SemaExprCXX.cpp revision 8999fe1bc367b3ecc878d135c7b31e3479da56f4
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/ExprObjC.h"
26#include "clang/AST/TypeLoc.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/Preprocessor.h"
30#include "llvm/ADT/STLExtras.h"
31using namespace clang;
32using namespace sema;
33
34ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
35                                   IdentifierInfo &II,
36                                   SourceLocation NameLoc,
37                                   Scope *S, CXXScopeSpec &SS,
38                                   ParsedType ObjectTypePtr,
39                                   bool EnteringContext) {
40  // Determine where to perform name lookup.
41
42  // FIXME: This area of the standard is very messy, and the current
43  // wording is rather unclear about which scopes we search for the
44  // destructor name; see core issues 399 and 555. Issue 399 in
45  // particular shows where the current description of destructor name
46  // lookup is completely out of line with existing practice, e.g.,
47  // this appears to be ill-formed:
48  //
49  //   namespace N {
50  //     template <typename T> struct S {
51  //       ~S();
52  //     };
53  //   }
54  //
55  //   void f(N::S<int>* s) {
56  //     s->N::S<int>::~S();
57  //   }
58  //
59  // See also PR6358 and PR6359.
60  // For this reason, we're currently only doing the C++03 version of this
61  // code; the C++0x version has to wait until we get a proper spec.
62  QualType SearchType;
63  DeclContext *LookupCtx = 0;
64  bool isDependent = false;
65  bool LookInScope = false;
66
67  // If we have an object type, it's because we are in a
68  // pseudo-destructor-expression or a member access expression, and
69  // we know what type we're looking for.
70  if (ObjectTypePtr)
71    SearchType = GetTypeFromParser(ObjectTypePtr);
72
73  if (SS.isSet()) {
74    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
75
76    bool AlreadySearched = false;
77    bool LookAtPrefix = true;
78    // C++ [basic.lookup.qual]p6:
79    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
80    //   the type-names are looked up as types in the scope designated by the
81    //   nested-name-specifier. In a qualified-id of the form:
82    //
83    //     ::[opt] nested-name-specifier  ~ class-name
84    //
85    //   where the nested-name-specifier designates a namespace scope, and in
86    //   a qualified-id of the form:
87    //
88    //     ::opt nested-name-specifier class-name ::  ~ class-name
89    //
90    //   the class-names are looked up as types in the scope designated by
91    //   the nested-name-specifier.
92    //
93    // Here, we check the first case (completely) and determine whether the
94    // code below is permitted to look at the prefix of the
95    // nested-name-specifier.
96    DeclContext *DC = computeDeclContext(SS, EnteringContext);
97    if (DC && DC->isFileContext()) {
98      AlreadySearched = true;
99      LookupCtx = DC;
100      isDependent = false;
101    } else if (DC && isa<CXXRecordDecl>(DC))
102      LookAtPrefix = false;
103
104    // The second case from the C++03 rules quoted further above.
105    NestedNameSpecifier *Prefix = 0;
106    if (AlreadySearched) {
107      // Nothing left to do.
108    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
109      CXXScopeSpec PrefixSS;
110      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
111      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
112      isDependent = isDependentScopeSpecifier(PrefixSS);
113    } else if (ObjectTypePtr) {
114      LookupCtx = computeDeclContext(SearchType);
115      isDependent = SearchType->isDependentType();
116    } else {
117      LookupCtx = computeDeclContext(SS, EnteringContext);
118      isDependent = LookupCtx && LookupCtx->isDependentContext();
119    }
120
121    LookInScope = false;
122  } else if (ObjectTypePtr) {
123    // C++ [basic.lookup.classref]p3:
124    //   If the unqualified-id is ~type-name, the type-name is looked up
125    //   in the context of the entire postfix-expression. If the type T
126    //   of the object expression is of a class type C, the type-name is
127    //   also looked up in the scope of class C. At least one of the
128    //   lookups shall find a name that refers to (possibly
129    //   cv-qualified) T.
130    LookupCtx = computeDeclContext(SearchType);
131    isDependent = SearchType->isDependentType();
132    assert((isDependent || !SearchType->isIncompleteType()) &&
133           "Caller should have completed object type");
134
135    LookInScope = true;
136  } else {
137    // Perform lookup into the current scope (only).
138    LookInScope = true;
139  }
140
141  TypeDecl *NonMatchingTypeDecl = 0;
142  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
143  for (unsigned Step = 0; Step != 2; ++Step) {
144    // Look for the name first in the computed lookup context (if we
145    // have one) and, if that fails to find a match, in the scope (if
146    // we're allowed to look there).
147    Found.clear();
148    if (Step == 0 && LookupCtx)
149      LookupQualifiedName(Found, LookupCtx);
150    else if (Step == 1 && LookInScope && S)
151      LookupName(Found, S);
152    else
153      continue;
154
155    // FIXME: Should we be suppressing ambiguities here?
156    if (Found.isAmbiguous())
157      return ParsedType();
158
159    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
160      QualType T = Context.getTypeDeclType(Type);
161
162      if (SearchType.isNull() || SearchType->isDependentType() ||
163          Context.hasSameUnqualifiedType(T, SearchType)) {
164        // We found our type!
165
166        return ParsedType::make(T);
167      }
168
169      if (!SearchType.isNull())
170        NonMatchingTypeDecl = Type;
171    }
172
173    // If the name that we found is a class template name, and it is
174    // the same name as the template name in the last part of the
175    // nested-name-specifier (if present) or the object type, then
176    // this is the destructor for that class.
177    // FIXME: This is a workaround until we get real drafting for core
178    // issue 399, for which there isn't even an obvious direction.
179    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
180      QualType MemberOfType;
181      if (SS.isSet()) {
182        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
183          // Figure out the type of the context, if it has one.
184          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
185            MemberOfType = Context.getTypeDeclType(Record);
186        }
187      }
188      if (MemberOfType.isNull())
189        MemberOfType = SearchType;
190
191      if (MemberOfType.isNull())
192        continue;
193
194      // We're referring into a class template specialization. If the
195      // class template we found is the same as the template being
196      // specialized, we found what we are looking for.
197      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
198        if (ClassTemplateSpecializationDecl *Spec
199              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
200          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
201                Template->getCanonicalDecl())
202            return ParsedType::make(MemberOfType);
203        }
204
205        continue;
206      }
207
208      // We're referring to an unresolved class template
209      // specialization. Determine whether we class template we found
210      // is the same as the template being specialized or, if we don't
211      // know which template is being specialized, that it at least
212      // has the same name.
213      if (const TemplateSpecializationType *SpecType
214            = MemberOfType->getAs<TemplateSpecializationType>()) {
215        TemplateName SpecName = SpecType->getTemplateName();
216
217        // The class template we found is the same template being
218        // specialized.
219        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
220          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
221            return ParsedType::make(MemberOfType);
222
223          continue;
224        }
225
226        // The class template we found has the same name as the
227        // (dependent) template name being specialized.
228        if (DependentTemplateName *DepTemplate
229                                    = SpecName.getAsDependentTemplateName()) {
230          if (DepTemplate->isIdentifier() &&
231              DepTemplate->getIdentifier() == Template->getIdentifier())
232            return ParsedType::make(MemberOfType);
233
234          continue;
235        }
236      }
237    }
238  }
239
240  if (isDependent) {
241    // We didn't find our type, but that's okay: it's dependent
242    // anyway.
243
244    // FIXME: What if we have no nested-name-specifier?
245    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
246                                   SS.getWithLocInContext(Context),
247                                   II, NameLoc);
248    return ParsedType::make(T);
249  }
250
251  if (NonMatchingTypeDecl) {
252    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
253    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
254      << T << SearchType;
255    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
256      << T;
257  } else if (ObjectTypePtr)
258    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
259      << &II;
260  else
261    Diag(NameLoc, diag::err_destructor_class_name);
262
263  return ParsedType();
264}
265
266/// \brief Build a C++ typeid expression with a type operand.
267ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
268                                SourceLocation TypeidLoc,
269                                TypeSourceInfo *Operand,
270                                SourceLocation RParenLoc) {
271  // C++ [expr.typeid]p4:
272  //   The top-level cv-qualifiers of the lvalue expression or the type-id
273  //   that is the operand of typeid are always ignored.
274  //   If the type of the type-id is a class type or a reference to a class
275  //   type, the class shall be completely-defined.
276  Qualifiers Quals;
277  QualType T
278    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
279                                      Quals);
280  if (T->getAs<RecordType>() &&
281      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
282    return ExprError();
283
284  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
285                                           Operand,
286                                           SourceRange(TypeidLoc, RParenLoc)));
287}
288
289/// \brief Build a C++ typeid expression with an expression operand.
290ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
291                                SourceLocation TypeidLoc,
292                                Expr *E,
293                                SourceLocation RParenLoc) {
294  bool isUnevaluatedOperand = true;
295  if (E && !E->isTypeDependent()) {
296    QualType T = E->getType();
297    if (const RecordType *RecordT = T->getAs<RecordType>()) {
298      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
299      // C++ [expr.typeid]p3:
300      //   [...] If the type of the expression is a class type, the class
301      //   shall be completely-defined.
302      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
303        return ExprError();
304
305      // C++ [expr.typeid]p3:
306      //   When typeid is applied to an expression other than an glvalue of a
307      //   polymorphic class type [...] [the] expression is an unevaluated
308      //   operand. [...]
309      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
310        isUnevaluatedOperand = false;
311
312        // We require a vtable to query the type at run time.
313        MarkVTableUsed(TypeidLoc, RecordD);
314      }
315    }
316
317    // C++ [expr.typeid]p4:
318    //   [...] If the type of the type-id is a reference to a possibly
319    //   cv-qualified type, the result of the typeid expression refers to a
320    //   std::type_info object representing the cv-unqualified referenced
321    //   type.
322    Qualifiers Quals;
323    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
324    if (!Context.hasSameType(T, UnqualT)) {
325      T = UnqualT;
326      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
327    }
328  }
329
330  // If this is an unevaluated operand, clear out the set of
331  // declaration references we have been computing and eliminate any
332  // temporaries introduced in its computation.
333  if (isUnevaluatedOperand)
334    ExprEvalContexts.back().Context = Unevaluated;
335
336  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
337                                           E,
338                                           SourceRange(TypeidLoc, RParenLoc)));
339}
340
341/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
342ExprResult
343Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
344                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
345  // Find the std::type_info type.
346  if (!StdNamespace)
347    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
348
349  if (!CXXTypeInfoDecl) {
350    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
351    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
352    LookupQualifiedName(R, getStdNamespace());
353    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
354    if (!CXXTypeInfoDecl)
355      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
356  }
357
358  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
359
360  if (isType) {
361    // The operand is a type; handle it as such.
362    TypeSourceInfo *TInfo = 0;
363    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
364                                   &TInfo);
365    if (T.isNull())
366      return ExprError();
367
368    if (!TInfo)
369      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
370
371    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
372  }
373
374  // The operand is an expression.
375  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
376}
377
378/// Retrieve the UuidAttr associated with QT.
379static UuidAttr *GetUuidAttrOfType(QualType QT) {
380  // Optionally remove one level of pointer, reference or array indirection.
381  const Type *Ty = QT.getTypePtr();;
382  if (QT->isPointerType() || QT->isReferenceType())
383    Ty = QT->getPointeeType().getTypePtr();
384  else if (QT->isArrayType())
385    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
386
387  // Loop all class definition and declaration looking for an uuid attribute.
388  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
389  while (RD) {
390    if (UuidAttr *Uuid = RD->getAttr<UuidAttr>())
391      return Uuid;
392    RD = RD->getPreviousDeclaration();
393  }
394  return 0;
395}
396
397/// \brief Build a Microsoft __uuidof expression with a type operand.
398ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
399                                SourceLocation TypeidLoc,
400                                TypeSourceInfo *Operand,
401                                SourceLocation RParenLoc) {
402  if (!Operand->getType()->isDependentType()) {
403    if (!GetUuidAttrOfType(Operand->getType()))
404      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
405  }
406
407  // FIXME: add __uuidof semantic analysis for type operand.
408  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
409                                           Operand,
410                                           SourceRange(TypeidLoc, RParenLoc)));
411}
412
413/// \brief Build a Microsoft __uuidof expression with an expression operand.
414ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
415                                SourceLocation TypeidLoc,
416                                Expr *E,
417                                SourceLocation RParenLoc) {
418  if (!E->getType()->isDependentType()) {
419    if (!GetUuidAttrOfType(E->getType()) &&
420        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
421      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
422  }
423  // FIXME: add __uuidof semantic analysis for type operand.
424  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
425                                           E,
426                                           SourceRange(TypeidLoc, RParenLoc)));
427}
428
429/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
430ExprResult
431Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
432                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
433  // If MSVCGuidDecl has not been cached, do the lookup.
434  if (!MSVCGuidDecl) {
435    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
436    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
437    LookupQualifiedName(R, Context.getTranslationUnitDecl());
438    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
439    if (!MSVCGuidDecl)
440      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
441  }
442
443  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
444
445  if (isType) {
446    // The operand is a type; handle it as such.
447    TypeSourceInfo *TInfo = 0;
448    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
449                                   &TInfo);
450    if (T.isNull())
451      return ExprError();
452
453    if (!TInfo)
454      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
455
456    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
457  }
458
459  // The operand is an expression.
460  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
461}
462
463/// ActOnCXXBoolLiteral - Parse {true,false} literals.
464ExprResult
465Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
466  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
467         "Unknown C++ Boolean value!");
468  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
469                                                Context.BoolTy, OpLoc));
470}
471
472/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
473ExprResult
474Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
475  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
476}
477
478/// ActOnCXXThrow - Parse throw expressions.
479ExprResult
480Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
481  // Don't report an error if 'throw' is used in system headers.
482  if (!getLangOptions().CXXExceptions &&
483      !getSourceManager().isInSystemHeader(OpLoc))
484    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
485
486  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
487    return ExprError();
488  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
489}
490
491/// CheckCXXThrowOperand - Validate the operand of a throw.
492bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
493  // C++ [except.throw]p3:
494  //   A throw-expression initializes a temporary object, called the exception
495  //   object, the type of which is determined by removing any top-level
496  //   cv-qualifiers from the static type of the operand of throw and adjusting
497  //   the type from "array of T" or "function returning T" to "pointer to T"
498  //   or "pointer to function returning T", [...]
499  if (E->getType().hasQualifiers())
500    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
501                      CastCategory(E));
502
503  DefaultFunctionArrayConversion(E);
504
505  //   If the type of the exception would be an incomplete type or a pointer
506  //   to an incomplete type other than (cv) void the program is ill-formed.
507  QualType Ty = E->getType();
508  bool isPointer = false;
509  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
510    Ty = Ptr->getPointeeType();
511    isPointer = true;
512  }
513  if (!isPointer || !Ty->isVoidType()) {
514    if (RequireCompleteType(ThrowLoc, Ty,
515                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
516                                            : diag::err_throw_incomplete)
517                              << E->getSourceRange()))
518      return true;
519
520    if (RequireNonAbstractType(ThrowLoc, E->getType(),
521                               PDiag(diag::err_throw_abstract_type)
522                                 << E->getSourceRange()))
523      return true;
524  }
525
526  // Initialize the exception result.  This implicitly weeds out
527  // abstract types or types with inaccessible copy constructors.
528  const VarDecl *NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
529
530  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p32.
531  InitializedEntity Entity =
532      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
533                                             /*NRVO=*/false);
534  ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
535                                                   QualType(), E);
536  if (Res.isInvalid())
537    return true;
538  E = Res.takeAs<Expr>();
539
540  // If the exception has class type, we need additional handling.
541  const RecordType *RecordTy = Ty->getAs<RecordType>();
542  if (!RecordTy)
543    return false;
544  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
545
546  // If we are throwing a polymorphic class type or pointer thereof,
547  // exception handling will make use of the vtable.
548  MarkVTableUsed(ThrowLoc, RD);
549
550  // If a pointer is thrown, the referenced object will not be destroyed.
551  if (isPointer)
552    return false;
553
554  // If the class has a non-trivial destructor, we must be able to call it.
555  if (RD->hasTrivialDestructor())
556    return false;
557
558  CXXDestructorDecl *Destructor
559    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
560  if (!Destructor)
561    return false;
562
563  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
564  CheckDestructorAccess(E->getExprLoc(), Destructor,
565                        PDiag(diag::err_access_dtor_exception) << Ty);
566  return false;
567}
568
569CXXMethodDecl *Sema::tryCaptureCXXThis() {
570  // Ignore block scopes: we can capture through them.
571  // Ignore nested enum scopes: we'll diagnose non-constant expressions
572  // where they're invalid, and other uses are legitimate.
573  // Don't ignore nested class scopes: you can't use 'this' in a local class.
574  DeclContext *DC = CurContext;
575  while (true) {
576    if (isa<BlockDecl>(DC)) DC = cast<BlockDecl>(DC)->getDeclContext();
577    else if (isa<EnumDecl>(DC)) DC = cast<EnumDecl>(DC)->getDeclContext();
578    else break;
579  }
580
581  // If we're not in an instance method, error out.
582  CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC);
583  if (!method || !method->isInstance())
584    return 0;
585
586  // Mark that we're closing on 'this' in all the block scopes, if applicable.
587  for (unsigned idx = FunctionScopes.size() - 1;
588       isa<BlockScopeInfo>(FunctionScopes[idx]);
589       --idx)
590    cast<BlockScopeInfo>(FunctionScopes[idx])->CapturesCXXThis = true;
591
592  return method;
593}
594
595ExprResult Sema::ActOnCXXThis(SourceLocation loc) {
596  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
597  /// is a non-lvalue expression whose value is the address of the object for
598  /// which the function is called.
599
600  CXXMethodDecl *method = tryCaptureCXXThis();
601  if (!method) return Diag(loc, diag::err_invalid_this_use);
602
603  return Owned(new (Context) CXXThisExpr(loc, method->getThisType(Context),
604                                         /*isImplicit=*/false));
605}
606
607ExprResult
608Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
609                                SourceLocation LParenLoc,
610                                MultiExprArg exprs,
611                                SourceLocation RParenLoc) {
612  if (!TypeRep)
613    return ExprError();
614
615  TypeSourceInfo *TInfo;
616  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
617  if (!TInfo)
618    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
619
620  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
621}
622
623/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
624/// Can be interpreted either as function-style casting ("int(x)")
625/// or class type construction ("ClassType(x,y,z)")
626/// or creation of a value-initialized type ("int()").
627ExprResult
628Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
629                                SourceLocation LParenLoc,
630                                MultiExprArg exprs,
631                                SourceLocation RParenLoc) {
632  QualType Ty = TInfo->getType();
633  unsigned NumExprs = exprs.size();
634  Expr **Exprs = (Expr**)exprs.get();
635  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
636  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
637
638  if (Ty->isDependentType() ||
639      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
640    exprs.release();
641
642    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
643                                                    LParenLoc,
644                                                    Exprs, NumExprs,
645                                                    RParenLoc));
646  }
647
648  if (Ty->isArrayType())
649    return ExprError(Diag(TyBeginLoc,
650                          diag::err_value_init_for_array_type) << FullRange);
651  if (!Ty->isVoidType() &&
652      RequireCompleteType(TyBeginLoc, Ty,
653                          PDiag(diag::err_invalid_incomplete_type_use)
654                            << FullRange))
655    return ExprError();
656
657  if (RequireNonAbstractType(TyBeginLoc, Ty,
658                             diag::err_allocation_of_abstract_type))
659    return ExprError();
660
661
662  // C++ [expr.type.conv]p1:
663  // If the expression list is a single expression, the type conversion
664  // expression is equivalent (in definedness, and if defined in meaning) to the
665  // corresponding cast expression.
666  //
667  if (NumExprs == 1) {
668    CastKind Kind = CK_Invalid;
669    ExprValueKind VK = VK_RValue;
670    CXXCastPath BasePath;
671    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
672                       Kind, VK, BasePath,
673                       /*FunctionalStyle=*/true))
674      return ExprError();
675
676    exprs.release();
677
678    return Owned(CXXFunctionalCastExpr::Create(Context,
679                                               Ty.getNonLValueExprType(Context),
680                                               VK, TInfo, TyBeginLoc, Kind,
681                                               Exprs[0], &BasePath,
682                                               RParenLoc));
683  }
684
685  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
686  InitializationKind Kind
687    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
688                                                  LParenLoc, RParenLoc)
689               : InitializationKind::CreateValue(TyBeginLoc,
690                                                 LParenLoc, RParenLoc);
691  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
692  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
693
694  // FIXME: Improve AST representation?
695  return move(Result);
696}
697
698/// doesUsualArrayDeleteWantSize - Answers whether the usual
699/// operator delete[] for the given type has a size_t parameter.
700static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
701                                         QualType allocType) {
702  const RecordType *record =
703    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
704  if (!record) return false;
705
706  // Try to find an operator delete[] in class scope.
707
708  DeclarationName deleteName =
709    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
710  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
711  S.LookupQualifiedName(ops, record->getDecl());
712
713  // We're just doing this for information.
714  ops.suppressDiagnostics();
715
716  // Very likely: there's no operator delete[].
717  if (ops.empty()) return false;
718
719  // If it's ambiguous, it should be illegal to call operator delete[]
720  // on this thing, so it doesn't matter if we allocate extra space or not.
721  if (ops.isAmbiguous()) return false;
722
723  LookupResult::Filter filter = ops.makeFilter();
724  while (filter.hasNext()) {
725    NamedDecl *del = filter.next()->getUnderlyingDecl();
726
727    // C++0x [basic.stc.dynamic.deallocation]p2:
728    //   A template instance is never a usual deallocation function,
729    //   regardless of its signature.
730    if (isa<FunctionTemplateDecl>(del)) {
731      filter.erase();
732      continue;
733    }
734
735    // C++0x [basic.stc.dynamic.deallocation]p2:
736    //   If class T does not declare [an operator delete[] with one
737    //   parameter] but does declare a member deallocation function
738    //   named operator delete[] with exactly two parameters, the
739    //   second of which has type std::size_t, then this function
740    //   is a usual deallocation function.
741    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
742      filter.erase();
743      continue;
744    }
745  }
746  filter.done();
747
748  if (!ops.isSingleResult()) return false;
749
750  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
751  return (del->getNumParams() == 2);
752}
753
754/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
755/// @code new (memory) int[size][4] @endcode
756/// or
757/// @code ::new Foo(23, "hello") @endcode
758/// For the interpretation of this heap of arguments, consult the base version.
759ExprResult
760Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
761                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
762                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
763                  Declarator &D, SourceLocation ConstructorLParen,
764                  MultiExprArg ConstructorArgs,
765                  SourceLocation ConstructorRParen) {
766  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
767
768  Expr *ArraySize = 0;
769  // If the specified type is an array, unwrap it and save the expression.
770  if (D.getNumTypeObjects() > 0 &&
771      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
772    DeclaratorChunk &Chunk = D.getTypeObject(0);
773    if (TypeContainsAuto)
774      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
775        << D.getSourceRange());
776    if (Chunk.Arr.hasStatic)
777      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
778        << D.getSourceRange());
779    if (!Chunk.Arr.NumElts)
780      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
781        << D.getSourceRange());
782
783    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
784    D.DropFirstTypeObject();
785  }
786
787  // Every dimension shall be of constant size.
788  if (ArraySize) {
789    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
790      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
791        break;
792
793      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
794      if (Expr *NumElts = (Expr *)Array.NumElts) {
795        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
796            !NumElts->isIntegerConstantExpr(Context)) {
797          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
798            << NumElts->getSourceRange();
799          return ExprError();
800        }
801      }
802    }
803  }
804
805  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0, /*OwnedDecl=*/0,
806                                               /*AllowAuto=*/true);
807  QualType AllocType = TInfo->getType();
808  if (D.isInvalidType())
809    return ExprError();
810
811  return BuildCXXNew(StartLoc, UseGlobal,
812                     PlacementLParen,
813                     move(PlacementArgs),
814                     PlacementRParen,
815                     TypeIdParens,
816                     AllocType,
817                     TInfo,
818                     ArraySize,
819                     ConstructorLParen,
820                     move(ConstructorArgs),
821                     ConstructorRParen,
822                     TypeContainsAuto);
823}
824
825ExprResult
826Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
827                  SourceLocation PlacementLParen,
828                  MultiExprArg PlacementArgs,
829                  SourceLocation PlacementRParen,
830                  SourceRange TypeIdParens,
831                  QualType AllocType,
832                  TypeSourceInfo *AllocTypeInfo,
833                  Expr *ArraySize,
834                  SourceLocation ConstructorLParen,
835                  MultiExprArg ConstructorArgs,
836                  SourceLocation ConstructorRParen,
837                  bool TypeMayContainAuto) {
838  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
839
840  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
841  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
842    if (ConstructorArgs.size() == 0)
843      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
844                       << AllocType << TypeRange);
845    if (ConstructorArgs.size() != 1) {
846      Expr *FirstBad = ConstructorArgs.get()[1];
847      return ExprError(Diag(FirstBad->getSourceRange().getBegin(),
848                            diag::err_auto_new_ctor_multiple_expressions)
849                       << AllocType << TypeRange);
850    }
851    QualType DeducedType;
852    if (!DeduceAutoType(AllocType, ConstructorArgs.get()[0], DeducedType))
853      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
854                       << AllocType
855                       << ConstructorArgs.get()[0]->getType()
856                       << TypeRange
857                       << ConstructorArgs.get()[0]->getSourceRange());
858
859    AllocType = DeducedType;
860    AllocTypeInfo = Context.getTrivialTypeSourceInfo(AllocType, StartLoc);
861  }
862
863  // Per C++0x [expr.new]p5, the type being constructed may be a
864  // typedef of an array type.
865  if (!ArraySize) {
866    if (const ConstantArrayType *Array
867                              = Context.getAsConstantArrayType(AllocType)) {
868      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
869                                         Context.getSizeType(),
870                                         TypeRange.getEnd());
871      AllocType = Array->getElementType();
872    }
873  }
874
875  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
876    return ExprError();
877
878  QualType ResultType = Context.getPointerType(AllocType);
879
880  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
881  //   or enumeration type with a non-negative value."
882  if (ArraySize && !ArraySize->isTypeDependent()) {
883
884    QualType SizeType = ArraySize->getType();
885
886    ExprResult ConvertedSize
887      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
888                                       PDiag(diag::err_array_size_not_integral),
889                                     PDiag(diag::err_array_size_incomplete_type)
890                                       << ArraySize->getSourceRange(),
891                               PDiag(diag::err_array_size_explicit_conversion),
892                                       PDiag(diag::note_array_size_conversion),
893                               PDiag(diag::err_array_size_ambiguous_conversion),
894                                       PDiag(diag::note_array_size_conversion),
895                          PDiag(getLangOptions().CPlusPlus0x? 0
896                                            : diag::ext_array_size_conversion));
897    if (ConvertedSize.isInvalid())
898      return ExprError();
899
900    ArraySize = ConvertedSize.take();
901    SizeType = ArraySize->getType();
902    if (!SizeType->isIntegralOrUnscopedEnumerationType())
903      return ExprError();
904
905    // Let's see if this is a constant < 0. If so, we reject it out of hand.
906    // We don't care about special rules, so we tell the machinery it's not
907    // evaluated - it gives us a result in more cases.
908    if (!ArraySize->isValueDependent()) {
909      llvm::APSInt Value;
910      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
911        if (Value < llvm::APSInt(
912                        llvm::APInt::getNullValue(Value.getBitWidth()),
913                                 Value.isUnsigned()))
914          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
915                                diag::err_typecheck_negative_array_size)
916            << ArraySize->getSourceRange());
917
918        if (!AllocType->isDependentType()) {
919          unsigned ActiveSizeBits
920            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
921          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
922            Diag(ArraySize->getSourceRange().getBegin(),
923                 diag::err_array_too_large)
924              << Value.toString(10)
925              << ArraySize->getSourceRange();
926            return ExprError();
927          }
928        }
929      } else if (TypeIdParens.isValid()) {
930        // Can't have dynamic array size when the type-id is in parentheses.
931        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
932          << ArraySize->getSourceRange()
933          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
934          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
935
936        TypeIdParens = SourceRange();
937      }
938    }
939
940    ImpCastExprToType(ArraySize, Context.getSizeType(),
941                      CK_IntegralCast);
942  }
943
944  FunctionDecl *OperatorNew = 0;
945  FunctionDecl *OperatorDelete = 0;
946  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
947  unsigned NumPlaceArgs = PlacementArgs.size();
948
949  if (!AllocType->isDependentType() &&
950      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
951      FindAllocationFunctions(StartLoc,
952                              SourceRange(PlacementLParen, PlacementRParen),
953                              UseGlobal, AllocType, ArraySize, PlaceArgs,
954                              NumPlaceArgs, OperatorNew, OperatorDelete))
955    return ExprError();
956
957  // If this is an array allocation, compute whether the usual array
958  // deallocation function for the type has a size_t parameter.
959  bool UsualArrayDeleteWantsSize = false;
960  if (ArraySize && !AllocType->isDependentType())
961    UsualArrayDeleteWantsSize
962      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
963
964  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
965  if (OperatorNew) {
966    // Add default arguments, if any.
967    const FunctionProtoType *Proto =
968      OperatorNew->getType()->getAs<FunctionProtoType>();
969    VariadicCallType CallType =
970      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
971
972    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
973                               Proto, 1, PlaceArgs, NumPlaceArgs,
974                               AllPlaceArgs, CallType))
975      return ExprError();
976
977    NumPlaceArgs = AllPlaceArgs.size();
978    if (NumPlaceArgs > 0)
979      PlaceArgs = &AllPlaceArgs[0];
980  }
981
982  bool Init = ConstructorLParen.isValid();
983  // --- Choosing a constructor ---
984  CXXConstructorDecl *Constructor = 0;
985  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
986  unsigned NumConsArgs = ConstructorArgs.size();
987  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
988
989  // Array 'new' can't have any initializers.
990  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
991    SourceRange InitRange(ConsArgs[0]->getLocStart(),
992                          ConsArgs[NumConsArgs - 1]->getLocEnd());
993
994    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
995    return ExprError();
996  }
997
998  if (!AllocType->isDependentType() &&
999      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
1000    // C++0x [expr.new]p15:
1001    //   A new-expression that creates an object of type T initializes that
1002    //   object as follows:
1003    InitializationKind Kind
1004    //     - If the new-initializer is omitted, the object is default-
1005    //       initialized (8.5); if no initialization is performed,
1006    //       the object has indeterminate value
1007      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
1008    //     - Otherwise, the new-initializer is interpreted according to the
1009    //       initialization rules of 8.5 for direct-initialization.
1010             : InitializationKind::CreateDirect(TypeRange.getBegin(),
1011                                                ConstructorLParen,
1012                                                ConstructorRParen);
1013
1014    InitializedEntity Entity
1015      = InitializedEntity::InitializeNew(StartLoc, AllocType);
1016    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
1017    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1018                                                move(ConstructorArgs));
1019    if (FullInit.isInvalid())
1020      return ExprError();
1021
1022    // FullInit is our initializer; walk through it to determine if it's a
1023    // constructor call, which CXXNewExpr handles directly.
1024    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
1025      if (CXXBindTemporaryExpr *Binder
1026            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
1027        FullInitExpr = Binder->getSubExpr();
1028      if (CXXConstructExpr *Construct
1029                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
1030        Constructor = Construct->getConstructor();
1031        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
1032                                         AEnd = Construct->arg_end();
1033             A != AEnd; ++A)
1034          ConvertedConstructorArgs.push_back(*A);
1035      } else {
1036        // Take the converted initializer.
1037        ConvertedConstructorArgs.push_back(FullInit.release());
1038      }
1039    } else {
1040      // No initialization required.
1041    }
1042
1043    // Take the converted arguments and use them for the new expression.
1044    NumConsArgs = ConvertedConstructorArgs.size();
1045    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
1046  }
1047
1048  // Mark the new and delete operators as referenced.
1049  if (OperatorNew)
1050    MarkDeclarationReferenced(StartLoc, OperatorNew);
1051  if (OperatorDelete)
1052    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1053
1054  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
1055
1056  PlacementArgs.release();
1057  ConstructorArgs.release();
1058
1059  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1060                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1061                                        ArraySize, Constructor, Init,
1062                                        ConsArgs, NumConsArgs, OperatorDelete,
1063                                        UsualArrayDeleteWantsSize,
1064                                        ResultType, AllocTypeInfo,
1065                                        StartLoc,
1066                                        Init ? ConstructorRParen :
1067                                               TypeRange.getEnd(),
1068                                        ConstructorLParen, ConstructorRParen));
1069}
1070
1071/// CheckAllocatedType - Checks that a type is suitable as the allocated type
1072/// in a new-expression.
1073/// dimension off and stores the size expression in ArraySize.
1074bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1075                              SourceRange R) {
1076  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1077  //   abstract class type or array thereof.
1078  if (AllocType->isFunctionType())
1079    return Diag(Loc, diag::err_bad_new_type)
1080      << AllocType << 0 << R;
1081  else if (AllocType->isReferenceType())
1082    return Diag(Loc, diag::err_bad_new_type)
1083      << AllocType << 1 << R;
1084  else if (!AllocType->isDependentType() &&
1085           RequireCompleteType(Loc, AllocType,
1086                               PDiag(diag::err_new_incomplete_type)
1087                                 << R))
1088    return true;
1089  else if (RequireNonAbstractType(Loc, AllocType,
1090                                  diag::err_allocation_of_abstract_type))
1091    return true;
1092  else if (AllocType->isVariablyModifiedType())
1093    return Diag(Loc, diag::err_variably_modified_new_type)
1094             << AllocType;
1095
1096  return false;
1097}
1098
1099/// \brief Determine whether the given function is a non-placement
1100/// deallocation function.
1101static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1102  if (FD->isInvalidDecl())
1103    return false;
1104
1105  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1106    return Method->isUsualDeallocationFunction();
1107
1108  return ((FD->getOverloadedOperator() == OO_Delete ||
1109           FD->getOverloadedOperator() == OO_Array_Delete) &&
1110          FD->getNumParams() == 1);
1111}
1112
1113/// FindAllocationFunctions - Finds the overloads of operator new and delete
1114/// that are appropriate for the allocation.
1115bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1116                                   bool UseGlobal, QualType AllocType,
1117                                   bool IsArray, Expr **PlaceArgs,
1118                                   unsigned NumPlaceArgs,
1119                                   FunctionDecl *&OperatorNew,
1120                                   FunctionDecl *&OperatorDelete) {
1121  // --- Choosing an allocation function ---
1122  // C++ 5.3.4p8 - 14 & 18
1123  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1124  //   in the scope of the allocated class.
1125  // 2) If an array size is given, look for operator new[], else look for
1126  //   operator new.
1127  // 3) The first argument is always size_t. Append the arguments from the
1128  //   placement form.
1129
1130  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1131  // We don't care about the actual value of this argument.
1132  // FIXME: Should the Sema create the expression and embed it in the syntax
1133  // tree? Or should the consumer just recalculate the value?
1134  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1135                      Context.Target.getPointerWidth(0)),
1136                      Context.getSizeType(),
1137                      SourceLocation());
1138  AllocArgs[0] = &Size;
1139  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1140
1141  // C++ [expr.new]p8:
1142  //   If the allocated type is a non-array type, the allocation
1143  //   function's name is operator new and the deallocation function's
1144  //   name is operator delete. If the allocated type is an array
1145  //   type, the allocation function's name is operator new[] and the
1146  //   deallocation function's name is operator delete[].
1147  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1148                                        IsArray ? OO_Array_New : OO_New);
1149  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1150                                        IsArray ? OO_Array_Delete : OO_Delete);
1151
1152  QualType AllocElemType = Context.getBaseElementType(AllocType);
1153
1154  if (AllocElemType->isRecordType() && !UseGlobal) {
1155    CXXRecordDecl *Record
1156      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1157    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1158                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1159                          OperatorNew))
1160      return true;
1161  }
1162  if (!OperatorNew) {
1163    // Didn't find a member overload. Look for a global one.
1164    DeclareGlobalNewDelete();
1165    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1166    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1167                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1168                          OperatorNew))
1169      return true;
1170  }
1171
1172  // We don't need an operator delete if we're running under
1173  // -fno-exceptions.
1174  if (!getLangOptions().Exceptions) {
1175    OperatorDelete = 0;
1176    return false;
1177  }
1178
1179  // FindAllocationOverload can change the passed in arguments, so we need to
1180  // copy them back.
1181  if (NumPlaceArgs > 0)
1182    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1183
1184  // C++ [expr.new]p19:
1185  //
1186  //   If the new-expression begins with a unary :: operator, the
1187  //   deallocation function's name is looked up in the global
1188  //   scope. Otherwise, if the allocated type is a class type T or an
1189  //   array thereof, the deallocation function's name is looked up in
1190  //   the scope of T. If this lookup fails to find the name, or if
1191  //   the allocated type is not a class type or array thereof, the
1192  //   deallocation function's name is looked up in the global scope.
1193  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1194  if (AllocElemType->isRecordType() && !UseGlobal) {
1195    CXXRecordDecl *RD
1196      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1197    LookupQualifiedName(FoundDelete, RD);
1198  }
1199  if (FoundDelete.isAmbiguous())
1200    return true; // FIXME: clean up expressions?
1201
1202  if (FoundDelete.empty()) {
1203    DeclareGlobalNewDelete();
1204    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1205  }
1206
1207  FoundDelete.suppressDiagnostics();
1208
1209  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1210
1211  // Whether we're looking for a placement operator delete is dictated
1212  // by whether we selected a placement operator new, not by whether
1213  // we had explicit placement arguments.  This matters for things like
1214  //   struct A { void *operator new(size_t, int = 0); ... };
1215  //   A *a = new A()
1216  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1217
1218  if (isPlacementNew) {
1219    // C++ [expr.new]p20:
1220    //   A declaration of a placement deallocation function matches the
1221    //   declaration of a placement allocation function if it has the
1222    //   same number of parameters and, after parameter transformations
1223    //   (8.3.5), all parameter types except the first are
1224    //   identical. [...]
1225    //
1226    // To perform this comparison, we compute the function type that
1227    // the deallocation function should have, and use that type both
1228    // for template argument deduction and for comparison purposes.
1229    //
1230    // FIXME: this comparison should ignore CC and the like.
1231    QualType ExpectedFunctionType;
1232    {
1233      const FunctionProtoType *Proto
1234        = OperatorNew->getType()->getAs<FunctionProtoType>();
1235
1236      llvm::SmallVector<QualType, 4> ArgTypes;
1237      ArgTypes.push_back(Context.VoidPtrTy);
1238      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1239        ArgTypes.push_back(Proto->getArgType(I));
1240
1241      FunctionProtoType::ExtProtoInfo EPI;
1242      EPI.Variadic = Proto->isVariadic();
1243
1244      ExpectedFunctionType
1245        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1246                                  ArgTypes.size(), EPI);
1247    }
1248
1249    for (LookupResult::iterator D = FoundDelete.begin(),
1250                             DEnd = FoundDelete.end();
1251         D != DEnd; ++D) {
1252      FunctionDecl *Fn = 0;
1253      if (FunctionTemplateDecl *FnTmpl
1254            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1255        // Perform template argument deduction to try to match the
1256        // expected function type.
1257        TemplateDeductionInfo Info(Context, StartLoc);
1258        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1259          continue;
1260      } else
1261        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1262
1263      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1264        Matches.push_back(std::make_pair(D.getPair(), Fn));
1265    }
1266  } else {
1267    // C++ [expr.new]p20:
1268    //   [...] Any non-placement deallocation function matches a
1269    //   non-placement allocation function. [...]
1270    for (LookupResult::iterator D = FoundDelete.begin(),
1271                             DEnd = FoundDelete.end();
1272         D != DEnd; ++D) {
1273      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1274        if (isNonPlacementDeallocationFunction(Fn))
1275          Matches.push_back(std::make_pair(D.getPair(), Fn));
1276    }
1277  }
1278
1279  // C++ [expr.new]p20:
1280  //   [...] If the lookup finds a single matching deallocation
1281  //   function, that function will be called; otherwise, no
1282  //   deallocation function will be called.
1283  if (Matches.size() == 1) {
1284    OperatorDelete = Matches[0].second;
1285
1286    // C++0x [expr.new]p20:
1287    //   If the lookup finds the two-parameter form of a usual
1288    //   deallocation function (3.7.4.2) and that function, considered
1289    //   as a placement deallocation function, would have been
1290    //   selected as a match for the allocation function, the program
1291    //   is ill-formed.
1292    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1293        isNonPlacementDeallocationFunction(OperatorDelete)) {
1294      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1295        << SourceRange(PlaceArgs[0]->getLocStart(),
1296                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1297      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1298        << DeleteName;
1299    } else {
1300      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1301                            Matches[0].first);
1302    }
1303  }
1304
1305  return false;
1306}
1307
1308/// FindAllocationOverload - Find an fitting overload for the allocation
1309/// function in the specified scope.
1310bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1311                                  DeclarationName Name, Expr** Args,
1312                                  unsigned NumArgs, DeclContext *Ctx,
1313                                  bool AllowMissing, FunctionDecl *&Operator) {
1314  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1315  LookupQualifiedName(R, Ctx);
1316  if (R.empty()) {
1317    if (AllowMissing)
1318      return false;
1319    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1320      << Name << Range;
1321  }
1322
1323  if (R.isAmbiguous())
1324    return true;
1325
1326  R.suppressDiagnostics();
1327
1328  OverloadCandidateSet Candidates(StartLoc);
1329  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1330       Alloc != AllocEnd; ++Alloc) {
1331    // Even member operator new/delete are implicitly treated as
1332    // static, so don't use AddMemberCandidate.
1333    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1334
1335    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1336      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1337                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1338                                   Candidates,
1339                                   /*SuppressUserConversions=*/false);
1340      continue;
1341    }
1342
1343    FunctionDecl *Fn = cast<FunctionDecl>(D);
1344    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1345                         /*SuppressUserConversions=*/false);
1346  }
1347
1348  // Do the resolution.
1349  OverloadCandidateSet::iterator Best;
1350  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1351  case OR_Success: {
1352    // Got one!
1353    FunctionDecl *FnDecl = Best->Function;
1354    MarkDeclarationReferenced(StartLoc, FnDecl);
1355    // The first argument is size_t, and the first parameter must be size_t,
1356    // too. This is checked on declaration and can be assumed. (It can't be
1357    // asserted on, though, since invalid decls are left in there.)
1358    // Watch out for variadic allocator function.
1359    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1360    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1361      ExprResult Result
1362        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1363                                                       Context,
1364                                                       FnDecl->getParamDecl(i)),
1365                                    SourceLocation(),
1366                                    Owned(Args[i]));
1367      if (Result.isInvalid())
1368        return true;
1369
1370      Args[i] = Result.takeAs<Expr>();
1371    }
1372    Operator = FnDecl;
1373    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1374    return false;
1375  }
1376
1377  case OR_No_Viable_Function:
1378    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1379      << Name << Range;
1380    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1381    return true;
1382
1383  case OR_Ambiguous:
1384    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1385      << Name << Range;
1386    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1387    return true;
1388
1389  case OR_Deleted:
1390    Diag(StartLoc, diag::err_ovl_deleted_call)
1391      << Best->Function->isDeleted()
1392      << Name
1393      << Best->Function->getMessageUnavailableAttr(
1394             !Best->Function->isDeleted())
1395      << Range;
1396    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1397    return true;
1398  }
1399  assert(false && "Unreachable, bad result from BestViableFunction");
1400  return true;
1401}
1402
1403
1404/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1405/// delete. These are:
1406/// @code
1407///   // C++03:
1408///   void* operator new(std::size_t) throw(std::bad_alloc);
1409///   void* operator new[](std::size_t) throw(std::bad_alloc);
1410///   void operator delete(void *) throw();
1411///   void operator delete[](void *) throw();
1412///   // C++0x:
1413///   void* operator new(std::size_t);
1414///   void* operator new[](std::size_t);
1415///   void operator delete(void *);
1416///   void operator delete[](void *);
1417/// @endcode
1418/// C++0x operator delete is implicitly noexcept.
1419/// Note that the placement and nothrow forms of new are *not* implicitly
1420/// declared. Their use requires including \<new\>.
1421void Sema::DeclareGlobalNewDelete() {
1422  if (GlobalNewDeleteDeclared)
1423    return;
1424
1425  // C++ [basic.std.dynamic]p2:
1426  //   [...] The following allocation and deallocation functions (18.4) are
1427  //   implicitly declared in global scope in each translation unit of a
1428  //   program
1429  //
1430  //     C++03:
1431  //     void* operator new(std::size_t) throw(std::bad_alloc);
1432  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1433  //     void  operator delete(void*) throw();
1434  //     void  operator delete[](void*) throw();
1435  //     C++0x:
1436  //     void* operator new(std::size_t);
1437  //     void* operator new[](std::size_t);
1438  //     void  operator delete(void*);
1439  //     void  operator delete[](void*);
1440  //
1441  //   These implicit declarations introduce only the function names operator
1442  //   new, operator new[], operator delete, operator delete[].
1443  //
1444  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1445  // "std" or "bad_alloc" as necessary to form the exception specification.
1446  // However, we do not make these implicit declarations visible to name
1447  // lookup.
1448  // Note that the C++0x versions of operator delete are deallocation functions,
1449  // and thus are implicitly noexcept.
1450  if (!StdBadAlloc && !getLangOptions().CPlusPlus0x) {
1451    // The "std::bad_alloc" class has not yet been declared, so build it
1452    // implicitly.
1453    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1454                                        getOrCreateStdNamespace(),
1455                                        SourceLocation(), SourceLocation(),
1456                                      &PP.getIdentifierTable().get("bad_alloc"),
1457                                        0);
1458    getStdBadAlloc()->setImplicit(true);
1459  }
1460
1461  GlobalNewDeleteDeclared = true;
1462
1463  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1464  QualType SizeT = Context.getSizeType();
1465  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1466
1467  DeclareGlobalAllocationFunction(
1468      Context.DeclarationNames.getCXXOperatorName(OO_New),
1469      VoidPtr, SizeT, AssumeSaneOperatorNew);
1470  DeclareGlobalAllocationFunction(
1471      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1472      VoidPtr, SizeT, AssumeSaneOperatorNew);
1473  DeclareGlobalAllocationFunction(
1474      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1475      Context.VoidTy, VoidPtr);
1476  DeclareGlobalAllocationFunction(
1477      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1478      Context.VoidTy, VoidPtr);
1479}
1480
1481/// DeclareGlobalAllocationFunction - Declares a single implicit global
1482/// allocation function if it doesn't already exist.
1483void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1484                                           QualType Return, QualType Argument,
1485                                           bool AddMallocAttr) {
1486  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1487
1488  // Check if this function is already declared.
1489  {
1490    DeclContext::lookup_iterator Alloc, AllocEnd;
1491    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1492         Alloc != AllocEnd; ++Alloc) {
1493      // Only look at non-template functions, as it is the predefined,
1494      // non-templated allocation function we are trying to declare here.
1495      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1496        QualType InitialParamType =
1497          Context.getCanonicalType(
1498            Func->getParamDecl(0)->getType().getUnqualifiedType());
1499        // FIXME: Do we need to check for default arguments here?
1500        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1501          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1502            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1503          return;
1504        }
1505      }
1506    }
1507  }
1508
1509  QualType BadAllocType;
1510  bool HasBadAllocExceptionSpec
1511    = (Name.getCXXOverloadedOperator() == OO_New ||
1512       Name.getCXXOverloadedOperator() == OO_Array_New);
1513  if (HasBadAllocExceptionSpec && !getLangOptions().CPlusPlus0x) {
1514    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1515    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1516  }
1517
1518  FunctionProtoType::ExtProtoInfo EPI;
1519  if (HasBadAllocExceptionSpec) {
1520    if (!getLangOptions().CPlusPlus0x) {
1521      EPI.ExceptionSpecType = EST_Dynamic;
1522      EPI.NumExceptions = 1;
1523      EPI.Exceptions = &BadAllocType;
1524    }
1525  } else {
1526    EPI.ExceptionSpecType = getLangOptions().CPlusPlus0x ?
1527                                EST_BasicNoexcept : EST_DynamicNone;
1528  }
1529
1530  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1531  FunctionDecl *Alloc =
1532    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1533                         SourceLocation(), Name,
1534                         FnType, /*TInfo=*/0, SC_None,
1535                         SC_None, false, true);
1536  Alloc->setImplicit();
1537
1538  if (AddMallocAttr)
1539    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1540
1541  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1542                                           SourceLocation(), 0,
1543                                           Argument, /*TInfo=*/0,
1544                                           SC_None, SC_None, 0);
1545  Alloc->setParams(&Param, 1);
1546
1547  // FIXME: Also add this declaration to the IdentifierResolver, but
1548  // make sure it is at the end of the chain to coincide with the
1549  // global scope.
1550  Context.getTranslationUnitDecl()->addDecl(Alloc);
1551}
1552
1553bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1554                                    DeclarationName Name,
1555                                    FunctionDecl* &Operator) {
1556  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1557  // Try to find operator delete/operator delete[] in class scope.
1558  LookupQualifiedName(Found, RD);
1559
1560  if (Found.isAmbiguous())
1561    return true;
1562
1563  Found.suppressDiagnostics();
1564
1565  llvm::SmallVector<DeclAccessPair,4> Matches;
1566  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1567       F != FEnd; ++F) {
1568    NamedDecl *ND = (*F)->getUnderlyingDecl();
1569
1570    // Ignore template operator delete members from the check for a usual
1571    // deallocation function.
1572    if (isa<FunctionTemplateDecl>(ND))
1573      continue;
1574
1575    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1576      Matches.push_back(F.getPair());
1577  }
1578
1579  // There's exactly one suitable operator;  pick it.
1580  if (Matches.size() == 1) {
1581    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1582    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1583                          Matches[0]);
1584    return false;
1585
1586  // We found multiple suitable operators;  complain about the ambiguity.
1587  } else if (!Matches.empty()) {
1588    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1589      << Name << RD;
1590
1591    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1592           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1593      Diag((*F)->getUnderlyingDecl()->getLocation(),
1594           diag::note_member_declared_here) << Name;
1595    return true;
1596  }
1597
1598  // We did find operator delete/operator delete[] declarations, but
1599  // none of them were suitable.
1600  if (!Found.empty()) {
1601    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1602      << Name << RD;
1603
1604    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1605         F != FEnd; ++F)
1606      Diag((*F)->getUnderlyingDecl()->getLocation(),
1607           diag::note_member_declared_here) << Name;
1608
1609    return true;
1610  }
1611
1612  // Look for a global declaration.
1613  DeclareGlobalNewDelete();
1614  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1615
1616  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1617  Expr* DeallocArgs[1];
1618  DeallocArgs[0] = &Null;
1619  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1620                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1621                             Operator))
1622    return true;
1623
1624  assert(Operator && "Did not find a deallocation function!");
1625  return false;
1626}
1627
1628/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1629/// @code ::delete ptr; @endcode
1630/// or
1631/// @code delete [] ptr; @endcode
1632ExprResult
1633Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1634                     bool ArrayForm, Expr *Ex) {
1635  // C++ [expr.delete]p1:
1636  //   The operand shall have a pointer type, or a class type having a single
1637  //   conversion function to a pointer type. The result has type void.
1638  //
1639  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1640
1641  FunctionDecl *OperatorDelete = 0;
1642  bool ArrayFormAsWritten = ArrayForm;
1643  bool UsualArrayDeleteWantsSize = false;
1644
1645  if (!Ex->isTypeDependent()) {
1646    QualType Type = Ex->getType();
1647
1648    if (const RecordType *Record = Type->getAs<RecordType>()) {
1649      if (RequireCompleteType(StartLoc, Type,
1650                              PDiag(diag::err_delete_incomplete_class_type)))
1651        return ExprError();
1652
1653      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1654
1655      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1656      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1657      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1658             E = Conversions->end(); I != E; ++I) {
1659        NamedDecl *D = I.getDecl();
1660        if (isa<UsingShadowDecl>(D))
1661          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1662
1663        // Skip over templated conversion functions; they aren't considered.
1664        if (isa<FunctionTemplateDecl>(D))
1665          continue;
1666
1667        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1668
1669        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1670        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1671          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1672            ObjectPtrConversions.push_back(Conv);
1673      }
1674      if (ObjectPtrConversions.size() == 1) {
1675        // We have a single conversion to a pointer-to-object type. Perform
1676        // that conversion.
1677        // TODO: don't redo the conversion calculation.
1678        if (!PerformImplicitConversion(Ex,
1679                            ObjectPtrConversions.front()->getConversionType(),
1680                                      AA_Converting)) {
1681          Type = Ex->getType();
1682        }
1683      }
1684      else if (ObjectPtrConversions.size() > 1) {
1685        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1686              << Type << Ex->getSourceRange();
1687        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1688          NoteOverloadCandidate(ObjectPtrConversions[i]);
1689        return ExprError();
1690      }
1691    }
1692
1693    if (!Type->isPointerType())
1694      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1695        << Type << Ex->getSourceRange());
1696
1697    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1698    if (Pointee->isVoidType() && !isSFINAEContext()) {
1699      // The C++ standard bans deleting a pointer to a non-object type, which
1700      // effectively bans deletion of "void*". However, most compilers support
1701      // this, so we treat it as a warning unless we're in a SFINAE context.
1702      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1703        << Type << Ex->getSourceRange();
1704    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1705      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1706        << Type << Ex->getSourceRange());
1707    else if (!Pointee->isDependentType() &&
1708             RequireCompleteType(StartLoc, Pointee,
1709                                 PDiag(diag::warn_delete_incomplete)
1710                                   << Ex->getSourceRange()))
1711      return ExprError();
1712
1713    // C++ [expr.delete]p2:
1714    //   [Note: a pointer to a const type can be the operand of a
1715    //   delete-expression; it is not necessary to cast away the constness
1716    //   (5.2.11) of the pointer expression before it is used as the operand
1717    //   of the delete-expression. ]
1718    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1719                      CK_NoOp);
1720
1721    if (Pointee->isArrayType() && !ArrayForm) {
1722      Diag(StartLoc, diag::warn_delete_array_type)
1723          << Type << Ex->getSourceRange()
1724          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1725      ArrayForm = true;
1726    }
1727
1728    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1729                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1730
1731    QualType PointeeElem = Context.getBaseElementType(Pointee);
1732    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1733      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1734
1735      if (!UseGlobal &&
1736          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1737        return ExprError();
1738
1739      // If we're allocating an array of records, check whether the
1740      // usual operator delete[] has a size_t parameter.
1741      if (ArrayForm) {
1742        // If the user specifically asked to use the global allocator,
1743        // we'll need to do the lookup into the class.
1744        if (UseGlobal)
1745          UsualArrayDeleteWantsSize =
1746            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
1747
1748        // Otherwise, the usual operator delete[] should be the
1749        // function we just found.
1750        else if (isa<CXXMethodDecl>(OperatorDelete))
1751          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
1752      }
1753
1754      if (!RD->hasTrivialDestructor())
1755        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1756          MarkDeclarationReferenced(StartLoc,
1757                                    const_cast<CXXDestructorDecl*>(Dtor));
1758          DiagnoseUseOfDecl(Dtor, StartLoc);
1759        }
1760    }
1761
1762    if (!OperatorDelete) {
1763      // Look for a global declaration.
1764      DeclareGlobalNewDelete();
1765      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1766      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1767                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1768                                 OperatorDelete))
1769        return ExprError();
1770    }
1771
1772    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1773
1774    // Check access and ambiguity of operator delete and destructor.
1775    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1776      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1777      if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1778          CheckDestructorAccess(Ex->getExprLoc(), Dtor,
1779                      PDiag(diag::err_access_dtor) << PointeeElem);
1780      }
1781    }
1782
1783  }
1784
1785  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1786                                           ArrayFormAsWritten,
1787                                           UsualArrayDeleteWantsSize,
1788                                           OperatorDelete, Ex, StartLoc));
1789}
1790
1791/// \brief Check the use of the given variable as a C++ condition in an if,
1792/// while, do-while, or switch statement.
1793ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1794                                        SourceLocation StmtLoc,
1795                                        bool ConvertToBoolean) {
1796  QualType T = ConditionVar->getType();
1797
1798  // C++ [stmt.select]p2:
1799  //   The declarator shall not specify a function or an array.
1800  if (T->isFunctionType())
1801    return ExprError(Diag(ConditionVar->getLocation(),
1802                          diag::err_invalid_use_of_function_type)
1803                       << ConditionVar->getSourceRange());
1804  else if (T->isArrayType())
1805    return ExprError(Diag(ConditionVar->getLocation(),
1806                          diag::err_invalid_use_of_array_type)
1807                     << ConditionVar->getSourceRange());
1808
1809  Expr *Condition = DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
1810                                        ConditionVar,
1811                                        ConditionVar->getLocation(),
1812                            ConditionVar->getType().getNonReferenceType(),
1813                                        VK_LValue);
1814  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1815    return ExprError();
1816
1817  return Owned(Condition);
1818}
1819
1820/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1821bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1822  // C++ 6.4p4:
1823  // The value of a condition that is an initialized declaration in a statement
1824  // other than a switch statement is the value of the declared variable
1825  // implicitly converted to type bool. If that conversion is ill-formed, the
1826  // program is ill-formed.
1827  // The value of a condition that is an expression is the value of the
1828  // expression, implicitly converted to bool.
1829  //
1830  return PerformContextuallyConvertToBool(CondExpr);
1831}
1832
1833/// Helper function to determine whether this is the (deprecated) C++
1834/// conversion from a string literal to a pointer to non-const char or
1835/// non-const wchar_t (for narrow and wide string literals,
1836/// respectively).
1837bool
1838Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1839  // Look inside the implicit cast, if it exists.
1840  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1841    From = Cast->getSubExpr();
1842
1843  // A string literal (2.13.4) that is not a wide string literal can
1844  // be converted to an rvalue of type "pointer to char"; a wide
1845  // string literal can be converted to an rvalue of type "pointer
1846  // to wchar_t" (C++ 4.2p2).
1847  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1848    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1849      if (const BuiltinType *ToPointeeType
1850          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1851        // This conversion is considered only when there is an
1852        // explicit appropriate pointer target type (C++ 4.2p2).
1853        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1854            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1855             (!StrLit->isWide() &&
1856              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1857               ToPointeeType->getKind() == BuiltinType::Char_S))))
1858          return true;
1859      }
1860
1861  return false;
1862}
1863
1864static ExprResult BuildCXXCastArgument(Sema &S,
1865                                       SourceLocation CastLoc,
1866                                       QualType Ty,
1867                                       CastKind Kind,
1868                                       CXXMethodDecl *Method,
1869                                       NamedDecl *FoundDecl,
1870                                       Expr *From) {
1871  switch (Kind) {
1872  default: assert(0 && "Unhandled cast kind!");
1873  case CK_ConstructorConversion: {
1874    ASTOwningVector<Expr*> ConstructorArgs(S);
1875
1876    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1877                                  MultiExprArg(&From, 1),
1878                                  CastLoc, ConstructorArgs))
1879      return ExprError();
1880
1881    ExprResult Result =
1882    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1883                            move_arg(ConstructorArgs),
1884                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete,
1885                            SourceRange());
1886    if (Result.isInvalid())
1887      return ExprError();
1888
1889    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1890  }
1891
1892  case CK_UserDefinedConversion: {
1893    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1894
1895    // Create an implicit call expr that calls it.
1896    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Method);
1897    if (Result.isInvalid())
1898      return ExprError();
1899
1900    return S.MaybeBindToTemporary(Result.get());
1901  }
1902  }
1903}
1904
1905/// PerformImplicitConversion - Perform an implicit conversion of the
1906/// expression From to the type ToType using the pre-computed implicit
1907/// conversion sequence ICS. Returns true if there was an error, false
1908/// otherwise. The expression From is replaced with the converted
1909/// expression. Action is the kind of conversion we're performing,
1910/// used in the error message.
1911bool
1912Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1913                                const ImplicitConversionSequence &ICS,
1914                                AssignmentAction Action, bool CStyle) {
1915  switch (ICS.getKind()) {
1916  case ImplicitConversionSequence::StandardConversion:
1917    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1918                                  CStyle))
1919      return true;
1920    break;
1921
1922  case ImplicitConversionSequence::UserDefinedConversion: {
1923
1924      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1925      CastKind CastKind;
1926      QualType BeforeToType;
1927      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1928        CastKind = CK_UserDefinedConversion;
1929
1930        // If the user-defined conversion is specified by a conversion function,
1931        // the initial standard conversion sequence converts the source type to
1932        // the implicit object parameter of the conversion function.
1933        BeforeToType = Context.getTagDeclType(Conv->getParent());
1934      } else {
1935        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
1936        CastKind = CK_ConstructorConversion;
1937        // Do no conversion if dealing with ... for the first conversion.
1938        if (!ICS.UserDefined.EllipsisConversion) {
1939          // If the user-defined conversion is specified by a constructor, the
1940          // initial standard conversion sequence converts the source type to the
1941          // type required by the argument of the constructor
1942          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1943        }
1944      }
1945      // Watch out for elipsis conversion.
1946      if (!ICS.UserDefined.EllipsisConversion) {
1947        if (PerformImplicitConversion(From, BeforeToType,
1948                                      ICS.UserDefined.Before, AA_Converting,
1949                                      CStyle))
1950          return true;
1951      }
1952
1953      ExprResult CastArg
1954        = BuildCXXCastArgument(*this,
1955                               From->getLocStart(),
1956                               ToType.getNonReferenceType(),
1957                               CastKind, cast<CXXMethodDecl>(FD),
1958                               ICS.UserDefined.FoundConversionFunction,
1959                               From);
1960
1961      if (CastArg.isInvalid())
1962        return true;
1963
1964      From = CastArg.takeAs<Expr>();
1965
1966      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1967                                       AA_Converting, CStyle);
1968  }
1969
1970  case ImplicitConversionSequence::AmbiguousConversion:
1971    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1972                          PDiag(diag::err_typecheck_ambiguous_condition)
1973                            << From->getSourceRange());
1974     return true;
1975
1976  case ImplicitConversionSequence::EllipsisConversion:
1977    assert(false && "Cannot perform an ellipsis conversion");
1978    return false;
1979
1980  case ImplicitConversionSequence::BadConversion:
1981    return true;
1982  }
1983
1984  // Everything went well.
1985  return false;
1986}
1987
1988/// PerformImplicitConversion - Perform an implicit conversion of the
1989/// expression From to the type ToType by following the standard
1990/// conversion sequence SCS. Returns true if there was an error, false
1991/// otherwise. The expression From is replaced with the converted
1992/// expression. Flavor is the context in which we're performing this
1993/// conversion, for use in error messages.
1994bool
1995Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1996                                const StandardConversionSequence& SCS,
1997                                AssignmentAction Action, bool CStyle) {
1998  // Overall FIXME: we are recomputing too many types here and doing far too
1999  // much extra work. What this means is that we need to keep track of more
2000  // information that is computed when we try the implicit conversion initially,
2001  // so that we don't need to recompute anything here.
2002  QualType FromType = From->getType();
2003
2004  if (SCS.CopyConstructor) {
2005    // FIXME: When can ToType be a reference type?
2006    assert(!ToType->isReferenceType());
2007    if (SCS.Second == ICK_Derived_To_Base) {
2008      ASTOwningVector<Expr*> ConstructorArgs(*this);
2009      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2010                                  MultiExprArg(*this, &From, 1),
2011                                  /*FIXME:ConstructLoc*/SourceLocation(),
2012                                  ConstructorArgs))
2013        return true;
2014      ExprResult FromResult =
2015        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2016                              ToType, SCS.CopyConstructor,
2017                              move_arg(ConstructorArgs),
2018                              /*ZeroInit*/ false,
2019                              CXXConstructExpr::CK_Complete,
2020                              SourceRange());
2021      if (FromResult.isInvalid())
2022        return true;
2023      From = FromResult.takeAs<Expr>();
2024      return false;
2025    }
2026    ExprResult FromResult =
2027      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2028                            ToType, SCS.CopyConstructor,
2029                            MultiExprArg(*this, &From, 1),
2030                            /*ZeroInit*/ false,
2031                            CXXConstructExpr::CK_Complete,
2032                            SourceRange());
2033
2034    if (FromResult.isInvalid())
2035      return true;
2036
2037    From = FromResult.takeAs<Expr>();
2038    return false;
2039  }
2040
2041  // Resolve overloaded function references.
2042  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2043    DeclAccessPair Found;
2044    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2045                                                          true, Found);
2046    if (!Fn)
2047      return true;
2048
2049    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
2050      return true;
2051
2052    From = FixOverloadedFunctionReference(From, Found, Fn);
2053    FromType = From->getType();
2054  }
2055
2056  // Perform the first implicit conversion.
2057  switch (SCS.First) {
2058  case ICK_Identity:
2059    // Nothing to do.
2060    break;
2061
2062  case ICK_Lvalue_To_Rvalue:
2063    // Should this get its own ICK?
2064    if (From->getObjectKind() == OK_ObjCProperty) {
2065      ConvertPropertyForRValue(From);
2066      if (!From->isGLValue()) break;
2067    }
2068
2069    // Check for trivial buffer overflows.
2070    CheckArrayAccess(From);
2071
2072    FromType = FromType.getUnqualifiedType();
2073    From = ImplicitCastExpr::Create(Context, FromType, CK_LValueToRValue,
2074                                    From, 0, VK_RValue);
2075    break;
2076
2077  case ICK_Array_To_Pointer:
2078    FromType = Context.getArrayDecayedType(FromType);
2079    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
2080    break;
2081
2082  case ICK_Function_To_Pointer:
2083    FromType = Context.getPointerType(FromType);
2084    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
2085    break;
2086
2087  default:
2088    assert(false && "Improper first standard conversion");
2089    break;
2090  }
2091
2092  // Perform the second implicit conversion
2093  switch (SCS.Second) {
2094  case ICK_Identity:
2095    // If both sides are functions (or pointers/references to them), there could
2096    // be incompatible exception declarations.
2097    if (CheckExceptionSpecCompatibility(From, ToType))
2098      return true;
2099    // Nothing else to do.
2100    break;
2101
2102  case ICK_NoReturn_Adjustment:
2103    // If both sides are functions (or pointers/references to them), there could
2104    // be incompatible exception declarations.
2105    if (CheckExceptionSpecCompatibility(From, ToType))
2106      return true;
2107
2108    ImpCastExprToType(From, ToType, CK_NoOp);
2109    break;
2110
2111  case ICK_Integral_Promotion:
2112  case ICK_Integral_Conversion:
2113    ImpCastExprToType(From, ToType, CK_IntegralCast);
2114    break;
2115
2116  case ICK_Floating_Promotion:
2117  case ICK_Floating_Conversion:
2118    ImpCastExprToType(From, ToType, CK_FloatingCast);
2119    break;
2120
2121  case ICK_Complex_Promotion:
2122  case ICK_Complex_Conversion: {
2123    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2124    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2125    CastKind CK;
2126    if (FromEl->isRealFloatingType()) {
2127      if (ToEl->isRealFloatingType())
2128        CK = CK_FloatingComplexCast;
2129      else
2130        CK = CK_FloatingComplexToIntegralComplex;
2131    } else if (ToEl->isRealFloatingType()) {
2132      CK = CK_IntegralComplexToFloatingComplex;
2133    } else {
2134      CK = CK_IntegralComplexCast;
2135    }
2136    ImpCastExprToType(From, ToType, CK);
2137    break;
2138  }
2139
2140  case ICK_Floating_Integral:
2141    if (ToType->isRealFloatingType())
2142      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
2143    else
2144      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
2145    break;
2146
2147  case ICK_Compatible_Conversion:
2148    ImpCastExprToType(From, ToType, CK_NoOp);
2149    break;
2150
2151  case ICK_Pointer_Conversion: {
2152    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2153      // Diagnose incompatible Objective-C conversions
2154      Diag(From->getSourceRange().getBegin(),
2155           diag::ext_typecheck_convert_incompatible_pointer)
2156        << From->getType() << ToType << Action
2157        << From->getSourceRange();
2158    }
2159
2160    CastKind Kind = CK_Invalid;
2161    CXXCastPath BasePath;
2162    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2163      return true;
2164    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2165    break;
2166  }
2167
2168  case ICK_Pointer_Member: {
2169    CastKind Kind = CK_Invalid;
2170    CXXCastPath BasePath;
2171    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2172      return true;
2173    if (CheckExceptionSpecCompatibility(From, ToType))
2174      return true;
2175    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
2176    break;
2177  }
2178  case ICK_Boolean_Conversion: {
2179    CastKind Kind = CK_Invalid;
2180    switch (FromType->getScalarTypeKind()) {
2181    case Type::STK_Pointer: Kind = CK_PointerToBoolean; break;
2182    case Type::STK_MemberPointer: Kind = CK_MemberPointerToBoolean; break;
2183    case Type::STK_Bool: llvm_unreachable("bool -> bool conversion?");
2184    case Type::STK_Integral: Kind = CK_IntegralToBoolean; break;
2185    case Type::STK_Floating: Kind = CK_FloatingToBoolean; break;
2186    case Type::STK_IntegralComplex: Kind = CK_IntegralComplexToBoolean; break;
2187    case Type::STK_FloatingComplex: Kind = CK_FloatingComplexToBoolean; break;
2188    }
2189
2190    ImpCastExprToType(From, Context.BoolTy, Kind);
2191    break;
2192  }
2193
2194  case ICK_Derived_To_Base: {
2195    CXXCastPath BasePath;
2196    if (CheckDerivedToBaseConversion(From->getType(),
2197                                     ToType.getNonReferenceType(),
2198                                     From->getLocStart(),
2199                                     From->getSourceRange(),
2200                                     &BasePath,
2201                                     CStyle))
2202      return true;
2203
2204    ImpCastExprToType(From, ToType.getNonReferenceType(),
2205                      CK_DerivedToBase, CastCategory(From),
2206                      &BasePath);
2207    break;
2208  }
2209
2210  case ICK_Vector_Conversion:
2211    ImpCastExprToType(From, ToType, CK_BitCast);
2212    break;
2213
2214  case ICK_Vector_Splat:
2215    ImpCastExprToType(From, ToType, CK_VectorSplat);
2216    break;
2217
2218  case ICK_Complex_Real:
2219    // Case 1.  x -> _Complex y
2220    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2221      QualType ElType = ToComplex->getElementType();
2222      bool isFloatingComplex = ElType->isRealFloatingType();
2223
2224      // x -> y
2225      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2226        // do nothing
2227      } else if (From->getType()->isRealFloatingType()) {
2228        ImpCastExprToType(From, ElType,
2229                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral);
2230      } else {
2231        assert(From->getType()->isIntegerType());
2232        ImpCastExprToType(From, ElType,
2233                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast);
2234      }
2235      // y -> _Complex y
2236      ImpCastExprToType(From, ToType,
2237                   isFloatingComplex ? CK_FloatingRealToComplex
2238                                     : CK_IntegralRealToComplex);
2239
2240    // Case 2.  _Complex x -> y
2241    } else {
2242      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2243      assert(FromComplex);
2244
2245      QualType ElType = FromComplex->getElementType();
2246      bool isFloatingComplex = ElType->isRealFloatingType();
2247
2248      // _Complex x -> x
2249      ImpCastExprToType(From, ElType,
2250                   isFloatingComplex ? CK_FloatingComplexToReal
2251                                     : CK_IntegralComplexToReal);
2252
2253      // x -> y
2254      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2255        // do nothing
2256      } else if (ToType->isRealFloatingType()) {
2257        ImpCastExprToType(From, ToType,
2258                isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating);
2259      } else {
2260        assert(ToType->isIntegerType());
2261        ImpCastExprToType(From, ToType,
2262                isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast);
2263      }
2264    }
2265    break;
2266
2267  case ICK_Block_Pointer_Conversion: {
2268      ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, VK_RValue);
2269      break;
2270    }
2271
2272  case ICK_Lvalue_To_Rvalue:
2273  case ICK_Array_To_Pointer:
2274  case ICK_Function_To_Pointer:
2275  case ICK_Qualification:
2276  case ICK_Num_Conversion_Kinds:
2277    assert(false && "Improper second standard conversion");
2278    break;
2279  }
2280
2281  switch (SCS.Third) {
2282  case ICK_Identity:
2283    // Nothing to do.
2284    break;
2285
2286  case ICK_Qualification: {
2287    // The qualification keeps the category of the inner expression, unless the
2288    // target type isn't a reference.
2289    ExprValueKind VK = ToType->isReferenceType() ?
2290                                  CastCategory(From) : VK_RValue;
2291    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2292                      CK_NoOp, VK);
2293
2294    if (SCS.DeprecatedStringLiteralToCharPtr &&
2295        !getLangOptions().WritableStrings)
2296      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2297        << ToType.getNonReferenceType();
2298
2299    break;
2300    }
2301
2302  default:
2303    assert(false && "Improper third standard conversion");
2304    break;
2305  }
2306
2307  return false;
2308}
2309
2310ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2311                                     SourceLocation KWLoc,
2312                                     ParsedType Ty,
2313                                     SourceLocation RParen) {
2314  TypeSourceInfo *TSInfo;
2315  QualType T = GetTypeFromParser(Ty, &TSInfo);
2316
2317  if (!TSInfo)
2318    TSInfo = Context.getTrivialTypeSourceInfo(T);
2319  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2320}
2321
2322static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2323                                   SourceLocation KeyLoc) {
2324  // FIXME: For many of these traits, we need a complete type before we can
2325  // check these properties.
2326  assert(!T->isDependentType() &&
2327         "Cannot evaluate traits for dependent types.");
2328  ASTContext &C = Self.Context;
2329  switch(UTT) {
2330  default: assert(false && "Unknown type trait or not implemented");
2331  case UTT_IsPOD: return T->isPODType();
2332  case UTT_IsLiteral: return T->isLiteralType();
2333  case UTT_IsClass: // Fallthrough
2334  case UTT_IsUnion:
2335    if (const RecordType *Record = T->getAs<RecordType>()) {
2336      bool Union = Record->getDecl()->isUnion();
2337      return UTT == UTT_IsUnion ? Union : !Union;
2338    }
2339    return false;
2340  case UTT_IsEnum: return T->isEnumeralType();
2341  case UTT_IsPolymorphic:
2342    if (const RecordType *Record = T->getAs<RecordType>()) {
2343      // Type traits are only parsed in C++, so we've got CXXRecords.
2344      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2345    }
2346    return false;
2347  case UTT_IsAbstract:
2348    if (const RecordType *RT = T->getAs<RecordType>())
2349      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2350    return false;
2351  case UTT_IsEmpty:
2352    if (const RecordType *Record = T->getAs<RecordType>()) {
2353      return !Record->getDecl()->isUnion()
2354          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2355    }
2356    return false;
2357  case UTT_HasTrivialConstructor:
2358    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2359    //   If __is_pod (type) is true then the trait is true, else if type is
2360    //   a cv class or union type (or array thereof) with a trivial default
2361    //   constructor ([class.ctor]) then the trait is true, else it is false.
2362    if (T->isPODType())
2363      return true;
2364    if (const RecordType *RT =
2365          C.getBaseElementType(T)->getAs<RecordType>())
2366      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2367    return false;
2368  case UTT_HasTrivialCopy:
2369    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2370    //   If __is_pod (type) is true or type is a reference type then
2371    //   the trait is true, else if type is a cv class or union type
2372    //   with a trivial copy constructor ([class.copy]) then the trait
2373    //   is true, else it is false.
2374    if (T->isPODType() || T->isReferenceType())
2375      return true;
2376    if (const RecordType *RT = T->getAs<RecordType>())
2377      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2378    return false;
2379  case UTT_HasTrivialAssign:
2380    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2381    //   If type is const qualified or is a reference type then the
2382    //   trait is false. Otherwise if __is_pod (type) is true then the
2383    //   trait is true, else if type is a cv class or union type with
2384    //   a trivial copy assignment ([class.copy]) then the trait is
2385    //   true, else it is false.
2386    // Note: the const and reference restrictions are interesting,
2387    // given that const and reference members don't prevent a class
2388    // from having a trivial copy assignment operator (but do cause
2389    // errors if the copy assignment operator is actually used, q.v.
2390    // [class.copy]p12).
2391
2392    if (C.getBaseElementType(T).isConstQualified())
2393      return false;
2394    if (T->isPODType())
2395      return true;
2396    if (const RecordType *RT = T->getAs<RecordType>())
2397      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2398    return false;
2399  case UTT_HasTrivialDestructor:
2400    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2401    //   If __is_pod (type) is true or type is a reference type
2402    //   then the trait is true, else if type is a cv class or union
2403    //   type (or array thereof) with a trivial destructor
2404    //   ([class.dtor]) then the trait is true, else it is
2405    //   false.
2406    if (T->isPODType() || T->isReferenceType())
2407      return true;
2408    if (const RecordType *RT =
2409          C.getBaseElementType(T)->getAs<RecordType>())
2410      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2411    return false;
2412  // TODO: Propagate nothrowness for implicitly declared special members.
2413  case UTT_HasNothrowAssign:
2414    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2415    //   If type is const qualified or is a reference type then the
2416    //   trait is false. Otherwise if __has_trivial_assign (type)
2417    //   is true then the trait is true, else if type is a cv class
2418    //   or union type with copy assignment operators that are known
2419    //   not to throw an exception then the trait is true, else it is
2420    //   false.
2421    if (C.getBaseElementType(T).isConstQualified())
2422      return false;
2423    if (T->isReferenceType())
2424      return false;
2425    if (T->isPODType())
2426      return true;
2427    if (const RecordType *RT = T->getAs<RecordType>()) {
2428      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2429      if (RD->hasTrivialCopyAssignment())
2430        return true;
2431
2432      bool FoundAssign = false;
2433      bool AllNoThrow = true;
2434      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2435      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2436                       Sema::LookupOrdinaryName);
2437      if (Self.LookupQualifiedName(Res, RD)) {
2438        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2439             Op != OpEnd; ++Op) {
2440          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2441          if (Operator->isCopyAssignmentOperator()) {
2442            FoundAssign = true;
2443            const FunctionProtoType *CPT
2444                = Operator->getType()->getAs<FunctionProtoType>();
2445            if (!CPT->isNothrow(Self.Context)) {
2446              AllNoThrow = false;
2447              break;
2448            }
2449          }
2450        }
2451      }
2452
2453      return FoundAssign && AllNoThrow;
2454    }
2455    return false;
2456  case UTT_HasNothrowCopy:
2457    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2458    //   If __has_trivial_copy (type) is true then the trait is true, else
2459    //   if type is a cv class or union type with copy constructors that are
2460    //   known not to throw an exception then the trait is true, else it is
2461    //   false.
2462    if (T->isPODType() || T->isReferenceType())
2463      return true;
2464    if (const RecordType *RT = T->getAs<RecordType>()) {
2465      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2466      if (RD->hasTrivialCopyConstructor())
2467        return true;
2468
2469      bool FoundConstructor = false;
2470      bool AllNoThrow = true;
2471      unsigned FoundTQs;
2472      DeclContext::lookup_const_iterator Con, ConEnd;
2473      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2474           Con != ConEnd; ++Con) {
2475        // A template constructor is never a copy constructor.
2476        // FIXME: However, it may actually be selected at the actual overload
2477        // resolution point.
2478        if (isa<FunctionTemplateDecl>(*Con))
2479          continue;
2480        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2481        if (Constructor->isCopyConstructor(FoundTQs)) {
2482          FoundConstructor = true;
2483          const FunctionProtoType *CPT
2484              = Constructor->getType()->getAs<FunctionProtoType>();
2485          // FIXME: check whether evaluating default arguments can throw.
2486          // For now, we'll be conservative and assume that they can throw.
2487          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1) {
2488            AllNoThrow = false;
2489            break;
2490          }
2491        }
2492      }
2493
2494      return FoundConstructor && AllNoThrow;
2495    }
2496    return false;
2497  case UTT_HasNothrowConstructor:
2498    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2499    //   If __has_trivial_constructor (type) is true then the trait is
2500    //   true, else if type is a cv class or union type (or array
2501    //   thereof) with a default constructor that is known not to
2502    //   throw an exception then the trait is true, else it is false.
2503    if (T->isPODType())
2504      return true;
2505    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2506      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2507      if (RD->hasTrivialConstructor())
2508        return true;
2509
2510      DeclContext::lookup_const_iterator Con, ConEnd;
2511      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2512           Con != ConEnd; ++Con) {
2513        // FIXME: In C++0x, a constructor template can be a default constructor.
2514        if (isa<FunctionTemplateDecl>(*Con))
2515          continue;
2516        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2517        if (Constructor->isDefaultConstructor()) {
2518          const FunctionProtoType *CPT
2519              = Constructor->getType()->getAs<FunctionProtoType>();
2520          // TODO: check whether evaluating default arguments can throw.
2521          // For now, we'll be conservative and assume that they can throw.
2522          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
2523        }
2524      }
2525    }
2526    return false;
2527  case UTT_HasVirtualDestructor:
2528    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2529    //   If type is a class type with a virtual destructor ([class.dtor])
2530    //   then the trait is true, else it is false.
2531    if (const RecordType *Record = T->getAs<RecordType>()) {
2532      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2533      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2534        return Destructor->isVirtual();
2535    }
2536    return false;
2537  }
2538}
2539
2540ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2541                                     SourceLocation KWLoc,
2542                                     TypeSourceInfo *TSInfo,
2543                                     SourceLocation RParen) {
2544  QualType T = TSInfo->getType();
2545
2546  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2547  // all traits except __is_class, __is_enum and __is_union require a the type
2548  // to be complete, an array of unknown bound, or void.
2549  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2550    QualType E = T;
2551    if (T->isIncompleteArrayType())
2552      E = Context.getAsArrayType(T)->getElementType();
2553    if (!T->isVoidType() &&
2554        RequireCompleteType(KWLoc, E,
2555                            diag::err_incomplete_type_used_in_type_trait_expr))
2556      return ExprError();
2557  }
2558
2559  bool Value = false;
2560  if (!T->isDependentType())
2561    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2562
2563  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2564                                                RParen, Context.BoolTy));
2565}
2566
2567ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
2568                                      SourceLocation KWLoc,
2569                                      ParsedType LhsTy,
2570                                      ParsedType RhsTy,
2571                                      SourceLocation RParen) {
2572  TypeSourceInfo *LhsTSInfo;
2573  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
2574  if (!LhsTSInfo)
2575    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
2576
2577  TypeSourceInfo *RhsTSInfo;
2578  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
2579  if (!RhsTSInfo)
2580    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
2581
2582  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
2583}
2584
2585static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
2586                                    QualType LhsT, QualType RhsT,
2587                                    SourceLocation KeyLoc) {
2588  assert((!LhsT->isDependentType() || RhsT->isDependentType()) &&
2589         "Cannot evaluate traits for dependent types.");
2590
2591  switch(BTT) {
2592  case BTT_IsBaseOf: {
2593    // C++0x [meta.rel]p2
2594    // Base is a base class of Derived without regard to cv-qualifiers or
2595    // Base and Derived are not unions and name the same class type without
2596    // regard to cv-qualifiers.
2597
2598    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
2599    if (!lhsRecord) return false;
2600
2601    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
2602    if (!rhsRecord) return false;
2603
2604    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
2605             == (lhsRecord == rhsRecord));
2606
2607    if (lhsRecord == rhsRecord)
2608      return !lhsRecord->getDecl()->isUnion();
2609
2610    // C++0x [meta.rel]p2:
2611    //   If Base and Derived are class types and are different types
2612    //   (ignoring possible cv-qualifiers) then Derived shall be a
2613    //   complete type.
2614    if (Self.RequireCompleteType(KeyLoc, RhsT,
2615                          diag::err_incomplete_type_used_in_type_trait_expr))
2616      return false;
2617
2618    return cast<CXXRecordDecl>(rhsRecord->getDecl())
2619      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
2620  }
2621
2622  case BTT_TypeCompatible:
2623    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
2624                                           RhsT.getUnqualifiedType());
2625
2626  case BTT_IsConvertibleTo: {
2627    // C++0x [meta.rel]p4:
2628    //   Given the following function prototype:
2629    //
2630    //     template <class T>
2631    //       typename add_rvalue_reference<T>::type create();
2632    //
2633    //   the predicate condition for a template specialization
2634    //   is_convertible<From, To> shall be satisfied if and only if
2635    //   the return expression in the following code would be
2636    //   well-formed, including any implicit conversions to the return
2637    //   type of the function:
2638    //
2639    //     To test() {
2640    //       return create<From>();
2641    //     }
2642    //
2643    //   Access checking is performed as if in a context unrelated to To and
2644    //   From. Only the validity of the immediate context of the expression
2645    //   of the return-statement (including conversions to the return type)
2646    //   is considered.
2647    //
2648    // We model the initialization as a copy-initialization of a temporary
2649    // of the appropriate type, which for this expression is identical to the
2650    // return statement (since NRVO doesn't apply).
2651    if (LhsT->isObjectType() || LhsT->isFunctionType())
2652      LhsT = Self.Context.getRValueReferenceType(LhsT);
2653
2654    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
2655    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
2656                         Expr::getValueKindForType(LhsT));
2657    Expr *FromPtr = &From;
2658    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
2659                                                           SourceLocation()));
2660
2661    // Perform the initialization within a SFINAE trap at translation unit
2662    // scope.
2663    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
2664    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
2665    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
2666    if (Init.getKind() == InitializationSequence::FailedSequence)
2667      return false;
2668
2669    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
2670    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
2671  }
2672  }
2673  llvm_unreachable("Unknown type trait or not implemented");
2674}
2675
2676ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
2677                                      SourceLocation KWLoc,
2678                                      TypeSourceInfo *LhsTSInfo,
2679                                      TypeSourceInfo *RhsTSInfo,
2680                                      SourceLocation RParen) {
2681  QualType LhsT = LhsTSInfo->getType();
2682  QualType RhsT = RhsTSInfo->getType();
2683
2684  if (BTT == BTT_TypeCompatible) {
2685    if (getLangOptions().CPlusPlus) {
2686      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
2687        << SourceRange(KWLoc, RParen);
2688      return ExprError();
2689    }
2690  }
2691
2692  bool Value = false;
2693  if (!LhsT->isDependentType() && !RhsT->isDependentType())
2694    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
2695
2696  // Select trait result type.
2697  QualType ResultType;
2698  switch (BTT) {
2699  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
2700  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
2701  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
2702  }
2703
2704  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
2705                                                 RhsTSInfo, Value, RParen,
2706                                                 ResultType));
2707}
2708
2709QualType Sema::CheckPointerToMemberOperands(Expr *&lex, Expr *&rex,
2710                                            ExprValueKind &VK,
2711                                            SourceLocation Loc,
2712                                            bool isIndirect) {
2713  const char *OpSpelling = isIndirect ? "->*" : ".*";
2714  // C++ 5.5p2
2715  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2716  //   be of type "pointer to member of T" (where T is a completely-defined
2717  //   class type) [...]
2718  QualType RType = rex->getType();
2719  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2720  if (!MemPtr) {
2721    Diag(Loc, diag::err_bad_memptr_rhs)
2722      << OpSpelling << RType << rex->getSourceRange();
2723    return QualType();
2724  }
2725
2726  QualType Class(MemPtr->getClass(), 0);
2727
2728  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
2729  // member pointer points must be completely-defined. However, there is no
2730  // reason for this semantic distinction, and the rule is not enforced by
2731  // other compilers. Therefore, we do not check this property, as it is
2732  // likely to be considered a defect.
2733
2734  // C++ 5.5p2
2735  //   [...] to its first operand, which shall be of class T or of a class of
2736  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2737  //   such a class]
2738  QualType LType = lex->getType();
2739  if (isIndirect) {
2740    if (const PointerType *Ptr = LType->getAs<PointerType>())
2741      LType = Ptr->getPointeeType();
2742    else {
2743      Diag(Loc, diag::err_bad_memptr_lhs)
2744        << OpSpelling << 1 << LType
2745        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2746      return QualType();
2747    }
2748  }
2749
2750  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2751    // If we want to check the hierarchy, we need a complete type.
2752    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2753        << OpSpelling << (int)isIndirect)) {
2754      return QualType();
2755    }
2756    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2757                       /*DetectVirtual=*/false);
2758    // FIXME: Would it be useful to print full ambiguity paths, or is that
2759    // overkill?
2760    if (!IsDerivedFrom(LType, Class, Paths) ||
2761        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2762      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2763        << (int)isIndirect << lex->getType();
2764      return QualType();
2765    }
2766    // Cast LHS to type of use.
2767    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2768    ExprValueKind VK =
2769        isIndirect ? VK_RValue : CastCategory(lex);
2770
2771    CXXCastPath BasePath;
2772    BuildBasePathArray(Paths, BasePath);
2773    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2774  }
2775
2776  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2777    // Diagnose use of pointer-to-member type which when used as
2778    // the functional cast in a pointer-to-member expression.
2779    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2780     return QualType();
2781  }
2782
2783  // C++ 5.5p2
2784  //   The result is an object or a function of the type specified by the
2785  //   second operand.
2786  // The cv qualifiers are the union of those in the pointer and the left side,
2787  // in accordance with 5.5p5 and 5.2.5.
2788  // FIXME: This returns a dereferenced member function pointer as a normal
2789  // function type. However, the only operation valid on such functions is
2790  // calling them. There's also a GCC extension to get a function pointer to the
2791  // thing, which is another complication, because this type - unlike the type
2792  // that is the result of this expression - takes the class as the first
2793  // argument.
2794  // We probably need a "MemberFunctionClosureType" or something like that.
2795  QualType Result = MemPtr->getPointeeType();
2796  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2797
2798  // C++0x [expr.mptr.oper]p6:
2799  //   In a .* expression whose object expression is an rvalue, the program is
2800  //   ill-formed if the second operand is a pointer to member function with
2801  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
2802  //   expression is an lvalue, the program is ill-formed if the second operand
2803  //   is a pointer to member function with ref-qualifier &&.
2804  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
2805    switch (Proto->getRefQualifier()) {
2806    case RQ_None:
2807      // Do nothing
2808      break;
2809
2810    case RQ_LValue:
2811      if (!isIndirect && !lex->Classify(Context).isLValue())
2812        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2813          << RType << 1 << lex->getSourceRange();
2814      break;
2815
2816    case RQ_RValue:
2817      if (isIndirect || !lex->Classify(Context).isRValue())
2818        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
2819          << RType << 0 << lex->getSourceRange();
2820      break;
2821    }
2822  }
2823
2824  // C++ [expr.mptr.oper]p6:
2825  //   The result of a .* expression whose second operand is a pointer
2826  //   to a data member is of the same value category as its
2827  //   first operand. The result of a .* expression whose second
2828  //   operand is a pointer to a member function is a prvalue. The
2829  //   result of an ->* expression is an lvalue if its second operand
2830  //   is a pointer to data member and a prvalue otherwise.
2831  if (Result->isFunctionType())
2832    VK = VK_RValue;
2833  else if (isIndirect)
2834    VK = VK_LValue;
2835  else
2836    VK = lex->getValueKind();
2837
2838  return Result;
2839}
2840
2841/// \brief Try to convert a type to another according to C++0x 5.16p3.
2842///
2843/// This is part of the parameter validation for the ? operator. If either
2844/// value operand is a class type, the two operands are attempted to be
2845/// converted to each other. This function does the conversion in one direction.
2846/// It returns true if the program is ill-formed and has already been diagnosed
2847/// as such.
2848static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2849                                SourceLocation QuestionLoc,
2850                                bool &HaveConversion,
2851                                QualType &ToType) {
2852  HaveConversion = false;
2853  ToType = To->getType();
2854
2855  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2856                                                           SourceLocation());
2857  // C++0x 5.16p3
2858  //   The process for determining whether an operand expression E1 of type T1
2859  //   can be converted to match an operand expression E2 of type T2 is defined
2860  //   as follows:
2861  //   -- If E2 is an lvalue:
2862  bool ToIsLvalue = To->isLValue();
2863  if (ToIsLvalue) {
2864    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2865    //   type "lvalue reference to T2", subject to the constraint that in the
2866    //   conversion the reference must bind directly to E1.
2867    QualType T = Self.Context.getLValueReferenceType(ToType);
2868    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2869
2870    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2871    if (InitSeq.isDirectReferenceBinding()) {
2872      ToType = T;
2873      HaveConversion = true;
2874      return false;
2875    }
2876
2877    if (InitSeq.isAmbiguous())
2878      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2879  }
2880
2881  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2882  //      -- if E1 and E2 have class type, and the underlying class types are
2883  //         the same or one is a base class of the other:
2884  QualType FTy = From->getType();
2885  QualType TTy = To->getType();
2886  const RecordType *FRec = FTy->getAs<RecordType>();
2887  const RecordType *TRec = TTy->getAs<RecordType>();
2888  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2889                       Self.IsDerivedFrom(FTy, TTy);
2890  if (FRec && TRec &&
2891      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2892    //         E1 can be converted to match E2 if the class of T2 is the
2893    //         same type as, or a base class of, the class of T1, and
2894    //         [cv2 > cv1].
2895    if (FRec == TRec || FDerivedFromT) {
2896      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2897        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2898        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2899        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2900          HaveConversion = true;
2901          return false;
2902        }
2903
2904        if (InitSeq.isAmbiguous())
2905          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2906      }
2907    }
2908
2909    return false;
2910  }
2911
2912  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2913  //        implicitly converted to the type that expression E2 would have
2914  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2915  //        an rvalue).
2916  //
2917  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2918  // to the array-to-pointer or function-to-pointer conversions.
2919  if (!TTy->getAs<TagType>())
2920    TTy = TTy.getUnqualifiedType();
2921
2922  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2923  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2924  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2925  ToType = TTy;
2926  if (InitSeq.isAmbiguous())
2927    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2928
2929  return false;
2930}
2931
2932/// \brief Try to find a common type for two according to C++0x 5.16p5.
2933///
2934/// This is part of the parameter validation for the ? operator. If either
2935/// value operand is a class type, overload resolution is used to find a
2936/// conversion to a common type.
2937static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2938                                    SourceLocation QuestionLoc) {
2939  Expr *Args[2] = { LHS, RHS };
2940  OverloadCandidateSet CandidateSet(QuestionLoc);
2941  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
2942                                    CandidateSet);
2943
2944  OverloadCandidateSet::iterator Best;
2945  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
2946    case OR_Success:
2947      // We found a match. Perform the conversions on the arguments and move on.
2948      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2949                                         Best->Conversions[0], Sema::AA_Converting) ||
2950          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2951                                         Best->Conversions[1], Sema::AA_Converting))
2952        break;
2953      if (Best->Function)
2954        Self.MarkDeclarationReferenced(QuestionLoc, Best->Function);
2955      return false;
2956
2957    case OR_No_Viable_Function:
2958
2959      // Emit a better diagnostic if one of the expressions is a null pointer
2960      // constant and the other is a pointer type. In this case, the user most
2961      // likely forgot to take the address of the other expression.
2962      if (Self.DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
2963        return true;
2964
2965      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2966        << LHS->getType() << RHS->getType()
2967        << LHS->getSourceRange() << RHS->getSourceRange();
2968      return true;
2969
2970    case OR_Ambiguous:
2971      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
2972        << LHS->getType() << RHS->getType()
2973        << LHS->getSourceRange() << RHS->getSourceRange();
2974      // FIXME: Print the possible common types by printing the return types of
2975      // the viable candidates.
2976      break;
2977
2978    case OR_Deleted:
2979      assert(false && "Conditional operator has only built-in overloads");
2980      break;
2981  }
2982  return true;
2983}
2984
2985/// \brief Perform an "extended" implicit conversion as returned by
2986/// TryClassUnification.
2987static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2988  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2989  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2990                                                           SourceLocation());
2991  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2992  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2993  if (Result.isInvalid())
2994    return true;
2995
2996  E = Result.takeAs<Expr>();
2997  return false;
2998}
2999
3000/// \brief Check the operands of ?: under C++ semantics.
3001///
3002/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
3003/// extension. In this case, LHS == Cond. (But they're not aliases.)
3004QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
3005                                           ExprValueKind &VK, ExprObjectKind &OK,
3006                                           SourceLocation QuestionLoc) {
3007  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
3008  // interface pointers.
3009
3010  // C++0x 5.16p1
3011  //   The first expression is contextually converted to bool.
3012  if (!Cond->isTypeDependent()) {
3013    if (CheckCXXBooleanCondition(Cond))
3014      return QualType();
3015  }
3016
3017  // Assume r-value.
3018  VK = VK_RValue;
3019  OK = OK_Ordinary;
3020
3021  // Either of the arguments dependent?
3022  if (LHS->isTypeDependent() || RHS->isTypeDependent())
3023    return Context.DependentTy;
3024
3025  // C++0x 5.16p2
3026  //   If either the second or the third operand has type (cv) void, ...
3027  QualType LTy = LHS->getType();
3028  QualType RTy = RHS->getType();
3029  bool LVoid = LTy->isVoidType();
3030  bool RVoid = RTy->isVoidType();
3031  if (LVoid || RVoid) {
3032    //   ... then the [l2r] conversions are performed on the second and third
3033    //   operands ...
3034    DefaultFunctionArrayLvalueConversion(LHS);
3035    DefaultFunctionArrayLvalueConversion(RHS);
3036    LTy = LHS->getType();
3037    RTy = RHS->getType();
3038
3039    //   ... and one of the following shall hold:
3040    //   -- The second or the third operand (but not both) is a throw-
3041    //      expression; the result is of the type of the other and is an rvalue.
3042    bool LThrow = isa<CXXThrowExpr>(LHS);
3043    bool RThrow = isa<CXXThrowExpr>(RHS);
3044    if (LThrow && !RThrow)
3045      return RTy;
3046    if (RThrow && !LThrow)
3047      return LTy;
3048
3049    //   -- Both the second and third operands have type void; the result is of
3050    //      type void and is an rvalue.
3051    if (LVoid && RVoid)
3052      return Context.VoidTy;
3053
3054    // Neither holds, error.
3055    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
3056      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
3057      << LHS->getSourceRange() << RHS->getSourceRange();
3058    return QualType();
3059  }
3060
3061  // Neither is void.
3062
3063  // C++0x 5.16p3
3064  //   Otherwise, if the second and third operand have different types, and
3065  //   either has (cv) class type, and attempt is made to convert each of those
3066  //   operands to the other.
3067  if (!Context.hasSameType(LTy, RTy) &&
3068      (LTy->isRecordType() || RTy->isRecordType())) {
3069    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
3070    // These return true if a single direction is already ambiguous.
3071    QualType L2RType, R2LType;
3072    bool HaveL2R, HaveR2L;
3073    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
3074      return QualType();
3075    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
3076      return QualType();
3077
3078    //   If both can be converted, [...] the program is ill-formed.
3079    if (HaveL2R && HaveR2L) {
3080      Diag(QuestionLoc, diag::err_conditional_ambiguous)
3081        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
3082      return QualType();
3083    }
3084
3085    //   If exactly one conversion is possible, that conversion is applied to
3086    //   the chosen operand and the converted operands are used in place of the
3087    //   original operands for the remainder of this section.
3088    if (HaveL2R) {
3089      if (ConvertForConditional(*this, LHS, L2RType))
3090        return QualType();
3091      LTy = LHS->getType();
3092    } else if (HaveR2L) {
3093      if (ConvertForConditional(*this, RHS, R2LType))
3094        return QualType();
3095      RTy = RHS->getType();
3096    }
3097  }
3098
3099  // C++0x 5.16p4
3100  //   If the second and third operands are glvalues of the same value
3101  //   category and have the same type, the result is of that type and
3102  //   value category and it is a bit-field if the second or the third
3103  //   operand is a bit-field, or if both are bit-fields.
3104  // We only extend this to bitfields, not to the crazy other kinds of
3105  // l-values.
3106  bool Same = Context.hasSameType(LTy, RTy);
3107  if (Same &&
3108      LHS->isGLValue() &&
3109      LHS->getValueKind() == RHS->getValueKind() &&
3110      LHS->isOrdinaryOrBitFieldObject() &&
3111      RHS->isOrdinaryOrBitFieldObject()) {
3112    VK = LHS->getValueKind();
3113    if (LHS->getObjectKind() == OK_BitField ||
3114        RHS->getObjectKind() == OK_BitField)
3115      OK = OK_BitField;
3116    return LTy;
3117  }
3118
3119  // C++0x 5.16p5
3120  //   Otherwise, the result is an rvalue. If the second and third operands
3121  //   do not have the same type, and either has (cv) class type, ...
3122  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
3123    //   ... overload resolution is used to determine the conversions (if any)
3124    //   to be applied to the operands. If the overload resolution fails, the
3125    //   program is ill-formed.
3126    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
3127      return QualType();
3128  }
3129
3130  // C++0x 5.16p6
3131  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
3132  //   conversions are performed on the second and third operands.
3133  DefaultFunctionArrayLvalueConversion(LHS);
3134  DefaultFunctionArrayLvalueConversion(RHS);
3135  LTy = LHS->getType();
3136  RTy = RHS->getType();
3137
3138  //   After those conversions, one of the following shall hold:
3139  //   -- The second and third operands have the same type; the result
3140  //      is of that type. If the operands have class type, the result
3141  //      is a prvalue temporary of the result type, which is
3142  //      copy-initialized from either the second operand or the third
3143  //      operand depending on the value of the first operand.
3144  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
3145    if (LTy->isRecordType()) {
3146      // The operands have class type. Make a temporary copy.
3147      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
3148      ExprResult LHSCopy = PerformCopyInitialization(Entity,
3149                                                     SourceLocation(),
3150                                                     Owned(LHS));
3151      if (LHSCopy.isInvalid())
3152        return QualType();
3153
3154      ExprResult RHSCopy = PerformCopyInitialization(Entity,
3155                                                     SourceLocation(),
3156                                                     Owned(RHS));
3157      if (RHSCopy.isInvalid())
3158        return QualType();
3159
3160      LHS = LHSCopy.takeAs<Expr>();
3161      RHS = RHSCopy.takeAs<Expr>();
3162    }
3163
3164    return LTy;
3165  }
3166
3167  // Extension: conditional operator involving vector types.
3168  if (LTy->isVectorType() || RTy->isVectorType())
3169    return CheckVectorOperands(QuestionLoc, LHS, RHS);
3170
3171  //   -- The second and third operands have arithmetic or enumeration type;
3172  //      the usual arithmetic conversions are performed to bring them to a
3173  //      common type, and the result is of that type.
3174  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
3175    UsualArithmeticConversions(LHS, RHS);
3176    return LHS->getType();
3177  }
3178
3179  //   -- The second and third operands have pointer type, or one has pointer
3180  //      type and the other is a null pointer constant; pointer conversions
3181  //      and qualification conversions are performed to bring them to their
3182  //      composite pointer type. The result is of the composite pointer type.
3183  //   -- The second and third operands have pointer to member type, or one has
3184  //      pointer to member type and the other is a null pointer constant;
3185  //      pointer to member conversions and qualification conversions are
3186  //      performed to bring them to a common type, whose cv-qualification
3187  //      shall match the cv-qualification of either the second or the third
3188  //      operand. The result is of the common type.
3189  bool NonStandardCompositeType = false;
3190  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
3191                              isSFINAEContext()? 0 : &NonStandardCompositeType);
3192  if (!Composite.isNull()) {
3193    if (NonStandardCompositeType)
3194      Diag(QuestionLoc,
3195           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
3196        << LTy << RTy << Composite
3197        << LHS->getSourceRange() << RHS->getSourceRange();
3198
3199    return Composite;
3200  }
3201
3202  // Similarly, attempt to find composite type of two objective-c pointers.
3203  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
3204  if (!Composite.isNull())
3205    return Composite;
3206
3207  // Check if we are using a null with a non-pointer type.
3208  if (DiagnoseConditionalForNull(LHS, RHS, QuestionLoc))
3209    return QualType();
3210
3211  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3212    << LHS->getType() << RHS->getType()
3213    << LHS->getSourceRange() << RHS->getSourceRange();
3214  return QualType();
3215}
3216
3217/// \brief Find a merged pointer type and convert the two expressions to it.
3218///
3219/// This finds the composite pointer type (or member pointer type) for @p E1
3220/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
3221/// type and returns it.
3222/// It does not emit diagnostics.
3223///
3224/// \param Loc The location of the operator requiring these two expressions to
3225/// be converted to the composite pointer type.
3226///
3227/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
3228/// a non-standard (but still sane) composite type to which both expressions
3229/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
3230/// will be set true.
3231QualType Sema::FindCompositePointerType(SourceLocation Loc,
3232                                        Expr *&E1, Expr *&E2,
3233                                        bool *NonStandardCompositeType) {
3234  if (NonStandardCompositeType)
3235    *NonStandardCompositeType = false;
3236
3237  assert(getLangOptions().CPlusPlus && "This function assumes C++");
3238  QualType T1 = E1->getType(), T2 = E2->getType();
3239
3240  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
3241      !T2->isAnyPointerType() && !T2->isMemberPointerType())
3242   return QualType();
3243
3244  // C++0x 5.9p2
3245  //   Pointer conversions and qualification conversions are performed on
3246  //   pointer operands to bring them to their composite pointer type. If
3247  //   one operand is a null pointer constant, the composite pointer type is
3248  //   the type of the other operand.
3249  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3250    if (T2->isMemberPointerType())
3251      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
3252    else
3253      ImpCastExprToType(E1, T2, CK_NullToPointer);
3254    return T2;
3255  }
3256  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
3257    if (T1->isMemberPointerType())
3258      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
3259    else
3260      ImpCastExprToType(E2, T1, CK_NullToPointer);
3261    return T1;
3262  }
3263
3264  // Now both have to be pointers or member pointers.
3265  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
3266      (!T2->isPointerType() && !T2->isMemberPointerType()))
3267    return QualType();
3268
3269  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
3270  //   the other has type "pointer to cv2 T" and the composite pointer type is
3271  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
3272  //   Otherwise, the composite pointer type is a pointer type similar to the
3273  //   type of one of the operands, with a cv-qualification signature that is
3274  //   the union of the cv-qualification signatures of the operand types.
3275  // In practice, the first part here is redundant; it's subsumed by the second.
3276  // What we do here is, we build the two possible composite types, and try the
3277  // conversions in both directions. If only one works, or if the two composite
3278  // types are the same, we have succeeded.
3279  // FIXME: extended qualifiers?
3280  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
3281  QualifierVector QualifierUnion;
3282  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
3283      ContainingClassVector;
3284  ContainingClassVector MemberOfClass;
3285  QualType Composite1 = Context.getCanonicalType(T1),
3286           Composite2 = Context.getCanonicalType(T2);
3287  unsigned NeedConstBefore = 0;
3288  do {
3289    const PointerType *Ptr1, *Ptr2;
3290    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
3291        (Ptr2 = Composite2->getAs<PointerType>())) {
3292      Composite1 = Ptr1->getPointeeType();
3293      Composite2 = Ptr2->getPointeeType();
3294
3295      // If we're allowed to create a non-standard composite type, keep track
3296      // of where we need to fill in additional 'const' qualifiers.
3297      if (NonStandardCompositeType &&
3298          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3299        NeedConstBefore = QualifierUnion.size();
3300
3301      QualifierUnion.push_back(
3302                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3303      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
3304      continue;
3305    }
3306
3307    const MemberPointerType *MemPtr1, *MemPtr2;
3308    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
3309        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
3310      Composite1 = MemPtr1->getPointeeType();
3311      Composite2 = MemPtr2->getPointeeType();
3312
3313      // If we're allowed to create a non-standard composite type, keep track
3314      // of where we need to fill in additional 'const' qualifiers.
3315      if (NonStandardCompositeType &&
3316          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
3317        NeedConstBefore = QualifierUnion.size();
3318
3319      QualifierUnion.push_back(
3320                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
3321      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
3322                                             MemPtr2->getClass()));
3323      continue;
3324    }
3325
3326    // FIXME: block pointer types?
3327
3328    // Cannot unwrap any more types.
3329    break;
3330  } while (true);
3331
3332  if (NeedConstBefore && NonStandardCompositeType) {
3333    // Extension: Add 'const' to qualifiers that come before the first qualifier
3334    // mismatch, so that our (non-standard!) composite type meets the
3335    // requirements of C++ [conv.qual]p4 bullet 3.
3336    for (unsigned I = 0; I != NeedConstBefore; ++I) {
3337      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
3338        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
3339        *NonStandardCompositeType = true;
3340      }
3341    }
3342  }
3343
3344  // Rewrap the composites as pointers or member pointers with the union CVRs.
3345  ContainingClassVector::reverse_iterator MOC
3346    = MemberOfClass.rbegin();
3347  for (QualifierVector::reverse_iterator
3348         I = QualifierUnion.rbegin(),
3349         E = QualifierUnion.rend();
3350       I != E; (void)++I, ++MOC) {
3351    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
3352    if (MOC->first && MOC->second) {
3353      // Rebuild member pointer type
3354      Composite1 = Context.getMemberPointerType(
3355                                    Context.getQualifiedType(Composite1, Quals),
3356                                    MOC->first);
3357      Composite2 = Context.getMemberPointerType(
3358                                    Context.getQualifiedType(Composite2, Quals),
3359                                    MOC->second);
3360    } else {
3361      // Rebuild pointer type
3362      Composite1
3363        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
3364      Composite2
3365        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
3366    }
3367  }
3368
3369  // Try to convert to the first composite pointer type.
3370  InitializedEntity Entity1
3371    = InitializedEntity::InitializeTemporary(Composite1);
3372  InitializationKind Kind
3373    = InitializationKind::CreateCopy(Loc, SourceLocation());
3374  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
3375  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
3376
3377  if (E1ToC1 && E2ToC1) {
3378    // Conversion to Composite1 is viable.
3379    if (!Context.hasSameType(Composite1, Composite2)) {
3380      // Composite2 is a different type from Composite1. Check whether
3381      // Composite2 is also viable.
3382      InitializedEntity Entity2
3383        = InitializedEntity::InitializeTemporary(Composite2);
3384      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3385      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3386      if (E1ToC2 && E2ToC2) {
3387        // Both Composite1 and Composite2 are viable and are different;
3388        // this is an ambiguity.
3389        return QualType();
3390      }
3391    }
3392
3393    // Convert E1 to Composite1
3394    ExprResult E1Result
3395      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
3396    if (E1Result.isInvalid())
3397      return QualType();
3398    E1 = E1Result.takeAs<Expr>();
3399
3400    // Convert E2 to Composite1
3401    ExprResult E2Result
3402      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
3403    if (E2Result.isInvalid())
3404      return QualType();
3405    E2 = E2Result.takeAs<Expr>();
3406
3407    return Composite1;
3408  }
3409
3410  // Check whether Composite2 is viable.
3411  InitializedEntity Entity2
3412    = InitializedEntity::InitializeTemporary(Composite2);
3413  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
3414  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
3415  if (!E1ToC2 || !E2ToC2)
3416    return QualType();
3417
3418  // Convert E1 to Composite2
3419  ExprResult E1Result
3420    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
3421  if (E1Result.isInvalid())
3422    return QualType();
3423  E1 = E1Result.takeAs<Expr>();
3424
3425  // Convert E2 to Composite2
3426  ExprResult E2Result
3427    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
3428  if (E2Result.isInvalid())
3429    return QualType();
3430  E2 = E2Result.takeAs<Expr>();
3431
3432  return Composite2;
3433}
3434
3435ExprResult Sema::MaybeBindToTemporary(Expr *E) {
3436  if (!E)
3437    return ExprError();
3438
3439  if (!Context.getLangOptions().CPlusPlus)
3440    return Owned(E);
3441
3442  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
3443
3444  const RecordType *RT = E->getType()->getAs<RecordType>();
3445  if (!RT)
3446    return Owned(E);
3447
3448  // If the result is a glvalue, we shouldn't bind it.
3449  if (E->Classify(Context).isGLValue())
3450    return Owned(E);
3451
3452  // That should be enough to guarantee that this type is complete.
3453  // If it has a trivial destructor, we can avoid the extra copy.
3454  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3455  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
3456    return Owned(E);
3457
3458  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
3459  ExprTemporaries.push_back(Temp);
3460  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
3461    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
3462    CheckDestructorAccess(E->getExprLoc(), Destructor,
3463                          PDiag(diag::err_access_dtor_temp)
3464                            << E->getType());
3465  }
3466  // FIXME: Add the temporary to the temporaries vector.
3467  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
3468}
3469
3470Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
3471  assert(SubExpr && "sub expression can't be null!");
3472
3473  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3474  assert(ExprTemporaries.size() >= FirstTemporary);
3475  if (ExprTemporaries.size() == FirstTemporary)
3476    return SubExpr;
3477
3478  Expr *E = ExprWithCleanups::Create(Context, SubExpr,
3479                                     &ExprTemporaries[FirstTemporary],
3480                                     ExprTemporaries.size() - FirstTemporary);
3481  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3482                        ExprTemporaries.end());
3483
3484  return E;
3485}
3486
3487ExprResult
3488Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
3489  if (SubExpr.isInvalid())
3490    return ExprError();
3491
3492  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
3493}
3494
3495Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
3496  assert(SubStmt && "sub statement can't be null!");
3497
3498  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
3499  assert(ExprTemporaries.size() >= FirstTemporary);
3500  if (ExprTemporaries.size() == FirstTemporary)
3501    return SubStmt;
3502
3503  // FIXME: In order to attach the temporaries, wrap the statement into
3504  // a StmtExpr; currently this is only used for asm statements.
3505  // This is hacky, either create a new CXXStmtWithTemporaries statement or
3506  // a new AsmStmtWithTemporaries.
3507  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
3508                                                      SourceLocation(),
3509                                                      SourceLocation());
3510  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
3511                                   SourceLocation());
3512  return MaybeCreateExprWithCleanups(E);
3513}
3514
3515ExprResult
3516Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3517                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3518                                   bool &MayBePseudoDestructor) {
3519  // Since this might be a postfix expression, get rid of ParenListExprs.
3520  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3521  if (Result.isInvalid()) return ExprError();
3522  Base = Result.get();
3523
3524  QualType BaseType = Base->getType();
3525  MayBePseudoDestructor = false;
3526  if (BaseType->isDependentType()) {
3527    // If we have a pointer to a dependent type and are using the -> operator,
3528    // the object type is the type that the pointer points to. We might still
3529    // have enough information about that type to do something useful.
3530    if (OpKind == tok::arrow)
3531      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3532        BaseType = Ptr->getPointeeType();
3533
3534    ObjectType = ParsedType::make(BaseType);
3535    MayBePseudoDestructor = true;
3536    return Owned(Base);
3537  }
3538
3539  // C++ [over.match.oper]p8:
3540  //   [...] When operator->returns, the operator-> is applied  to the value
3541  //   returned, with the original second operand.
3542  if (OpKind == tok::arrow) {
3543    // The set of types we've considered so far.
3544    llvm::SmallPtrSet<CanQualType,8> CTypes;
3545    llvm::SmallVector<SourceLocation, 8> Locations;
3546    CTypes.insert(Context.getCanonicalType(BaseType));
3547
3548    while (BaseType->isRecordType()) {
3549      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3550      if (Result.isInvalid())
3551        return ExprError();
3552      Base = Result.get();
3553      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3554        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3555      BaseType = Base->getType();
3556      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3557      if (!CTypes.insert(CBaseType)) {
3558        Diag(OpLoc, diag::err_operator_arrow_circular);
3559        for (unsigned i = 0; i < Locations.size(); i++)
3560          Diag(Locations[i], diag::note_declared_at);
3561        return ExprError();
3562      }
3563    }
3564
3565    if (BaseType->isPointerType())
3566      BaseType = BaseType->getPointeeType();
3567  }
3568
3569  // We could end up with various non-record types here, such as extended
3570  // vector types or Objective-C interfaces. Just return early and let
3571  // ActOnMemberReferenceExpr do the work.
3572  if (!BaseType->isRecordType()) {
3573    // C++ [basic.lookup.classref]p2:
3574    //   [...] If the type of the object expression is of pointer to scalar
3575    //   type, the unqualified-id is looked up in the context of the complete
3576    //   postfix-expression.
3577    //
3578    // This also indicates that we should be parsing a
3579    // pseudo-destructor-name.
3580    ObjectType = ParsedType();
3581    MayBePseudoDestructor = true;
3582    return Owned(Base);
3583  }
3584
3585  // The object type must be complete (or dependent).
3586  if (!BaseType->isDependentType() &&
3587      RequireCompleteType(OpLoc, BaseType,
3588                          PDiag(diag::err_incomplete_member_access)))
3589    return ExprError();
3590
3591  // C++ [basic.lookup.classref]p2:
3592  //   If the id-expression in a class member access (5.2.5) is an
3593  //   unqualified-id, and the type of the object expression is of a class
3594  //   type C (or of pointer to a class type C), the unqualified-id is looked
3595  //   up in the scope of class C. [...]
3596  ObjectType = ParsedType::make(BaseType);
3597  return move(Base);
3598}
3599
3600ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3601                                                   Expr *MemExpr) {
3602  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3603  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3604    << isa<CXXPseudoDestructorExpr>(MemExpr)
3605    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3606
3607  return ActOnCallExpr(/*Scope*/ 0,
3608                       MemExpr,
3609                       /*LPLoc*/ ExpectedLParenLoc,
3610                       MultiExprArg(),
3611                       /*RPLoc*/ ExpectedLParenLoc);
3612}
3613
3614ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3615                                           SourceLocation OpLoc,
3616                                           tok::TokenKind OpKind,
3617                                           const CXXScopeSpec &SS,
3618                                           TypeSourceInfo *ScopeTypeInfo,
3619                                           SourceLocation CCLoc,
3620                                           SourceLocation TildeLoc,
3621                                         PseudoDestructorTypeStorage Destructed,
3622                                           bool HasTrailingLParen) {
3623  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3624
3625  // C++ [expr.pseudo]p2:
3626  //   The left-hand side of the dot operator shall be of scalar type. The
3627  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3628  //   This scalar type is the object type.
3629  QualType ObjectType = Base->getType();
3630  if (OpKind == tok::arrow) {
3631    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3632      ObjectType = Ptr->getPointeeType();
3633    } else if (!Base->isTypeDependent()) {
3634      // The user wrote "p->" when she probably meant "p."; fix it.
3635      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3636        << ObjectType << true
3637        << FixItHint::CreateReplacement(OpLoc, ".");
3638      if (isSFINAEContext())
3639        return ExprError();
3640
3641      OpKind = tok::period;
3642    }
3643  }
3644
3645  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3646    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3647      << ObjectType << Base->getSourceRange();
3648    return ExprError();
3649  }
3650
3651  // C++ [expr.pseudo]p2:
3652  //   [...] The cv-unqualified versions of the object type and of the type
3653  //   designated by the pseudo-destructor-name shall be the same type.
3654  if (DestructedTypeInfo) {
3655    QualType DestructedType = DestructedTypeInfo->getType();
3656    SourceLocation DestructedTypeStart
3657      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3658    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3659        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3660      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3661        << ObjectType << DestructedType << Base->getSourceRange()
3662        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3663
3664      // Recover by setting the destructed type to the object type.
3665      DestructedType = ObjectType;
3666      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3667                                                           DestructedTypeStart);
3668      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3669    }
3670  }
3671
3672  // C++ [expr.pseudo]p2:
3673  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3674  //   form
3675  //
3676  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3677  //
3678  //   shall designate the same scalar type.
3679  if (ScopeTypeInfo) {
3680    QualType ScopeType = ScopeTypeInfo->getType();
3681    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3682        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3683
3684      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3685           diag::err_pseudo_dtor_type_mismatch)
3686        << ObjectType << ScopeType << Base->getSourceRange()
3687        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3688
3689      ScopeType = QualType();
3690      ScopeTypeInfo = 0;
3691    }
3692  }
3693
3694  Expr *Result
3695    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3696                                            OpKind == tok::arrow, OpLoc,
3697                                            SS.getWithLocInContext(Context),
3698                                            ScopeTypeInfo,
3699                                            CCLoc,
3700                                            TildeLoc,
3701                                            Destructed);
3702
3703  if (HasTrailingLParen)
3704    return Owned(Result);
3705
3706  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3707}
3708
3709ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3710                                           SourceLocation OpLoc,
3711                                           tok::TokenKind OpKind,
3712                                           CXXScopeSpec &SS,
3713                                           UnqualifiedId &FirstTypeName,
3714                                           SourceLocation CCLoc,
3715                                           SourceLocation TildeLoc,
3716                                           UnqualifiedId &SecondTypeName,
3717                                           bool HasTrailingLParen) {
3718  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3719          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3720         "Invalid first type name in pseudo-destructor");
3721  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3722          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3723         "Invalid second type name in pseudo-destructor");
3724
3725  // C++ [expr.pseudo]p2:
3726  //   The left-hand side of the dot operator shall be of scalar type. The
3727  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3728  //   This scalar type is the object type.
3729  QualType ObjectType = Base->getType();
3730  if (OpKind == tok::arrow) {
3731    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3732      ObjectType = Ptr->getPointeeType();
3733    } else if (!ObjectType->isDependentType()) {
3734      // The user wrote "p->" when she probably meant "p."; fix it.
3735      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3736        << ObjectType << true
3737        << FixItHint::CreateReplacement(OpLoc, ".");
3738      if (isSFINAEContext())
3739        return ExprError();
3740
3741      OpKind = tok::period;
3742    }
3743  }
3744
3745  // Compute the object type that we should use for name lookup purposes. Only
3746  // record types and dependent types matter.
3747  ParsedType ObjectTypePtrForLookup;
3748  if (!SS.isSet()) {
3749    if (ObjectType->isRecordType())
3750      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
3751    else if (ObjectType->isDependentType())
3752      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3753  }
3754
3755  // Convert the name of the type being destructed (following the ~) into a
3756  // type (with source-location information).
3757  QualType DestructedType;
3758  TypeSourceInfo *DestructedTypeInfo = 0;
3759  PseudoDestructorTypeStorage Destructed;
3760  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3761    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3762                               SecondTypeName.StartLocation,
3763                               S, &SS, true, false, ObjectTypePtrForLookup);
3764    if (!T &&
3765        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3766         (!SS.isSet() && ObjectType->isDependentType()))) {
3767      // The name of the type being destroyed is a dependent name, and we
3768      // couldn't find anything useful in scope. Just store the identifier and
3769      // it's location, and we'll perform (qualified) name lookup again at
3770      // template instantiation time.
3771      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3772                                               SecondTypeName.StartLocation);
3773    } else if (!T) {
3774      Diag(SecondTypeName.StartLocation,
3775           diag::err_pseudo_dtor_destructor_non_type)
3776        << SecondTypeName.Identifier << ObjectType;
3777      if (isSFINAEContext())
3778        return ExprError();
3779
3780      // Recover by assuming we had the right type all along.
3781      DestructedType = ObjectType;
3782    } else
3783      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3784  } else {
3785    // Resolve the template-id to a type.
3786    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3787    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3788                                       TemplateId->getTemplateArgs(),
3789                                       TemplateId->NumArgs);
3790    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
3791                                       TemplateId->Template,
3792                                       TemplateId->TemplateNameLoc,
3793                                       TemplateId->LAngleLoc,
3794                                       TemplateArgsPtr,
3795                                       TemplateId->RAngleLoc);
3796    if (T.isInvalid() || !T.get()) {
3797      // Recover by assuming we had the right type all along.
3798      DestructedType = ObjectType;
3799    } else
3800      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3801  }
3802
3803  // If we've performed some kind of recovery, (re-)build the type source
3804  // information.
3805  if (!DestructedType.isNull()) {
3806    if (!DestructedTypeInfo)
3807      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3808                                                  SecondTypeName.StartLocation);
3809    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3810  }
3811
3812  // Convert the name of the scope type (the type prior to '::') into a type.
3813  TypeSourceInfo *ScopeTypeInfo = 0;
3814  QualType ScopeType;
3815  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3816      FirstTypeName.Identifier) {
3817    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3818      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3819                                 FirstTypeName.StartLocation,
3820                                 S, &SS, true, false, ObjectTypePtrForLookup);
3821      if (!T) {
3822        Diag(FirstTypeName.StartLocation,
3823             diag::err_pseudo_dtor_destructor_non_type)
3824          << FirstTypeName.Identifier << ObjectType;
3825
3826        if (isSFINAEContext())
3827          return ExprError();
3828
3829        // Just drop this type. It's unnecessary anyway.
3830        ScopeType = QualType();
3831      } else
3832        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3833    } else {
3834      // Resolve the template-id to a type.
3835      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3836      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3837                                         TemplateId->getTemplateArgs(),
3838                                         TemplateId->NumArgs);
3839      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
3840                                         TemplateId->Template,
3841                                         TemplateId->TemplateNameLoc,
3842                                         TemplateId->LAngleLoc,
3843                                         TemplateArgsPtr,
3844                                         TemplateId->RAngleLoc);
3845      if (T.isInvalid() || !T.get()) {
3846        // Recover by dropping this type.
3847        ScopeType = QualType();
3848      } else
3849        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3850    }
3851  }
3852
3853  if (!ScopeType.isNull() && !ScopeTypeInfo)
3854    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3855                                                  FirstTypeName.StartLocation);
3856
3857
3858  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3859                                   ScopeTypeInfo, CCLoc, TildeLoc,
3860                                   Destructed, HasTrailingLParen);
3861}
3862
3863ExprResult Sema::BuildCXXMemberCallExpr(Expr *Exp, NamedDecl *FoundDecl,
3864                                        CXXMethodDecl *Method) {
3865  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3866                                          FoundDecl, Method))
3867    return true;
3868
3869  MemberExpr *ME =
3870      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3871                               SourceLocation(), Method->getType(),
3872                               VK_RValue, OK_Ordinary);
3873  QualType ResultType = Method->getResultType();
3874  ExprValueKind VK = Expr::getValueKindForType(ResultType);
3875  ResultType = ResultType.getNonLValueExprType(Context);
3876
3877  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3878  CXXMemberCallExpr *CE =
3879    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
3880                                    Exp->getLocEnd());
3881  return CE;
3882}
3883
3884ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3885                                      SourceLocation RParen) {
3886  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3887                                             Operand->CanThrow(Context),
3888                                             KeyLoc, RParen));
3889}
3890
3891ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3892                                   Expr *Operand, SourceLocation RParen) {
3893  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3894}
3895
3896/// Perform the conversions required for an expression used in a
3897/// context that ignores the result.
3898void Sema::IgnoredValueConversions(Expr *&E) {
3899  // C99 6.3.2.1:
3900  //   [Except in specific positions,] an lvalue that does not have
3901  //   array type is converted to the value stored in the
3902  //   designated object (and is no longer an lvalue).
3903  if (E->isRValue()) return;
3904
3905  // We always want to do this on ObjC property references.
3906  if (E->getObjectKind() == OK_ObjCProperty) {
3907    ConvertPropertyForRValue(E);
3908    if (E->isRValue()) return;
3909  }
3910
3911  // Otherwise, this rule does not apply in C++, at least not for the moment.
3912  if (getLangOptions().CPlusPlus) return;
3913
3914  // GCC seems to also exclude expressions of incomplete enum type.
3915  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
3916    if (!T->getDecl()->isComplete()) {
3917      // FIXME: stupid workaround for a codegen bug!
3918      ImpCastExprToType(E, Context.VoidTy, CK_ToVoid);
3919      return;
3920    }
3921  }
3922
3923  DefaultFunctionArrayLvalueConversion(E);
3924  if (!E->getType()->isVoidType())
3925    RequireCompleteType(E->getExprLoc(), E->getType(),
3926                        diag::err_incomplete_type);
3927}
3928
3929ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3930  if (!FullExpr)
3931    return ExprError();
3932
3933  if (DiagnoseUnexpandedParameterPack(FullExpr))
3934    return ExprError();
3935
3936  // 13.4.1 ... An overloaded function name shall not be used without arguments
3937  //         in contexts other than those listed [i.e list of targets].
3938  //
3939  //  void foo(); void foo(int);
3940  //  template<class T> void fooT(); template<class T> void fooT(int);
3941
3942  //  Therefore these should error:
3943  //  foo;
3944  //  fooT<int>;
3945
3946  if (FullExpr->getType() == Context.OverloadTy) {
3947    if (!ResolveSingleFunctionTemplateSpecialization(FullExpr,
3948                                                     /* Complain */ false)) {
3949      OverloadExpr* OvlExpr = OverloadExpr::find(FullExpr).Expression;
3950      Diag(FullExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
3951        << OvlExpr->getName();
3952      NoteAllOverloadCandidates(OvlExpr);
3953      return ExprError();
3954    }
3955  }
3956
3957
3958  IgnoredValueConversions(FullExpr);
3959  CheckImplicitConversions(FullExpr);
3960
3961  return MaybeCreateExprWithCleanups(FullExpr);
3962}
3963
3964StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
3965  if (!FullStmt) return StmtError();
3966
3967  return MaybeCreateStmtWithCleanups(FullStmt);
3968}
3969