SemaExprCXX.cpp revision 8026f6d82f7fa544bc0453714fe94bca62a1196e
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31using namespace clang;
32using namespace sema;
33
34ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
35                                   IdentifierInfo &II,
36                                   SourceLocation NameLoc,
37                                   Scope *S, CXXScopeSpec &SS,
38                                   ParsedType ObjectTypePtr,
39                                   bool EnteringContext) {
40  // Determine where to perform name lookup.
41
42  // FIXME: This area of the standard is very messy, and the current
43  // wording is rather unclear about which scopes we search for the
44  // destructor name; see core issues 399 and 555. Issue 399 in
45  // particular shows where the current description of destructor name
46  // lookup is completely out of line with existing practice, e.g.,
47  // this appears to be ill-formed:
48  //
49  //   namespace N {
50  //     template <typename T> struct S {
51  //       ~S();
52  //     };
53  //   }
54  //
55  //   void f(N::S<int>* s) {
56  //     s->N::S<int>::~S();
57  //   }
58  //
59  // See also PR6358 and PR6359.
60  // For this reason, we're currently only doing the C++03 version of this
61  // code; the C++0x version has to wait until we get a proper spec.
62  QualType SearchType;
63  DeclContext *LookupCtx = 0;
64  bool isDependent = false;
65  bool LookInScope = false;
66
67  // If we have an object type, it's because we are in a
68  // pseudo-destructor-expression or a member access expression, and
69  // we know what type we're looking for.
70  if (ObjectTypePtr)
71    SearchType = GetTypeFromParser(ObjectTypePtr);
72
73  if (SS.isSet()) {
74    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
75
76    bool AlreadySearched = false;
77    bool LookAtPrefix = true;
78    // C++ [basic.lookup.qual]p6:
79    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
80    //   the type-names are looked up as types in the scope designated by the
81    //   nested-name-specifier. In a qualified-id of the form:
82    //
83    //     ::[opt] nested-name-specifier  ~ class-name
84    //
85    //   where the nested-name-specifier designates a namespace scope, and in
86    //   a qualified-id of the form:
87    //
88    //     ::opt nested-name-specifier class-name ::  ~ class-name
89    //
90    //   the class-names are looked up as types in the scope designated by
91    //   the nested-name-specifier.
92    //
93    // Here, we check the first case (completely) and determine whether the
94    // code below is permitted to look at the prefix of the
95    // nested-name-specifier.
96    DeclContext *DC = computeDeclContext(SS, EnteringContext);
97    if (DC && DC->isFileContext()) {
98      AlreadySearched = true;
99      LookupCtx = DC;
100      isDependent = false;
101    } else if (DC && isa<CXXRecordDecl>(DC))
102      LookAtPrefix = false;
103
104    // The second case from the C++03 rules quoted further above.
105    NestedNameSpecifier *Prefix = 0;
106    if (AlreadySearched) {
107      // Nothing left to do.
108    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
109      CXXScopeSpec PrefixSS;
110      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
111      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
112      isDependent = isDependentScopeSpecifier(PrefixSS);
113    } else if (ObjectTypePtr) {
114      LookupCtx = computeDeclContext(SearchType);
115      isDependent = SearchType->isDependentType();
116    } else {
117      LookupCtx = computeDeclContext(SS, EnteringContext);
118      isDependent = LookupCtx && LookupCtx->isDependentContext();
119    }
120
121    LookInScope = false;
122  } else if (ObjectTypePtr) {
123    // C++ [basic.lookup.classref]p3:
124    //   If the unqualified-id is ~type-name, the type-name is looked up
125    //   in the context of the entire postfix-expression. If the type T
126    //   of the object expression is of a class type C, the type-name is
127    //   also looked up in the scope of class C. At least one of the
128    //   lookups shall find a name that refers to (possibly
129    //   cv-qualified) T.
130    LookupCtx = computeDeclContext(SearchType);
131    isDependent = SearchType->isDependentType();
132    assert((isDependent || !SearchType->isIncompleteType()) &&
133           "Caller should have completed object type");
134
135    LookInScope = true;
136  } else {
137    // Perform lookup into the current scope (only).
138    LookInScope = true;
139  }
140
141  TypeDecl *NonMatchingTypeDecl = 0;
142  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
143  for (unsigned Step = 0; Step != 2; ++Step) {
144    // Look for the name first in the computed lookup context (if we
145    // have one) and, if that fails to find a match, in the scope (if
146    // we're allowed to look there).
147    Found.clear();
148    if (Step == 0 && LookupCtx)
149      LookupQualifiedName(Found, LookupCtx);
150    else if (Step == 1 && LookInScope && S)
151      LookupName(Found, S);
152    else
153      continue;
154
155    // FIXME: Should we be suppressing ambiguities here?
156    if (Found.isAmbiguous())
157      return ParsedType();
158
159    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
160      QualType T = Context.getTypeDeclType(Type);
161
162      if (SearchType.isNull() || SearchType->isDependentType() ||
163          Context.hasSameUnqualifiedType(T, SearchType)) {
164        // We found our type!
165
166        return ParsedType::make(T);
167      }
168
169      if (!SearchType.isNull())
170        NonMatchingTypeDecl = Type;
171    }
172
173    // If the name that we found is a class template name, and it is
174    // the same name as the template name in the last part of the
175    // nested-name-specifier (if present) or the object type, then
176    // this is the destructor for that class.
177    // FIXME: This is a workaround until we get real drafting for core
178    // issue 399, for which there isn't even an obvious direction.
179    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
180      QualType MemberOfType;
181      if (SS.isSet()) {
182        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
183          // Figure out the type of the context, if it has one.
184          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
185            MemberOfType = Context.getTypeDeclType(Record);
186        }
187      }
188      if (MemberOfType.isNull())
189        MemberOfType = SearchType;
190
191      if (MemberOfType.isNull())
192        continue;
193
194      // We're referring into a class template specialization. If the
195      // class template we found is the same as the template being
196      // specialized, we found what we are looking for.
197      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
198        if (ClassTemplateSpecializationDecl *Spec
199              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
200          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
201                Template->getCanonicalDecl())
202            return ParsedType::make(MemberOfType);
203        }
204
205        continue;
206      }
207
208      // We're referring to an unresolved class template
209      // specialization. Determine whether we class template we found
210      // is the same as the template being specialized or, if we don't
211      // know which template is being specialized, that it at least
212      // has the same name.
213      if (const TemplateSpecializationType *SpecType
214            = MemberOfType->getAs<TemplateSpecializationType>()) {
215        TemplateName SpecName = SpecType->getTemplateName();
216
217        // The class template we found is the same template being
218        // specialized.
219        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
220          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
221            return ParsedType::make(MemberOfType);
222
223          continue;
224        }
225
226        // The class template we found has the same name as the
227        // (dependent) template name being specialized.
228        if (DependentTemplateName *DepTemplate
229                                    = SpecName.getAsDependentTemplateName()) {
230          if (DepTemplate->isIdentifier() &&
231              DepTemplate->getIdentifier() == Template->getIdentifier())
232            return ParsedType::make(MemberOfType);
233
234          continue;
235        }
236      }
237    }
238  }
239
240  if (isDependent) {
241    // We didn't find our type, but that's okay: it's dependent
242    // anyway.
243
244    // FIXME: What if we have no nested-name-specifier?
245    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
246                                   SS.getWithLocInContext(Context),
247                                   II, NameLoc);
248    return ParsedType::make(T);
249  }
250
251  if (NonMatchingTypeDecl) {
252    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
253    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
254      << T << SearchType;
255    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
256      << T;
257  } else if (ObjectTypePtr)
258    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
259      << &II;
260  else
261    Diag(NameLoc, diag::err_destructor_class_name);
262
263  return ParsedType();
264}
265
266/// \brief Build a C++ typeid expression with a type operand.
267ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
268                                SourceLocation TypeidLoc,
269                                TypeSourceInfo *Operand,
270                                SourceLocation RParenLoc) {
271  // C++ [expr.typeid]p4:
272  //   The top-level cv-qualifiers of the lvalue expression or the type-id
273  //   that is the operand of typeid are always ignored.
274  //   If the type of the type-id is a class type or a reference to a class
275  //   type, the class shall be completely-defined.
276  Qualifiers Quals;
277  QualType T
278    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
279                                      Quals);
280  if (T->getAs<RecordType>() &&
281      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
282    return ExprError();
283
284  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
285                                           Operand,
286                                           SourceRange(TypeidLoc, RParenLoc)));
287}
288
289/// \brief Build a C++ typeid expression with an expression operand.
290ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
291                                SourceLocation TypeidLoc,
292                                Expr *E,
293                                SourceLocation RParenLoc) {
294  bool isUnevaluatedOperand = true;
295  if (E && !E->isTypeDependent()) {
296    QualType T = E->getType();
297    if (const RecordType *RecordT = T->getAs<RecordType>()) {
298      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
299      // C++ [expr.typeid]p3:
300      //   [...] If the type of the expression is a class type, the class
301      //   shall be completely-defined.
302      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
303        return ExprError();
304
305      // C++ [expr.typeid]p3:
306      //   When typeid is applied to an expression other than an glvalue of a
307      //   polymorphic class type [...] [the] expression is an unevaluated
308      //   operand. [...]
309      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
310        isUnevaluatedOperand = false;
311
312        // We require a vtable to query the type at run time.
313        MarkVTableUsed(TypeidLoc, RecordD);
314      }
315    }
316
317    // C++ [expr.typeid]p4:
318    //   [...] If the type of the type-id is a reference to a possibly
319    //   cv-qualified type, the result of the typeid expression refers to a
320    //   std::type_info object representing the cv-unqualified referenced
321    //   type.
322    Qualifiers Quals;
323    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
324    if (!Context.hasSameType(T, UnqualT)) {
325      T = UnqualT;
326      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
327    }
328  }
329
330  // If this is an unevaluated operand, clear out the set of
331  // declaration references we have been computing and eliminate any
332  // temporaries introduced in its computation.
333  if (isUnevaluatedOperand)
334    ExprEvalContexts.back().Context = Unevaluated;
335
336  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
337                                           E,
338                                           SourceRange(TypeidLoc, RParenLoc)));
339}
340
341/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
342ExprResult
343Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
344                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
345  // Find the std::type_info type.
346  if (!StdNamespace)
347    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
348
349  if (!CXXTypeInfoDecl) {
350    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
351    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
352    LookupQualifiedName(R, getStdNamespace());
353    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
354    if (!CXXTypeInfoDecl)
355      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
356  }
357
358  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
359
360  if (isType) {
361    // The operand is a type; handle it as such.
362    TypeSourceInfo *TInfo = 0;
363    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
364                                   &TInfo);
365    if (T.isNull())
366      return ExprError();
367
368    if (!TInfo)
369      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
370
371    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
372  }
373
374  // The operand is an expression.
375  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
376}
377
378/// Retrieve the UuidAttr associated with QT.
379static UuidAttr *GetUuidAttrOfType(QualType QT) {
380  // Optionally remove one level of pointer, reference or array indirection.
381  const Type *Ty = QT.getTypePtr();;
382  if (QT->isPointerType() || QT->isReferenceType())
383    Ty = QT->getPointeeType().getTypePtr();
384  else if (QT->isArrayType())
385    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
386
387  // Loop all class definition and declaration looking for an uuid attribute.
388  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
389  while (RD) {
390    if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
391      return Uuid;
392    RD = RD->getPreviousDeclaration();
393  }
394  return 0;
395}
396
397/// \brief Build a Microsoft __uuidof expression with a type operand.
398ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
399                                SourceLocation TypeidLoc,
400                                TypeSourceInfo *Operand,
401                                SourceLocation RParenLoc) {
402  if (!Operand->getType()->isDependentType()) {
403    if (!GetUuidAttrOfType(Operand->getType()))
404      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
405  }
406
407  // FIXME: add __uuidof semantic analysis for type operand.
408  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
409                                           Operand,
410                                           SourceRange(TypeidLoc, RParenLoc)));
411}
412
413/// \brief Build a Microsoft __uuidof expression with an expression operand.
414ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
415                                SourceLocation TypeidLoc,
416                                Expr *E,
417                                SourceLocation RParenLoc) {
418  if (!E->getType()->isDependentType()) {
419    if (!GetUuidAttrOfType(E->getType()) &&
420        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
421      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
422  }
423  // FIXME: add __uuidof semantic analysis for type operand.
424  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
425                                           E,
426                                           SourceRange(TypeidLoc, RParenLoc)));
427}
428
429/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
430ExprResult
431Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
432                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
433  // If MSVCGuidDecl has not been cached, do the lookup.
434  if (!MSVCGuidDecl) {
435    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
436    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
437    LookupQualifiedName(R, Context.getTranslationUnitDecl());
438    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
439    if (!MSVCGuidDecl)
440      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
441  }
442
443  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
444
445  if (isType) {
446    // The operand is a type; handle it as such.
447    TypeSourceInfo *TInfo = 0;
448    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
449                                   &TInfo);
450    if (T.isNull())
451      return ExprError();
452
453    if (!TInfo)
454      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
455
456    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
457  }
458
459  // The operand is an expression.
460  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
461}
462
463/// ActOnCXXBoolLiteral - Parse {true,false} literals.
464ExprResult
465Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
466  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
467         "Unknown C++ Boolean value!");
468  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
469                                                Context.BoolTy, OpLoc));
470}
471
472/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
473ExprResult
474Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
475  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
476}
477
478/// ActOnCXXThrow - Parse throw expressions.
479ExprResult
480Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
481  // Don't report an error if 'throw' is used in system headers.
482  if (!getLangOptions().CXXExceptions &&
483      !getSourceManager().isInSystemHeader(OpLoc))
484    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
485
486  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
487    return ExprError();
488  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
489}
490
491/// CheckCXXThrowOperand - Validate the operand of a throw.
492bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
493  // C++ [except.throw]p3:
494  //   A throw-expression initializes a temporary object, called the exception
495  //   object, the type of which is determined by removing any top-level
496  //   cv-qualifiers from the static type of the operand of throw and adjusting
497  //   the type from "array of T" or "function returning T" to "pointer to T"
498  //   or "pointer to function returning T", [...]
499  if (E->getType().hasQualifiers())
500    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
501                      CastCategory(E));
502
503  DefaultFunctionArrayConversion(E);
504
505  //   If the type of the exception would be an incomplete type or a pointer
506  //   to an incomplete type other than (cv) void the program is ill-formed.
507  QualType Ty = E->getType();
508  bool isPointer = false;
509  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
510    Ty = Ptr->getPointeeType();
511    isPointer = true;
512  }
513  if (!isPointer || !Ty->isVoidType()) {
514    if (RequireCompleteType(ThrowLoc, Ty,
515                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
516                                            : diag::err_throw_incomplete)
517                              << E->getSourceRange()))
518      return true;
519
520    if (RequireNonAbstractType(ThrowLoc, E->getType(),
521                               PDiag(diag::err_throw_abstract_type)
522                                 << E->getSourceRange()))
523      return true;
524  }
525
526  // Initialize the exception result.  This implicitly weeds out
527  // abstract types or types with inaccessible copy constructors.
528  const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
529
530  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
531  InitializedEntity Entity =
532      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
533                                             /*NRVO=*/false);
534  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
535                                                   QualType(), E);
536  if (Res.isInvalid())
537    return true;
538  E = Res.takeAs<Expr>();
539
540  // If the exception has class type, we need additional handling.
541  const RecordType *RecordTy = Ty->getAs<RecordType>();
542  if (!RecordTy)
543    return false;
544  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
545
546  // If we are throwing a polymorphic class type or pointer thereof,
547  // exception handling will make use of the vtable.
548  MarkVTableUsed(ThrowLoc, RD);
549
550  // If a pointer is thrown, the referenced object will not be destroyed.
551  if (isPointer)
552    return false;
553
554  // If the class has a non-trivial destructor, we must be able to call it.
555  if (RD->hasTrivialDestructor())
556    return false;
557
558  CXXDestructorDecl *Destructor
559    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
560  if (!Destructor)
561    return false;
562
563  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
564  CheckDestructorAccess(E->getExprLoc(), Destructor,
565                        PDiag(diag::err_access_dtor_exception) << Ty);
566  return false;
567}
568
569CXXMethodDecl *Sema::tryCaptureCXXThis() {
570  // Ignore block scopes: we can capture through them.
571  // Ignore nested enum scopes: we'll diagnose non-constant expressions
572  // where they're invalid, and other uses are legitimate.
573  // Don't ignore nested class scopes: you can't use 'this' in a local class.
574  DeclContext *DC = CurContext;
575  while (true) {
576    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
577    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
578    else break;
579  }
580
581  // If we're not in an instance method, error out.
582  CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
583  if (!method || !method->isInstance())
584    return 0;
585
586  // Mark that we're closing on 'this' in all the block scopes, if applicable.
587  for (unsigned idx = FunctionScopes.size() - 1;
588       isa<BlockScopeInfo>(FunctionScopes[idx]);
589       --idx)
590    cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
591
592  return method;
593}
594
595ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
596  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
597  /// is a non-lvalue expression whose value is the address of the object for
598  /// which the function is called.
599
600  CXXMethodDecl *method = tryCaptureCXXThis();
601  if (!method) return Diag(loc, diag::err_invalid_this_use);
602
603  return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
604                                         /*isImplicit=*/false));
605}
606
607ExprResult
608Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
609                                SourceLocation LParenLoc,
610                                MultiExprArg exprs,
611                                SourceLocation RParenLoc) {
612  if (!TypeRep)
613    return ExprError();
614
615  TypeSourceInfo *TInfo;
616  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
617  if (!TInfo)
618    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
619
620  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
621}
622
623/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
624/// Can be interpreted either as function-style casting ("int(x)")
625/// or class type construction ("ClassType(x,y,z)")
626/// or creation of a value-initialized type ("int()").
627ExprResult
628Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
629                                SourceLocation LParenLoc,
630                                MultiExprArg exprs,
631                                SourceLocation RParenLoc) {
632  QualType Ty = TInfo->getType();
633  unsigned NumExprs = exprs.size();
634  Expr **Exprs = (Expr**)exprs.get();
635  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
636  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
637
638  if (Ty->isDependentType() ||
639      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
640    exprs.release();
641
642    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
643                                                    LParenLoc,
644                                                    Exprs, NumExprs,
645                                                    RParenLoc));
646  }
647
648  if (Ty->isArrayType())
649    return ExprError(Diag(TyBeginLoc,
650                          diag::err_value_init_for_array_type) << FullRange);
651  if (!Ty->isVoidType() &&
652      RequireCompleteType(TyBeginLoc, Ty,
653                          PDiag(diag::err_invalid_incomplete_type_use)
654                            << FullRange))
655    return ExprError();
656
657  if (RequireNonAbstractType(TyBeginLoc, Ty,
658                             diag::err_allocation_of_abstract_type))
659    return ExprError();
660
661
662  // C++ [expr.type.conv]p1:
663  // If the expression list is a single expression, the type conversion
664  // expression is equivalent (in definedness, and if defined in meaning) to the
665  // corresponding cast expression.
666  //
667  if (NumExprs == 1) {
668    CastKind Kind = CK_Invalid;
669    ExprValueKind VK = VK_RValue;
670    CXXCastPath BasePath;
671    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
672                       Kind, VK, BasePath,
673                       /*FunctionalStyle=*/true))
674      return ExprError();
675
676    exprs.release();
677
678    return Owned(CXXFunctionalCastExpr::Create(Context,
679                                               Ty.getNonLValueExprType(Context),
680                                               VK, TInfo, TyBeginLoc, Kind,
681                                               Exprs[0], &BasePath,
682                                               RParenLoc));
683  }
684
685  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
686  InitializationKind Kind
687    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
688                                                  LParenLoc, RParenLoc)
689               : InitializationKind::CreateValue(TyBeginLoc,
690                                                 LParenLoc, RParenLoc);
691  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
692  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
693
694  // FIXME: Improve AST representation?
695  return move(Result);
696}
697
698/// doesUsualArrayDeleteWantSize - Answers whether the usual
699/// operator delete[] for the given type has a size_t parameter.
700static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
701                                         QualType allocType) {
702  const RecordType *record =
703    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
704  if (!record) return false;
705
706  // Try to find an operator delete[] in class scope.
707
708  DeclarationName deleteName =
709    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
710  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
711  S.LookupQualifiedName(ops, record->getDecl());
712
713  // We're just doing this for information.
714  ops.suppressDiagnostics();
715
716  // Very likely: there's no operator delete[].
717  if (ops.empty()) return false;
718
719  // If it's ambiguous, it should be illegal to call operator delete[]
720  // on this thing, so it doesn't matter if we allocate extra space or not.
721  if (ops.isAmbiguous()) return false;
722
723  LookupResult::Filter filter = ops.makeFilter();
724  while (filter.hasNext()) {
725    NamedDecl *del = filter.next()->getUnderlyingDecl();
726
727    // C++0x [basic.stc.dynamic.deallocation]p2:
728    //   A template instance is never a usual deallocation function,
729    //   regardless of its signature.
730    if (isa<FunctionTemplateDecl>(del)) {
731      filter.erase();
732      continue;
733    }
734
735    // C++0x [basic.stc.dynamic.deallocation]p2:
736    //   If class T does not declare [an operator delete[] with one
737    //   parameter] but does declare a member deallocation function
738    //   named operator delete[] with exactly two parameters, the
739    //   second of which has type std::size_t, then this function
740    //   is a usual deallocation function.
741    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
742      filter.erase();
743      continue;
744    }
745  }
746  filter.done();
747
748  if (!ops.isSingleResult()) return false;
749
750  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
751  return (del->getNumParams() == 2);
752}
753
754/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
755/// @code new (memory) int[size][4] @endcode
756/// or
757/// @code ::new Foo(23, "hello") @endcode
758/// For the interpretation of this heap of arguments, consult the base version.
759ExprResult
760Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
761                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
762                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
763                  Declarator &D, SourceLocation ConstructorLParen,
764                  MultiExprArg ConstructorArgs,
765                  SourceLocation ConstructorRParen) {
766  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
767
768  Expr *ArraySize = 0;
769  // If the specified type is an array, unwrap it and save the expression.
770  if (D.getNumTypeObjects() > 0 &&
771      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
772    DeclaratorChunk &Chunk = D.getTypeObject(0);
773    if (TypeContainsAuto)
774      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
775        << D.getSourceRange());
776    if (Chunk.Arr.hasStatic)
777      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
778        << D.getSourceRange());
779    if (!Chunk.Arr.NumElts)
780      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
781        << D.getSourceRange());
782
783    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
784    D.DropFirstTypeObject();
785  }
786
787  // Every dimension shall be of constant size.
788  if (ArraySize) {
789    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
790      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
791        break;
792
793      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
794      if (Expr *NumElts = (Expr *)Array.NumElts) {
795        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
796            !NumElts->isIntegerConstantExpr(Context)) {
797          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
798            << NumElts->getSourceRange();
799          return ExprError();
800        }
801      }
802    }
803  }
804
805  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
806                                               /*AllowAuto=*/true);
807  QualType AllocType = TInfo->getType();
808  if (D.isInvalidType())
809    return ExprError();
810
811  return BuildCXXNew(StartLoc, UseGlobal,
812                     PlacementLParen,
813                     move(PlacementArgs),
814                     PlacementRParen,
815                     TypeIdParens,
816                     AllocType,
817                     TInfo,
818                     ArraySize,
819                     ConstructorLParen,
820                     move(ConstructorArgs),
821                     ConstructorRParen,
822                     TypeContainsAuto);
823}
824
825ExprResult
826Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
827                  SourceLocation PlacementLParen,
828                  MultiExprArg PlacementArgs,
829                  SourceLocation PlacementRParen,
830                  SourceRange TypeIdParens,
831                  QualType AllocType,
832                  TypeSourceInfo *AllocTypeInfo,
833                  Expr *ArraySize,
834                  SourceLocation ConstructorLParen,
835                  MultiExprArg ConstructorArgs,
836                  SourceLocation ConstructorRParen,
837                  bool TypeMayContainAuto) {
838  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
839
840  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
841  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
842    if (ConstructorArgs.size() == 0)
843      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
844                       << AllocType << TypeRange);
845    if (ConstructorArgs.size() != 1) {
846      Expr *FirstBad = ConstructorArgs.get()[1];
847      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
848                            diag::err_auto_new_ctor_multiple_expressions)
849                       << AllocType << TypeRange);
850    }
851    QualType DeducedType;
852    if (!DeduceAutoType(AllocType, ConstructorArgs.get()[0], DeducedType))
853      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
854                       << AllocType
855                       << ConstructorArgs.get()[0]->getType()
856                       << TypeRange
857                       << ConstructorArgs.get()[0]->getSourceRange());
858
859    AllocType = DeducedType;
860    AllocTypeInfo = Context.getTrivialTypeSourceInfo(AllocType, StartLoc);
861  }
862
863  // Per C++0x [expr.new]p5, the type being constructed may be a
864  // typedef of an array type.
865  if (!ArraySize) {
866    if (const ConstantArrayType *Array
867                              = Context.getAsConstantArrayType(AllocType)) {
868      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
869                                         Context.getSizeType(),
870                                         TypeRange.getEnd());
871      AllocType = Array->getElementType();
872    }
873  }
874
875  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
876    return ExprError();
877
878  QualType ResultType = Context.getPointerType(AllocType);
879
880  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
881  //   or enumeration type with a non-negative value."
882  if (ArraySize && !ArraySize->isTypeDependent()) {
883
884    QualType SizeType = ArraySize->getType();
885
886    ExprResult ConvertedSize
887      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
888                                       PDiag(diag::err_array_size_not_integral),
889                                     PDiag(diag::err_array_size_incomplete_type)
890                                       << ArraySize->getSourceRange(),
891                               PDiag(diag::err_array_size_explicit_conversion),
892                                       PDiag(diag::note_array_size_conversion),
893                               PDiag(diag::err_array_size_ambiguous_conversion),
894                                       PDiag(diag::note_array_size_conversion),
895                          PDiag(getLangOptions().CPlusPlus0x? 0
896                                            : diag::ext_array_size_conversion));
897    if (ConvertedSize.isInvalid())
898      return ExprError();
899
900    ArraySize = ConvertedSize.take();
901    SizeType = ArraySize->getType();
902    if (!SizeType->isIntegralOrUnscopedEnumerationType())
903      return ExprError();
904
905    // Let's see if this is a constant < 0. If so, we reject it out of hand.
906    // We don't care about special rules, so we tell the machinery it's not
907    // evaluated - it gives us a result in more cases.
908    if (!ArraySize->isValueDependent()) {
909      llvm::APSInt Value;
910      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
911        if (Value < llvm::APSInt(
912                        llvm::APInt::getNullValue(Value.getBitWidth()),
913                                 Value.isUnsigned()))
914          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
915                                diag::err_typecheck_negative_array_size)
916            << ArraySize->getSourceRange());
917
918        if (!AllocType->isDependentType()) {
919          unsigned ActiveSizeBits
920            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
921          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
922            Diag(ArraySize->getSourceRange().getBegin(),
923                 diag::err_array_too_large)
924              << Value.toString(10)
925              << ArraySize->getSourceRange();
926            return ExprError();
927          }
928        }
929      } else if (TypeIdParens.isValid()) {
930        // Can't have dynamic array size when the type-id is in parentheses.
931        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
932          << ArraySize->getSourceRange()
933          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
934          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
935
936        TypeIdParens = SourceRange();
937      }
938    }
939
940    ImpCastExprToType(ArraySize, Context.getSizeType(),
941                      CK_IntegralCast);
942  }
943
944  FunctionDecl *OperatorNew = 0;
945  FunctionDecl *OperatorDelete = 0;
946  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
947  unsigned NumPlaceArgs = PlacementArgs.size();
948
949  if (!AllocType->isDependentType() &&
950      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
951      FindAllocationFunctions(StartLoc,
952                              SourceRange(PlacementLParen, PlacementRParen),
953                              UseGlobal, AllocType, ArraySize, PlaceArgs,
954                              NumPlaceArgs, OperatorNew, OperatorDelete))
955    return ExprError();
956
957  // If this is an array allocation, compute whether the usual array
958  // deallocation function for the type has a size_t parameter.
959  bool UsualArrayDeleteWantsSize = false;
960  if (ArraySize && !AllocType->isDependentType())
961    UsualArrayDeleteWantsSize
962      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
963
964  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
965  if (OperatorNew) {
966    // Add default arguments, if any.
967    const FunctionProtoType *Proto =
968      OperatorNew->getType()->getAs<FunctionProtoType>();
969    VariadicCallType CallType =
970      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
971
972    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
973                               Proto, 1, PlaceArgs, NumPlaceArgs,
974                               AllPlaceArgs, CallType))
975      return ExprError();
976
977    NumPlaceArgs = AllPlaceArgs.size();
978    if (NumPlaceArgs > 0)
979      PlaceArgs = &AllPlaceArgs[0];
980  }
981
982  bool Init = ConstructorLParen.isValid();
983  // --- Choosing a constructor ---
984  CXXConstructorDecl *Constructor = 0;
985  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
986  unsigned NumConsArgs = ConstructorArgs.size();
987  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
988
989  // Array 'new' can't have any initializers.
990  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
991    SourceRange InitRange(ConsArgs[0]->getLocStart(),
992                          ConsArgs[NumConsArgs - 1]->getLocEnd());
993
994    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
995    return ExprError();
996  }
997
998  if (!AllocType->isDependentType() &&
999      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
1000    // C++0x [expr.new]p15:
1001    //   A new-expression that creates an object of type T initializes that
1002    //   object as follows:
1003    InitializationKind Kind
1004    //     - If the new-initializer is omitted, the object is default-
1005    //       initialized (8.5); if no initialization is performed,
1006    //       the object has indeterminate value
1007      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1008    //     - Otherwise, the new-initializer is interpreted according to the
1009    //       initialization rules of 8.5 for direct-initialization.
1010             : InitializationKind::CreateDirect(TypeRange.getBegin(),
1011                                                ConstructorLParen,
1012                                                ConstructorRParen);
1013
1014    InitializedEntity Entity
1015      = InitializedEntity::InitializeNew(StartLoc, AllocType);
1016    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1017    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1018                                                move(ConstructorArgs));
1019    if (FullInit.isInvalid())
1020      return ExprError();
1021
1022    // FullInit is our initializer; walk through it to determine if it's a
1023    // constructor call, which CXXNewExpr handles directly.
1024    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1025      if (CXXBindTemporaryExpr *Binder
1026            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1027        FullInitExpr = Binder->getSubExpr();
1028      if (CXXConstructExpr *Construct
1029                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1030        Constructor = Construct->getConstructor();
1031        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1032                                         AEnd = Construct->arg_end();
1033             A != AEnd; ++A)
1034          ConvertedConstructorArgs.push_back(*A);
1035      } else {
1036        // Take the converted initializer.
1037        ConvertedConstructorArgs.push_back(FullInit.release());
1038      }
1039    } else {
1040      // No initialization required.
1041    }
1042
1043    // Take the converted arguments and use them for the new expression.
1044    NumConsArgs = ConvertedConstructorArgs.size();
1045    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1046  }
1047
1048  // Mark the new and delete operators as referenced.
1049  if (OperatorNew)
1050    MarkDeclarationReferenced(StartLoc, OperatorNew);
1051  if (OperatorDelete)
1052    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1053
1054  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
1055
1056  PlacementArgs.release();
1057  ConstructorArgs.release();
1058
1059  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1060                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1061                                        ArraySize, Constructor, Init,
1062                                        ConsArgs, NumConsArgs, OperatorDelete,
1063                                        UsualArrayDeleteWantsSize,
1064                                        ResultType, AllocTypeInfo,
1065                                        StartLoc,
1066                                        Init ? ConstructorRParen :
1067                                               TypeRange.getEnd(),
1068                                        ConstructorLParen, ConstructorRParen));
1069}
1070
1071/// CheckAllocatedType - Checks that a type is suitable as the allocated type
1072/// in a new-expression.
1073/// dimension off and stores the size expression in ArraySize.
1074bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1075                              SourceRange R) {
1076  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1077  //   abstract class type or array thereof.
1078  if (AllocType->isFunctionType())
1079    return Diag(Loc, diag::err_bad_new_type)
1080      << AllocType << 0 << R;
1081  else if (AllocType->isReferenceType())
1082    return Diag(Loc, diag::err_bad_new_type)
1083      << AllocType << 1 << R;
1084  else if (!AllocType->isDependentType() &&
1085           RequireCompleteType(Loc, AllocType,
1086                               PDiag(diag::err_new_incomplete_type)
1087                                 << R))
1088    return true;
1089  else if (RequireNonAbstractType(Loc, AllocType,
1090                                  diag::err_allocation_of_abstract_type))
1091    return true;
1092  else if (AllocType->isVariablyModifiedType())
1093    return Diag(Loc, diag::err_variably_modified_new_type)
1094             << AllocType;
1095
1096  return false;
1097}
1098
1099/// \brief Determine whether the given function is a non-placement
1100/// deallocation function.
1101static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1102  if (FD->isInvalidDecl())
1103    return false;
1104
1105  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1106    return Method->isUsualDeallocationFunction();
1107
1108  return ((FD->getOverloadedOperator() == OO_Delete ||
1109           FD->getOverloadedOperator() == OO_Array_Delete) &&
1110          FD->getNumParams() == 1);
1111}
1112
1113/// FindAllocationFunctions - Finds the overloads of operator new and delete
1114/// that are appropriate for the allocation.
1115bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1116                                   bool UseGlobal, QualType AllocType,
1117                                   bool IsArray, Expr **PlaceArgs,
1118                                   unsigned NumPlaceArgs,
1119                                   FunctionDecl *&OperatorNew,
1120                                   FunctionDecl *&OperatorDelete) {
1121  // --- Choosing an allocation function ---
1122  // C++ 5.3.4p8 - 14 & 18
1123  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1124  //   in the scope of the allocated class.
1125  // 2) If an array size is given, look for operator new[], else look for
1126  //   operator new.
1127  // 3) The first argument is always size_t. Append the arguments from the
1128  //   placement form.
1129
1130  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1131  // We don't care about the actual value of this argument.
1132  // FIXME: Should the Sema create the expression and embed it in the syntax
1133  // tree? Or should the consumer just recalculate the value?
1134  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1135                      Context.Target.getPointerWidth(0)),
1136                      Context.getSizeType(),
1137                      SourceLocation());
1138  AllocArgs[0] = &Size;
1139  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1140
1141  // C++ [expr.new]p8:
1142  //   If the allocated type is a non-array type, the allocation
1143  //   function's name is operator new and the deallocation function's
1144  //   name is operator delete. If the allocated type is an array
1145  //   type, the allocation function's name is operator new[] and the
1146  //   deallocation function's name is operator delete[].
1147  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1148                                        IsArray ? OO_Array_New : OO_New);
1149  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1150                                        IsArray ? OO_Array_Delete : OO_Delete);
1151
1152  QualType AllocElemType = Context.getBaseElementType(AllocType);
1153
1154  if (AllocElemType->isRecordType() && !UseGlobal) {
1155    CXXRecordDecl *Record
1156      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1157    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1158                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1159                          OperatorNew))
1160      return true;
1161  }
1162  if (!OperatorNew) {
1163    // Didn't find a member overload. Look for a global one.
1164    DeclareGlobalNewDelete();
1165    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1166    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1167                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1168                          OperatorNew))
1169      return true;
1170  }
1171
1172  // We don't need an operator delete if we're running under
1173  // -fno-exceptions.
1174  if (!getLangOptions().Exceptions) {
1175    OperatorDelete = 0;
1176    return false;
1177  }
1178
1179  // FindAllocationOverload can change the passed in arguments, so we need to
1180  // copy them back.
1181  if (NumPlaceArgs > 0)
1182    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1183
1184  // C++ [expr.new]p19:
1185  //
1186  //   If the new-expression begins with a unary :: operator, the
1187  //   deallocation function's name is looked up in the global
1188  //   scope. Otherwise, if the allocated type is a class type T or an
1189  //   array thereof, the deallocation function's name is looked up in
1190  //   the scope of T. If this lookup fails to find the name, or if
1191  //   the allocated type is not a class type or array thereof, the
1192  //   deallocation function's name is looked up in the global scope.
1193  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1194  if (AllocElemType->isRecordType() && !UseGlobal) {
1195    CXXRecordDecl *RD
1196      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1197    LookupQualifiedName(FoundDelete, RD);
1198  }
1199  if (FoundDelete.isAmbiguous())
1200    return true; // FIXME: clean up expressions?
1201
1202  if (FoundDelete.empty()) {
1203    DeclareGlobalNewDelete();
1204    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1205  }
1206
1207  FoundDelete.suppressDiagnostics();
1208
1209  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1210
1211  // Whether we're looking for a placement operator delete is dictated
1212  // by whether we selected a placement operator new, not by whether
1213  // we had explicit placement arguments.  This matters for things like
1214  //   struct A { void *operator new(size_t, int = 0); ... };
1215  //   A *a = new A()
1216  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1217
1218  if (isPlacementNew) {
1219    // C++ [expr.new]p20:
1220    //   A declaration of a placement deallocation function matches the
1221    //   declaration of a placement allocation function if it has the
1222    //   same number of parameters and, after parameter transformations
1223    //   (8.3.5), all parameter types except the first are
1224    //   identical. [...]
1225    //
1226    // To perform this comparison, we compute the function type that
1227    // the deallocation function should have, and use that type both
1228    // for template argument deduction and for comparison purposes.
1229    //
1230    // FIXME: this comparison should ignore CC and the like.
1231    QualType ExpectedFunctionType;
1232    {
1233      const FunctionProtoType *Proto
1234        = OperatorNew->getType()->getAs<FunctionProtoType>();
1235
1236      llvm::SmallVector<QualType, 4> ArgTypes;
1237      ArgTypes.push_back(Context.VoidPtrTy);
1238      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1239        ArgTypes.push_back(Proto->getArgType(I));
1240
1241      FunctionProtoType::ExtProtoInfo EPI;
1242      EPI.Variadic = Proto->isVariadic();
1243
1244      ExpectedFunctionType
1245        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1246                                  ArgTypes.size(), EPI);
1247    }
1248
1249    for (LookupResult::iterator D = FoundDelete.begin(),
1250                             DEnd = FoundDelete.end();
1251         D != DEnd; ++D) {
1252      FunctionDecl *Fn = 0;
1253      if (FunctionTemplateDecl *FnTmpl
1254            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1255        // Perform template argument deduction to try to match the
1256        // expected function type.
1257        TemplateDeductionInfo Info(Context, StartLoc);
1258        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1259          continue;
1260      } else
1261        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1262
1263      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1264        Matches.push_back(std::make_pair(D.getPair(), Fn));
1265    }
1266  } else {
1267    // C++ [expr.new]p20:
1268    //   [...] Any non-placement deallocation function matches a
1269    //   non-placement allocation function. [...]
1270    for (LookupResult::iterator D = FoundDelete.begin(),
1271                             DEnd = FoundDelete.end();
1272         D != DEnd; ++D) {
1273      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1274        if (isNonPlacementDeallocationFunction(Fn))
1275          Matches.push_back(std::make_pair(D.getPair(), Fn));
1276    }
1277  }
1278
1279  // C++ [expr.new]p20:
1280  //   [...] If the lookup finds a single matching deallocation
1281  //   function, that function will be called; otherwise, no
1282  //   deallocation function will be called.
1283  if (Matches.size() == 1) {
1284    OperatorDelete = Matches[0].second;
1285
1286    // C++0x [expr.new]p20:
1287    //   If the lookup finds the two-parameter form of a usual
1288    //   deallocation function (3.7.4.2) and that function, considered
1289    //   as a placement deallocation function, would have been
1290    //   selected as a match for the allocation function, the program
1291    //   is ill-formed.
1292    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1293        isNonPlacementDeallocationFunction(OperatorDelete)) {
1294      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1295        << SourceRange(PlaceArgs[0]->getLocStart(),
1296                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1297      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1298        << DeleteName;
1299    } else {
1300      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1301                            Matches[0].first);
1302    }
1303  }
1304
1305  return false;
1306}
1307
1308/// FindAllocationOverload - Find an fitting overload for the allocation
1309/// function in the specified scope.
1310bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1311                                  DeclarationName Name, Expr** Args,
1312                                  unsigned NumArgs, DeclContext *Ctx,
1313                                  bool AllowMissing, FunctionDecl *&Operator) {
1314  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1315  LookupQualifiedName(R, Ctx);
1316  if (R.empty()) {
1317    if (AllowMissing)
1318      return false;
1319    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1320      << Name << Range;
1321  }
1322
1323  if (R.isAmbiguous())
1324    return true;
1325
1326  R.suppressDiagnostics();
1327
1328  OverloadCandidateSet Candidates(StartLoc);
1329  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1330       Alloc != AllocEnd; ++Alloc) {
1331    // Even member operator new/delete are implicitly treated as
1332    // static, so don't use AddMemberCandidate.
1333    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1334
1335    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1336      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1337                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1338                                   Candidates,
1339                                   /*SuppressUserConversions=*/false);
1340      continue;
1341    }
1342
1343    FunctionDecl *Fn = cast<FunctionDecl>(D);
1344    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1345                         /*SuppressUserConversions=*/false);
1346  }
1347
1348  // Do the resolution.
1349  OverloadCandidateSet::iterator Best;
1350  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1351  case OR_Success: {
1352    // Got one!
1353    FunctionDecl *FnDecl = Best->Function;
1354    MarkDeclarationReferenced(StartLoc, FnDecl);
1355    // The first argument is size_t, and the first parameter must be size_t,
1356    // too. This is checked on declaration and can be assumed. (It can't be
1357    // asserted on, though, since invalid decls are left in there.)
1358    // Watch out for variadic allocator function.
1359    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1360    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1361      ExprResult Result
1362        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1363                                                       Context,
1364                                                       FnDecl->getParamDecl(i)),
1365                                    SourceLocation(),
1366                                    Owned(Args[i]));
1367      if (Result.isInvalid())
1368        return true;
1369
1370      Args[i] = Result.takeAs<Expr>();
1371    }
1372    Operator = FnDecl;
1373    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1374    return false;
1375  }
1376
1377  case OR_No_Viable_Function:
1378    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1379      << Name << Range;
1380    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1381    return true;
1382
1383  case OR_Ambiguous:
1384    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1385      << Name << Range;
1386    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1387    return true;
1388
1389  case OR_Deleted:
1390    Diag(StartLoc, diag::err_ovl_deleted_call)
1391      << Best->Function->isDeleted()
1392      << Name
1393      << Best->Function->getMessageUnavailableAttr(
1394             !Best->Function->isDeleted())
1395      << Range;
1396    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1397    return true;
1398  }
1399  assert(false && "Unreachable, bad result from BestViableFunction");
1400  return true;
1401}
1402
1403
1404/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1405/// delete. These are:
1406/// @code
1407///   void* operator new(std::size_t) throw(std::bad_alloc);
1408///   void* operator new[](std::size_t) throw(std::bad_alloc);
1409///   void operator delete(void *) throw();
1410///   void operator delete[](void *) throw();
1411/// @endcode
1412/// Note that the placement and nothrow forms of new are *not* implicitly
1413/// declared. Their use requires including \<new\>.
1414void Sema::DeclareGlobalNewDelete() {
1415  if (GlobalNewDeleteDeclared)
1416    return;
1417
1418  // C++ [basic.std.dynamic]p2:
1419  //   [...] The following allocation and deallocation functions (18.4) are
1420  //   implicitly declared in global scope in each translation unit of a
1421  //   program
1422  //
1423  //     void* operator new(std::size_t) throw(std::bad_alloc);
1424  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1425  //     void  operator delete(void*) throw();
1426  //     void  operator delete[](void*) throw();
1427  //
1428  //   These implicit declarations introduce only the function names operator
1429  //   new, operator new[], operator delete, operator delete[].
1430  //
1431  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1432  // "std" or "bad_alloc" as necessary to form the exception specification.
1433  // However, we do not make these implicit declarations visible to name
1434  // lookup.
1435  if (!StdBadAlloc) {
1436    // The "std::bad_alloc" class has not yet been declared, so build it
1437    // implicitly.
1438    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1439                                        getOrCreateStdNamespace(),
1440                                        SourceLocation(), SourceLocation(),
1441                                      &PP.getIdentifierTable().get("bad_alloc"),
1442                                        0);
1443    getStdBadAlloc()->setImplicit(true);
1444  }
1445
1446  GlobalNewDeleteDeclared = true;
1447
1448  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1449  QualType SizeT = Context.getSizeType();
1450  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1451
1452  DeclareGlobalAllocationFunction(
1453      Context.DeclarationNames.getCXXOperatorName(OO_New),
1454      VoidPtr, SizeT, AssumeSaneOperatorNew);
1455  DeclareGlobalAllocationFunction(
1456      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1457      VoidPtr, SizeT, AssumeSaneOperatorNew);
1458  DeclareGlobalAllocationFunction(
1459      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1460      Context.VoidTy, VoidPtr);
1461  DeclareGlobalAllocationFunction(
1462      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1463      Context.VoidTy, VoidPtr);
1464}
1465
1466/// DeclareGlobalAllocationFunction - Declares a single implicit global
1467/// allocation function if it doesn't already exist.
1468void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1469                                           QualType Return, QualType Argument,
1470                                           bool AddMallocAttr) {
1471  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1472
1473  // Check if this function is already declared.
1474  {
1475    DeclContext::lookup_iterator Alloc, AllocEnd;
1476    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1477         Alloc != AllocEnd; ++Alloc) {
1478      // Only look at non-template functions, as it is the predefined,
1479      // non-templated allocation function we are trying to declare here.
1480      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1481        QualType InitialParamType =
1482          Context.getCanonicalType(
1483            Func->getParamDecl(0)->getType().getUnqualifiedType());
1484        // FIXME: Do we need to check for default arguments here?
1485        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1486          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1487            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1488          return;
1489        }
1490      }
1491    }
1492  }
1493
1494  QualType BadAllocType;
1495  bool HasBadAllocExceptionSpec
1496    = (Name.getCXXOverloadedOperator() == OO_New ||
1497       Name.getCXXOverloadedOperator() == OO_Array_New);
1498  if (HasBadAllocExceptionSpec) {
1499    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1500    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1501  }
1502
1503  FunctionProtoType::ExtProtoInfo EPI;
1504  if (HasBadAllocExceptionSpec) {
1505    EPI.ExceptionSpecType = EST_Dynamic;
1506    EPI.NumExceptions = 1;
1507    EPI.Exceptions = &BadAllocType;
1508  } else {
1509    EPI.ExceptionSpecType = EST_DynamicNone;
1510  }
1511
1512  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1513  FunctionDecl *Alloc =
1514    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1515                         SourceLocation(), Name,
1516                         FnType, /*TInfo=*/0, SC_None,
1517                         SC_None, false, true);
1518  Alloc->setImplicit();
1519
1520  if (AddMallocAttr)
1521    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1522
1523  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1524                                           SourceLocation(), 0,
1525                                           Argument, /*TInfo=*/0,
1526                                           SC_None, SC_None, 0);
1527  Alloc->setParams(&Param, 1);
1528
1529  // FIXME: Also add this declaration to the IdentifierResolver, but
1530  // make sure it is at the end of the chain to coincide with the
1531  // global scope.
1532  Context.getTranslationUnitDecl()->addDecl(Alloc);
1533}
1534
1535bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1536                                    DeclarationName Name,
1537                                    FunctionDecl* &Operator) {
1538  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1539  // Try to find operator delete/operator delete[] in class scope.
1540  LookupQualifiedName(Found, RD);
1541
1542  if (Found.isAmbiguous())
1543    return true;
1544
1545  Found.suppressDiagnostics();
1546
1547  llvm::SmallVector<DeclAccessPair,4> Matches;
1548  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1549       F != FEnd; ++F) {
1550    NamedDecl *ND = (*F)->getUnderlyingDecl();
1551
1552    // Ignore template operator delete members from the check for a usual
1553    // deallocation function.
1554    if (isa<FunctionTemplateDecl>(ND))
1555      continue;
1556
1557    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1558      Matches.push_back(F.getPair());
1559  }
1560
1561  // There's exactly one suitable operator;  pick it.
1562  if (Matches.size() == 1) {
1563    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1564    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1565                          Matches[0]);
1566    return false;
1567
1568  // We found multiple suitable operators;  complain about the ambiguity.
1569  } else if (!Matches.empty()) {
1570    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1571      << Name << RD;
1572
1573    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1574           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1575      Diag((*F)->getUnderlyingDecl()->getLocation(),
1576           diag::note_member_declared_here) << Name;
1577    return true;
1578  }
1579
1580  // We did find operator delete/operator delete[] declarations, but
1581  // none of them were suitable.
1582  if (!Found.empty()) {
1583    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1584      << Name << RD;
1585
1586    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1587         F != FEnd; ++F)
1588      Diag((*F)->getUnderlyingDecl()->getLocation(),
1589           diag::note_member_declared_here) << Name;
1590
1591    return true;
1592  }
1593
1594  // Look for a global declaration.
1595  DeclareGlobalNewDelete();
1596  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1597
1598  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1599  Expr* DeallocArgs[1];
1600  DeallocArgs[0] = &Null;
1601  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1602                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1603                             Operator))
1604    return true;
1605
1606  assert(Operator && "Did not find a deallocation function!");
1607  return false;
1608}
1609
1610/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1611/// @code ::delete ptr; @endcode
1612/// or
1613/// @code delete [] ptr; @endcode
1614ExprResult
1615Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1616                     bool ArrayForm, Expr *Ex) {
1617  // C++ [expr.delete]p1:
1618  //   The operand shall have a pointer type, or a class type having a single
1619  //   conversion function to a pointer type. The result has type void.
1620  //
1621  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1622
1623  FunctionDecl *OperatorDelete = 0;
1624  bool ArrayFormAsWritten = ArrayForm;
1625  bool UsualArrayDeleteWantsSize = false;
1626
1627  if (!Ex->isTypeDependent()) {
1628    QualType Type = Ex->getType();
1629
1630    if (const RecordType *Record = Type->getAs<RecordType>()) {
1631      if (RequireCompleteType(StartLoc, Type,
1632                              PDiag(diag::err_delete_incomplete_class_type)))
1633        return ExprError();
1634
1635      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1636
1637      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1638      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1639      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1640             E = Conversions->end(); I != E; ++I) {
1641        NamedDecl *D = I.getDecl();
1642        if (isa<UsingShadowDecl>(D))
1643          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1644
1645        // Skip over templated conversion functions; they aren't considered.
1646        if (isa<FunctionTemplateDecl>(D))
1647          continue;
1648
1649        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1650
1651        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1652        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1653          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1654            ObjectPtrConversions.push_back(Conv);
1655      }
1656      if (ObjectPtrConversions.size() == 1) {
1657        // We have a single conversion to a pointer-to-object type. Perform
1658        // that conversion.
1659        // TODO: don't redo the conversion calculation.
1660        if (!PerformImplicitConversion(Ex,
1661                            ObjectPtrConversions.front()->getConversionType(),
1662                                      AA_Converting)) {
1663          Type = Ex->getType();
1664        }
1665      }
1666      else if (ObjectPtrConversions.size() > 1) {
1667        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1668              << Type << Ex->getSourceRange();
1669        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1670          NoteOverloadCandidate(ObjectPtrConversions[i]);
1671        return ExprError();
1672      }
1673    }
1674
1675    if (!Type->isPointerType())
1676      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1677        << Type << Ex->getSourceRange());
1678
1679    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1680    if (Pointee->isVoidType() && !isSFINAEContext()) {
1681      // The C++ standard bans deleting a pointer to a non-object type, which
1682      // effectively bans deletion of "void*". However, most compilers support
1683      // this, so we treat it as a warning unless we're in a SFINAE context.
1684      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1685        << Type << Ex->getSourceRange();
1686    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1687      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1688        << Type << Ex->getSourceRange());
1689    else if (!Pointee->isDependentType() &&
1690             RequireCompleteType(StartLoc, Pointee,
1691                                 PDiag(diag::warn_delete_incomplete)
1692                                   << Ex->getSourceRange()))
1693      return ExprError();
1694
1695    // C++ [expr.delete]p2:
1696    //   [Note: a pointer to a const type can be the operand of a
1697    //   delete-expression; it is not necessary to cast away the constness
1698    //   (5.2.11) of the pointer expression before it is used as the operand
1699    //   of the delete-expression. ]
1700    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1701                      CK_NoOp);
1702
1703    if (Pointee->isArrayType() && !ArrayForm) {
1704      Diag(StartLoc, diag::warn_delete_array_type)
1705          << Type << Ex->getSourceRange()
1706          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1707      ArrayForm = true;
1708    }
1709
1710    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1711                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1712
1713    QualType PointeeElem = Context.getBaseElementType(Pointee);
1714    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1715      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1716
1717      if (!UseGlobal &&
1718          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1719        return ExprError();
1720
1721      // If we're allocating an array of records, check whether the
1722      // usual operator delete[] has a size_t parameter.
1723      if (ArrayForm) {
1724        // If the user specifically asked to use the global allocator,
1725        // we'll need to do the lookup into the class.
1726        if (UseGlobal)
1727          UsualArrayDeleteWantsSize =
1728            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1729
1730        // Otherwise, the usual operator delete[] should be the
1731        // function we just found.
1732        else if (isa<CXXMethodDecl>(OperatorDelete))
1733          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1734      }
1735
1736      if (!RD->hasTrivialDestructor())
1737        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1738          MarkDeclarationReferenced(StartLoc,
1739                                    const_cast<CXXDestructorDecl*>(Dtor));
1740          DiagnoseUseOfDecl(Dtor, StartLoc);
1741        }
1742    }
1743
1744    if (!OperatorDelete) {
1745      // Look for a global declaration.
1746      DeclareGlobalNewDelete();
1747      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1748      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1749                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1750                                 OperatorDelete))
1751        return ExprError();
1752    }
1753
1754    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1755
1756    // Check access and ambiguity of operator delete and destructor.
1757    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1758      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1759      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1760          CheckDestructorAccess(Ex->getExprLoc(), Dtor,
1761                      PDiag(diag::err_access_dtor) << PointeeElem);
1762      }
1763    }
1764
1765  }
1766
1767  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1768                                           ArrayFormAsWritten,
1769                                           UsualArrayDeleteWantsSize,
1770                                           OperatorDelete, Ex, StartLoc));
1771}
1772
1773/// \brief Check the use of the given variable as a C++ condition in an if,
1774/// while, do-while, or switch statement.
1775ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1776                                        SourceLocation StmtLoc,
1777                                        bool ConvertToBoolean) {
1778  QualType T = ConditionVar->getType();
1779
1780  // C++ [stmt.select]p2:
1781  //   The declarator shall not specify a function or an array.
1782  if (T->isFunctionType())
1783    return ExprError(Diag(ConditionVar->getLocation(),
1784                          diag::err_invalid_use_of_function_type)
1785                       << ConditionVar->getSourceRange());
1786  else if (T->isArrayType())
1787    return ExprError(Diag(ConditionVar->getLocation(),
1788                          diag::err_invalid_use_of_array_type)
1789                     << ConditionVar->getSourceRange());
1790
1791  Expr *Condition = DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
1792                                        ConditionVar,
1793                                        ConditionVar->getLocation(),
1794                            ConditionVar->getType().getNonReferenceType(),
1795                                        VK_LValue);
1796  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1797    return ExprError();
1798
1799  return Owned(Condition);
1800}
1801
1802/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1803bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1804  // C++ 6.4p4:
1805  // The value of a condition that is an initialized declaration in a statement
1806  // other than a switch statement is the value of the declared variable
1807  // implicitly converted to type bool. If that conversion is ill-formed, the
1808  // program is ill-formed.
1809  // The value of a condition that is an expression is the value of the
1810  // expression, implicitly converted to bool.
1811  //
1812  return PerformContextuallyConvertToBool(CondExpr);
1813}
1814
1815/// Helper function to determine whether this is the (deprecated) C++
1816/// conversion from a string literal to a pointer to non-const char or
1817/// non-const wchar_t (for narrow and wide string literals,
1818/// respectively).
1819bool
1820Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1821  // Look inside the implicit cast, if it exists.
1822  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1823    From = Cast->getSubExpr();
1824
1825  // A string literal (2.13.4) that is not a wide string literal can
1826  // be converted to an rvalue of type "pointer to char"; a wide
1827  // string literal can be converted to an rvalue of type "pointer
1828  // to wchar_t" (C++ 4.2p2).
1829  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1830    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1831      if (const BuiltinType *ToPointeeType
1832          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1833        // This conversion is considered only when there is an
1834        // explicit appropriate pointer target type (C++ 4.2p2).
1835        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1836            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1837             (!StrLit->isWide() &&
1838              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1839               ToPointeeType->getKind() == BuiltinType::Char_S))))
1840          return true;
1841      }
1842
1843  return false;
1844}
1845
1846static ExprResult BuildCXXCastArgument(Sema &S,
1847                                       SourceLocation CastLoc,
1848                                       QualType Ty,
1849                                       CastKind Kind,
1850                                       CXXMethodDecl *Method,
1851                                       NamedDecl *FoundDecl,
1852                                       Expr *From) {
1853  switch (Kind) {
1854  default: assert(0 && "Unhandled cast kind!");
1855  case CK_ConstructorConversion: {
1856    ASTOwningVector<Expr*> ConstructorArgs(S);
1857
1858    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1859                                  MultiExprArg(&From, 1),
1860                                  CastLoc, ConstructorArgs))
1861      return ExprError();
1862
1863    ExprResult Result =
1864    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1865                            move_arg(ConstructorArgs),
1866                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1867                            SourceRange());
1868    if (Result.isInvalid())
1869      return ExprError();
1870
1871    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1872  }
1873
1874  case CK_UserDefinedConversion: {
1875    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1876
1877    // Create an implicit call expr that calls it.
1878    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
1879    if (Result.isInvalid())
1880      return ExprError();
1881
1882    return S.MaybeBindToTemporary(Result.get());
1883  }
1884  }
1885}
1886
1887/// PerformImplicitConversion - Perform an implicit conversion of the
1888/// expression From to the type ToType using the pre-computed implicit
1889/// conversion sequence ICS. Returns true if there was an error, false
1890/// otherwise. The expression From is replaced with the converted
1891/// expression. Action is the kind of conversion we're performing,
1892/// used in the error message.
1893bool
1894Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1895                                const ImplicitConversionSequence &ICS,
1896                                AssignmentAction Action, bool CStyle) {
1897  switch (ICS.getKind()) {
1898  case ImplicitConversionSequence::StandardConversion:
1899    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1900                                  CStyle))
1901      return true;
1902    break;
1903
1904  case ImplicitConversionSequence::UserDefinedConversion: {
1905
1906      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1907      CastKind CastKind;
1908      QualType BeforeToType;
1909      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1910        CastKind = CK_UserDefinedConversion;
1911
1912        // If the user-defined conversion is specified by a conversion function,
1913        // the initial standard conversion sequence converts the source type to
1914        // the implicit object parameter of the conversion function.
1915        BeforeToType = Context.getTagDeclType(Conv->getParent());
1916      } else {
1917        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
1918        CastKind = CK_ConstructorConversion;
1919        // Do no conversion if dealing with ... for the first conversion.
1920        if (!ICS.UserDefined.EllipsisConversion) {
1921          // If the user-defined conversion is specified by a constructor, the
1922          // initial standard conversion sequence converts the source type to the
1923          // type required by the argument of the constructor
1924          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1925        }
1926      }
1927      // Watch out for elipsis conversion.
1928      if (!ICS.UserDefined.EllipsisConversion) {
1929        if (PerformImplicitConversion(From, BeforeToType,
1930                                      ICS.UserDefined.Before, AA_Converting,
1931                                      CStyle))
1932          return true;
1933      }
1934
1935      ExprResult CastArg
1936        = BuildCXXCastArgument(*this,
1937                               From->getLocStart(),
1938                               ToType.getNonReferenceType(),
1939                               CastKind, cast<CXXMethodDecl>(FD),
1940                               ICS.UserDefined.FoundConversionFunction,
1941                               From);
1942
1943      if (CastArg.isInvalid())
1944        return true;
1945
1946      From = CastArg.takeAs<Expr>();
1947
1948      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1949                                       AA_Converting, CStyle);
1950  }
1951
1952  case ImplicitConversionSequence::AmbiguousConversion:
1953    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1954                          PDiag(diag::err_typecheck_ambiguous_condition)
1955                            << From->getSourceRange());
1956     return true;
1957
1958  case ImplicitConversionSequence::EllipsisConversion:
1959    assert(false && "Cannot perform an ellipsis conversion");
1960    return false;
1961
1962  case ImplicitConversionSequence::BadConversion:
1963    return true;
1964  }
1965
1966  // Everything went well.
1967  return false;
1968}
1969
1970/// PerformImplicitConversion - Perform an implicit conversion of the
1971/// expression From to the type ToType by following the standard
1972/// conversion sequence SCS. Returns true if there was an error, false
1973/// otherwise. The expression From is replaced with the converted
1974/// expression. Flavor is the context in which we're performing this
1975/// conversion, for use in error messages.
1976bool
1977Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1978                                const StandardConversionSequence& SCS,
1979                                AssignmentAction Action, bool CStyle) {
1980  // Overall FIXME: we are recomputing too many types here and doing far too
1981  // much extra work. What this means is that we need to keep track of more
1982  // information that is computed when we try the implicit conversion initially,
1983  // so that we don't need to recompute anything here.
1984  QualType FromType = From->getType();
1985
1986  if (SCS.CopyConstructor) {
1987    // FIXME: When can ToType be a reference type?
1988    assert(!ToType->isReferenceType());
1989    if (SCS.Second == ICK_Derived_To_Base) {
1990      ASTOwningVector<Expr*> ConstructorArgs(*this);
1991      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1992                                  MultiExprArg(*this, &From, 1),
1993                                  /*FIXME:ConstructLoc*/SourceLocation(),
1994                                  ConstructorArgs))
1995        return true;
1996      ExprResult FromResult =
1997        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1998                              ToType, SCS.CopyConstructor,
1999                              move_arg(ConstructorArgs),
2000                              /*ZeroInit*/ false,
2001                              CXXConstructExpr::CK_Complete,
2002                              SourceRange());
2003      if (FromResult.isInvalid())
2004        return true;
2005      From = FromResult.takeAs<Expr>();
2006      return false;
2007    }
2008    ExprResult FromResult =
2009      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2010                            ToType, SCS.CopyConstructor,
2011                            MultiExprArg(*this, &From, 1),
2012                            /*ZeroInit*/ false,
2013                            CXXConstructExpr::CK_Complete,
2014                            SourceRange());
2015
2016    if (FromResult.isInvalid())
2017      return true;
2018
2019    From = FromResult.takeAs<Expr>();
2020    return false;
2021  }
2022
2023  // Resolve overloaded function references.
2024  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2025    DeclAccessPair Found;
2026    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2027                                                          true, Found);
2028    if (!Fn)
2029      return true;
2030
2031    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2032      return true;
2033
2034    From = FixOverloadedFunctionReference(From, Found, Fn);
2035    FromType = From->getType();
2036  }
2037
2038  // Perform the first implicit conversion.
2039  switch (SCS.First) {
2040  case ICK_Identity:
2041    // Nothing to do.
2042    break;
2043
2044  case ICK_Lvalue_To_Rvalue:
2045    // Should this get its own ICK?
2046    if (From->getObjectKind() == OK_ObjCProperty) {
2047      ConvertPropertyForRValue(From);
2048      if (!From->isGLValue()) break;
2049    }
2050
2051    // Check for trivial buffer overflows.
2052    CheckArrayAccess(From);
2053
2054    FromType = FromType.getUnqualifiedType();
2055    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2056                                    From, 0, VK_RValue);
2057    break;
2058
2059  case ICK_Array_To_Pointer:
2060    FromType = Context.getArrayDecayedType(FromType);
2061    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
2062    break;
2063
2064  case ICK_Function_To_Pointer:
2065    FromType = Context.getPointerType(FromType);
2066    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
2067    break;
2068
2069  default:
2070    assert(false && "Improper first standard conversion");
2071    break;
2072  }
2073
2074  // Perform the second implicit conversion
2075  switch (SCS.Second) {
2076  case ICK_Identity:
2077    // If both sides are functions (or pointers/references to them), there could
2078    // be incompatible exception declarations.
2079    if (CheckExceptionSpecCompatibility(From, ToType))
2080      return true;
2081    // Nothing else to do.
2082    break;
2083
2084  case ICK_NoReturn_Adjustment:
2085    // If both sides are functions (or pointers/references to them), there could
2086    // be incompatible exception declarations.
2087    if (CheckExceptionSpecCompatibility(From, ToType))
2088      return true;
2089
2090    ImpCastExprToType(From, ToType, CK_NoOp);
2091    break;
2092
2093  case ICK_Integral_Promotion:
2094  case ICK_Integral_Conversion:
2095    ImpCastExprToType(From, ToType, CK_IntegralCast);
2096    break;
2097
2098  case ICK_Floating_Promotion:
2099  case ICK_Floating_Conversion:
2100    ImpCastExprToType(From, ToType, CK_FloatingCast);
2101    break;
2102
2103  case ICK_Complex_Promotion:
2104  case ICK_Complex_Conversion: {
2105    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2106    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2107    CastKind CK;
2108    if (FromEl->isRealFloatingType()) {
2109      if (ToEl->isRealFloatingType())
2110        CK = CK_FloatingComplexCast;
2111      else
2112        CK = CK_FloatingComplexToIntegralComplex;
2113    } else if (ToEl->isRealFloatingType()) {
2114      CK = CK_IntegralComplexToFloatingComplex;
2115    } else {
2116      CK = CK_IntegralComplexCast;
2117    }
2118    ImpCastExprToType(From, ToType, CK);
2119    break;
2120  }
2121
2122  case ICK_Floating_Integral:
2123    if (ToType->isRealFloatingType())
2124      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
2125    else
2126      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
2127    break;
2128
2129  case ICK_Compatible_Conversion:
2130    ImpCastExprToType(From, ToType, CK_NoOp);
2131    break;
2132
2133  case ICK_Pointer_Conversion: {
2134    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2135      // Diagnose incompatible Objective-C conversions
2136      Diag(From->getSourceRange().getBegin(),
2137           diag::ext_typecheck_convert_incompatible_pointer)
2138        << From->getType() << ToType << Action
2139        << From->getSourceRange();
2140    }
2141
2142    CastKind Kind = CK_Invalid;
2143    CXXCastPath BasePath;
2144    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2145      return true;
2146    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2147    break;
2148  }
2149
2150  case ICK_Pointer_Member: {
2151    CastKind Kind = CK_Invalid;
2152    CXXCastPath BasePath;
2153    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2154      return true;
2155    if (CheckExceptionSpecCompatibility(From, ToType))
2156      return true;
2157    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2158    break;
2159  }
2160  case ICK_Boolean_Conversion: {
2161    CastKind Kind = CK_Invalid;
2162    switch (FromType->getScalarTypeKind()) {
2163    case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
2164    case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
2165    case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
2166    case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
2167    case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
2168    case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
2169    case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
2170    }
2171
2172    ImpCastExprToType(From, Context.BoolTy, Kind);
2173    break;
2174  }
2175
2176  case ICK_Derived_To_Base: {
2177    CXXCastPath BasePath;
2178    if (CheckDerivedToBaseConversion(From->getType(),
2179                                     ToType.getNonReferenceType(),
2180                                     From->getLocStart(),
2181                                     From->getSourceRange(),
2182                                     &BasePath,
2183                                     CStyle))
2184      return true;
2185
2186    ImpCastExprToType(From, ToType.getNonReferenceType(),
2187                      CK_DerivedToBase, CastCategory(From),
2188                      &BasePath);
2189    break;
2190  }
2191
2192  case ICK_Vector_Conversion:
2193    ImpCastExprToType(From, ToType, CK_BitCast);
2194    break;
2195
2196  case ICK_Vector_Splat:
2197    ImpCastExprToType(From, ToType, CK_VectorSplat);
2198    break;
2199
2200  case ICK_Complex_Real:
2201    // Case 1.  x -> _Complex y
2202    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2203      QualType ElType = ToComplex->getElementType();
2204      bool isFloatingComplex = ElType->isRealFloatingType();
2205
2206      // x -> y
2207      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2208        // do nothing
2209      } else if (From->getType()->isRealFloatingType()) {
2210        ImpCastExprToType(From, ElType,
2211                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
2212      } else {
2213        assert(From->getType()->isIntegerType());
2214        ImpCastExprToType(From, ElType,
2215                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
2216      }
2217      // y -> _Complex y
2218      ImpCastExprToType(From, ToType,
2219                   isFloatingComplex ? CK_FloatingRealToComplex
2220                                     : CK_IntegralRealToComplex);
2221
2222    // Case 2.  _Complex x -> y
2223    } else {
2224      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2225      assert(FromComplex);
2226
2227      QualType ElType = FromComplex->getElementType();
2228      bool isFloatingComplex = ElType->isRealFloatingType();
2229
2230      // _Complex x -> x
2231      ImpCastExprToType(From, ElType,
2232                   isFloatingComplex ? CK_FloatingComplexToReal
2233                                     : CK_IntegralComplexToReal);
2234
2235      // x -> y
2236      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2237        // do nothing
2238      } else if (ToType->isRealFloatingType()) {
2239        ImpCastExprToType(From, ToType,
2240                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
2241      } else {
2242        assert(ToType->isIntegerType());
2243        ImpCastExprToType(From, ToType,
2244                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
2245      }
2246    }
2247    break;
2248
2249  case ICK_Block_Pointer_Conversion: {
2250      ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue);
2251      break;
2252    }
2253
2254  case ICK_Lvalue_To_Rvalue:
2255  case ICK_Array_To_Pointer:
2256  case ICK_Function_To_Pointer:
2257  case ICK_Qualification:
2258  case ICK_Num_Conversion_Kinds:
2259    assert(false && "Improper second standard conversion");
2260    break;
2261  }
2262
2263  switch (SCS.Third) {
2264  case ICK_Identity:
2265    // Nothing to do.
2266    break;
2267
2268  case ICK_Qualification: {
2269    // The qualification keeps the category of the inner expression, unless the
2270    // target type isn't a reference.
2271    ExprValueKind VK = ToType->isReferenceType() ?
2272                                  CastCategory(From) : VK_RValue;
2273    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2274                      CK_NoOp, VK);
2275
2276    if (SCS.DeprecatedStringLiteralToCharPtr)
2277      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2278        << ToType.getNonReferenceType();
2279
2280    break;
2281    }
2282
2283  default:
2284    assert(false && "Improper third standard conversion");
2285    break;
2286  }
2287
2288  return false;
2289}
2290
2291ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2292                                     SourceLocation KWLoc,
2293                                     ParsedType Ty,
2294                                     SourceLocation RParen) {
2295  TypeSourceInfo *TSInfo;
2296  QualType T = GetTypeFromParser(Ty, &TSInfo);
2297
2298  if (!TSInfo)
2299    TSInfo = Context.getTrivialTypeSourceInfo(T);
2300  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2301}
2302
2303static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2304                                   SourceLocation KeyLoc) {
2305  // FIXME: For many of these traits, we need a complete type before we can
2306  // check these properties.
2307  assert(!T->isDependentType() &&
2308         "Cannot evaluate traits for dependent types.");
2309  ASTContext &C = Self.Context;
2310  switch(UTT) {
2311  default: assert(false && "Unknown type trait or not implemented");
2312  case UTT_IsPOD: return T->isPODType();
2313  case UTT_IsLiteral: return T->isLiteralType();
2314  case UTT_IsClass: // Fallthrough
2315  case UTT_IsUnion:
2316    if (const RecordType *Record = T->getAs<RecordType>()) {
2317      bool Union = Record->getDecl()->isUnion();
2318      return UTT == UTT_IsUnion ? Union : !Union;
2319    }
2320    return false;
2321  case UTT_IsEnum: return T->isEnumeralType();
2322  case UTT_IsPolymorphic:
2323    if (const RecordType *Record = T->getAs<RecordType>()) {
2324      // Type traits are only parsed in C++, so we've got CXXRecords.
2325      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2326    }
2327    return false;
2328  case UTT_IsAbstract:
2329    if (const RecordType *RT = T->getAs<RecordType>())
2330      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2331    return false;
2332  case UTT_IsEmpty:
2333    if (const RecordType *Record = T->getAs<RecordType>()) {
2334      return !Record->getDecl()->isUnion()
2335          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2336    }
2337    return false;
2338  case UTT_HasTrivialConstructor:
2339    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2340    //   If __is_pod (type) is true then the trait is true, else if type is
2341    //   a cv class or union type (or array thereof) with a trivial default
2342    //   constructor ([class.ctor]) then the trait is true, else it is false.
2343    if (T->isPODType())
2344      return true;
2345    if (const RecordType *RT =
2346          C.getBaseElementType(T)->getAs<RecordType>())
2347      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2348    return false;
2349  case UTT_HasTrivialCopy:
2350    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2351    //   If __is_pod (type) is true or type is a reference type then
2352    //   the trait is true, else if type is a cv class or union type
2353    //   with a trivial copy constructor ([class.copy]) then the trait
2354    //   is true, else it is false.
2355    if (T->isPODType() || T->isReferenceType())
2356      return true;
2357    if (const RecordType *RT = T->getAs<RecordType>())
2358      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2359    return false;
2360  case UTT_HasTrivialAssign:
2361    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2362    //   If type is const qualified or is a reference type then the
2363    //   trait is false. Otherwise if __is_pod (type) is true then the
2364    //   trait is true, else if type is a cv class or union type with
2365    //   a trivial copy assignment ([class.copy]) then the trait is
2366    //   true, else it is false.
2367    // Note: the const and reference restrictions are interesting,
2368    // given that const and reference members don't prevent a class
2369    // from having a trivial copy assignment operator (but do cause
2370    // errors if the copy assignment operator is actually used, q.v.
2371    // [class.copy]p12).
2372
2373    if (C.getBaseElementType(T).isConstQualified())
2374      return false;
2375    if (T->isPODType())
2376      return true;
2377    if (const RecordType *RT = T->getAs<RecordType>())
2378      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2379    return false;
2380  case UTT_HasTrivialDestructor:
2381    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2382    //   If __is_pod (type) is true or type is a reference type
2383    //   then the trait is true, else if type is a cv class or union
2384    //   type (or array thereof) with a trivial destructor
2385    //   ([class.dtor]) then the trait is true, else it is
2386    //   false.
2387    if (T->isPODType() || T->isReferenceType())
2388      return true;
2389    if (const RecordType *RT =
2390          C.getBaseElementType(T)->getAs<RecordType>())
2391      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2392    return false;
2393  // TODO: Propagate nothrowness for implicitly declared special members.
2394  case UTT_HasNothrowAssign:
2395    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2396    //   If type is const qualified or is a reference type then the
2397    //   trait is false. Otherwise if __has_trivial_assign (type)
2398    //   is true then the trait is true, else if type is a cv class
2399    //   or union type with copy assignment operators that are known
2400    //   not to throw an exception then the trait is true, else it is
2401    //   false.
2402    if (C.getBaseElementType(T).isConstQualified())
2403      return false;
2404    if (T->isReferenceType())
2405      return false;
2406    if (T->isPODType())
2407      return true;
2408    if (const RecordType *RT = T->getAs<RecordType>()) {
2409      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2410      if (RD->hasTrivialCopyAssignment())
2411        return true;
2412
2413      bool FoundAssign = false;
2414      bool AllNoThrow = true;
2415      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2416      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2417                       Sema::LookupOrdinaryName);
2418      if (Self.LookupQualifiedName(Res, RD)) {
2419        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2420             Op != OpEnd; ++Op) {
2421          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2422          if (Operator->isCopyAssignmentOperator()) {
2423            FoundAssign = true;
2424            const FunctionProtoType *CPT
2425                = Operator->getType()->getAs<FunctionProtoType>();
2426            if (!CPT->isNothrow(Self.Context)) {
2427              AllNoThrow = false;
2428              break;
2429            }
2430          }
2431        }
2432      }
2433
2434      return FoundAssign && AllNoThrow;
2435    }
2436    return false;
2437  case UTT_HasNothrowCopy:
2438    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2439    //   If __has_trivial_copy (type) is true then the trait is true, else
2440    //   if type is a cv class or union type with copy constructors that are
2441    //   known not to throw an exception then the trait is true, else it is
2442    //   false.
2443    if (T->isPODType() || T->isReferenceType())
2444      return true;
2445    if (const RecordType *RT = T->getAs<RecordType>()) {
2446      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2447      if (RD->hasTrivialCopyConstructor())
2448        return true;
2449
2450      bool FoundConstructor = false;
2451      bool AllNoThrow = true;
2452      unsigned FoundTQs;
2453      DeclContext::lookup_const_iterator Con, ConEnd;
2454      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2455           Con != ConEnd; ++Con) {
2456        // A template constructor is never a copy constructor.
2457        // FIXME: However, it may actually be selected at the actual overload
2458        // resolution point.
2459        if (isa<FunctionTemplateDecl>(*Con))
2460          continue;
2461        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2462        if (Constructor->isCopyConstructor(FoundTQs)) {
2463          FoundConstructor = true;
2464          const FunctionProtoType *CPT
2465              = Constructor->getType()->getAs<FunctionProtoType>();
2466          // FIXME: check whether evaluating default arguments can throw.
2467          // For now, we'll be conservative and assume that they can throw.
2468          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1) {
2469            AllNoThrow = false;
2470            break;
2471          }
2472        }
2473      }
2474
2475      return FoundConstructor && AllNoThrow;
2476    }
2477    return false;
2478  case UTT_HasNothrowConstructor:
2479    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2480    //   If __has_trivial_constructor (type) is true then the trait is
2481    //   true, else if type is a cv class or union type (or array
2482    //   thereof) with a default constructor that is known not to
2483    //   throw an exception then the trait is true, else it is false.
2484    if (T->isPODType())
2485      return true;
2486    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2487      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2488      if (RD->hasTrivialConstructor())
2489        return true;
2490
2491      DeclContext::lookup_const_iterator Con, ConEnd;
2492      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2493           Con != ConEnd; ++Con) {
2494        // FIXME: In C++0x, a constructor template can be a default constructor.
2495        if (isa<FunctionTemplateDecl>(*Con))
2496          continue;
2497        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2498        if (Constructor->isDefaultConstructor()) {
2499          const FunctionProtoType *CPT
2500              = Constructor->getType()->getAs<FunctionProtoType>();
2501          // TODO: check whether evaluating default arguments can throw.
2502          // For now, we'll be conservative and assume that they can throw.
2503          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
2504        }
2505      }
2506    }
2507    return false;
2508  case UTT_HasVirtualDestructor:
2509    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2510    //   If type is a class type with a virtual destructor ([class.dtor])
2511    //   then the trait is true, else it is false.
2512    if (const RecordType *Record = T->getAs<RecordType>()) {
2513      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2514      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2515        return Destructor->isVirtual();
2516    }
2517    return false;
2518  }
2519}
2520
2521ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2522                                     SourceLocation KWLoc,
2523                                     TypeSourceInfo *TSInfo,
2524                                     SourceLocation RParen) {
2525  QualType T = TSInfo->getType();
2526
2527  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2528  // all traits except __is_class, __is_enum and __is_union require a the type
2529  // to be complete, an array of unknown bound, or void.
2530  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2531    QualType E = T;
2532    if (T->isIncompleteArrayType())
2533      E = Context.getAsArrayType(T)->getElementType();
2534    if (!T->isVoidType() &&
2535        RequireCompleteType(KWLoc, E,
2536                            diag::err_incomplete_type_used_in_type_trait_expr))
2537      return ExprError();
2538  }
2539
2540  bool Value = false;
2541  if (!T->isDependentType())
2542    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2543
2544  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2545                                                RParen, Context.BoolTy));
2546}
2547
2548ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2549                                      SourceLocation KWLoc,
2550                                      ParsedType LhsTy,
2551                                      ParsedType RhsTy,
2552                                      SourceLocation RParen) {
2553  TypeSourceInfo *LhsTSInfo;
2554  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2555  if (!LhsTSInfo)
2556    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2557
2558  TypeSourceInfo *RhsTSInfo;
2559  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2560  if (!RhsTSInfo)
2561    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2562
2563  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2564}
2565
2566static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2567                                    QualType LhsT, QualType RhsT,
2568                                    SourceLocation KeyLoc) {
2569  assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
2570         "Cannot evaluate traits for dependent types.");
2571
2572  switch(BTT) {
2573  case BTT_IsBaseOf: {
2574    // C++0x [meta.rel]p2
2575    // Base is a base class of Derived without regard to cv-qualifiers or
2576    // Base and Derived are not unions and name the same class type without
2577    // regard to cv-qualifiers.
2578
2579    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2580    if (!lhsRecord) return false;
2581
2582    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
2583    if (!rhsRecord) return false;
2584
2585    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
2586             == (lhsRecord == rhsRecord));
2587
2588    if (lhsRecord == rhsRecord)
2589      return !lhsRecord->getDecl()->isUnion();
2590
2591    // C++0x [meta.rel]p2:
2592    //   If Base and Derived are class types and are different types
2593    //   (ignoring possible cv-qualifiers) then Derived shall be a
2594    //   complete type.
2595    if (Self.RequireCompleteType(KeyLoc, RhsT,
2596                          diag::err_incomplete_type_used_in_type_trait_expr))
2597      return false;
2598
2599    return cast<CXXRecordDecl>(rhsRecord->getDecl())
2600      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
2601  }
2602
2603  case BTT_TypeCompatible:
2604    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2605                                           RhsT.getUnqualifiedType());
2606
2607  case BTT_IsConvertibleTo: {
2608    // C++0x [meta.rel]p4:
2609    //   Given the following function prototype:
2610    //
2611    //     template <class T>
2612    //       typename add_rvalue_reference<T>::type create();
2613    //
2614    //   the predicate condition for a template specialization
2615    //   is_convertible<From, To> shall be satisfied if and only if
2616    //   the return expression in the following code would be
2617    //   well-formed, including any implicit conversions to the return
2618    //   type of the function:
2619    //
2620    //     To test() {
2621    //       return create<From>();
2622    //     }
2623    //
2624    //   Access checking is performed as if in a context unrelated to To and
2625    //   From. Only the validity of the immediate context of the expression
2626    //   of the return-statement (including conversions to the return type)
2627    //   is considered.
2628    //
2629    // We model the initialization as a copy-initialization of a temporary
2630    // of the appropriate type, which for this expression is identical to the
2631    // return statement (since NRVO doesn't apply).
2632    if (LhsT->isObjectType() || LhsT->isFunctionType())
2633      LhsT = Self.Context.getRValueReferenceType(LhsT);
2634
2635    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
2636    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
2637                         Expr::getValueKindForType(LhsT));
2638    Expr *FromPtr = &From;
2639    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
2640                                                           SourceLocation()));
2641
2642    // Perform the initialization within a SFINAE trap at translation unit
2643    // scope.
2644    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
2645    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
2646    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
2647    if (Init.getKind() == InitializationSequence::FailedSequence)
2648      return false;
2649
2650    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
2651    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
2652  }
2653  }
2654  llvm_unreachable("Unknown type trait or not implemented");
2655}
2656
2657ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
2658                                      SourceLocation KWLoc,
2659                                      TypeSourceInfo *LhsTSInfo,
2660                                      TypeSourceInfo *RhsTSInfo,
2661                                      SourceLocation RParen) {
2662  QualType LhsT = LhsTSInfo->getType();
2663  QualType RhsT = RhsTSInfo->getType();
2664
2665  if (BTT == BTT_TypeCompatible) {
2666    if (getLangOptions().CPlusPlus) {
2667      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
2668        << SourceRange(KWLoc, RParen);
2669      return ExprError();
2670    }
2671  }
2672
2673  bool Value = false;
2674  if (!LhsT->isDependentType() && !RhsT->isDependentType())
2675    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
2676
2677  // Select trait result type.
2678  QualType ResultType;
2679  switch (BTT) {
2680  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
2681  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
2682  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
2683  }
2684
2685  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
2686                                                 RhsTSInfo, Value, RParen,
2687                                                 ResultType));
2688}
2689
2690QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
2691                                            ExprValueKind &VK,
2692                                            SourceLocation Loc,
2693                                            bool isIndirect) {
2694  const char *OpSpelling = isIndirect ? "->*" : ".*";
2695  // C++ 5.5p2
2696  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2697  //   be of type "pointer to member of T" (where T is a completely-defined
2698  //   class type) [...]
2699  QualType RType = rex->getType();
2700  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2701  if (!MemPtr) {
2702    Diag(Loc, diag::err_bad_memptr_rhs)
2703      << OpSpelling << RType << rex->getSourceRange();
2704    return QualType();
2705  }
2706
2707  QualType Class(MemPtr->getClass(), 0);
2708
2709  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
2710  // member pointer points must be completely-defined. However, there is no
2711  // reason for this semantic distinction, and the rule is not enforced by
2712  // other compilers. Therefore, we do not check this property, as it is
2713  // likely to be considered a defect.
2714
2715  // C++ 5.5p2
2716  //   [...] to its first operand, which shall be of class T or of a class of
2717  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2718  //   such a class]
2719  QualType LType = lex->getType();
2720  if (isIndirect) {
2721    if (const PointerType *Ptr = LType->getAs<PointerType>())
2722      LType = Ptr->getPointeeType();
2723    else {
2724      Diag(Loc, diag::err_bad_memptr_lhs)
2725        << OpSpelling << 1 << LType
2726        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2727      return QualType();
2728    }
2729  }
2730
2731  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2732    // If we want to check the hierarchy, we need a complete type.
2733    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2734        << OpSpelling << (int)isIndirect)) {
2735      return QualType();
2736    }
2737    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2738                       /*DetectVirtual=*/false);
2739    // FIXME: Would it be useful to print full ambiguity paths, or is that
2740    // overkill?
2741    if (!IsDerivedFrom(LType, Class, Paths) ||
2742        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2743      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2744        << (int)isIndirect << lex->getType();
2745      return QualType();
2746    }
2747    // Cast LHS to type of use.
2748    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2749    ExprValueKind VK =
2750        isIndirect ? VK_RValue : CastCategory(lex);
2751
2752    CXXCastPath BasePath;
2753    BuildBasePathArray(Paths, BasePath);
2754    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2755  }
2756
2757  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2758    // Diagnose use of pointer-to-member type which when used as
2759    // the functional cast in a pointer-to-member expression.
2760    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2761     return QualType();
2762  }
2763
2764  // C++ 5.5p2
2765  //   The result is an object or a function of the type specified by the
2766  //   second operand.
2767  // The cv qualifiers are the union of those in the pointer and the left side,
2768  // in accordance with 5.5p5 and 5.2.5.
2769  // FIXME: This returns a dereferenced member function pointer as a normal
2770  // function type. However, the only operation valid on such functions is
2771  // calling them. There's also a GCC extension to get a function pointer to the
2772  // thing, which is another complication, because this type - unlike the type
2773  // that is the result of this expression - takes the class as the first
2774  // argument.
2775  // We probably need a "MemberFunctionClosureType" or something like that.
2776  QualType Result = MemPtr->getPointeeType();
2777  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2778
2779  // C++0x [expr.mptr.oper]p6:
2780  //   In a .* expression whose object expression is an rvalue, the program is
2781  //   ill-formed if the second operand is a pointer to member function with
2782  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
2783  //   expression is an lvalue, the program is ill-formed if the second operand
2784  //   is a pointer to member function with ref-qualifier &&.
2785  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
2786    switch (Proto->getRefQualifier()) {
2787    case RQ_None:
2788      // Do nothing
2789      break;
2790
2791    case RQ_LValue:
2792      if (!isIndirect && !lex->Classify(Context).isLValue())
2793        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2794          << RType << 1 << lex->getSourceRange();
2795      break;
2796
2797    case RQ_RValue:
2798      if (isIndirect || !lex->Classify(Context).isRValue())
2799        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2800          << RType << 0 << lex->getSourceRange();
2801      break;
2802    }
2803  }
2804
2805  // C++ [expr.mptr.oper]p6:
2806  //   The result of a .* expression whose second operand is a pointer
2807  //   to a data member is of the same value category as its
2808  //   first operand. The result of a .* expression whose second
2809  //   operand is a pointer to a member function is a prvalue. The
2810  //   result of an ->* expression is an lvalue if its second operand
2811  //   is a pointer to data member and a prvalue otherwise.
2812  if (Result->isFunctionType())
2813    VK = VK_RValue;
2814  else if (isIndirect)
2815    VK = VK_LValue;
2816  else
2817    VK = lex->getValueKind();
2818
2819  return Result;
2820}
2821
2822/// \brief Try to convert a type to another according to C++0x 5.16p3.
2823///
2824/// This is part of the parameter validation for the ? operator. If either
2825/// value operand is a class type, the two operands are attempted to be
2826/// converted to each other. This function does the conversion in one direction.
2827/// It returns true if the program is ill-formed and has already been diagnosed
2828/// as such.
2829static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2830                                SourceLocation QuestionLoc,
2831                                bool &HaveConversion,
2832                                QualType &ToType) {
2833  HaveConversion = false;
2834  ToType = To->getType();
2835
2836  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2837                                                           SourceLocation());
2838  // C++0x 5.16p3
2839  //   The process for determining whether an operand expression E1 of type T1
2840  //   can be converted to match an operand expression E2 of type T2 is defined
2841  //   as follows:
2842  //   -- If E2 is an lvalue:
2843  bool ToIsLvalue = To->isLValue();
2844  if (ToIsLvalue) {
2845    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2846    //   type "lvalue reference to T2", subject to the constraint that in the
2847    //   conversion the reference must bind directly to E1.
2848    QualType T = Self.Context.getLValueReferenceType(ToType);
2849    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2850
2851    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2852    if (InitSeq.isDirectReferenceBinding()) {
2853      ToType = T;
2854      HaveConversion = true;
2855      return false;
2856    }
2857
2858    if (InitSeq.isAmbiguous())
2859      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2860  }
2861
2862  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2863  //      -- if E1 and E2 have class type, and the underlying class types are
2864  //         the same or one is a base class of the other:
2865  QualType FTy = From->getType();
2866  QualType TTy = To->getType();
2867  const RecordType *FRec = FTy->getAs<RecordType>();
2868  const RecordType *TRec = TTy->getAs<RecordType>();
2869  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2870                       Self.IsDerivedFrom(FTy, TTy);
2871  if (FRec && TRec &&
2872      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2873    //         E1 can be converted to match E2 if the class of T2 is the
2874    //         same type as, or a base class of, the class of T1, and
2875    //         [cv2 > cv1].
2876    if (FRec == TRec || FDerivedFromT) {
2877      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2878        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2879        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2880        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2881          HaveConversion = true;
2882          return false;
2883        }
2884
2885        if (InitSeq.isAmbiguous())
2886          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2887      }
2888    }
2889
2890    return false;
2891  }
2892
2893  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2894  //        implicitly converted to the type that expression E2 would have
2895  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2896  //        an rvalue).
2897  //
2898  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2899  // to the array-to-pointer or function-to-pointer conversions.
2900  if (!TTy->getAs<TagType>())
2901    TTy = TTy.getUnqualifiedType();
2902
2903  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2904  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2905  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2906  ToType = TTy;
2907  if (InitSeq.isAmbiguous())
2908    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2909
2910  return false;
2911}
2912
2913/// \brief Try to find a common type for two according to C++0x 5.16p5.
2914///
2915/// This is part of the parameter validation for the ? operator. If either
2916/// value operand is a class type, overload resolution is used to find a
2917/// conversion to a common type.
2918static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2919                                    SourceLocation QuestionLoc) {
2920  Expr *Args[2] = { LHS, RHS };
2921  OverloadCandidateSet CandidateSet(QuestionLoc);
2922  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
2923                                    CandidateSet);
2924
2925  OverloadCandidateSet::iterator Best;
2926  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
2927    case OR_Success:
2928      // We found a match. Perform the conversions on the arguments and move on.
2929      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2930                                         Best->Conversions[0], Sema::AA_Converting) ||
2931          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2932                                         Best->Conversions[1], Sema::AA_Converting))
2933        break;
2934      if (Best->Function)
2935        Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
2936      return false;
2937
2938    case OR_No_Viable_Function:
2939
2940      // Emit a better diagnostic if one of the expressions is a null pointer
2941      // constant and the other is a pointer type. In this case, the user most
2942      // likely forgot to take the address of the other expression.
2943      if (Self.DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
2944        return true;
2945
2946      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2947        << LHS->getType() << RHS->getType()
2948        << LHS->getSourceRange() << RHS->getSourceRange();
2949      return true;
2950
2951    case OR_Ambiguous:
2952      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
2953        << LHS->getType() << RHS->getType()
2954        << LHS->getSourceRange() << RHS->getSourceRange();
2955      // FIXME: Print the possible common types by printing the return types of
2956      // the viable candidates.
2957      break;
2958
2959    case OR_Deleted:
2960      assert(false && "Conditional operator has only built-in overloads");
2961      break;
2962  }
2963  return true;
2964}
2965
2966/// \brief Perform an "extended" implicit conversion as returned by
2967/// TryClassUnification.
2968static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2969  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2970  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2971                                                           SourceLocation());
2972  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2973  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2974  if (Result.isInvalid())
2975    return true;
2976
2977  E = Result.takeAs<Expr>();
2978  return false;
2979}
2980
2981/// \brief Check the operands of ?: under C++ semantics.
2982///
2983/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2984/// extension. In this case, LHS == Cond. (But they're not aliases.)
2985QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2986                                           ExprValueKind &VK, ExprObjectKind &OK,
2987                                           SourceLocation QuestionLoc) {
2988  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2989  // interface pointers.
2990
2991  // C++0x 5.16p1
2992  //   The first expression is contextually converted to bool.
2993  if (!Cond->isTypeDependent()) {
2994    if (CheckCXXBooleanCondition(Cond))
2995      return QualType();
2996  }
2997
2998  // Assume r-value.
2999  VK = VK_RValue;
3000  OK = OK_Ordinary;
3001
3002  // Either of the arguments dependent?
3003  if (LHS->isTypeDependent() || RHS->isTypeDependent())
3004    return Context.DependentTy;
3005
3006  // C++0x 5.16p2
3007  //   If either the second or the third operand has type (cv) void, ...
3008  QualType LTy = LHS->getType();
3009  QualType RTy = RHS->getType();
3010  bool LVoid = LTy->isVoidType();
3011  bool RVoid = RTy->isVoidType();
3012  if (LVoid || RVoid) {
3013    //   ... then the [l2r] conversions are performed on the second and third
3014    //   operands ...
3015    DefaultFunctionArrayLvalueConversion(LHS);
3016    DefaultFunctionArrayLvalueConversion(RHS);
3017    LTy = LHS->getType();
3018    RTy = RHS->getType();
3019
3020    //   ... and one of the following shall hold:
3021    //   -- The second or the third operand (but not both) is a throw-
3022    //      expression; the result is of the type of the other and is an rvalue.
3023    bool LThrow = isa<CXXThrowExpr>(LHS);
3024    bool RThrow = isa<CXXThrowExpr>(RHS);
3025    if (LThrow && !RThrow)
3026      return RTy;
3027    if (RThrow && !LThrow)
3028      return LTy;
3029
3030    //   -- Both the second and third operands have type void; the result is of
3031    //      type void and is an rvalue.
3032    if (LVoid && RVoid)
3033      return Context.VoidTy;
3034
3035    // Neither holds, error.
3036    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3037      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3038      << LHS->getSourceRange() << RHS->getSourceRange();
3039    return QualType();
3040  }
3041
3042  // Neither is void.
3043
3044  // C++0x 5.16p3
3045  //   Otherwise, if the second and third operand have different types, and
3046  //   either has (cv) class type, and attempt is made to convert each of those
3047  //   operands to the other.
3048  if (!Context.hasSameType(LTy, RTy) &&
3049      (LTy->isRecordType() || RTy->isRecordType())) {
3050    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3051    // These return true if a single direction is already ambiguous.
3052    QualType L2RType, R2LType;
3053    bool HaveL2R, HaveR2L;
3054    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
3055      return QualType();
3056    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
3057      return QualType();
3058
3059    //   If both can be converted, [...] the program is ill-formed.
3060    if (HaveL2R && HaveR2L) {
3061      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3062        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
3063      return QualType();
3064    }
3065
3066    //   If exactly one conversion is possible, that conversion is applied to
3067    //   the chosen operand and the converted operands are used in place of the
3068    //   original operands for the remainder of this section.
3069    if (HaveL2R) {
3070      if (ConvertForConditional(*this, LHS, L2RType))
3071        return QualType();
3072      LTy = LHS->getType();
3073    } else if (HaveR2L) {
3074      if (ConvertForConditional(*this, RHS, R2LType))
3075        return QualType();
3076      RTy = RHS->getType();
3077    }
3078  }
3079
3080  // C++0x 5.16p4
3081  //   If the second and third operands are glvalues of the same value
3082  //   category and have the same type, the result is of that type and
3083  //   value category and it is a bit-field if the second or the third
3084  //   operand is a bit-field, or if both are bit-fields.
3085  // We only extend this to bitfields, not to the crazy other kinds of
3086  // l-values.
3087  bool Same = Context.hasSameType(LTy, RTy);
3088  if (Same &&
3089      LHS->isGLValue() &&
3090      LHS->getValueKind() == RHS->getValueKind() &&
3091      LHS->isOrdinaryOrBitFieldObject() &&
3092      RHS->isOrdinaryOrBitFieldObject()) {
3093    VK = LHS->getValueKind();
3094    if (LHS->getObjectKind() == OK_BitField ||
3095        RHS->getObjectKind() == OK_BitField)
3096      OK = OK_BitField;
3097    return LTy;
3098  }
3099
3100  // C++0x 5.16p5
3101  //   Otherwise, the result is an rvalue. If the second and third operands
3102  //   do not have the same type, and either has (cv) class type, ...
3103  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3104    //   ... overload resolution is used to determine the conversions (if any)
3105    //   to be applied to the operands. If the overload resolution fails, the
3106    //   program is ill-formed.
3107    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3108      return QualType();
3109  }
3110
3111  // C++0x 5.16p6
3112  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3113  //   conversions are performed on the second and third operands.
3114  DefaultFunctionArrayLvalueConversion(LHS);
3115  DefaultFunctionArrayLvalueConversion(RHS);
3116  LTy = LHS->getType();
3117  RTy = RHS->getType();
3118
3119  //   After those conversions, one of the following shall hold:
3120  //   -- The second and third operands have the same type; the result
3121  //      is of that type. If the operands have class type, the result
3122  //      is a prvalue temporary of the result type, which is
3123  //      copy-initialized from either the second operand or the third
3124  //      operand depending on the value of the first operand.
3125  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3126    if (LTy->isRecordType()) {
3127      // The operands have class type. Make a temporary copy.
3128      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3129      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3130                                                     SourceLocation(),
3131                                                     Owned(LHS));
3132      if (LHSCopy.isInvalid())
3133        return QualType();
3134
3135      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3136                                                     SourceLocation(),
3137                                                     Owned(RHS));
3138      if (RHSCopy.isInvalid())
3139        return QualType();
3140
3141      LHS = LHSCopy.takeAs<Expr>();
3142      RHS = RHSCopy.takeAs<Expr>();
3143    }
3144
3145    return LTy;
3146  }
3147
3148  // Extension: conditional operator involving vector types.
3149  if (LTy->isVectorType() || RTy->isVectorType())
3150    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3151
3152  //   -- The second and third operands have arithmetic or enumeration type;
3153  //      the usual arithmetic conversions are performed to bring them to a
3154  //      common type, and the result is of that type.
3155  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3156    UsualArithmeticConversions(LHS, RHS);
3157    return LHS->getType();
3158  }
3159
3160  //   -- The second and third operands have pointer type, or one has pointer
3161  //      type and the other is a null pointer constant; pointer conversions
3162  //      and qualification conversions are performed to bring them to their
3163  //      composite pointer type. The result is of the composite pointer type.
3164  //   -- The second and third operands have pointer to member type, or one has
3165  //      pointer to member type and the other is a null pointer constant;
3166  //      pointer to member conversions and qualification conversions are
3167  //      performed to bring them to a common type, whose cv-qualification
3168  //      shall match the cv-qualification of either the second or the third
3169  //      operand. The result is of the common type.
3170  bool NonStandardCompositeType = false;
3171  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3172                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3173  if (!Composite.isNull()) {
3174    if (NonStandardCompositeType)
3175      Diag(QuestionLoc,
3176           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3177        << LTy << RTy << Composite
3178        << LHS->getSourceRange() << RHS->getSourceRange();
3179
3180    return Composite;
3181  }
3182
3183  // Similarly, attempt to find composite type of two objective-c pointers.
3184  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3185  if (!Composite.isNull())
3186    return Composite;
3187
3188  // Check if we are using a null with a non-pointer type.
3189  if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
3190    return QualType();
3191
3192  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3193    << LHS->getType() << RHS->getType()
3194    << LHS->getSourceRange() << RHS->getSourceRange();
3195  return QualType();
3196}
3197
3198/// \brief Find a merged pointer type and convert the two expressions to it.
3199///
3200/// This finds the composite pointer type (or member pointer type) for @p E1
3201/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3202/// type and returns it.
3203/// It does not emit diagnostics.
3204///
3205/// \param Loc The location of the operator requiring these two expressions to
3206/// be converted to the composite pointer type.
3207///
3208/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3209/// a non-standard (but still sane) composite type to which both expressions
3210/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3211/// will be set true.
3212QualType Sema::FindCompositePointerType(SourceLocation Loc,
3213                                        Expr *&E1, Expr *&E2,
3214                                        bool *NonStandardCompositeType) {
3215  if (NonStandardCompositeType)
3216    *NonStandardCompositeType = false;
3217
3218  assert(getLangOptions().CPlusPlus && "This function assumes C++");
3219  QualType T1 = E1->getType(), T2 = E2->getType();
3220
3221  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3222      !T2->isAnyPointerType() && !T2->isMemberPointerType())
3223   return QualType();
3224
3225  // C++0x 5.9p2
3226  //   Pointer conversions and qualification conversions are performed on
3227  //   pointer operands to bring them to their composite pointer type. If
3228  //   one operand is a null pointer constant, the composite pointer type is
3229  //   the type of the other operand.
3230  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3231    if (T2->isMemberPointerType())
3232      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
3233    else
3234      ImpCastExprToType(E1, T2, CK_NullToPointer);
3235    return T2;
3236  }
3237  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3238    if (T1->isMemberPointerType())
3239      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
3240    else
3241      ImpCastExprToType(E2, T1, CK_NullToPointer);
3242    return T1;
3243  }
3244
3245  // Now both have to be pointers or member pointers.
3246  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3247      (!T2->isPointerType() && !T2->isMemberPointerType()))
3248    return QualType();
3249
3250  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3251  //   the other has type "pointer to cv2 T" and the composite pointer type is
3252  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3253  //   Otherwise, the composite pointer type is a pointer type similar to the
3254  //   type of one of the operands, with a cv-qualification signature that is
3255  //   the union of the cv-qualification signatures of the operand types.
3256  // In practice, the first part here is redundant; it's subsumed by the second.
3257  // What we do here is, we build the two possible composite types, and try the
3258  // conversions in both directions. If only one works, or if the two composite
3259  // types are the same, we have succeeded.
3260  // FIXME: extended qualifiers?
3261  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3262  QualifierVector QualifierUnion;
3263  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3264      ContainingClassVector;
3265  ContainingClassVector MemberOfClass;
3266  QualType Composite1 = Context.getCanonicalType(T1),
3267           Composite2 = Context.getCanonicalType(T2);
3268  unsigned NeedConstBefore = 0;
3269  do {
3270    const PointerType *Ptr1, *Ptr2;
3271    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3272        (Ptr2 = Composite2->getAs<PointerType>())) {
3273      Composite1 = Ptr1->getPointeeType();
3274      Composite2 = Ptr2->getPointeeType();
3275
3276      // If we're allowed to create a non-standard composite type, keep track
3277      // of where we need to fill in additional 'const' qualifiers.
3278      if (NonStandardCompositeType &&
3279          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3280        NeedConstBefore = QualifierUnion.size();
3281
3282      QualifierUnion.push_back(
3283                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3284      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3285      continue;
3286    }
3287
3288    const MemberPointerType *MemPtr1, *MemPtr2;
3289    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3290        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3291      Composite1 = MemPtr1->getPointeeType();
3292      Composite2 = MemPtr2->getPointeeType();
3293
3294      // If we're allowed to create a non-standard composite type, keep track
3295      // of where we need to fill in additional 'const' qualifiers.
3296      if (NonStandardCompositeType &&
3297          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3298        NeedConstBefore = QualifierUnion.size();
3299
3300      QualifierUnion.push_back(
3301                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3302      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3303                                             MemPtr2->getClass()));
3304      continue;
3305    }
3306
3307    // FIXME: block pointer types?
3308
3309    // Cannot unwrap any more types.
3310    break;
3311  } while (true);
3312
3313  if (NeedConstBefore && NonStandardCompositeType) {
3314    // Extension: Add 'const' to qualifiers that come before the first qualifier
3315    // mismatch, so that our (non-standard!) composite type meets the
3316    // requirements of C++ [conv.qual]p4 bullet 3.
3317    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3318      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3319        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3320        *NonStandardCompositeType = true;
3321      }
3322    }
3323  }
3324
3325  // Rewrap the composites as pointers or member pointers with the union CVRs.
3326  ContainingClassVector::reverse_iterator MOC
3327    = MemberOfClass.rbegin();
3328  for (QualifierVector::reverse_iterator
3329         I = QualifierUnion.rbegin(),
3330         E = QualifierUnion.rend();
3331       I != E; (void)++I, ++MOC) {
3332    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3333    if (MOC->first && MOC->second) {
3334      // Rebuild member pointer type
3335      Composite1 = Context.getMemberPointerType(
3336                                    Context.getQualifiedType(Composite1, Quals),
3337                                    MOC->first);
3338      Composite2 = Context.getMemberPointerType(
3339                                    Context.getQualifiedType(Composite2, Quals),
3340                                    MOC->second);
3341    } else {
3342      // Rebuild pointer type
3343      Composite1
3344        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3345      Composite2
3346        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3347    }
3348  }
3349
3350  // Try to convert to the first composite pointer type.
3351  InitializedEntity Entity1
3352    = InitializedEntity::InitializeTemporary(Composite1);
3353  InitializationKind Kind
3354    = InitializationKind::CreateCopy(Loc, SourceLocation());
3355  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3356  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3357
3358  if (E1ToC1 && E2ToC1) {
3359    // Conversion to Composite1 is viable.
3360    if (!Context.hasSameType(Composite1, Composite2)) {
3361      // Composite2 is a different type from Composite1. Check whether
3362      // Composite2 is also viable.
3363      InitializedEntity Entity2
3364        = InitializedEntity::InitializeTemporary(Composite2);
3365      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3366      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3367      if (E1ToC2 && E2ToC2) {
3368        // Both Composite1 and Composite2 are viable and are different;
3369        // this is an ambiguity.
3370        return QualType();
3371      }
3372    }
3373
3374    // Convert E1 to Composite1
3375    ExprResult E1Result
3376      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3377    if (E1Result.isInvalid())
3378      return QualType();
3379    E1 = E1Result.takeAs<Expr>();
3380
3381    // Convert E2 to Composite1
3382    ExprResult E2Result
3383      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3384    if (E2Result.isInvalid())
3385      return QualType();
3386    E2 = E2Result.takeAs<Expr>();
3387
3388    return Composite1;
3389  }
3390
3391  // Check whether Composite2 is viable.
3392  InitializedEntity Entity2
3393    = InitializedEntity::InitializeTemporary(Composite2);
3394  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3395  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3396  if (!E1ToC2 || !E2ToC2)
3397    return QualType();
3398
3399  // Convert E1 to Composite2
3400  ExprResult E1Result
3401    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3402  if (E1Result.isInvalid())
3403    return QualType();
3404  E1 = E1Result.takeAs<Expr>();
3405
3406  // Convert E2 to Composite2
3407  ExprResult E2Result
3408    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3409  if (E2Result.isInvalid())
3410    return QualType();
3411  E2 = E2Result.takeAs<Expr>();
3412
3413  return Composite2;
3414}
3415
3416ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3417  if (!E)
3418    return ExprError();
3419
3420  if (!Context.getLangOptions().CPlusPlus)
3421    return Owned(E);
3422
3423  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3424
3425  const RecordType *RT = E->getType()->getAs<RecordType>();
3426  if (!RT)
3427    return Owned(E);
3428
3429  // If the result is a glvalue, we shouldn't bind it.
3430  if (E->Classify(Context).isGLValue())
3431    return Owned(E);
3432
3433  // That should be enough to guarantee that this type is complete.
3434  // If it has a trivial destructor, we can avoid the extra copy.
3435  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3436  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3437    return Owned(E);
3438
3439  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
3440  ExprTemporaries.push_back(Temp);
3441  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
3442    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
3443    CheckDestructorAccess(E->getExprLoc(), Destructor,
3444                          PDiag(diag::err_access_dtor_temp)
3445                            << E->getType());
3446  }
3447  // FIXME: Add the temporary to the temporaries vector.
3448  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
3449}
3450
3451Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
3452  assert(SubExpr && "sub expression can't be null!");
3453
3454  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3455  assert(ExprTemporaries.size() >= FirstTemporary);
3456  if (ExprTemporaries.size() == FirstTemporary)
3457    return SubExpr;
3458
3459  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
3460                                     &ExprTemporaries[FirstTemporary],
3461                                     ExprTemporaries.size() - FirstTemporary);
3462  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3463                        ExprTemporaries.end());
3464
3465  return E;
3466}
3467
3468ExprResult
3469Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
3470  if (SubExpr.isInvalid())
3471    return ExprError();
3472
3473  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
3474}
3475
3476Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
3477  assert(SubStmt && "sub statement can't be null!");
3478
3479  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3480  assert(ExprTemporaries.size() >= FirstTemporary);
3481  if (ExprTemporaries.size() == FirstTemporary)
3482    return SubStmt;
3483
3484  // FIXME: In order to attach the temporaries, wrap the statement into
3485  // a StmtExpr; currently this is only used for asm statements.
3486  // This is hacky, either create a new CXXStmtWithTemporaries statement or
3487  // a new AsmStmtWithTemporaries.
3488  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
3489                                                      SourceLocation(),
3490                                                      SourceLocation());
3491  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
3492                                   SourceLocation());
3493  return MaybeCreateExprWithCleanups(E);
3494}
3495
3496ExprResult
3497Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3498                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3499                                   bool &MayBePseudoDestructor) {
3500  // Since this might be a postfix expression, get rid of ParenListExprs.
3501  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3502  if (Result.isInvalid()) return ExprError();
3503  Base = Result.get();
3504
3505  QualType BaseType = Base->getType();
3506  MayBePseudoDestructor = false;
3507  if (BaseType->isDependentType()) {
3508    // If we have a pointer to a dependent type and are using the -> operator,
3509    // the object type is the type that the pointer points to. We might still
3510    // have enough information about that type to do something useful.
3511    if (OpKind == tok::arrow)
3512      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3513        BaseType = Ptr->getPointeeType();
3514
3515    ObjectType = ParsedType::make(BaseType);
3516    MayBePseudoDestructor = true;
3517    return Owned(Base);
3518  }
3519
3520  // C++ [over.match.oper]p8:
3521  //   [...] When operator->returns, the operator-> is applied  to the value
3522  //   returned, with the original second operand.
3523  if (OpKind == tok::arrow) {
3524    // The set of types we've considered so far.
3525    llvm::SmallPtrSet<CanQualType,8> CTypes;
3526    llvm::SmallVector<SourceLocation, 8> Locations;
3527    CTypes.insert(Context.getCanonicalType(BaseType));
3528
3529    while (BaseType->isRecordType()) {
3530      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3531      if (Result.isInvalid())
3532        return ExprError();
3533      Base = Result.get();
3534      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3535        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3536      BaseType = Base->getType();
3537      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3538      if (!CTypes.insert(CBaseType)) {
3539        Diag(OpLoc, diag::err_operator_arrow_circular);
3540        for (unsigned i = 0; i < Locations.size(); i++)
3541          Diag(Locations[i], diag::note_declared_at);
3542        return ExprError();
3543      }
3544    }
3545
3546    if (BaseType->isPointerType())
3547      BaseType = BaseType->getPointeeType();
3548  }
3549
3550  // We could end up with various non-record types here, such as extended
3551  // vector types or Objective-C interfaces. Just return early and let
3552  // ActOnMemberReferenceExpr do the work.
3553  if (!BaseType->isRecordType()) {
3554    // C++ [basic.lookup.classref]p2:
3555    //   [...] If the type of the object expression is of pointer to scalar
3556    //   type, the unqualified-id is looked up in the context of the complete
3557    //   postfix-expression.
3558    //
3559    // This also indicates that we should be parsing a
3560    // pseudo-destructor-name.
3561    ObjectType = ParsedType();
3562    MayBePseudoDestructor = true;
3563    return Owned(Base);
3564  }
3565
3566  // The object type must be complete (or dependent).
3567  if (!BaseType->isDependentType() &&
3568      RequireCompleteType(OpLoc, BaseType,
3569                          PDiag(diag::err_incomplete_member_access)))
3570    return ExprError();
3571
3572  // C++ [basic.lookup.classref]p2:
3573  //   If the id-expression in a class member access (5.2.5) is an
3574  //   unqualified-id, and the type of the object expression is of a class
3575  //   type C (or of pointer to a class type C), the unqualified-id is looked
3576  //   up in the scope of class C. [...]
3577  ObjectType = ParsedType::make(BaseType);
3578  return move(Base);
3579}
3580
3581ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3582                                                   Expr *MemExpr) {
3583  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3584  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3585    << isa<CXXPseudoDestructorExpr>(MemExpr)
3586    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3587
3588  return ActOnCallExpr(/*Scope*/ 0,
3589                       MemExpr,
3590                       /*LPLoc*/ ExpectedLParenLoc,
3591                       MultiExprArg(),
3592                       /*RPLoc*/ ExpectedLParenLoc);
3593}
3594
3595ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3596                                           SourceLocation OpLoc,
3597                                           tok::TokenKind OpKind,
3598                                           const CXXScopeSpec &SS,
3599                                           TypeSourceInfo *ScopeTypeInfo,
3600                                           SourceLocation CCLoc,
3601                                           SourceLocation TildeLoc,
3602                                         PseudoDestructorTypeStorage Destructed,
3603                                           bool HasTrailingLParen) {
3604  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3605
3606  // C++ [expr.pseudo]p2:
3607  //   The left-hand side of the dot operator shall be of scalar type. The
3608  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3609  //   This scalar type is the object type.
3610  QualType ObjectType = Base->getType();
3611  if (OpKind == tok::arrow) {
3612    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3613      ObjectType = Ptr->getPointeeType();
3614    } else if (!Base->isTypeDependent()) {
3615      // The user wrote "p->" when she probably meant "p."; fix it.
3616      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3617        << ObjectType << true
3618        << FixItHint::CreateReplacement(OpLoc, ".");
3619      if (isSFINAEContext())
3620        return ExprError();
3621
3622      OpKind = tok::period;
3623    }
3624  }
3625
3626  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3627    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3628      << ObjectType << Base->getSourceRange();
3629    return ExprError();
3630  }
3631
3632  // C++ [expr.pseudo]p2:
3633  //   [...] The cv-unqualified versions of the object type and of the type
3634  //   designated by the pseudo-destructor-name shall be the same type.
3635  if (DestructedTypeInfo) {
3636    QualType DestructedType = DestructedTypeInfo->getType();
3637    SourceLocation DestructedTypeStart
3638      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3639    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3640        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3641      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3642        << ObjectType << DestructedType << Base->getSourceRange()
3643        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3644
3645      // Recover by setting the destructed type to the object type.
3646      DestructedType = ObjectType;
3647      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3648                                                           DestructedTypeStart);
3649      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3650    }
3651  }
3652
3653  // C++ [expr.pseudo]p2:
3654  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3655  //   form
3656  //
3657  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3658  //
3659  //   shall designate the same scalar type.
3660  if (ScopeTypeInfo) {
3661    QualType ScopeType = ScopeTypeInfo->getType();
3662    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3663        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3664
3665      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3666           diag::err_pseudo_dtor_type_mismatch)
3667        << ObjectType << ScopeType << Base->getSourceRange()
3668        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3669
3670      ScopeType = QualType();
3671      ScopeTypeInfo = 0;
3672    }
3673  }
3674
3675  Expr *Result
3676    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3677                                            OpKind == tok::arrow, OpLoc,
3678                                            SS.getWithLocInContext(Context),
3679                                            ScopeTypeInfo,
3680                                            CCLoc,
3681                                            TildeLoc,
3682                                            Destructed);
3683
3684  if (HasTrailingLParen)
3685    return Owned(Result);
3686
3687  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3688}
3689
3690ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3691                                           SourceLocation OpLoc,
3692                                           tok::TokenKind OpKind,
3693                                           CXXScopeSpec &SS,
3694                                           UnqualifiedId &FirstTypeName,
3695                                           SourceLocation CCLoc,
3696                                           SourceLocation TildeLoc,
3697                                           UnqualifiedId &SecondTypeName,
3698                                           bool HasTrailingLParen) {
3699  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3700          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3701         "Invalid first type name in pseudo-destructor");
3702  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3703          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3704         "Invalid second type name in pseudo-destructor");
3705
3706  // C++ [expr.pseudo]p2:
3707  //   The left-hand side of the dot operator shall be of scalar type. The
3708  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3709  //   This scalar type is the object type.
3710  QualType ObjectType = Base->getType();
3711  if (OpKind == tok::arrow) {
3712    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3713      ObjectType = Ptr->getPointeeType();
3714    } else if (!ObjectType->isDependentType()) {
3715      // The user wrote "p->" when she probably meant "p."; fix it.
3716      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3717        << ObjectType << true
3718        << FixItHint::CreateReplacement(OpLoc, ".");
3719      if (isSFINAEContext())
3720        return ExprError();
3721
3722      OpKind = tok::period;
3723    }
3724  }
3725
3726  // Compute the object type that we should use for name lookup purposes. Only
3727  // record types and dependent types matter.
3728  ParsedType ObjectTypePtrForLookup;
3729  if (!SS.isSet()) {
3730    if (ObjectType->isRecordType())
3731      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
3732    else if (ObjectType->isDependentType())
3733      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3734  }
3735
3736  // Convert the name of the type being destructed (following the ~) into a
3737  // type (with source-location information).
3738  QualType DestructedType;
3739  TypeSourceInfo *DestructedTypeInfo = 0;
3740  PseudoDestructorTypeStorage Destructed;
3741  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3742    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3743                               SecondTypeName.StartLocation,
3744                               S, &SS, true, false, ObjectTypePtrForLookup);
3745    if (!T &&
3746        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3747         (!SS.isSet() && ObjectType->isDependentType()))) {
3748      // The name of the type being destroyed is a dependent name, and we
3749      // couldn't find anything useful in scope. Just store the identifier and
3750      // it's location, and we'll perform (qualified) name lookup again at
3751      // template instantiation time.
3752      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3753                                               SecondTypeName.StartLocation);
3754    } else if (!T) {
3755      Diag(SecondTypeName.StartLocation,
3756           diag::err_pseudo_dtor_destructor_non_type)
3757        << SecondTypeName.Identifier << ObjectType;
3758      if (isSFINAEContext())
3759        return ExprError();
3760
3761      // Recover by assuming we had the right type all along.
3762      DestructedType = ObjectType;
3763    } else
3764      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3765  } else {
3766    // Resolve the template-id to a type.
3767    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3768    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3769                                       TemplateId->getTemplateArgs(),
3770                                       TemplateId->NumArgs);
3771    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
3772                                       TemplateId->Template,
3773                                       TemplateId->TemplateNameLoc,
3774                                       TemplateId->LAngleLoc,
3775                                       TemplateArgsPtr,
3776                                       TemplateId->RAngleLoc);
3777    if (T.isInvalid() || !T.get()) {
3778      // Recover by assuming we had the right type all along.
3779      DestructedType = ObjectType;
3780    } else
3781      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3782  }
3783
3784  // If we've performed some kind of recovery, (re-)build the type source
3785  // information.
3786  if (!DestructedType.isNull()) {
3787    if (!DestructedTypeInfo)
3788      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3789                                                  SecondTypeName.StartLocation);
3790    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3791  }
3792
3793  // Convert the name of the scope type (the type prior to '::') into a type.
3794  TypeSourceInfo *ScopeTypeInfo = 0;
3795  QualType ScopeType;
3796  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3797      FirstTypeName.Identifier) {
3798    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3799      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3800                                 FirstTypeName.StartLocation,
3801                                 S, &SS, true, false, ObjectTypePtrForLookup);
3802      if (!T) {
3803        Diag(FirstTypeName.StartLocation,
3804             diag::err_pseudo_dtor_destructor_non_type)
3805          << FirstTypeName.Identifier << ObjectType;
3806
3807        if (isSFINAEContext())
3808          return ExprError();
3809
3810        // Just drop this type. It's unnecessary anyway.
3811        ScopeType = QualType();
3812      } else
3813        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3814    } else {
3815      // Resolve the template-id to a type.
3816      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3817      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3818                                         TemplateId->getTemplateArgs(),
3819                                         TemplateId->NumArgs);
3820      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
3821                                         TemplateId->Template,
3822                                         TemplateId->TemplateNameLoc,
3823                                         TemplateId->LAngleLoc,
3824                                         TemplateArgsPtr,
3825                                         TemplateId->RAngleLoc);
3826      if (T.isInvalid() || !T.get()) {
3827        // Recover by dropping this type.
3828        ScopeType = QualType();
3829      } else
3830        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3831    }
3832  }
3833
3834  if (!ScopeType.isNull() && !ScopeTypeInfo)
3835    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3836                                                  FirstTypeName.StartLocation);
3837
3838
3839  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3840                                   ScopeTypeInfo, CCLoc, TildeLoc,
3841                                   Destructed, HasTrailingLParen);
3842}
3843
3844ExprResult Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
3845                                        CXXMethodDecl *Method) {
3846  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3847                                          FoundDecl, Method))
3848    return true;
3849
3850  MemberExpr *ME =
3851      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3852                               SourceLocation(), Method->getType(),
3853                               VK_RValue, OK_Ordinary);
3854  QualType ResultType = Method->getResultType();
3855  ExprValueKind VK = Expr::getValueKindForType(ResultType);
3856  ResultType = ResultType.getNonLValueExprType(Context);
3857
3858  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3859  CXXMemberCallExpr *CE =
3860    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
3861                                    Exp->getLocEnd());
3862  return CE;
3863}
3864
3865ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3866                                      SourceLocation RParen) {
3867  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3868                                             Operand->CanThrow(Context),
3869                                             KeyLoc, RParen));
3870}
3871
3872ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3873                                   Expr *Operand, SourceLocation RParen) {
3874  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3875}
3876
3877/// Perform the conversions required for an expression used in a
3878/// context that ignores the result.
3879void Sema::IgnoredValueConversions(Expr *&E) {
3880  // C99 6.3.2.1:
3881  //   [Except in specific positions,] an lvalue that does not have
3882  //   array type is converted to the value stored in the
3883  //   designated object (and is no longer an lvalue).
3884  if (E->isRValue()) return;
3885
3886  // We always want to do this on ObjC property references.
3887  if (E->getObjectKind() == OK_ObjCProperty) {
3888    ConvertPropertyForRValue(E);
3889    if (E->isRValue()) return;
3890  }
3891
3892  // Otherwise, this rule does not apply in C++, at least not for the moment.
3893  if (getLangOptions().CPlusPlus) return;
3894
3895  // GCC seems to also exclude expressions of incomplete enum type.
3896  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
3897    if (!T->getDecl()->isComplete()) {
3898      // FIXME: stupid workaround for a codegen bug!
3899      ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
3900      return;
3901    }
3902  }
3903
3904  DefaultFunctionArrayLvalueConversion(E);
3905  if (!E->getType()->isVoidType())
3906    RequireCompleteType(E->getExprLoc(), E->getType(),
3907                        diag::err_incomplete_type);
3908}
3909
3910ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3911  if (!FullExpr)
3912    return ExprError();
3913
3914  if (DiagnoseUnexpandedParameterPack(FullExpr))
3915    return ExprError();
3916
3917  // 13.4.1 ... An overloaded function name shall not be used without arguments
3918  //         in contexts other than those listed [i.e list of targets].
3919  //
3920  //  void foo(); void foo(int);
3921  //  template<class T> void fooT(); template<class T> void fooT(int);
3922
3923  //  Therefore these should error:
3924  //  foo;
3925  //  fooT<int>;
3926
3927  if (FullExpr->getType() == Context.OverloadTy) {
3928    if (!ResolveSingleFunctionTemplateSpecialization(FullExpr,
3929                                                     /* Complain */ false)) {
3930      OverloadExpr* OvlExpr = OverloadExpr::find(FullExpr).Expression;
3931      Diag(FullExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
3932        << OvlExpr->getName();
3933      NoteAllOverloadCandidates(OvlExpr);
3934      return ExprError();
3935    }
3936  }
3937
3938
3939  IgnoredValueConversions(FullExpr);
3940  CheckImplicitConversions(FullExpr);
3941
3942  return MaybeCreateExprWithCleanups(FullExpr);
3943}
3944
3945StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
3946  if (!FullStmt) return StmtError();
3947
3948  return MaybeCreateStmtWithCleanups(FullStmt);
3949}
3950