SemaExprCXX.cpp revision 9b623639378d53a675921ddfa7316034d571881e
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/TemplateDeduction.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30using namespace clang;
31using namespace sema;
32
33ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
34                                   IdentifierInfo &II,
35                                   SourceLocation NameLoc,
36                                   Scope *S, CXXScopeSpec &SS,
37                                   ParsedType ObjectTypePtr,
38                                   bool EnteringContext) {
39  // Determine where to perform name lookup.
40
41  // FIXME: This area of the standard is very messy, and the current
42  // wording is rather unclear about which scopes we search for the
43  // destructor name; see core issues 399 and 555. Issue 399 in
44  // particular shows where the current description of destructor name
45  // lookup is completely out of line with existing practice, e.g.,
46  // this appears to be ill-formed:
47  //
48  //   namespace N {
49  //     template <typename T> struct S {
50  //       ~S();
51  //     };
52  //   }
53  //
54  //   void f(N::S<int>* s) {
55  //     s->N::S<int>::~S();
56  //   }
57  //
58  // See also PR6358 and PR6359.
59  // For this reason, we're currently only doing the C++03 version of this
60  // code; the C++0x version has to wait until we get a proper spec.
61  QualType SearchType;
62  DeclContext *LookupCtx = 0;
63  bool isDependent = false;
64  bool LookInScope = false;
65
66  // If we have an object type, it's because we are in a
67  // pseudo-destructor-expression or a member access expression, and
68  // we know what type we're looking for.
69  if (ObjectTypePtr)
70    SearchType = GetTypeFromParser(ObjectTypePtr);
71
72  if (SS.isSet()) {
73    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
74
75    bool AlreadySearched = false;
76    bool LookAtPrefix = true;
77    // C++ [basic.lookup.qual]p6:
78    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
79    //   the type-names are looked up as types in the scope designated by the
80    //   nested-name-specifier. In a qualified-id of the form:
81    //
82    //     ::[opt] nested-name-specifier  ̃ class-name
83    //
84    //   where the nested-name-specifier designates a namespace scope, and in
85    //   a qualified-id of the form:
86    //
87    //     ::opt nested-name-specifier class-name ::  ̃ class-name
88    //
89    //   the class-names are looked up as types in the scope designated by
90    //   the nested-name-specifier.
91    //
92    // Here, we check the first case (completely) and determine whether the
93    // code below is permitted to look at the prefix of the
94    // nested-name-specifier.
95    DeclContext *DC = computeDeclContext(SS, EnteringContext);
96    if (DC && DC->isFileContext()) {
97      AlreadySearched = true;
98      LookupCtx = DC;
99      isDependent = false;
100    } else if (DC && isa<CXXRecordDecl>(DC))
101      LookAtPrefix = false;
102
103    // The second case from the C++03 rules quoted further above.
104    NestedNameSpecifier *Prefix = 0;
105    if (AlreadySearched) {
106      // Nothing left to do.
107    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
108      CXXScopeSpec PrefixSS;
109      PrefixSS.setScopeRep(Prefix);
110      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
111      isDependent = isDependentScopeSpecifier(PrefixSS);
112    } else if (ObjectTypePtr) {
113      LookupCtx = computeDeclContext(SearchType);
114      isDependent = SearchType->isDependentType();
115    } else {
116      LookupCtx = computeDeclContext(SS, EnteringContext);
117      isDependent = LookupCtx && LookupCtx->isDependentContext();
118    }
119
120    LookInScope = false;
121  } else if (ObjectTypePtr) {
122    // C++ [basic.lookup.classref]p3:
123    //   If the unqualified-id is ~type-name, the type-name is looked up
124    //   in the context of the entire postfix-expression. If the type T
125    //   of the object expression is of a class type C, the type-name is
126    //   also looked up in the scope of class C. At least one of the
127    //   lookups shall find a name that refers to (possibly
128    //   cv-qualified) T.
129    LookupCtx = computeDeclContext(SearchType);
130    isDependent = SearchType->isDependentType();
131    assert((isDependent || !SearchType->isIncompleteType()) &&
132           "Caller should have completed object type");
133
134    LookInScope = true;
135  } else {
136    // Perform lookup into the current scope (only).
137    LookInScope = true;
138  }
139
140  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
141  for (unsigned Step = 0; Step != 2; ++Step) {
142    // Look for the name first in the computed lookup context (if we
143    // have one) and, if that fails to find a match, in the sope (if
144    // we're allowed to look there).
145    Found.clear();
146    if (Step == 0 && LookupCtx)
147      LookupQualifiedName(Found, LookupCtx);
148    else if (Step == 1 && LookInScope && S)
149      LookupName(Found, S);
150    else
151      continue;
152
153    // FIXME: Should we be suppressing ambiguities here?
154    if (Found.isAmbiguous())
155      return ParsedType();
156
157    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
158      QualType T = Context.getTypeDeclType(Type);
159
160      if (SearchType.isNull() || SearchType->isDependentType() ||
161          Context.hasSameUnqualifiedType(T, SearchType)) {
162        // We found our type!
163
164        return ParsedType::make(T);
165      }
166    }
167
168    // If the name that we found is a class template name, and it is
169    // the same name as the template name in the last part of the
170    // nested-name-specifier (if present) or the object type, then
171    // this is the destructor for that class.
172    // FIXME: This is a workaround until we get real drafting for core
173    // issue 399, for which there isn't even an obvious direction.
174    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
175      QualType MemberOfType;
176      if (SS.isSet()) {
177        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
178          // Figure out the type of the context, if it has one.
179          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
180            MemberOfType = Context.getTypeDeclType(Record);
181        }
182      }
183      if (MemberOfType.isNull())
184        MemberOfType = SearchType;
185
186      if (MemberOfType.isNull())
187        continue;
188
189      // We're referring into a class template specialization. If the
190      // class template we found is the same as the template being
191      // specialized, we found what we are looking for.
192      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
193        if (ClassTemplateSpecializationDecl *Spec
194              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
195          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
196                Template->getCanonicalDecl())
197            return ParsedType::make(MemberOfType);
198        }
199
200        continue;
201      }
202
203      // We're referring to an unresolved class template
204      // specialization. Determine whether we class template we found
205      // is the same as the template being specialized or, if we don't
206      // know which template is being specialized, that it at least
207      // has the same name.
208      if (const TemplateSpecializationType *SpecType
209            = MemberOfType->getAs<TemplateSpecializationType>()) {
210        TemplateName SpecName = SpecType->getTemplateName();
211
212        // The class template we found is the same template being
213        // specialized.
214        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
215          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
216            return ParsedType::make(MemberOfType);
217
218          continue;
219        }
220
221        // The class template we found has the same name as the
222        // (dependent) template name being specialized.
223        if (DependentTemplateName *DepTemplate
224                                    = SpecName.getAsDependentTemplateName()) {
225          if (DepTemplate->isIdentifier() &&
226              DepTemplate->getIdentifier() == Template->getIdentifier())
227            return ParsedType::make(MemberOfType);
228
229          continue;
230        }
231      }
232    }
233  }
234
235  if (isDependent) {
236    // We didn't find our type, but that's okay: it's dependent
237    // anyway.
238    NestedNameSpecifier *NNS = 0;
239    SourceRange Range;
240    if (SS.isSet()) {
241      NNS = (NestedNameSpecifier *)SS.getScopeRep();
242      Range = SourceRange(SS.getRange().getBegin(), NameLoc);
243    } else {
244      NNS = NestedNameSpecifier::Create(Context, &II);
245      Range = SourceRange(NameLoc);
246    }
247
248    QualType T = CheckTypenameType(ETK_None, NNS, II,
249                                   SourceLocation(),
250                                   Range, NameLoc);
251    return ParsedType::make(T);
252  }
253
254  if (ObjectTypePtr)
255    Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
256      << &II;
257  else
258    Diag(NameLoc, diag::err_destructor_class_name);
259
260  return ParsedType();
261}
262
263/// \brief Build a C++ typeid expression with a type operand.
264ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
265                                SourceLocation TypeidLoc,
266                                TypeSourceInfo *Operand,
267                                SourceLocation RParenLoc) {
268  // C++ [expr.typeid]p4:
269  //   The top-level cv-qualifiers of the lvalue expression or the type-id
270  //   that is the operand of typeid are always ignored.
271  //   If the type of the type-id is a class type or a reference to a class
272  //   type, the class shall be completely-defined.
273  Qualifiers Quals;
274  QualType T
275    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
276                                      Quals);
277  if (T->getAs<RecordType>() &&
278      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
279    return ExprError();
280
281  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
282                                           Operand,
283                                           SourceRange(TypeidLoc, RParenLoc)));
284}
285
286/// \brief Build a C++ typeid expression with an expression operand.
287ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
288                                SourceLocation TypeidLoc,
289                                Expr *E,
290                                SourceLocation RParenLoc) {
291  bool isUnevaluatedOperand = true;
292  if (E && !E->isTypeDependent()) {
293    QualType T = E->getType();
294    if (const RecordType *RecordT = T->getAs<RecordType>()) {
295      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
296      // C++ [expr.typeid]p3:
297      //   [...] If the type of the expression is a class type, the class
298      //   shall be completely-defined.
299      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
300        return ExprError();
301
302      // C++ [expr.typeid]p3:
303      //   When typeid is applied to an expression other than an glvalue of a
304      //   polymorphic class type [...] [the] expression is an unevaluated
305      //   operand. [...]
306      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
307        isUnevaluatedOperand = false;
308
309        // We require a vtable to query the type at run time.
310        MarkVTableUsed(TypeidLoc, RecordD);
311      }
312    }
313
314    // C++ [expr.typeid]p4:
315    //   [...] If the type of the type-id is a reference to a possibly
316    //   cv-qualified type, the result of the typeid expression refers to a
317    //   std::type_info object representing the cv-unqualified referenced
318    //   type.
319    Qualifiers Quals;
320    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
321    if (!Context.hasSameType(T, UnqualT)) {
322      T = UnqualT;
323      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
324    }
325  }
326
327  // If this is an unevaluated operand, clear out the set of
328  // declaration references we have been computing and eliminate any
329  // temporaries introduced in its computation.
330  if (isUnevaluatedOperand)
331    ExprEvalContexts.back().Context = Unevaluated;
332
333  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
334                                           E,
335                                           SourceRange(TypeidLoc, RParenLoc)));
336}
337
338/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
339ExprResult
340Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
341                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
342  // Find the std::type_info type.
343  if (!StdNamespace)
344    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
345
346  if (!CXXTypeInfoDecl) {
347    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
348    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
349    LookupQualifiedName(R, getStdNamespace());
350    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
351    if (!CXXTypeInfoDecl)
352      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
353  }
354
355  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
356
357  if (isType) {
358    // The operand is a type; handle it as such.
359    TypeSourceInfo *TInfo = 0;
360    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
361                                   &TInfo);
362    if (T.isNull())
363      return ExprError();
364
365    if (!TInfo)
366      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
367
368    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
369  }
370
371  // The operand is an expression.
372  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
373}
374
375/// \brief Build a Microsoft __uuidof expression with a type operand.
376ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
377                                SourceLocation TypeidLoc,
378                                TypeSourceInfo *Operand,
379                                SourceLocation RParenLoc) {
380  // FIXME: add __uuidof semantic analysis for type operand.
381  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
382                                           Operand,
383                                           SourceRange(TypeidLoc, RParenLoc)));
384}
385
386/// \brief Build a Microsoft __uuidof expression with an expression operand.
387ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
388                                SourceLocation TypeidLoc,
389                                Expr *E,
390                                SourceLocation RParenLoc) {
391  // FIXME: add __uuidof semantic analysis for expr operand.
392  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
393                                           E,
394                                           SourceRange(TypeidLoc, RParenLoc)));
395}
396
397/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
398ExprResult
399Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
400                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
401  // If MSVCGuidDecl has not been cached, do the lookup.
402  if (!MSVCGuidDecl) {
403    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
404    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
405    LookupQualifiedName(R, Context.getTranslationUnitDecl());
406    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
407    if (!MSVCGuidDecl)
408      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
409  }
410
411  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
412
413  if (isType) {
414    // The operand is a type; handle it as such.
415    TypeSourceInfo *TInfo = 0;
416    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
417                                   &TInfo);
418    if (T.isNull())
419      return ExprError();
420
421    if (!TInfo)
422      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
423
424    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
425  }
426
427  // The operand is an expression.
428  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
429}
430
431/// ActOnCXXBoolLiteral - Parse {true,false} literals.
432ExprResult
433Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
434  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
435         "Unknown C++ Boolean value!");
436  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
437                                                Context.BoolTy, OpLoc));
438}
439
440/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
441ExprResult
442Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
443  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
444}
445
446/// ActOnCXXThrow - Parse throw expressions.
447ExprResult
448Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
449  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
450    return ExprError();
451  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
452}
453
454/// CheckCXXThrowOperand - Validate the operand of a throw.
455bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
456  // C++ [except.throw]p3:
457  //   A throw-expression initializes a temporary object, called the exception
458  //   object, the type of which is determined by removing any top-level
459  //   cv-qualifiers from the static type of the operand of throw and adjusting
460  //   the type from "array of T" or "function returning T" to "pointer to T"
461  //   or "pointer to function returning T", [...]
462  if (E->getType().hasQualifiers())
463    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
464                      CastCategory(E));
465
466  DefaultFunctionArrayConversion(E);
467
468  //   If the type of the exception would be an incomplete type or a pointer
469  //   to an incomplete type other than (cv) void the program is ill-formed.
470  QualType Ty = E->getType();
471  bool isPointer = false;
472  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
473    Ty = Ptr->getPointeeType();
474    isPointer = true;
475  }
476  if (!isPointer || !Ty->isVoidType()) {
477    if (RequireCompleteType(ThrowLoc, Ty,
478                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
479                                            : diag::err_throw_incomplete)
480                              << E->getSourceRange()))
481      return true;
482
483    if (RequireNonAbstractType(ThrowLoc, E->getType(),
484                               PDiag(diag::err_throw_abstract_type)
485                                 << E->getSourceRange()))
486      return true;
487  }
488
489  // Initialize the exception result.  This implicitly weeds out
490  // abstract types or types with inaccessible copy constructors.
491  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p34.
492  InitializedEntity Entity =
493    InitializedEntity::InitializeException(ThrowLoc, E->getType(),
494                                           /*NRVO=*/false);
495  ExprResult Res = PerformCopyInitialization(Entity,
496                                                   SourceLocation(),
497                                                   Owned(E));
498  if (Res.isInvalid())
499    return true;
500  E = Res.takeAs<Expr>();
501
502  // If the exception has class type, we need additional handling.
503  const RecordType *RecordTy = Ty->getAs<RecordType>();
504  if (!RecordTy)
505    return false;
506  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
507
508  // If we are throwing a polymorphic class type or pointer thereof,
509  // exception handling will make use of the vtable.
510  MarkVTableUsed(ThrowLoc, RD);
511
512  // If a pointer is thrown, the referenced object will not be destroyed.
513  if (isPointer)
514    return false;
515
516  // If the class has a non-trivial destructor, we must be able to call it.
517  if (RD->hasTrivialDestructor())
518    return false;
519
520  CXXDestructorDecl *Destructor
521    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
522  if (!Destructor)
523    return false;
524
525  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
526  CheckDestructorAccess(E->getExprLoc(), Destructor,
527                        PDiag(diag::err_access_dtor_exception) << Ty);
528  return false;
529}
530
531ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
532  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
533  /// is a non-lvalue expression whose value is the address of the object for
534  /// which the function is called.
535
536  DeclContext *DC = getFunctionLevelDeclContext();
537  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
538    if (MD->isInstance())
539      return Owned(new (Context) CXXThisExpr(ThisLoc,
540                                             MD->getThisType(Context),
541                                             /*isImplicit=*/false));
542
543  return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
544}
545
546ExprResult
547Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
548                                SourceLocation LParenLoc,
549                                MultiExprArg exprs,
550                                SourceLocation RParenLoc) {
551  if (!TypeRep)
552    return ExprError();
553
554  TypeSourceInfo *TInfo;
555  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
556  if (!TInfo)
557    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
558
559  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
560}
561
562/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
563/// Can be interpreted either as function-style casting ("int(x)")
564/// or class type construction ("ClassType(x,y,z)")
565/// or creation of a value-initialized type ("int()").
566ExprResult
567Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
568                                SourceLocation LParenLoc,
569                                MultiExprArg exprs,
570                                SourceLocation RParenLoc) {
571  QualType Ty = TInfo->getType();
572  unsigned NumExprs = exprs.size();
573  Expr **Exprs = (Expr**)exprs.get();
574  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
575  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
576
577  if (Ty->isDependentType() ||
578      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
579    exprs.release();
580
581    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
582                                                    LParenLoc,
583                                                    Exprs, NumExprs,
584                                                    RParenLoc));
585  }
586
587  if (Ty->isArrayType())
588    return ExprError(Diag(TyBeginLoc,
589                          diag::err_value_init_for_array_type) << FullRange);
590  if (!Ty->isVoidType() &&
591      RequireCompleteType(TyBeginLoc, Ty,
592                          PDiag(diag::err_invalid_incomplete_type_use)
593                            << FullRange))
594    return ExprError();
595
596  if (RequireNonAbstractType(TyBeginLoc, Ty,
597                             diag::err_allocation_of_abstract_type))
598    return ExprError();
599
600
601  // C++ [expr.type.conv]p1:
602  // If the expression list is a single expression, the type conversion
603  // expression is equivalent (in definedness, and if defined in meaning) to the
604  // corresponding cast expression.
605  //
606  if (NumExprs == 1) {
607    CastKind Kind = CK_Unknown;
608    CXXCastPath BasePath;
609    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
610                       Kind, BasePath,
611                       /*FunctionalStyle=*/true))
612      return ExprError();
613
614    exprs.release();
615
616    return Owned(CXXFunctionalCastExpr::Create(Context,
617                                               Ty.getNonLValueExprType(Context),
618                                               TInfo, TyBeginLoc, Kind,
619                                               Exprs[0], &BasePath,
620                                               RParenLoc));
621  }
622
623  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
624  InitializationKind Kind
625    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
626                                                  LParenLoc, RParenLoc)
627               : InitializationKind::CreateValue(TyBeginLoc,
628                                                 LParenLoc, RParenLoc);
629  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
630  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
631
632  // FIXME: Improve AST representation?
633  return move(Result);
634}
635
636
637/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
638/// @code new (memory) int[size][4] @endcode
639/// or
640/// @code ::new Foo(23, "hello") @endcode
641/// For the interpretation of this heap of arguments, consult the base version.
642ExprResult
643Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
644                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
645                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
646                  Declarator &D, SourceLocation ConstructorLParen,
647                  MultiExprArg ConstructorArgs,
648                  SourceLocation ConstructorRParen) {
649  Expr *ArraySize = 0;
650  // If the specified type is an array, unwrap it and save the expression.
651  if (D.getNumTypeObjects() > 0 &&
652      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
653    DeclaratorChunk &Chunk = D.getTypeObject(0);
654    if (Chunk.Arr.hasStatic)
655      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
656        << D.getSourceRange());
657    if (!Chunk.Arr.NumElts)
658      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
659        << D.getSourceRange());
660
661    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
662    D.DropFirstTypeObject();
663  }
664
665  // Every dimension shall be of constant size.
666  if (ArraySize) {
667    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
668      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
669        break;
670
671      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
672      if (Expr *NumElts = (Expr *)Array.NumElts) {
673        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
674            !NumElts->isIntegerConstantExpr(Context)) {
675          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
676            << NumElts->getSourceRange();
677          return ExprError();
678        }
679      }
680    }
681  }
682
683  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
684  QualType AllocType = TInfo->getType();
685  if (D.isInvalidType())
686    return ExprError();
687
688  if (!TInfo)
689    TInfo = Context.getTrivialTypeSourceInfo(AllocType);
690
691  SourceRange R = TInfo->getTypeLoc().getSourceRange();
692  return BuildCXXNew(StartLoc, UseGlobal,
693                     PlacementLParen,
694                     move(PlacementArgs),
695                     PlacementRParen,
696                     TypeIdParens,
697                     AllocType,
698                     TInfo,
699                     ArraySize,
700                     ConstructorLParen,
701                     move(ConstructorArgs),
702                     ConstructorRParen);
703}
704
705ExprResult
706Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
707                  SourceLocation PlacementLParen,
708                  MultiExprArg PlacementArgs,
709                  SourceLocation PlacementRParen,
710                  SourceRange TypeIdParens,
711                  QualType AllocType,
712                  TypeSourceInfo *AllocTypeInfo,
713                  Expr *ArraySize,
714                  SourceLocation ConstructorLParen,
715                  MultiExprArg ConstructorArgs,
716                  SourceLocation ConstructorRParen) {
717  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
718
719  // Per C++0x [expr.new]p5, the type being constructed may be a
720  // typedef of an array type.
721  if (!ArraySize) {
722    if (const ConstantArrayType *Array
723                              = Context.getAsConstantArrayType(AllocType)) {
724      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
725                                         Context.getSizeType(),
726                                         TypeRange.getEnd());
727      AllocType = Array->getElementType();
728    }
729  }
730
731  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
732    return ExprError();
733
734  QualType ResultType = Context.getPointerType(AllocType);
735
736  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
737  //   or enumeration type with a non-negative value."
738  if (ArraySize && !ArraySize->isTypeDependent()) {
739
740    QualType SizeType = ArraySize->getType();
741
742    ExprResult ConvertedSize
743      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
744                                       PDiag(diag::err_array_size_not_integral),
745                                     PDiag(diag::err_array_size_incomplete_type)
746                                       << ArraySize->getSourceRange(),
747                               PDiag(diag::err_array_size_explicit_conversion),
748                                       PDiag(diag::note_array_size_conversion),
749                               PDiag(diag::err_array_size_ambiguous_conversion),
750                                       PDiag(diag::note_array_size_conversion),
751                          PDiag(getLangOptions().CPlusPlus0x? 0
752                                            : diag::ext_array_size_conversion));
753    if (ConvertedSize.isInvalid())
754      return ExprError();
755
756    ArraySize = ConvertedSize.take();
757    SizeType = ArraySize->getType();
758    if (!SizeType->isIntegralOrUnscopedEnumerationType())
759      return ExprError();
760
761    // Let's see if this is a constant < 0. If so, we reject it out of hand.
762    // We don't care about special rules, so we tell the machinery it's not
763    // evaluated - it gives us a result in more cases.
764    if (!ArraySize->isValueDependent()) {
765      llvm::APSInt Value;
766      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
767        if (Value < llvm::APSInt(
768                        llvm::APInt::getNullValue(Value.getBitWidth()),
769                                 Value.isUnsigned()))
770          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
771                                diag::err_typecheck_negative_array_size)
772            << ArraySize->getSourceRange());
773
774        if (!AllocType->isDependentType()) {
775          unsigned ActiveSizeBits
776            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
777          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
778            Diag(ArraySize->getSourceRange().getBegin(),
779                 diag::err_array_too_large)
780              << Value.toString(10)
781              << ArraySize->getSourceRange();
782            return ExprError();
783          }
784        }
785      } else if (TypeIdParens.isValid()) {
786        // Can't have dynamic array size when the type-id is in parentheses.
787        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
788          << ArraySize->getSourceRange()
789          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
790          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
791
792        TypeIdParens = SourceRange();
793      }
794    }
795
796    ImpCastExprToType(ArraySize, Context.getSizeType(),
797                      CK_IntegralCast);
798  }
799
800  FunctionDecl *OperatorNew = 0;
801  FunctionDecl *OperatorDelete = 0;
802  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
803  unsigned NumPlaceArgs = PlacementArgs.size();
804
805  if (!AllocType->isDependentType() &&
806      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
807      FindAllocationFunctions(StartLoc,
808                              SourceRange(PlacementLParen, PlacementRParen),
809                              UseGlobal, AllocType, ArraySize, PlaceArgs,
810                              NumPlaceArgs, OperatorNew, OperatorDelete))
811    return ExprError();
812  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
813  if (OperatorNew) {
814    // Add default arguments, if any.
815    const FunctionProtoType *Proto =
816      OperatorNew->getType()->getAs<FunctionProtoType>();
817    VariadicCallType CallType =
818      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
819
820    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
821                               Proto, 1, PlaceArgs, NumPlaceArgs,
822                               AllPlaceArgs, CallType))
823      return ExprError();
824
825    NumPlaceArgs = AllPlaceArgs.size();
826    if (NumPlaceArgs > 0)
827      PlaceArgs = &AllPlaceArgs[0];
828  }
829
830  bool Init = ConstructorLParen.isValid();
831  // --- Choosing a constructor ---
832  CXXConstructorDecl *Constructor = 0;
833  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
834  unsigned NumConsArgs = ConstructorArgs.size();
835  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
836
837  // Array 'new' can't have any initializers.
838  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
839    SourceRange InitRange(ConsArgs[0]->getLocStart(),
840                          ConsArgs[NumConsArgs - 1]->getLocEnd());
841
842    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
843    return ExprError();
844  }
845
846  if (!AllocType->isDependentType() &&
847      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
848    // C++0x [expr.new]p15:
849    //   A new-expression that creates an object of type T initializes that
850    //   object as follows:
851    InitializationKind Kind
852    //     - If the new-initializer is omitted, the object is default-
853    //       initialized (8.5); if no initialization is performed,
854    //       the object has indeterminate value
855      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
856    //     - Otherwise, the new-initializer is interpreted according to the
857    //       initialization rules of 8.5 for direct-initialization.
858             : InitializationKind::CreateDirect(TypeRange.getBegin(),
859                                                ConstructorLParen,
860                                                ConstructorRParen);
861
862    InitializedEntity Entity
863      = InitializedEntity::InitializeNew(StartLoc, AllocType);
864    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
865    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
866                                                move(ConstructorArgs));
867    if (FullInit.isInvalid())
868      return ExprError();
869
870    // FullInit is our initializer; walk through it to determine if it's a
871    // constructor call, which CXXNewExpr handles directly.
872    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
873      if (CXXBindTemporaryExpr *Binder
874            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
875        FullInitExpr = Binder->getSubExpr();
876      if (CXXConstructExpr *Construct
877                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
878        Constructor = Construct->getConstructor();
879        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
880                                         AEnd = Construct->arg_end();
881             A != AEnd; ++A)
882          ConvertedConstructorArgs.push_back(A->Retain());
883      } else {
884        // Take the converted initializer.
885        ConvertedConstructorArgs.push_back(FullInit.release());
886      }
887    } else {
888      // No initialization required.
889    }
890
891    // Take the converted arguments and use them for the new expression.
892    NumConsArgs = ConvertedConstructorArgs.size();
893    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
894  }
895
896  // Mark the new and delete operators as referenced.
897  if (OperatorNew)
898    MarkDeclarationReferenced(StartLoc, OperatorNew);
899  if (OperatorDelete)
900    MarkDeclarationReferenced(StartLoc, OperatorDelete);
901
902  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
903
904  PlacementArgs.release();
905  ConstructorArgs.release();
906
907  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
908                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
909                                        ArraySize, Constructor, Init,
910                                        ConsArgs, NumConsArgs, OperatorDelete,
911                                        ResultType, AllocTypeInfo,
912                                        StartLoc,
913                                        Init ? ConstructorRParen :
914                                               TypeRange.getEnd()));
915}
916
917/// CheckAllocatedType - Checks that a type is suitable as the allocated type
918/// in a new-expression.
919/// dimension off and stores the size expression in ArraySize.
920bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
921                              SourceRange R) {
922  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
923  //   abstract class type or array thereof.
924  if (AllocType->isFunctionType())
925    return Diag(Loc, diag::err_bad_new_type)
926      << AllocType << 0 << R;
927  else if (AllocType->isReferenceType())
928    return Diag(Loc, diag::err_bad_new_type)
929      << AllocType << 1 << R;
930  else if (!AllocType->isDependentType() &&
931           RequireCompleteType(Loc, AllocType,
932                               PDiag(diag::err_new_incomplete_type)
933                                 << R))
934    return true;
935  else if (RequireNonAbstractType(Loc, AllocType,
936                                  diag::err_allocation_of_abstract_type))
937    return true;
938  else if (AllocType->isVariablyModifiedType())
939    return Diag(Loc, diag::err_variably_modified_new_type)
940             << AllocType;
941
942  return false;
943}
944
945/// \brief Determine whether the given function is a non-placement
946/// deallocation function.
947static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
948  if (FD->isInvalidDecl())
949    return false;
950
951  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
952    return Method->isUsualDeallocationFunction();
953
954  return ((FD->getOverloadedOperator() == OO_Delete ||
955           FD->getOverloadedOperator() == OO_Array_Delete) &&
956          FD->getNumParams() == 1);
957}
958
959/// FindAllocationFunctions - Finds the overloads of operator new and delete
960/// that are appropriate for the allocation.
961bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
962                                   bool UseGlobal, QualType AllocType,
963                                   bool IsArray, Expr **PlaceArgs,
964                                   unsigned NumPlaceArgs,
965                                   FunctionDecl *&OperatorNew,
966                                   FunctionDecl *&OperatorDelete) {
967  // --- Choosing an allocation function ---
968  // C++ 5.3.4p8 - 14 & 18
969  // 1) If UseGlobal is true, only look in the global scope. Else, also look
970  //   in the scope of the allocated class.
971  // 2) If an array size is given, look for operator new[], else look for
972  //   operator new.
973  // 3) The first argument is always size_t. Append the arguments from the
974  //   placement form.
975
976  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
977  // We don't care about the actual value of this argument.
978  // FIXME: Should the Sema create the expression and embed it in the syntax
979  // tree? Or should the consumer just recalculate the value?
980  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
981                      Context.Target.getPointerWidth(0)),
982                      Context.getSizeType(),
983                      SourceLocation());
984  AllocArgs[0] = &Size;
985  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
986
987  // C++ [expr.new]p8:
988  //   If the allocated type is a non-array type, the allocation
989  //   function’s name is operator new and the deallocation function’s
990  //   name is operator delete. If the allocated type is an array
991  //   type, the allocation function’s name is operator new[] and the
992  //   deallocation function’s name is operator delete[].
993  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
994                                        IsArray ? OO_Array_New : OO_New);
995  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
996                                        IsArray ? OO_Array_Delete : OO_Delete);
997
998  QualType AllocElemType = Context.getBaseElementType(AllocType);
999
1000  if (AllocElemType->isRecordType() && !UseGlobal) {
1001    CXXRecordDecl *Record
1002      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1003    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1004                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1005                          OperatorNew))
1006      return true;
1007  }
1008  if (!OperatorNew) {
1009    // Didn't find a member overload. Look for a global one.
1010    DeclareGlobalNewDelete();
1011    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1012    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1013                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1014                          OperatorNew))
1015      return true;
1016  }
1017
1018  // We don't need an operator delete if we're running under
1019  // -fno-exceptions.
1020  if (!getLangOptions().Exceptions) {
1021    OperatorDelete = 0;
1022    return false;
1023  }
1024
1025  // FindAllocationOverload can change the passed in arguments, so we need to
1026  // copy them back.
1027  if (NumPlaceArgs > 0)
1028    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1029
1030  // C++ [expr.new]p19:
1031  //
1032  //   If the new-expression begins with a unary :: operator, the
1033  //   deallocation function’s name is looked up in the global
1034  //   scope. Otherwise, if the allocated type is a class type T or an
1035  //   array thereof, the deallocation function’s name is looked up in
1036  //   the scope of T. If this lookup fails to find the name, or if
1037  //   the allocated type is not a class type or array thereof, the
1038  //   deallocation function’s name is looked up in the global scope.
1039  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1040  if (AllocElemType->isRecordType() && !UseGlobal) {
1041    CXXRecordDecl *RD
1042      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1043    LookupQualifiedName(FoundDelete, RD);
1044  }
1045  if (FoundDelete.isAmbiguous())
1046    return true; // FIXME: clean up expressions?
1047
1048  if (FoundDelete.empty()) {
1049    DeclareGlobalNewDelete();
1050    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1051  }
1052
1053  FoundDelete.suppressDiagnostics();
1054
1055  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1056
1057  // Whether we're looking for a placement operator delete is dictated
1058  // by whether we selected a placement operator new, not by whether
1059  // we had explicit placement arguments.  This matters for things like
1060  //   struct A { void *operator new(size_t, int = 0); ... };
1061  //   A *a = new A()
1062  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1063
1064  if (isPlacementNew) {
1065    // C++ [expr.new]p20:
1066    //   A declaration of a placement deallocation function matches the
1067    //   declaration of a placement allocation function if it has the
1068    //   same number of parameters and, after parameter transformations
1069    //   (8.3.5), all parameter types except the first are
1070    //   identical. [...]
1071    //
1072    // To perform this comparison, we compute the function type that
1073    // the deallocation function should have, and use that type both
1074    // for template argument deduction and for comparison purposes.
1075    QualType ExpectedFunctionType;
1076    {
1077      const FunctionProtoType *Proto
1078        = OperatorNew->getType()->getAs<FunctionProtoType>();
1079      llvm::SmallVector<QualType, 4> ArgTypes;
1080      ArgTypes.push_back(Context.VoidPtrTy);
1081      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1082        ArgTypes.push_back(Proto->getArgType(I));
1083
1084      ExpectedFunctionType
1085        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1086                                  ArgTypes.size(),
1087                                  Proto->isVariadic(),
1088                                  0, false, false, 0, 0,
1089                                  FunctionType::ExtInfo());
1090    }
1091
1092    for (LookupResult::iterator D = FoundDelete.begin(),
1093                             DEnd = FoundDelete.end();
1094         D != DEnd; ++D) {
1095      FunctionDecl *Fn = 0;
1096      if (FunctionTemplateDecl *FnTmpl
1097            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1098        // Perform template argument deduction to try to match the
1099        // expected function type.
1100        TemplateDeductionInfo Info(Context, StartLoc);
1101        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1102          continue;
1103      } else
1104        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1105
1106      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1107        Matches.push_back(std::make_pair(D.getPair(), Fn));
1108    }
1109  } else {
1110    // C++ [expr.new]p20:
1111    //   [...] Any non-placement deallocation function matches a
1112    //   non-placement allocation function. [...]
1113    for (LookupResult::iterator D = FoundDelete.begin(),
1114                             DEnd = FoundDelete.end();
1115         D != DEnd; ++D) {
1116      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1117        if (isNonPlacementDeallocationFunction(Fn))
1118          Matches.push_back(std::make_pair(D.getPair(), Fn));
1119    }
1120  }
1121
1122  // C++ [expr.new]p20:
1123  //   [...] If the lookup finds a single matching deallocation
1124  //   function, that function will be called; otherwise, no
1125  //   deallocation function will be called.
1126  if (Matches.size() == 1) {
1127    OperatorDelete = Matches[0].second;
1128
1129    // C++0x [expr.new]p20:
1130    //   If the lookup finds the two-parameter form of a usual
1131    //   deallocation function (3.7.4.2) and that function, considered
1132    //   as a placement deallocation function, would have been
1133    //   selected as a match for the allocation function, the program
1134    //   is ill-formed.
1135    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1136        isNonPlacementDeallocationFunction(OperatorDelete)) {
1137      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1138        << SourceRange(PlaceArgs[0]->getLocStart(),
1139                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1140      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1141        << DeleteName;
1142    } else {
1143      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1144                            Matches[0].first);
1145    }
1146  }
1147
1148  return false;
1149}
1150
1151/// FindAllocationOverload - Find an fitting overload for the allocation
1152/// function in the specified scope.
1153bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1154                                  DeclarationName Name, Expr** Args,
1155                                  unsigned NumArgs, DeclContext *Ctx,
1156                                  bool AllowMissing, FunctionDecl *&Operator) {
1157  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1158  LookupQualifiedName(R, Ctx);
1159  if (R.empty()) {
1160    if (AllowMissing)
1161      return false;
1162    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1163      << Name << Range;
1164  }
1165
1166  if (R.isAmbiguous())
1167    return true;
1168
1169  R.suppressDiagnostics();
1170
1171  OverloadCandidateSet Candidates(StartLoc);
1172  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1173       Alloc != AllocEnd; ++Alloc) {
1174    // Even member operator new/delete are implicitly treated as
1175    // static, so don't use AddMemberCandidate.
1176    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1177
1178    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1179      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1180                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1181                                   Candidates,
1182                                   /*SuppressUserConversions=*/false);
1183      continue;
1184    }
1185
1186    FunctionDecl *Fn = cast<FunctionDecl>(D);
1187    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1188                         /*SuppressUserConversions=*/false);
1189  }
1190
1191  // Do the resolution.
1192  OverloadCandidateSet::iterator Best;
1193  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1194  case OR_Success: {
1195    // Got one!
1196    FunctionDecl *FnDecl = Best->Function;
1197    // The first argument is size_t, and the first parameter must be size_t,
1198    // too. This is checked on declaration and can be assumed. (It can't be
1199    // asserted on, though, since invalid decls are left in there.)
1200    // Watch out for variadic allocator function.
1201    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1202    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1203      ExprResult Result
1204        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1205                                                       Context,
1206                                                       FnDecl->getParamDecl(i)),
1207                                    SourceLocation(),
1208                                    Owned(Args[i]->Retain()));
1209      if (Result.isInvalid())
1210        return true;
1211
1212      Args[i] = Result.takeAs<Expr>();
1213    }
1214    Operator = FnDecl;
1215    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1216    return false;
1217  }
1218
1219  case OR_No_Viable_Function:
1220    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1221      << Name << Range;
1222    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1223    return true;
1224
1225  case OR_Ambiguous:
1226    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1227      << Name << Range;
1228    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1229    return true;
1230
1231  case OR_Deleted:
1232    Diag(StartLoc, diag::err_ovl_deleted_call)
1233      << Best->Function->isDeleted()
1234      << Name << Range;
1235    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1236    return true;
1237  }
1238  assert(false && "Unreachable, bad result from BestViableFunction");
1239  return true;
1240}
1241
1242
1243/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1244/// delete. These are:
1245/// @code
1246///   void* operator new(std::size_t) throw(std::bad_alloc);
1247///   void* operator new[](std::size_t) throw(std::bad_alloc);
1248///   void operator delete(void *) throw();
1249///   void operator delete[](void *) throw();
1250/// @endcode
1251/// Note that the placement and nothrow forms of new are *not* implicitly
1252/// declared. Their use requires including \<new\>.
1253void Sema::DeclareGlobalNewDelete() {
1254  if (GlobalNewDeleteDeclared)
1255    return;
1256
1257  // C++ [basic.std.dynamic]p2:
1258  //   [...] The following allocation and deallocation functions (18.4) are
1259  //   implicitly declared in global scope in each translation unit of a
1260  //   program
1261  //
1262  //     void* operator new(std::size_t) throw(std::bad_alloc);
1263  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1264  //     void  operator delete(void*) throw();
1265  //     void  operator delete[](void*) throw();
1266  //
1267  //   These implicit declarations introduce only the function names operator
1268  //   new, operator new[], operator delete, operator delete[].
1269  //
1270  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1271  // "std" or "bad_alloc" as necessary to form the exception specification.
1272  // However, we do not make these implicit declarations visible to name
1273  // lookup.
1274  if (!StdBadAlloc) {
1275    // The "std::bad_alloc" class has not yet been declared, so build it
1276    // implicitly.
1277    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1278                                        getOrCreateStdNamespace(),
1279                                        SourceLocation(),
1280                                      &PP.getIdentifierTable().get("bad_alloc"),
1281                                        SourceLocation(), 0);
1282    getStdBadAlloc()->setImplicit(true);
1283  }
1284
1285  GlobalNewDeleteDeclared = true;
1286
1287  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1288  QualType SizeT = Context.getSizeType();
1289  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1290
1291  DeclareGlobalAllocationFunction(
1292      Context.DeclarationNames.getCXXOperatorName(OO_New),
1293      VoidPtr, SizeT, AssumeSaneOperatorNew);
1294  DeclareGlobalAllocationFunction(
1295      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1296      VoidPtr, SizeT, AssumeSaneOperatorNew);
1297  DeclareGlobalAllocationFunction(
1298      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1299      Context.VoidTy, VoidPtr);
1300  DeclareGlobalAllocationFunction(
1301      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1302      Context.VoidTy, VoidPtr);
1303}
1304
1305/// DeclareGlobalAllocationFunction - Declares a single implicit global
1306/// allocation function if it doesn't already exist.
1307void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1308                                           QualType Return, QualType Argument,
1309                                           bool AddMallocAttr) {
1310  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1311
1312  // Check if this function is already declared.
1313  {
1314    DeclContext::lookup_iterator Alloc, AllocEnd;
1315    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1316         Alloc != AllocEnd; ++Alloc) {
1317      // Only look at non-template functions, as it is the predefined,
1318      // non-templated allocation function we are trying to declare here.
1319      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1320        QualType InitialParamType =
1321          Context.getCanonicalType(
1322            Func->getParamDecl(0)->getType().getUnqualifiedType());
1323        // FIXME: Do we need to check for default arguments here?
1324        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1325          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1326            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1327          return;
1328        }
1329      }
1330    }
1331  }
1332
1333  QualType BadAllocType;
1334  bool HasBadAllocExceptionSpec
1335    = (Name.getCXXOverloadedOperator() == OO_New ||
1336       Name.getCXXOverloadedOperator() == OO_Array_New);
1337  if (HasBadAllocExceptionSpec) {
1338    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1339    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1340  }
1341
1342  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0,
1343                                            true, false,
1344                                            HasBadAllocExceptionSpec? 1 : 0,
1345                                            &BadAllocType,
1346                                            FunctionType::ExtInfo());
1347  FunctionDecl *Alloc =
1348    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
1349                         FnType, /*TInfo=*/0, SC_None,
1350                         SC_None, false, true);
1351  Alloc->setImplicit();
1352
1353  if (AddMallocAttr)
1354    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1355
1356  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1357                                           0, Argument, /*TInfo=*/0,
1358                                           SC_None,
1359                                           SC_None, 0);
1360  Alloc->setParams(&Param, 1);
1361
1362  // FIXME: Also add this declaration to the IdentifierResolver, but
1363  // make sure it is at the end of the chain to coincide with the
1364  // global scope.
1365  Context.getTranslationUnitDecl()->addDecl(Alloc);
1366}
1367
1368bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1369                                    DeclarationName Name,
1370                                    FunctionDecl* &Operator) {
1371  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1372  // Try to find operator delete/operator delete[] in class scope.
1373  LookupQualifiedName(Found, RD);
1374
1375  if (Found.isAmbiguous())
1376    return true;
1377
1378  Found.suppressDiagnostics();
1379
1380  llvm::SmallVector<DeclAccessPair,4> Matches;
1381  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1382       F != FEnd; ++F) {
1383    NamedDecl *ND = (*F)->getUnderlyingDecl();
1384
1385    // Ignore template operator delete members from the check for a usual
1386    // deallocation function.
1387    if (isa<FunctionTemplateDecl>(ND))
1388      continue;
1389
1390    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1391      Matches.push_back(F.getPair());
1392  }
1393
1394  // There's exactly one suitable operator;  pick it.
1395  if (Matches.size() == 1) {
1396    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1397    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1398                          Matches[0]);
1399    return false;
1400
1401  // We found multiple suitable operators;  complain about the ambiguity.
1402  } else if (!Matches.empty()) {
1403    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1404      << Name << RD;
1405
1406    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1407           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1408      Diag((*F)->getUnderlyingDecl()->getLocation(),
1409           diag::note_member_declared_here) << Name;
1410    return true;
1411  }
1412
1413  // We did find operator delete/operator delete[] declarations, but
1414  // none of them were suitable.
1415  if (!Found.empty()) {
1416    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1417      << Name << RD;
1418
1419    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1420         F != FEnd; ++F)
1421      Diag((*F)->getUnderlyingDecl()->getLocation(),
1422           diag::note_member_declared_here) << Name;
1423
1424    return true;
1425  }
1426
1427  // Look for a global declaration.
1428  DeclareGlobalNewDelete();
1429  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1430
1431  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1432  Expr* DeallocArgs[1];
1433  DeallocArgs[0] = &Null;
1434  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1435                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1436                             Operator))
1437    return true;
1438
1439  assert(Operator && "Did not find a deallocation function!");
1440  return false;
1441}
1442
1443/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1444/// @code ::delete ptr; @endcode
1445/// or
1446/// @code delete [] ptr; @endcode
1447ExprResult
1448Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1449                     bool ArrayForm, Expr *Ex) {
1450  // C++ [expr.delete]p1:
1451  //   The operand shall have a pointer type, or a class type having a single
1452  //   conversion function to a pointer type. The result has type void.
1453  //
1454  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1455
1456  FunctionDecl *OperatorDelete = 0;
1457  bool ArrayFormAsWritten = ArrayForm;
1458
1459  if (!Ex->isTypeDependent()) {
1460    QualType Type = Ex->getType();
1461
1462    if (const RecordType *Record = Type->getAs<RecordType>()) {
1463      if (RequireCompleteType(StartLoc, Type,
1464                              PDiag(diag::err_delete_incomplete_class_type)))
1465        return ExprError();
1466
1467      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1468
1469      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1470      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1471      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1472             E = Conversions->end(); I != E; ++I) {
1473        NamedDecl *D = I.getDecl();
1474        if (isa<UsingShadowDecl>(D))
1475          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1476
1477        // Skip over templated conversion functions; they aren't considered.
1478        if (isa<FunctionTemplateDecl>(D))
1479          continue;
1480
1481        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1482
1483        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1484        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1485          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1486            ObjectPtrConversions.push_back(Conv);
1487      }
1488      if (ObjectPtrConversions.size() == 1) {
1489        // We have a single conversion to a pointer-to-object type. Perform
1490        // that conversion.
1491        // TODO: don't redo the conversion calculation.
1492        if (!PerformImplicitConversion(Ex,
1493                            ObjectPtrConversions.front()->getConversionType(),
1494                                      AA_Converting)) {
1495          Type = Ex->getType();
1496        }
1497      }
1498      else if (ObjectPtrConversions.size() > 1) {
1499        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1500              << Type << Ex->getSourceRange();
1501        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1502          NoteOverloadCandidate(ObjectPtrConversions[i]);
1503        return ExprError();
1504      }
1505    }
1506
1507    if (!Type->isPointerType())
1508      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1509        << Type << Ex->getSourceRange());
1510
1511    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1512    if (Pointee->isVoidType() && !isSFINAEContext()) {
1513      // The C++ standard bans deleting a pointer to a non-object type, which
1514      // effectively bans deletion of "void*". However, most compilers support
1515      // this, so we treat it as a warning unless we're in a SFINAE context.
1516      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1517        << Type << Ex->getSourceRange();
1518    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1519      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1520        << Type << Ex->getSourceRange());
1521    else if (!Pointee->isDependentType() &&
1522             RequireCompleteType(StartLoc, Pointee,
1523                                 PDiag(diag::warn_delete_incomplete)
1524                                   << Ex->getSourceRange()))
1525      return ExprError();
1526
1527    // C++ [expr.delete]p2:
1528    //   [Note: a pointer to a const type can be the operand of a
1529    //   delete-expression; it is not necessary to cast away the constness
1530    //   (5.2.11) of the pointer expression before it is used as the operand
1531    //   of the delete-expression. ]
1532    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1533                      CK_NoOp);
1534
1535    if (Pointee->isArrayType() && !ArrayForm) {
1536      Diag(StartLoc, diag::warn_delete_array_type)
1537          << Type << Ex->getSourceRange()
1538          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1539      ArrayForm = true;
1540    }
1541
1542    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1543                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1544
1545    QualType PointeeElem = Context.getBaseElementType(Pointee);
1546    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1547      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1548
1549      if (!UseGlobal &&
1550          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1551        return ExprError();
1552
1553      if (!RD->hasTrivialDestructor())
1554        if (CXXDestructorDecl *Dtor = LookupDestructor(RD)) {
1555          MarkDeclarationReferenced(StartLoc,
1556                                    const_cast<CXXDestructorDecl*>(Dtor));
1557          DiagnoseUseOfDecl(Dtor, StartLoc);
1558        }
1559    }
1560
1561    if (!OperatorDelete) {
1562      // Look for a global declaration.
1563      DeclareGlobalNewDelete();
1564      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1565      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1566                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1567                                 OperatorDelete))
1568        return ExprError();
1569    }
1570
1571    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1572
1573    // FIXME: Check access and ambiguity of operator delete and destructor.
1574  }
1575
1576  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1577                                           ArrayFormAsWritten, OperatorDelete,
1578                                           Ex, StartLoc));
1579}
1580
1581/// \brief Check the use of the given variable as a C++ condition in an if,
1582/// while, do-while, or switch statement.
1583ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1584                                                      SourceLocation StmtLoc,
1585                                                      bool ConvertToBoolean) {
1586  QualType T = ConditionVar->getType();
1587
1588  // C++ [stmt.select]p2:
1589  //   The declarator shall not specify a function or an array.
1590  if (T->isFunctionType())
1591    return ExprError(Diag(ConditionVar->getLocation(),
1592                          diag::err_invalid_use_of_function_type)
1593                       << ConditionVar->getSourceRange());
1594  else if (T->isArrayType())
1595    return ExprError(Diag(ConditionVar->getLocation(),
1596                          diag::err_invalid_use_of_array_type)
1597                     << ConditionVar->getSourceRange());
1598
1599  Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
1600                                        ConditionVar->getLocation(),
1601                                 ConditionVar->getType().getNonReferenceType());
1602  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1603    return ExprError();
1604
1605  return Owned(Condition);
1606}
1607
1608/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1609bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1610  // C++ 6.4p4:
1611  // The value of a condition that is an initialized declaration in a statement
1612  // other than a switch statement is the value of the declared variable
1613  // implicitly converted to type bool. If that conversion is ill-formed, the
1614  // program is ill-formed.
1615  // The value of a condition that is an expression is the value of the
1616  // expression, implicitly converted to bool.
1617  //
1618  return PerformContextuallyConvertToBool(CondExpr);
1619}
1620
1621/// Helper function to determine whether this is the (deprecated) C++
1622/// conversion from a string literal to a pointer to non-const char or
1623/// non-const wchar_t (for narrow and wide string literals,
1624/// respectively).
1625bool
1626Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1627  // Look inside the implicit cast, if it exists.
1628  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1629    From = Cast->getSubExpr();
1630
1631  // A string literal (2.13.4) that is not a wide string literal can
1632  // be converted to an rvalue of type "pointer to char"; a wide
1633  // string literal can be converted to an rvalue of type "pointer
1634  // to wchar_t" (C++ 4.2p2).
1635  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1636    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1637      if (const BuiltinType *ToPointeeType
1638          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1639        // This conversion is considered only when there is an
1640        // explicit appropriate pointer target type (C++ 4.2p2).
1641        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1642            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1643             (!StrLit->isWide() &&
1644              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1645               ToPointeeType->getKind() == BuiltinType::Char_S))))
1646          return true;
1647      }
1648
1649  return false;
1650}
1651
1652static ExprResult BuildCXXCastArgument(Sema &S,
1653                                       SourceLocation CastLoc,
1654                                       QualType Ty,
1655                                       CastKind Kind,
1656                                       CXXMethodDecl *Method,
1657                                       Expr *From) {
1658  switch (Kind) {
1659  default: assert(0 && "Unhandled cast kind!");
1660  case CK_ConstructorConversion: {
1661    ASTOwningVector<Expr*> ConstructorArgs(S);
1662
1663    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1664                                  MultiExprArg(&From, 1),
1665                                  CastLoc, ConstructorArgs))
1666      return ExprError();
1667
1668    ExprResult Result =
1669    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1670                            move_arg(ConstructorArgs),
1671                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete);
1672    if (Result.isInvalid())
1673      return ExprError();
1674
1675    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1676  }
1677
1678  case CK_UserDefinedConversion: {
1679    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1680
1681    // Create an implicit call expr that calls it.
1682    // FIXME: pass the FoundDecl for the user-defined conversion here
1683    CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method);
1684    return S.MaybeBindToTemporary(CE);
1685  }
1686  }
1687}
1688
1689/// PerformImplicitConversion - Perform an implicit conversion of the
1690/// expression From to the type ToType using the pre-computed implicit
1691/// conversion sequence ICS. Returns true if there was an error, false
1692/// otherwise. The expression From is replaced with the converted
1693/// expression. Action is the kind of conversion we're performing,
1694/// used in the error message.
1695bool
1696Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1697                                const ImplicitConversionSequence &ICS,
1698                                AssignmentAction Action, bool IgnoreBaseAccess) {
1699  switch (ICS.getKind()) {
1700  case ImplicitConversionSequence::StandardConversion:
1701    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1702                                  IgnoreBaseAccess))
1703      return true;
1704    break;
1705
1706  case ImplicitConversionSequence::UserDefinedConversion: {
1707
1708      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1709      CastKind CastKind = CK_Unknown;
1710      QualType BeforeToType;
1711      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1712        CastKind = CK_UserDefinedConversion;
1713
1714        // If the user-defined conversion is specified by a conversion function,
1715        // the initial standard conversion sequence converts the source type to
1716        // the implicit object parameter of the conversion function.
1717        BeforeToType = Context.getTagDeclType(Conv->getParent());
1718      } else if (const CXXConstructorDecl *Ctor =
1719                  dyn_cast<CXXConstructorDecl>(FD)) {
1720        CastKind = CK_ConstructorConversion;
1721        // Do no conversion if dealing with ... for the first conversion.
1722        if (!ICS.UserDefined.EllipsisConversion) {
1723          // If the user-defined conversion is specified by a constructor, the
1724          // initial standard conversion sequence converts the source type to the
1725          // type required by the argument of the constructor
1726          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1727        }
1728      }
1729      else
1730        assert(0 && "Unknown conversion function kind!");
1731      // Whatch out for elipsis conversion.
1732      if (!ICS.UserDefined.EllipsisConversion) {
1733        if (PerformImplicitConversion(From, BeforeToType,
1734                                      ICS.UserDefined.Before, AA_Converting,
1735                                      IgnoreBaseAccess))
1736          return true;
1737      }
1738
1739      ExprResult CastArg
1740        = BuildCXXCastArgument(*this,
1741                               From->getLocStart(),
1742                               ToType.getNonReferenceType(),
1743                               CastKind, cast<CXXMethodDecl>(FD),
1744                               From);
1745
1746      if (CastArg.isInvalid())
1747        return true;
1748
1749      From = CastArg.takeAs<Expr>();
1750
1751      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1752                                       AA_Converting, IgnoreBaseAccess);
1753  }
1754
1755  case ImplicitConversionSequence::AmbiguousConversion:
1756    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1757                          PDiag(diag::err_typecheck_ambiguous_condition)
1758                            << From->getSourceRange());
1759     return true;
1760
1761  case ImplicitConversionSequence::EllipsisConversion:
1762    assert(false && "Cannot perform an ellipsis conversion");
1763    return false;
1764
1765  case ImplicitConversionSequence::BadConversion:
1766    return true;
1767  }
1768
1769  // Everything went well.
1770  return false;
1771}
1772
1773/// PerformImplicitConversion - Perform an implicit conversion of the
1774/// expression From to the type ToType by following the standard
1775/// conversion sequence SCS. Returns true if there was an error, false
1776/// otherwise. The expression From is replaced with the converted
1777/// expression. Flavor is the context in which we're performing this
1778/// conversion, for use in error messages.
1779bool
1780Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1781                                const StandardConversionSequence& SCS,
1782                                AssignmentAction Action, bool IgnoreBaseAccess) {
1783  // Overall FIXME: we are recomputing too many types here and doing far too
1784  // much extra work. What this means is that we need to keep track of more
1785  // information that is computed when we try the implicit conversion initially,
1786  // so that we don't need to recompute anything here.
1787  QualType FromType = From->getType();
1788
1789  if (SCS.CopyConstructor) {
1790    // FIXME: When can ToType be a reference type?
1791    assert(!ToType->isReferenceType());
1792    if (SCS.Second == ICK_Derived_To_Base) {
1793      ASTOwningVector<Expr*> ConstructorArgs(*this);
1794      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1795                                  MultiExprArg(*this, &From, 1),
1796                                  /*FIXME:ConstructLoc*/SourceLocation(),
1797                                  ConstructorArgs))
1798        return true;
1799      ExprResult FromResult =
1800        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1801                              ToType, SCS.CopyConstructor,
1802                              move_arg(ConstructorArgs),
1803                              /*ZeroInit*/ false,
1804                              CXXConstructExpr::CK_Complete);
1805      if (FromResult.isInvalid())
1806        return true;
1807      From = FromResult.takeAs<Expr>();
1808      return false;
1809    }
1810    ExprResult FromResult =
1811      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1812                            ToType, SCS.CopyConstructor,
1813                            MultiExprArg(*this, &From, 1),
1814                            /*ZeroInit*/ false,
1815                            CXXConstructExpr::CK_Complete);
1816
1817    if (FromResult.isInvalid())
1818      return true;
1819
1820    From = FromResult.takeAs<Expr>();
1821    return false;
1822  }
1823
1824  // Resolve overloaded function references.
1825  if (Context.hasSameType(FromType, Context.OverloadTy)) {
1826    DeclAccessPair Found;
1827    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
1828                                                          true, Found);
1829    if (!Fn)
1830      return true;
1831
1832    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
1833      return true;
1834
1835    From = FixOverloadedFunctionReference(From, Found, Fn);
1836    FromType = From->getType();
1837  }
1838
1839  // Perform the first implicit conversion.
1840  switch (SCS.First) {
1841  case ICK_Identity:
1842  case ICK_Lvalue_To_Rvalue:
1843    // Nothing to do.
1844    break;
1845
1846  case ICK_Array_To_Pointer:
1847    FromType = Context.getArrayDecayedType(FromType);
1848    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
1849    break;
1850
1851  case ICK_Function_To_Pointer:
1852    FromType = Context.getPointerType(FromType);
1853    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
1854    break;
1855
1856  default:
1857    assert(false && "Improper first standard conversion");
1858    break;
1859  }
1860
1861  // Perform the second implicit conversion
1862  switch (SCS.Second) {
1863  case ICK_Identity:
1864    // If both sides are functions (or pointers/references to them), there could
1865    // be incompatible exception declarations.
1866    if (CheckExceptionSpecCompatibility(From, ToType))
1867      return true;
1868    // Nothing else to do.
1869    break;
1870
1871  case ICK_NoReturn_Adjustment:
1872    // If both sides are functions (or pointers/references to them), there could
1873    // be incompatible exception declarations.
1874    if (CheckExceptionSpecCompatibility(From, ToType))
1875      return true;
1876
1877    ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false),
1878                      CK_NoOp);
1879    break;
1880
1881  case ICK_Integral_Promotion:
1882  case ICK_Integral_Conversion:
1883    ImpCastExprToType(From, ToType, CK_IntegralCast);
1884    break;
1885
1886  case ICK_Floating_Promotion:
1887  case ICK_Floating_Conversion:
1888    ImpCastExprToType(From, ToType, CK_FloatingCast);
1889    break;
1890
1891  case ICK_Complex_Promotion:
1892  case ICK_Complex_Conversion:
1893    ImpCastExprToType(From, ToType, CK_Unknown);
1894    break;
1895
1896  case ICK_Floating_Integral:
1897    if (ToType->isRealFloatingType())
1898      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
1899    else
1900      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
1901    break;
1902
1903  case ICK_Compatible_Conversion:
1904    ImpCastExprToType(From, ToType, CK_NoOp);
1905    break;
1906
1907  case ICK_Pointer_Conversion: {
1908    if (SCS.IncompatibleObjC) {
1909      // Diagnose incompatible Objective-C conversions
1910      Diag(From->getSourceRange().getBegin(),
1911           diag::ext_typecheck_convert_incompatible_pointer)
1912        << From->getType() << ToType << Action
1913        << From->getSourceRange();
1914    }
1915
1916
1917    CastKind Kind = CK_Unknown;
1918    CXXCastPath BasePath;
1919    if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess))
1920      return true;
1921    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
1922    break;
1923  }
1924
1925  case ICK_Pointer_Member: {
1926    CastKind Kind = CK_Unknown;
1927    CXXCastPath BasePath;
1928    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath,
1929                                     IgnoreBaseAccess))
1930      return true;
1931    if (CheckExceptionSpecCompatibility(From, ToType))
1932      return true;
1933    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
1934    break;
1935  }
1936  case ICK_Boolean_Conversion: {
1937    CastKind Kind = CK_Unknown;
1938    if (FromType->isMemberPointerType())
1939      Kind = CK_MemberPointerToBoolean;
1940
1941    ImpCastExprToType(From, Context.BoolTy, Kind);
1942    break;
1943  }
1944
1945  case ICK_Derived_To_Base: {
1946    CXXCastPath BasePath;
1947    if (CheckDerivedToBaseConversion(From->getType(),
1948                                     ToType.getNonReferenceType(),
1949                                     From->getLocStart(),
1950                                     From->getSourceRange(),
1951                                     &BasePath,
1952                                     IgnoreBaseAccess))
1953      return true;
1954
1955    ImpCastExprToType(From, ToType.getNonReferenceType(),
1956                      CK_DerivedToBase, CastCategory(From),
1957                      &BasePath);
1958    break;
1959  }
1960
1961  case ICK_Vector_Conversion:
1962    ImpCastExprToType(From, ToType, CK_BitCast);
1963    break;
1964
1965  case ICK_Vector_Splat:
1966    ImpCastExprToType(From, ToType, CK_VectorSplat);
1967    break;
1968
1969  case ICK_Complex_Real:
1970    ImpCastExprToType(From, ToType, CK_Unknown);
1971    break;
1972
1973  case ICK_Lvalue_To_Rvalue:
1974  case ICK_Array_To_Pointer:
1975  case ICK_Function_To_Pointer:
1976  case ICK_Qualification:
1977  case ICK_Num_Conversion_Kinds:
1978    assert(false && "Improper second standard conversion");
1979    break;
1980  }
1981
1982  switch (SCS.Third) {
1983  case ICK_Identity:
1984    // Nothing to do.
1985    break;
1986
1987  case ICK_Qualification: {
1988    // The qualification keeps the category of the inner expression, unless the
1989    // target type isn't a reference.
1990    ExprValueKind VK = ToType->isReferenceType() ?
1991                                  CastCategory(From) : VK_RValue;
1992    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
1993                      CK_NoOp, VK);
1994
1995    if (SCS.DeprecatedStringLiteralToCharPtr)
1996      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
1997        << ToType.getNonReferenceType();
1998
1999    break;
2000    }
2001
2002  default:
2003    assert(false && "Improper third standard conversion");
2004    break;
2005  }
2006
2007  return false;
2008}
2009
2010ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2011                                     SourceLocation KWLoc,
2012                                     ParsedType Ty,
2013                                     SourceLocation RParen) {
2014  TypeSourceInfo *TSInfo;
2015  QualType T = GetTypeFromParser(Ty, &TSInfo);
2016
2017  if (!TSInfo)
2018    TSInfo = Context.getTrivialTypeSourceInfo(T);
2019  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2020}
2021
2022static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2023                                   SourceLocation KeyLoc) {
2024  assert(!T->isDependentType() &&
2025         "Cannot evaluate traits for dependent types.");
2026  ASTContext &C = Self.Context;
2027  switch(UTT) {
2028  default: assert(false && "Unknown type trait or not implemented");
2029  case UTT_IsPOD: return T->isPODType();
2030  case UTT_IsLiteral: return T->isLiteralType();
2031  case UTT_IsClass: // Fallthrough
2032  case UTT_IsUnion:
2033    if (const RecordType *Record = T->getAs<RecordType>()) {
2034      bool Union = Record->getDecl()->isUnion();
2035      return UTT == UTT_IsUnion ? Union : !Union;
2036    }
2037    return false;
2038  case UTT_IsEnum: return T->isEnumeralType();
2039  case UTT_IsPolymorphic:
2040    if (const RecordType *Record = T->getAs<RecordType>()) {
2041      // Type traits are only parsed in C++, so we've got CXXRecords.
2042      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2043    }
2044    return false;
2045  case UTT_IsAbstract:
2046    if (const RecordType *RT = T->getAs<RecordType>())
2047      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2048    return false;
2049  case UTT_IsEmpty:
2050    if (const RecordType *Record = T->getAs<RecordType>()) {
2051      return !Record->getDecl()->isUnion()
2052          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2053    }
2054    return false;
2055  case UTT_HasTrivialConstructor:
2056    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2057    //   If __is_pod (type) is true then the trait is true, else if type is
2058    //   a cv class or union type (or array thereof) with a trivial default
2059    //   constructor ([class.ctor]) then the trait is true, else it is false.
2060    if (T->isPODType())
2061      return true;
2062    if (const RecordType *RT =
2063          C.getBaseElementType(T)->getAs<RecordType>())
2064      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2065    return false;
2066  case UTT_HasTrivialCopy:
2067    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2068    //   If __is_pod (type) is true or type is a reference type then
2069    //   the trait is true, else if type is a cv class or union type
2070    //   with a trivial copy constructor ([class.copy]) then the trait
2071    //   is true, else it is false.
2072    if (T->isPODType() || T->isReferenceType())
2073      return true;
2074    if (const RecordType *RT = T->getAs<RecordType>())
2075      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2076    return false;
2077  case UTT_HasTrivialAssign:
2078    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2079    //   If type is const qualified or is a reference type then the
2080    //   trait is false. Otherwise if __is_pod (type) is true then the
2081    //   trait is true, else if type is a cv class or union type with
2082    //   a trivial copy assignment ([class.copy]) then the trait is
2083    //   true, else it is false.
2084    // Note: the const and reference restrictions are interesting,
2085    // given that const and reference members don't prevent a class
2086    // from having a trivial copy assignment operator (but do cause
2087    // errors if the copy assignment operator is actually used, q.v.
2088    // [class.copy]p12).
2089
2090    if (C.getBaseElementType(T).isConstQualified())
2091      return false;
2092    if (T->isPODType())
2093      return true;
2094    if (const RecordType *RT = T->getAs<RecordType>())
2095      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2096    return false;
2097  case UTT_HasTrivialDestructor:
2098    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2099    //   If __is_pod (type) is true or type is a reference type
2100    //   then the trait is true, else if type is a cv class or union
2101    //   type (or array thereof) with a trivial destructor
2102    //   ([class.dtor]) then the trait is true, else it is
2103    //   false.
2104    if (T->isPODType() || T->isReferenceType())
2105      return true;
2106    if (const RecordType *RT =
2107          C.getBaseElementType(T)->getAs<RecordType>())
2108      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2109    return false;
2110  // TODO: Propagate nothrowness for implicitly declared special members.
2111  case UTT_HasNothrowAssign:
2112    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2113    //   If type is const qualified or is a reference type then the
2114    //   trait is false. Otherwise if __has_trivial_assign (type)
2115    //   is true then the trait is true, else if type is a cv class
2116    //   or union type with copy assignment operators that are known
2117    //   not to throw an exception then the trait is true, else it is
2118    //   false.
2119    if (C.getBaseElementType(T).isConstQualified())
2120      return false;
2121    if (T->isReferenceType())
2122      return false;
2123    if (T->isPODType())
2124      return true;
2125    if (const RecordType *RT = T->getAs<RecordType>()) {
2126      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2127      if (RD->hasTrivialCopyAssignment())
2128        return true;
2129
2130      bool FoundAssign = false;
2131      bool AllNoThrow = true;
2132      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2133      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2134                       Sema::LookupOrdinaryName);
2135      if (Self.LookupQualifiedName(Res, RD)) {
2136        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2137             Op != OpEnd; ++Op) {
2138          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2139          if (Operator->isCopyAssignmentOperator()) {
2140            FoundAssign = true;
2141            const FunctionProtoType *CPT
2142                = Operator->getType()->getAs<FunctionProtoType>();
2143            if (!CPT->hasEmptyExceptionSpec()) {
2144              AllNoThrow = false;
2145              break;
2146            }
2147          }
2148        }
2149      }
2150
2151      return FoundAssign && AllNoThrow;
2152    }
2153    return false;
2154  case UTT_HasNothrowCopy:
2155    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2156    //   If __has_trivial_copy (type) is true then the trait is true, else
2157    //   if type is a cv class or union type with copy constructors that are
2158    //   known not to throw an exception then the trait is true, else it is
2159    //   false.
2160    if (T->isPODType() || T->isReferenceType())
2161      return true;
2162    if (const RecordType *RT = T->getAs<RecordType>()) {
2163      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2164      if (RD->hasTrivialCopyConstructor())
2165        return true;
2166
2167      bool FoundConstructor = false;
2168      bool AllNoThrow = true;
2169      unsigned FoundTQs;
2170      DeclContext::lookup_const_iterator Con, ConEnd;
2171      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2172           Con != ConEnd; ++Con) {
2173        // A template constructor is never a copy constructor.
2174        // FIXME: However, it may actually be selected at the actual overload
2175        // resolution point.
2176        if (isa<FunctionTemplateDecl>(*Con))
2177          continue;
2178        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2179        if (Constructor->isCopyConstructor(FoundTQs)) {
2180          FoundConstructor = true;
2181          const FunctionProtoType *CPT
2182              = Constructor->getType()->getAs<FunctionProtoType>();
2183          // TODO: check whether evaluating default arguments can throw.
2184          // For now, we'll be conservative and assume that they can throw.
2185          if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
2186            AllNoThrow = false;
2187            break;
2188          }
2189        }
2190      }
2191
2192      return FoundConstructor && AllNoThrow;
2193    }
2194    return false;
2195  case UTT_HasNothrowConstructor:
2196    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2197    //   If __has_trivial_constructor (type) is true then the trait is
2198    //   true, else if type is a cv class or union type (or array
2199    //   thereof) with a default constructor that is known not to
2200    //   throw an exception then the trait is true, else it is false.
2201    if (T->isPODType())
2202      return true;
2203    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2204      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2205      if (RD->hasTrivialConstructor())
2206        return true;
2207
2208      DeclContext::lookup_const_iterator Con, ConEnd;
2209      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2210           Con != ConEnd; ++Con) {
2211        // FIXME: In C++0x, a constructor template can be a default constructor.
2212        if (isa<FunctionTemplateDecl>(*Con))
2213          continue;
2214        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2215        if (Constructor->isDefaultConstructor()) {
2216          const FunctionProtoType *CPT
2217              = Constructor->getType()->getAs<FunctionProtoType>();
2218          // TODO: check whether evaluating default arguments can throw.
2219          // For now, we'll be conservative and assume that they can throw.
2220          return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
2221        }
2222      }
2223    }
2224    return false;
2225  case UTT_HasVirtualDestructor:
2226    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2227    //   If type is a class type with a virtual destructor ([class.dtor])
2228    //   then the trait is true, else it is false.
2229    if (const RecordType *Record = T->getAs<RecordType>()) {
2230      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2231      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2232        return Destructor->isVirtual();
2233    }
2234    return false;
2235  }
2236}
2237
2238ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2239                                     SourceLocation KWLoc,
2240                                     TypeSourceInfo *TSInfo,
2241                                     SourceLocation RParen) {
2242  QualType T = TSInfo->getType();
2243
2244  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2245  // all traits except __is_class, __is_enum and __is_union require a the type
2246  // to be complete, an array of unknown bound, or void.
2247  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2248    QualType E = T;
2249    if (T->isIncompleteArrayType())
2250      E = Context.getAsArrayType(T)->getElementType();
2251    if (!T->isVoidType() &&
2252        RequireCompleteType(KWLoc, E,
2253                            diag::err_incomplete_type_used_in_type_trait_expr))
2254      return ExprError();
2255  }
2256
2257  bool Value = false;
2258  if (!T->isDependentType())
2259    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2260
2261  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2262                                                RParen, Context.BoolTy));
2263}
2264
2265QualType Sema::CheckPointerToMemberOperands(
2266  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) {
2267  const char *OpSpelling = isIndirect ? "->*" : ".*";
2268  // C++ 5.5p2
2269  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2270  //   be of type "pointer to member of T" (where T is a completely-defined
2271  //   class type) [...]
2272  QualType RType = rex->getType();
2273  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2274  if (!MemPtr) {
2275    Diag(Loc, diag::err_bad_memptr_rhs)
2276      << OpSpelling << RType << rex->getSourceRange();
2277    return QualType();
2278  }
2279
2280  QualType Class(MemPtr->getClass(), 0);
2281
2282  if (RequireCompleteType(Loc, Class, diag::err_memptr_rhs_to_incomplete))
2283    return QualType();
2284
2285  // C++ 5.5p2
2286  //   [...] to its first operand, which shall be of class T or of a class of
2287  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2288  //   such a class]
2289  QualType LType = lex->getType();
2290  if (isIndirect) {
2291    if (const PointerType *Ptr = LType->getAs<PointerType>())
2292      LType = Ptr->getPointeeType().getNonReferenceType();
2293    else {
2294      Diag(Loc, diag::err_bad_memptr_lhs)
2295        << OpSpelling << 1 << LType
2296        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2297      return QualType();
2298    }
2299  }
2300
2301  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2302    // If we want to check the hierarchy, we need a complete type.
2303    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2304        << OpSpelling << (int)isIndirect)) {
2305      return QualType();
2306    }
2307    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2308                       /*DetectVirtual=*/false);
2309    // FIXME: Would it be useful to print full ambiguity paths, or is that
2310    // overkill?
2311    if (!IsDerivedFrom(LType, Class, Paths) ||
2312        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2313      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2314        << (int)isIndirect << lex->getType();
2315      return QualType();
2316    }
2317    // Cast LHS to type of use.
2318    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2319    ExprValueKind VK =
2320        isIndirect ? VK_RValue : CastCategory(lex);
2321
2322    CXXCastPath BasePath;
2323    BuildBasePathArray(Paths, BasePath);
2324    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2325  }
2326
2327  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2328    // Diagnose use of pointer-to-member type which when used as
2329    // the functional cast in a pointer-to-member expression.
2330    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2331     return QualType();
2332  }
2333  // C++ 5.5p2
2334  //   The result is an object or a function of the type specified by the
2335  //   second operand.
2336  // The cv qualifiers are the union of those in the pointer and the left side,
2337  // in accordance with 5.5p5 and 5.2.5.
2338  // FIXME: This returns a dereferenced member function pointer as a normal
2339  // function type. However, the only operation valid on such functions is
2340  // calling them. There's also a GCC extension to get a function pointer to the
2341  // thing, which is another complication, because this type - unlike the type
2342  // that is the result of this expression - takes the class as the first
2343  // argument.
2344  // We probably need a "MemberFunctionClosureType" or something like that.
2345  QualType Result = MemPtr->getPointeeType();
2346  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2347  return Result;
2348}
2349
2350/// \brief Try to convert a type to another according to C++0x 5.16p3.
2351///
2352/// This is part of the parameter validation for the ? operator. If either
2353/// value operand is a class type, the two operands are attempted to be
2354/// converted to each other. This function does the conversion in one direction.
2355/// It returns true if the program is ill-formed and has already been diagnosed
2356/// as such.
2357static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2358                                SourceLocation QuestionLoc,
2359                                bool &HaveConversion,
2360                                QualType &ToType) {
2361  HaveConversion = false;
2362  ToType = To->getType();
2363
2364  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2365                                                           SourceLocation());
2366  // C++0x 5.16p3
2367  //   The process for determining whether an operand expression E1 of type T1
2368  //   can be converted to match an operand expression E2 of type T2 is defined
2369  //   as follows:
2370  //   -- If E2 is an lvalue:
2371  bool ToIsLvalue = (To->isLvalue(Self.Context) == Expr::LV_Valid);
2372  if (ToIsLvalue) {
2373    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2374    //   type "lvalue reference to T2", subject to the constraint that in the
2375    //   conversion the reference must bind directly to E1.
2376    QualType T = Self.Context.getLValueReferenceType(ToType);
2377    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2378
2379    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2380    if (InitSeq.isDirectReferenceBinding()) {
2381      ToType = T;
2382      HaveConversion = true;
2383      return false;
2384    }
2385
2386    if (InitSeq.isAmbiguous())
2387      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2388  }
2389
2390  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2391  //      -- if E1 and E2 have class type, and the underlying class types are
2392  //         the same or one is a base class of the other:
2393  QualType FTy = From->getType();
2394  QualType TTy = To->getType();
2395  const RecordType *FRec = FTy->getAs<RecordType>();
2396  const RecordType *TRec = TTy->getAs<RecordType>();
2397  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2398                       Self.IsDerivedFrom(FTy, TTy);
2399  if (FRec && TRec &&
2400      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2401    //         E1 can be converted to match E2 if the class of T2 is the
2402    //         same type as, or a base class of, the class of T1, and
2403    //         [cv2 > cv1].
2404    if (FRec == TRec || FDerivedFromT) {
2405      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2406        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2407        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2408        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2409          HaveConversion = true;
2410          return false;
2411        }
2412
2413        if (InitSeq.isAmbiguous())
2414          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2415      }
2416    }
2417
2418    return false;
2419  }
2420
2421  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2422  //        implicitly converted to the type that expression E2 would have
2423  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2424  //        an rvalue).
2425  //
2426  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2427  // to the array-to-pointer or function-to-pointer conversions.
2428  if (!TTy->getAs<TagType>())
2429    TTy = TTy.getUnqualifiedType();
2430
2431  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2432  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2433  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2434  ToType = TTy;
2435  if (InitSeq.isAmbiguous())
2436    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2437
2438  return false;
2439}
2440
2441/// \brief Try to find a common type for two according to C++0x 5.16p5.
2442///
2443/// This is part of the parameter validation for the ? operator. If either
2444/// value operand is a class type, overload resolution is used to find a
2445/// conversion to a common type.
2446static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2447                                    SourceLocation Loc) {
2448  Expr *Args[2] = { LHS, RHS };
2449  OverloadCandidateSet CandidateSet(Loc);
2450  Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
2451
2452  OverloadCandidateSet::iterator Best;
2453  switch (CandidateSet.BestViableFunction(Self, Loc, Best)) {
2454    case OR_Success:
2455      // We found a match. Perform the conversions on the arguments and move on.
2456      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2457                                         Best->Conversions[0], Sema::AA_Converting) ||
2458          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2459                                         Best->Conversions[1], Sema::AA_Converting))
2460        break;
2461      return false;
2462
2463    case OR_No_Viable_Function:
2464      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
2465        << LHS->getType() << RHS->getType()
2466        << LHS->getSourceRange() << RHS->getSourceRange();
2467      return true;
2468
2469    case OR_Ambiguous:
2470      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
2471        << LHS->getType() << RHS->getType()
2472        << LHS->getSourceRange() << RHS->getSourceRange();
2473      // FIXME: Print the possible common types by printing the return types of
2474      // the viable candidates.
2475      break;
2476
2477    case OR_Deleted:
2478      assert(false && "Conditional operator has only built-in overloads");
2479      break;
2480  }
2481  return true;
2482}
2483
2484/// \brief Perform an "extended" implicit conversion as returned by
2485/// TryClassUnification.
2486static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2487  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2488  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2489                                                           SourceLocation());
2490  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2491  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2492  if (Result.isInvalid())
2493    return true;
2494
2495  E = Result.takeAs<Expr>();
2496  return false;
2497}
2498
2499/// \brief Check the operands of ?: under C++ semantics.
2500///
2501/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2502/// extension. In this case, LHS == Cond. (But they're not aliases.)
2503QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2504                                           Expr *&SAVE,
2505                                           SourceLocation QuestionLoc) {
2506  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2507  // interface pointers.
2508
2509  // C++0x 5.16p1
2510  //   The first expression is contextually converted to bool.
2511  if (!Cond->isTypeDependent()) {
2512    if (SAVE && Cond->getType()->isArrayType()) {
2513      QualType CondTy = Cond->getType();
2514      CondTy = Context.getArrayDecayedType(CondTy);
2515      ImpCastExprToType(Cond, CondTy, CK_ArrayToPointerDecay);
2516      SAVE = LHS = Cond;
2517    }
2518    if (CheckCXXBooleanCondition(Cond))
2519      return QualType();
2520  }
2521
2522  // Either of the arguments dependent?
2523  if (LHS->isTypeDependent() || RHS->isTypeDependent())
2524    return Context.DependentTy;
2525
2526  // C++0x 5.16p2
2527  //   If either the second or the third operand has type (cv) void, ...
2528  QualType LTy = LHS->getType();
2529  QualType RTy = RHS->getType();
2530  bool LVoid = LTy->isVoidType();
2531  bool RVoid = RTy->isVoidType();
2532  if (LVoid || RVoid) {
2533    //   ... then the [l2r] conversions are performed on the second and third
2534    //   operands ...
2535    DefaultFunctionArrayLvalueConversion(LHS);
2536    DefaultFunctionArrayLvalueConversion(RHS);
2537    LTy = LHS->getType();
2538    RTy = RHS->getType();
2539
2540    //   ... and one of the following shall hold:
2541    //   -- The second or the third operand (but not both) is a throw-
2542    //      expression; the result is of the type of the other and is an rvalue.
2543    bool LThrow = isa<CXXThrowExpr>(LHS);
2544    bool RThrow = isa<CXXThrowExpr>(RHS);
2545    if (LThrow && !RThrow)
2546      return RTy;
2547    if (RThrow && !LThrow)
2548      return LTy;
2549
2550    //   -- Both the second and third operands have type void; the result is of
2551    //      type void and is an rvalue.
2552    if (LVoid && RVoid)
2553      return Context.VoidTy;
2554
2555    // Neither holds, error.
2556    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
2557      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
2558      << LHS->getSourceRange() << RHS->getSourceRange();
2559    return QualType();
2560  }
2561
2562  // Neither is void.
2563
2564  // C++0x 5.16p3
2565  //   Otherwise, if the second and third operand have different types, and
2566  //   either has (cv) class type, and attempt is made to convert each of those
2567  //   operands to the other.
2568  if (!Context.hasSameType(LTy, RTy) &&
2569      (LTy->isRecordType() || RTy->isRecordType())) {
2570    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
2571    // These return true if a single direction is already ambiguous.
2572    QualType L2RType, R2LType;
2573    bool HaveL2R, HaveR2L;
2574    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
2575      return QualType();
2576    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
2577      return QualType();
2578
2579    //   If both can be converted, [...] the program is ill-formed.
2580    if (HaveL2R && HaveR2L) {
2581      Diag(QuestionLoc, diag::err_conditional_ambiguous)
2582        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
2583      return QualType();
2584    }
2585
2586    //   If exactly one conversion is possible, that conversion is applied to
2587    //   the chosen operand and the converted operands are used in place of the
2588    //   original operands for the remainder of this section.
2589    if (HaveL2R) {
2590      if (ConvertForConditional(*this, LHS, L2RType))
2591        return QualType();
2592      LTy = LHS->getType();
2593    } else if (HaveR2L) {
2594      if (ConvertForConditional(*this, RHS, R2LType))
2595        return QualType();
2596      RTy = RHS->getType();
2597    }
2598  }
2599
2600  // C++0x 5.16p4
2601  //   If the second and third operands are lvalues and have the same type,
2602  //   the result is of that type [...]
2603  bool Same = Context.hasSameType(LTy, RTy);
2604  if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
2605      RHS->isLvalue(Context) == Expr::LV_Valid) {
2606    // In this context, property reference is really a message call and
2607    // is not considered an l-value.
2608    bool lhsProperty = (isa<ObjCPropertyRefExpr>(LHS) ||
2609                        isa<ObjCImplicitSetterGetterRefExpr>(LHS));
2610    bool rhsProperty = (isa<ObjCPropertyRefExpr>(RHS) ||
2611                        isa<ObjCImplicitSetterGetterRefExpr>(RHS));
2612    if (!lhsProperty && !rhsProperty)
2613      return LTy;
2614  }
2615
2616  // C++0x 5.16p5
2617  //   Otherwise, the result is an rvalue. If the second and third operands
2618  //   do not have the same type, and either has (cv) class type, ...
2619  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
2620    //   ... overload resolution is used to determine the conversions (if any)
2621    //   to be applied to the operands. If the overload resolution fails, the
2622    //   program is ill-formed.
2623    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
2624      return QualType();
2625  }
2626
2627  // C++0x 5.16p6
2628  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
2629  //   conversions are performed on the second and third operands.
2630  DefaultFunctionArrayLvalueConversion(LHS);
2631  DefaultFunctionArrayLvalueConversion(RHS);
2632  LTy = LHS->getType();
2633  RTy = RHS->getType();
2634
2635  //   After those conversions, one of the following shall hold:
2636  //   -- The second and third operands have the same type; the result
2637  //      is of that type. If the operands have class type, the result
2638  //      is a prvalue temporary of the result type, which is
2639  //      copy-initialized from either the second operand or the third
2640  //      operand depending on the value of the first operand.
2641  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
2642    if (LTy->isRecordType()) {
2643      // The operands have class type. Make a temporary copy.
2644      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
2645      ExprResult LHSCopy = PerformCopyInitialization(Entity,
2646                                                           SourceLocation(),
2647                                                           Owned(LHS));
2648      if (LHSCopy.isInvalid())
2649        return QualType();
2650
2651      ExprResult RHSCopy = PerformCopyInitialization(Entity,
2652                                                           SourceLocation(),
2653                                                           Owned(RHS));
2654      if (RHSCopy.isInvalid())
2655        return QualType();
2656
2657      LHS = LHSCopy.takeAs<Expr>();
2658      RHS = RHSCopy.takeAs<Expr>();
2659    }
2660
2661    return LTy;
2662  }
2663
2664  // Extension: conditional operator involving vector types.
2665  if (LTy->isVectorType() || RTy->isVectorType())
2666    return CheckVectorOperands(QuestionLoc, LHS, RHS);
2667
2668  //   -- The second and third operands have arithmetic or enumeration type;
2669  //      the usual arithmetic conversions are performed to bring them to a
2670  //      common type, and the result is of that type.
2671  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
2672    UsualArithmeticConversions(LHS, RHS);
2673    return LHS->getType();
2674  }
2675
2676  //   -- The second and third operands have pointer type, or one has pointer
2677  //      type and the other is a null pointer constant; pointer conversions
2678  //      and qualification conversions are performed to bring them to their
2679  //      composite pointer type. The result is of the composite pointer type.
2680  //   -- The second and third operands have pointer to member type, or one has
2681  //      pointer to member type and the other is a null pointer constant;
2682  //      pointer to member conversions and qualification conversions are
2683  //      performed to bring them to a common type, whose cv-qualification
2684  //      shall match the cv-qualification of either the second or the third
2685  //      operand. The result is of the common type.
2686  bool NonStandardCompositeType = false;
2687  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
2688                              isSFINAEContext()? 0 : &NonStandardCompositeType);
2689  if (!Composite.isNull()) {
2690    if (NonStandardCompositeType)
2691      Diag(QuestionLoc,
2692           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
2693        << LTy << RTy << Composite
2694        << LHS->getSourceRange() << RHS->getSourceRange();
2695
2696    return Composite;
2697  }
2698
2699  // Similarly, attempt to find composite type of two objective-c pointers.
2700  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
2701  if (!Composite.isNull())
2702    return Composite;
2703
2704  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2705    << LHS->getType() << RHS->getType()
2706    << LHS->getSourceRange() << RHS->getSourceRange();
2707  return QualType();
2708}
2709
2710/// \brief Find a merged pointer type and convert the two expressions to it.
2711///
2712/// This finds the composite pointer type (or member pointer type) for @p E1
2713/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
2714/// type and returns it.
2715/// It does not emit diagnostics.
2716///
2717/// \param Loc The location of the operator requiring these two expressions to
2718/// be converted to the composite pointer type.
2719///
2720/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
2721/// a non-standard (but still sane) composite type to which both expressions
2722/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
2723/// will be set true.
2724QualType Sema::FindCompositePointerType(SourceLocation Loc,
2725                                        Expr *&E1, Expr *&E2,
2726                                        bool *NonStandardCompositeType) {
2727  if (NonStandardCompositeType)
2728    *NonStandardCompositeType = false;
2729
2730  assert(getLangOptions().CPlusPlus && "This function assumes C++");
2731  QualType T1 = E1->getType(), T2 = E2->getType();
2732
2733  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
2734      !T2->isAnyPointerType() && !T2->isMemberPointerType())
2735   return QualType();
2736
2737  // C++0x 5.9p2
2738  //   Pointer conversions and qualification conversions are performed on
2739  //   pointer operands to bring them to their composite pointer type. If
2740  //   one operand is a null pointer constant, the composite pointer type is
2741  //   the type of the other operand.
2742  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
2743    if (T2->isMemberPointerType())
2744      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
2745    else
2746      ImpCastExprToType(E1, T2, CK_IntegralToPointer);
2747    return T2;
2748  }
2749  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
2750    if (T1->isMemberPointerType())
2751      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
2752    else
2753      ImpCastExprToType(E2, T1, CK_IntegralToPointer);
2754    return T1;
2755  }
2756
2757  // Now both have to be pointers or member pointers.
2758  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
2759      (!T2->isPointerType() && !T2->isMemberPointerType()))
2760    return QualType();
2761
2762  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
2763  //   the other has type "pointer to cv2 T" and the composite pointer type is
2764  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
2765  //   Otherwise, the composite pointer type is a pointer type similar to the
2766  //   type of one of the operands, with a cv-qualification signature that is
2767  //   the union of the cv-qualification signatures of the operand types.
2768  // In practice, the first part here is redundant; it's subsumed by the second.
2769  // What we do here is, we build the two possible composite types, and try the
2770  // conversions in both directions. If only one works, or if the two composite
2771  // types are the same, we have succeeded.
2772  // FIXME: extended qualifiers?
2773  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
2774  QualifierVector QualifierUnion;
2775  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
2776      ContainingClassVector;
2777  ContainingClassVector MemberOfClass;
2778  QualType Composite1 = Context.getCanonicalType(T1),
2779           Composite2 = Context.getCanonicalType(T2);
2780  unsigned NeedConstBefore = 0;
2781  do {
2782    const PointerType *Ptr1, *Ptr2;
2783    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
2784        (Ptr2 = Composite2->getAs<PointerType>())) {
2785      Composite1 = Ptr1->getPointeeType();
2786      Composite2 = Ptr2->getPointeeType();
2787
2788      // If we're allowed to create a non-standard composite type, keep track
2789      // of where we need to fill in additional 'const' qualifiers.
2790      if (NonStandardCompositeType &&
2791          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
2792        NeedConstBefore = QualifierUnion.size();
2793
2794      QualifierUnion.push_back(
2795                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
2796      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
2797      continue;
2798    }
2799
2800    const MemberPointerType *MemPtr1, *MemPtr2;
2801    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
2802        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
2803      Composite1 = MemPtr1->getPointeeType();
2804      Composite2 = MemPtr2->getPointeeType();
2805
2806      // If we're allowed to create a non-standard composite type, keep track
2807      // of where we need to fill in additional 'const' qualifiers.
2808      if (NonStandardCompositeType &&
2809          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
2810        NeedConstBefore = QualifierUnion.size();
2811
2812      QualifierUnion.push_back(
2813                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
2814      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
2815                                             MemPtr2->getClass()));
2816      continue;
2817    }
2818
2819    // FIXME: block pointer types?
2820
2821    // Cannot unwrap any more types.
2822    break;
2823  } while (true);
2824
2825  if (NeedConstBefore && NonStandardCompositeType) {
2826    // Extension: Add 'const' to qualifiers that come before the first qualifier
2827    // mismatch, so that our (non-standard!) composite type meets the
2828    // requirements of C++ [conv.qual]p4 bullet 3.
2829    for (unsigned I = 0; I != NeedConstBefore; ++I) {
2830      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
2831        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
2832        *NonStandardCompositeType = true;
2833      }
2834    }
2835  }
2836
2837  // Rewrap the composites as pointers or member pointers with the union CVRs.
2838  ContainingClassVector::reverse_iterator MOC
2839    = MemberOfClass.rbegin();
2840  for (QualifierVector::reverse_iterator
2841         I = QualifierUnion.rbegin(),
2842         E = QualifierUnion.rend();
2843       I != E; (void)++I, ++MOC) {
2844    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
2845    if (MOC->first && MOC->second) {
2846      // Rebuild member pointer type
2847      Composite1 = Context.getMemberPointerType(
2848                                    Context.getQualifiedType(Composite1, Quals),
2849                                    MOC->first);
2850      Composite2 = Context.getMemberPointerType(
2851                                    Context.getQualifiedType(Composite2, Quals),
2852                                    MOC->second);
2853    } else {
2854      // Rebuild pointer type
2855      Composite1
2856        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
2857      Composite2
2858        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
2859    }
2860  }
2861
2862  // Try to convert to the first composite pointer type.
2863  InitializedEntity Entity1
2864    = InitializedEntity::InitializeTemporary(Composite1);
2865  InitializationKind Kind
2866    = InitializationKind::CreateCopy(Loc, SourceLocation());
2867  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
2868  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
2869
2870  if (E1ToC1 && E2ToC1) {
2871    // Conversion to Composite1 is viable.
2872    if (!Context.hasSameType(Composite1, Composite2)) {
2873      // Composite2 is a different type from Composite1. Check whether
2874      // Composite2 is also viable.
2875      InitializedEntity Entity2
2876        = InitializedEntity::InitializeTemporary(Composite2);
2877      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
2878      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
2879      if (E1ToC2 && E2ToC2) {
2880        // Both Composite1 and Composite2 are viable and are different;
2881        // this is an ambiguity.
2882        return QualType();
2883      }
2884    }
2885
2886    // Convert E1 to Composite1
2887    ExprResult E1Result
2888      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
2889    if (E1Result.isInvalid())
2890      return QualType();
2891    E1 = E1Result.takeAs<Expr>();
2892
2893    // Convert E2 to Composite1
2894    ExprResult E2Result
2895      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
2896    if (E2Result.isInvalid())
2897      return QualType();
2898    E2 = E2Result.takeAs<Expr>();
2899
2900    return Composite1;
2901  }
2902
2903  // Check whether Composite2 is viable.
2904  InitializedEntity Entity2
2905    = InitializedEntity::InitializeTemporary(Composite2);
2906  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
2907  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
2908  if (!E1ToC2 || !E2ToC2)
2909    return QualType();
2910
2911  // Convert E1 to Composite2
2912  ExprResult E1Result
2913    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
2914  if (E1Result.isInvalid())
2915    return QualType();
2916  E1 = E1Result.takeAs<Expr>();
2917
2918  // Convert E2 to Composite2
2919  ExprResult E2Result
2920    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
2921  if (E2Result.isInvalid())
2922    return QualType();
2923  E2 = E2Result.takeAs<Expr>();
2924
2925  return Composite2;
2926}
2927
2928ExprResult Sema::MaybeBindToTemporary(Expr *E) {
2929  if (!Context.getLangOptions().CPlusPlus)
2930    return Owned(E);
2931
2932  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
2933
2934  const RecordType *RT = E->getType()->getAs<RecordType>();
2935  if (!RT)
2936    return Owned(E);
2937
2938  // If this is the result of a call or an Objective-C message send expression,
2939  // our source might actually be a reference, in which case we shouldn't bind.
2940  if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
2941    if (CE->getCallReturnType()->isReferenceType())
2942      return Owned(E);
2943  } else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
2944    if (const ObjCMethodDecl *MD = ME->getMethodDecl()) {
2945      if (MD->getResultType()->isReferenceType())
2946        return Owned(E);
2947    }
2948  }
2949
2950  // That should be enough to guarantee that this type is complete.
2951  // If it has a trivial destructor, we can avoid the extra copy.
2952  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2953  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
2954    return Owned(E);
2955
2956  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
2957  ExprTemporaries.push_back(Temp);
2958  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
2959    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
2960    CheckDestructorAccess(E->getExprLoc(), Destructor,
2961                          PDiag(diag::err_access_dtor_temp)
2962                            << E->getType());
2963  }
2964  // FIXME: Add the temporary to the temporaries vector.
2965  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
2966}
2967
2968Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) {
2969  assert(SubExpr && "sub expression can't be null!");
2970
2971  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
2972  assert(ExprTemporaries.size() >= FirstTemporary);
2973  if (ExprTemporaries.size() == FirstTemporary)
2974    return SubExpr;
2975
2976  Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr,
2977                                           &ExprTemporaries[FirstTemporary],
2978                                       ExprTemporaries.size() - FirstTemporary);
2979  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
2980                        ExprTemporaries.end());
2981
2982  return E;
2983}
2984
2985ExprResult
2986Sema::MaybeCreateCXXExprWithTemporaries(ExprResult SubExpr) {
2987  if (SubExpr.isInvalid())
2988    return ExprError();
2989
2990  return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>()));
2991}
2992
2993FullExpr Sema::CreateFullExpr(Expr *SubExpr) {
2994  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
2995  assert(ExprTemporaries.size() >= FirstTemporary);
2996
2997  unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary;
2998  CXXTemporary **Temporaries =
2999    NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary];
3000
3001  FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries);
3002
3003  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
3004                        ExprTemporaries.end());
3005
3006  return E;
3007}
3008
3009ExprResult
3010Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3011                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3012                                   bool &MayBePseudoDestructor) {
3013  // Since this might be a postfix expression, get rid of ParenListExprs.
3014  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3015  if (Result.isInvalid()) return ExprError();
3016  Base = Result.get();
3017
3018  QualType BaseType = Base->getType();
3019  MayBePseudoDestructor = false;
3020  if (BaseType->isDependentType()) {
3021    // If we have a pointer to a dependent type and are using the -> operator,
3022    // the object type is the type that the pointer points to. We might still
3023    // have enough information about that type to do something useful.
3024    if (OpKind == tok::arrow)
3025      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3026        BaseType = Ptr->getPointeeType();
3027
3028    ObjectType = ParsedType::make(BaseType);
3029    MayBePseudoDestructor = true;
3030    return Owned(Base);
3031  }
3032
3033  // C++ [over.match.oper]p8:
3034  //   [...] When operator->returns, the operator-> is applied  to the value
3035  //   returned, with the original second operand.
3036  if (OpKind == tok::arrow) {
3037    // The set of types we've considered so far.
3038    llvm::SmallPtrSet<CanQualType,8> CTypes;
3039    llvm::SmallVector<SourceLocation, 8> Locations;
3040    CTypes.insert(Context.getCanonicalType(BaseType));
3041
3042    while (BaseType->isRecordType()) {
3043      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3044      if (Result.isInvalid())
3045        return ExprError();
3046      Base = Result.get();
3047      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3048        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3049      BaseType = Base->getType();
3050      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3051      if (!CTypes.insert(CBaseType)) {
3052        Diag(OpLoc, diag::err_operator_arrow_circular);
3053        for (unsigned i = 0; i < Locations.size(); i++)
3054          Diag(Locations[i], diag::note_declared_at);
3055        return ExprError();
3056      }
3057    }
3058
3059    if (BaseType->isPointerType())
3060      BaseType = BaseType->getPointeeType();
3061  }
3062
3063  // We could end up with various non-record types here, such as extended
3064  // vector types or Objective-C interfaces. Just return early and let
3065  // ActOnMemberReferenceExpr do the work.
3066  if (!BaseType->isRecordType()) {
3067    // C++ [basic.lookup.classref]p2:
3068    //   [...] If the type of the object expression is of pointer to scalar
3069    //   type, the unqualified-id is looked up in the context of the complete
3070    //   postfix-expression.
3071    //
3072    // This also indicates that we should be parsing a
3073    // pseudo-destructor-name.
3074    ObjectType = ParsedType();
3075    MayBePseudoDestructor = true;
3076    return Owned(Base);
3077  }
3078
3079  // The object type must be complete (or dependent).
3080  if (!BaseType->isDependentType() &&
3081      RequireCompleteType(OpLoc, BaseType,
3082                          PDiag(diag::err_incomplete_member_access)))
3083    return ExprError();
3084
3085  // C++ [basic.lookup.classref]p2:
3086  //   If the id-expression in a class member access (5.2.5) is an
3087  //   unqualified-id, and the type of the object expression is of a class
3088  //   type C (or of pointer to a class type C), the unqualified-id is looked
3089  //   up in the scope of class C. [...]
3090  ObjectType = ParsedType::make(BaseType);
3091  return move(Base);
3092}
3093
3094ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3095                                                   Expr *MemExpr) {
3096  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3097  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3098    << isa<CXXPseudoDestructorExpr>(MemExpr)
3099    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3100
3101  return ActOnCallExpr(/*Scope*/ 0,
3102                       MemExpr,
3103                       /*LPLoc*/ ExpectedLParenLoc,
3104                       MultiExprArg(),
3105                       /*RPLoc*/ ExpectedLParenLoc);
3106}
3107
3108ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3109                                                       SourceLocation OpLoc,
3110                                                       tok::TokenKind OpKind,
3111                                                       const CXXScopeSpec &SS,
3112                                                 TypeSourceInfo *ScopeTypeInfo,
3113                                                       SourceLocation CCLoc,
3114                                                       SourceLocation TildeLoc,
3115                                         PseudoDestructorTypeStorage Destructed,
3116                                                       bool HasTrailingLParen) {
3117  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3118
3119  // C++ [expr.pseudo]p2:
3120  //   The left-hand side of the dot operator shall be of scalar type. The
3121  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3122  //   This scalar type is the object type.
3123  QualType ObjectType = Base->getType();
3124  if (OpKind == tok::arrow) {
3125    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3126      ObjectType = Ptr->getPointeeType();
3127    } else if (!Base->isTypeDependent()) {
3128      // The user wrote "p->" when she probably meant "p."; fix it.
3129      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3130        << ObjectType << true
3131        << FixItHint::CreateReplacement(OpLoc, ".");
3132      if (isSFINAEContext())
3133        return ExprError();
3134
3135      OpKind = tok::period;
3136    }
3137  }
3138
3139  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3140    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3141      << ObjectType << Base->getSourceRange();
3142    return ExprError();
3143  }
3144
3145  // C++ [expr.pseudo]p2:
3146  //   [...] The cv-unqualified versions of the object type and of the type
3147  //   designated by the pseudo-destructor-name shall be the same type.
3148  if (DestructedTypeInfo) {
3149    QualType DestructedType = DestructedTypeInfo->getType();
3150    SourceLocation DestructedTypeStart
3151      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3152    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3153        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3154      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3155        << ObjectType << DestructedType << Base->getSourceRange()
3156        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3157
3158      // Recover by setting the destructed type to the object type.
3159      DestructedType = ObjectType;
3160      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3161                                                           DestructedTypeStart);
3162      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3163    }
3164  }
3165
3166  // C++ [expr.pseudo]p2:
3167  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3168  //   form
3169  //
3170  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3171  //
3172  //   shall designate the same scalar type.
3173  if (ScopeTypeInfo) {
3174    QualType ScopeType = ScopeTypeInfo->getType();
3175    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3176        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3177
3178      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3179           diag::err_pseudo_dtor_type_mismatch)
3180        << ObjectType << ScopeType << Base->getSourceRange()
3181        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3182
3183      ScopeType = QualType();
3184      ScopeTypeInfo = 0;
3185    }
3186  }
3187
3188  Expr *Result
3189    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3190                                            OpKind == tok::arrow, OpLoc,
3191                                            SS.getScopeRep(), SS.getRange(),
3192                                            ScopeTypeInfo,
3193                                            CCLoc,
3194                                            TildeLoc,
3195                                            Destructed);
3196
3197  if (HasTrailingLParen)
3198    return Owned(Result);
3199
3200  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3201}
3202
3203ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3204                                                       SourceLocation OpLoc,
3205                                                       tok::TokenKind OpKind,
3206                                                       CXXScopeSpec &SS,
3207                                                  UnqualifiedId &FirstTypeName,
3208                                                       SourceLocation CCLoc,
3209                                                       SourceLocation TildeLoc,
3210                                                 UnqualifiedId &SecondTypeName,
3211                                                       bool HasTrailingLParen) {
3212  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3213          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3214         "Invalid first type name in pseudo-destructor");
3215  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3216          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3217         "Invalid second type name in pseudo-destructor");
3218
3219  // C++ [expr.pseudo]p2:
3220  //   The left-hand side of the dot operator shall be of scalar type. The
3221  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3222  //   This scalar type is the object type.
3223  QualType ObjectType = Base->getType();
3224  if (OpKind == tok::arrow) {
3225    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3226      ObjectType = Ptr->getPointeeType();
3227    } else if (!ObjectType->isDependentType()) {
3228      // The user wrote "p->" when she probably meant "p."; fix it.
3229      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3230        << ObjectType << true
3231        << FixItHint::CreateReplacement(OpLoc, ".");
3232      if (isSFINAEContext())
3233        return ExprError();
3234
3235      OpKind = tok::period;
3236    }
3237  }
3238
3239  // Compute the object type that we should use for name lookup purposes. Only
3240  // record types and dependent types matter.
3241  ParsedType ObjectTypePtrForLookup;
3242  if (!SS.isSet()) {
3243    if (const Type *T = ObjectType->getAs<RecordType>())
3244      ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0));
3245    else if (ObjectType->isDependentType())
3246      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3247  }
3248
3249  // Convert the name of the type being destructed (following the ~) into a
3250  // type (with source-location information).
3251  QualType DestructedType;
3252  TypeSourceInfo *DestructedTypeInfo = 0;
3253  PseudoDestructorTypeStorage Destructed;
3254  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3255    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3256                               SecondTypeName.StartLocation,
3257                               S, &SS, true, ObjectTypePtrForLookup);
3258    if (!T &&
3259        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3260         (!SS.isSet() && ObjectType->isDependentType()))) {
3261      // The name of the type being destroyed is a dependent name, and we
3262      // couldn't find anything useful in scope. Just store the identifier and
3263      // it's location, and we'll perform (qualified) name lookup again at
3264      // template instantiation time.
3265      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3266                                               SecondTypeName.StartLocation);
3267    } else if (!T) {
3268      Diag(SecondTypeName.StartLocation,
3269           diag::err_pseudo_dtor_destructor_non_type)
3270        << SecondTypeName.Identifier << ObjectType;
3271      if (isSFINAEContext())
3272        return ExprError();
3273
3274      // Recover by assuming we had the right type all along.
3275      DestructedType = ObjectType;
3276    } else
3277      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3278  } else {
3279    // Resolve the template-id to a type.
3280    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3281    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3282                                       TemplateId->getTemplateArgs(),
3283                                       TemplateId->NumArgs);
3284    TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3285                                       TemplateId->TemplateNameLoc,
3286                                       TemplateId->LAngleLoc,
3287                                       TemplateArgsPtr,
3288                                       TemplateId->RAngleLoc);
3289    if (T.isInvalid() || !T.get()) {
3290      // Recover by assuming we had the right type all along.
3291      DestructedType = ObjectType;
3292    } else
3293      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3294  }
3295
3296  // If we've performed some kind of recovery, (re-)build the type source
3297  // information.
3298  if (!DestructedType.isNull()) {
3299    if (!DestructedTypeInfo)
3300      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3301                                                  SecondTypeName.StartLocation);
3302    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3303  }
3304
3305  // Convert the name of the scope type (the type prior to '::') into a type.
3306  TypeSourceInfo *ScopeTypeInfo = 0;
3307  QualType ScopeType;
3308  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3309      FirstTypeName.Identifier) {
3310    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3311      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3312                                 FirstTypeName.StartLocation,
3313                                 S, &SS, false, ObjectTypePtrForLookup);
3314      if (!T) {
3315        Diag(FirstTypeName.StartLocation,
3316             diag::err_pseudo_dtor_destructor_non_type)
3317          << FirstTypeName.Identifier << ObjectType;
3318
3319        if (isSFINAEContext())
3320          return ExprError();
3321
3322        // Just drop this type. It's unnecessary anyway.
3323        ScopeType = QualType();
3324      } else
3325        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3326    } else {
3327      // Resolve the template-id to a type.
3328      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3329      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3330                                         TemplateId->getTemplateArgs(),
3331                                         TemplateId->NumArgs);
3332      TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3333                                         TemplateId->TemplateNameLoc,
3334                                         TemplateId->LAngleLoc,
3335                                         TemplateArgsPtr,
3336                                         TemplateId->RAngleLoc);
3337      if (T.isInvalid() || !T.get()) {
3338        // Recover by dropping this type.
3339        ScopeType = QualType();
3340      } else
3341        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3342    }
3343  }
3344
3345  if (!ScopeType.isNull() && !ScopeTypeInfo)
3346    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3347                                                  FirstTypeName.StartLocation);
3348
3349
3350  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3351                                   ScopeTypeInfo, CCLoc, TildeLoc,
3352                                   Destructed, HasTrailingLParen);
3353}
3354
3355CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp,
3356                                                NamedDecl *FoundDecl,
3357                                                CXXMethodDecl *Method) {
3358  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3359                                          FoundDecl, Method))
3360    assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");
3361
3362  MemberExpr *ME =
3363      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3364                               SourceLocation(), Method->getType());
3365  QualType ResultType = Method->getCallResultType();
3366  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3367  CXXMemberCallExpr *CE =
3368    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType,
3369                                    Exp->getLocEnd());
3370  return CE;
3371}
3372
3373ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3374                                      SourceLocation RParen) {
3375  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3376                                             Operand->CanThrow(Context),
3377                                             KeyLoc, RParen));
3378}
3379
3380ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3381                                   Expr *Operand, SourceLocation RParen) {
3382  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3383}
3384
3385ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3386  if (!FullExpr) return ExprError();
3387
3388  CheckImplicitConversions(FullExpr);
3389  return MaybeCreateCXXExprWithTemporaries(FullExpr);
3390}
3391