SemaExprCXX.cpp revision 958ba64dabe674660130d914abfd13ffeca4151d
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TypeLocBuilder.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/Initialization.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/TemplateDeduction.h"
35#include "llvm/ADT/APInt.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Support/ErrorHandling.h"
38using namespace clang;
39using namespace sema;
40
41/// \brief Handle the result of the special case name lookup for inheriting
42/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
43/// constructor names in member using declarations, even if 'X' is not the
44/// name of the corresponding type.
45ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
46                                              SourceLocation NameLoc,
47                                              IdentifierInfo &Name) {
48  NestedNameSpecifier *NNS = SS.getScopeRep();
49
50  // Convert the nested-name-specifier into a type.
51  QualType Type;
52  switch (NNS->getKind()) {
53  case NestedNameSpecifier::TypeSpec:
54  case NestedNameSpecifier::TypeSpecWithTemplate:
55    Type = QualType(NNS->getAsType(), 0);
56    break;
57
58  case NestedNameSpecifier::Identifier:
59    // Strip off the last layer of the nested-name-specifier and build a
60    // typename type for it.
61    assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
62    Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
63                                        NNS->getAsIdentifier());
64    break;
65
66  case NestedNameSpecifier::Global:
67  case NestedNameSpecifier::Namespace:
68  case NestedNameSpecifier::NamespaceAlias:
69    llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
70  }
71
72  // This reference to the type is located entirely at the location of the
73  // final identifier in the qualified-id.
74  return CreateParsedType(Type,
75                          Context.getTrivialTypeSourceInfo(Type, NameLoc));
76}
77
78ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
79                                   IdentifierInfo &II,
80                                   SourceLocation NameLoc,
81                                   Scope *S, CXXScopeSpec &SS,
82                                   ParsedType ObjectTypePtr,
83                                   bool EnteringContext) {
84  // Determine where to perform name lookup.
85
86  // FIXME: This area of the standard is very messy, and the current
87  // wording is rather unclear about which scopes we search for the
88  // destructor name; see core issues 399 and 555. Issue 399 in
89  // particular shows where the current description of destructor name
90  // lookup is completely out of line with existing practice, e.g.,
91  // this appears to be ill-formed:
92  //
93  //   namespace N {
94  //     template <typename T> struct S {
95  //       ~S();
96  //     };
97  //   }
98  //
99  //   void f(N::S<int>* s) {
100  //     s->N::S<int>::~S();
101  //   }
102  //
103  // See also PR6358 and PR6359.
104  // For this reason, we're currently only doing the C++03 version of this
105  // code; the C++0x version has to wait until we get a proper spec.
106  QualType SearchType;
107  DeclContext *LookupCtx = 0;
108  bool isDependent = false;
109  bool LookInScope = false;
110
111  // If we have an object type, it's because we are in a
112  // pseudo-destructor-expression or a member access expression, and
113  // we know what type we're looking for.
114  if (ObjectTypePtr)
115    SearchType = GetTypeFromParser(ObjectTypePtr);
116
117  if (SS.isSet()) {
118    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
119
120    bool AlreadySearched = false;
121    bool LookAtPrefix = true;
122    // C++ [basic.lookup.qual]p6:
123    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
124    //   the type-names are looked up as types in the scope designated by the
125    //   nested-name-specifier. In a qualified-id of the form:
126    //
127    //     ::[opt] nested-name-specifier  ~ class-name
128    //
129    //   where the nested-name-specifier designates a namespace scope, and in
130    //   a qualified-id of the form:
131    //
132    //     ::opt nested-name-specifier class-name ::  ~ class-name
133    //
134    //   the class-names are looked up as types in the scope designated by
135    //   the nested-name-specifier.
136    //
137    // Here, we check the first case (completely) and determine whether the
138    // code below is permitted to look at the prefix of the
139    // nested-name-specifier.
140    DeclContext *DC = computeDeclContext(SS, EnteringContext);
141    if (DC && DC->isFileContext()) {
142      AlreadySearched = true;
143      LookupCtx = DC;
144      isDependent = false;
145    } else if (DC && isa<CXXRecordDecl>(DC))
146      LookAtPrefix = false;
147
148    // The second case from the C++03 rules quoted further above.
149    NestedNameSpecifier *Prefix = 0;
150    if (AlreadySearched) {
151      // Nothing left to do.
152    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
153      CXXScopeSpec PrefixSS;
154      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
155      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
156      isDependent = isDependentScopeSpecifier(PrefixSS);
157    } else if (ObjectTypePtr) {
158      LookupCtx = computeDeclContext(SearchType);
159      isDependent = SearchType->isDependentType();
160    } else {
161      LookupCtx = computeDeclContext(SS, EnteringContext);
162      isDependent = LookupCtx && LookupCtx->isDependentContext();
163    }
164
165    LookInScope = false;
166  } else if (ObjectTypePtr) {
167    // C++ [basic.lookup.classref]p3:
168    //   If the unqualified-id is ~type-name, the type-name is looked up
169    //   in the context of the entire postfix-expression. If the type T
170    //   of the object expression is of a class type C, the type-name is
171    //   also looked up in the scope of class C. At least one of the
172    //   lookups shall find a name that refers to (possibly
173    //   cv-qualified) T.
174    LookupCtx = computeDeclContext(SearchType);
175    isDependent = SearchType->isDependentType();
176    assert((isDependent || !SearchType->isIncompleteType()) &&
177           "Caller should have completed object type");
178
179    LookInScope = true;
180  } else {
181    // Perform lookup into the current scope (only).
182    LookInScope = true;
183  }
184
185  TypeDecl *NonMatchingTypeDecl = 0;
186  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
187  for (unsigned Step = 0; Step != 2; ++Step) {
188    // Look for the name first in the computed lookup context (if we
189    // have one) and, if that fails to find a match, in the scope (if
190    // we're allowed to look there).
191    Found.clear();
192    if (Step == 0 && LookupCtx)
193      LookupQualifiedName(Found, LookupCtx);
194    else if (Step == 1 && LookInScope && S)
195      LookupName(Found, S);
196    else
197      continue;
198
199    // FIXME: Should we be suppressing ambiguities here?
200    if (Found.isAmbiguous())
201      return ParsedType();
202
203    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
204      QualType T = Context.getTypeDeclType(Type);
205
206      if (SearchType.isNull() || SearchType->isDependentType() ||
207          Context.hasSameUnqualifiedType(T, SearchType)) {
208        // We found our type!
209
210        return ParsedType::make(T);
211      }
212
213      if (!SearchType.isNull())
214        NonMatchingTypeDecl = Type;
215    }
216
217    // If the name that we found is a class template name, and it is
218    // the same name as the template name in the last part of the
219    // nested-name-specifier (if present) or the object type, then
220    // this is the destructor for that class.
221    // FIXME: This is a workaround until we get real drafting for core
222    // issue 399, for which there isn't even an obvious direction.
223    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
224      QualType MemberOfType;
225      if (SS.isSet()) {
226        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
227          // Figure out the type of the context, if it has one.
228          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
229            MemberOfType = Context.getTypeDeclType(Record);
230        }
231      }
232      if (MemberOfType.isNull())
233        MemberOfType = SearchType;
234
235      if (MemberOfType.isNull())
236        continue;
237
238      // We're referring into a class template specialization. If the
239      // class template we found is the same as the template being
240      // specialized, we found what we are looking for.
241      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
242        if (ClassTemplateSpecializationDecl *Spec
243              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
244          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
245                Template->getCanonicalDecl())
246            return ParsedType::make(MemberOfType);
247        }
248
249        continue;
250      }
251
252      // We're referring to an unresolved class template
253      // specialization. Determine whether we class template we found
254      // is the same as the template being specialized or, if we don't
255      // know which template is being specialized, that it at least
256      // has the same name.
257      if (const TemplateSpecializationType *SpecType
258            = MemberOfType->getAs<TemplateSpecializationType>()) {
259        TemplateName SpecName = SpecType->getTemplateName();
260
261        // The class template we found is the same template being
262        // specialized.
263        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
264          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
265            return ParsedType::make(MemberOfType);
266
267          continue;
268        }
269
270        // The class template we found has the same name as the
271        // (dependent) template name being specialized.
272        if (DependentTemplateName *DepTemplate
273                                    = SpecName.getAsDependentTemplateName()) {
274          if (DepTemplate->isIdentifier() &&
275              DepTemplate->getIdentifier() == Template->getIdentifier())
276            return ParsedType::make(MemberOfType);
277
278          continue;
279        }
280      }
281    }
282  }
283
284  if (isDependent) {
285    // We didn't find our type, but that's okay: it's dependent
286    // anyway.
287
288    // FIXME: What if we have no nested-name-specifier?
289    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
290                                   SS.getWithLocInContext(Context),
291                                   II, NameLoc);
292    return ParsedType::make(T);
293  }
294
295  if (NonMatchingTypeDecl) {
296    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
297    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
298      << T << SearchType;
299    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
300      << T;
301  } else if (ObjectTypePtr)
302    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
303      << &II;
304  else {
305    SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
306                                          diag::err_destructor_class_name);
307    if (S) {
308      const DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
309      if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
310        DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
311                                                 Class->getNameAsString());
312    }
313  }
314
315  return ParsedType();
316}
317
318ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
319    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
320      return ParsedType();
321    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
322           && "only get destructor types from declspecs");
323    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
324    QualType SearchType = GetTypeFromParser(ObjectType);
325    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
326      return ParsedType::make(T);
327    }
328
329    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
330      << T << SearchType;
331    return ParsedType();
332}
333
334/// \brief Build a C++ typeid expression with a type operand.
335ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
336                                SourceLocation TypeidLoc,
337                                TypeSourceInfo *Operand,
338                                SourceLocation RParenLoc) {
339  // C++ [expr.typeid]p4:
340  //   The top-level cv-qualifiers of the lvalue expression or the type-id
341  //   that is the operand of typeid are always ignored.
342  //   If the type of the type-id is a class type or a reference to a class
343  //   type, the class shall be completely-defined.
344  Qualifiers Quals;
345  QualType T
346    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
347                                      Quals);
348  if (T->getAs<RecordType>() &&
349      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
350    return ExprError();
351
352  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
353                                           Operand,
354                                           SourceRange(TypeidLoc, RParenLoc)));
355}
356
357/// \brief Build a C++ typeid expression with an expression operand.
358ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
359                                SourceLocation TypeidLoc,
360                                Expr *E,
361                                SourceLocation RParenLoc) {
362  if (E && !E->isTypeDependent()) {
363    if (E->getType()->isPlaceholderType()) {
364      ExprResult result = CheckPlaceholderExpr(E);
365      if (result.isInvalid()) return ExprError();
366      E = result.take();
367    }
368
369    QualType T = E->getType();
370    if (const RecordType *RecordT = T->getAs<RecordType>()) {
371      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
372      // C++ [expr.typeid]p3:
373      //   [...] If the type of the expression is a class type, the class
374      //   shall be completely-defined.
375      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
376        return ExprError();
377
378      // C++ [expr.typeid]p3:
379      //   When typeid is applied to an expression other than an glvalue of a
380      //   polymorphic class type [...] [the] expression is an unevaluated
381      //   operand. [...]
382      if (RecordD->isPolymorphic() && E->isGLValue()) {
383        // The subexpression is potentially evaluated; switch the context
384        // and recheck the subexpression.
385        ExprResult Result = TransformToPotentiallyEvaluated(E);
386        if (Result.isInvalid()) return ExprError();
387        E = Result.take();
388
389        // We require a vtable to query the type at run time.
390        MarkVTableUsed(TypeidLoc, RecordD);
391      }
392    }
393
394    // C++ [expr.typeid]p4:
395    //   [...] If the type of the type-id is a reference to a possibly
396    //   cv-qualified type, the result of the typeid expression refers to a
397    //   std::type_info object representing the cv-unqualified referenced
398    //   type.
399    Qualifiers Quals;
400    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
401    if (!Context.hasSameType(T, UnqualT)) {
402      T = UnqualT;
403      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
404    }
405  }
406
407  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
408                                           E,
409                                           SourceRange(TypeidLoc, RParenLoc)));
410}
411
412/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
413ExprResult
414Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
415                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
416  // Find the std::type_info type.
417  if (!getStdNamespace())
418    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
419
420  if (!CXXTypeInfoDecl) {
421    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
422    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
423    LookupQualifiedName(R, getStdNamespace());
424    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
425    // Microsoft's typeinfo doesn't have type_info in std but in the global
426    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
427    if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
428      LookupQualifiedName(R, Context.getTranslationUnitDecl());
429      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
430    }
431    if (!CXXTypeInfoDecl)
432      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
433  }
434
435  if (!getLangOpts().RTTI) {
436    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
437  }
438
439  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
440
441  if (isType) {
442    // The operand is a type; handle it as such.
443    TypeSourceInfo *TInfo = 0;
444    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
445                                   &TInfo);
446    if (T.isNull())
447      return ExprError();
448
449    if (!TInfo)
450      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
451
452    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
453  }
454
455  // The operand is an expression.
456  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
457}
458
459/// \brief Build a Microsoft __uuidof expression with a type operand.
460ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
461                                SourceLocation TypeidLoc,
462                                TypeSourceInfo *Operand,
463                                SourceLocation RParenLoc) {
464  if (!Operand->getType()->isDependentType()) {
465    if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
466      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
467  }
468
469  // FIXME: add __uuidof semantic analysis for type operand.
470  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
471                                           Operand,
472                                           SourceRange(TypeidLoc, RParenLoc)));
473}
474
475/// \brief Build a Microsoft __uuidof expression with an expression operand.
476ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
477                                SourceLocation TypeidLoc,
478                                Expr *E,
479                                SourceLocation RParenLoc) {
480  if (!E->getType()->isDependentType()) {
481    if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
482        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
483      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
484  }
485  // FIXME: add __uuidof semantic analysis for type operand.
486  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
487                                           E,
488                                           SourceRange(TypeidLoc, RParenLoc)));
489}
490
491/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
492ExprResult
493Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
494                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
495  // If MSVCGuidDecl has not been cached, do the lookup.
496  if (!MSVCGuidDecl) {
497    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
498    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
499    LookupQualifiedName(R, Context.getTranslationUnitDecl());
500    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
501    if (!MSVCGuidDecl)
502      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
503  }
504
505  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
506
507  if (isType) {
508    // The operand is a type; handle it as such.
509    TypeSourceInfo *TInfo = 0;
510    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
511                                   &TInfo);
512    if (T.isNull())
513      return ExprError();
514
515    if (!TInfo)
516      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
517
518    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
519  }
520
521  // The operand is an expression.
522  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
523}
524
525/// ActOnCXXBoolLiteral - Parse {true,false} literals.
526ExprResult
527Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
528  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
529         "Unknown C++ Boolean value!");
530  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
531                                                Context.BoolTy, OpLoc));
532}
533
534/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
535ExprResult
536Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
537  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
538}
539
540/// ActOnCXXThrow - Parse throw expressions.
541ExprResult
542Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
543  bool IsThrownVarInScope = false;
544  if (Ex) {
545    // C++0x [class.copymove]p31:
546    //   When certain criteria are met, an implementation is allowed to omit the
547    //   copy/move construction of a class object [...]
548    //
549    //     - in a throw-expression, when the operand is the name of a
550    //       non-volatile automatic object (other than a function or catch-
551    //       clause parameter) whose scope does not extend beyond the end of the
552    //       innermost enclosing try-block (if there is one), the copy/move
553    //       operation from the operand to the exception object (15.1) can be
554    //       omitted by constructing the automatic object directly into the
555    //       exception object
556    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
557      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
558        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
559          for( ; S; S = S->getParent()) {
560            if (S->isDeclScope(Var)) {
561              IsThrownVarInScope = true;
562              break;
563            }
564
565            if (S->getFlags() &
566                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
567                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
568                 Scope::TryScope))
569              break;
570          }
571        }
572      }
573  }
574
575  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
576}
577
578ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
579                               bool IsThrownVarInScope) {
580  // Don't report an error if 'throw' is used in system headers.
581  if (!getLangOpts().CXXExceptions &&
582      !getSourceManager().isInSystemHeader(OpLoc))
583    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
584
585  if (Ex && !Ex->isTypeDependent()) {
586    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
587    if (ExRes.isInvalid())
588      return ExprError();
589    Ex = ExRes.take();
590  }
591
592  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
593                                          IsThrownVarInScope));
594}
595
596/// CheckCXXThrowOperand - Validate the operand of a throw.
597ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
598                                      bool IsThrownVarInScope) {
599  // C++ [except.throw]p3:
600  //   A throw-expression initializes a temporary object, called the exception
601  //   object, the type of which is determined by removing any top-level
602  //   cv-qualifiers from the static type of the operand of throw and adjusting
603  //   the type from "array of T" or "function returning T" to "pointer to T"
604  //   or "pointer to function returning T", [...]
605  if (E->getType().hasQualifiers())
606    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
607                          E->getValueKind()).take();
608
609  ExprResult Res = DefaultFunctionArrayConversion(E);
610  if (Res.isInvalid())
611    return ExprError();
612  E = Res.take();
613
614  //   If the type of the exception would be an incomplete type or a pointer
615  //   to an incomplete type other than (cv) void the program is ill-formed.
616  QualType Ty = E->getType();
617  bool isPointer = false;
618  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
619    Ty = Ptr->getPointeeType();
620    isPointer = true;
621  }
622  if (!isPointer || !Ty->isVoidType()) {
623    if (RequireCompleteType(ThrowLoc, Ty,
624                            isPointer? diag::err_throw_incomplete_ptr
625                                     : diag::err_throw_incomplete,
626                            E->getSourceRange()))
627      return ExprError();
628
629    if (RequireNonAbstractType(ThrowLoc, E->getType(),
630                               diag::err_throw_abstract_type, E))
631      return ExprError();
632  }
633
634  // Initialize the exception result.  This implicitly weeds out
635  // abstract types or types with inaccessible copy constructors.
636
637  // C++0x [class.copymove]p31:
638  //   When certain criteria are met, an implementation is allowed to omit the
639  //   copy/move construction of a class object [...]
640  //
641  //     - in a throw-expression, when the operand is the name of a
642  //       non-volatile automatic object (other than a function or catch-clause
643  //       parameter) whose scope does not extend beyond the end of the
644  //       innermost enclosing try-block (if there is one), the copy/move
645  //       operation from the operand to the exception object (15.1) can be
646  //       omitted by constructing the automatic object directly into the
647  //       exception object
648  const VarDecl *NRVOVariable = 0;
649  if (IsThrownVarInScope)
650    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
651
652  InitializedEntity Entity =
653      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
654                                             /*NRVO=*/NRVOVariable != 0);
655  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
656                                        QualType(), E,
657                                        IsThrownVarInScope);
658  if (Res.isInvalid())
659    return ExprError();
660  E = Res.take();
661
662  // If the exception has class type, we need additional handling.
663  const RecordType *RecordTy = Ty->getAs<RecordType>();
664  if (!RecordTy)
665    return Owned(E);
666  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
667
668  // If we are throwing a polymorphic class type or pointer thereof,
669  // exception handling will make use of the vtable.
670  MarkVTableUsed(ThrowLoc, RD);
671
672  // If a pointer is thrown, the referenced object will not be destroyed.
673  if (isPointer)
674    return Owned(E);
675
676  // If the class has a destructor, we must be able to call it.
677  if (RD->hasIrrelevantDestructor())
678    return Owned(E);
679
680  CXXDestructorDecl *Destructor = LookupDestructor(RD);
681  if (!Destructor)
682    return Owned(E);
683
684  MarkFunctionReferenced(E->getExprLoc(), Destructor);
685  CheckDestructorAccess(E->getExprLoc(), Destructor,
686                        PDiag(diag::err_access_dtor_exception) << Ty);
687  if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
688    return ExprError();
689  return Owned(E);
690}
691
692QualType Sema::getCurrentThisType() {
693  DeclContext *DC = getFunctionLevelDeclContext();
694  QualType ThisTy = CXXThisTypeOverride;
695  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
696    if (method && method->isInstance())
697      ThisTy = method->getThisType(Context);
698  }
699
700  return ThisTy;
701}
702
703Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
704                                         Decl *ContextDecl,
705                                         unsigned CXXThisTypeQuals,
706                                         bool Enabled)
707  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
708{
709  if (!Enabled || !ContextDecl)
710    return;
711
712  CXXRecordDecl *Record = 0;
713  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
714    Record = Template->getTemplatedDecl();
715  else
716    Record = cast<CXXRecordDecl>(ContextDecl);
717
718  S.CXXThisTypeOverride
719    = S.Context.getPointerType(
720        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
721
722  this->Enabled = true;
723}
724
725
726Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
727  if (Enabled) {
728    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
729  }
730}
731
732static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
733                         QualType ThisTy, SourceLocation Loc) {
734  FieldDecl *Field
735    = FieldDecl::Create(Context, RD, Loc, Loc, 0, ThisTy,
736                        Context.getTrivialTypeSourceInfo(ThisTy, Loc),
737                        0, false, ICIS_NoInit);
738  Field->setImplicit(true);
739  Field->setAccess(AS_private);
740  RD->addDecl(Field);
741  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
742}
743
744void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
745  // We don't need to capture this in an unevaluated context.
746  if (isUnevaluatedContext() && !Explicit)
747    return;
748
749  // Otherwise, check that we can capture 'this'.
750  unsigned NumClosures = 0;
751  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
752    if (CapturingScopeInfo *CSI =
753            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
754      if (CSI->CXXThisCaptureIndex != 0) {
755        // 'this' is already being captured; there isn't anything more to do.
756        break;
757      }
758
759      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
760          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
761          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
762          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
763          Explicit) {
764        // This closure can capture 'this'; continue looking upwards.
765        NumClosures++;
766        Explicit = false;
767        continue;
768      }
769      // This context can't implicitly capture 'this'; fail out.
770      Diag(Loc, diag::err_this_capture) << Explicit;
771      return;
772    }
773    break;
774  }
775
776  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
777  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
778  // contexts.
779  for (unsigned idx = FunctionScopes.size() - 1;
780       NumClosures; --idx, --NumClosures) {
781    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
782    Expr *ThisExpr = 0;
783    QualType ThisTy = getCurrentThisType();
784    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
785      // For lambda expressions, build a field and an initializing expression.
786      ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
787    else if (CapturedRegionScopeInfo *RSI
788        = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
789      ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
790
791    bool isNested = NumClosures > 1;
792    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
793  }
794}
795
796ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
797  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
798  /// is a non-lvalue expression whose value is the address of the object for
799  /// which the function is called.
800
801  QualType ThisTy = getCurrentThisType();
802  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
803
804  CheckCXXThisCapture(Loc);
805  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
806}
807
808bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
809  // If we're outside the body of a member function, then we'll have a specified
810  // type for 'this'.
811  if (CXXThisTypeOverride.isNull())
812    return false;
813
814  // Determine whether we're looking into a class that's currently being
815  // defined.
816  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
817  return Class && Class->isBeingDefined();
818}
819
820ExprResult
821Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
822                                SourceLocation LParenLoc,
823                                MultiExprArg exprs,
824                                SourceLocation RParenLoc) {
825  if (!TypeRep)
826    return ExprError();
827
828  TypeSourceInfo *TInfo;
829  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
830  if (!TInfo)
831    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
832
833  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
834}
835
836/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
837/// Can be interpreted either as function-style casting ("int(x)")
838/// or class type construction ("ClassType(x,y,z)")
839/// or creation of a value-initialized type ("int()").
840ExprResult
841Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
842                                SourceLocation LParenLoc,
843                                MultiExprArg Exprs,
844                                SourceLocation RParenLoc) {
845  QualType Ty = TInfo->getType();
846  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
847
848  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
849    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
850                                                    LParenLoc,
851                                                    Exprs,
852                                                    RParenLoc));
853  }
854
855  bool ListInitialization = LParenLoc.isInvalid();
856  assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
857         && "List initialization must have initializer list as expression.");
858  SourceRange FullRange = SourceRange(TyBeginLoc,
859      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
860
861  // C++ [expr.type.conv]p1:
862  // If the expression list is a single expression, the type conversion
863  // expression is equivalent (in definedness, and if defined in meaning) to the
864  // corresponding cast expression.
865  if (Exprs.size() == 1 && !ListInitialization) {
866    Expr *Arg = Exprs[0];
867    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
868  }
869
870  QualType ElemTy = Ty;
871  if (Ty->isArrayType()) {
872    if (!ListInitialization)
873      return ExprError(Diag(TyBeginLoc,
874                            diag::err_value_init_for_array_type) << FullRange);
875    ElemTy = Context.getBaseElementType(Ty);
876  }
877
878  if (!Ty->isVoidType() &&
879      RequireCompleteType(TyBeginLoc, ElemTy,
880                          diag::err_invalid_incomplete_type_use, FullRange))
881    return ExprError();
882
883  if (RequireNonAbstractType(TyBeginLoc, Ty,
884                             diag::err_allocation_of_abstract_type))
885    return ExprError();
886
887  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
888  InitializationKind Kind =
889      Exprs.size() ? ListInitialization
890      ? InitializationKind::CreateDirectList(TyBeginLoc)
891      : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
892      : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
893  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
894  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
895
896  if (!Result.isInvalid() && ListInitialization &&
897      isa<InitListExpr>(Result.get())) {
898    // If the list-initialization doesn't involve a constructor call, we'll get
899    // the initializer-list (with corrected type) back, but that's not what we
900    // want, since it will be treated as an initializer list in further
901    // processing. Explicitly insert a cast here.
902    InitListExpr *List = cast<InitListExpr>(Result.take());
903    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
904                                    Expr::getValueKindForType(TInfo->getType()),
905                                                 TInfo, TyBeginLoc, CK_NoOp,
906                                                 List, /*Path=*/0, RParenLoc));
907  }
908
909  // FIXME: Improve AST representation?
910  return Result;
911}
912
913/// doesUsualArrayDeleteWantSize - Answers whether the usual
914/// operator delete[] for the given type has a size_t parameter.
915static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
916                                         QualType allocType) {
917  const RecordType *record =
918    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
919  if (!record) return false;
920
921  // Try to find an operator delete[] in class scope.
922
923  DeclarationName deleteName =
924    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
925  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
926  S.LookupQualifiedName(ops, record->getDecl());
927
928  // We're just doing this for information.
929  ops.suppressDiagnostics();
930
931  // Very likely: there's no operator delete[].
932  if (ops.empty()) return false;
933
934  // If it's ambiguous, it should be illegal to call operator delete[]
935  // on this thing, so it doesn't matter if we allocate extra space or not.
936  if (ops.isAmbiguous()) return false;
937
938  LookupResult::Filter filter = ops.makeFilter();
939  while (filter.hasNext()) {
940    NamedDecl *del = filter.next()->getUnderlyingDecl();
941
942    // C++0x [basic.stc.dynamic.deallocation]p2:
943    //   A template instance is never a usual deallocation function,
944    //   regardless of its signature.
945    if (isa<FunctionTemplateDecl>(del)) {
946      filter.erase();
947      continue;
948    }
949
950    // C++0x [basic.stc.dynamic.deallocation]p2:
951    //   If class T does not declare [an operator delete[] with one
952    //   parameter] but does declare a member deallocation function
953    //   named operator delete[] with exactly two parameters, the
954    //   second of which has type std::size_t, then this function
955    //   is a usual deallocation function.
956    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
957      filter.erase();
958      continue;
959    }
960  }
961  filter.done();
962
963  if (!ops.isSingleResult()) return false;
964
965  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
966  return (del->getNumParams() == 2);
967}
968
969/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
970///
971/// E.g.:
972/// @code new (memory) int[size][4] @endcode
973/// or
974/// @code ::new Foo(23, "hello") @endcode
975///
976/// \param StartLoc The first location of the expression.
977/// \param UseGlobal True if 'new' was prefixed with '::'.
978/// \param PlacementLParen Opening paren of the placement arguments.
979/// \param PlacementArgs Placement new arguments.
980/// \param PlacementRParen Closing paren of the placement arguments.
981/// \param TypeIdParens If the type is in parens, the source range.
982/// \param D The type to be allocated, as well as array dimensions.
983/// \param Initializer The initializing expression or initializer-list, or null
984///   if there is none.
985ExprResult
986Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
987                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
988                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
989                  Declarator &D, Expr *Initializer) {
990  bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
991
992  Expr *ArraySize = 0;
993  // If the specified type is an array, unwrap it and save the expression.
994  if (D.getNumTypeObjects() > 0 &&
995      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
996     DeclaratorChunk &Chunk = D.getTypeObject(0);
997    if (TypeContainsAuto)
998      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
999        << D.getSourceRange());
1000    if (Chunk.Arr.hasStatic)
1001      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1002        << D.getSourceRange());
1003    if (!Chunk.Arr.NumElts)
1004      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1005        << D.getSourceRange());
1006
1007    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1008    D.DropFirstTypeObject();
1009  }
1010
1011  // Every dimension shall be of constant size.
1012  if (ArraySize) {
1013    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1014      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1015        break;
1016
1017      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1018      if (Expr *NumElts = (Expr *)Array.NumElts) {
1019        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1020          Array.NumElts
1021            = VerifyIntegerConstantExpression(NumElts, 0,
1022                                              diag::err_new_array_nonconst)
1023                .take();
1024          if (!Array.NumElts)
1025            return ExprError();
1026        }
1027      }
1028    }
1029  }
1030
1031  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
1032  QualType AllocType = TInfo->getType();
1033  if (D.isInvalidType())
1034    return ExprError();
1035
1036  SourceRange DirectInitRange;
1037  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1038    DirectInitRange = List->getSourceRange();
1039
1040  return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1041                     PlacementLParen,
1042                     PlacementArgs,
1043                     PlacementRParen,
1044                     TypeIdParens,
1045                     AllocType,
1046                     TInfo,
1047                     ArraySize,
1048                     DirectInitRange,
1049                     Initializer,
1050                     TypeContainsAuto);
1051}
1052
1053static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1054                                       Expr *Init) {
1055  if (!Init)
1056    return true;
1057  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1058    return PLE->getNumExprs() == 0;
1059  if (isa<ImplicitValueInitExpr>(Init))
1060    return true;
1061  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1062    return !CCE->isListInitialization() &&
1063           CCE->getConstructor()->isDefaultConstructor();
1064  else if (Style == CXXNewExpr::ListInit) {
1065    assert(isa<InitListExpr>(Init) &&
1066           "Shouldn't create list CXXConstructExprs for arrays.");
1067    return true;
1068  }
1069  return false;
1070}
1071
1072ExprResult
1073Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1074                  SourceLocation PlacementLParen,
1075                  MultiExprArg PlacementArgs,
1076                  SourceLocation PlacementRParen,
1077                  SourceRange TypeIdParens,
1078                  QualType AllocType,
1079                  TypeSourceInfo *AllocTypeInfo,
1080                  Expr *ArraySize,
1081                  SourceRange DirectInitRange,
1082                  Expr *Initializer,
1083                  bool TypeMayContainAuto) {
1084  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1085  SourceLocation StartLoc = Range.getBegin();
1086
1087  CXXNewExpr::InitializationStyle initStyle;
1088  if (DirectInitRange.isValid()) {
1089    assert(Initializer && "Have parens but no initializer.");
1090    initStyle = CXXNewExpr::CallInit;
1091  } else if (Initializer && isa<InitListExpr>(Initializer))
1092    initStyle = CXXNewExpr::ListInit;
1093  else {
1094    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1095            isa<CXXConstructExpr>(Initializer)) &&
1096           "Initializer expression that cannot have been implicitly created.");
1097    initStyle = CXXNewExpr::NoInit;
1098  }
1099
1100  Expr **Inits = &Initializer;
1101  unsigned NumInits = Initializer ? 1 : 0;
1102  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1103    assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1104    Inits = List->getExprs();
1105    NumInits = List->getNumExprs();
1106  }
1107
1108  // Determine whether we've already built the initializer.
1109  bool HaveCompleteInit = false;
1110  if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1111      !isa<CXXTemporaryObjectExpr>(Initializer))
1112    HaveCompleteInit = true;
1113  else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1114    HaveCompleteInit = true;
1115
1116  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1117  if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1118    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1119      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1120                       << AllocType << TypeRange);
1121    if (initStyle == CXXNewExpr::ListInit)
1122      return ExprError(Diag(Inits[0]->getLocStart(),
1123                            diag::err_auto_new_requires_parens)
1124                       << AllocType << TypeRange);
1125    if (NumInits > 1) {
1126      Expr *FirstBad = Inits[1];
1127      return ExprError(Diag(FirstBad->getLocStart(),
1128                            diag::err_auto_new_ctor_multiple_expressions)
1129                       << AllocType << TypeRange);
1130    }
1131    Expr *Deduce = Inits[0];
1132    QualType DeducedType;
1133    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1134      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1135                       << AllocType << Deduce->getType()
1136                       << TypeRange << Deduce->getSourceRange());
1137    if (DeducedType.isNull())
1138      return ExprError();
1139    AllocType = DeducedType;
1140  }
1141
1142  // Per C++0x [expr.new]p5, the type being constructed may be a
1143  // typedef of an array type.
1144  if (!ArraySize) {
1145    if (const ConstantArrayType *Array
1146                              = Context.getAsConstantArrayType(AllocType)) {
1147      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1148                                         Context.getSizeType(),
1149                                         TypeRange.getEnd());
1150      AllocType = Array->getElementType();
1151    }
1152  }
1153
1154  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1155    return ExprError();
1156
1157  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1158    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1159         diag::warn_dangling_std_initializer_list)
1160        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1161  }
1162
1163  // In ARC, infer 'retaining' for the allocated
1164  if (getLangOpts().ObjCAutoRefCount &&
1165      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1166      AllocType->isObjCLifetimeType()) {
1167    AllocType = Context.getLifetimeQualifiedType(AllocType,
1168                                    AllocType->getObjCARCImplicitLifetime());
1169  }
1170
1171  QualType ResultType = Context.getPointerType(AllocType);
1172
1173  if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1174    ExprResult result = CheckPlaceholderExpr(ArraySize);
1175    if (result.isInvalid()) return ExprError();
1176    ArraySize = result.take();
1177  }
1178  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1179  //   integral or enumeration type with a non-negative value."
1180  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1181  //   enumeration type, or a class type for which a single non-explicit
1182  //   conversion function to integral or unscoped enumeration type exists.
1183  if (ArraySize && !ArraySize->isTypeDependent()) {
1184    class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1185      Expr *ArraySize;
1186
1187    public:
1188      SizeConvertDiagnoser(Expr *ArraySize)
1189        : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1190
1191      virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1192                                               QualType T) {
1193        return S.Diag(Loc, diag::err_array_size_not_integral)
1194                 << S.getLangOpts().CPlusPlus11 << T;
1195      }
1196
1197      virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1198                                                   QualType T) {
1199        return S.Diag(Loc, diag::err_array_size_incomplete_type)
1200                 << T << ArraySize->getSourceRange();
1201      }
1202
1203      virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1204                                                     SourceLocation Loc,
1205                                                     QualType T,
1206                                                     QualType ConvTy) {
1207        return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1208      }
1209
1210      virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1211                                                 CXXConversionDecl *Conv,
1212                                                 QualType ConvTy) {
1213        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1214                 << ConvTy->isEnumeralType() << ConvTy;
1215      }
1216
1217      virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1218                                                  QualType T) {
1219        return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1220      }
1221
1222      virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1223                                              QualType ConvTy) {
1224        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1225                 << ConvTy->isEnumeralType() << ConvTy;
1226      }
1227
1228      virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1229                                                   QualType T,
1230                                                   QualType ConvTy) {
1231        return S.Diag(Loc,
1232                      S.getLangOpts().CPlusPlus11
1233                        ? diag::warn_cxx98_compat_array_size_conversion
1234                        : diag::ext_array_size_conversion)
1235                 << T << ConvTy->isEnumeralType() << ConvTy;
1236      }
1237    } SizeDiagnoser(ArraySize);
1238
1239    ExprResult ConvertedSize
1240      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1241                                           /*AllowScopedEnumerations*/ false);
1242    if (ConvertedSize.isInvalid())
1243      return ExprError();
1244
1245    ArraySize = ConvertedSize.take();
1246    QualType SizeType = ArraySize->getType();
1247    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1248      return ExprError();
1249
1250    // C++98 [expr.new]p7:
1251    //   The expression in a direct-new-declarator shall have integral type
1252    //   with a non-negative value.
1253    //
1254    // Let's see if this is a constant < 0. If so, we reject it out of
1255    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1256    // array type.
1257    //
1258    // Note: such a construct has well-defined semantics in C++11: it throws
1259    // std::bad_array_new_length.
1260    if (!ArraySize->isValueDependent()) {
1261      llvm::APSInt Value;
1262      // We've already performed any required implicit conversion to integer or
1263      // unscoped enumeration type.
1264      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1265        if (Value < llvm::APSInt(
1266                        llvm::APInt::getNullValue(Value.getBitWidth()),
1267                                 Value.isUnsigned())) {
1268          if (getLangOpts().CPlusPlus11)
1269            Diag(ArraySize->getLocStart(),
1270                 diag::warn_typecheck_negative_array_new_size)
1271              << ArraySize->getSourceRange();
1272          else
1273            return ExprError(Diag(ArraySize->getLocStart(),
1274                                  diag::err_typecheck_negative_array_size)
1275                             << ArraySize->getSourceRange());
1276        } else if (!AllocType->isDependentType()) {
1277          unsigned ActiveSizeBits =
1278            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1279          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1280            if (getLangOpts().CPlusPlus11)
1281              Diag(ArraySize->getLocStart(),
1282                   diag::warn_array_new_too_large)
1283                << Value.toString(10)
1284                << ArraySize->getSourceRange();
1285            else
1286              return ExprError(Diag(ArraySize->getLocStart(),
1287                                    diag::err_array_too_large)
1288                               << Value.toString(10)
1289                               << ArraySize->getSourceRange());
1290          }
1291        }
1292      } else if (TypeIdParens.isValid()) {
1293        // Can't have dynamic array size when the type-id is in parentheses.
1294        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1295          << ArraySize->getSourceRange()
1296          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1297          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1298
1299        TypeIdParens = SourceRange();
1300      }
1301    }
1302
1303    // Note that we do *not* convert the argument in any way.  It can
1304    // be signed, larger than size_t, whatever.
1305  }
1306
1307  FunctionDecl *OperatorNew = 0;
1308  FunctionDecl *OperatorDelete = 0;
1309  Expr **PlaceArgs = PlacementArgs.data();
1310  unsigned NumPlaceArgs = PlacementArgs.size();
1311
1312  if (!AllocType->isDependentType() &&
1313      !Expr::hasAnyTypeDependentArguments(
1314        llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1315      FindAllocationFunctions(StartLoc,
1316                              SourceRange(PlacementLParen, PlacementRParen),
1317                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1318                              NumPlaceArgs, OperatorNew, OperatorDelete))
1319    return ExprError();
1320
1321  // If this is an array allocation, compute whether the usual array
1322  // deallocation function for the type has a size_t parameter.
1323  bool UsualArrayDeleteWantsSize = false;
1324  if (ArraySize && !AllocType->isDependentType())
1325    UsualArrayDeleteWantsSize
1326      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1327
1328  SmallVector<Expr *, 8> AllPlaceArgs;
1329  if (OperatorNew) {
1330    // Add default arguments, if any.
1331    const FunctionProtoType *Proto =
1332      OperatorNew->getType()->getAs<FunctionProtoType>();
1333    VariadicCallType CallType =
1334      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1335
1336    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1337                               Proto, 1, PlaceArgs, NumPlaceArgs,
1338                               AllPlaceArgs, CallType))
1339      return ExprError();
1340
1341    NumPlaceArgs = AllPlaceArgs.size();
1342    if (NumPlaceArgs > 0)
1343      PlaceArgs = &AllPlaceArgs[0];
1344
1345    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1346                          PlaceArgs, NumPlaceArgs);
1347
1348    // FIXME: Missing call to CheckFunctionCall or equivalent
1349  }
1350
1351  // Warn if the type is over-aligned and is being allocated by global operator
1352  // new.
1353  if (NumPlaceArgs == 0 && OperatorNew &&
1354      (OperatorNew->isImplicit() ||
1355       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1356    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1357      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1358      if (Align > SuitableAlign)
1359        Diag(StartLoc, diag::warn_overaligned_type)
1360            << AllocType
1361            << unsigned(Align / Context.getCharWidth())
1362            << unsigned(SuitableAlign / Context.getCharWidth());
1363    }
1364  }
1365
1366  QualType InitType = AllocType;
1367  // Array 'new' can't have any initializers except empty parentheses.
1368  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1369  // dialect distinction.
1370  if (ResultType->isArrayType() || ArraySize) {
1371    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1372      SourceRange InitRange(Inits[0]->getLocStart(),
1373                            Inits[NumInits - 1]->getLocEnd());
1374      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1375      return ExprError();
1376    }
1377    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1378      // We do the initialization typechecking against the array type
1379      // corresponding to the number of initializers + 1 (to also check
1380      // default-initialization).
1381      unsigned NumElements = ILE->getNumInits() + 1;
1382      InitType = Context.getConstantArrayType(AllocType,
1383          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1384                                              ArrayType::Normal, 0);
1385    }
1386  }
1387
1388  // If we can perform the initialization, and we've not already done so,
1389  // do it now.
1390  if (!AllocType->isDependentType() &&
1391      !Expr::hasAnyTypeDependentArguments(
1392        llvm::makeArrayRef(Inits, NumInits)) &&
1393      !HaveCompleteInit) {
1394    // C++11 [expr.new]p15:
1395    //   A new-expression that creates an object of type T initializes that
1396    //   object as follows:
1397    InitializationKind Kind
1398    //     - If the new-initializer is omitted, the object is default-
1399    //       initialized (8.5); if no initialization is performed,
1400    //       the object has indeterminate value
1401      = initStyle == CXXNewExpr::NoInit
1402          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1403    //     - Otherwise, the new-initializer is interpreted according to the
1404    //       initialization rules of 8.5 for direct-initialization.
1405          : initStyle == CXXNewExpr::ListInit
1406              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1407              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1408                                                 DirectInitRange.getBegin(),
1409                                                 DirectInitRange.getEnd());
1410
1411    InitializedEntity Entity
1412      = InitializedEntity::InitializeNew(StartLoc, InitType);
1413    InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1414    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1415                                          MultiExprArg(Inits, NumInits));
1416    if (FullInit.isInvalid())
1417      return ExprError();
1418
1419    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1420    // we don't want the initialized object to be destructed.
1421    if (CXXBindTemporaryExpr *Binder =
1422            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1423      FullInit = Owned(Binder->getSubExpr());
1424
1425    Initializer = FullInit.take();
1426  }
1427
1428  // Mark the new and delete operators as referenced.
1429  if (OperatorNew) {
1430    if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1431      return ExprError();
1432    MarkFunctionReferenced(StartLoc, OperatorNew);
1433  }
1434  if (OperatorDelete) {
1435    if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1436      return ExprError();
1437    MarkFunctionReferenced(StartLoc, OperatorDelete);
1438  }
1439
1440  // C++0x [expr.new]p17:
1441  //   If the new expression creates an array of objects of class type,
1442  //   access and ambiguity control are done for the destructor.
1443  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1444  if (ArraySize && !BaseAllocType->isDependentType()) {
1445    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1446      if (CXXDestructorDecl *dtor = LookupDestructor(
1447              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1448        MarkFunctionReferenced(StartLoc, dtor);
1449        CheckDestructorAccess(StartLoc, dtor,
1450                              PDiag(diag::err_access_dtor)
1451                                << BaseAllocType);
1452        if (DiagnoseUseOfDecl(dtor, StartLoc))
1453          return ExprError();
1454      }
1455    }
1456  }
1457
1458  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1459                                        OperatorDelete,
1460                                        UsualArrayDeleteWantsSize,
1461                                   llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1462                                        TypeIdParens,
1463                                        ArraySize, initStyle, Initializer,
1464                                        ResultType, AllocTypeInfo,
1465                                        Range, DirectInitRange));
1466}
1467
1468/// \brief Checks that a type is suitable as the allocated type
1469/// in a new-expression.
1470bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1471                              SourceRange R) {
1472  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1473  //   abstract class type or array thereof.
1474  if (AllocType->isFunctionType())
1475    return Diag(Loc, diag::err_bad_new_type)
1476      << AllocType << 0 << R;
1477  else if (AllocType->isReferenceType())
1478    return Diag(Loc, diag::err_bad_new_type)
1479      << AllocType << 1 << R;
1480  else if (!AllocType->isDependentType() &&
1481           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1482    return true;
1483  else if (RequireNonAbstractType(Loc, AllocType,
1484                                  diag::err_allocation_of_abstract_type))
1485    return true;
1486  else if (AllocType->isVariablyModifiedType())
1487    return Diag(Loc, diag::err_variably_modified_new_type)
1488             << AllocType;
1489  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1490    return Diag(Loc, diag::err_address_space_qualified_new)
1491      << AllocType.getUnqualifiedType() << AddressSpace;
1492  else if (getLangOpts().ObjCAutoRefCount) {
1493    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1494      QualType BaseAllocType = Context.getBaseElementType(AT);
1495      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1496          BaseAllocType->isObjCLifetimeType())
1497        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1498          << BaseAllocType;
1499    }
1500  }
1501
1502  return false;
1503}
1504
1505/// \brief Determine whether the given function is a non-placement
1506/// deallocation function.
1507static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1508  if (FD->isInvalidDecl())
1509    return false;
1510
1511  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1512    return Method->isUsualDeallocationFunction();
1513
1514  return ((FD->getOverloadedOperator() == OO_Delete ||
1515           FD->getOverloadedOperator() == OO_Array_Delete) &&
1516          FD->getNumParams() == 1);
1517}
1518
1519/// FindAllocationFunctions - Finds the overloads of operator new and delete
1520/// that are appropriate for the allocation.
1521bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1522                                   bool UseGlobal, QualType AllocType,
1523                                   bool IsArray, Expr **PlaceArgs,
1524                                   unsigned NumPlaceArgs,
1525                                   FunctionDecl *&OperatorNew,
1526                                   FunctionDecl *&OperatorDelete) {
1527  // --- Choosing an allocation function ---
1528  // C++ 5.3.4p8 - 14 & 18
1529  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1530  //   in the scope of the allocated class.
1531  // 2) If an array size is given, look for operator new[], else look for
1532  //   operator new.
1533  // 3) The first argument is always size_t. Append the arguments from the
1534  //   placement form.
1535
1536  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1537  // We don't care about the actual value of this argument.
1538  // FIXME: Should the Sema create the expression and embed it in the syntax
1539  // tree? Or should the consumer just recalculate the value?
1540  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1541                      Context.getTargetInfo().getPointerWidth(0)),
1542                      Context.getSizeType(),
1543                      SourceLocation());
1544  AllocArgs[0] = &Size;
1545  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1546
1547  // C++ [expr.new]p8:
1548  //   If the allocated type is a non-array type, the allocation
1549  //   function's name is operator new and the deallocation function's
1550  //   name is operator delete. If the allocated type is an array
1551  //   type, the allocation function's name is operator new[] and the
1552  //   deallocation function's name is operator delete[].
1553  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1554                                        IsArray ? OO_Array_New : OO_New);
1555  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1556                                        IsArray ? OO_Array_Delete : OO_Delete);
1557
1558  QualType AllocElemType = Context.getBaseElementType(AllocType);
1559
1560  if (AllocElemType->isRecordType() && !UseGlobal) {
1561    CXXRecordDecl *Record
1562      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1563    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1564                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1565                          OperatorNew))
1566      return true;
1567  }
1568  if (!OperatorNew) {
1569    // Didn't find a member overload. Look for a global one.
1570    DeclareGlobalNewDelete();
1571    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1572    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1573                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1574                          OperatorNew))
1575      return true;
1576  }
1577
1578  // We don't need an operator delete if we're running under
1579  // -fno-exceptions.
1580  if (!getLangOpts().Exceptions) {
1581    OperatorDelete = 0;
1582    return false;
1583  }
1584
1585  // FindAllocationOverload can change the passed in arguments, so we need to
1586  // copy them back.
1587  if (NumPlaceArgs > 0)
1588    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1589
1590  // C++ [expr.new]p19:
1591  //
1592  //   If the new-expression begins with a unary :: operator, the
1593  //   deallocation function's name is looked up in the global
1594  //   scope. Otherwise, if the allocated type is a class type T or an
1595  //   array thereof, the deallocation function's name is looked up in
1596  //   the scope of T. If this lookup fails to find the name, or if
1597  //   the allocated type is not a class type or array thereof, the
1598  //   deallocation function's name is looked up in the global scope.
1599  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1600  if (AllocElemType->isRecordType() && !UseGlobal) {
1601    CXXRecordDecl *RD
1602      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1603    LookupQualifiedName(FoundDelete, RD);
1604  }
1605  if (FoundDelete.isAmbiguous())
1606    return true; // FIXME: clean up expressions?
1607
1608  if (FoundDelete.empty()) {
1609    DeclareGlobalNewDelete();
1610    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1611  }
1612
1613  FoundDelete.suppressDiagnostics();
1614
1615  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1616
1617  // Whether we're looking for a placement operator delete is dictated
1618  // by whether we selected a placement operator new, not by whether
1619  // we had explicit placement arguments.  This matters for things like
1620  //   struct A { void *operator new(size_t, int = 0); ... };
1621  //   A *a = new A()
1622  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1623
1624  if (isPlacementNew) {
1625    // C++ [expr.new]p20:
1626    //   A declaration of a placement deallocation function matches the
1627    //   declaration of a placement allocation function if it has the
1628    //   same number of parameters and, after parameter transformations
1629    //   (8.3.5), all parameter types except the first are
1630    //   identical. [...]
1631    //
1632    // To perform this comparison, we compute the function type that
1633    // the deallocation function should have, and use that type both
1634    // for template argument deduction and for comparison purposes.
1635    //
1636    // FIXME: this comparison should ignore CC and the like.
1637    QualType ExpectedFunctionType;
1638    {
1639      const FunctionProtoType *Proto
1640        = OperatorNew->getType()->getAs<FunctionProtoType>();
1641
1642      SmallVector<QualType, 4> ArgTypes;
1643      ArgTypes.push_back(Context.VoidPtrTy);
1644      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1645        ArgTypes.push_back(Proto->getArgType(I));
1646
1647      FunctionProtoType::ExtProtoInfo EPI;
1648      EPI.Variadic = Proto->isVariadic();
1649
1650      ExpectedFunctionType
1651        = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1652    }
1653
1654    for (LookupResult::iterator D = FoundDelete.begin(),
1655                             DEnd = FoundDelete.end();
1656         D != DEnd; ++D) {
1657      FunctionDecl *Fn = 0;
1658      if (FunctionTemplateDecl *FnTmpl
1659            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1660        // Perform template argument deduction to try to match the
1661        // expected function type.
1662        TemplateDeductionInfo Info(StartLoc);
1663        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1664          continue;
1665      } else
1666        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1667
1668      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1669        Matches.push_back(std::make_pair(D.getPair(), Fn));
1670    }
1671  } else {
1672    // C++ [expr.new]p20:
1673    //   [...] Any non-placement deallocation function matches a
1674    //   non-placement allocation function. [...]
1675    for (LookupResult::iterator D = FoundDelete.begin(),
1676                             DEnd = FoundDelete.end();
1677         D != DEnd; ++D) {
1678      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1679        if (isNonPlacementDeallocationFunction(Fn))
1680          Matches.push_back(std::make_pair(D.getPair(), Fn));
1681    }
1682  }
1683
1684  // C++ [expr.new]p20:
1685  //   [...] If the lookup finds a single matching deallocation
1686  //   function, that function will be called; otherwise, no
1687  //   deallocation function will be called.
1688  if (Matches.size() == 1) {
1689    OperatorDelete = Matches[0].second;
1690
1691    // C++0x [expr.new]p20:
1692    //   If the lookup finds the two-parameter form of a usual
1693    //   deallocation function (3.7.4.2) and that function, considered
1694    //   as a placement deallocation function, would have been
1695    //   selected as a match for the allocation function, the program
1696    //   is ill-formed.
1697    if (NumPlaceArgs && getLangOpts().CPlusPlus11 &&
1698        isNonPlacementDeallocationFunction(OperatorDelete)) {
1699      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1700        << SourceRange(PlaceArgs[0]->getLocStart(),
1701                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1702      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1703        << DeleteName;
1704    } else {
1705      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1706                            Matches[0].first);
1707    }
1708  }
1709
1710  return false;
1711}
1712
1713/// FindAllocationOverload - Find an fitting overload for the allocation
1714/// function in the specified scope.
1715bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1716                                  DeclarationName Name, Expr** Args,
1717                                  unsigned NumArgs, DeclContext *Ctx,
1718                                  bool AllowMissing, FunctionDecl *&Operator,
1719                                  bool Diagnose) {
1720  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1721  LookupQualifiedName(R, Ctx);
1722  if (R.empty()) {
1723    if (AllowMissing || !Diagnose)
1724      return false;
1725    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1726      << Name << Range;
1727  }
1728
1729  if (R.isAmbiguous())
1730    return true;
1731
1732  R.suppressDiagnostics();
1733
1734  OverloadCandidateSet Candidates(StartLoc);
1735  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1736       Alloc != AllocEnd; ++Alloc) {
1737    // Even member operator new/delete are implicitly treated as
1738    // static, so don't use AddMemberCandidate.
1739    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1740
1741    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1742      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1743                                   /*ExplicitTemplateArgs=*/0,
1744                                   llvm::makeArrayRef(Args, NumArgs),
1745                                   Candidates,
1746                                   /*SuppressUserConversions=*/false);
1747      continue;
1748    }
1749
1750    FunctionDecl *Fn = cast<FunctionDecl>(D);
1751    AddOverloadCandidate(Fn, Alloc.getPair(),
1752                         llvm::makeArrayRef(Args, NumArgs), Candidates,
1753                         /*SuppressUserConversions=*/false);
1754  }
1755
1756  // Do the resolution.
1757  OverloadCandidateSet::iterator Best;
1758  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1759  case OR_Success: {
1760    // Got one!
1761    FunctionDecl *FnDecl = Best->Function;
1762    MarkFunctionReferenced(StartLoc, FnDecl);
1763    // The first argument is size_t, and the first parameter must be size_t,
1764    // too. This is checked on declaration and can be assumed. (It can't be
1765    // asserted on, though, since invalid decls are left in there.)
1766    // Watch out for variadic allocator function.
1767    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1768    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1769      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1770                                                       FnDecl->getParamDecl(i));
1771
1772      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1773        return true;
1774
1775      ExprResult Result
1776        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1777      if (Result.isInvalid())
1778        return true;
1779
1780      Args[i] = Result.takeAs<Expr>();
1781    }
1782
1783    Operator = FnDecl;
1784
1785    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1786                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1787      return true;
1788
1789    return false;
1790  }
1791
1792  case OR_No_Viable_Function:
1793    if (Diagnose) {
1794      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1795        << Name << Range;
1796      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1797                                llvm::makeArrayRef(Args, NumArgs));
1798    }
1799    return true;
1800
1801  case OR_Ambiguous:
1802    if (Diagnose) {
1803      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1804        << Name << Range;
1805      Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1806                                llvm::makeArrayRef(Args, NumArgs));
1807    }
1808    return true;
1809
1810  case OR_Deleted: {
1811    if (Diagnose) {
1812      Diag(StartLoc, diag::err_ovl_deleted_call)
1813        << Best->Function->isDeleted()
1814        << Name
1815        << getDeletedOrUnavailableSuffix(Best->Function)
1816        << Range;
1817      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1818                                llvm::makeArrayRef(Args, NumArgs));
1819    }
1820    return true;
1821  }
1822  }
1823  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1824}
1825
1826
1827/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1828/// delete. These are:
1829/// @code
1830///   // C++03:
1831///   void* operator new(std::size_t) throw(std::bad_alloc);
1832///   void* operator new[](std::size_t) throw(std::bad_alloc);
1833///   void operator delete(void *) throw();
1834///   void operator delete[](void *) throw();
1835///   // C++0x:
1836///   void* operator new(std::size_t);
1837///   void* operator new[](std::size_t);
1838///   void operator delete(void *);
1839///   void operator delete[](void *);
1840/// @endcode
1841/// C++0x operator delete is implicitly noexcept.
1842/// Note that the placement and nothrow forms of new are *not* implicitly
1843/// declared. Their use requires including \<new\>.
1844void Sema::DeclareGlobalNewDelete() {
1845  if (GlobalNewDeleteDeclared)
1846    return;
1847
1848  // C++ [basic.std.dynamic]p2:
1849  //   [...] The following allocation and deallocation functions (18.4) are
1850  //   implicitly declared in global scope in each translation unit of a
1851  //   program
1852  //
1853  //     C++03:
1854  //     void* operator new(std::size_t) throw(std::bad_alloc);
1855  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1856  //     void  operator delete(void*) throw();
1857  //     void  operator delete[](void*) throw();
1858  //     C++0x:
1859  //     void* operator new(std::size_t);
1860  //     void* operator new[](std::size_t);
1861  //     void  operator delete(void*);
1862  //     void  operator delete[](void*);
1863  //
1864  //   These implicit declarations introduce only the function names operator
1865  //   new, operator new[], operator delete, operator delete[].
1866  //
1867  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1868  // "std" or "bad_alloc" as necessary to form the exception specification.
1869  // However, we do not make these implicit declarations visible to name
1870  // lookup.
1871  // Note that the C++0x versions of operator delete are deallocation functions,
1872  // and thus are implicitly noexcept.
1873  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1874    // The "std::bad_alloc" class has not yet been declared, so build it
1875    // implicitly.
1876    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1877                                        getOrCreateStdNamespace(),
1878                                        SourceLocation(), SourceLocation(),
1879                                      &PP.getIdentifierTable().get("bad_alloc"),
1880                                        0);
1881    getStdBadAlloc()->setImplicit(true);
1882  }
1883
1884  GlobalNewDeleteDeclared = true;
1885
1886  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1887  QualType SizeT = Context.getSizeType();
1888  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1889
1890  DeclareGlobalAllocationFunction(
1891      Context.DeclarationNames.getCXXOperatorName(OO_New),
1892      VoidPtr, SizeT, AssumeSaneOperatorNew);
1893  DeclareGlobalAllocationFunction(
1894      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1895      VoidPtr, SizeT, AssumeSaneOperatorNew);
1896  DeclareGlobalAllocationFunction(
1897      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1898      Context.VoidTy, VoidPtr);
1899  DeclareGlobalAllocationFunction(
1900      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1901      Context.VoidTy, VoidPtr);
1902}
1903
1904/// DeclareGlobalAllocationFunction - Declares a single implicit global
1905/// allocation function if it doesn't already exist.
1906void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1907                                           QualType Return, QualType Argument,
1908                                           bool AddMallocAttr) {
1909  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1910
1911  // Check if this function is already declared.
1912  {
1913    DeclContext::lookup_result R = GlobalCtx->lookup(Name);
1914    for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
1915         Alloc != AllocEnd; ++Alloc) {
1916      // Only look at non-template functions, as it is the predefined,
1917      // non-templated allocation function we are trying to declare here.
1918      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1919        QualType InitialParamType =
1920          Context.getCanonicalType(
1921            Func->getParamDecl(0)->getType().getUnqualifiedType());
1922        // FIXME: Do we need to check for default arguments here?
1923        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1924          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1925            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1926          return;
1927        }
1928      }
1929    }
1930  }
1931
1932  QualType BadAllocType;
1933  bool HasBadAllocExceptionSpec
1934    = (Name.getCXXOverloadedOperator() == OO_New ||
1935       Name.getCXXOverloadedOperator() == OO_Array_New);
1936  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
1937    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1938    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1939  }
1940
1941  FunctionProtoType::ExtProtoInfo EPI;
1942  if (HasBadAllocExceptionSpec) {
1943    if (!getLangOpts().CPlusPlus11) {
1944      EPI.ExceptionSpecType = EST_Dynamic;
1945      EPI.NumExceptions = 1;
1946      EPI.Exceptions = &BadAllocType;
1947    }
1948  } else {
1949    EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
1950                                EST_BasicNoexcept : EST_DynamicNone;
1951  }
1952
1953  QualType FnType = Context.getFunctionType(Return, Argument, EPI);
1954  FunctionDecl *Alloc =
1955    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1956                         SourceLocation(), Name,
1957                         FnType, /*TInfo=*/0, SC_None, false, true);
1958  Alloc->setImplicit();
1959
1960  if (AddMallocAttr)
1961    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1962
1963  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1964                                           SourceLocation(), 0,
1965                                           Argument, /*TInfo=*/0,
1966                                           SC_None, 0);
1967  Alloc->setParams(Param);
1968
1969  // FIXME: Also add this declaration to the IdentifierResolver, but
1970  // make sure it is at the end of the chain to coincide with the
1971  // global scope.
1972  Context.getTranslationUnitDecl()->addDecl(Alloc);
1973}
1974
1975bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1976                                    DeclarationName Name,
1977                                    FunctionDecl* &Operator, bool Diagnose) {
1978  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1979  // Try to find operator delete/operator delete[] in class scope.
1980  LookupQualifiedName(Found, RD);
1981
1982  if (Found.isAmbiguous())
1983    return true;
1984
1985  Found.suppressDiagnostics();
1986
1987  SmallVector<DeclAccessPair,4> Matches;
1988  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1989       F != FEnd; ++F) {
1990    NamedDecl *ND = (*F)->getUnderlyingDecl();
1991
1992    // Ignore template operator delete members from the check for a usual
1993    // deallocation function.
1994    if (isa<FunctionTemplateDecl>(ND))
1995      continue;
1996
1997    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1998      Matches.push_back(F.getPair());
1999  }
2000
2001  // There's exactly one suitable operator;  pick it.
2002  if (Matches.size() == 1) {
2003    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
2004
2005    if (Operator->isDeleted()) {
2006      if (Diagnose) {
2007        Diag(StartLoc, diag::err_deleted_function_use);
2008        NoteDeletedFunction(Operator);
2009      }
2010      return true;
2011    }
2012
2013    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2014                              Matches[0], Diagnose) == AR_inaccessible)
2015      return true;
2016
2017    return false;
2018
2019  // We found multiple suitable operators;  complain about the ambiguity.
2020  } else if (!Matches.empty()) {
2021    if (Diagnose) {
2022      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2023        << Name << RD;
2024
2025      for (SmallVectorImpl<DeclAccessPair>::iterator
2026             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2027        Diag((*F)->getUnderlyingDecl()->getLocation(),
2028             diag::note_member_declared_here) << Name;
2029    }
2030    return true;
2031  }
2032
2033  // We did find operator delete/operator delete[] declarations, but
2034  // none of them were suitable.
2035  if (!Found.empty()) {
2036    if (Diagnose) {
2037      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2038        << Name << RD;
2039
2040      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2041           F != FEnd; ++F)
2042        Diag((*F)->getUnderlyingDecl()->getLocation(),
2043             diag::note_member_declared_here) << Name;
2044    }
2045    return true;
2046  }
2047
2048  // Look for a global declaration.
2049  DeclareGlobalNewDelete();
2050  DeclContext *TUDecl = Context.getTranslationUnitDecl();
2051
2052  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2053  Expr* DeallocArgs[1];
2054  DeallocArgs[0] = &Null;
2055  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2056                             DeallocArgs, 1, TUDecl, !Diagnose,
2057                             Operator, Diagnose))
2058    return true;
2059
2060  assert(Operator && "Did not find a deallocation function!");
2061  return false;
2062}
2063
2064/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2065/// @code ::delete ptr; @endcode
2066/// or
2067/// @code delete [] ptr; @endcode
2068ExprResult
2069Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2070                     bool ArrayForm, Expr *ExE) {
2071  // C++ [expr.delete]p1:
2072  //   The operand shall have a pointer type, or a class type having a single
2073  //   conversion function to a pointer type. The result has type void.
2074  //
2075  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2076
2077  ExprResult Ex = Owned(ExE);
2078  FunctionDecl *OperatorDelete = 0;
2079  bool ArrayFormAsWritten = ArrayForm;
2080  bool UsualArrayDeleteWantsSize = false;
2081
2082  if (!Ex.get()->isTypeDependent()) {
2083    // Perform lvalue-to-rvalue cast, if needed.
2084    Ex = DefaultLvalueConversion(Ex.take());
2085    if (Ex.isInvalid())
2086      return ExprError();
2087
2088    QualType Type = Ex.get()->getType();
2089
2090    if (const RecordType *Record = Type->getAs<RecordType>()) {
2091      if (RequireCompleteType(StartLoc, Type,
2092                              diag::err_delete_incomplete_class_type))
2093        return ExprError();
2094
2095      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2096
2097      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2098      std::pair<CXXRecordDecl::conversion_iterator,
2099                CXXRecordDecl::conversion_iterator>
2100        Conversions = RD->getVisibleConversionFunctions();
2101      for (CXXRecordDecl::conversion_iterator
2102             I = Conversions.first, E = Conversions.second; I != E; ++I) {
2103        NamedDecl *D = I.getDecl();
2104        if (isa<UsingShadowDecl>(D))
2105          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2106
2107        // Skip over templated conversion functions; they aren't considered.
2108        if (isa<FunctionTemplateDecl>(D))
2109          continue;
2110
2111        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2112
2113        QualType ConvType = Conv->getConversionType().getNonReferenceType();
2114        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2115          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2116            ObjectPtrConversions.push_back(Conv);
2117      }
2118      if (ObjectPtrConversions.size() == 1) {
2119        // We have a single conversion to a pointer-to-object type. Perform
2120        // that conversion.
2121        // TODO: don't redo the conversion calculation.
2122        ExprResult Res =
2123          PerformImplicitConversion(Ex.get(),
2124                            ObjectPtrConversions.front()->getConversionType(),
2125                                    AA_Converting);
2126        if (Res.isUsable()) {
2127          Ex = Res;
2128          Type = Ex.get()->getType();
2129        }
2130      }
2131      else if (ObjectPtrConversions.size() > 1) {
2132        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2133              << Type << Ex.get()->getSourceRange();
2134        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2135          NoteOverloadCandidate(ObjectPtrConversions[i]);
2136        return ExprError();
2137      }
2138    }
2139
2140    if (!Type->isPointerType())
2141      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2142        << Type << Ex.get()->getSourceRange());
2143
2144    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2145    QualType PointeeElem = Context.getBaseElementType(Pointee);
2146
2147    if (unsigned AddressSpace = Pointee.getAddressSpace())
2148      return Diag(Ex.get()->getLocStart(),
2149                  diag::err_address_space_qualified_delete)
2150               << Pointee.getUnqualifiedType() << AddressSpace;
2151
2152    CXXRecordDecl *PointeeRD = 0;
2153    if (Pointee->isVoidType() && !isSFINAEContext()) {
2154      // The C++ standard bans deleting a pointer to a non-object type, which
2155      // effectively bans deletion of "void*". However, most compilers support
2156      // this, so we treat it as a warning unless we're in a SFINAE context.
2157      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2158        << Type << Ex.get()->getSourceRange();
2159    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2160      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2161        << Type << Ex.get()->getSourceRange());
2162    } else if (!Pointee->isDependentType()) {
2163      if (!RequireCompleteType(StartLoc, Pointee,
2164                               diag::warn_delete_incomplete, Ex.get())) {
2165        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2166          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2167      }
2168    }
2169
2170    // C++ [expr.delete]p2:
2171    //   [Note: a pointer to a const type can be the operand of a
2172    //   delete-expression; it is not necessary to cast away the constness
2173    //   (5.2.11) of the pointer expression before it is used as the operand
2174    //   of the delete-expression. ]
2175
2176    if (Pointee->isArrayType() && !ArrayForm) {
2177      Diag(StartLoc, diag::warn_delete_array_type)
2178          << Type << Ex.get()->getSourceRange()
2179          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2180      ArrayForm = true;
2181    }
2182
2183    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2184                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2185
2186    if (PointeeRD) {
2187      if (!UseGlobal &&
2188          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2189                                   OperatorDelete))
2190        return ExprError();
2191
2192      // If we're allocating an array of records, check whether the
2193      // usual operator delete[] has a size_t parameter.
2194      if (ArrayForm) {
2195        // If the user specifically asked to use the global allocator,
2196        // we'll need to do the lookup into the class.
2197        if (UseGlobal)
2198          UsualArrayDeleteWantsSize =
2199            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2200
2201        // Otherwise, the usual operator delete[] should be the
2202        // function we just found.
2203        else if (isa<CXXMethodDecl>(OperatorDelete))
2204          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2205      }
2206
2207      if (!PointeeRD->hasIrrelevantDestructor())
2208        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2209          MarkFunctionReferenced(StartLoc,
2210                                    const_cast<CXXDestructorDecl*>(Dtor));
2211          if (DiagnoseUseOfDecl(Dtor, StartLoc))
2212            return ExprError();
2213        }
2214
2215      // C++ [expr.delete]p3:
2216      //   In the first alternative (delete object), if the static type of the
2217      //   object to be deleted is different from its dynamic type, the static
2218      //   type shall be a base class of the dynamic type of the object to be
2219      //   deleted and the static type shall have a virtual destructor or the
2220      //   behavior is undefined.
2221      //
2222      // Note: a final class cannot be derived from, no issue there
2223      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2224        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2225        if (dtor && !dtor->isVirtual()) {
2226          if (PointeeRD->isAbstract()) {
2227            // If the class is abstract, we warn by default, because we're
2228            // sure the code has undefined behavior.
2229            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2230                << PointeeElem;
2231          } else if (!ArrayForm) {
2232            // Otherwise, if this is not an array delete, it's a bit suspect,
2233            // but not necessarily wrong.
2234            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2235          }
2236        }
2237      }
2238
2239    }
2240
2241    if (!OperatorDelete) {
2242      // Look for a global declaration.
2243      DeclareGlobalNewDelete();
2244      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2245      Expr *Arg = Ex.get();
2246      if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2247        Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2248                                       CK_BitCast, Arg, 0, VK_RValue);
2249      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2250                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2251                                 OperatorDelete))
2252        return ExprError();
2253    }
2254
2255    MarkFunctionReferenced(StartLoc, OperatorDelete);
2256
2257    // Check access and ambiguity of operator delete and destructor.
2258    if (PointeeRD) {
2259      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2260          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2261                      PDiag(diag::err_access_dtor) << PointeeElem);
2262      }
2263    }
2264
2265  }
2266
2267  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2268                                           ArrayFormAsWritten,
2269                                           UsualArrayDeleteWantsSize,
2270                                           OperatorDelete, Ex.take(), StartLoc));
2271}
2272
2273/// \brief Check the use of the given variable as a C++ condition in an if,
2274/// while, do-while, or switch statement.
2275ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2276                                        SourceLocation StmtLoc,
2277                                        bool ConvertToBoolean) {
2278  if (ConditionVar->isInvalidDecl())
2279    return ExprError();
2280
2281  QualType T = ConditionVar->getType();
2282
2283  // C++ [stmt.select]p2:
2284  //   The declarator shall not specify a function or an array.
2285  if (T->isFunctionType())
2286    return ExprError(Diag(ConditionVar->getLocation(),
2287                          diag::err_invalid_use_of_function_type)
2288                       << ConditionVar->getSourceRange());
2289  else if (T->isArrayType())
2290    return ExprError(Diag(ConditionVar->getLocation(),
2291                          diag::err_invalid_use_of_array_type)
2292                     << ConditionVar->getSourceRange());
2293
2294  ExprResult Condition =
2295    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2296                              SourceLocation(),
2297                              ConditionVar,
2298                              /*enclosing*/ false,
2299                              ConditionVar->getLocation(),
2300                              ConditionVar->getType().getNonReferenceType(),
2301                              VK_LValue));
2302
2303  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2304
2305  if (ConvertToBoolean) {
2306    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2307    if (Condition.isInvalid())
2308      return ExprError();
2309  }
2310
2311  return Condition;
2312}
2313
2314/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2315ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2316  // C++ 6.4p4:
2317  // The value of a condition that is an initialized declaration in a statement
2318  // other than a switch statement is the value of the declared variable
2319  // implicitly converted to type bool. If that conversion is ill-formed, the
2320  // program is ill-formed.
2321  // The value of a condition that is an expression is the value of the
2322  // expression, implicitly converted to bool.
2323  //
2324  return PerformContextuallyConvertToBool(CondExpr);
2325}
2326
2327/// Helper function to determine whether this is the (deprecated) C++
2328/// conversion from a string literal to a pointer to non-const char or
2329/// non-const wchar_t (for narrow and wide string literals,
2330/// respectively).
2331bool
2332Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2333  // Look inside the implicit cast, if it exists.
2334  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2335    From = Cast->getSubExpr();
2336
2337  // A string literal (2.13.4) that is not a wide string literal can
2338  // be converted to an rvalue of type "pointer to char"; a wide
2339  // string literal can be converted to an rvalue of type "pointer
2340  // to wchar_t" (C++ 4.2p2).
2341  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2342    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2343      if (const BuiltinType *ToPointeeType
2344          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2345        // This conversion is considered only when there is an
2346        // explicit appropriate pointer target type (C++ 4.2p2).
2347        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2348          switch (StrLit->getKind()) {
2349            case StringLiteral::UTF8:
2350            case StringLiteral::UTF16:
2351            case StringLiteral::UTF32:
2352              // We don't allow UTF literals to be implicitly converted
2353              break;
2354            case StringLiteral::Ascii:
2355              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2356                      ToPointeeType->getKind() == BuiltinType::Char_S);
2357            case StringLiteral::Wide:
2358              return ToPointeeType->isWideCharType();
2359          }
2360        }
2361      }
2362
2363  return false;
2364}
2365
2366static ExprResult BuildCXXCastArgument(Sema &S,
2367                                       SourceLocation CastLoc,
2368                                       QualType Ty,
2369                                       CastKind Kind,
2370                                       CXXMethodDecl *Method,
2371                                       DeclAccessPair FoundDecl,
2372                                       bool HadMultipleCandidates,
2373                                       Expr *From) {
2374  switch (Kind) {
2375  default: llvm_unreachable("Unhandled cast kind!");
2376  case CK_ConstructorConversion: {
2377    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2378    SmallVector<Expr*, 8> ConstructorArgs;
2379
2380    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2381      return ExprError();
2382
2383    S.CheckConstructorAccess(CastLoc, Constructor,
2384                             InitializedEntity::InitializeTemporary(Ty),
2385                             Constructor->getAccess());
2386
2387    ExprResult Result
2388      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2389                                ConstructorArgs, HadMultipleCandidates,
2390                                /*ListInit*/ false, /*ZeroInit*/ false,
2391                                CXXConstructExpr::CK_Complete, SourceRange());
2392    if (Result.isInvalid())
2393      return ExprError();
2394
2395    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2396  }
2397
2398  case CK_UserDefinedConversion: {
2399    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2400
2401    // Create an implicit call expr that calls it.
2402    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2403    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2404                                                 HadMultipleCandidates);
2405    if (Result.isInvalid())
2406      return ExprError();
2407    // Record usage of conversion in an implicit cast.
2408    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2409                                              Result.get()->getType(),
2410                                              CK_UserDefinedConversion,
2411                                              Result.get(), 0,
2412                                              Result.get()->getValueKind()));
2413
2414    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2415
2416    return S.MaybeBindToTemporary(Result.get());
2417  }
2418  }
2419}
2420
2421/// PerformImplicitConversion - Perform an implicit conversion of the
2422/// expression From to the type ToType using the pre-computed implicit
2423/// conversion sequence ICS. Returns the converted
2424/// expression. Action is the kind of conversion we're performing,
2425/// used in the error message.
2426ExprResult
2427Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2428                                const ImplicitConversionSequence &ICS,
2429                                AssignmentAction Action,
2430                                CheckedConversionKind CCK) {
2431  switch (ICS.getKind()) {
2432  case ImplicitConversionSequence::StandardConversion: {
2433    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2434                                               Action, CCK);
2435    if (Res.isInvalid())
2436      return ExprError();
2437    From = Res.take();
2438    break;
2439  }
2440
2441  case ImplicitConversionSequence::UserDefinedConversion: {
2442
2443      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2444      CastKind CastKind;
2445      QualType BeforeToType;
2446      assert(FD && "FIXME: aggregate initialization from init list");
2447      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2448        CastKind = CK_UserDefinedConversion;
2449
2450        // If the user-defined conversion is specified by a conversion function,
2451        // the initial standard conversion sequence converts the source type to
2452        // the implicit object parameter of the conversion function.
2453        BeforeToType = Context.getTagDeclType(Conv->getParent());
2454      } else {
2455        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2456        CastKind = CK_ConstructorConversion;
2457        // Do no conversion if dealing with ... for the first conversion.
2458        if (!ICS.UserDefined.EllipsisConversion) {
2459          // If the user-defined conversion is specified by a constructor, the
2460          // initial standard conversion sequence converts the source type to the
2461          // type required by the argument of the constructor
2462          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2463        }
2464      }
2465      // Watch out for elipsis conversion.
2466      if (!ICS.UserDefined.EllipsisConversion) {
2467        ExprResult Res =
2468          PerformImplicitConversion(From, BeforeToType,
2469                                    ICS.UserDefined.Before, AA_Converting,
2470                                    CCK);
2471        if (Res.isInvalid())
2472          return ExprError();
2473        From = Res.take();
2474      }
2475
2476      ExprResult CastArg
2477        = BuildCXXCastArgument(*this,
2478                               From->getLocStart(),
2479                               ToType.getNonReferenceType(),
2480                               CastKind, cast<CXXMethodDecl>(FD),
2481                               ICS.UserDefined.FoundConversionFunction,
2482                               ICS.UserDefined.HadMultipleCandidates,
2483                               From);
2484
2485      if (CastArg.isInvalid())
2486        return ExprError();
2487
2488      From = CastArg.take();
2489
2490      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2491                                       AA_Converting, CCK);
2492  }
2493
2494  case ImplicitConversionSequence::AmbiguousConversion:
2495    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2496                          PDiag(diag::err_typecheck_ambiguous_condition)
2497                            << From->getSourceRange());
2498     return ExprError();
2499
2500  case ImplicitConversionSequence::EllipsisConversion:
2501    llvm_unreachable("Cannot perform an ellipsis conversion");
2502
2503  case ImplicitConversionSequence::BadConversion:
2504    return ExprError();
2505  }
2506
2507  // Everything went well.
2508  return Owned(From);
2509}
2510
2511/// PerformImplicitConversion - Perform an implicit conversion of the
2512/// expression From to the type ToType by following the standard
2513/// conversion sequence SCS. Returns the converted
2514/// expression. Flavor is the context in which we're performing this
2515/// conversion, for use in error messages.
2516ExprResult
2517Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2518                                const StandardConversionSequence& SCS,
2519                                AssignmentAction Action,
2520                                CheckedConversionKind CCK) {
2521  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2522
2523  // Overall FIXME: we are recomputing too many types here and doing far too
2524  // much extra work. What this means is that we need to keep track of more
2525  // information that is computed when we try the implicit conversion initially,
2526  // so that we don't need to recompute anything here.
2527  QualType FromType = From->getType();
2528
2529  if (SCS.CopyConstructor) {
2530    // FIXME: When can ToType be a reference type?
2531    assert(!ToType->isReferenceType());
2532    if (SCS.Second == ICK_Derived_To_Base) {
2533      SmallVector<Expr*, 8> ConstructorArgs;
2534      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2535                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
2536                                  ConstructorArgs))
2537        return ExprError();
2538      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2539                                   ToType, SCS.CopyConstructor,
2540                                   ConstructorArgs,
2541                                   /*HadMultipleCandidates*/ false,
2542                                   /*ListInit*/ false, /*ZeroInit*/ false,
2543                                   CXXConstructExpr::CK_Complete,
2544                                   SourceRange());
2545    }
2546    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2547                                 ToType, SCS.CopyConstructor,
2548                                 From, /*HadMultipleCandidates*/ false,
2549                                 /*ListInit*/ false, /*ZeroInit*/ false,
2550                                 CXXConstructExpr::CK_Complete,
2551                                 SourceRange());
2552  }
2553
2554  // Resolve overloaded function references.
2555  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2556    DeclAccessPair Found;
2557    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2558                                                          true, Found);
2559    if (!Fn)
2560      return ExprError();
2561
2562    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2563      return ExprError();
2564
2565    From = FixOverloadedFunctionReference(From, Found, Fn);
2566    FromType = From->getType();
2567  }
2568
2569  // Perform the first implicit conversion.
2570  switch (SCS.First) {
2571  case ICK_Identity:
2572    // Nothing to do.
2573    break;
2574
2575  case ICK_Lvalue_To_Rvalue: {
2576    assert(From->getObjectKind() != OK_ObjCProperty);
2577    FromType = FromType.getUnqualifiedType();
2578    ExprResult FromRes = DefaultLvalueConversion(From);
2579    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2580    From = FromRes.take();
2581    break;
2582  }
2583
2584  case ICK_Array_To_Pointer:
2585    FromType = Context.getArrayDecayedType(FromType);
2586    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2587                             VK_RValue, /*BasePath=*/0, CCK).take();
2588    break;
2589
2590  case ICK_Function_To_Pointer:
2591    FromType = Context.getPointerType(FromType);
2592    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2593                             VK_RValue, /*BasePath=*/0, CCK).take();
2594    break;
2595
2596  default:
2597    llvm_unreachable("Improper first standard conversion");
2598  }
2599
2600  // Perform the second implicit conversion
2601  switch (SCS.Second) {
2602  case ICK_Identity:
2603    // If both sides are functions (or pointers/references to them), there could
2604    // be incompatible exception declarations.
2605    if (CheckExceptionSpecCompatibility(From, ToType))
2606      return ExprError();
2607    // Nothing else to do.
2608    break;
2609
2610  case ICK_NoReturn_Adjustment:
2611    // If both sides are functions (or pointers/references to them), there could
2612    // be incompatible exception declarations.
2613    if (CheckExceptionSpecCompatibility(From, ToType))
2614      return ExprError();
2615
2616    From = ImpCastExprToType(From, ToType, CK_NoOp,
2617                             VK_RValue, /*BasePath=*/0, CCK).take();
2618    break;
2619
2620  case ICK_Integral_Promotion:
2621  case ICK_Integral_Conversion:
2622    if (ToType->isBooleanType()) {
2623      assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2624             SCS.Second == ICK_Integral_Promotion &&
2625             "only enums with fixed underlying type can promote to bool");
2626      From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2627                               VK_RValue, /*BasePath=*/0, CCK).take();
2628    } else {
2629      From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2630                               VK_RValue, /*BasePath=*/0, CCK).take();
2631    }
2632    break;
2633
2634  case ICK_Floating_Promotion:
2635  case ICK_Floating_Conversion:
2636    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2637                             VK_RValue, /*BasePath=*/0, CCK).take();
2638    break;
2639
2640  case ICK_Complex_Promotion:
2641  case ICK_Complex_Conversion: {
2642    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2643    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2644    CastKind CK;
2645    if (FromEl->isRealFloatingType()) {
2646      if (ToEl->isRealFloatingType())
2647        CK = CK_FloatingComplexCast;
2648      else
2649        CK = CK_FloatingComplexToIntegralComplex;
2650    } else if (ToEl->isRealFloatingType()) {
2651      CK = CK_IntegralComplexToFloatingComplex;
2652    } else {
2653      CK = CK_IntegralComplexCast;
2654    }
2655    From = ImpCastExprToType(From, ToType, CK,
2656                             VK_RValue, /*BasePath=*/0, CCK).take();
2657    break;
2658  }
2659
2660  case ICK_Floating_Integral:
2661    if (ToType->isRealFloatingType())
2662      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2663                               VK_RValue, /*BasePath=*/0, CCK).take();
2664    else
2665      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2666                               VK_RValue, /*BasePath=*/0, CCK).take();
2667    break;
2668
2669  case ICK_Compatible_Conversion:
2670      From = ImpCastExprToType(From, ToType, CK_NoOp,
2671                               VK_RValue, /*BasePath=*/0, CCK).take();
2672    break;
2673
2674  case ICK_Writeback_Conversion:
2675  case ICK_Pointer_Conversion: {
2676    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2677      // Diagnose incompatible Objective-C conversions
2678      if (Action == AA_Initializing || Action == AA_Assigning)
2679        Diag(From->getLocStart(),
2680             diag::ext_typecheck_convert_incompatible_pointer)
2681          << ToType << From->getType() << Action
2682          << From->getSourceRange() << 0;
2683      else
2684        Diag(From->getLocStart(),
2685             diag::ext_typecheck_convert_incompatible_pointer)
2686          << From->getType() << ToType << Action
2687          << From->getSourceRange() << 0;
2688
2689      if (From->getType()->isObjCObjectPointerType() &&
2690          ToType->isObjCObjectPointerType())
2691        EmitRelatedResultTypeNote(From);
2692    }
2693    else if (getLangOpts().ObjCAutoRefCount &&
2694             !CheckObjCARCUnavailableWeakConversion(ToType,
2695                                                    From->getType())) {
2696      if (Action == AA_Initializing)
2697        Diag(From->getLocStart(),
2698             diag::err_arc_weak_unavailable_assign);
2699      else
2700        Diag(From->getLocStart(),
2701             diag::err_arc_convesion_of_weak_unavailable)
2702          << (Action == AA_Casting) << From->getType() << ToType
2703          << From->getSourceRange();
2704    }
2705
2706    CastKind Kind = CK_Invalid;
2707    CXXCastPath BasePath;
2708    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2709      return ExprError();
2710
2711    // Make sure we extend blocks if necessary.
2712    // FIXME: doing this here is really ugly.
2713    if (Kind == CK_BlockPointerToObjCPointerCast) {
2714      ExprResult E = From;
2715      (void) PrepareCastToObjCObjectPointer(E);
2716      From = E.take();
2717    }
2718
2719    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2720             .take();
2721    break;
2722  }
2723
2724  case ICK_Pointer_Member: {
2725    CastKind Kind = CK_Invalid;
2726    CXXCastPath BasePath;
2727    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2728      return ExprError();
2729    if (CheckExceptionSpecCompatibility(From, ToType))
2730      return ExprError();
2731    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2732             .take();
2733    break;
2734  }
2735
2736  case ICK_Boolean_Conversion:
2737    // Perform half-to-boolean conversion via float.
2738    if (From->getType()->isHalfType()) {
2739      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2740      FromType = Context.FloatTy;
2741    }
2742
2743    From = ImpCastExprToType(From, Context.BoolTy,
2744                             ScalarTypeToBooleanCastKind(FromType),
2745                             VK_RValue, /*BasePath=*/0, CCK).take();
2746    break;
2747
2748  case ICK_Derived_To_Base: {
2749    CXXCastPath BasePath;
2750    if (CheckDerivedToBaseConversion(From->getType(),
2751                                     ToType.getNonReferenceType(),
2752                                     From->getLocStart(),
2753                                     From->getSourceRange(),
2754                                     &BasePath,
2755                                     CStyle))
2756      return ExprError();
2757
2758    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2759                      CK_DerivedToBase, From->getValueKind(),
2760                      &BasePath, CCK).take();
2761    break;
2762  }
2763
2764  case ICK_Vector_Conversion:
2765    From = ImpCastExprToType(From, ToType, CK_BitCast,
2766                             VK_RValue, /*BasePath=*/0, CCK).take();
2767    break;
2768
2769  case ICK_Vector_Splat:
2770    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2771                             VK_RValue, /*BasePath=*/0, CCK).take();
2772    break;
2773
2774  case ICK_Complex_Real:
2775    // Case 1.  x -> _Complex y
2776    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2777      QualType ElType = ToComplex->getElementType();
2778      bool isFloatingComplex = ElType->isRealFloatingType();
2779
2780      // x -> y
2781      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2782        // do nothing
2783      } else if (From->getType()->isRealFloatingType()) {
2784        From = ImpCastExprToType(From, ElType,
2785                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2786      } else {
2787        assert(From->getType()->isIntegerType());
2788        From = ImpCastExprToType(From, ElType,
2789                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2790      }
2791      // y -> _Complex y
2792      From = ImpCastExprToType(From, ToType,
2793                   isFloatingComplex ? CK_FloatingRealToComplex
2794                                     : CK_IntegralRealToComplex).take();
2795
2796    // Case 2.  _Complex x -> y
2797    } else {
2798      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2799      assert(FromComplex);
2800
2801      QualType ElType = FromComplex->getElementType();
2802      bool isFloatingComplex = ElType->isRealFloatingType();
2803
2804      // _Complex x -> x
2805      From = ImpCastExprToType(From, ElType,
2806                   isFloatingComplex ? CK_FloatingComplexToReal
2807                                     : CK_IntegralComplexToReal,
2808                               VK_RValue, /*BasePath=*/0, CCK).take();
2809
2810      // x -> y
2811      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2812        // do nothing
2813      } else if (ToType->isRealFloatingType()) {
2814        From = ImpCastExprToType(From, ToType,
2815                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2816                                 VK_RValue, /*BasePath=*/0, CCK).take();
2817      } else {
2818        assert(ToType->isIntegerType());
2819        From = ImpCastExprToType(From, ToType,
2820                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2821                                 VK_RValue, /*BasePath=*/0, CCK).take();
2822      }
2823    }
2824    break;
2825
2826  case ICK_Block_Pointer_Conversion: {
2827    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2828                             VK_RValue, /*BasePath=*/0, CCK).take();
2829    break;
2830  }
2831
2832  case ICK_TransparentUnionConversion: {
2833    ExprResult FromRes = Owned(From);
2834    Sema::AssignConvertType ConvTy =
2835      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2836    if (FromRes.isInvalid())
2837      return ExprError();
2838    From = FromRes.take();
2839    assert ((ConvTy == Sema::Compatible) &&
2840            "Improper transparent union conversion");
2841    (void)ConvTy;
2842    break;
2843  }
2844
2845  case ICK_Zero_Event_Conversion:
2846    From = ImpCastExprToType(From, ToType,
2847                             CK_ZeroToOCLEvent,
2848                             From->getValueKind()).take();
2849    break;
2850
2851  case ICK_Lvalue_To_Rvalue:
2852  case ICK_Array_To_Pointer:
2853  case ICK_Function_To_Pointer:
2854  case ICK_Qualification:
2855  case ICK_Num_Conversion_Kinds:
2856    llvm_unreachable("Improper second standard conversion");
2857  }
2858
2859  switch (SCS.Third) {
2860  case ICK_Identity:
2861    // Nothing to do.
2862    break;
2863
2864  case ICK_Qualification: {
2865    // The qualification keeps the category of the inner expression, unless the
2866    // target type isn't a reference.
2867    ExprValueKind VK = ToType->isReferenceType() ?
2868                                  From->getValueKind() : VK_RValue;
2869    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2870                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2871
2872    if (SCS.DeprecatedStringLiteralToCharPtr &&
2873        !getLangOpts().WritableStrings)
2874      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2875        << ToType.getNonReferenceType();
2876
2877    break;
2878    }
2879
2880  default:
2881    llvm_unreachable("Improper third standard conversion");
2882  }
2883
2884  // If this conversion sequence involved a scalar -> atomic conversion, perform
2885  // that conversion now.
2886  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2887    if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2888      From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2889                               CCK).take();
2890
2891  return Owned(From);
2892}
2893
2894ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2895                                     SourceLocation KWLoc,
2896                                     ParsedType Ty,
2897                                     SourceLocation RParen) {
2898  TypeSourceInfo *TSInfo;
2899  QualType T = GetTypeFromParser(Ty, &TSInfo);
2900
2901  if (!TSInfo)
2902    TSInfo = Context.getTrivialTypeSourceInfo(T);
2903  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2904}
2905
2906/// \brief Check the completeness of a type in a unary type trait.
2907///
2908/// If the particular type trait requires a complete type, tries to complete
2909/// it. If completing the type fails, a diagnostic is emitted and false
2910/// returned. If completing the type succeeds or no completion was required,
2911/// returns true.
2912static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2913                                                UnaryTypeTrait UTT,
2914                                                SourceLocation Loc,
2915                                                QualType ArgTy) {
2916  // C++0x [meta.unary.prop]p3:
2917  //   For all of the class templates X declared in this Clause, instantiating
2918  //   that template with a template argument that is a class template
2919  //   specialization may result in the implicit instantiation of the template
2920  //   argument if and only if the semantics of X require that the argument
2921  //   must be a complete type.
2922  // We apply this rule to all the type trait expressions used to implement
2923  // these class templates. We also try to follow any GCC documented behavior
2924  // in these expressions to ensure portability of standard libraries.
2925  switch (UTT) {
2926    // is_complete_type somewhat obviously cannot require a complete type.
2927  case UTT_IsCompleteType:
2928    // Fall-through
2929
2930    // These traits are modeled on the type predicates in C++0x
2931    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2932    // requiring a complete type, as whether or not they return true cannot be
2933    // impacted by the completeness of the type.
2934  case UTT_IsVoid:
2935  case UTT_IsIntegral:
2936  case UTT_IsFloatingPoint:
2937  case UTT_IsArray:
2938  case UTT_IsPointer:
2939  case UTT_IsLvalueReference:
2940  case UTT_IsRvalueReference:
2941  case UTT_IsMemberFunctionPointer:
2942  case UTT_IsMemberObjectPointer:
2943  case UTT_IsEnum:
2944  case UTT_IsUnion:
2945  case UTT_IsClass:
2946  case UTT_IsFunction:
2947  case UTT_IsReference:
2948  case UTT_IsArithmetic:
2949  case UTT_IsFundamental:
2950  case UTT_IsObject:
2951  case UTT_IsScalar:
2952  case UTT_IsCompound:
2953  case UTT_IsMemberPointer:
2954    // Fall-through
2955
2956    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2957    // which requires some of its traits to have the complete type. However,
2958    // the completeness of the type cannot impact these traits' semantics, and
2959    // so they don't require it. This matches the comments on these traits in
2960    // Table 49.
2961  case UTT_IsConst:
2962  case UTT_IsVolatile:
2963  case UTT_IsSigned:
2964  case UTT_IsUnsigned:
2965    return true;
2966
2967    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2968    // applied to a complete type.
2969  case UTT_IsTrivial:
2970  case UTT_IsTriviallyCopyable:
2971  case UTT_IsStandardLayout:
2972  case UTT_IsPOD:
2973  case UTT_IsLiteral:
2974  case UTT_IsEmpty:
2975  case UTT_IsPolymorphic:
2976  case UTT_IsAbstract:
2977  case UTT_IsInterfaceClass:
2978    // Fall-through
2979
2980  // These traits require a complete type.
2981  case UTT_IsFinal:
2982
2983    // These trait expressions are designed to help implement predicates in
2984    // [meta.unary.prop] despite not being named the same. They are specified
2985    // by both GCC and the Embarcadero C++ compiler, and require the complete
2986    // type due to the overarching C++0x type predicates being implemented
2987    // requiring the complete type.
2988  case UTT_HasNothrowAssign:
2989  case UTT_HasNothrowMoveAssign:
2990  case UTT_HasNothrowConstructor:
2991  case UTT_HasNothrowCopy:
2992  case UTT_HasTrivialAssign:
2993  case UTT_HasTrivialMoveAssign:
2994  case UTT_HasTrivialDefaultConstructor:
2995  case UTT_HasTrivialMoveConstructor:
2996  case UTT_HasTrivialCopy:
2997  case UTT_HasTrivialDestructor:
2998  case UTT_HasVirtualDestructor:
2999    // Arrays of unknown bound are expressly allowed.
3000    QualType ElTy = ArgTy;
3001    if (ArgTy->isIncompleteArrayType())
3002      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
3003
3004    // The void type is expressly allowed.
3005    if (ElTy->isVoidType())
3006      return true;
3007
3008    return !S.RequireCompleteType(
3009      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3010  }
3011  llvm_unreachable("Type trait not handled by switch");
3012}
3013
3014static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3015                               Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3016                               bool (CXXRecordDecl::*HasTrivial)() const,
3017                               bool (CXXRecordDecl::*HasNonTrivial)() const,
3018                               bool (CXXMethodDecl::*IsDesiredOp)() const)
3019{
3020  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3021  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3022    return true;
3023
3024  DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3025  DeclarationNameInfo NameInfo(Name, KeyLoc);
3026  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3027  if (Self.LookupQualifiedName(Res, RD)) {
3028    bool FoundOperator = false;
3029    Res.suppressDiagnostics();
3030    for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3031         Op != OpEnd; ++Op) {
3032      if (isa<FunctionTemplateDecl>(*Op))
3033        continue;
3034
3035      CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3036      if((Operator->*IsDesiredOp)()) {
3037        FoundOperator = true;
3038        const FunctionProtoType *CPT =
3039          Operator->getType()->getAs<FunctionProtoType>();
3040        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3041        if (!CPT || !CPT->isNothrow(Self.Context))
3042          return false;
3043      }
3044    }
3045    return FoundOperator;
3046  }
3047  return false;
3048}
3049
3050static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
3051                                   SourceLocation KeyLoc, QualType T) {
3052  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3053
3054  ASTContext &C = Self.Context;
3055  switch(UTT) {
3056    // Type trait expressions corresponding to the primary type category
3057    // predicates in C++0x [meta.unary.cat].
3058  case UTT_IsVoid:
3059    return T->isVoidType();
3060  case UTT_IsIntegral:
3061    return T->isIntegralType(C);
3062  case UTT_IsFloatingPoint:
3063    return T->isFloatingType();
3064  case UTT_IsArray:
3065    return T->isArrayType();
3066  case UTT_IsPointer:
3067    return T->isPointerType();
3068  case UTT_IsLvalueReference:
3069    return T->isLValueReferenceType();
3070  case UTT_IsRvalueReference:
3071    return T->isRValueReferenceType();
3072  case UTT_IsMemberFunctionPointer:
3073    return T->isMemberFunctionPointerType();
3074  case UTT_IsMemberObjectPointer:
3075    return T->isMemberDataPointerType();
3076  case UTT_IsEnum:
3077    return T->isEnumeralType();
3078  case UTT_IsUnion:
3079    return T->isUnionType();
3080  case UTT_IsClass:
3081    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3082  case UTT_IsFunction:
3083    return T->isFunctionType();
3084
3085    // Type trait expressions which correspond to the convenient composition
3086    // predicates in C++0x [meta.unary.comp].
3087  case UTT_IsReference:
3088    return T->isReferenceType();
3089  case UTT_IsArithmetic:
3090    return T->isArithmeticType() && !T->isEnumeralType();
3091  case UTT_IsFundamental:
3092    return T->isFundamentalType();
3093  case UTT_IsObject:
3094    return T->isObjectType();
3095  case UTT_IsScalar:
3096    // Note: semantic analysis depends on Objective-C lifetime types to be
3097    // considered scalar types. However, such types do not actually behave
3098    // like scalar types at run time (since they may require retain/release
3099    // operations), so we report them as non-scalar.
3100    if (T->isObjCLifetimeType()) {
3101      switch (T.getObjCLifetime()) {
3102      case Qualifiers::OCL_None:
3103      case Qualifiers::OCL_ExplicitNone:
3104        return true;
3105
3106      case Qualifiers::OCL_Strong:
3107      case Qualifiers::OCL_Weak:
3108      case Qualifiers::OCL_Autoreleasing:
3109        return false;
3110      }
3111    }
3112
3113    return T->isScalarType();
3114  case UTT_IsCompound:
3115    return T->isCompoundType();
3116  case UTT_IsMemberPointer:
3117    return T->isMemberPointerType();
3118
3119    // Type trait expressions which correspond to the type property predicates
3120    // in C++0x [meta.unary.prop].
3121  case UTT_IsConst:
3122    return T.isConstQualified();
3123  case UTT_IsVolatile:
3124    return T.isVolatileQualified();
3125  case UTT_IsTrivial:
3126    return T.isTrivialType(Self.Context);
3127  case UTT_IsTriviallyCopyable:
3128    return T.isTriviallyCopyableType(Self.Context);
3129  case UTT_IsStandardLayout:
3130    return T->isStandardLayoutType();
3131  case UTT_IsPOD:
3132    return T.isPODType(Self.Context);
3133  case UTT_IsLiteral:
3134    return T->isLiteralType(Self.Context);
3135  case UTT_IsEmpty:
3136    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3137      return !RD->isUnion() && RD->isEmpty();
3138    return false;
3139  case UTT_IsPolymorphic:
3140    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3141      return RD->isPolymorphic();
3142    return false;
3143  case UTT_IsAbstract:
3144    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3145      return RD->isAbstract();
3146    return false;
3147  case UTT_IsInterfaceClass:
3148    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3149      return RD->isInterface();
3150    return false;
3151  case UTT_IsFinal:
3152    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3153      return RD->hasAttr<FinalAttr>();
3154    return false;
3155  case UTT_IsSigned:
3156    return T->isSignedIntegerType();
3157  case UTT_IsUnsigned:
3158    return T->isUnsignedIntegerType();
3159
3160    // Type trait expressions which query classes regarding their construction,
3161    // destruction, and copying. Rather than being based directly on the
3162    // related type predicates in the standard, they are specified by both
3163    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3164    // specifications.
3165    //
3166    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3167    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3168    //
3169    // Note that these builtins do not behave as documented in g++: if a class
3170    // has both a trivial and a non-trivial special member of a particular kind,
3171    // they return false! For now, we emulate this behavior.
3172    // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3173    // does not correctly compute triviality in the presence of multiple special
3174    // members of the same kind. Revisit this once the g++ bug is fixed.
3175  case UTT_HasTrivialDefaultConstructor:
3176    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3177    //   If __is_pod (type) is true then the trait is true, else if type is
3178    //   a cv class or union type (or array thereof) with a trivial default
3179    //   constructor ([class.ctor]) then the trait is true, else it is false.
3180    if (T.isPODType(Self.Context))
3181      return true;
3182    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3183      return RD->hasTrivialDefaultConstructor() &&
3184             !RD->hasNonTrivialDefaultConstructor();
3185    return false;
3186  case UTT_HasTrivialMoveConstructor:
3187    //  This trait is implemented by MSVC 2012 and needed to parse the
3188    //  standard library headers. Specifically this is used as the logic
3189    //  behind std::is_trivially_move_constructible (20.9.4.3).
3190    if (T.isPODType(Self.Context))
3191      return true;
3192    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3193      return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3194    return false;
3195  case UTT_HasTrivialCopy:
3196    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3197    //   If __is_pod (type) is true or type is a reference type then
3198    //   the trait is true, else if type is a cv class or union type
3199    //   with a trivial copy constructor ([class.copy]) then the trait
3200    //   is true, else it is false.
3201    if (T.isPODType(Self.Context) || T->isReferenceType())
3202      return true;
3203    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3204      return RD->hasTrivialCopyConstructor() &&
3205             !RD->hasNonTrivialCopyConstructor();
3206    return false;
3207  case UTT_HasTrivialMoveAssign:
3208    //  This trait is implemented by MSVC 2012 and needed to parse the
3209    //  standard library headers. Specifically it is used as the logic
3210    //  behind std::is_trivially_move_assignable (20.9.4.3)
3211    if (T.isPODType(Self.Context))
3212      return true;
3213    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3214      return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3215    return false;
3216  case UTT_HasTrivialAssign:
3217    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3218    //   If type is const qualified or is a reference type then the
3219    //   trait is false. Otherwise if __is_pod (type) is true then the
3220    //   trait is true, else if type is a cv class or union type with
3221    //   a trivial copy assignment ([class.copy]) then the trait is
3222    //   true, else it is false.
3223    // Note: the const and reference restrictions are interesting,
3224    // given that const and reference members don't prevent a class
3225    // from having a trivial copy assignment operator (but do cause
3226    // errors if the copy assignment operator is actually used, q.v.
3227    // [class.copy]p12).
3228
3229    if (T.isConstQualified())
3230      return false;
3231    if (T.isPODType(Self.Context))
3232      return true;
3233    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3234      return RD->hasTrivialCopyAssignment() &&
3235             !RD->hasNonTrivialCopyAssignment();
3236    return false;
3237  case UTT_HasTrivialDestructor:
3238    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3239    //   If __is_pod (type) is true or type is a reference type
3240    //   then the trait is true, else if type is a cv class or union
3241    //   type (or array thereof) with a trivial destructor
3242    //   ([class.dtor]) then the trait is true, else it is
3243    //   false.
3244    if (T.isPODType(Self.Context) || T->isReferenceType())
3245      return true;
3246
3247    // Objective-C++ ARC: autorelease types don't require destruction.
3248    if (T->isObjCLifetimeType() &&
3249        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3250      return true;
3251
3252    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3253      return RD->hasTrivialDestructor();
3254    return false;
3255  // TODO: Propagate nothrowness for implicitly declared special members.
3256  case UTT_HasNothrowAssign:
3257    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3258    //   If type is const qualified or is a reference type then the
3259    //   trait is false. Otherwise if __has_trivial_assign (type)
3260    //   is true then the trait is true, else if type is a cv class
3261    //   or union type with copy assignment operators that are known
3262    //   not to throw an exception then the trait is true, else it is
3263    //   false.
3264    if (C.getBaseElementType(T).isConstQualified())
3265      return false;
3266    if (T->isReferenceType())
3267      return false;
3268    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3269      return true;
3270
3271    if (const RecordType *RT = T->getAs<RecordType>())
3272      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3273                                &CXXRecordDecl::hasTrivialCopyAssignment,
3274                                &CXXRecordDecl::hasNonTrivialCopyAssignment,
3275                                &CXXMethodDecl::isCopyAssignmentOperator);
3276    return false;
3277  case UTT_HasNothrowMoveAssign:
3278    //  This trait is implemented by MSVC 2012 and needed to parse the
3279    //  standard library headers. Specifically this is used as the logic
3280    //  behind std::is_nothrow_move_assignable (20.9.4.3).
3281    if (T.isPODType(Self.Context))
3282      return true;
3283
3284    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3285      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3286                                &CXXRecordDecl::hasTrivialMoveAssignment,
3287                                &CXXRecordDecl::hasNonTrivialMoveAssignment,
3288                                &CXXMethodDecl::isMoveAssignmentOperator);
3289    return false;
3290  case UTT_HasNothrowCopy:
3291    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3292    //   If __has_trivial_copy (type) is true then the trait is true, else
3293    //   if type is a cv class or union type with copy constructors that are
3294    //   known not to throw an exception then the trait is true, else it is
3295    //   false.
3296    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3297      return true;
3298    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3299      if (RD->hasTrivialCopyConstructor() &&
3300          !RD->hasNonTrivialCopyConstructor())
3301        return true;
3302
3303      bool FoundConstructor = false;
3304      unsigned FoundTQs;
3305      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3306      for (DeclContext::lookup_const_iterator Con = R.begin(),
3307           ConEnd = R.end(); Con != ConEnd; ++Con) {
3308        // A template constructor is never a copy constructor.
3309        // FIXME: However, it may actually be selected at the actual overload
3310        // resolution point.
3311        if (isa<FunctionTemplateDecl>(*Con))
3312          continue;
3313        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3314        if (Constructor->isCopyConstructor(FoundTQs)) {
3315          FoundConstructor = true;
3316          const FunctionProtoType *CPT
3317              = Constructor->getType()->getAs<FunctionProtoType>();
3318          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3319          if (!CPT)
3320            return false;
3321          // FIXME: check whether evaluating default arguments can throw.
3322          // For now, we'll be conservative and assume that they can throw.
3323          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3324            return false;
3325        }
3326      }
3327
3328      return FoundConstructor;
3329    }
3330    return false;
3331  case UTT_HasNothrowConstructor:
3332    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3333    //   If __has_trivial_constructor (type) is true then the trait is
3334    //   true, else if type is a cv class or union type (or array
3335    //   thereof) with a default constructor that is known not to
3336    //   throw an exception then the trait is true, else it is false.
3337    if (T.isPODType(C) || T->isObjCLifetimeType())
3338      return true;
3339    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3340      if (RD->hasTrivialDefaultConstructor() &&
3341          !RD->hasNonTrivialDefaultConstructor())
3342        return true;
3343
3344      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3345      for (DeclContext::lookup_const_iterator Con = R.begin(),
3346           ConEnd = R.end(); Con != ConEnd; ++Con) {
3347        // FIXME: In C++0x, a constructor template can be a default constructor.
3348        if (isa<FunctionTemplateDecl>(*Con))
3349          continue;
3350        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3351        if (Constructor->isDefaultConstructor()) {
3352          const FunctionProtoType *CPT
3353              = Constructor->getType()->getAs<FunctionProtoType>();
3354          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3355          if (!CPT)
3356            return false;
3357          // TODO: check whether evaluating default arguments can throw.
3358          // For now, we'll be conservative and assume that they can throw.
3359          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3360        }
3361      }
3362    }
3363    return false;
3364  case UTT_HasVirtualDestructor:
3365    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3366    //   If type is a class type with a virtual destructor ([class.dtor])
3367    //   then the trait is true, else it is false.
3368    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3369      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3370        return Destructor->isVirtual();
3371    return false;
3372
3373    // These type trait expressions are modeled on the specifications for the
3374    // Embarcadero C++0x type trait functions:
3375    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3376  case UTT_IsCompleteType:
3377    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3378    //   Returns True if and only if T is a complete type at the point of the
3379    //   function call.
3380    return !T->isIncompleteType();
3381  }
3382  llvm_unreachable("Type trait not covered by switch");
3383}
3384
3385ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3386                                     SourceLocation KWLoc,
3387                                     TypeSourceInfo *TSInfo,
3388                                     SourceLocation RParen) {
3389  QualType T = TSInfo->getType();
3390  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3391    return ExprError();
3392
3393  bool Value = false;
3394  if (!T->isDependentType())
3395    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3396
3397  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3398                                                RParen, Context.BoolTy));
3399}
3400
3401ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3402                                      SourceLocation KWLoc,
3403                                      ParsedType LhsTy,
3404                                      ParsedType RhsTy,
3405                                      SourceLocation RParen) {
3406  TypeSourceInfo *LhsTSInfo;
3407  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3408  if (!LhsTSInfo)
3409    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3410
3411  TypeSourceInfo *RhsTSInfo;
3412  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3413  if (!RhsTSInfo)
3414    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3415
3416  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3417}
3418
3419/// \brief Determine whether T has a non-trivial Objective-C lifetime in
3420/// ARC mode.
3421static bool hasNontrivialObjCLifetime(QualType T) {
3422  switch (T.getObjCLifetime()) {
3423  case Qualifiers::OCL_ExplicitNone:
3424    return false;
3425
3426  case Qualifiers::OCL_Strong:
3427  case Qualifiers::OCL_Weak:
3428  case Qualifiers::OCL_Autoreleasing:
3429    return true;
3430
3431  case Qualifiers::OCL_None:
3432    return T->isObjCLifetimeType();
3433  }
3434
3435  llvm_unreachable("Unknown ObjC lifetime qualifier");
3436}
3437
3438static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3439                              ArrayRef<TypeSourceInfo *> Args,
3440                              SourceLocation RParenLoc) {
3441  switch (Kind) {
3442  case clang::TT_IsTriviallyConstructible: {
3443    // C++11 [meta.unary.prop]:
3444    //   is_trivially_constructible is defined as:
3445    //
3446    //     is_constructible<T, Args...>::value is true and the variable
3447    //     definition for is_constructible, as defined below, is known to call no
3448    //     operation that is not trivial.
3449    //
3450    //   The predicate condition for a template specialization
3451    //   is_constructible<T, Args...> shall be satisfied if and only if the
3452    //   following variable definition would be well-formed for some invented
3453    //   variable t:
3454    //
3455    //     T t(create<Args>()...);
3456    if (Args.empty()) {
3457      S.Diag(KWLoc, diag::err_type_trait_arity)
3458        << 1 << 1 << 1 << (int)Args.size();
3459      return false;
3460    }
3461
3462    bool SawVoid = false;
3463    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3464      if (Args[I]->getType()->isVoidType()) {
3465        SawVoid = true;
3466        continue;
3467      }
3468
3469      if (!Args[I]->getType()->isIncompleteType() &&
3470        S.RequireCompleteType(KWLoc, Args[I]->getType(),
3471          diag::err_incomplete_type_used_in_type_trait_expr))
3472        return false;
3473    }
3474
3475    // If any argument was 'void', of course it won't type-check.
3476    if (SawVoid)
3477      return false;
3478
3479    SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3480    SmallVector<Expr *, 2> ArgExprs;
3481    ArgExprs.reserve(Args.size() - 1);
3482    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3483      QualType T = Args[I]->getType();
3484      if (T->isObjectType() || T->isFunctionType())
3485        T = S.Context.getRValueReferenceType(T);
3486      OpaqueArgExprs.push_back(
3487        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3488                        T.getNonLValueExprType(S.Context),
3489                        Expr::getValueKindForType(T)));
3490      ArgExprs.push_back(&OpaqueArgExprs.back());
3491    }
3492
3493    // Perform the initialization in an unevaluated context within a SFINAE
3494    // trap at translation unit scope.
3495    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3496    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3497    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3498    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3499    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3500                                                                 RParenLoc));
3501    InitializationSequence Init(S, To, InitKind, ArgExprs);
3502    if (Init.Failed())
3503      return false;
3504
3505    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3506    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3507      return false;
3508
3509    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3510    // lifetime, this is a non-trivial construction.
3511    if (S.getLangOpts().ObjCAutoRefCount &&
3512        hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3513      return false;
3514
3515    // The initialization succeeded; now make sure there are no non-trivial
3516    // calls.
3517    return !Result.get()->hasNonTrivialCall(S.Context);
3518  }
3519  }
3520
3521  return false;
3522}
3523
3524ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3525                                ArrayRef<TypeSourceInfo *> Args,
3526                                SourceLocation RParenLoc) {
3527  bool Dependent = false;
3528  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3529    if (Args[I]->getType()->isDependentType()) {
3530      Dependent = true;
3531      break;
3532    }
3533  }
3534
3535  bool Value = false;
3536  if (!Dependent)
3537    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3538
3539  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3540                               Args, RParenLoc, Value);
3541}
3542
3543ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3544                                ArrayRef<ParsedType> Args,
3545                                SourceLocation RParenLoc) {
3546  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3547  ConvertedArgs.reserve(Args.size());
3548
3549  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3550    TypeSourceInfo *TInfo;
3551    QualType T = GetTypeFromParser(Args[I], &TInfo);
3552    if (!TInfo)
3553      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3554
3555    ConvertedArgs.push_back(TInfo);
3556  }
3557
3558  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3559}
3560
3561static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3562                                    QualType LhsT, QualType RhsT,
3563                                    SourceLocation KeyLoc) {
3564  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3565         "Cannot evaluate traits of dependent types");
3566
3567  switch(BTT) {
3568  case BTT_IsBaseOf: {
3569    // C++0x [meta.rel]p2
3570    // Base is a base class of Derived without regard to cv-qualifiers or
3571    // Base and Derived are not unions and name the same class type without
3572    // regard to cv-qualifiers.
3573
3574    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3575    if (!lhsRecord) return false;
3576
3577    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3578    if (!rhsRecord) return false;
3579
3580    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3581             == (lhsRecord == rhsRecord));
3582
3583    if (lhsRecord == rhsRecord)
3584      return !lhsRecord->getDecl()->isUnion();
3585
3586    // C++0x [meta.rel]p2:
3587    //   If Base and Derived are class types and are different types
3588    //   (ignoring possible cv-qualifiers) then Derived shall be a
3589    //   complete type.
3590    if (Self.RequireCompleteType(KeyLoc, RhsT,
3591                          diag::err_incomplete_type_used_in_type_trait_expr))
3592      return false;
3593
3594    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3595      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3596  }
3597  case BTT_IsSame:
3598    return Self.Context.hasSameType(LhsT, RhsT);
3599  case BTT_TypeCompatible:
3600    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3601                                           RhsT.getUnqualifiedType());
3602  case BTT_IsConvertible:
3603  case BTT_IsConvertibleTo: {
3604    // C++0x [meta.rel]p4:
3605    //   Given the following function prototype:
3606    //
3607    //     template <class T>
3608    //       typename add_rvalue_reference<T>::type create();
3609    //
3610    //   the predicate condition for a template specialization
3611    //   is_convertible<From, To> shall be satisfied if and only if
3612    //   the return expression in the following code would be
3613    //   well-formed, including any implicit conversions to the return
3614    //   type of the function:
3615    //
3616    //     To test() {
3617    //       return create<From>();
3618    //     }
3619    //
3620    //   Access checking is performed as if in a context unrelated to To and
3621    //   From. Only the validity of the immediate context of the expression
3622    //   of the return-statement (including conversions to the return type)
3623    //   is considered.
3624    //
3625    // We model the initialization as a copy-initialization of a temporary
3626    // of the appropriate type, which for this expression is identical to the
3627    // return statement (since NRVO doesn't apply).
3628
3629    // Functions aren't allowed to return function or array types.
3630    if (RhsT->isFunctionType() || RhsT->isArrayType())
3631      return false;
3632
3633    // A return statement in a void function must have void type.
3634    if (RhsT->isVoidType())
3635      return LhsT->isVoidType();
3636
3637    // A function definition requires a complete, non-abstract return type.
3638    if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3639        Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3640      return false;
3641
3642    // Compute the result of add_rvalue_reference.
3643    if (LhsT->isObjectType() || LhsT->isFunctionType())
3644      LhsT = Self.Context.getRValueReferenceType(LhsT);
3645
3646    // Build a fake source and destination for initialization.
3647    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3648    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3649                         Expr::getValueKindForType(LhsT));
3650    Expr *FromPtr = &From;
3651    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3652                                                           SourceLocation()));
3653
3654    // Perform the initialization in an unevaluated context within a SFINAE
3655    // trap at translation unit scope.
3656    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3657    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3658    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3659    InitializationSequence Init(Self, To, Kind, FromPtr);
3660    if (Init.Failed())
3661      return false;
3662
3663    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3664    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3665  }
3666
3667  case BTT_IsTriviallyAssignable: {
3668    // C++11 [meta.unary.prop]p3:
3669    //   is_trivially_assignable is defined as:
3670    //     is_assignable<T, U>::value is true and the assignment, as defined by
3671    //     is_assignable, is known to call no operation that is not trivial
3672    //
3673    //   is_assignable is defined as:
3674    //     The expression declval<T>() = declval<U>() is well-formed when
3675    //     treated as an unevaluated operand (Clause 5).
3676    //
3677    //   For both, T and U shall be complete types, (possibly cv-qualified)
3678    //   void, or arrays of unknown bound.
3679    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3680        Self.RequireCompleteType(KeyLoc, LhsT,
3681          diag::err_incomplete_type_used_in_type_trait_expr))
3682      return false;
3683    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3684        Self.RequireCompleteType(KeyLoc, RhsT,
3685          diag::err_incomplete_type_used_in_type_trait_expr))
3686      return false;
3687
3688    // cv void is never assignable.
3689    if (LhsT->isVoidType() || RhsT->isVoidType())
3690      return false;
3691
3692    // Build expressions that emulate the effect of declval<T>() and
3693    // declval<U>().
3694    if (LhsT->isObjectType() || LhsT->isFunctionType())
3695      LhsT = Self.Context.getRValueReferenceType(LhsT);
3696    if (RhsT->isObjectType() || RhsT->isFunctionType())
3697      RhsT = Self.Context.getRValueReferenceType(RhsT);
3698    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3699                        Expr::getValueKindForType(LhsT));
3700    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3701                        Expr::getValueKindForType(RhsT));
3702
3703    // Attempt the assignment in an unevaluated context within a SFINAE
3704    // trap at translation unit scope.
3705    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3706    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3707    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3708    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3709    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3710      return false;
3711
3712    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3713    // lifetime, this is a non-trivial assignment.
3714    if (Self.getLangOpts().ObjCAutoRefCount &&
3715        hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3716      return false;
3717
3718    return !Result.get()->hasNonTrivialCall(Self.Context);
3719  }
3720  }
3721  llvm_unreachable("Unknown type trait or not implemented");
3722}
3723
3724ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3725                                      SourceLocation KWLoc,
3726                                      TypeSourceInfo *LhsTSInfo,
3727                                      TypeSourceInfo *RhsTSInfo,
3728                                      SourceLocation RParen) {
3729  QualType LhsT = LhsTSInfo->getType();
3730  QualType RhsT = RhsTSInfo->getType();
3731
3732  if (BTT == BTT_TypeCompatible) {
3733    if (getLangOpts().CPlusPlus) {
3734      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3735        << SourceRange(KWLoc, RParen);
3736      return ExprError();
3737    }
3738  }
3739
3740  bool Value = false;
3741  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3742    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3743
3744  // Select trait result type.
3745  QualType ResultType;
3746  switch (BTT) {
3747  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3748  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3749  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3750  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3751  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3752  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3753  }
3754
3755  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3756                                                 RhsTSInfo, Value, RParen,
3757                                                 ResultType));
3758}
3759
3760ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3761                                     SourceLocation KWLoc,
3762                                     ParsedType Ty,
3763                                     Expr* DimExpr,
3764                                     SourceLocation RParen) {
3765  TypeSourceInfo *TSInfo;
3766  QualType T = GetTypeFromParser(Ty, &TSInfo);
3767  if (!TSInfo)
3768    TSInfo = Context.getTrivialTypeSourceInfo(T);
3769
3770  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3771}
3772
3773static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3774                                           QualType T, Expr *DimExpr,
3775                                           SourceLocation KeyLoc) {
3776  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3777
3778  switch(ATT) {
3779  case ATT_ArrayRank:
3780    if (T->isArrayType()) {
3781      unsigned Dim = 0;
3782      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3783        ++Dim;
3784        T = AT->getElementType();
3785      }
3786      return Dim;
3787    }
3788    return 0;
3789
3790  case ATT_ArrayExtent: {
3791    llvm::APSInt Value;
3792    uint64_t Dim;
3793    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3794          diag::err_dimension_expr_not_constant_integer,
3795          false).isInvalid())
3796      return 0;
3797    if (Value.isSigned() && Value.isNegative()) {
3798      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3799        << DimExpr->getSourceRange();
3800      return 0;
3801    }
3802    Dim = Value.getLimitedValue();
3803
3804    if (T->isArrayType()) {
3805      unsigned D = 0;
3806      bool Matched = false;
3807      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3808        if (Dim == D) {
3809          Matched = true;
3810          break;
3811        }
3812        ++D;
3813        T = AT->getElementType();
3814      }
3815
3816      if (Matched && T->isArrayType()) {
3817        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3818          return CAT->getSize().getLimitedValue();
3819      }
3820    }
3821    return 0;
3822  }
3823  }
3824  llvm_unreachable("Unknown type trait or not implemented");
3825}
3826
3827ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3828                                     SourceLocation KWLoc,
3829                                     TypeSourceInfo *TSInfo,
3830                                     Expr* DimExpr,
3831                                     SourceLocation RParen) {
3832  QualType T = TSInfo->getType();
3833
3834  // FIXME: This should likely be tracked as an APInt to remove any host
3835  // assumptions about the width of size_t on the target.
3836  uint64_t Value = 0;
3837  if (!T->isDependentType())
3838    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3839
3840  // While the specification for these traits from the Embarcadero C++
3841  // compiler's documentation says the return type is 'unsigned int', Clang
3842  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3843  // compiler, there is no difference. On several other platforms this is an
3844  // important distinction.
3845  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3846                                                DimExpr, RParen,
3847                                                Context.getSizeType()));
3848}
3849
3850ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3851                                      SourceLocation KWLoc,
3852                                      Expr *Queried,
3853                                      SourceLocation RParen) {
3854  // If error parsing the expression, ignore.
3855  if (!Queried)
3856    return ExprError();
3857
3858  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3859
3860  return Result;
3861}
3862
3863static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3864  switch (ET) {
3865  case ET_IsLValueExpr: return E->isLValue();
3866  case ET_IsRValueExpr: return E->isRValue();
3867  }
3868  llvm_unreachable("Expression trait not covered by switch");
3869}
3870
3871ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3872                                      SourceLocation KWLoc,
3873                                      Expr *Queried,
3874                                      SourceLocation RParen) {
3875  if (Queried->isTypeDependent()) {
3876    // Delay type-checking for type-dependent expressions.
3877  } else if (Queried->getType()->isPlaceholderType()) {
3878    ExprResult PE = CheckPlaceholderExpr(Queried);
3879    if (PE.isInvalid()) return ExprError();
3880    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3881  }
3882
3883  bool Value = EvaluateExpressionTrait(ET, Queried);
3884
3885  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3886                                                 RParen, Context.BoolTy));
3887}
3888
3889QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3890                                            ExprValueKind &VK,
3891                                            SourceLocation Loc,
3892                                            bool isIndirect) {
3893  assert(!LHS.get()->getType()->isPlaceholderType() &&
3894         !RHS.get()->getType()->isPlaceholderType() &&
3895         "placeholders should have been weeded out by now");
3896
3897  // The LHS undergoes lvalue conversions if this is ->*.
3898  if (isIndirect) {
3899    LHS = DefaultLvalueConversion(LHS.take());
3900    if (LHS.isInvalid()) return QualType();
3901  }
3902
3903  // The RHS always undergoes lvalue conversions.
3904  RHS = DefaultLvalueConversion(RHS.take());
3905  if (RHS.isInvalid()) return QualType();
3906
3907  const char *OpSpelling = isIndirect ? "->*" : ".*";
3908  // C++ 5.5p2
3909  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3910  //   be of type "pointer to member of T" (where T is a completely-defined
3911  //   class type) [...]
3912  QualType RHSType = RHS.get()->getType();
3913  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3914  if (!MemPtr) {
3915    Diag(Loc, diag::err_bad_memptr_rhs)
3916      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3917    return QualType();
3918  }
3919
3920  QualType Class(MemPtr->getClass(), 0);
3921
3922  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3923  // member pointer points must be completely-defined. However, there is no
3924  // reason for this semantic distinction, and the rule is not enforced by
3925  // other compilers. Therefore, we do not check this property, as it is
3926  // likely to be considered a defect.
3927
3928  // C++ 5.5p2
3929  //   [...] to its first operand, which shall be of class T or of a class of
3930  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3931  //   such a class]
3932  QualType LHSType = LHS.get()->getType();
3933  if (isIndirect) {
3934    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3935      LHSType = Ptr->getPointeeType();
3936    else {
3937      Diag(Loc, diag::err_bad_memptr_lhs)
3938        << OpSpelling << 1 << LHSType
3939        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3940      return QualType();
3941    }
3942  }
3943
3944  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3945    // If we want to check the hierarchy, we need a complete type.
3946    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3947                            OpSpelling, (int)isIndirect)) {
3948      return QualType();
3949    }
3950    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3951                       /*DetectVirtual=*/false);
3952    // FIXME: Would it be useful to print full ambiguity paths, or is that
3953    // overkill?
3954    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3955        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3956      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3957        << (int)isIndirect << LHS.get()->getType();
3958      return QualType();
3959    }
3960    // Cast LHS to type of use.
3961    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3962    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3963
3964    CXXCastPath BasePath;
3965    BuildBasePathArray(Paths, BasePath);
3966    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3967                            &BasePath);
3968  }
3969
3970  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3971    // Diagnose use of pointer-to-member type which when used as
3972    // the functional cast in a pointer-to-member expression.
3973    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3974     return QualType();
3975  }
3976
3977  // C++ 5.5p2
3978  //   The result is an object or a function of the type specified by the
3979  //   second operand.
3980  // The cv qualifiers are the union of those in the pointer and the left side,
3981  // in accordance with 5.5p5 and 5.2.5.
3982  QualType Result = MemPtr->getPointeeType();
3983  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3984
3985  // C++0x [expr.mptr.oper]p6:
3986  //   In a .* expression whose object expression is an rvalue, the program is
3987  //   ill-formed if the second operand is a pointer to member function with
3988  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3989  //   expression is an lvalue, the program is ill-formed if the second operand
3990  //   is a pointer to member function with ref-qualifier &&.
3991  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3992    switch (Proto->getRefQualifier()) {
3993    case RQ_None:
3994      // Do nothing
3995      break;
3996
3997    case RQ_LValue:
3998      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3999        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4000          << RHSType << 1 << LHS.get()->getSourceRange();
4001      break;
4002
4003    case RQ_RValue:
4004      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
4005        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4006          << RHSType << 0 << LHS.get()->getSourceRange();
4007      break;
4008    }
4009  }
4010
4011  // C++ [expr.mptr.oper]p6:
4012  //   The result of a .* expression whose second operand is a pointer
4013  //   to a data member is of the same value category as its
4014  //   first operand. The result of a .* expression whose second
4015  //   operand is a pointer to a member function is a prvalue. The
4016  //   result of an ->* expression is an lvalue if its second operand
4017  //   is a pointer to data member and a prvalue otherwise.
4018  if (Result->isFunctionType()) {
4019    VK = VK_RValue;
4020    return Context.BoundMemberTy;
4021  } else if (isIndirect) {
4022    VK = VK_LValue;
4023  } else {
4024    VK = LHS.get()->getValueKind();
4025  }
4026
4027  return Result;
4028}
4029
4030/// \brief Try to convert a type to another according to C++0x 5.16p3.
4031///
4032/// This is part of the parameter validation for the ? operator. If either
4033/// value operand is a class type, the two operands are attempted to be
4034/// converted to each other. This function does the conversion in one direction.
4035/// It returns true if the program is ill-formed and has already been diagnosed
4036/// as such.
4037static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4038                                SourceLocation QuestionLoc,
4039                                bool &HaveConversion,
4040                                QualType &ToType) {
4041  HaveConversion = false;
4042  ToType = To->getType();
4043
4044  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4045                                                           SourceLocation());
4046  // C++0x 5.16p3
4047  //   The process for determining whether an operand expression E1 of type T1
4048  //   can be converted to match an operand expression E2 of type T2 is defined
4049  //   as follows:
4050  //   -- If E2 is an lvalue:
4051  bool ToIsLvalue = To->isLValue();
4052  if (ToIsLvalue) {
4053    //   E1 can be converted to match E2 if E1 can be implicitly converted to
4054    //   type "lvalue reference to T2", subject to the constraint that in the
4055    //   conversion the reference must bind directly to E1.
4056    QualType T = Self.Context.getLValueReferenceType(ToType);
4057    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4058
4059    InitializationSequence InitSeq(Self, Entity, Kind, From);
4060    if (InitSeq.isDirectReferenceBinding()) {
4061      ToType = T;
4062      HaveConversion = true;
4063      return false;
4064    }
4065
4066    if (InitSeq.isAmbiguous())
4067      return InitSeq.Diagnose(Self, Entity, Kind, From);
4068  }
4069
4070  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
4071  //      -- if E1 and E2 have class type, and the underlying class types are
4072  //         the same or one is a base class of the other:
4073  QualType FTy = From->getType();
4074  QualType TTy = To->getType();
4075  const RecordType *FRec = FTy->getAs<RecordType>();
4076  const RecordType *TRec = TTy->getAs<RecordType>();
4077  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4078                       Self.IsDerivedFrom(FTy, TTy);
4079  if (FRec && TRec &&
4080      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
4081    //         E1 can be converted to match E2 if the class of T2 is the
4082    //         same type as, or a base class of, the class of T1, and
4083    //         [cv2 > cv1].
4084    if (FRec == TRec || FDerivedFromT) {
4085      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4086        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4087        InitializationSequence InitSeq(Self, Entity, Kind, From);
4088        if (InitSeq) {
4089          HaveConversion = true;
4090          return false;
4091        }
4092
4093        if (InitSeq.isAmbiguous())
4094          return InitSeq.Diagnose(Self, Entity, Kind, From);
4095      }
4096    }
4097
4098    return false;
4099  }
4100
4101  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4102  //        implicitly converted to the type that expression E2 would have
4103  //        if E2 were converted to an rvalue (or the type it has, if E2 is
4104  //        an rvalue).
4105  //
4106  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4107  // to the array-to-pointer or function-to-pointer conversions.
4108  if (!TTy->getAs<TagType>())
4109    TTy = TTy.getUnqualifiedType();
4110
4111  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4112  InitializationSequence InitSeq(Self, Entity, Kind, From);
4113  HaveConversion = !InitSeq.Failed();
4114  ToType = TTy;
4115  if (InitSeq.isAmbiguous())
4116    return InitSeq.Diagnose(Self, Entity, Kind, From);
4117
4118  return false;
4119}
4120
4121/// \brief Try to find a common type for two according to C++0x 5.16p5.
4122///
4123/// This is part of the parameter validation for the ? operator. If either
4124/// value operand is a class type, overload resolution is used to find a
4125/// conversion to a common type.
4126static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4127                                    SourceLocation QuestionLoc) {
4128  Expr *Args[2] = { LHS.get(), RHS.get() };
4129  OverloadCandidateSet CandidateSet(QuestionLoc);
4130  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4131                                    CandidateSet);
4132
4133  OverloadCandidateSet::iterator Best;
4134  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4135    case OR_Success: {
4136      // We found a match. Perform the conversions on the arguments and move on.
4137      ExprResult LHSRes =
4138        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4139                                       Best->Conversions[0], Sema::AA_Converting);
4140      if (LHSRes.isInvalid())
4141        break;
4142      LHS = LHSRes;
4143
4144      ExprResult RHSRes =
4145        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4146                                       Best->Conversions[1], Sema::AA_Converting);
4147      if (RHSRes.isInvalid())
4148        break;
4149      RHS = RHSRes;
4150      if (Best->Function)
4151        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4152      return false;
4153    }
4154
4155    case OR_No_Viable_Function:
4156
4157      // Emit a better diagnostic if one of the expressions is a null pointer
4158      // constant and the other is a pointer type. In this case, the user most
4159      // likely forgot to take the address of the other expression.
4160      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4161        return true;
4162
4163      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4164        << LHS.get()->getType() << RHS.get()->getType()
4165        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4166      return true;
4167
4168    case OR_Ambiguous:
4169      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4170        << LHS.get()->getType() << RHS.get()->getType()
4171        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4172      // FIXME: Print the possible common types by printing the return types of
4173      // the viable candidates.
4174      break;
4175
4176    case OR_Deleted:
4177      llvm_unreachable("Conditional operator has only built-in overloads");
4178  }
4179  return true;
4180}
4181
4182/// \brief Perform an "extended" implicit conversion as returned by
4183/// TryClassUnification.
4184static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4185  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4186  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4187                                                           SourceLocation());
4188  Expr *Arg = E.take();
4189  InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4190  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4191  if (Result.isInvalid())
4192    return true;
4193
4194  E = Result;
4195  return false;
4196}
4197
4198/// \brief Check the operands of ?: under C++ semantics.
4199///
4200/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4201/// extension. In this case, LHS == Cond. (But they're not aliases.)
4202QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4203                                           ExprResult &RHS, ExprValueKind &VK,
4204                                           ExprObjectKind &OK,
4205                                           SourceLocation QuestionLoc) {
4206  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4207  // interface pointers.
4208
4209  // C++11 [expr.cond]p1
4210  //   The first expression is contextually converted to bool.
4211  if (!Cond.get()->isTypeDependent()) {
4212    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4213    if (CondRes.isInvalid())
4214      return QualType();
4215    Cond = CondRes;
4216  }
4217
4218  // Assume r-value.
4219  VK = VK_RValue;
4220  OK = OK_Ordinary;
4221
4222  // Either of the arguments dependent?
4223  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4224    return Context.DependentTy;
4225
4226  // C++11 [expr.cond]p2
4227  //   If either the second or the third operand has type (cv) void, ...
4228  QualType LTy = LHS.get()->getType();
4229  QualType RTy = RHS.get()->getType();
4230  bool LVoid = LTy->isVoidType();
4231  bool RVoid = RTy->isVoidType();
4232  if (LVoid || RVoid) {
4233    //   ... then the [l2r] conversions are performed on the second and third
4234    //   operands ...
4235    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4236    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4237    if (LHS.isInvalid() || RHS.isInvalid())
4238      return QualType();
4239
4240    // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4241    // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4242    // do this part for us.
4243    ExprResult &NonVoid = LVoid ? RHS : LHS;
4244    if (NonVoid.get()->getType()->isRecordType() &&
4245        NonVoid.get()->isGLValue()) {
4246      if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4247                             diag::err_allocation_of_abstract_type))
4248        return QualType();
4249      InitializedEntity Entity =
4250          InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4251      NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4252      if (NonVoid.isInvalid())
4253        return QualType();
4254    }
4255
4256    LTy = LHS.get()->getType();
4257    RTy = RHS.get()->getType();
4258
4259    //   ... and one of the following shall hold:
4260    //   -- The second or the third operand (but not both) is a throw-
4261    //      expression; the result is of the type of the other and is a prvalue.
4262    bool LThrow = isa<CXXThrowExpr>(LHS.get());
4263    bool RThrow = isa<CXXThrowExpr>(RHS.get());
4264    if (LThrow && !RThrow)
4265      return RTy;
4266    if (RThrow && !LThrow)
4267      return LTy;
4268
4269    //   -- Both the second and third operands have type void; the result is of
4270    //      type void and is a prvalue.
4271    if (LVoid && RVoid)
4272      return Context.VoidTy;
4273
4274    // Neither holds, error.
4275    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4276      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4277      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4278    return QualType();
4279  }
4280
4281  // Neither is void.
4282
4283  // C++11 [expr.cond]p3
4284  //   Otherwise, if the second and third operand have different types, and
4285  //   either has (cv) class type [...] an attempt is made to convert each of
4286  //   those operands to the type of the other.
4287  if (!Context.hasSameType(LTy, RTy) &&
4288      (LTy->isRecordType() || RTy->isRecordType())) {
4289    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4290    // These return true if a single direction is already ambiguous.
4291    QualType L2RType, R2LType;
4292    bool HaveL2R, HaveR2L;
4293    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4294      return QualType();
4295    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4296      return QualType();
4297
4298    //   If both can be converted, [...] the program is ill-formed.
4299    if (HaveL2R && HaveR2L) {
4300      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4301        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4302      return QualType();
4303    }
4304
4305    //   If exactly one conversion is possible, that conversion is applied to
4306    //   the chosen operand and the converted operands are used in place of the
4307    //   original operands for the remainder of this section.
4308    if (HaveL2R) {
4309      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4310        return QualType();
4311      LTy = LHS.get()->getType();
4312    } else if (HaveR2L) {
4313      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4314        return QualType();
4315      RTy = RHS.get()->getType();
4316    }
4317  }
4318
4319  // C++11 [expr.cond]p3
4320  //   if both are glvalues of the same value category and the same type except
4321  //   for cv-qualification, an attempt is made to convert each of those
4322  //   operands to the type of the other.
4323  ExprValueKind LVK = LHS.get()->getValueKind();
4324  ExprValueKind RVK = RHS.get()->getValueKind();
4325  if (!Context.hasSameType(LTy, RTy) &&
4326      Context.hasSameUnqualifiedType(LTy, RTy) &&
4327      LVK == RVK && LVK != VK_RValue) {
4328    // Since the unqualified types are reference-related and we require the
4329    // result to be as if a reference bound directly, the only conversion
4330    // we can perform is to add cv-qualifiers.
4331    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4332    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4333    if (RCVR.isStrictSupersetOf(LCVR)) {
4334      LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4335      LTy = LHS.get()->getType();
4336    }
4337    else if (LCVR.isStrictSupersetOf(RCVR)) {
4338      RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4339      RTy = RHS.get()->getType();
4340    }
4341  }
4342
4343  // C++11 [expr.cond]p4
4344  //   If the second and third operands are glvalues of the same value
4345  //   category and have the same type, the result is of that type and
4346  //   value category and it is a bit-field if the second or the third
4347  //   operand is a bit-field, or if both are bit-fields.
4348  // We only extend this to bitfields, not to the crazy other kinds of
4349  // l-values.
4350  bool Same = Context.hasSameType(LTy, RTy);
4351  if (Same && LVK == RVK && LVK != VK_RValue &&
4352      LHS.get()->isOrdinaryOrBitFieldObject() &&
4353      RHS.get()->isOrdinaryOrBitFieldObject()) {
4354    VK = LHS.get()->getValueKind();
4355    if (LHS.get()->getObjectKind() == OK_BitField ||
4356        RHS.get()->getObjectKind() == OK_BitField)
4357      OK = OK_BitField;
4358    return LTy;
4359  }
4360
4361  // C++11 [expr.cond]p5
4362  //   Otherwise, the result is a prvalue. If the second and third operands
4363  //   do not have the same type, and either has (cv) class type, ...
4364  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4365    //   ... overload resolution is used to determine the conversions (if any)
4366    //   to be applied to the operands. If the overload resolution fails, the
4367    //   program is ill-formed.
4368    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4369      return QualType();
4370  }
4371
4372  // C++11 [expr.cond]p6
4373  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4374  //   conversions are performed on the second and third operands.
4375  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4376  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4377  if (LHS.isInvalid() || RHS.isInvalid())
4378    return QualType();
4379  LTy = LHS.get()->getType();
4380  RTy = RHS.get()->getType();
4381
4382  //   After those conversions, one of the following shall hold:
4383  //   -- The second and third operands have the same type; the result
4384  //      is of that type. If the operands have class type, the result
4385  //      is a prvalue temporary of the result type, which is
4386  //      copy-initialized from either the second operand or the third
4387  //      operand depending on the value of the first operand.
4388  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4389    if (LTy->isRecordType()) {
4390      // The operands have class type. Make a temporary copy.
4391      if (RequireNonAbstractType(QuestionLoc, LTy,
4392                                 diag::err_allocation_of_abstract_type))
4393        return QualType();
4394      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4395
4396      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4397                                                     SourceLocation(),
4398                                                     LHS);
4399      if (LHSCopy.isInvalid())
4400        return QualType();
4401
4402      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4403                                                     SourceLocation(),
4404                                                     RHS);
4405      if (RHSCopy.isInvalid())
4406        return QualType();
4407
4408      LHS = LHSCopy;
4409      RHS = RHSCopy;
4410    }
4411
4412    return LTy;
4413  }
4414
4415  // Extension: conditional operator involving vector types.
4416  if (LTy->isVectorType() || RTy->isVectorType())
4417    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4418
4419  //   -- The second and third operands have arithmetic or enumeration type;
4420  //      the usual arithmetic conversions are performed to bring them to a
4421  //      common type, and the result is of that type.
4422  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4423    UsualArithmeticConversions(LHS, RHS);
4424    if (LHS.isInvalid() || RHS.isInvalid())
4425      return QualType();
4426    return LHS.get()->getType();
4427  }
4428
4429  //   -- The second and third operands have pointer type, or one has pointer
4430  //      type and the other is a null pointer constant, or both are null
4431  //      pointer constants, at least one of which is non-integral; pointer
4432  //      conversions and qualification conversions are performed to bring them
4433  //      to their composite pointer type. The result is of the composite
4434  //      pointer type.
4435  //   -- The second and third operands have pointer to member type, or one has
4436  //      pointer to member type and the other is a null pointer constant;
4437  //      pointer to member conversions and qualification conversions are
4438  //      performed to bring them to a common type, whose cv-qualification
4439  //      shall match the cv-qualification of either the second or the third
4440  //      operand. The result is of the common type.
4441  bool NonStandardCompositeType = false;
4442  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4443                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4444  if (!Composite.isNull()) {
4445    if (NonStandardCompositeType)
4446      Diag(QuestionLoc,
4447           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4448        << LTy << RTy << Composite
4449        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4450
4451    return Composite;
4452  }
4453
4454  // Similarly, attempt to find composite type of two objective-c pointers.
4455  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4456  if (!Composite.isNull())
4457    return Composite;
4458
4459  // Check if we are using a null with a non-pointer type.
4460  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4461    return QualType();
4462
4463  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4464    << LHS.get()->getType() << RHS.get()->getType()
4465    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4466  return QualType();
4467}
4468
4469/// \brief Find a merged pointer type and convert the two expressions to it.
4470///
4471/// This finds the composite pointer type (or member pointer type) for @p E1
4472/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4473/// type and returns it.
4474/// It does not emit diagnostics.
4475///
4476/// \param Loc The location of the operator requiring these two expressions to
4477/// be converted to the composite pointer type.
4478///
4479/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4480/// a non-standard (but still sane) composite type to which both expressions
4481/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4482/// will be set true.
4483QualType Sema::FindCompositePointerType(SourceLocation Loc,
4484                                        Expr *&E1, Expr *&E2,
4485                                        bool *NonStandardCompositeType) {
4486  if (NonStandardCompositeType)
4487    *NonStandardCompositeType = false;
4488
4489  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4490  QualType T1 = E1->getType(), T2 = E2->getType();
4491
4492  // C++11 5.9p2
4493  //   Pointer conversions and qualification conversions are performed on
4494  //   pointer operands to bring them to their composite pointer type. If
4495  //   one operand is a null pointer constant, the composite pointer type is
4496  //   std::nullptr_t if the other operand is also a null pointer constant or,
4497  //   if the other operand is a pointer, the type of the other operand.
4498  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4499      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4500    if (T1->isNullPtrType() &&
4501        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4502      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4503      return T1;
4504    }
4505    if (T2->isNullPtrType() &&
4506        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4507      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4508      return T2;
4509    }
4510    return QualType();
4511  }
4512
4513  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4514    if (T2->isMemberPointerType())
4515      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4516    else
4517      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4518    return T2;
4519  }
4520  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4521    if (T1->isMemberPointerType())
4522      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4523    else
4524      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4525    return T1;
4526  }
4527
4528  // Now both have to be pointers or member pointers.
4529  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4530      (!T2->isPointerType() && !T2->isMemberPointerType()))
4531    return QualType();
4532
4533  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4534  //   the other has type "pointer to cv2 T" and the composite pointer type is
4535  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4536  //   Otherwise, the composite pointer type is a pointer type similar to the
4537  //   type of one of the operands, with a cv-qualification signature that is
4538  //   the union of the cv-qualification signatures of the operand types.
4539  // In practice, the first part here is redundant; it's subsumed by the second.
4540  // What we do here is, we build the two possible composite types, and try the
4541  // conversions in both directions. If only one works, or if the two composite
4542  // types are the same, we have succeeded.
4543  // FIXME: extended qualifiers?
4544  typedef SmallVector<unsigned, 4> QualifierVector;
4545  QualifierVector QualifierUnion;
4546  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4547      ContainingClassVector;
4548  ContainingClassVector MemberOfClass;
4549  QualType Composite1 = Context.getCanonicalType(T1),
4550           Composite2 = Context.getCanonicalType(T2);
4551  unsigned NeedConstBefore = 0;
4552  do {
4553    const PointerType *Ptr1, *Ptr2;
4554    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4555        (Ptr2 = Composite2->getAs<PointerType>())) {
4556      Composite1 = Ptr1->getPointeeType();
4557      Composite2 = Ptr2->getPointeeType();
4558
4559      // If we're allowed to create a non-standard composite type, keep track
4560      // of where we need to fill in additional 'const' qualifiers.
4561      if (NonStandardCompositeType &&
4562          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4563        NeedConstBefore = QualifierUnion.size();
4564
4565      QualifierUnion.push_back(
4566                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4567      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4568      continue;
4569    }
4570
4571    const MemberPointerType *MemPtr1, *MemPtr2;
4572    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4573        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4574      Composite1 = MemPtr1->getPointeeType();
4575      Composite2 = MemPtr2->getPointeeType();
4576
4577      // If we're allowed to create a non-standard composite type, keep track
4578      // of where we need to fill in additional 'const' qualifiers.
4579      if (NonStandardCompositeType &&
4580          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4581        NeedConstBefore = QualifierUnion.size();
4582
4583      QualifierUnion.push_back(
4584                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4585      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4586                                             MemPtr2->getClass()));
4587      continue;
4588    }
4589
4590    // FIXME: block pointer types?
4591
4592    // Cannot unwrap any more types.
4593    break;
4594  } while (true);
4595
4596  if (NeedConstBefore && NonStandardCompositeType) {
4597    // Extension: Add 'const' to qualifiers that come before the first qualifier
4598    // mismatch, so that our (non-standard!) composite type meets the
4599    // requirements of C++ [conv.qual]p4 bullet 3.
4600    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4601      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4602        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4603        *NonStandardCompositeType = true;
4604      }
4605    }
4606  }
4607
4608  // Rewrap the composites as pointers or member pointers with the union CVRs.
4609  ContainingClassVector::reverse_iterator MOC
4610    = MemberOfClass.rbegin();
4611  for (QualifierVector::reverse_iterator
4612         I = QualifierUnion.rbegin(),
4613         E = QualifierUnion.rend();
4614       I != E; (void)++I, ++MOC) {
4615    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4616    if (MOC->first && MOC->second) {
4617      // Rebuild member pointer type
4618      Composite1 = Context.getMemberPointerType(
4619                                    Context.getQualifiedType(Composite1, Quals),
4620                                    MOC->first);
4621      Composite2 = Context.getMemberPointerType(
4622                                    Context.getQualifiedType(Composite2, Quals),
4623                                    MOC->second);
4624    } else {
4625      // Rebuild pointer type
4626      Composite1
4627        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4628      Composite2
4629        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4630    }
4631  }
4632
4633  // Try to convert to the first composite pointer type.
4634  InitializedEntity Entity1
4635    = InitializedEntity::InitializeTemporary(Composite1);
4636  InitializationKind Kind
4637    = InitializationKind::CreateCopy(Loc, SourceLocation());
4638  InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
4639  InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
4640
4641  if (E1ToC1 && E2ToC1) {
4642    // Conversion to Composite1 is viable.
4643    if (!Context.hasSameType(Composite1, Composite2)) {
4644      // Composite2 is a different type from Composite1. Check whether
4645      // Composite2 is also viable.
4646      InitializedEntity Entity2
4647        = InitializedEntity::InitializeTemporary(Composite2);
4648      InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4649      InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4650      if (E1ToC2 && E2ToC2) {
4651        // Both Composite1 and Composite2 are viable and are different;
4652        // this is an ambiguity.
4653        return QualType();
4654      }
4655    }
4656
4657    // Convert E1 to Composite1
4658    ExprResult E1Result
4659      = E1ToC1.Perform(*this, Entity1, Kind, E1);
4660    if (E1Result.isInvalid())
4661      return QualType();
4662    E1 = E1Result.takeAs<Expr>();
4663
4664    // Convert E2 to Composite1
4665    ExprResult E2Result
4666      = E2ToC1.Perform(*this, Entity1, Kind, E2);
4667    if (E2Result.isInvalid())
4668      return QualType();
4669    E2 = E2Result.takeAs<Expr>();
4670
4671    return Composite1;
4672  }
4673
4674  // Check whether Composite2 is viable.
4675  InitializedEntity Entity2
4676    = InitializedEntity::InitializeTemporary(Composite2);
4677  InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4678  InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4679  if (!E1ToC2 || !E2ToC2)
4680    return QualType();
4681
4682  // Convert E1 to Composite2
4683  ExprResult E1Result
4684    = E1ToC2.Perform(*this, Entity2, Kind, E1);
4685  if (E1Result.isInvalid())
4686    return QualType();
4687  E1 = E1Result.takeAs<Expr>();
4688
4689  // Convert E2 to Composite2
4690  ExprResult E2Result
4691    = E2ToC2.Perform(*this, Entity2, Kind, E2);
4692  if (E2Result.isInvalid())
4693    return QualType();
4694  E2 = E2Result.takeAs<Expr>();
4695
4696  return Composite2;
4697}
4698
4699ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4700  if (!E)
4701    return ExprError();
4702
4703  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4704
4705  // If the result is a glvalue, we shouldn't bind it.
4706  if (!E->isRValue())
4707    return Owned(E);
4708
4709  // In ARC, calls that return a retainable type can return retained,
4710  // in which case we have to insert a consuming cast.
4711  if (getLangOpts().ObjCAutoRefCount &&
4712      E->getType()->isObjCRetainableType()) {
4713
4714    bool ReturnsRetained;
4715
4716    // For actual calls, we compute this by examining the type of the
4717    // called value.
4718    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4719      Expr *Callee = Call->getCallee()->IgnoreParens();
4720      QualType T = Callee->getType();
4721
4722      if (T == Context.BoundMemberTy) {
4723        // Handle pointer-to-members.
4724        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4725          T = BinOp->getRHS()->getType();
4726        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4727          T = Mem->getMemberDecl()->getType();
4728      }
4729
4730      if (const PointerType *Ptr = T->getAs<PointerType>())
4731        T = Ptr->getPointeeType();
4732      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4733        T = Ptr->getPointeeType();
4734      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4735        T = MemPtr->getPointeeType();
4736
4737      const FunctionType *FTy = T->getAs<FunctionType>();
4738      assert(FTy && "call to value not of function type?");
4739      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4740
4741    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4742    // type always produce a +1 object.
4743    } else if (isa<StmtExpr>(E)) {
4744      ReturnsRetained = true;
4745
4746    // We hit this case with the lambda conversion-to-block optimization;
4747    // we don't want any extra casts here.
4748    } else if (isa<CastExpr>(E) &&
4749               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4750      return Owned(E);
4751
4752    // For message sends and property references, we try to find an
4753    // actual method.  FIXME: we should infer retention by selector in
4754    // cases where we don't have an actual method.
4755    } else {
4756      ObjCMethodDecl *D = 0;
4757      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4758        D = Send->getMethodDecl();
4759      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4760        D = BoxedExpr->getBoxingMethod();
4761      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4762        D = ArrayLit->getArrayWithObjectsMethod();
4763      } else if (ObjCDictionaryLiteral *DictLit
4764                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4765        D = DictLit->getDictWithObjectsMethod();
4766      }
4767
4768      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4769
4770      // Don't do reclaims on performSelector calls; despite their
4771      // return type, the invoked method doesn't necessarily actually
4772      // return an object.
4773      if (!ReturnsRetained &&
4774          D && D->getMethodFamily() == OMF_performSelector)
4775        return Owned(E);
4776    }
4777
4778    // Don't reclaim an object of Class type.
4779    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4780      return Owned(E);
4781
4782    ExprNeedsCleanups = true;
4783
4784    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4785                                   : CK_ARCReclaimReturnedObject);
4786    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4787                                          VK_RValue));
4788  }
4789
4790  if (!getLangOpts().CPlusPlus)
4791    return Owned(E);
4792
4793  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4794  // a fast path for the common case that the type is directly a RecordType.
4795  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4796  const RecordType *RT = 0;
4797  while (!RT) {
4798    switch (T->getTypeClass()) {
4799    case Type::Record:
4800      RT = cast<RecordType>(T);
4801      break;
4802    case Type::ConstantArray:
4803    case Type::IncompleteArray:
4804    case Type::VariableArray:
4805    case Type::DependentSizedArray:
4806      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4807      break;
4808    default:
4809      return Owned(E);
4810    }
4811  }
4812
4813  // That should be enough to guarantee that this type is complete, if we're
4814  // not processing a decltype expression.
4815  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4816  if (RD->isInvalidDecl() || RD->isDependentContext())
4817    return Owned(E);
4818
4819  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4820  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4821
4822  if (Destructor) {
4823    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4824    CheckDestructorAccess(E->getExprLoc(), Destructor,
4825                          PDiag(diag::err_access_dtor_temp)
4826                            << E->getType());
4827    if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
4828      return ExprError();
4829
4830    // If destructor is trivial, we can avoid the extra copy.
4831    if (Destructor->isTrivial())
4832      return Owned(E);
4833
4834    // We need a cleanup, but we don't need to remember the temporary.
4835    ExprNeedsCleanups = true;
4836  }
4837
4838  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4839  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4840
4841  if (IsDecltype)
4842    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4843
4844  return Owned(Bind);
4845}
4846
4847ExprResult
4848Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4849  if (SubExpr.isInvalid())
4850    return ExprError();
4851
4852  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4853}
4854
4855Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4856  assert(SubExpr && "sub expression can't be null!");
4857
4858  CleanupVarDeclMarking();
4859
4860  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4861  assert(ExprCleanupObjects.size() >= FirstCleanup);
4862  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4863  if (!ExprNeedsCleanups)
4864    return SubExpr;
4865
4866  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4867    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4868                         ExprCleanupObjects.size() - FirstCleanup);
4869
4870  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4871  DiscardCleanupsInEvaluationContext();
4872
4873  return E;
4874}
4875
4876Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4877  assert(SubStmt && "sub statement can't be null!");
4878
4879  CleanupVarDeclMarking();
4880
4881  if (!ExprNeedsCleanups)
4882    return SubStmt;
4883
4884  // FIXME: In order to attach the temporaries, wrap the statement into
4885  // a StmtExpr; currently this is only used for asm statements.
4886  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4887  // a new AsmStmtWithTemporaries.
4888  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
4889                                                      SourceLocation(),
4890                                                      SourceLocation());
4891  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4892                                   SourceLocation());
4893  return MaybeCreateExprWithCleanups(E);
4894}
4895
4896/// Process the expression contained within a decltype. For such expressions,
4897/// certain semantic checks on temporaries are delayed until this point, and
4898/// are omitted for the 'topmost' call in the decltype expression. If the
4899/// topmost call bound a temporary, strip that temporary off the expression.
4900ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4901  assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
4902
4903  // C++11 [expr.call]p11:
4904  //   If a function call is a prvalue of object type,
4905  // -- if the function call is either
4906  //   -- the operand of a decltype-specifier, or
4907  //   -- the right operand of a comma operator that is the operand of a
4908  //      decltype-specifier,
4909  //   a temporary object is not introduced for the prvalue.
4910
4911  // Recursively rebuild ParenExprs and comma expressions to strip out the
4912  // outermost CXXBindTemporaryExpr, if any.
4913  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4914    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4915    if (SubExpr.isInvalid())
4916      return ExprError();
4917    if (SubExpr.get() == PE->getSubExpr())
4918      return Owned(E);
4919    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4920  }
4921  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4922    if (BO->getOpcode() == BO_Comma) {
4923      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4924      if (RHS.isInvalid())
4925        return ExprError();
4926      if (RHS.get() == BO->getRHS())
4927        return Owned(E);
4928      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4929                                                BO_Comma, BO->getType(),
4930                                                BO->getValueKind(),
4931                                                BO->getObjectKind(),
4932                                                BO->getOperatorLoc(),
4933                                                BO->isFPContractable()));
4934    }
4935  }
4936
4937  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4938  if (TopBind)
4939    E = TopBind->getSubExpr();
4940
4941  // Disable the special decltype handling now.
4942  ExprEvalContexts.back().IsDecltype = false;
4943
4944  // In MS mode, don't perform any extra checking of call return types within a
4945  // decltype expression.
4946  if (getLangOpts().MicrosoftMode)
4947    return Owned(E);
4948
4949  // Perform the semantic checks we delayed until this point.
4950  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4951  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
4952       I != N; ++I) {
4953    CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
4954    if (Call == TopCall)
4955      continue;
4956
4957    if (CheckCallReturnType(Call->getCallReturnType(),
4958                            Call->getLocStart(),
4959                            Call, Call->getDirectCallee()))
4960      return ExprError();
4961  }
4962
4963  // Now all relevant types are complete, check the destructors are accessible
4964  // and non-deleted, and annotate them on the temporaries.
4965  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
4966       I != N; ++I) {
4967    CXXBindTemporaryExpr *Bind =
4968      ExprEvalContexts.back().DelayedDecltypeBinds[I];
4969    if (Bind == TopBind)
4970      continue;
4971
4972    CXXTemporary *Temp = Bind->getTemporary();
4973
4974    CXXRecordDecl *RD =
4975      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4976    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4977    Temp->setDestructor(Destructor);
4978
4979    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4980    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4981                          PDiag(diag::err_access_dtor_temp)
4982                            << Bind->getType());
4983    if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
4984      return ExprError();
4985
4986    // We need a cleanup, but we don't need to remember the temporary.
4987    ExprNeedsCleanups = true;
4988  }
4989
4990  // Possibly strip off the top CXXBindTemporaryExpr.
4991  return Owned(E);
4992}
4993
4994ExprResult
4995Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4996                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4997                                   bool &MayBePseudoDestructor) {
4998  // Since this might be a postfix expression, get rid of ParenListExprs.
4999  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
5000  if (Result.isInvalid()) return ExprError();
5001  Base = Result.get();
5002
5003  Result = CheckPlaceholderExpr(Base);
5004  if (Result.isInvalid()) return ExprError();
5005  Base = Result.take();
5006
5007  QualType BaseType = Base->getType();
5008  MayBePseudoDestructor = false;
5009  if (BaseType->isDependentType()) {
5010    // If we have a pointer to a dependent type and are using the -> operator,
5011    // the object type is the type that the pointer points to. We might still
5012    // have enough information about that type to do something useful.
5013    if (OpKind == tok::arrow)
5014      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5015        BaseType = Ptr->getPointeeType();
5016
5017    ObjectType = ParsedType::make(BaseType);
5018    MayBePseudoDestructor = true;
5019    return Owned(Base);
5020  }
5021
5022  // C++ [over.match.oper]p8:
5023  //   [...] When operator->returns, the operator-> is applied  to the value
5024  //   returned, with the original second operand.
5025  if (OpKind == tok::arrow) {
5026    // The set of types we've considered so far.
5027    llvm::SmallPtrSet<CanQualType,8> CTypes;
5028    SmallVector<SourceLocation, 8> Locations;
5029    CTypes.insert(Context.getCanonicalType(BaseType));
5030
5031    while (BaseType->isRecordType()) {
5032      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
5033      if (Result.isInvalid())
5034        return ExprError();
5035      Base = Result.get();
5036      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5037        Locations.push_back(OpCall->getDirectCallee()->getLocation());
5038      BaseType = Base->getType();
5039      CanQualType CBaseType = Context.getCanonicalType(BaseType);
5040      if (!CTypes.insert(CBaseType)) {
5041        Diag(OpLoc, diag::err_operator_arrow_circular);
5042        for (unsigned i = 0; i < Locations.size(); i++)
5043          Diag(Locations[i], diag::note_declared_at);
5044        return ExprError();
5045      }
5046    }
5047
5048    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
5049      BaseType = BaseType->getPointeeType();
5050  }
5051
5052  // Objective-C properties allow "." access on Objective-C pointer types,
5053  // so adjust the base type to the object type itself.
5054  if (BaseType->isObjCObjectPointerType())
5055    BaseType = BaseType->getPointeeType();
5056
5057  // C++ [basic.lookup.classref]p2:
5058  //   [...] If the type of the object expression is of pointer to scalar
5059  //   type, the unqualified-id is looked up in the context of the complete
5060  //   postfix-expression.
5061  //
5062  // This also indicates that we could be parsing a pseudo-destructor-name.
5063  // Note that Objective-C class and object types can be pseudo-destructor
5064  // expressions or normal member (ivar or property) access expressions.
5065  if (BaseType->isObjCObjectOrInterfaceType()) {
5066    MayBePseudoDestructor = true;
5067  } else if (!BaseType->isRecordType()) {
5068    ObjectType = ParsedType();
5069    MayBePseudoDestructor = true;
5070    return Owned(Base);
5071  }
5072
5073  // The object type must be complete (or dependent), or
5074  // C++11 [expr.prim.general]p3:
5075  //   Unlike the object expression in other contexts, *this is not required to
5076  //   be of complete type for purposes of class member access (5.2.5) outside
5077  //   the member function body.
5078  if (!BaseType->isDependentType() &&
5079      !isThisOutsideMemberFunctionBody(BaseType) &&
5080      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5081    return ExprError();
5082
5083  // C++ [basic.lookup.classref]p2:
5084  //   If the id-expression in a class member access (5.2.5) is an
5085  //   unqualified-id, and the type of the object expression is of a class
5086  //   type C (or of pointer to a class type C), the unqualified-id is looked
5087  //   up in the scope of class C. [...]
5088  ObjectType = ParsedType::make(BaseType);
5089  return Base;
5090}
5091
5092ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
5093                                                   Expr *MemExpr) {
5094  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
5095  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
5096    << isa<CXXPseudoDestructorExpr>(MemExpr)
5097    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
5098
5099  return ActOnCallExpr(/*Scope*/ 0,
5100                       MemExpr,
5101                       /*LPLoc*/ ExpectedLParenLoc,
5102                       MultiExprArg(),
5103                       /*RPLoc*/ ExpectedLParenLoc);
5104}
5105
5106static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5107                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
5108  if (Base->hasPlaceholderType()) {
5109    ExprResult result = S.CheckPlaceholderExpr(Base);
5110    if (result.isInvalid()) return true;
5111    Base = result.take();
5112  }
5113  ObjectType = Base->getType();
5114
5115  // C++ [expr.pseudo]p2:
5116  //   The left-hand side of the dot operator shall be of scalar type. The
5117  //   left-hand side of the arrow operator shall be of pointer to scalar type.
5118  //   This scalar type is the object type.
5119  // Note that this is rather different from the normal handling for the
5120  // arrow operator.
5121  if (OpKind == tok::arrow) {
5122    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5123      ObjectType = Ptr->getPointeeType();
5124    } else if (!Base->isTypeDependent()) {
5125      // The user wrote "p->" when she probably meant "p."; fix it.
5126      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5127        << ObjectType << true
5128        << FixItHint::CreateReplacement(OpLoc, ".");
5129      if (S.isSFINAEContext())
5130        return true;
5131
5132      OpKind = tok::period;
5133    }
5134  }
5135
5136  return false;
5137}
5138
5139ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5140                                           SourceLocation OpLoc,
5141                                           tok::TokenKind OpKind,
5142                                           const CXXScopeSpec &SS,
5143                                           TypeSourceInfo *ScopeTypeInfo,
5144                                           SourceLocation CCLoc,
5145                                           SourceLocation TildeLoc,
5146                                         PseudoDestructorTypeStorage Destructed,
5147                                           bool HasTrailingLParen) {
5148  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5149
5150  QualType ObjectType;
5151  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5152    return ExprError();
5153
5154  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5155      !ObjectType->isVectorType()) {
5156    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5157      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5158    else
5159      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5160        << ObjectType << Base->getSourceRange();
5161    return ExprError();
5162  }
5163
5164  // C++ [expr.pseudo]p2:
5165  //   [...] The cv-unqualified versions of the object type and of the type
5166  //   designated by the pseudo-destructor-name shall be the same type.
5167  if (DestructedTypeInfo) {
5168    QualType DestructedType = DestructedTypeInfo->getType();
5169    SourceLocation DestructedTypeStart
5170      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5171    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5172      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5173        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5174          << ObjectType << DestructedType << Base->getSourceRange()
5175          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5176
5177        // Recover by setting the destructed type to the object type.
5178        DestructedType = ObjectType;
5179        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5180                                                           DestructedTypeStart);
5181        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5182      } else if (DestructedType.getObjCLifetime() !=
5183                                                ObjectType.getObjCLifetime()) {
5184
5185        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5186          // Okay: just pretend that the user provided the correctly-qualified
5187          // type.
5188        } else {
5189          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5190            << ObjectType << DestructedType << Base->getSourceRange()
5191            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5192        }
5193
5194        // Recover by setting the destructed type to the object type.
5195        DestructedType = ObjectType;
5196        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5197                                                           DestructedTypeStart);
5198        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5199      }
5200    }
5201  }
5202
5203  // C++ [expr.pseudo]p2:
5204  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5205  //   form
5206  //
5207  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5208  //
5209  //   shall designate the same scalar type.
5210  if (ScopeTypeInfo) {
5211    QualType ScopeType = ScopeTypeInfo->getType();
5212    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5213        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5214
5215      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5216           diag::err_pseudo_dtor_type_mismatch)
5217        << ObjectType << ScopeType << Base->getSourceRange()
5218        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5219
5220      ScopeType = QualType();
5221      ScopeTypeInfo = 0;
5222    }
5223  }
5224
5225  Expr *Result
5226    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5227                                            OpKind == tok::arrow, OpLoc,
5228                                            SS.getWithLocInContext(Context),
5229                                            ScopeTypeInfo,
5230                                            CCLoc,
5231                                            TildeLoc,
5232                                            Destructed);
5233
5234  if (HasTrailingLParen)
5235    return Owned(Result);
5236
5237  return DiagnoseDtorReference(Destructed.getLocation(), Result);
5238}
5239
5240ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5241                                           SourceLocation OpLoc,
5242                                           tok::TokenKind OpKind,
5243                                           CXXScopeSpec &SS,
5244                                           UnqualifiedId &FirstTypeName,
5245                                           SourceLocation CCLoc,
5246                                           SourceLocation TildeLoc,
5247                                           UnqualifiedId &SecondTypeName,
5248                                           bool HasTrailingLParen) {
5249  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5250          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5251         "Invalid first type name in pseudo-destructor");
5252  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5253          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5254         "Invalid second type name in pseudo-destructor");
5255
5256  QualType ObjectType;
5257  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5258    return ExprError();
5259
5260  // Compute the object type that we should use for name lookup purposes. Only
5261  // record types and dependent types matter.
5262  ParsedType ObjectTypePtrForLookup;
5263  if (!SS.isSet()) {
5264    if (ObjectType->isRecordType())
5265      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5266    else if (ObjectType->isDependentType())
5267      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5268  }
5269
5270  // Convert the name of the type being destructed (following the ~) into a
5271  // type (with source-location information).
5272  QualType DestructedType;
5273  TypeSourceInfo *DestructedTypeInfo = 0;
5274  PseudoDestructorTypeStorage Destructed;
5275  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5276    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5277                               SecondTypeName.StartLocation,
5278                               S, &SS, true, false, ObjectTypePtrForLookup);
5279    if (!T &&
5280        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5281         (!SS.isSet() && ObjectType->isDependentType()))) {
5282      // The name of the type being destroyed is a dependent name, and we
5283      // couldn't find anything useful in scope. Just store the identifier and
5284      // it's location, and we'll perform (qualified) name lookup again at
5285      // template instantiation time.
5286      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5287                                               SecondTypeName.StartLocation);
5288    } else if (!T) {
5289      Diag(SecondTypeName.StartLocation,
5290           diag::err_pseudo_dtor_destructor_non_type)
5291        << SecondTypeName.Identifier << ObjectType;
5292      if (isSFINAEContext())
5293        return ExprError();
5294
5295      // Recover by assuming we had the right type all along.
5296      DestructedType = ObjectType;
5297    } else
5298      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5299  } else {
5300    // Resolve the template-id to a type.
5301    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5302    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5303                                       TemplateId->NumArgs);
5304    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5305                                       TemplateId->TemplateKWLoc,
5306                                       TemplateId->Template,
5307                                       TemplateId->TemplateNameLoc,
5308                                       TemplateId->LAngleLoc,
5309                                       TemplateArgsPtr,
5310                                       TemplateId->RAngleLoc);
5311    if (T.isInvalid() || !T.get()) {
5312      // Recover by assuming we had the right type all along.
5313      DestructedType = ObjectType;
5314    } else
5315      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5316  }
5317
5318  // If we've performed some kind of recovery, (re-)build the type source
5319  // information.
5320  if (!DestructedType.isNull()) {
5321    if (!DestructedTypeInfo)
5322      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5323                                                  SecondTypeName.StartLocation);
5324    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5325  }
5326
5327  // Convert the name of the scope type (the type prior to '::') into a type.
5328  TypeSourceInfo *ScopeTypeInfo = 0;
5329  QualType ScopeType;
5330  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5331      FirstTypeName.Identifier) {
5332    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5333      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5334                                 FirstTypeName.StartLocation,
5335                                 S, &SS, true, false, ObjectTypePtrForLookup);
5336      if (!T) {
5337        Diag(FirstTypeName.StartLocation,
5338             diag::err_pseudo_dtor_destructor_non_type)
5339          << FirstTypeName.Identifier << ObjectType;
5340
5341        if (isSFINAEContext())
5342          return ExprError();
5343
5344        // Just drop this type. It's unnecessary anyway.
5345        ScopeType = QualType();
5346      } else
5347        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5348    } else {
5349      // Resolve the template-id to a type.
5350      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5351      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5352                                         TemplateId->NumArgs);
5353      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5354                                         TemplateId->TemplateKWLoc,
5355                                         TemplateId->Template,
5356                                         TemplateId->TemplateNameLoc,
5357                                         TemplateId->LAngleLoc,
5358                                         TemplateArgsPtr,
5359                                         TemplateId->RAngleLoc);
5360      if (T.isInvalid() || !T.get()) {
5361        // Recover by dropping this type.
5362        ScopeType = QualType();
5363      } else
5364        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5365    }
5366  }
5367
5368  if (!ScopeType.isNull() && !ScopeTypeInfo)
5369    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5370                                                  FirstTypeName.StartLocation);
5371
5372
5373  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5374                                   ScopeTypeInfo, CCLoc, TildeLoc,
5375                                   Destructed, HasTrailingLParen);
5376}
5377
5378ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5379                                           SourceLocation OpLoc,
5380                                           tok::TokenKind OpKind,
5381                                           SourceLocation TildeLoc,
5382                                           const DeclSpec& DS,
5383                                           bool HasTrailingLParen) {
5384  QualType ObjectType;
5385  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5386    return ExprError();
5387
5388  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5389
5390  TypeLocBuilder TLB;
5391  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5392  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5393  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5394  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5395
5396  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5397                                   0, SourceLocation(), TildeLoc,
5398                                   Destructed, HasTrailingLParen);
5399}
5400
5401ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5402                                        CXXConversionDecl *Method,
5403                                        bool HadMultipleCandidates) {
5404  if (Method->getParent()->isLambda() &&
5405      Method->getConversionType()->isBlockPointerType()) {
5406    // This is a lambda coversion to block pointer; check if the argument
5407    // is a LambdaExpr.
5408    Expr *SubE = E;
5409    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5410    if (CE && CE->getCastKind() == CK_NoOp)
5411      SubE = CE->getSubExpr();
5412    SubE = SubE->IgnoreParens();
5413    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5414      SubE = BE->getSubExpr();
5415    if (isa<LambdaExpr>(SubE)) {
5416      // For the conversion to block pointer on a lambda expression, we
5417      // construct a special BlockLiteral instead; this doesn't really make
5418      // a difference in ARC, but outside of ARC the resulting block literal
5419      // follows the normal lifetime rules for block literals instead of being
5420      // autoreleased.
5421      DiagnosticErrorTrap Trap(Diags);
5422      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5423                                                     E->getExprLoc(),
5424                                                     Method, E);
5425      if (Exp.isInvalid())
5426        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5427      return Exp;
5428    }
5429  }
5430
5431
5432  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5433                                          FoundDecl, Method);
5434  if (Exp.isInvalid())
5435    return true;
5436
5437  MemberExpr *ME =
5438      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5439                               SourceLocation(), Context.BoundMemberTy,
5440                               VK_RValue, OK_Ordinary);
5441  if (HadMultipleCandidates)
5442    ME->setHadMultipleCandidates(true);
5443  MarkMemberReferenced(ME);
5444
5445  QualType ResultType = Method->getResultType();
5446  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5447  ResultType = ResultType.getNonLValueExprType(Context);
5448
5449  CXXMemberCallExpr *CE =
5450    new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
5451                                    Exp.get()->getLocEnd());
5452  return CE;
5453}
5454
5455ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5456                                      SourceLocation RParen) {
5457  CanThrowResult CanThrow = canThrow(Operand);
5458  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5459                                             CanThrow, KeyLoc, RParen));
5460}
5461
5462ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5463                                   Expr *Operand, SourceLocation RParen) {
5464  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5465}
5466
5467static bool IsSpecialDiscardedValue(Expr *E) {
5468  // In C++11, discarded-value expressions of a certain form are special,
5469  // according to [expr]p10:
5470  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5471  //   expression is an lvalue of volatile-qualified type and it has
5472  //   one of the following forms:
5473  E = E->IgnoreParens();
5474
5475  //   - id-expression (5.1.1),
5476  if (isa<DeclRefExpr>(E))
5477    return true;
5478
5479  //   - subscripting (5.2.1),
5480  if (isa<ArraySubscriptExpr>(E))
5481    return true;
5482
5483  //   - class member access (5.2.5),
5484  if (isa<MemberExpr>(E))
5485    return true;
5486
5487  //   - indirection (5.3.1),
5488  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5489    if (UO->getOpcode() == UO_Deref)
5490      return true;
5491
5492  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5493    //   - pointer-to-member operation (5.5),
5494    if (BO->isPtrMemOp())
5495      return true;
5496
5497    //   - comma expression (5.18) where the right operand is one of the above.
5498    if (BO->getOpcode() == BO_Comma)
5499      return IsSpecialDiscardedValue(BO->getRHS());
5500  }
5501
5502  //   - conditional expression (5.16) where both the second and the third
5503  //     operands are one of the above, or
5504  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5505    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5506           IsSpecialDiscardedValue(CO->getFalseExpr());
5507  // The related edge case of "*x ?: *x".
5508  if (BinaryConditionalOperator *BCO =
5509          dyn_cast<BinaryConditionalOperator>(E)) {
5510    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5511      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5512             IsSpecialDiscardedValue(BCO->getFalseExpr());
5513  }
5514
5515  // Objective-C++ extensions to the rule.
5516  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5517    return true;
5518
5519  return false;
5520}
5521
5522/// Perform the conversions required for an expression used in a
5523/// context that ignores the result.
5524ExprResult Sema::IgnoredValueConversions(Expr *E) {
5525  if (E->hasPlaceholderType()) {
5526    ExprResult result = CheckPlaceholderExpr(E);
5527    if (result.isInvalid()) return Owned(E);
5528    E = result.take();
5529  }
5530
5531  // C99 6.3.2.1:
5532  //   [Except in specific positions,] an lvalue that does not have
5533  //   array type is converted to the value stored in the
5534  //   designated object (and is no longer an lvalue).
5535  if (E->isRValue()) {
5536    // In C, function designators (i.e. expressions of function type)
5537    // are r-values, but we still want to do function-to-pointer decay
5538    // on them.  This is both technically correct and convenient for
5539    // some clients.
5540    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5541      return DefaultFunctionArrayConversion(E);
5542
5543    return Owned(E);
5544  }
5545
5546  if (getLangOpts().CPlusPlus)  {
5547    // The C++11 standard defines the notion of a discarded-value expression;
5548    // normally, we don't need to do anything to handle it, but if it is a
5549    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5550    // conversion.
5551    if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5552        E->getType().isVolatileQualified() &&
5553        IsSpecialDiscardedValue(E)) {
5554      ExprResult Res = DefaultLvalueConversion(E);
5555      if (Res.isInvalid())
5556        return Owned(E);
5557      E = Res.take();
5558    }
5559    return Owned(E);
5560  }
5561
5562  // GCC seems to also exclude expressions of incomplete enum type.
5563  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5564    if (!T->getDecl()->isComplete()) {
5565      // FIXME: stupid workaround for a codegen bug!
5566      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5567      return Owned(E);
5568    }
5569  }
5570
5571  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5572  if (Res.isInvalid())
5573    return Owned(E);
5574  E = Res.take();
5575
5576  if (!E->getType()->isVoidType())
5577    RequireCompleteType(E->getExprLoc(), E->getType(),
5578                        diag::err_incomplete_type);
5579  return Owned(E);
5580}
5581
5582ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5583                                     bool DiscardedValue,
5584                                     bool IsConstexpr) {
5585  ExprResult FullExpr = Owned(FE);
5586
5587  if (!FullExpr.get())
5588    return ExprError();
5589
5590  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5591    return ExprError();
5592
5593  // Top-level expressions default to 'id' when we're in a debugger.
5594  if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5595      FullExpr.get()->getType() == Context.UnknownAnyTy) {
5596    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5597    if (FullExpr.isInvalid())
5598      return ExprError();
5599  }
5600
5601  if (DiscardedValue) {
5602    FullExpr = CheckPlaceholderExpr(FullExpr.take());
5603    if (FullExpr.isInvalid())
5604      return ExprError();
5605
5606    FullExpr = IgnoredValueConversions(FullExpr.take());
5607    if (FullExpr.isInvalid())
5608      return ExprError();
5609  }
5610
5611  CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5612  return MaybeCreateExprWithCleanups(FullExpr);
5613}
5614
5615StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5616  if (!FullStmt) return StmtError();
5617
5618  return MaybeCreateStmtWithCleanups(FullStmt);
5619}
5620
5621Sema::IfExistsResult
5622Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5623                                   CXXScopeSpec &SS,
5624                                   const DeclarationNameInfo &TargetNameInfo) {
5625  DeclarationName TargetName = TargetNameInfo.getName();
5626  if (!TargetName)
5627    return IER_DoesNotExist;
5628
5629  // If the name itself is dependent, then the result is dependent.
5630  if (TargetName.isDependentName())
5631    return IER_Dependent;
5632
5633  // Do the redeclaration lookup in the current scope.
5634  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5635                 Sema::NotForRedeclaration);
5636  LookupParsedName(R, S, &SS);
5637  R.suppressDiagnostics();
5638
5639  switch (R.getResultKind()) {
5640  case LookupResult::Found:
5641  case LookupResult::FoundOverloaded:
5642  case LookupResult::FoundUnresolvedValue:
5643  case LookupResult::Ambiguous:
5644    return IER_Exists;
5645
5646  case LookupResult::NotFound:
5647    return IER_DoesNotExist;
5648
5649  case LookupResult::NotFoundInCurrentInstantiation:
5650    return IER_Dependent;
5651  }
5652
5653  llvm_unreachable("Invalid LookupResult Kind!");
5654}
5655
5656Sema::IfExistsResult
5657Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5658                                   bool IsIfExists, CXXScopeSpec &SS,
5659                                   UnqualifiedId &Name) {
5660  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5661
5662  // Check for unexpanded parameter packs.
5663  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5664  collectUnexpandedParameterPacks(SS, Unexpanded);
5665  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5666  if (!Unexpanded.empty()) {
5667    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5668                                     IsIfExists? UPPC_IfExists
5669                                               : UPPC_IfNotExists,
5670                                     Unexpanded);
5671    return IER_Error;
5672  }
5673
5674  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5675}
5676