTT == BTT_TypeCompatible) {
2657    if (getLangOptions().CPlusPlus) {
2658      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
2659        << SourceRange(KWLoc, RParen);
2660      return ExprError();
2661    }
2662  }
2663
2664  bool Value = false;
2665  if (!LhsT->isDependentType() && !RhsT->isDependentType())
2666    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
2667
2668  // Select trait result type.
2669  QualType ResultType;
2670  switch (BTT) {
2671  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
2672  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
2673  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
2674  }
2675
2676  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
2677                                                 RhsTSInfo, Value, RParen,
2678                                                 ResultType));
2679}
2680
2681QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
2682                                            ExprValueKind &VK,
2683                                            SourceLocation Loc,
2684                                            bool isIndirect) {
2685  const char *OpSpelling = isIndirect ? "->*" : ".*";
2686  // C++ 5.5p2
2687  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2688  //   be of type "pointer to member of T" (where T is a completely-defined
2689  //   class type) [...]
2690  QualType RType = rex->getType();
2691  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2692  if (!MemPtr) {
2693    Diag(Loc, diag::err_bad_memptr_rhs)
2694      << OpSpelling << RType << rex->getSourceRange();
2695    return QualType();
2696  }
2697
2698  QualType Class(MemPtr->getClass(), 0);
2699
2700  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
2701  // member pointer points must be completely-defined. However, there is no
2702  // reason for this semantic distinction, and the rule is not enforced by
2703  // other compilers. Therefore, we do not check this property, as it is
2704  // likely to be considered a defect.
2705
2706  // C++ 5.5p2
2707  //   [...] to its first operand, which shall be of class T or of a class of
2708  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2709  //   such a class]
2710  QualType LType = lex->getType();
2711  if (isIndirect) {
2712    if (const PointerType *Ptr = LType->getAs<PointerType>())
2713      LType = Ptr->getPointeeType();
2714    else {
2715      Diag(Loc, diag::err_bad_memptr_lhs)
2716        << OpSpelling << 1 << LType
2717        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2718      return QualType();
2719    }
2720  }
2721
2722  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2723    // If we want to check the hierarchy, we need a complete type.
2724    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2725        << OpSpelling << (int)isIndirect)) {
2726      return QualType();
2727    }
2728    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2729                       /*DetectVirtual=*/false);
2730    // FIXME: Would it be useful to print full ambiguity paths, or is that
2731    // overkill?
2732    if (!IsDerivedFrom(LType, Class, Paths) ||
2733        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2734      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2735        << (int)isIndirect << lex->getType();
2736      return QualType();
2737    }
2738    // Cast LHS to type of use.
2739    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2740    ExprValueKind VK =
2741        isIndirect ? VK_RValue : CastCategory(lex);
2742
2743    CXXCastPath BasePath;
2744    BuildBasePathArray(Paths, BasePath);
2745    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2746  }
2747
2748  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2749    // Diagnose use of pointer-to-member type which when used as
2750    // the functional cast in a pointer-to-member expression.
2751    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2752     return QualType();
2753  }
2754
2755  // C++ 5.5p2
2756  //   The result is an object or a function of the type specified by the
2757  //   second operand.
2758  // The cv qualifiers are the union of those in the pointer and the left side,
2759  // in accordance with 5.5p5 and 5.2.5.
2760  // FIXME: This returns a dereferenced member function pointer as a normal
2761  // function type. However, the only operation valid on such functions is
2762  // calling them. There's also a GCC extension to get a function pointer to the
2763  // thing, which is another complication, because this type - unlike the type
2764  // that is the result of this expression - takes the class as the first
2765  // argument.
2766  // We probably need a "MemberFunctionClosureType" or something like that.
2767  QualType Result = MemPtr->getPointeeType();
2768  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2769
2770  // C++0x [expr.mptr.oper]p6:
2771  //   In a .* expression whose object expression is an rvalue, the program is
2772  //   ill-formed if the second operand is a pointer to member function with
2773  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
2774  //   expression is an lvalue, the program is ill-formed if the second operand
2775  //   is a pointer to member function with ref-qualifier &&.
2776  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
2777    switch (Proto->getRefQualifier()) {
2778    case RQ_None:
2779      // Do nothing
2780      break;
2781
2782    case RQ_LValue:
2783      if (!isIndirect && !lex->Classify(Context).isLValue())
2784        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2785          << RType << 1 << lex->getSourceRange();
2786      break;
2787
2788    case RQ_RValue:
2789      if (isIndirect || !lex->Classify(Context).isRValue())
2790        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2791          << RType << 0 << lex->getSourceRange();
2792      break;
2793    }
2794  }
2795
2796  // C++ [expr.mptr.oper]p6:
2797  //   The result of a .* expression whose second operand is a pointer
2798  //   to a data member is of the same value category as its
2799  //   first operand. The result of a .* expression whose second
2800  //   operand is a pointer to a member function is a prvalue. The
2801  //   result of an ->* expression is an lvalue if its second operand
2802  //   is a pointer to data member and a prvalue otherwise.
2803  if (Result->isFunctionType())
2804    VK = VK_RValue;
2805  else if (isIndirect)
2806    VK = VK_LValue;
2807  else
2808    VK = lex->getValueKind();
2809
2810  return Result;
2811}
2812
2813/// \brief Try to convert a type to another according to C++0x 5.16p3.
2814///
2815/// This is part of the parameter validation for the ? operator. If either
2816/// value operand is a class type, the two operands are attempted to be
2817/// converted to each other. This function does the conversion in one direction.
2818/// It returns true if the program is ill-formed and has already been diagnosed
2819/// as such.
2820static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2821                                SourceLocation QuestionLoc,
2822                                bool &HaveConversion,
2823                                QualType &ToType) {
2824  HaveConversion = false;
2825  ToType = To->getType();
2826
2827  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2828                                                           SourceLocation());
2829  // C++0x 5.16p3
2830  //   The process for determining whether an operand expression E1 of type T1
2831  //   can be converted to match an operand expression E2 of type T2 is defined
2832  //   as follows:
2833  //   -- If E2 is an lvalue:
2834  bool ToIsLvalue = To->isLValue();
2835  if (ToIsLvalue) {
2836    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2837    //   type "lvalue reference to T2", subject to the constraint that in the
2838    //   conversion the reference must bind directly to E1.
2839    QualType T = Self.Context.getLValueReferenceType(ToType);
2840    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2841
2842    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2843    if (InitSeq.isDirectReferenceBinding()) {
2844      ToType = T;
2845      HaveConversion = true;
2846      return false;
2847    }
2848
2849    if (InitSeq.isAmbiguous())
2850      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2851  }
2852
2853  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2854  //      -- if E1 and E2 have class type, and the underlying class types are
2855  //         the same or one is a base class of the other:
2856  QualType FTy = From->getType();
2857  QualType TTy = To->getType();
2858  const RecordType *FRec = FTy->getAs<RecordType>();
2859  const RecordType *TRec = TTy->getAs<RecordType>();
2860  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2861                       Self.IsDerivedFrom(FTy, TTy);
2862  if (FRec && TRec &&
2863      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2864    //         E1 can be converted to match E2 if the class of T2 is the
2865    //         same type as, or a base class of, the class of T1, and
2866    //         [cv2 > cv1].
2867    if (FRec == TRec || FDerivedFromT) {
2868      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2869        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2870        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2871        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2872          HaveConversion = true;
2873          return false;
2874        }
2875
2876        if (InitSeq.isAmbiguous())
2877          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2878      }
2879    }
2880
2881    return false;
2882  }
2883
2884  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2885  //        implicitly converted to the type that expression E2 would have
2886  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2887  //        an rvalue).
2888  //
2889  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2890  // to the array-to-pointer or function-to-pointer conversions.
2891  if (!TTy->getAs<TagType>())
2892    TTy = TTy.getUnqualifiedType();
2893
2894  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2895  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2896  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2897  ToType = TTy;
2898  if (InitSeq.isAmbiguous())
2899    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2900
2901  return false;
2902}
2903
2904/// \brief Try to find a common type for two according to C++0x 5.16p5.
2905///
2906/// This is part of the parameter validation for the ? operator. If either
2907/// value operand is a class type, overload resolution is used to find a
2908/// conversion to a common type.
2909static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2910                                    SourceLocation QuestionLoc) {
2911  Expr *Args[2] = { LHS, RHS };
2912  OverloadCandidateSet CandidateSet(QuestionLoc);
2913  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
2914                                    CandidateSet);
2915
2916  OverloadCandidateSet::iterator Best;
2917  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
2918    case OR_Success:
2919      // We found a match. Perform the conversions on the arguments and move on.
2920      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2921                                         Best->Conversions[0], Sema::AA_Converting) ||
2922          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2923                                         Best->Conversions[1], Sema::AA_Converting))
2924        break;
2925      return false;
2926
2927    case OR_No_Viable_Function:
2928
2929      // Emit a better diagnostic if one of the expressions is a null pointer
2930      // constant and the other is a pointer type. In this case, the user most
2931      // likely forgot to take the address of the other expression.
2932      if (Self.DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
2933        return true;
2934
2935      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2936        << LHS->getType() << RHS->getType()
2937        << LHS->getSourceRange() << RHS->getSourceRange();
2938      return true;
2939
2940    case OR_Ambiguous:
2941      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
2942        << LHS->getType() << RHS->getType()
2943        << LHS->getSourceRange() << RHS->getSourceRange();
2944      // FIXME: Print the possible common types by printing the return types of
2945      // the viable candidates.
2946      break;
2947
2948    case OR_Deleted:
2949      assert(false && "Conditional operator has only built-in overloads");
2950      break;
2951  }
2952  return true;
2953}
2954
2955/// \brief Perform an "extended" implicit conversion as returned by
2956/// TryClassUnification.
2957static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2958  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2959  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2960                                                           SourceLocation());
2961  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2962  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2963  if (Result.isInvalid())
2964    return true;
2965
2966  E = Result.takeAs<Expr>();
2967  return false;
2968}
2969
2970/// \brief Check the operands of ?: under C++ semantics.
2971///
2972/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2973/// extension. In this case, LHS == Cond. (But they're not aliases.)
2974QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2975                                           ExprValueKind &VK, ExprObjectKind &OK,
2976                                           SourceLocation QuestionLoc) {
2977  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2978  // interface pointers.
2979
2980  // C++0x 5.16p1
2981  //   The first expression is contextually converted to bool.
2982  if (!Cond->isTypeDependent()) {
2983    if (CheckCXXBooleanCondition(Cond))
2984      return QualType();
2985  }
2986
2987  // Assume r-value.
2988  VK = VK_RValue;
2989  OK = OK_Ordinary;
2990
2991  // Either of the arguments dependent?
2992  if (LHS->isTypeDependent() || RHS->isTypeDependent())
2993    return Context.DependentTy;
2994
2995  // C++0x 5.16p2
2996  //   If either the second or the third operand has type (cv) void, ...
2997  QualType LTy = LHS->getType();
2998  QualType RTy = RHS->getType();
2999  bool LVoid = LTy->isVoidType();
3000  bool RVoid = RTy->isVoidType();
3001  if (LVoid || RVoid) {
3002    //   ... then the [l2r] conversions are performed on the second and third
3003    //   operands ...
3004    DefaultFunctionArrayLvalueConversion(LHS);
3005    DefaultFunctionArrayLvalueConversion(RHS);
3006    LTy = LHS->getType();
3007    RTy = RHS->getType();
3008
3009    //   ... and one of the following shall hold:
3010    //   -- The second or the third operand (but not both) is a throw-
3011    //      expression; the result is of the type of the other and is an rvalue.
3012    bool LThrow = isa<CXXThrowExpr>(LHS);
3013    bool RThrow = isa<CXXThrowExpr>(RHS);
3014    if (LThrow && !RThrow)
3015      return RTy;
3016    if (RThrow && !LThrow)
3017      return LTy;
3018
3019    //   -- Both the second and third operands have type void; the result is of
3020    //      type void and is an rvalue.
3021    if (LVoid && RVoid)
3022      return Context.VoidTy;
3023
3024    // Neither holds, error.
3025    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3026      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3027      << LHS->getSourceRange() << RHS->getSourceRange();
3028    return QualType();
3029  }
3030
3031  // Neither is void.
3032
3033  // C++0x 5.16p3
3034  //   Otherwise, if the second and third operand have different types, and
3035  //   either has (cv) class type, and attempt is made to convert each of those
3036  //   operands to the other.
3037  if (!Context.hasSameType(LTy, RTy) &&
3038      (LTy->isRecordType() || RTy->isRecordType())) {
3039    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3040    // These return true if a single direction is already ambiguous.
3041    QualType L2RType, R2LType;
3042    bool HaveL2R, HaveR2L;
3043    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
3044      return QualType();
3045    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
3046      return QualType();
3047
3048    //   If both can be converted, [...] the program is ill-formed.
3049    if (HaveL2R && HaveR2L) {
3050      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3051        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
3052      return QualType();
3053    }
3054
3055    //   If exactly one conversion is possible, that conversion is applied to
3056    //   the chosen operand and the converted operands are used in place of the
3057    //   original operands for the remainder of this section.
3058    if (HaveL2R) {
3059      if (ConvertForConditional(*this, LHS, L2RType))
3060        return QualType();
3061      LTy = LHS->getType();
3062    } else if (HaveR2L) {
3063      if (ConvertForConditional(*this, RHS, R2LType))
3064        return QualType();
3065      RTy = RHS->getType();
3066    }
3067  }
3068
3069  // C++0x 5.16p4
3070  //   If the second and third operands are glvalues of the same value
3071  //   category and have the same type, the result is of that type and
3072  //   value category and it is a bit-field if the second or the third
3073  //   operand is a bit-field, or if both are bit-fields.
3074  // We only extend this to bitfields, not to the crazy other kinds of
3075  // l-values.
3076  bool Same = Context.hasSameType(LTy, RTy);
3077  if (Same &&
3078      LHS->isGLValue() &&
3079      LHS->getValueKind() == RHS->getValueKind() &&
3080      LHS->isOrdinaryOrBitFieldObject() &&
3081      RHS->isOrdinaryOrBitFieldObject()) {
3082    VK = LHS->getValueKind();
3083    if (LHS->getObjectKind() == OK_BitField ||
3084        RHS->getObjectKind() == OK_BitField)
3085      OK = OK_BitField;
3086    return LTy;
3087  }
3088
3089  // C++0x 5.16p5
3090  //   Otherwise, the result is an rvalue. If the second and third operands
3091  //   do not have the same type, and either has (cv) class type, ...
3092  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3093    //   ... overload resolution is used to determine the conversions (if any)
3094    //   to be applied to the operands. If the overload resolution fails, the
3095    //   program is ill-formed.
3096    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3097      return QualType();
3098  }
3099
3100  // C++0x 5.16p6
3101  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3102  //   conversions are performed on the second and third operands.
3103  DefaultFunctionArrayLvalueConversion(LHS);
3104  DefaultFunctionArrayLvalueConversion(RHS);
3105  LTy = LHS->getType();
3106  RTy = RHS->getType();
3107
3108  //   After those conversions, one of the following shall hold:
3109  //   -- The second and third operands have the same type; the result
3110  //      is of that type. If the operands have class type, the result
3111  //      is a prvalue temporary of the result type, which is
3112  //      copy-initialized from either the second operand or the third
3113  //      operand depending on the value of the first operand.
3114  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3115    if (LTy->isRecordType()) {
3116      // The operands have class type. Make a temporary copy.
3117      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3118      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3119                                                     SourceLocation(),
3120                                                     Owned(LHS));
3121      if (LHSCopy.isInvalid())
3122        return QualType();
3123
3124      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3125                                                     SourceLocation(),
3126                                                     Owned(RHS));
3127      if (RHSCopy.isInvalid())
3128        return QualType();
3129
3130      LHS = LHSCopy.takeAs<Expr>();
3131      RHS = RHSCopy.takeAs<Expr>();
3132    }
3133
3134    return LTy;
3135  }
3136
3137  // Extension: conditional operator involving vector types.
3138  if (LTy->isVectorType() || RTy->isVectorType())
3139    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3140
3141  //   -- The second and third operands have arithmetic or enumeration type;
3142  //      the usual arithmetic conversions are performed to bring them to a
3143  //      common type, and the result is of that type.
3144  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3145    UsualArithmeticConversions(LHS, RHS);
3146    return LHS->getType();
3147  }
3148
3149  //   -- The second and third operands have pointer type, or one has pointer
3150  //      type and the other is a null pointer constant; pointer conversions
3151  //      and qualification conversions are performed to bring them to their
3152  //      composite pointer type. The result is of the composite pointer type.
3153  //   -- The second and third operands have pointer to member type, or one has
3154  //      pointer to member type and the other is a null pointer constant;
3155  //      pointer to member conversions and qualification conversions are
3156  //      performed to bring them to a common type, whose cv-qualification
3157  //      shall match the cv-qualification of either the second or the third
3158  //      operand. The result is of the common type.
3159  bool NonStandardCompositeType = false;
3160  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3161                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3162  if (!Composite.isNull()) {
3163    if (NonStandardCompositeType)
3164      Diag(QuestionLoc,
3165           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3166        << LTy << RTy << Composite
3167        << LHS->getSourceRange() << RHS->getSourceRange();
3168
3169    return Composite;
3170  }
3171
3172  // Similarly, attempt to find composite type of two objective-c pointers.
3173  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3174  if (!Composite.isNull())
3175    return Composite;
3176
3177  // Check if we are using a null with a non-pointer type.
3178  if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
3179    return QualType();
3180
3181  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3182    << LHS->getType() << RHS->getType()
3183    << LHS->getSourceRange() << RHS->getSourceRange();
3184  return QualType();
3185}
3186
3187/// \brief Find a merged pointer type and convert the two expressions to it.
3188///
3189/// This finds the composite pointer type (or member pointer type) for @p E1
3190/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3191/// type and returns it.
3192/// It does not emit diagnostics.
3193///
3194/// \param Loc The location of the operator requiring these two expressions to
3195/// be converted to the composite pointer type.
3196///
3197/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3198/// a non-standard (but still sane) composite type to which both expressions
3199/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3200/// will be set true.
3201QualType Sema::FindCompositePointerType(SourceLocation Loc,
3202                                        Expr *&E1, Expr *&E2,
3203                                        bool *NonStandardCompositeType) {
3204  if (NonStandardCompositeType)
3205    *NonStandardCompositeType = false;
3206
3207  assert(getLangOptions().CPlusPlus && "This function assumes C++");
3208  QualType T1 = E1->getType(), T2 = E2->getType();
3209
3210  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3211      !T2->isAnyPointerType() && !T2->isMemberPointerType())
3212   return QualType();
3213
3214  // C++0x 5.9p2
3215  //   Pointer conversions and qualification conversions are performed on
3216  //   pointer operands to bring them to their composite pointer type. If
3217  //   one operand is a null pointer constant, the composite pointer type is
3218  //   the type of the other operand.
3219  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3220    if (T2->isMemberPointerType())
3221      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
3222    else
3223      ImpCastExprToType(E1, T2, CK_NullToPointer);
3224    return T2;
3225  }
3226  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3227    if (T1->isMemberPointerType())
3228      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
3229    else
3230      ImpCastExprToType(E2, T1, CK_NullToPointer);
3231    return T1;
3232  }
3233
3234  // Now both have to be pointers or member pointers.
3235  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3236      (!T2->isPointerType() && !T2->isMemberPointerType()))
3237    return QualType();
3238
3239  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3240  //   the other has type "pointer to cv2 T" and the composite pointer type is
3241  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3242  //   Otherwise, the composite pointer type is a pointer type similar to the
3243  //   type of one of the operands, with a cv-qualification signature that is
3244  //   the union of the cv-qualification signatures of the operand types.
3245  // In practice, the first part here is redundant; it's subsumed by the second.
3246  // What we do here is, we build the two possible composite types, and try the
3247  // conversions in both directions. If only one works, or if the two composite
3248  // types are the same, we have succeeded.
3249  // FIXME: extended qualifiers?
3250  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3251  QualifierVector QualifierUnion;
3252  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3253      ContainingClassVector;
3254  ContainingClassVector MemberOfClass;
3255  QualType Composite1 = Context.getCanonicalType(T1),
3256           Composite2 = Context.getCanonicalType(T2);
3257  unsigned NeedConstBefore = 0;
3258  do {
3259    const PointerType *Ptr1, *Ptr2;
3260    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3261        (Ptr2 = Composite2->getAs<PointerType>())) {
3262      Composite1 = Ptr1->getPointeeType();
3263      Composite2 = Ptr2->getPointeeType();
3264
3265      // If we're allowed to create a non-standard composite type, keep track
3266      // of where we need to fill in additional 'const' qualifiers.
3267      if (NonStandardCompositeType &&
3268          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3269        NeedConstBefore = QualifierUnion.size();
3270
3271      QualifierUnion.push_back(
3272                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3273      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3274      continue;
3275    }
3276
3277    const MemberPointerType *MemPtr1, *MemPtr2;
3278    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3279        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3280      Composite1 = MemPtr1->getPointeeType();
3281      Composite2 = MemPtr2->getPointeeType();
3282
3283      // If we're allowed to create a non-standard composite type, keep track
3284      // of where we need to fill in additional 'const' qualifiers.
3285      if (NonStandardCompositeType &&
3286          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3287        NeedConstBefore = QualifierUnion.size();
3288
3289      QualifierUnion.push_back(
3290                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3291      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3292                                             MemPtr2->getClass()));
3293      continue;
3294    }
3295
3296    // FIXME: block pointer types?
3297
3298    // Cannot unwrap any more types.
3299    break;
3300  } while (true);
3301
3302  if (NeedConstBefore && NonStandardCompositeType) {
3303    // Extension: Add 'const' to qualifiers that come before the first qualifier
3304    // mismatch, so that our (non-standard!) composite type meets the
3305    // requirements of C++ [conv.qual]p4 bullet 3.
3306    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3307      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3308        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3309        *NonStandardCompositeType = true;
3310      }
3311    }
3312  }
3313
3314  // Rewrap the composites as pointers or member pointers with the union CVRs.
3315  ContainingClassVector::reverse_iterator MOC
3316    = MemberOfClass.rbegin();
3317  for (QualifierVector::reverse_iterator
3318         I = QualifierUnion.rbegin(),
3319         E = QualifierUnion.rend();
3320       I != E; (void)++I, ++MOC) {
3321    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3322    if (MOC->first && MOC->second) {
3323      // Rebuild member pointer type
3324      Composite1 = Context.getMemberPointerType(
3325                                    Context.getQualifiedType(Composite1, Quals),
3326                                    MOC->first);
3327      Composite2 = Context.getMemberPointerType(
3328                                    Context.getQualifiedType(Composite2, Quals),
3329                                    MOC->second);
3330    } else {
3331      // Rebuild pointer type
3332      Composite1
3333        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3334      Composite2
3335        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3336    }
3337  }
3338
3339  // Try to convert to the first composite pointer type.
3340  InitializedEntity Entity1
3341    = InitializedEntity::InitializeTemporary(Composite1);
3342  InitializationKind Kind
3343    = InitializationKind::CreateCopy(Loc, SourceLocation());
3344  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3345  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3346
3347  if (E1ToC1 && E2ToC1) {
3348    // Conversion to Composite1 is viable.
3349    if (!Context.hasSameType(Composite1, Composite2)) {
3350      // Composite2 is a different type from Composite1. Check whether
3351      // Composite2 is also viable.
3352      InitializedEntity Entity2
3353        = InitializedEntity::InitializeTemporary(Composite2);
3354      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3355      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3356      if (E1ToC2 && E2ToC2) {
3357        // Both Composite1 and Composite2 are viable and are different;
3358        // this is an ambiguity.
3359        return QualType();
3360      }
3361    }
3362
3363    // Convert E1 to Composite1
3364    ExprResult E1Result
3365      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3366    if (E1Result.isInvalid())
3367      return QualType();
3368    E1 = E1Result.takeAs<Expr>();
3369
3370    // Convert E2 to Composite1
3371    ExprResult E2Result
3372      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3373    if (E2Result.isInvalid())
3374      return QualType();
3375    E2 = E2Result.takeAs<Expr>();
3376
3377    return Composite1;
3378  }
3379
3380  // Check whether Composite2 is viable.
3381  InitializedEntity Entity2
3382    = InitializedEntity::InitializeTemporary(Composite2);
3383  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3384  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3385  if (!E1ToC2 || !E2ToC2)
3386    return QualType();
3387
3388  // Convert E1 to Composite2
3389  ExprResult E1Result
3390    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3391  if (E1Result.isInvalid())
3392    return QualType();
3393  E1 = E1Result.takeAs<Expr>();
3394
3395  // Convert E2 to Composite2
3396  ExprResult E2Result
3397    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3398  if (E2Result.isInvalid())
3399    return QualType();
3400  E2 = E2Result.takeAs<Expr>();
3401
3402  return Composite2;
3403}
3404
3405ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3406  if (!E)
3407    return ExprError();
3408
3409  if (!Context.getLangOptions().CPlusPlus)
3410    return Owned(E);
3411
3412  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3413
3414  const RecordType *RT = E->getType()->getAs<RecordType>();
3415  if (!RT)
3416    return Owned(E);
3417
3418  // If the result is a glvalue, we shouldn't bind it.
3419  if (E->Classify(Context).isGLValue())
3420    return Owned(E);
3421
3422  // That should be enough to guarantee that this type is complete.
3423  // If it has a trivial destructor, we can avoid the extra copy.
3424  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3425  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3426    return Owned(E);
3427
3428  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
3429  ExprTemporaries.push_back(Temp);
3430  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
3431    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
3432    CheckDestructorAccess(E->getExprLoc(), Destructor,
3433                          PDiag(diag::err_access_dtor_temp)
3434                            << E->getType());
3435  }
3436  // FIXME: Add the temporary to the temporaries vector.
3437  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
3438}
3439
3440Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
3441  assert(SubExpr && "sub expression can't be null!");
3442
3443  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3444  assert(ExprTemporaries.size() >= FirstTemporary);
3445  if (ExprTemporaries.size() == FirstTemporary)
3446    return SubExpr;
3447
3448  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
3449                                     &ExprTemporaries[FirstTemporary],
3450                                     ExprTemporaries.size() - FirstTemporary);
3451  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3452                        ExprTemporaries.end());
3453
3454  return E;
3455}
3456
3457ExprResult
3458Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
3459  if (SubExpr.isInvalid())
3460    return ExprError();
3461
3462  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
3463}
3464
3465Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
3466  assert(SubStmt && "sub statement can't be null!");
3467
3468  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3469  assert(ExprTemporaries.size() >= FirstTemporary);
3470  if (ExprTemporaries.size() == FirstTemporary)
3471    return SubStmt;
3472
3473  // FIXME: In order to attach the temporaries, wrap the statement into
3474  // a StmtExpr; currently this is only used for asm statements.
3475  // This is hacky, either create a new CXXStmtWithTemporaries statement or
3476  // a new AsmStmtWithTemporaries.
3477  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
3478                                                      SourceLocation(),
3479                                                      SourceLocation());
3480  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
3481                                   SourceLocation());
3482  return MaybeCreateExprWithCleanups(E);
3483}
3484
3485ExprResult
3486Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3487                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3488                                   bool &MayBePseudoDestructor) {
3489  // Since this might be a postfix expression, get rid of ParenListExprs.
3490  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3491  if (Result.isInvalid()) return ExprError();
3492  Base = Result.get();
3493
3494  QualType BaseType = Base->getType();
3495  MayBePseudoDestructor = false;
3496  if (BaseType->isDependentType()) {
3497    // If we have a pointer to a dependent type and are using the -> operator,
3498    // the object type is the type that the pointer points to. We might still
3499    // have enough information about that type to do something useful.
3500    if (OpKind == tok::arrow)
3501      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3502        BaseType = Ptr->getPointeeType();
3503
3504    ObjectType = ParsedType::make(BaseType);
3505    MayBePseudoDestructor = true;
3506    return Owned(Base);
3507  }
3508
3509  // C++ [over.match.oper]p8:
3510  //   [...] When operator->returns, the operator-> is applied  to the value
3511  //   returned, with the original second operand.
3512  if (OpKind == tok::arrow) {
3513    // The set of types we've considered so far.
3514    llvm::SmallPtrSet<CanQualType,8> CTypes;
3515    llvm::SmallVector<SourceLocation, 8> Locations;
3516    CTypes.insert(Context.getCanonicalType(BaseType));
3517
3518    while (BaseType->isRecordType()) {
3519      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3520      if (Result.isInvalid())
3521        return ExprError();
3522      Base = Result.get();
3523      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3524        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3525      BaseType = Base->getType();
3526      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3527      if (!CTypes.insert(CBaseType)) {
3528        Diag(OpLoc, diag::err_operator_arrow_circular);
3529        for (unsigned i = 0; i < Locations.size(); i++)
3530          Diag(Locations[i], diag::note_declared_at);
3531        return ExprError();
3532      }
3533    }
3534
3535    if (BaseType->isPointerType())
3536      BaseType = BaseType->getPointeeType();
3537  }
3538
3539  // We could end up with various non-record types here, such as extended
3540  // vector types or Objective-C interfaces. Just return early and let
3541  // ActOnMemberReferenceExpr do the work.
3542  if (!BaseType->isRecordType()) {
3543    // C++ [basic.lookup.classref]p2:
3544    //   [...] If the type of the object expression is of pointer to scalar
3545    //   type, the unqualified-id is looked up in the context of the complete
3546    //   postfix-expression.
3547    //
3548    // This also indicates that we should be parsing a
3549    // pseudo-destructor-name.
3550    ObjectType = ParsedType();
3551    MayBePseudoDestructor = true;
3552    return Owned(Base);
3553  }
3554
3555  // The object type must be complete (or dependent).
3556  if (!BaseType->isDependentType() &&
3557      RequireCompleteType(OpLoc, BaseType,
3558                          PDiag(diag::err_incomplete_member_access)))
3559    return ExprError();
3560
3561  // C++ [basic.lookup.classref]p2:
3562  //   If the id-expression in a class member access (5.2.5) is an
3563  //   unqualified-id, and the type of the object expression is of a class
3564  //   type C (or of pointer to a class type C), the unqualified-id is looked
3565  //   up in the scope of class C. [...]
3566  ObjectType = ParsedType::make(BaseType);
3567  return move(Base);
3568}
3569
3570ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3571                                                   Expr *MemExpr) {
3572  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3573  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3574    << isa<CXXPseudoDestructorExpr>(MemExpr)
3575    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3576
3577  return ActOnCallExpr(/*Scope*/ 0,
3578                       MemExpr,
3579                       /*LPLoc*/ ExpectedLParenLoc,
3580                       MultiExprArg(),
3581                       /*RPLoc*/ ExpectedLParenLoc);
3582}
3583
3584ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3585                                           SourceLocation OpLoc,
3586                                           tok::TokenKind OpKind,
3587                                           const CXXScopeSpec &SS,
3588                                           TypeSourceInfo *ScopeTypeInfo,
3589                                           SourceLocation CCLoc,
3590                                           SourceLocation TildeLoc,
3591                                         PseudoDestructorTypeStorage Destructed,
3592                                           bool HasTrailingLParen) {
3593  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3594
3595  // C++ [expr.pseudo]p2:
3596  //   The left-hand side of the dot operator shall be of scalar type. The
3597  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3598  //   This scalar type is the object type.
3599  QualType ObjectType = Base->getType();
3600  if (OpKind == tok::arrow) {
3601    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3602      ObjectType = Ptr->getPointeeType();
3603    } else if (!Base->isTypeDependent()) {
3604      // The user wrote "p->" when she probably meant "p."; fix it.
3605      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3606        << ObjectType << true
3607        << FixItHint::CreateReplacement(OpLoc, ".");
3608      if (isSFINAEContext())
3609        return ExprError();
3610
3611      OpKind = tok::period;
3612    }
3613  }
3614
3615  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3616    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3617      << ObjectType << Base->getSourceRange();
3618    return ExprError();
3619  }
3620
3621  // C++ [expr.pseudo]p2:
3622  //   [...] The cv-unqualified versions of the object type and of the type
3623  //   designated by the pseudo-destructor-name shall be the same type.
3624  if (DestructedTypeInfo) {
3625    QualType DestructedType = DestructedTypeInfo->getType();
3626    SourceLocation DestructedTypeStart
3627      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3628    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3629        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3630      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3631        << ObjectType << DestructedType << Base->getSourceRange()
3632        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3633
3634      // Recover by setting the destructed type to the object type.
3635      DestructedType = ObjectType;
3636      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3637                                                           DestructedTypeStart);
3638      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3639    }
3640  }
3641
3642  // C++ [expr.pseudo]p2:
3643  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3644  //   form
3645  //
3646  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3647  //
3648  //   shall designate the same scalar type.
3649  if (ScopeTypeInfo) {
3650    QualType ScopeType = ScopeTypeInfo->getType();
3651    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3652        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3653
3654      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3655           diag::err_pseudo_dtor_type_mismatch)
3656        << ObjectType << ScopeType << Base->getSourceRange()
3657        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3658
3659      ScopeType = QualType();
3660      ScopeTypeInfo = 0;
3661    }
3662  }
3663
3664  Expr *Result
3665    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3666                                            OpKind == tok::arrow, OpLoc,
3667                                            SS.getScopeRep(), SS.getRange(),
3668                                            ScopeTypeInfo,
3669                                            CCLoc,
3670                                            TildeLoc,
3671                                            Destructed);
3672
3673  if (HasTrailingLParen)
3674    return Owned(Result);
3675
3676  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3677}
3678
3679ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3680                                           SourceLocation OpLoc,
3681                                           tok::TokenKind OpKind,
3682                                           CXXScopeSpec &SS,
3683                                           UnqualifiedId &FirstTypeName,
3684                                           SourceLocation CCLoc,
3685                                           SourceLocation TildeLoc,
3686                                           UnqualifiedId &SecondTypeName,
3687                                           bool HasTrailingLParen) {
3688  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3689          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3690         "Invalid first type name in pseudo-destructor");
3691  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3692          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3693         "Invalid second type name in pseudo-destructor");
3694
3695  // C++ [expr.pseudo]p2:
3696  //   The left-hand side of the dot operator shall be of scalar type. The
3697  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3698  //   This scalar type is the object type.
3699  QualType ObjectType = Base->getType();
3700  if (OpKind == tok::arrow) {
3701    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3702      ObjectType = Ptr->getPointeeType();
3703    } else if (!ObjectType->isDependentType()) {
3704      // The user wrote "p->" when she probably meant "p."; fix it.
3705      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3706        << ObjectType << true
3707        << FixItHint::CreateReplacement(OpLoc, ".");
3708      if (isSFINAEContext())
3709        return ExprError();
3710
3711      OpKind = tok::period;
3712    }
3713  }
3714
3715  // Compute the object type that we should use for name lookup purposes. Only
3716  // record types and dependent types matter.
3717  ParsedType ObjectTypePtrForLookup;
3718  if (!SS.isSet()) {
3719    if (ObjectType->isRecordType())
3720      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
3721    else if (ObjectType->isDependentType())
3722      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3723  }
3724
3725  // Convert the name of the type being destructed (following the ~) into a
3726  // type (with source-location information).
3727  QualType DestructedType;
3728  TypeSourceInfo *DestructedTypeInfo = 0;
3729  PseudoDestructorTypeStorage Destructed;
3730  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3731    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3732                               SecondTypeName.StartLocation,
3733                               S, &SS, true, false, ObjectTypePtrForLookup);
3734    if (!T &&
3735        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3736         (!SS.isSet() && ObjectType->isDependentType()))) {
3737      // The name of the type being destroyed is a dependent name, and we
3738      // couldn't find anything useful in scope. Just store the identifier and
3739      // it's location, and we'll perform (qualified) name lookup again at
3740      // template instantiation time.
3741      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3742                                               SecondTypeName.StartLocation);
3743    } else if (!T) {
3744      Diag(SecondTypeName.StartLocation,
3745           diag::err_pseudo_dtor_destructor_non_type)
3746        << SecondTypeName.Identifier << ObjectType;
3747      if (isSFINAEContext())
3748        return ExprError();
3749
3750      // Recover by assuming we had the right type all along.
3751      DestructedType = ObjectType;
3752    } else
3753      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3754  } else {
3755    // Resolve the template-id to a type.
3756    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3757    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3758                                       TemplateId->getTemplateArgs(),
3759                                       TemplateId->NumArgs);
3760    TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3761                                       TemplateId->TemplateNameLoc,
3762                                       TemplateId->LAngleLoc,
3763                                       TemplateArgsPtr,
3764                                       TemplateId->RAngleLoc);
3765    if (T.isInvalid() || !T.get()) {
3766      // Recover by assuming we had the right type all along.
3767      DestructedType = ObjectType;
3768    } else
3769      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3770  }
3771
3772  // If we've performed some kind of recovery, (re-)build the type source
3773  // information.
3774  if (!DestructedType.isNull()) {
3775    if (!DestructedTypeInfo)
3776      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3777                                                  SecondTypeName.StartLocation);
3778    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3779  }
3780
3781  // Convert the name of the scope type (the type prior to '::') into a type.
3782  TypeSourceInfo *ScopeTypeInfo = 0;
3783  QualType ScopeType;
3784  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3785      FirstTypeName.Identifier) {
3786    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3787      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3788                                 FirstTypeName.StartLocation,
3789                                 S, &SS, false, false, ObjectTypePtrForLookup);
3790      if (!T) {
3791        Diag(FirstTypeName.StartLocation,
3792             diag::err_pseudo_dtor_destructor_non_type)
3793          << FirstTypeName.Identifier << ObjectType;
3794
3795        if (isSFINAEContext())
3796          return ExprError();
3797
3798        // Just drop this type. It's unnecessary anyway.
3799        ScopeType = QualType();
3800      } else
3801        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3802    } else {
3803      // Resolve the template-id to a type.
3804      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3805      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3806                                         TemplateId->getTemplateArgs(),
3807                                         TemplateId->NumArgs);
3808      TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3809                                         TemplateId->TemplateNameLoc,
3810                                         TemplateId->LAngleLoc,
3811                                         TemplateArgsPtr,
3812                                         TemplateId->RAngleLoc);
3813      if (T.isInvalid() || !T.get()) {
3814        // Recover by dropping this type.
3815        ScopeType = QualType();
3816      } else
3817        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3818    }
3819  }
3820
3821  if (!ScopeType.isNull() && !ScopeTypeInfo)
3822    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3823                                                  FirstTypeName.StartLocation);
3824
3825
3826  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3827                                   ScopeTypeInfo, CCLoc, TildeLoc,
3828                                   Destructed, HasTrailingLParen);
3829}
3830
3831ExprResult Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
3832                                        CXXMethodDecl *Method) {
3833  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3834                                          FoundDecl, Method))
3835    return true;
3836
3837  MemberExpr *ME =
3838      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3839                               SourceLocation(), Method->getType(),
3840                               VK_RValue, OK_Ordinary);
3841  QualType ResultType = Method->getResultType();
3842  ExprValueKind VK = Expr::getValueKindForType(ResultType);
3843  ResultType = ResultType.getNonLValueExprType(Context);
3844
3845  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3846  CXXMemberCallExpr *CE =
3847    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
3848                                    Exp->getLocEnd());
3849  return CE;
3850}
3851
3852ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3853                                      SourceLocation RParen) {
3854  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3855                                             Operand->CanThrow(Context),
3856                                             KeyLoc, RParen));
3857}
3858
3859ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3860                                   Expr *Operand, SourceLocation RParen) {
3861  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3862}
3863
3864/// Perform the conversions required for an expression used in a
3865/// context that ignores the result.
3866void Sema::IgnoredValueConversions(Expr *&E) {
3867  // C99 6.3.2.1:
3868  //   [Except in specific positions,] an lvalue that does not have
3869  //   array type is converted to the value stored in the
3870  //   designated object (and is no longer an lvalue).
3871  if (E->isRValue()) return;
3872
3873  // We always want to do this on ObjC property references.
3874  if (E->getObjectKind() == OK_ObjCProperty) {
3875    ConvertPropertyForRValue(E);
3876    if (E->isRValue()) return;
3877  }
3878
3879  // Otherwise, this rule does not apply in C++, at least not for the moment.
3880  if (getLangOptions().CPlusPlus) return;
3881
3882  // GCC seems to also exclude expressions of incomplete enum type.
3883  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
3884    if (!T->getDecl()->isComplete()) {
3885      // FIXME: stupid workaround for a codegen bug!
3886      ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
3887      return;
3888    }
3889  }
3890
3891  DefaultFunctionArrayLvalueConversion(E);
3892  if (!E->getType()->isVoidType())
3893    RequireCompleteType(E->getExprLoc(), E->getType(),
3894                        diag::err_incomplete_type);
3895}
3896
3897ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3898  if (!FullExpr)
3899    return ExprError();
3900
3901  if (DiagnoseUnexpandedParameterPack(FullExpr))
3902    return ExprError();
3903
3904  IgnoredValueConversions(FullExpr);
3905  CheckImplicitConversions(FullExpr);
3906  return MaybeCreateExprWithCleanups(FullExpr);
3907}
3908
3909StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
3910  if (!FullStmt) return StmtError();
3911
3912  return MaybeCreateStmtWithCleanups(FullStmt);
3913}
3914