SemaExprCXX.cpp revision a7b7d0e4bb13a7ca5da4869197f43e923dadbb38
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TypeLocBuilder.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/Initialization.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/TemplateDeduction.h"
35#include "llvm/ADT/APInt.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Support/ErrorHandling.h"
38using namespace clang;
39using namespace sema;
40
41/// \brief Handle the result of the special case name lookup for inheriting
42/// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as
43/// constructor names in member using declarations, even if 'X' is not the
44/// name of the corresponding type.
45ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS,
46                                              SourceLocation NameLoc,
47                                              IdentifierInfo &Name) {
48  NestedNameSpecifier *NNS = SS.getScopeRep();
49
50  // Convert the nested-name-specifier into a type.
51  QualType Type;
52  switch (NNS->getKind()) {
53  case NestedNameSpecifier::TypeSpec:
54  case NestedNameSpecifier::TypeSpecWithTemplate:
55    Type = QualType(NNS->getAsType(), 0);
56    break;
57
58  case NestedNameSpecifier::Identifier:
59    // Strip off the last layer of the nested-name-specifier and build a
60    // typename type for it.
61    assert(NNS->getAsIdentifier() == &Name && "not a constructor name");
62    Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(),
63                                        NNS->getAsIdentifier());
64    break;
65
66  case NestedNameSpecifier::Global:
67  case NestedNameSpecifier::Namespace:
68  case NestedNameSpecifier::NamespaceAlias:
69    llvm_unreachable("Nested name specifier is not a type for inheriting ctor");
70  }
71
72  // This reference to the type is located entirely at the location of the
73  // final identifier in the qualified-id.
74  return CreateParsedType(Type,
75                          Context.getTrivialTypeSourceInfo(Type, NameLoc));
76}
77
78ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
79                                   IdentifierInfo &II,
80                                   SourceLocation NameLoc,
81                                   Scope *S, CXXScopeSpec &SS,
82                                   ParsedType ObjectTypePtr,
83                                   bool EnteringContext) {
84  // Determine where to perform name lookup.
85
86  // FIXME: This area of the standard is very messy, and the current
87  // wording is rather unclear about which scopes we search for the
88  // destructor name; see core issues 399 and 555. Issue 399 in
89  // particular shows where the current description of destructor name
90  // lookup is completely out of line with existing practice, e.g.,
91  // this appears to be ill-formed:
92  //
93  //   namespace N {
94  //     template <typename T> struct S {
95  //       ~S();
96  //     };
97  //   }
98  //
99  //   void f(N::S<int>* s) {
100  //     s->N::S<int>::~S();
101  //   }
102  //
103  // See also PR6358 and PR6359.
104  // For this reason, we're currently only doing the C++03 version of this
105  // code; the C++0x version has to wait until we get a proper spec.
106  QualType SearchType;
107  DeclContext *LookupCtx = 0;
108  bool isDependent = false;
109  bool LookInScope = false;
110
111  // If we have an object type, it's because we are in a
112  // pseudo-destructor-expression or a member access expression, and
113  // we know what type we're looking for.
114  if (ObjectTypePtr)
115    SearchType = GetTypeFromParser(ObjectTypePtr);
116
117  if (SS.isSet()) {
118    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
119
120    bool AlreadySearched = false;
121    bool LookAtPrefix = true;
122    // C++ [basic.lookup.qual]p6:
123    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
124    //   the type-names are looked up as types in the scope designated by the
125    //   nested-name-specifier. In a qualified-id of the form:
126    //
127    //     ::[opt] nested-name-specifier  ~ class-name
128    //
129    //   where the nested-name-specifier designates a namespace scope, and in
130    //   a qualified-id of the form:
131    //
132    //     ::opt nested-name-specifier class-name ::  ~ class-name
133    //
134    //   the class-names are looked up as types in the scope designated by
135    //   the nested-name-specifier.
136    //
137    // Here, we check the first case (completely) and determine whether the
138    // code below is permitted to look at the prefix of the
139    // nested-name-specifier.
140    DeclContext *DC = computeDeclContext(SS, EnteringContext);
141    if (DC && DC->isFileContext()) {
142      AlreadySearched = true;
143      LookupCtx = DC;
144      isDependent = false;
145    } else if (DC && isa<CXXRecordDecl>(DC))
146      LookAtPrefix = false;
147
148    // The second case from the C++03 rules quoted further above.
149    NestedNameSpecifier *Prefix = 0;
150    if (AlreadySearched) {
151      // Nothing left to do.
152    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
153      CXXScopeSpec PrefixSS;
154      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
155      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
156      isDependent = isDependentScopeSpecifier(PrefixSS);
157    } else if (ObjectTypePtr) {
158      LookupCtx = computeDeclContext(SearchType);
159      isDependent = SearchType->isDependentType();
160    } else {
161      LookupCtx = computeDeclContext(SS, EnteringContext);
162      isDependent = LookupCtx && LookupCtx->isDependentContext();
163    }
164
165    LookInScope = false;
166  } else if (ObjectTypePtr) {
167    // C++ [basic.lookup.classref]p3:
168    //   If the unqualified-id is ~type-name, the type-name is looked up
169    //   in the context of the entire postfix-expression. If the type T
170    //   of the object expression is of a class type C, the type-name is
171    //   also looked up in the scope of class C. At least one of the
172    //   lookups shall find a name that refers to (possibly
173    //   cv-qualified) T.
174    LookupCtx = computeDeclContext(SearchType);
175    isDependent = SearchType->isDependentType();
176    assert((isDependent || !SearchType->isIncompleteType()) &&
177           "Caller should have completed object type");
178
179    LookInScope = true;
180  } else {
181    // Perform lookup into the current scope (only).
182    LookInScope = true;
183  }
184
185  TypeDecl *NonMatchingTypeDecl = 0;
186  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
187  for (unsigned Step = 0; Step != 2; ++Step) {
188    // Look for the name first in the computed lookup context (if we
189    // have one) and, if that fails to find a match, in the scope (if
190    // we're allowed to look there).
191    Found.clear();
192    if (Step == 0 && LookupCtx)
193      LookupQualifiedName(Found, LookupCtx);
194    else if (Step == 1 && LookInScope && S)
195      LookupName(Found, S);
196    else
197      continue;
198
199    // FIXME: Should we be suppressing ambiguities here?
200    if (Found.isAmbiguous())
201      return ParsedType();
202
203    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
204      QualType T = Context.getTypeDeclType(Type);
205
206      if (SearchType.isNull() || SearchType->isDependentType() ||
207          Context.hasSameUnqualifiedType(T, SearchType)) {
208        // We found our type!
209
210        return ParsedType::make(T);
211      }
212
213      if (!SearchType.isNull())
214        NonMatchingTypeDecl = Type;
215    }
216
217    // If the name that we found is a class template name, and it is
218    // the same name as the template name in the last part of the
219    // nested-name-specifier (if present) or the object type, then
220    // this is the destructor for that class.
221    // FIXME: This is a workaround until we get real drafting for core
222    // issue 399, for which there isn't even an obvious direction.
223    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
224      QualType MemberOfType;
225      if (SS.isSet()) {
226        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
227          // Figure out the type of the context, if it has one.
228          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
229            MemberOfType = Context.getTypeDeclType(Record);
230        }
231      }
232      if (MemberOfType.isNull())
233        MemberOfType = SearchType;
234
235      if (MemberOfType.isNull())
236        continue;
237
238      // We're referring into a class template specialization. If the
239      // class template we found is the same as the template being
240      // specialized, we found what we are looking for.
241      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
242        if (ClassTemplateSpecializationDecl *Spec
243              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
244          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
245                Template->getCanonicalDecl())
246            return ParsedType::make(MemberOfType);
247        }
248
249        continue;
250      }
251
252      // We're referring to an unresolved class template
253      // specialization. Determine whether we class template we found
254      // is the same as the template being specialized or, if we don't
255      // know which template is being specialized, that it at least
256      // has the same name.
257      if (const TemplateSpecializationType *SpecType
258            = MemberOfType->getAs<TemplateSpecializationType>()) {
259        TemplateName SpecName = SpecType->getTemplateName();
260
261        // The class template we found is the same template being
262        // specialized.
263        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
264          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
265            return ParsedType::make(MemberOfType);
266
267          continue;
268        }
269
270        // The class template we found has the same name as the
271        // (dependent) template name being specialized.
272        if (DependentTemplateName *DepTemplate
273                                    = SpecName.getAsDependentTemplateName()) {
274          if (DepTemplate->isIdentifier() &&
275              DepTemplate->getIdentifier() == Template->getIdentifier())
276            return ParsedType::make(MemberOfType);
277
278          continue;
279        }
280      }
281    }
282  }
283
284  if (isDependent) {
285    // We didn't find our type, but that's okay: it's dependent
286    // anyway.
287
288    // FIXME: What if we have no nested-name-specifier?
289    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
290                                   SS.getWithLocInContext(Context),
291                                   II, NameLoc);
292    return ParsedType::make(T);
293  }
294
295  if (NonMatchingTypeDecl) {
296    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
297    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
298      << T << SearchType;
299    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
300      << T;
301  } else if (ObjectTypePtr)
302    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
303      << &II;
304  else {
305    SemaDiagnosticBuilder DtorDiag = Diag(NameLoc,
306                                          diag::err_destructor_class_name);
307    if (S) {
308      const DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
309      if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx))
310        DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc),
311                                                 Class->getNameAsString());
312    }
313  }
314
315  return ParsedType();
316}
317
318ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
319    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
320      return ParsedType();
321    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
322           && "only get destructor types from declspecs");
323    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
324    QualType SearchType = GetTypeFromParser(ObjectType);
325    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
326      return ParsedType::make(T);
327    }
328
329    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
330      << T << SearchType;
331    return ParsedType();
332}
333
334/// \brief Build a C++ typeid expression with a type operand.
335ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
336                                SourceLocation TypeidLoc,
337                                TypeSourceInfo *Operand,
338                                SourceLocation RParenLoc) {
339  // C++ [expr.typeid]p4:
340  //   The top-level cv-qualifiers of the lvalue expression or the type-id
341  //   that is the operand of typeid are always ignored.
342  //   If the type of the type-id is a class type or a reference to a class
343  //   type, the class shall be completely-defined.
344  Qualifiers Quals;
345  QualType T
346    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
347                                      Quals);
348  if (T->getAs<RecordType>() &&
349      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
350    return ExprError();
351
352  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
353                                           Operand,
354                                           SourceRange(TypeidLoc, RParenLoc)));
355}
356
357/// \brief Build a C++ typeid expression with an expression operand.
358ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
359                                SourceLocation TypeidLoc,
360                                Expr *E,
361                                SourceLocation RParenLoc) {
362  if (E && !E->isTypeDependent()) {
363    if (E->getType()->isPlaceholderType()) {
364      ExprResult result = CheckPlaceholderExpr(E);
365      if (result.isInvalid()) return ExprError();
366      E = result.take();
367    }
368
369    QualType T = E->getType();
370    if (const RecordType *RecordT = T->getAs<RecordType>()) {
371      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
372      // C++ [expr.typeid]p3:
373      //   [...] If the type of the expression is a class type, the class
374      //   shall be completely-defined.
375      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
376        return ExprError();
377
378      // C++ [expr.typeid]p3:
379      //   When typeid is applied to an expression other than an glvalue of a
380      //   polymorphic class type [...] [the] expression is an unevaluated
381      //   operand. [...]
382      if (RecordD->isPolymorphic() && E->isGLValue()) {
383        // The subexpression is potentially evaluated; switch the context
384        // and recheck the subexpression.
385        ExprResult Result = TransformToPotentiallyEvaluated(E);
386        if (Result.isInvalid()) return ExprError();
387        E = Result.take();
388
389        // We require a vtable to query the type at run time.
390        MarkVTableUsed(TypeidLoc, RecordD);
391      }
392    }
393
394    // C++ [expr.typeid]p4:
395    //   [...] If the type of the type-id is a reference to a possibly
396    //   cv-qualified type, the result of the typeid expression refers to a
397    //   std::type_info object representing the cv-unqualified referenced
398    //   type.
399    Qualifiers Quals;
400    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
401    if (!Context.hasSameType(T, UnqualT)) {
402      T = UnqualT;
403      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
404    }
405  }
406
407  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
408                                           E,
409                                           SourceRange(TypeidLoc, RParenLoc)));
410}
411
412/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
413ExprResult
414Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
415                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
416  // Find the std::type_info type.
417  if (!getStdNamespace())
418    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
419
420  if (!CXXTypeInfoDecl) {
421    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
422    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
423    LookupQualifiedName(R, getStdNamespace());
424    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
425    // Microsoft's typeinfo doesn't have type_info in std but in the global
426    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
427    if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
428      LookupQualifiedName(R, Context.getTranslationUnitDecl());
429      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
430    }
431    if (!CXXTypeInfoDecl)
432      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
433  }
434
435  if (!getLangOpts().RTTI) {
436    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
437  }
438
439  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
440
441  if (isType) {
442    // The operand is a type; handle it as such.
443    TypeSourceInfo *TInfo = 0;
444    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
445                                   &TInfo);
446    if (T.isNull())
447      return ExprError();
448
449    if (!TInfo)
450      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
451
452    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
453  }
454
455  // The operand is an expression.
456  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
457}
458
459/// \brief Build a Microsoft __uuidof expression with a type operand.
460ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
461                                SourceLocation TypeidLoc,
462                                TypeSourceInfo *Operand,
463                                SourceLocation RParenLoc) {
464  if (!Operand->getType()->isDependentType()) {
465    if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
466      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
467  }
468
469  // FIXME: add __uuidof semantic analysis for type operand.
470  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
471                                           Operand,
472                                           SourceRange(TypeidLoc, RParenLoc)));
473}
474
475/// \brief Build a Microsoft __uuidof expression with an expression operand.
476ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
477                                SourceLocation TypeidLoc,
478                                Expr *E,
479                                SourceLocation RParenLoc) {
480  if (!E->getType()->isDependentType()) {
481    if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
482        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
483      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
484  }
485  // FIXME: add __uuidof semantic analysis for type operand.
486  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
487                                           E,
488                                           SourceRange(TypeidLoc, RParenLoc)));
489}
490
491/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
492ExprResult
493Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
494                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
495  // If MSVCGuidDecl has not been cached, do the lookup.
496  if (!MSVCGuidDecl) {
497    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
498    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
499    LookupQualifiedName(R, Context.getTranslationUnitDecl());
500    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
501    if (!MSVCGuidDecl)
502      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
503  }
504
505  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
506
507  if (isType) {
508    // The operand is a type; handle it as such.
509    TypeSourceInfo *TInfo = 0;
510    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
511                                   &TInfo);
512    if (T.isNull())
513      return ExprError();
514
515    if (!TInfo)
516      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
517
518    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
519  }
520
521  // The operand is an expression.
522  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
523}
524
525/// ActOnCXXBoolLiteral - Parse {true,false} literals.
526ExprResult
527Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
528  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
529         "Unknown C++ Boolean value!");
530  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
531                                                Context.BoolTy, OpLoc));
532}
533
534/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
535ExprResult
536Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
537  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
538}
539
540/// ActOnCXXThrow - Parse throw expressions.
541ExprResult
542Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
543  bool IsThrownVarInScope = false;
544  if (Ex) {
545    // C++0x [class.copymove]p31:
546    //   When certain criteria are met, an implementation is allowed to omit the
547    //   copy/move construction of a class object [...]
548    //
549    //     - in a throw-expression, when the operand is the name of a
550    //       non-volatile automatic object (other than a function or catch-
551    //       clause parameter) whose scope does not extend beyond the end of the
552    //       innermost enclosing try-block (if there is one), the copy/move
553    //       operation from the operand to the exception object (15.1) can be
554    //       omitted by constructing the automatic object directly into the
555    //       exception object
556    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
557      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
558        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
559          for( ; S; S = S->getParent()) {
560            if (S->isDeclScope(Var)) {
561              IsThrownVarInScope = true;
562              break;
563            }
564
565            if (S->getFlags() &
566                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
567                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
568                 Scope::TryScope))
569              break;
570          }
571        }
572      }
573  }
574
575  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
576}
577
578ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
579                               bool IsThrownVarInScope) {
580  // Don't report an error if 'throw' is used in system headers.
581  if (!getLangOpts().CXXExceptions &&
582      !getSourceManager().isInSystemHeader(OpLoc))
583    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
584
585  if (Ex && !Ex->isTypeDependent()) {
586    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
587    if (ExRes.isInvalid())
588      return ExprError();
589    Ex = ExRes.take();
590  }
591
592  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
593                                          IsThrownVarInScope));
594}
595
596/// CheckCXXThrowOperand - Validate the operand of a throw.
597ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
598                                      bool IsThrownVarInScope) {
599  // C++ [except.throw]p3:
600  //   A throw-expression initializes a temporary object, called the exception
601  //   object, the type of which is determined by removing any top-level
602  //   cv-qualifiers from the static type of the operand of throw and adjusting
603  //   the type from "array of T" or "function returning T" to "pointer to T"
604  //   or "pointer to function returning T", [...]
605  if (E->getType().hasQualifiers())
606    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
607                          E->getValueKind()).take();
608
609  ExprResult Res = DefaultFunctionArrayConversion(E);
610  if (Res.isInvalid())
611    return ExprError();
612  E = Res.take();
613
614  //   If the type of the exception would be an incomplete type or a pointer
615  //   to an incomplete type other than (cv) void the program is ill-formed.
616  QualType Ty = E->getType();
617  bool isPointer = false;
618  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
619    Ty = Ptr->getPointeeType();
620    isPointer = true;
621  }
622  if (!isPointer || !Ty->isVoidType()) {
623    if (RequireCompleteType(ThrowLoc, Ty,
624                            isPointer? diag::err_throw_incomplete_ptr
625                                     : diag::err_throw_incomplete,
626                            E->getSourceRange()))
627      return ExprError();
628
629    if (RequireNonAbstractType(ThrowLoc, E->getType(),
630                               diag::err_throw_abstract_type, E))
631      return ExprError();
632  }
633
634  // Initialize the exception result.  This implicitly weeds out
635  // abstract types or types with inaccessible copy constructors.
636
637  // C++0x [class.copymove]p31:
638  //   When certain criteria are met, an implementation is allowed to omit the
639  //   copy/move construction of a class object [...]
640  //
641  //     - in a throw-expression, when the operand is the name of a
642  //       non-volatile automatic object (other than a function or catch-clause
643  //       parameter) whose scope does not extend beyond the end of the
644  //       innermost enclosing try-block (if there is one), the copy/move
645  //       operation from the operand to the exception object (15.1) can be
646  //       omitted by constructing the automatic object directly into the
647  //       exception object
648  const VarDecl *NRVOVariable = 0;
649  if (IsThrownVarInScope)
650    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
651
652  InitializedEntity Entity =
653      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
654                                             /*NRVO=*/NRVOVariable != 0);
655  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
656                                        QualType(), E,
657                                        IsThrownVarInScope);
658  if (Res.isInvalid())
659    return ExprError();
660  E = Res.take();
661
662  // If the exception has class type, we need additional handling.
663  const RecordType *RecordTy = Ty->getAs<RecordType>();
664  if (!RecordTy)
665    return Owned(E);
666  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
667
668  // If we are throwing a polymorphic class type or pointer thereof,
669  // exception handling will make use of the vtable.
670  MarkVTableUsed(ThrowLoc, RD);
671
672  // If a pointer is thrown, the referenced object will not be destroyed.
673  if (isPointer)
674    return Owned(E);
675
676  // If the class has a destructor, we must be able to call it.
677  if (RD->hasIrrelevantDestructor())
678    return Owned(E);
679
680  CXXDestructorDecl *Destructor = LookupDestructor(RD);
681  if (!Destructor)
682    return Owned(E);
683
684  MarkFunctionReferenced(E->getExprLoc(), Destructor);
685  CheckDestructorAccess(E->getExprLoc(), Destructor,
686                        PDiag(diag::err_access_dtor_exception) << Ty);
687  if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
688    return ExprError();
689  return Owned(E);
690}
691
692QualType Sema::getCurrentThisType() {
693  DeclContext *DC = getFunctionLevelDeclContext();
694  QualType ThisTy = CXXThisTypeOverride;
695  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
696    if (method && method->isInstance())
697      ThisTy = method->getThisType(Context);
698  }
699
700  return ThisTy;
701}
702
703Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
704                                         Decl *ContextDecl,
705                                         unsigned CXXThisTypeQuals,
706                                         bool Enabled)
707  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
708{
709  if (!Enabled || !ContextDecl)
710    return;
711
712  CXXRecordDecl *Record = 0;
713  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
714    Record = Template->getTemplatedDecl();
715  else
716    Record = cast<CXXRecordDecl>(ContextDecl);
717
718  S.CXXThisTypeOverride
719    = S.Context.getPointerType(
720        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
721
722  this->Enabled = true;
723}
724
725
726Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
727  if (Enabled) {
728    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
729  }
730}
731
732static Expr *captureThis(ASTContext &Context, RecordDecl *RD,
733                         QualType ThisTy, SourceLocation Loc) {
734  FieldDecl *Field
735    = FieldDecl::Create(Context, RD, Loc, Loc, 0, ThisTy,
736                        Context.getTrivialTypeSourceInfo(ThisTy, Loc),
737                        0, false, ICIS_NoInit);
738  Field->setImplicit(true);
739  Field->setAccess(AS_private);
740  RD->addDecl(Field);
741  return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true);
742}
743
744void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
745  // We don't need to capture this in an unevaluated context.
746  if (isUnevaluatedContext() && !Explicit)
747    return;
748
749  // Otherwise, check that we can capture 'this'.
750  unsigned NumClosures = 0;
751  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
752    if (CapturingScopeInfo *CSI =
753            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
754      if (CSI->CXXThisCaptureIndex != 0) {
755        // 'this' is already being captured; there isn't anything more to do.
756        break;
757      }
758
759      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
760          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
761          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
762          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion ||
763          Explicit) {
764        // This closure can capture 'this'; continue looking upwards.
765        NumClosures++;
766        Explicit = false;
767        continue;
768      }
769      // This context can't implicitly capture 'this'; fail out.
770      Diag(Loc, diag::err_this_capture) << Explicit;
771      return;
772    }
773    break;
774  }
775
776  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
777  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
778  // contexts.
779  for (unsigned idx = FunctionScopes.size() - 1;
780       NumClosures; --idx, --NumClosures) {
781    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
782    Expr *ThisExpr = 0;
783    QualType ThisTy = getCurrentThisType();
784    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI))
785      // For lambda expressions, build a field and an initializing expression.
786      ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc);
787    else if (CapturedRegionScopeInfo *RSI
788        = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx]))
789      ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc);
790
791    bool isNested = NumClosures > 1;
792    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
793  }
794}
795
796ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
797  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
798  /// is a non-lvalue expression whose value is the address of the object for
799  /// which the function is called.
800
801  QualType ThisTy = getCurrentThisType();
802  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
803
804  CheckCXXThisCapture(Loc);
805  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
806}
807
808bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
809  // If we're outside the body of a member function, then we'll have a specified
810  // type for 'this'.
811  if (CXXThisTypeOverride.isNull())
812    return false;
813
814  // Determine whether we're looking into a class that's currently being
815  // defined.
816  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
817  return Class && Class->isBeingDefined();
818}
819
820ExprResult
821Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
822                                SourceLocation LParenLoc,
823                                MultiExprArg exprs,
824                                SourceLocation RParenLoc) {
825  if (!TypeRep)
826    return ExprError();
827
828  TypeSourceInfo *TInfo;
829  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
830  if (!TInfo)
831    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
832
833  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
834}
835
836/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
837/// Can be interpreted either as function-style casting ("int(x)")
838/// or class type construction ("ClassType(x,y,z)")
839/// or creation of a value-initialized type ("int()").
840ExprResult
841Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
842                                SourceLocation LParenLoc,
843                                MultiExprArg Exprs,
844                                SourceLocation RParenLoc) {
845  QualType Ty = TInfo->getType();
846  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
847
848  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) {
849    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
850                                                    LParenLoc,
851                                                    Exprs,
852                                                    RParenLoc));
853  }
854
855  bool ListInitialization = LParenLoc.isInvalid();
856  assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0])))
857         && "List initialization must have initializer list as expression.");
858  SourceRange FullRange = SourceRange(TyBeginLoc,
859      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
860
861  // C++ [expr.type.conv]p1:
862  // If the expression list is a single expression, the type conversion
863  // expression is equivalent (in definedness, and if defined in meaning) to the
864  // corresponding cast expression.
865  if (Exprs.size() == 1 && !ListInitialization) {
866    Expr *Arg = Exprs[0];
867    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
868  }
869
870  QualType ElemTy = Ty;
871  if (Ty->isArrayType()) {
872    if (!ListInitialization)
873      return ExprError(Diag(TyBeginLoc,
874                            diag::err_value_init_for_array_type) << FullRange);
875    ElemTy = Context.getBaseElementType(Ty);
876  }
877
878  if (!Ty->isVoidType() &&
879      RequireCompleteType(TyBeginLoc, ElemTy,
880                          diag::err_invalid_incomplete_type_use, FullRange))
881    return ExprError();
882
883  if (RequireNonAbstractType(TyBeginLoc, Ty,
884                             diag::err_allocation_of_abstract_type))
885    return ExprError();
886
887  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
888  InitializationKind Kind =
889      Exprs.size() ? ListInitialization
890      ? InitializationKind::CreateDirectList(TyBeginLoc)
891      : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc)
892      : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc);
893  InitializationSequence InitSeq(*this, Entity, Kind, Exprs);
894  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs);
895
896  if (!Result.isInvalid() && ListInitialization &&
897      isa<InitListExpr>(Result.get())) {
898    // If the list-initialization doesn't involve a constructor call, we'll get
899    // the initializer-list (with corrected type) back, but that's not what we
900    // want, since it will be treated as an initializer list in further
901    // processing. Explicitly insert a cast here.
902    InitListExpr *List = cast<InitListExpr>(Result.take());
903    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
904                                    Expr::getValueKindForType(TInfo->getType()),
905                                                 TInfo, TyBeginLoc, CK_NoOp,
906                                                 List, /*Path=*/0, RParenLoc));
907  }
908
909  // FIXME: Improve AST representation?
910  return Result;
911}
912
913/// doesUsualArrayDeleteWantSize - Answers whether the usual
914/// operator delete[] for the given type has a size_t parameter.
915static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
916                                         QualType allocType) {
917  const RecordType *record =
918    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
919  if (!record) return false;
920
921  // Try to find an operator delete[] in class scope.
922
923  DeclarationName deleteName =
924    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
925  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
926  S.LookupQualifiedName(ops, record->getDecl());
927
928  // We're just doing this for information.
929  ops.suppressDiagnostics();
930
931  // Very likely: there's no operator delete[].
932  if (ops.empty()) return false;
933
934  // If it's ambiguous, it should be illegal to call operator delete[]
935  // on this thing, so it doesn't matter if we allocate extra space or not.
936  if (ops.isAmbiguous()) return false;
937
938  LookupResult::Filter filter = ops.makeFilter();
939  while (filter.hasNext()) {
940    NamedDecl *del = filter.next()->getUnderlyingDecl();
941
942    // C++0x [basic.stc.dynamic.deallocation]p2:
943    //   A template instance is never a usual deallocation function,
944    //   regardless of its signature.
945    if (isa<FunctionTemplateDecl>(del)) {
946      filter.erase();
947      continue;
948    }
949
950    // C++0x [basic.stc.dynamic.deallocation]p2:
951    //   If class T does not declare [an operator delete[] with one
952    //   parameter] but does declare a member deallocation function
953    //   named operator delete[] with exactly two parameters, the
954    //   second of which has type std::size_t, then this function
955    //   is a usual deallocation function.
956    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
957      filter.erase();
958      continue;
959    }
960  }
961  filter.done();
962
963  if (!ops.isSingleResult()) return false;
964
965  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
966  return (del->getNumParams() == 2);
967}
968
969/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
970///
971/// E.g.:
972/// @code new (memory) int[size][4] @endcode
973/// or
974/// @code ::new Foo(23, "hello") @endcode
975///
976/// \param StartLoc The first location of the expression.
977/// \param UseGlobal True if 'new' was prefixed with '::'.
978/// \param PlacementLParen Opening paren of the placement arguments.
979/// \param PlacementArgs Placement new arguments.
980/// \param PlacementRParen Closing paren of the placement arguments.
981/// \param TypeIdParens If the type is in parens, the source range.
982/// \param D The type to be allocated, as well as array dimensions.
983/// \param Initializer The initializing expression or initializer-list, or null
984///   if there is none.
985ExprResult
986Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
987                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
988                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
989                  Declarator &D, Expr *Initializer) {
990  bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType();
991
992  Expr *ArraySize = 0;
993  // If the specified type is an array, unwrap it and save the expression.
994  if (D.getNumTypeObjects() > 0 &&
995      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
996     DeclaratorChunk &Chunk = D.getTypeObject(0);
997    if (TypeContainsAuto)
998      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
999        << D.getSourceRange());
1000    if (Chunk.Arr.hasStatic)
1001      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
1002        << D.getSourceRange());
1003    if (!Chunk.Arr.NumElts)
1004      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
1005        << D.getSourceRange());
1006
1007    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
1008    D.DropFirstTypeObject();
1009  }
1010
1011  // Every dimension shall be of constant size.
1012  if (ArraySize) {
1013    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
1014      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
1015        break;
1016
1017      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
1018      if (Expr *NumElts = (Expr *)Array.NumElts) {
1019        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
1020          Array.NumElts
1021            = VerifyIntegerConstantExpression(NumElts, 0,
1022                                              diag::err_new_array_nonconst)
1023                .take();
1024          if (!Array.NumElts)
1025            return ExprError();
1026        }
1027      }
1028    }
1029  }
1030
1031  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
1032  QualType AllocType = TInfo->getType();
1033  if (D.isInvalidType())
1034    return ExprError();
1035
1036  SourceRange DirectInitRange;
1037  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1038    DirectInitRange = List->getSourceRange();
1039
1040  return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
1041                     PlacementLParen,
1042                     PlacementArgs,
1043                     PlacementRParen,
1044                     TypeIdParens,
1045                     AllocType,
1046                     TInfo,
1047                     ArraySize,
1048                     DirectInitRange,
1049                     Initializer,
1050                     TypeContainsAuto);
1051}
1052
1053static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1054                                       Expr *Init) {
1055  if (!Init)
1056    return true;
1057  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1058    return PLE->getNumExprs() == 0;
1059  if (isa<ImplicitValueInitExpr>(Init))
1060    return true;
1061  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1062    return !CCE->isListInitialization() &&
1063           CCE->getConstructor()->isDefaultConstructor();
1064  else if (Style == CXXNewExpr::ListInit) {
1065    assert(isa<InitListExpr>(Init) &&
1066           "Shouldn't create list CXXConstructExprs for arrays.");
1067    return true;
1068  }
1069  return false;
1070}
1071
1072ExprResult
1073Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1074                  SourceLocation PlacementLParen,
1075                  MultiExprArg PlacementArgs,
1076                  SourceLocation PlacementRParen,
1077                  SourceRange TypeIdParens,
1078                  QualType AllocType,
1079                  TypeSourceInfo *AllocTypeInfo,
1080                  Expr *ArraySize,
1081                  SourceRange DirectInitRange,
1082                  Expr *Initializer,
1083                  bool TypeMayContainAuto) {
1084  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1085  SourceLocation StartLoc = Range.getBegin();
1086
1087  CXXNewExpr::InitializationStyle initStyle;
1088  if (DirectInitRange.isValid()) {
1089    assert(Initializer && "Have parens but no initializer.");
1090    initStyle = CXXNewExpr::CallInit;
1091  } else if (Initializer && isa<InitListExpr>(Initializer))
1092    initStyle = CXXNewExpr::ListInit;
1093  else {
1094    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1095            isa<CXXConstructExpr>(Initializer)) &&
1096           "Initializer expression that cannot have been implicitly created.");
1097    initStyle = CXXNewExpr::NoInit;
1098  }
1099
1100  Expr **Inits = &Initializer;
1101  unsigned NumInits = Initializer ? 1 : 0;
1102  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1103    assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1104    Inits = List->getExprs();
1105    NumInits = List->getNumExprs();
1106  }
1107
1108  // Determine whether we've already built the initializer.
1109  bool HaveCompleteInit = false;
1110  if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1111      !isa<CXXTemporaryObjectExpr>(Initializer))
1112    HaveCompleteInit = true;
1113  else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1114    HaveCompleteInit = true;
1115
1116  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1117  if (TypeMayContainAuto && AllocType->isUndeducedType()) {
1118    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1119      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1120                       << AllocType << TypeRange);
1121    if (initStyle == CXXNewExpr::ListInit)
1122      return ExprError(Diag(Inits[0]->getLocStart(),
1123                            diag::err_auto_new_requires_parens)
1124                       << AllocType << TypeRange);
1125    if (NumInits > 1) {
1126      Expr *FirstBad = Inits[1];
1127      return ExprError(Diag(FirstBad->getLocStart(),
1128                            diag::err_auto_new_ctor_multiple_expressions)
1129                       << AllocType << TypeRange);
1130    }
1131    Expr *Deduce = Inits[0];
1132    QualType DeducedType;
1133    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1134      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1135                       << AllocType << Deduce->getType()
1136                       << TypeRange << Deduce->getSourceRange());
1137    if (DeducedType.isNull())
1138      return ExprError();
1139    AllocType = DeducedType;
1140  }
1141
1142  // Per C++0x [expr.new]p5, the type being constructed may be a
1143  // typedef of an array type.
1144  if (!ArraySize) {
1145    if (const ConstantArrayType *Array
1146                              = Context.getAsConstantArrayType(AllocType)) {
1147      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1148                                         Context.getSizeType(),
1149                                         TypeRange.getEnd());
1150      AllocType = Array->getElementType();
1151    }
1152  }
1153
1154  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1155    return ExprError();
1156
1157  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1158    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1159         diag::warn_dangling_std_initializer_list)
1160        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1161  }
1162
1163  // In ARC, infer 'retaining' for the allocated
1164  if (getLangOpts().ObjCAutoRefCount &&
1165      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1166      AllocType->isObjCLifetimeType()) {
1167    AllocType = Context.getLifetimeQualifiedType(AllocType,
1168                                    AllocType->getObjCARCImplicitLifetime());
1169  }
1170
1171  QualType ResultType = Context.getPointerType(AllocType);
1172
1173  if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) {
1174    ExprResult result = CheckPlaceholderExpr(ArraySize);
1175    if (result.isInvalid()) return ExprError();
1176    ArraySize = result.take();
1177  }
1178  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1179  //   integral or enumeration type with a non-negative value."
1180  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1181  //   enumeration type, or a class type for which a single non-explicit
1182  //   conversion function to integral or unscoped enumeration type exists.
1183  if (ArraySize && !ArraySize->isTypeDependent()) {
1184    class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1185      Expr *ArraySize;
1186
1187    public:
1188      SizeConvertDiagnoser(Expr *ArraySize)
1189        : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1190
1191      virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1192                                               QualType T) {
1193        return S.Diag(Loc, diag::err_array_size_not_integral)
1194                 << S.getLangOpts().CPlusPlus11 << T;
1195      }
1196
1197      virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1198                                                   QualType T) {
1199        return S.Diag(Loc, diag::err_array_size_incomplete_type)
1200                 << T << ArraySize->getSourceRange();
1201      }
1202
1203      virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1204                                                     SourceLocation Loc,
1205                                                     QualType T,
1206                                                     QualType ConvTy) {
1207        return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1208      }
1209
1210      virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1211                                                 CXXConversionDecl *Conv,
1212                                                 QualType ConvTy) {
1213        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1214                 << ConvTy->isEnumeralType() << ConvTy;
1215      }
1216
1217      virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1218                                                  QualType T) {
1219        return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1220      }
1221
1222      virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1223                                              QualType ConvTy) {
1224        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1225                 << ConvTy->isEnumeralType() << ConvTy;
1226      }
1227
1228      virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1229                                                   QualType T,
1230                                                   QualType ConvTy) {
1231        return S.Diag(Loc,
1232                      S.getLangOpts().CPlusPlus11
1233                        ? diag::warn_cxx98_compat_array_size_conversion
1234                        : diag::ext_array_size_conversion)
1235                 << T << ConvTy->isEnumeralType() << ConvTy;
1236      }
1237    } SizeDiagnoser(ArraySize);
1238
1239    ExprResult ConvertedSize
1240      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1241                                           /*AllowScopedEnumerations*/ false);
1242    if (ConvertedSize.isInvalid())
1243      return ExprError();
1244
1245    ArraySize = ConvertedSize.take();
1246    QualType SizeType = ArraySize->getType();
1247    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1248      return ExprError();
1249
1250    // C++98 [expr.new]p7:
1251    //   The expression in a direct-new-declarator shall have integral type
1252    //   with a non-negative value.
1253    //
1254    // Let's see if this is a constant < 0. If so, we reject it out of
1255    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1256    // array type.
1257    //
1258    // Note: such a construct has well-defined semantics in C++11: it throws
1259    // std::bad_array_new_length.
1260    if (!ArraySize->isValueDependent()) {
1261      llvm::APSInt Value;
1262      // We've already performed any required implicit conversion to integer or
1263      // unscoped enumeration type.
1264      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1265        if (Value < llvm::APSInt(
1266                        llvm::APInt::getNullValue(Value.getBitWidth()),
1267                                 Value.isUnsigned())) {
1268          if (getLangOpts().CPlusPlus11)
1269            Diag(ArraySize->getLocStart(),
1270                 diag::warn_typecheck_negative_array_new_size)
1271              << ArraySize->getSourceRange();
1272          else
1273            return ExprError(Diag(ArraySize->getLocStart(),
1274                                  diag::err_typecheck_negative_array_size)
1275                             << ArraySize->getSourceRange());
1276        } else if (!AllocType->isDependentType()) {
1277          unsigned ActiveSizeBits =
1278            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1279          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1280            if (getLangOpts().CPlusPlus11)
1281              Diag(ArraySize->getLocStart(),
1282                   diag::warn_array_new_too_large)
1283                << Value.toString(10)
1284                << ArraySize->getSourceRange();
1285            else
1286              return ExprError(Diag(ArraySize->getLocStart(),
1287                                    diag::err_array_too_large)
1288                               << Value.toString(10)
1289                               << ArraySize->getSourceRange());
1290          }
1291        }
1292      } else if (TypeIdParens.isValid()) {
1293        // Can't have dynamic array size when the type-id is in parentheses.
1294        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1295          << ArraySize->getSourceRange()
1296          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1297          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1298
1299        TypeIdParens = SourceRange();
1300      }
1301    }
1302
1303    // Note that we do *not* convert the argument in any way.  It can
1304    // be signed, larger than size_t, whatever.
1305  }
1306
1307  FunctionDecl *OperatorNew = 0;
1308  FunctionDecl *OperatorDelete = 0;
1309  Expr **PlaceArgs = PlacementArgs.data();
1310  unsigned NumPlaceArgs = PlacementArgs.size();
1311
1312  if (!AllocType->isDependentType() &&
1313      !Expr::hasAnyTypeDependentArguments(
1314        llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1315      FindAllocationFunctions(StartLoc,
1316                              SourceRange(PlacementLParen, PlacementRParen),
1317                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1318                              NumPlaceArgs, OperatorNew, OperatorDelete))
1319    return ExprError();
1320
1321  // If this is an array allocation, compute whether the usual array
1322  // deallocation function for the type has a size_t parameter.
1323  bool UsualArrayDeleteWantsSize = false;
1324  if (ArraySize && !AllocType->isDependentType())
1325    UsualArrayDeleteWantsSize
1326      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1327
1328  SmallVector<Expr *, 8> AllPlaceArgs;
1329  if (OperatorNew) {
1330    // Add default arguments, if any.
1331    const FunctionProtoType *Proto =
1332      OperatorNew->getType()->getAs<FunctionProtoType>();
1333    VariadicCallType CallType =
1334      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1335
1336    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1337                               Proto, 1,
1338                               llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1339                               AllPlaceArgs, CallType))
1340      return ExprError();
1341
1342    NumPlaceArgs = AllPlaceArgs.size();
1343    if (NumPlaceArgs > 0)
1344      PlaceArgs = &AllPlaceArgs[0];
1345
1346    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1347                          llvm::makeArrayRef(PlaceArgs, NumPlaceArgs));
1348
1349    // FIXME: Missing call to CheckFunctionCall or equivalent
1350  }
1351
1352  // Warn if the type is over-aligned and is being allocated by global operator
1353  // new.
1354  if (NumPlaceArgs == 0 && OperatorNew &&
1355      (OperatorNew->isImplicit() ||
1356       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1357    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1358      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1359      if (Align > SuitableAlign)
1360        Diag(StartLoc, diag::warn_overaligned_type)
1361            << AllocType
1362            << unsigned(Align / Context.getCharWidth())
1363            << unsigned(SuitableAlign / Context.getCharWidth());
1364    }
1365  }
1366
1367  QualType InitType = AllocType;
1368  // Array 'new' can't have any initializers except empty parentheses.
1369  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1370  // dialect distinction.
1371  if (ResultType->isArrayType() || ArraySize) {
1372    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1373      SourceRange InitRange(Inits[0]->getLocStart(),
1374                            Inits[NumInits - 1]->getLocEnd());
1375      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1376      return ExprError();
1377    }
1378    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1379      // We do the initialization typechecking against the array type
1380      // corresponding to the number of initializers + 1 (to also check
1381      // default-initialization).
1382      unsigned NumElements = ILE->getNumInits() + 1;
1383      InitType = Context.getConstantArrayType(AllocType,
1384          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1385                                              ArrayType::Normal, 0);
1386    }
1387  }
1388
1389  // If we can perform the initialization, and we've not already done so,
1390  // do it now.
1391  if (!AllocType->isDependentType() &&
1392      !Expr::hasAnyTypeDependentArguments(
1393        llvm::makeArrayRef(Inits, NumInits)) &&
1394      !HaveCompleteInit) {
1395    // C++11 [expr.new]p15:
1396    //   A new-expression that creates an object of type T initializes that
1397    //   object as follows:
1398    InitializationKind Kind
1399    //     - If the new-initializer is omitted, the object is default-
1400    //       initialized (8.5); if no initialization is performed,
1401    //       the object has indeterminate value
1402      = initStyle == CXXNewExpr::NoInit
1403          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1404    //     - Otherwise, the new-initializer is interpreted according to the
1405    //       initialization rules of 8.5 for direct-initialization.
1406          : initStyle == CXXNewExpr::ListInit
1407              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1408              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1409                                                 DirectInitRange.getBegin(),
1410                                                 DirectInitRange.getEnd());
1411
1412    InitializedEntity Entity
1413      = InitializedEntity::InitializeNew(StartLoc, InitType);
1414    InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits));
1415    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1416                                          MultiExprArg(Inits, NumInits));
1417    if (FullInit.isInvalid())
1418      return ExprError();
1419
1420    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1421    // we don't want the initialized object to be destructed.
1422    if (CXXBindTemporaryExpr *Binder =
1423            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1424      FullInit = Owned(Binder->getSubExpr());
1425
1426    Initializer = FullInit.take();
1427  }
1428
1429  // Mark the new and delete operators as referenced.
1430  if (OperatorNew) {
1431    if (DiagnoseUseOfDecl(OperatorNew, StartLoc))
1432      return ExprError();
1433    MarkFunctionReferenced(StartLoc, OperatorNew);
1434  }
1435  if (OperatorDelete) {
1436    if (DiagnoseUseOfDecl(OperatorDelete, StartLoc))
1437      return ExprError();
1438    MarkFunctionReferenced(StartLoc, OperatorDelete);
1439  }
1440
1441  // C++0x [expr.new]p17:
1442  //   If the new expression creates an array of objects of class type,
1443  //   access and ambiguity control are done for the destructor.
1444  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1445  if (ArraySize && !BaseAllocType->isDependentType()) {
1446    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1447      if (CXXDestructorDecl *dtor = LookupDestructor(
1448              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1449        MarkFunctionReferenced(StartLoc, dtor);
1450        CheckDestructorAccess(StartLoc, dtor,
1451                              PDiag(diag::err_access_dtor)
1452                                << BaseAllocType);
1453        if (DiagnoseUseOfDecl(dtor, StartLoc))
1454          return ExprError();
1455      }
1456    }
1457  }
1458
1459  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1460                                        OperatorDelete,
1461                                        UsualArrayDeleteWantsSize,
1462                                   llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1463                                        TypeIdParens,
1464                                        ArraySize, initStyle, Initializer,
1465                                        ResultType, AllocTypeInfo,
1466                                        Range, DirectInitRange));
1467}
1468
1469/// \brief Checks that a type is suitable as the allocated type
1470/// in a new-expression.
1471bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1472                              SourceRange R) {
1473  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1474  //   abstract class type or array thereof.
1475  if (AllocType->isFunctionType())
1476    return Diag(Loc, diag::err_bad_new_type)
1477      << AllocType << 0 << R;
1478  else if (AllocType->isReferenceType())
1479    return Diag(Loc, diag::err_bad_new_type)
1480      << AllocType << 1 << R;
1481  else if (!AllocType->isDependentType() &&
1482           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1483    return true;
1484  else if (RequireNonAbstractType(Loc, AllocType,
1485                                  diag::err_allocation_of_abstract_type))
1486    return true;
1487  else if (AllocType->isVariablyModifiedType())
1488    return Diag(Loc, diag::err_variably_modified_new_type)
1489             << AllocType;
1490  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1491    return Diag(Loc, diag::err_address_space_qualified_new)
1492      << AllocType.getUnqualifiedType() << AddressSpace;
1493  else if (getLangOpts().ObjCAutoRefCount) {
1494    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1495      QualType BaseAllocType = Context.getBaseElementType(AT);
1496      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1497          BaseAllocType->isObjCLifetimeType())
1498        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1499          << BaseAllocType;
1500    }
1501  }
1502
1503  return false;
1504}
1505
1506/// \brief Determine whether the given function is a non-placement
1507/// deallocation function.
1508static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1509  if (FD->isInvalidDecl())
1510    return false;
1511
1512  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1513    return Method->isUsualDeallocationFunction();
1514
1515  return ((FD->getOverloadedOperator() == OO_Delete ||
1516           FD->getOverloadedOperator() == OO_Array_Delete) &&
1517          FD->getNumParams() == 1);
1518}
1519
1520/// FindAllocationFunctions - Finds the overloads of operator new and delete
1521/// that are appropriate for the allocation.
1522bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1523                                   bool UseGlobal, QualType AllocType,
1524                                   bool IsArray, Expr **PlaceArgs,
1525                                   unsigned NumPlaceArgs,
1526                                   FunctionDecl *&OperatorNew,
1527                                   FunctionDecl *&OperatorDelete) {
1528  // --- Choosing an allocation function ---
1529  // C++ 5.3.4p8 - 14 & 18
1530  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1531  //   in the scope of the allocated class.
1532  // 2) If an array size is given, look for operator new[], else look for
1533  //   operator new.
1534  // 3) The first argument is always size_t. Append the arguments from the
1535  //   placement form.
1536
1537  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1538  // We don't care about the actual value of this argument.
1539  // FIXME: Should the Sema create the expression and embed it in the syntax
1540  // tree? Or should the consumer just recalculate the value?
1541  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1542                      Context.getTargetInfo().getPointerWidth(0)),
1543                      Context.getSizeType(),
1544                      SourceLocation());
1545  AllocArgs[0] = &Size;
1546  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1547
1548  // C++ [expr.new]p8:
1549  //   If the allocated type is a non-array type, the allocation
1550  //   function's name is operator new and the deallocation function's
1551  //   name is operator delete. If the allocated type is an array
1552  //   type, the allocation function's name is operator new[] and the
1553  //   deallocation function's name is operator delete[].
1554  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1555                                        IsArray ? OO_Array_New : OO_New);
1556  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1557                                        IsArray ? OO_Array_Delete : OO_Delete);
1558
1559  QualType AllocElemType = Context.getBaseElementType(AllocType);
1560
1561  if (AllocElemType->isRecordType() && !UseGlobal) {
1562    CXXRecordDecl *Record
1563      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1564    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record,
1565                               /*AllowMissing=*/true, OperatorNew))
1566      return true;
1567  }
1568  if (!OperatorNew) {
1569    // Didn't find a member overload. Look for a global one.
1570    DeclareGlobalNewDelete();
1571    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1572    if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl,
1573                               /*AllowMissing=*/false, OperatorNew))
1574      return true;
1575  }
1576
1577  // We don't need an operator delete if we're running under
1578  // -fno-exceptions.
1579  if (!getLangOpts().Exceptions) {
1580    OperatorDelete = 0;
1581    return false;
1582  }
1583
1584  // FindAllocationOverload can change the passed in arguments, so we need to
1585  // copy them back.
1586  if (NumPlaceArgs > 0)
1587    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1588
1589  // C++ [expr.new]p19:
1590  //
1591  //   If the new-expression begins with a unary :: operator, the
1592  //   deallocation function's name is looked up in the global
1593  //   scope. Otherwise, if the allocated type is a class type T or an
1594  //   array thereof, the deallocation function's name is looked up in
1595  //   the scope of T. If this lookup fails to find the name, or if
1596  //   the allocated type is not a class type or array thereof, the
1597  //   deallocation function's name is looked up in the global scope.
1598  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1599  if (AllocElemType->isRecordType() && !UseGlobal) {
1600    CXXRecordDecl *RD
1601      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1602    LookupQualifiedName(FoundDelete, RD);
1603  }
1604  if (FoundDelete.isAmbiguous())
1605    return true; // FIXME: clean up expressions?
1606
1607  if (FoundDelete.empty()) {
1608    DeclareGlobalNewDelete();
1609    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1610  }
1611
1612  FoundDelete.suppressDiagnostics();
1613
1614  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1615
1616  // Whether we're looking for a placement operator delete is dictated
1617  // by whether we selected a placement operator new, not by whether
1618  // we had explicit placement arguments.  This matters for things like
1619  //   struct A { void *operator new(size_t, int = 0); ... };
1620  //   A *a = new A()
1621  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1622
1623  if (isPlacementNew) {
1624    // C++ [expr.new]p20:
1625    //   A declaration of a placement deallocation function matches the
1626    //   declaration of a placement allocation function if it has the
1627    //   same number of parameters and, after parameter transformations
1628    //   (8.3.5), all parameter types except the first are
1629    //   identical. [...]
1630    //
1631    // To perform this comparison, we compute the function type that
1632    // the deallocation function should have, and use that type both
1633    // for template argument deduction and for comparison purposes.
1634    //
1635    // FIXME: this comparison should ignore CC and the like.
1636    QualType ExpectedFunctionType;
1637    {
1638      const FunctionProtoType *Proto
1639        = OperatorNew->getType()->getAs<FunctionProtoType>();
1640
1641      SmallVector<QualType, 4> ArgTypes;
1642      ArgTypes.push_back(Context.VoidPtrTy);
1643      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1644        ArgTypes.push_back(Proto->getArgType(I));
1645
1646      FunctionProtoType::ExtProtoInfo EPI;
1647      EPI.Variadic = Proto->isVariadic();
1648
1649      ExpectedFunctionType
1650        = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1651    }
1652
1653    for (LookupResult::iterator D = FoundDelete.begin(),
1654                             DEnd = FoundDelete.end();
1655         D != DEnd; ++D) {
1656      FunctionDecl *Fn = 0;
1657      if (FunctionTemplateDecl *FnTmpl
1658            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1659        // Perform template argument deduction to try to match the
1660        // expected function type.
1661        TemplateDeductionInfo Info(StartLoc);
1662        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1663          continue;
1664      } else
1665        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1666
1667      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1668        Matches.push_back(std::make_pair(D.getPair(), Fn));
1669    }
1670  } else {
1671    // C++ [expr.new]p20:
1672    //   [...] Any non-placement deallocation function matches a
1673    //   non-placement allocation function. [...]
1674    for (LookupResult::iterator D = FoundDelete.begin(),
1675                             DEnd = FoundDelete.end();
1676         D != DEnd; ++D) {
1677      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1678        if (isNonPlacementDeallocationFunction(Fn))
1679          Matches.push_back(std::make_pair(D.getPair(), Fn));
1680    }
1681  }
1682
1683  // C++ [expr.new]p20:
1684  //   [...] If the lookup finds a single matching deallocation
1685  //   function, that function will be called; otherwise, no
1686  //   deallocation function will be called.
1687  if (Matches.size() == 1) {
1688    OperatorDelete = Matches[0].second;
1689
1690    // C++0x [expr.new]p20:
1691    //   If the lookup finds the two-parameter form of a usual
1692    //   deallocation function (3.7.4.2) and that function, considered
1693    //   as a placement deallocation function, would have been
1694    //   selected as a match for the allocation function, the program
1695    //   is ill-formed.
1696    if (NumPlaceArgs && getLangOpts().CPlusPlus11 &&
1697        isNonPlacementDeallocationFunction(OperatorDelete)) {
1698      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1699        << SourceRange(PlaceArgs[0]->getLocStart(),
1700                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1701      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1702        << DeleteName;
1703    } else {
1704      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1705                            Matches[0].first);
1706    }
1707  }
1708
1709  return false;
1710}
1711
1712/// FindAllocationOverload - Find an fitting overload for the allocation
1713/// function in the specified scope.
1714bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1715                                  DeclarationName Name, MultiExprArg Args,
1716                                  DeclContext *Ctx,
1717                                  bool AllowMissing, FunctionDecl *&Operator,
1718                                  bool Diagnose) {
1719  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1720  LookupQualifiedName(R, Ctx);
1721  if (R.empty()) {
1722    if (AllowMissing || !Diagnose)
1723      return false;
1724    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1725      << Name << Range;
1726  }
1727
1728  if (R.isAmbiguous())
1729    return true;
1730
1731  R.suppressDiagnostics();
1732
1733  OverloadCandidateSet Candidates(StartLoc);
1734  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1735       Alloc != AllocEnd; ++Alloc) {
1736    // Even member operator new/delete are implicitly treated as
1737    // static, so don't use AddMemberCandidate.
1738    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1739
1740    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1741      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1742                                   /*ExplicitTemplateArgs=*/0,
1743                                   Args, Candidates,
1744                                   /*SuppressUserConversions=*/false);
1745      continue;
1746    }
1747
1748    FunctionDecl *Fn = cast<FunctionDecl>(D);
1749    AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates,
1750                         /*SuppressUserConversions=*/false);
1751  }
1752
1753  // Do the resolution.
1754  OverloadCandidateSet::iterator Best;
1755  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1756  case OR_Success: {
1757    // Got one!
1758    FunctionDecl *FnDecl = Best->Function;
1759    MarkFunctionReferenced(StartLoc, FnDecl);
1760    // The first argument is size_t, and the first parameter must be size_t,
1761    // too. This is checked on declaration and can be assumed. (It can't be
1762    // asserted on, though, since invalid decls are left in there.)
1763    // Watch out for variadic allocator function.
1764    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1765    for (unsigned i = 0; (i < Args.size() && i < NumArgsInFnDecl); ++i) {
1766      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1767                                                       FnDecl->getParamDecl(i));
1768
1769      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1770        return true;
1771
1772      ExprResult Result
1773        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1774      if (Result.isInvalid())
1775        return true;
1776
1777      Args[i] = Result.takeAs<Expr>();
1778    }
1779
1780    Operator = FnDecl;
1781
1782    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1783                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1784      return true;
1785
1786    return false;
1787  }
1788
1789  case OR_No_Viable_Function:
1790    if (Diagnose) {
1791      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1792        << Name << Range;
1793      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1794    }
1795    return true;
1796
1797  case OR_Ambiguous:
1798    if (Diagnose) {
1799      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1800        << Name << Range;
1801      Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args);
1802    }
1803    return true;
1804
1805  case OR_Deleted: {
1806    if (Diagnose) {
1807      Diag(StartLoc, diag::err_ovl_deleted_call)
1808        << Best->Function->isDeleted()
1809        << Name
1810        << getDeletedOrUnavailableSuffix(Best->Function)
1811        << Range;
1812      Candidates.NoteCandidates(*this, OCD_AllCandidates, Args);
1813    }
1814    return true;
1815  }
1816  }
1817  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1818}
1819
1820
1821/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1822/// delete. These are:
1823/// @code
1824///   // C++03:
1825///   void* operator new(std::size_t) throw(std::bad_alloc);
1826///   void* operator new[](std::size_t) throw(std::bad_alloc);
1827///   void operator delete(void *) throw();
1828///   void operator delete[](void *) throw();
1829///   // C++0x:
1830///   void* operator new(std::size_t);
1831///   void* operator new[](std::size_t);
1832///   void operator delete(void *);
1833///   void operator delete[](void *);
1834/// @endcode
1835/// C++0x operator delete is implicitly noexcept.
1836/// Note that the placement and nothrow forms of new are *not* implicitly
1837/// declared. Their use requires including \<new\>.
1838void Sema::DeclareGlobalNewDelete() {
1839  if (GlobalNewDeleteDeclared)
1840    return;
1841
1842  // C++ [basic.std.dynamic]p2:
1843  //   [...] The following allocation and deallocation functions (18.4) are
1844  //   implicitly declared in global scope in each translation unit of a
1845  //   program
1846  //
1847  //     C++03:
1848  //     void* operator new(std::size_t) throw(std::bad_alloc);
1849  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1850  //     void  operator delete(void*) throw();
1851  //     void  operator delete[](void*) throw();
1852  //     C++0x:
1853  //     void* operator new(std::size_t);
1854  //     void* operator new[](std::size_t);
1855  //     void  operator delete(void*);
1856  //     void  operator delete[](void*);
1857  //
1858  //   These implicit declarations introduce only the function names operator
1859  //   new, operator new[], operator delete, operator delete[].
1860  //
1861  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1862  // "std" or "bad_alloc" as necessary to form the exception specification.
1863  // However, we do not make these implicit declarations visible to name
1864  // lookup.
1865  // Note that the C++0x versions of operator delete are deallocation functions,
1866  // and thus are implicitly noexcept.
1867  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1868    // The "std::bad_alloc" class has not yet been declared, so build it
1869    // implicitly.
1870    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1871                                        getOrCreateStdNamespace(),
1872                                        SourceLocation(), SourceLocation(),
1873                                      &PP.getIdentifierTable().get("bad_alloc"),
1874                                        0);
1875    getStdBadAlloc()->setImplicit(true);
1876  }
1877
1878  GlobalNewDeleteDeclared = true;
1879
1880  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1881  QualType SizeT = Context.getSizeType();
1882  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1883
1884  DeclareGlobalAllocationFunction(
1885      Context.DeclarationNames.getCXXOperatorName(OO_New),
1886      VoidPtr, SizeT, AssumeSaneOperatorNew);
1887  DeclareGlobalAllocationFunction(
1888      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1889      VoidPtr, SizeT, AssumeSaneOperatorNew);
1890  DeclareGlobalAllocationFunction(
1891      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1892      Context.VoidTy, VoidPtr);
1893  DeclareGlobalAllocationFunction(
1894      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1895      Context.VoidTy, VoidPtr);
1896}
1897
1898/// DeclareGlobalAllocationFunction - Declares a single implicit global
1899/// allocation function if it doesn't already exist.
1900void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1901                                           QualType Return, QualType Argument,
1902                                           bool AddMallocAttr) {
1903  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1904
1905  // Check if this function is already declared.
1906  {
1907    DeclContext::lookup_result R = GlobalCtx->lookup(Name);
1908    for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
1909         Alloc != AllocEnd; ++Alloc) {
1910      // Only look at non-template functions, as it is the predefined,
1911      // non-templated allocation function we are trying to declare here.
1912      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1913        QualType InitialParamType =
1914          Context.getCanonicalType(
1915            Func->getParamDecl(0)->getType().getUnqualifiedType());
1916        // FIXME: Do we need to check for default arguments here?
1917        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1918          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1919            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1920          return;
1921        }
1922      }
1923    }
1924  }
1925
1926  QualType BadAllocType;
1927  bool HasBadAllocExceptionSpec
1928    = (Name.getCXXOverloadedOperator() == OO_New ||
1929       Name.getCXXOverloadedOperator() == OO_Array_New);
1930  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
1931    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1932    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1933  }
1934
1935  FunctionProtoType::ExtProtoInfo EPI;
1936  if (HasBadAllocExceptionSpec) {
1937    if (!getLangOpts().CPlusPlus11) {
1938      EPI.ExceptionSpecType = EST_Dynamic;
1939      EPI.NumExceptions = 1;
1940      EPI.Exceptions = &BadAllocType;
1941    }
1942  } else {
1943    EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
1944                                EST_BasicNoexcept : EST_DynamicNone;
1945  }
1946
1947  QualType FnType = Context.getFunctionType(Return, Argument, EPI);
1948  FunctionDecl *Alloc =
1949    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1950                         SourceLocation(), Name,
1951                         FnType, /*TInfo=*/0, SC_None, false, true);
1952  Alloc->setImplicit();
1953
1954  if (AddMallocAttr)
1955    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1956
1957  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1958                                           SourceLocation(), 0,
1959                                           Argument, /*TInfo=*/0,
1960                                           SC_None, 0);
1961  Alloc->setParams(Param);
1962
1963  // FIXME: Also add this declaration to the IdentifierResolver, but
1964  // make sure it is at the end of the chain to coincide with the
1965  // global scope.
1966  Context.getTranslationUnitDecl()->addDecl(Alloc);
1967}
1968
1969bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1970                                    DeclarationName Name,
1971                                    FunctionDecl* &Operator, bool Diagnose) {
1972  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1973  // Try to find operator delete/operator delete[] in class scope.
1974  LookupQualifiedName(Found, RD);
1975
1976  if (Found.isAmbiguous())
1977    return true;
1978
1979  Found.suppressDiagnostics();
1980
1981  SmallVector<DeclAccessPair,4> Matches;
1982  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1983       F != FEnd; ++F) {
1984    NamedDecl *ND = (*F)->getUnderlyingDecl();
1985
1986    // Ignore template operator delete members from the check for a usual
1987    // deallocation function.
1988    if (isa<FunctionTemplateDecl>(ND))
1989      continue;
1990
1991    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1992      Matches.push_back(F.getPair());
1993  }
1994
1995  // There's exactly one suitable operator;  pick it.
1996  if (Matches.size() == 1) {
1997    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1998
1999    if (Operator->isDeleted()) {
2000      if (Diagnose) {
2001        Diag(StartLoc, diag::err_deleted_function_use);
2002        NoteDeletedFunction(Operator);
2003      }
2004      return true;
2005    }
2006
2007    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
2008                              Matches[0], Diagnose) == AR_inaccessible)
2009      return true;
2010
2011    return false;
2012
2013  // We found multiple suitable operators;  complain about the ambiguity.
2014  } else if (!Matches.empty()) {
2015    if (Diagnose) {
2016      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
2017        << Name << RD;
2018
2019      for (SmallVectorImpl<DeclAccessPair>::iterator
2020             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
2021        Diag((*F)->getUnderlyingDecl()->getLocation(),
2022             diag::note_member_declared_here) << Name;
2023    }
2024    return true;
2025  }
2026
2027  // We did find operator delete/operator delete[] declarations, but
2028  // none of them were suitable.
2029  if (!Found.empty()) {
2030    if (Diagnose) {
2031      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2032        << Name << RD;
2033
2034      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2035           F != FEnd; ++F)
2036        Diag((*F)->getUnderlyingDecl()->getLocation(),
2037             diag::note_member_declared_here) << Name;
2038    }
2039    return true;
2040  }
2041
2042  // Look for a global declaration.
2043  DeclareGlobalNewDelete();
2044  DeclContext *TUDecl = Context.getTranslationUnitDecl();
2045
2046  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2047  Expr *DeallocArgs[1] = { &Null };
2048  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2049                             DeallocArgs, TUDecl, !Diagnose,
2050                             Operator, Diagnose))
2051    return true;
2052
2053  assert(Operator && "Did not find a deallocation function!");
2054  return false;
2055}
2056
2057/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2058/// @code ::delete ptr; @endcode
2059/// or
2060/// @code delete [] ptr; @endcode
2061ExprResult
2062Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2063                     bool ArrayForm, Expr *ExE) {
2064  // C++ [expr.delete]p1:
2065  //   The operand shall have a pointer type, or a class type having a single
2066  //   conversion function to a pointer type. The result has type void.
2067  //
2068  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2069
2070  ExprResult Ex = Owned(ExE);
2071  FunctionDecl *OperatorDelete = 0;
2072  bool ArrayFormAsWritten = ArrayForm;
2073  bool UsualArrayDeleteWantsSize = false;
2074
2075  if (!Ex.get()->isTypeDependent()) {
2076    // Perform lvalue-to-rvalue cast, if needed.
2077    Ex = DefaultLvalueConversion(Ex.take());
2078    if (Ex.isInvalid())
2079      return ExprError();
2080
2081    QualType Type = Ex.get()->getType();
2082
2083    if (const RecordType *Record = Type->getAs<RecordType>()) {
2084      if (RequireCompleteType(StartLoc, Type,
2085                              diag::err_delete_incomplete_class_type))
2086        return ExprError();
2087
2088      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2089
2090      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2091      std::pair<CXXRecordDecl::conversion_iterator,
2092                CXXRecordDecl::conversion_iterator>
2093        Conversions = RD->getVisibleConversionFunctions();
2094      for (CXXRecordDecl::conversion_iterator
2095             I = Conversions.first, E = Conversions.second; I != E; ++I) {
2096        NamedDecl *D = I.getDecl();
2097        if (isa<UsingShadowDecl>(D))
2098          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2099
2100        // Skip over templated conversion functions; they aren't considered.
2101        if (isa<FunctionTemplateDecl>(D))
2102          continue;
2103
2104        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2105
2106        QualType ConvType = Conv->getConversionType().getNonReferenceType();
2107        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2108          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2109            ObjectPtrConversions.push_back(Conv);
2110      }
2111      if (ObjectPtrConversions.size() == 1) {
2112        // We have a single conversion to a pointer-to-object type. Perform
2113        // that conversion.
2114        // TODO: don't redo the conversion calculation.
2115        ExprResult Res =
2116          PerformImplicitConversion(Ex.get(),
2117                            ObjectPtrConversions.front()->getConversionType(),
2118                                    AA_Converting);
2119        if (Res.isUsable()) {
2120          Ex = Res;
2121          Type = Ex.get()->getType();
2122        }
2123      }
2124      else if (ObjectPtrConversions.size() > 1) {
2125        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2126              << Type << Ex.get()->getSourceRange();
2127        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2128          NoteOverloadCandidate(ObjectPtrConversions[i]);
2129        return ExprError();
2130      }
2131    }
2132
2133    if (!Type->isPointerType())
2134      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2135        << Type << Ex.get()->getSourceRange());
2136
2137    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2138    QualType PointeeElem = Context.getBaseElementType(Pointee);
2139
2140    if (unsigned AddressSpace = Pointee.getAddressSpace())
2141      return Diag(Ex.get()->getLocStart(),
2142                  diag::err_address_space_qualified_delete)
2143               << Pointee.getUnqualifiedType() << AddressSpace;
2144
2145    CXXRecordDecl *PointeeRD = 0;
2146    if (Pointee->isVoidType() && !isSFINAEContext()) {
2147      // The C++ standard bans deleting a pointer to a non-object type, which
2148      // effectively bans deletion of "void*". However, most compilers support
2149      // this, so we treat it as a warning unless we're in a SFINAE context.
2150      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2151        << Type << Ex.get()->getSourceRange();
2152    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2153      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2154        << Type << Ex.get()->getSourceRange());
2155    } else if (!Pointee->isDependentType()) {
2156      if (!RequireCompleteType(StartLoc, Pointee,
2157                               diag::warn_delete_incomplete, Ex.get())) {
2158        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2159          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2160      }
2161    }
2162
2163    // C++ [expr.delete]p2:
2164    //   [Note: a pointer to a const type can be the operand of a
2165    //   delete-expression; it is not necessary to cast away the constness
2166    //   (5.2.11) of the pointer expression before it is used as the operand
2167    //   of the delete-expression. ]
2168
2169    if (Pointee->isArrayType() && !ArrayForm) {
2170      Diag(StartLoc, diag::warn_delete_array_type)
2171          << Type << Ex.get()->getSourceRange()
2172          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2173      ArrayForm = true;
2174    }
2175
2176    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2177                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2178
2179    if (PointeeRD) {
2180      if (!UseGlobal &&
2181          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2182                                   OperatorDelete))
2183        return ExprError();
2184
2185      // If we're allocating an array of records, check whether the
2186      // usual operator delete[] has a size_t parameter.
2187      if (ArrayForm) {
2188        // If the user specifically asked to use the global allocator,
2189        // we'll need to do the lookup into the class.
2190        if (UseGlobal)
2191          UsualArrayDeleteWantsSize =
2192            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2193
2194        // Otherwise, the usual operator delete[] should be the
2195        // function we just found.
2196        else if (isa<CXXMethodDecl>(OperatorDelete))
2197          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2198      }
2199
2200      if (!PointeeRD->hasIrrelevantDestructor())
2201        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2202          MarkFunctionReferenced(StartLoc,
2203                                    const_cast<CXXDestructorDecl*>(Dtor));
2204          if (DiagnoseUseOfDecl(Dtor, StartLoc))
2205            return ExprError();
2206        }
2207
2208      // C++ [expr.delete]p3:
2209      //   In the first alternative (delete object), if the static type of the
2210      //   object to be deleted is different from its dynamic type, the static
2211      //   type shall be a base class of the dynamic type of the object to be
2212      //   deleted and the static type shall have a virtual destructor or the
2213      //   behavior is undefined.
2214      //
2215      // Note: a final class cannot be derived from, no issue there
2216      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2217        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2218        if (dtor && !dtor->isVirtual()) {
2219          if (PointeeRD->isAbstract()) {
2220            // If the class is abstract, we warn by default, because we're
2221            // sure the code has undefined behavior.
2222            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2223                << PointeeElem;
2224          } else if (!ArrayForm) {
2225            // Otherwise, if this is not an array delete, it's a bit suspect,
2226            // but not necessarily wrong.
2227            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2228          }
2229        }
2230      }
2231
2232    }
2233
2234    if (!OperatorDelete) {
2235      // Look for a global declaration.
2236      DeclareGlobalNewDelete();
2237      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2238      Expr *Arg = Ex.get();
2239      if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2240        Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2241                                       CK_BitCast, Arg, 0, VK_RValue);
2242      Expr *DeallocArgs[1] = { Arg };
2243      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2244                                 DeallocArgs, TUDecl, /*AllowMissing=*/false,
2245                                 OperatorDelete))
2246        return ExprError();
2247    }
2248
2249    MarkFunctionReferenced(StartLoc, OperatorDelete);
2250
2251    // Check access and ambiguity of operator delete and destructor.
2252    if (PointeeRD) {
2253      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2254          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2255                      PDiag(diag::err_access_dtor) << PointeeElem);
2256      }
2257    }
2258
2259  }
2260
2261  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2262                                           ArrayFormAsWritten,
2263                                           UsualArrayDeleteWantsSize,
2264                                           OperatorDelete, Ex.take(), StartLoc));
2265}
2266
2267/// \brief Check the use of the given variable as a C++ condition in an if,
2268/// while, do-while, or switch statement.
2269ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2270                                        SourceLocation StmtLoc,
2271                                        bool ConvertToBoolean) {
2272  if (ConditionVar->isInvalidDecl())
2273    return ExprError();
2274
2275  QualType T = ConditionVar->getType();
2276
2277  // C++ [stmt.select]p2:
2278  //   The declarator shall not specify a function or an array.
2279  if (T->isFunctionType())
2280    return ExprError(Diag(ConditionVar->getLocation(),
2281                          diag::err_invalid_use_of_function_type)
2282                       << ConditionVar->getSourceRange());
2283  else if (T->isArrayType())
2284    return ExprError(Diag(ConditionVar->getLocation(),
2285                          diag::err_invalid_use_of_array_type)
2286                     << ConditionVar->getSourceRange());
2287
2288  ExprResult Condition =
2289    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2290                              SourceLocation(),
2291                              ConditionVar,
2292                              /*enclosing*/ false,
2293                              ConditionVar->getLocation(),
2294                              ConditionVar->getType().getNonReferenceType(),
2295                              VK_LValue));
2296
2297  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2298
2299  if (ConvertToBoolean) {
2300    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2301    if (Condition.isInvalid())
2302      return ExprError();
2303  }
2304
2305  return Condition;
2306}
2307
2308/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2309ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2310  // C++ 6.4p4:
2311  // The value of a condition that is an initialized declaration in a statement
2312  // other than a switch statement is the value of the declared variable
2313  // implicitly converted to type bool. If that conversion is ill-formed, the
2314  // program is ill-formed.
2315  // The value of a condition that is an expression is the value of the
2316  // expression, implicitly converted to bool.
2317  //
2318  return PerformContextuallyConvertToBool(CondExpr);
2319}
2320
2321/// Helper function to determine whether this is the (deprecated) C++
2322/// conversion from a string literal to a pointer to non-const char or
2323/// non-const wchar_t (for narrow and wide string literals,
2324/// respectively).
2325bool
2326Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2327  // Look inside the implicit cast, if it exists.
2328  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2329    From = Cast->getSubExpr();
2330
2331  // A string literal (2.13.4) that is not a wide string literal can
2332  // be converted to an rvalue of type "pointer to char"; a wide
2333  // string literal can be converted to an rvalue of type "pointer
2334  // to wchar_t" (C++ 4.2p2).
2335  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2336    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2337      if (const BuiltinType *ToPointeeType
2338          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2339        // This conversion is considered only when there is an
2340        // explicit appropriate pointer target type (C++ 4.2p2).
2341        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2342          switch (StrLit->getKind()) {
2343            case StringLiteral::UTF8:
2344            case StringLiteral::UTF16:
2345            case StringLiteral::UTF32:
2346              // We don't allow UTF literals to be implicitly converted
2347              break;
2348            case StringLiteral::Ascii:
2349              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2350                      ToPointeeType->getKind() == BuiltinType::Char_S);
2351            case StringLiteral::Wide:
2352              return ToPointeeType->isWideCharType();
2353          }
2354        }
2355      }
2356
2357  return false;
2358}
2359
2360static ExprResult BuildCXXCastArgument(Sema &S,
2361                                       SourceLocation CastLoc,
2362                                       QualType Ty,
2363                                       CastKind Kind,
2364                                       CXXMethodDecl *Method,
2365                                       DeclAccessPair FoundDecl,
2366                                       bool HadMultipleCandidates,
2367                                       Expr *From) {
2368  switch (Kind) {
2369  default: llvm_unreachable("Unhandled cast kind!");
2370  case CK_ConstructorConversion: {
2371    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2372    SmallVector<Expr*, 8> ConstructorArgs;
2373
2374    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2375      return ExprError();
2376
2377    S.CheckConstructorAccess(CastLoc, Constructor,
2378                             InitializedEntity::InitializeTemporary(Ty),
2379                             Constructor->getAccess());
2380
2381    ExprResult Result
2382      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2383                                ConstructorArgs, HadMultipleCandidates,
2384                                /*ListInit*/ false, /*ZeroInit*/ false,
2385                                CXXConstructExpr::CK_Complete, SourceRange());
2386    if (Result.isInvalid())
2387      return ExprError();
2388
2389    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2390  }
2391
2392  case CK_UserDefinedConversion: {
2393    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2394
2395    // Create an implicit call expr that calls it.
2396    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2397    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2398                                                 HadMultipleCandidates);
2399    if (Result.isInvalid())
2400      return ExprError();
2401    // Record usage of conversion in an implicit cast.
2402    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2403                                              Result.get()->getType(),
2404                                              CK_UserDefinedConversion,
2405                                              Result.get(), 0,
2406                                              Result.get()->getValueKind()));
2407
2408    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2409
2410    return S.MaybeBindToTemporary(Result.get());
2411  }
2412  }
2413}
2414
2415/// PerformImplicitConversion - Perform an implicit conversion of the
2416/// expression From to the type ToType using the pre-computed implicit
2417/// conversion sequence ICS. Returns the converted
2418/// expression. Action is the kind of conversion we're performing,
2419/// used in the error message.
2420ExprResult
2421Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2422                                const ImplicitConversionSequence &ICS,
2423                                AssignmentAction Action,
2424                                CheckedConversionKind CCK) {
2425  switch (ICS.getKind()) {
2426  case ImplicitConversionSequence::StandardConversion: {
2427    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2428                                               Action, CCK);
2429    if (Res.isInvalid())
2430      return ExprError();
2431    From = Res.take();
2432    break;
2433  }
2434
2435  case ImplicitConversionSequence::UserDefinedConversion: {
2436
2437      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2438      CastKind CastKind;
2439      QualType BeforeToType;
2440      assert(FD && "FIXME: aggregate initialization from init list");
2441      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2442        CastKind = CK_UserDefinedConversion;
2443
2444        // If the user-defined conversion is specified by a conversion function,
2445        // the initial standard conversion sequence converts the source type to
2446        // the implicit object parameter of the conversion function.
2447        BeforeToType = Context.getTagDeclType(Conv->getParent());
2448      } else {
2449        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2450        CastKind = CK_ConstructorConversion;
2451        // Do no conversion if dealing with ... for the first conversion.
2452        if (!ICS.UserDefined.EllipsisConversion) {
2453          // If the user-defined conversion is specified by a constructor, the
2454          // initial standard conversion sequence converts the source type to the
2455          // type required by the argument of the constructor
2456          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2457        }
2458      }
2459      // Watch out for elipsis conversion.
2460      if (!ICS.UserDefined.EllipsisConversion) {
2461        ExprResult Res =
2462          PerformImplicitConversion(From, BeforeToType,
2463                                    ICS.UserDefined.Before, AA_Converting,
2464                                    CCK);
2465        if (Res.isInvalid())
2466          return ExprError();
2467        From = Res.take();
2468      }
2469
2470      ExprResult CastArg
2471        = BuildCXXCastArgument(*this,
2472                               From->getLocStart(),
2473                               ToType.getNonReferenceType(),
2474                               CastKind, cast<CXXMethodDecl>(FD),
2475                               ICS.UserDefined.FoundConversionFunction,
2476                               ICS.UserDefined.HadMultipleCandidates,
2477                               From);
2478
2479      if (CastArg.isInvalid())
2480        return ExprError();
2481
2482      From = CastArg.take();
2483
2484      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2485                                       AA_Converting, CCK);
2486  }
2487
2488  case ImplicitConversionSequence::AmbiguousConversion:
2489    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2490                          PDiag(diag::err_typecheck_ambiguous_condition)
2491                            << From->getSourceRange());
2492     return ExprError();
2493
2494  case ImplicitConversionSequence::EllipsisConversion:
2495    llvm_unreachable("Cannot perform an ellipsis conversion");
2496
2497  case ImplicitConversionSequence::BadConversion:
2498    return ExprError();
2499  }
2500
2501  // Everything went well.
2502  return Owned(From);
2503}
2504
2505/// PerformImplicitConversion - Perform an implicit conversion of the
2506/// expression From to the type ToType by following the standard
2507/// conversion sequence SCS. Returns the converted
2508/// expression. Flavor is the context in which we're performing this
2509/// conversion, for use in error messages.
2510ExprResult
2511Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2512                                const StandardConversionSequence& SCS,
2513                                AssignmentAction Action,
2514                                CheckedConversionKind CCK) {
2515  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2516
2517  // Overall FIXME: we are recomputing too many types here and doing far too
2518  // much extra work. What this means is that we need to keep track of more
2519  // information that is computed when we try the implicit conversion initially,
2520  // so that we don't need to recompute anything here.
2521  QualType FromType = From->getType();
2522
2523  if (SCS.CopyConstructor) {
2524    // FIXME: When can ToType be a reference type?
2525    assert(!ToType->isReferenceType());
2526    if (SCS.Second == ICK_Derived_To_Base) {
2527      SmallVector<Expr*, 8> ConstructorArgs;
2528      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2529                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
2530                                  ConstructorArgs))
2531        return ExprError();
2532      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2533                                   ToType, SCS.CopyConstructor,
2534                                   ConstructorArgs,
2535                                   /*HadMultipleCandidates*/ false,
2536                                   /*ListInit*/ false, /*ZeroInit*/ false,
2537                                   CXXConstructExpr::CK_Complete,
2538                                   SourceRange());
2539    }
2540    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2541                                 ToType, SCS.CopyConstructor,
2542                                 From, /*HadMultipleCandidates*/ false,
2543                                 /*ListInit*/ false, /*ZeroInit*/ false,
2544                                 CXXConstructExpr::CK_Complete,
2545                                 SourceRange());
2546  }
2547
2548  // Resolve overloaded function references.
2549  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2550    DeclAccessPair Found;
2551    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2552                                                          true, Found);
2553    if (!Fn)
2554      return ExprError();
2555
2556    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2557      return ExprError();
2558
2559    From = FixOverloadedFunctionReference(From, Found, Fn);
2560    FromType = From->getType();
2561  }
2562
2563  // Perform the first implicit conversion.
2564  switch (SCS.First) {
2565  case ICK_Identity:
2566    // Nothing to do.
2567    break;
2568
2569  case ICK_Lvalue_To_Rvalue: {
2570    assert(From->getObjectKind() != OK_ObjCProperty);
2571    FromType = FromType.getUnqualifiedType();
2572    ExprResult FromRes = DefaultLvalueConversion(From);
2573    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2574    From = FromRes.take();
2575    break;
2576  }
2577
2578  case ICK_Array_To_Pointer:
2579    FromType = Context.getArrayDecayedType(FromType);
2580    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2581                             VK_RValue, /*BasePath=*/0, CCK).take();
2582    break;
2583
2584  case ICK_Function_To_Pointer:
2585    FromType = Context.getPointerType(FromType);
2586    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2587                             VK_RValue, /*BasePath=*/0, CCK).take();
2588    break;
2589
2590  default:
2591    llvm_unreachable("Improper first standard conversion");
2592  }
2593
2594  // Perform the second implicit conversion
2595  switch (SCS.Second) {
2596  case ICK_Identity:
2597    // If both sides are functions (or pointers/references to them), there could
2598    // be incompatible exception declarations.
2599    if (CheckExceptionSpecCompatibility(From, ToType))
2600      return ExprError();
2601    // Nothing else to do.
2602    break;
2603
2604  case ICK_NoReturn_Adjustment:
2605    // If both sides are functions (or pointers/references to them), there could
2606    // be incompatible exception declarations.
2607    if (CheckExceptionSpecCompatibility(From, ToType))
2608      return ExprError();
2609
2610    From = ImpCastExprToType(From, ToType, CK_NoOp,
2611                             VK_RValue, /*BasePath=*/0, CCK).take();
2612    break;
2613
2614  case ICK_Integral_Promotion:
2615  case ICK_Integral_Conversion:
2616    if (ToType->isBooleanType()) {
2617      assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2618             SCS.Second == ICK_Integral_Promotion &&
2619             "only enums with fixed underlying type can promote to bool");
2620      From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2621                               VK_RValue, /*BasePath=*/0, CCK).take();
2622    } else {
2623      From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2624                               VK_RValue, /*BasePath=*/0, CCK).take();
2625    }
2626    break;
2627
2628  case ICK_Floating_Promotion:
2629  case ICK_Floating_Conversion:
2630    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2631                             VK_RValue, /*BasePath=*/0, CCK).take();
2632    break;
2633
2634  case ICK_Complex_Promotion:
2635  case ICK_Complex_Conversion: {
2636    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2637    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2638    CastKind CK;
2639    if (FromEl->isRealFloatingType()) {
2640      if (ToEl->isRealFloatingType())
2641        CK = CK_FloatingComplexCast;
2642      else
2643        CK = CK_FloatingComplexToIntegralComplex;
2644    } else if (ToEl->isRealFloatingType()) {
2645      CK = CK_IntegralComplexToFloatingComplex;
2646    } else {
2647      CK = CK_IntegralComplexCast;
2648    }
2649    From = ImpCastExprToType(From, ToType, CK,
2650                             VK_RValue, /*BasePath=*/0, CCK).take();
2651    break;
2652  }
2653
2654  case ICK_Floating_Integral:
2655    if (ToType->isRealFloatingType())
2656      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2657                               VK_RValue, /*BasePath=*/0, CCK).take();
2658    else
2659      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2660                               VK_RValue, /*BasePath=*/0, CCK).take();
2661    break;
2662
2663  case ICK_Compatible_Conversion:
2664      From = ImpCastExprToType(From, ToType, CK_NoOp,
2665                               VK_RValue, /*BasePath=*/0, CCK).take();
2666    break;
2667
2668  case ICK_Writeback_Conversion:
2669  case ICK_Pointer_Conversion: {
2670    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2671      // Diagnose incompatible Objective-C conversions
2672      if (Action == AA_Initializing || Action == AA_Assigning)
2673        Diag(From->getLocStart(),
2674             diag::ext_typecheck_convert_incompatible_pointer)
2675          << ToType << From->getType() << Action
2676          << From->getSourceRange() << 0;
2677      else
2678        Diag(From->getLocStart(),
2679             diag::ext_typecheck_convert_incompatible_pointer)
2680          << From->getType() << ToType << Action
2681          << From->getSourceRange() << 0;
2682
2683      if (From->getType()->isObjCObjectPointerType() &&
2684          ToType->isObjCObjectPointerType())
2685        EmitRelatedResultTypeNote(From);
2686    }
2687    else if (getLangOpts().ObjCAutoRefCount &&
2688             !CheckObjCARCUnavailableWeakConversion(ToType,
2689                                                    From->getType())) {
2690      if (Action == AA_Initializing)
2691        Diag(From->getLocStart(),
2692             diag::err_arc_weak_unavailable_assign);
2693      else
2694        Diag(From->getLocStart(),
2695             diag::err_arc_convesion_of_weak_unavailable)
2696          << (Action == AA_Casting) << From->getType() << ToType
2697          << From->getSourceRange();
2698    }
2699
2700    CastKind Kind = CK_Invalid;
2701    CXXCastPath BasePath;
2702    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2703      return ExprError();
2704
2705    // Make sure we extend blocks if necessary.
2706    // FIXME: doing this here is really ugly.
2707    if (Kind == CK_BlockPointerToObjCPointerCast) {
2708      ExprResult E = From;
2709      (void) PrepareCastToObjCObjectPointer(E);
2710      From = E.take();
2711    }
2712
2713    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2714             .take();
2715    break;
2716  }
2717
2718  case ICK_Pointer_Member: {
2719    CastKind Kind = CK_Invalid;
2720    CXXCastPath BasePath;
2721    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2722      return ExprError();
2723    if (CheckExceptionSpecCompatibility(From, ToType))
2724      return ExprError();
2725    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2726             .take();
2727    break;
2728  }
2729
2730  case ICK_Boolean_Conversion:
2731    // Perform half-to-boolean conversion via float.
2732    if (From->getType()->isHalfType()) {
2733      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2734      FromType = Context.FloatTy;
2735    }
2736
2737    From = ImpCastExprToType(From, Context.BoolTy,
2738                             ScalarTypeToBooleanCastKind(FromType),
2739                             VK_RValue, /*BasePath=*/0, CCK).take();
2740    break;
2741
2742  case ICK_Derived_To_Base: {
2743    CXXCastPath BasePath;
2744    if (CheckDerivedToBaseConversion(From->getType(),
2745                                     ToType.getNonReferenceType(),
2746                                     From->getLocStart(),
2747                                     From->getSourceRange(),
2748                                     &BasePath,
2749                                     CStyle))
2750      return ExprError();
2751
2752    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2753                      CK_DerivedToBase, From->getValueKind(),
2754                      &BasePath, CCK).take();
2755    break;
2756  }
2757
2758  case ICK_Vector_Conversion:
2759    From = ImpCastExprToType(From, ToType, CK_BitCast,
2760                             VK_RValue, /*BasePath=*/0, CCK).take();
2761    break;
2762
2763  case ICK_Vector_Splat:
2764    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2765                             VK_RValue, /*BasePath=*/0, CCK).take();
2766    break;
2767
2768  case ICK_Complex_Real:
2769    // Case 1.  x -> _Complex y
2770    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2771      QualType ElType = ToComplex->getElementType();
2772      bool isFloatingComplex = ElType->isRealFloatingType();
2773
2774      // x -> y
2775      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2776        // do nothing
2777      } else if (From->getType()->isRealFloatingType()) {
2778        From = ImpCastExprToType(From, ElType,
2779                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2780      } else {
2781        assert(From->getType()->isIntegerType());
2782        From = ImpCastExprToType(From, ElType,
2783                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2784      }
2785      // y -> _Complex y
2786      From = ImpCastExprToType(From, ToType,
2787                   isFloatingComplex ? CK_FloatingRealToComplex
2788                                     : CK_IntegralRealToComplex).take();
2789
2790    // Case 2.  _Complex x -> y
2791    } else {
2792      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2793      assert(FromComplex);
2794
2795      QualType ElType = FromComplex->getElementType();
2796      bool isFloatingComplex = ElType->isRealFloatingType();
2797
2798      // _Complex x -> x
2799      From = ImpCastExprToType(From, ElType,
2800                   isFloatingComplex ? CK_FloatingComplexToReal
2801                                     : CK_IntegralComplexToReal,
2802                               VK_RValue, /*BasePath=*/0, CCK).take();
2803
2804      // x -> y
2805      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2806        // do nothing
2807      } else if (ToType->isRealFloatingType()) {
2808        From = ImpCastExprToType(From, ToType,
2809                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2810                                 VK_RValue, /*BasePath=*/0, CCK).take();
2811      } else {
2812        assert(ToType->isIntegerType());
2813        From = ImpCastExprToType(From, ToType,
2814                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2815                                 VK_RValue, /*BasePath=*/0, CCK).take();
2816      }
2817    }
2818    break;
2819
2820  case ICK_Block_Pointer_Conversion: {
2821    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2822                             VK_RValue, /*BasePath=*/0, CCK).take();
2823    break;
2824  }
2825
2826  case ICK_TransparentUnionConversion: {
2827    ExprResult FromRes = Owned(From);
2828    Sema::AssignConvertType ConvTy =
2829      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2830    if (FromRes.isInvalid())
2831      return ExprError();
2832    From = FromRes.take();
2833    assert ((ConvTy == Sema::Compatible) &&
2834            "Improper transparent union conversion");
2835    (void)ConvTy;
2836    break;
2837  }
2838
2839  case ICK_Zero_Event_Conversion:
2840    From = ImpCastExprToType(From, ToType,
2841                             CK_ZeroToOCLEvent,
2842                             From->getValueKind()).take();
2843    break;
2844
2845  case ICK_Lvalue_To_Rvalue:
2846  case ICK_Array_To_Pointer:
2847  case ICK_Function_To_Pointer:
2848  case ICK_Qualification:
2849  case ICK_Num_Conversion_Kinds:
2850    llvm_unreachable("Improper second standard conversion");
2851  }
2852
2853  switch (SCS.Third) {
2854  case ICK_Identity:
2855    // Nothing to do.
2856    break;
2857
2858  case ICK_Qualification: {
2859    // The qualification keeps the category of the inner expression, unless the
2860    // target type isn't a reference.
2861    ExprValueKind VK = ToType->isReferenceType() ?
2862                                  From->getValueKind() : VK_RValue;
2863    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2864                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2865
2866    if (SCS.DeprecatedStringLiteralToCharPtr &&
2867        !getLangOpts().WritableStrings)
2868      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2869        << ToType.getNonReferenceType();
2870
2871    break;
2872    }
2873
2874  default:
2875    llvm_unreachable("Improper third standard conversion");
2876  }
2877
2878  // If this conversion sequence involved a scalar -> atomic conversion, perform
2879  // that conversion now.
2880  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2881    if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2882      From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2883                               CCK).take();
2884
2885  return Owned(From);
2886}
2887
2888ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2889                                     SourceLocation KWLoc,
2890                                     ParsedType Ty,
2891                                     SourceLocation RParen) {
2892  TypeSourceInfo *TSInfo;
2893  QualType T = GetTypeFromParser(Ty, &TSInfo);
2894
2895  if (!TSInfo)
2896    TSInfo = Context.getTrivialTypeSourceInfo(T);
2897  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2898}
2899
2900/// \brief Check the completeness of a type in a unary type trait.
2901///
2902/// If the particular type trait requires a complete type, tries to complete
2903/// it. If completing the type fails, a diagnostic is emitted and false
2904/// returned. If completing the type succeeds or no completion was required,
2905/// returns true.
2906static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2907                                                UnaryTypeTrait UTT,
2908                                                SourceLocation Loc,
2909                                                QualType ArgTy) {
2910  // C++0x [meta.unary.prop]p3:
2911  //   For all of the class templates X declared in this Clause, instantiating
2912  //   that template with a template argument that is a class template
2913  //   specialization may result in the implicit instantiation of the template
2914  //   argument if and only if the semantics of X require that the argument
2915  //   must be a complete type.
2916  // We apply this rule to all the type trait expressions used to implement
2917  // these class templates. We also try to follow any GCC documented behavior
2918  // in these expressions to ensure portability of standard libraries.
2919  switch (UTT) {
2920    // is_complete_type somewhat obviously cannot require a complete type.
2921  case UTT_IsCompleteType:
2922    // Fall-through
2923
2924    // These traits are modeled on the type predicates in C++0x
2925    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2926    // requiring a complete type, as whether or not they return true cannot be
2927    // impacted by the completeness of the type.
2928  case UTT_IsVoid:
2929  case UTT_IsIntegral:
2930  case UTT_IsFloatingPoint:
2931  case UTT_IsArray:
2932  case UTT_IsPointer:
2933  case UTT_IsLvalueReference:
2934  case UTT_IsRvalueReference:
2935  case UTT_IsMemberFunctionPointer:
2936  case UTT_IsMemberObjectPointer:
2937  case UTT_IsEnum:
2938  case UTT_IsUnion:
2939  case UTT_IsClass:
2940  case UTT_IsFunction:
2941  case UTT_IsReference:
2942  case UTT_IsArithmetic:
2943  case UTT_IsFundamental:
2944  case UTT_IsObject:
2945  case UTT_IsScalar:
2946  case UTT_IsCompound:
2947  case UTT_IsMemberPointer:
2948    // Fall-through
2949
2950    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2951    // which requires some of its traits to have the complete type. However,
2952    // the completeness of the type cannot impact these traits' semantics, and
2953    // so they don't require it. This matches the comments on these traits in
2954    // Table 49.
2955  case UTT_IsConst:
2956  case UTT_IsVolatile:
2957  case UTT_IsSigned:
2958  case UTT_IsUnsigned:
2959    return true;
2960
2961    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2962    // applied to a complete type.
2963  case UTT_IsTrivial:
2964  case UTT_IsTriviallyCopyable:
2965  case UTT_IsStandardLayout:
2966  case UTT_IsPOD:
2967  case UTT_IsLiteral:
2968  case UTT_IsEmpty:
2969  case UTT_IsPolymorphic:
2970  case UTT_IsAbstract:
2971  case UTT_IsInterfaceClass:
2972    // Fall-through
2973
2974  // These traits require a complete type.
2975  case UTT_IsFinal:
2976
2977    // These trait expressions are designed to help implement predicates in
2978    // [meta.unary.prop] despite not being named the same. They are specified
2979    // by both GCC and the Embarcadero C++ compiler, and require the complete
2980    // type due to the overarching C++0x type predicates being implemented
2981    // requiring the complete type.
2982  case UTT_HasNothrowAssign:
2983  case UTT_HasNothrowMoveAssign:
2984  case UTT_HasNothrowConstructor:
2985  case UTT_HasNothrowCopy:
2986  case UTT_HasTrivialAssign:
2987  case UTT_HasTrivialMoveAssign:
2988  case UTT_HasTrivialDefaultConstructor:
2989  case UTT_HasTrivialMoveConstructor:
2990  case UTT_HasTrivialCopy:
2991  case UTT_HasTrivialDestructor:
2992  case UTT_HasVirtualDestructor:
2993    // Arrays of unknown bound are expressly allowed.
2994    QualType ElTy = ArgTy;
2995    if (ArgTy->isIncompleteArrayType())
2996      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2997
2998    // The void type is expressly allowed.
2999    if (ElTy->isVoidType())
3000      return true;
3001
3002    return !S.RequireCompleteType(
3003      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
3004  }
3005  llvm_unreachable("Type trait not handled by switch");
3006}
3007
3008static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op,
3009                               Sema &Self, SourceLocation KeyLoc, ASTContext &C,
3010                               bool (CXXRecordDecl::*HasTrivial)() const,
3011                               bool (CXXRecordDecl::*HasNonTrivial)() const,
3012                               bool (CXXMethodDecl::*IsDesiredOp)() const)
3013{
3014  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3015  if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)())
3016    return true;
3017
3018  DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op);
3019  DeclarationNameInfo NameInfo(Name, KeyLoc);
3020  LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName);
3021  if (Self.LookupQualifiedName(Res, RD)) {
3022    bool FoundOperator = false;
3023    Res.suppressDiagnostics();
3024    for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3025         Op != OpEnd; ++Op) {
3026      if (isa<FunctionTemplateDecl>(*Op))
3027        continue;
3028
3029      CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3030      if((Operator->*IsDesiredOp)()) {
3031        FoundOperator = true;
3032        const FunctionProtoType *CPT =
3033          Operator->getType()->getAs<FunctionProtoType>();
3034        CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3035        if (!CPT || !CPT->isNothrow(Self.Context))
3036          return false;
3037      }
3038    }
3039    return FoundOperator;
3040  }
3041  return false;
3042}
3043
3044static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
3045                                   SourceLocation KeyLoc, QualType T) {
3046  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3047
3048  ASTContext &C = Self.Context;
3049  switch(UTT) {
3050    // Type trait expressions corresponding to the primary type category
3051    // predicates in C++0x [meta.unary.cat].
3052  case UTT_IsVoid:
3053    return T->isVoidType();
3054  case UTT_IsIntegral:
3055    return T->isIntegralType(C);
3056  case UTT_IsFloatingPoint:
3057    return T->isFloatingType();
3058  case UTT_IsArray:
3059    return T->isArrayType();
3060  case UTT_IsPointer:
3061    return T->isPointerType();
3062  case UTT_IsLvalueReference:
3063    return T->isLValueReferenceType();
3064  case UTT_IsRvalueReference:
3065    return T->isRValueReferenceType();
3066  case UTT_IsMemberFunctionPointer:
3067    return T->isMemberFunctionPointerType();
3068  case UTT_IsMemberObjectPointer:
3069    return T->isMemberDataPointerType();
3070  case UTT_IsEnum:
3071    return T->isEnumeralType();
3072  case UTT_IsUnion:
3073    return T->isUnionType();
3074  case UTT_IsClass:
3075    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
3076  case UTT_IsFunction:
3077    return T->isFunctionType();
3078
3079    // Type trait expressions which correspond to the convenient composition
3080    // predicates in C++0x [meta.unary.comp].
3081  case UTT_IsReference:
3082    return T->isReferenceType();
3083  case UTT_IsArithmetic:
3084    return T->isArithmeticType() && !T->isEnumeralType();
3085  case UTT_IsFundamental:
3086    return T->isFundamentalType();
3087  case UTT_IsObject:
3088    return T->isObjectType();
3089  case UTT_IsScalar:
3090    // Note: semantic analysis depends on Objective-C lifetime types to be
3091    // considered scalar types. However, such types do not actually behave
3092    // like scalar types at run time (since they may require retain/release
3093    // operations), so we report them as non-scalar.
3094    if (T->isObjCLifetimeType()) {
3095      switch (T.getObjCLifetime()) {
3096      case Qualifiers::OCL_None:
3097      case Qualifiers::OCL_ExplicitNone:
3098        return true;
3099
3100      case Qualifiers::OCL_Strong:
3101      case Qualifiers::OCL_Weak:
3102      case Qualifiers::OCL_Autoreleasing:
3103        return false;
3104      }
3105    }
3106
3107    return T->isScalarType();
3108  case UTT_IsCompound:
3109    return T->isCompoundType();
3110  case UTT_IsMemberPointer:
3111    return T->isMemberPointerType();
3112
3113    // Type trait expressions which correspond to the type property predicates
3114    // in C++0x [meta.unary.prop].
3115  case UTT_IsConst:
3116    return T.isConstQualified();
3117  case UTT_IsVolatile:
3118    return T.isVolatileQualified();
3119  case UTT_IsTrivial:
3120    return T.isTrivialType(Self.Context);
3121  case UTT_IsTriviallyCopyable:
3122    return T.isTriviallyCopyableType(Self.Context);
3123  case UTT_IsStandardLayout:
3124    return T->isStandardLayoutType();
3125  case UTT_IsPOD:
3126    return T.isPODType(Self.Context);
3127  case UTT_IsLiteral:
3128    return T->isLiteralType(Self.Context);
3129  case UTT_IsEmpty:
3130    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3131      return !RD->isUnion() && RD->isEmpty();
3132    return false;
3133  case UTT_IsPolymorphic:
3134    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3135      return RD->isPolymorphic();
3136    return false;
3137  case UTT_IsAbstract:
3138    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3139      return RD->isAbstract();
3140    return false;
3141  case UTT_IsInterfaceClass:
3142    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3143      return RD->isInterface();
3144    return false;
3145  case UTT_IsFinal:
3146    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3147      return RD->hasAttr<FinalAttr>();
3148    return false;
3149  case UTT_IsSigned:
3150    return T->isSignedIntegerType();
3151  case UTT_IsUnsigned:
3152    return T->isUnsignedIntegerType();
3153
3154    // Type trait expressions which query classes regarding their construction,
3155    // destruction, and copying. Rather than being based directly on the
3156    // related type predicates in the standard, they are specified by both
3157    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3158    // specifications.
3159    //
3160    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3161    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3162    //
3163    // Note that these builtins do not behave as documented in g++: if a class
3164    // has both a trivial and a non-trivial special member of a particular kind,
3165    // they return false! For now, we emulate this behavior.
3166    // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3167    // does not correctly compute triviality in the presence of multiple special
3168    // members of the same kind. Revisit this once the g++ bug is fixed.
3169  case UTT_HasTrivialDefaultConstructor:
3170    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3171    //   If __is_pod (type) is true then the trait is true, else if type is
3172    //   a cv class or union type (or array thereof) with a trivial default
3173    //   constructor ([class.ctor]) then the trait is true, else it is false.
3174    if (T.isPODType(Self.Context))
3175      return true;
3176    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3177      return RD->hasTrivialDefaultConstructor() &&
3178             !RD->hasNonTrivialDefaultConstructor();
3179    return false;
3180  case UTT_HasTrivialMoveConstructor:
3181    //  This trait is implemented by MSVC 2012 and needed to parse the
3182    //  standard library headers. Specifically this is used as the logic
3183    //  behind std::is_trivially_move_constructible (20.9.4.3).
3184    if (T.isPODType(Self.Context))
3185      return true;
3186    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3187      return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor();
3188    return false;
3189  case UTT_HasTrivialCopy:
3190    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3191    //   If __is_pod (type) is true or type is a reference type then
3192    //   the trait is true, else if type is a cv class or union type
3193    //   with a trivial copy constructor ([class.copy]) then the trait
3194    //   is true, else it is false.
3195    if (T.isPODType(Self.Context) || T->isReferenceType())
3196      return true;
3197    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3198      return RD->hasTrivialCopyConstructor() &&
3199             !RD->hasNonTrivialCopyConstructor();
3200    return false;
3201  case UTT_HasTrivialMoveAssign:
3202    //  This trait is implemented by MSVC 2012 and needed to parse the
3203    //  standard library headers. Specifically it is used as the logic
3204    //  behind std::is_trivially_move_assignable (20.9.4.3)
3205    if (T.isPODType(Self.Context))
3206      return true;
3207    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3208      return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment();
3209    return false;
3210  case UTT_HasTrivialAssign:
3211    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3212    //   If type is const qualified or is a reference type then the
3213    //   trait is false. Otherwise if __is_pod (type) is true then the
3214    //   trait is true, else if type is a cv class or union type with
3215    //   a trivial copy assignment ([class.copy]) then the trait is
3216    //   true, else it is false.
3217    // Note: the const and reference restrictions are interesting,
3218    // given that const and reference members don't prevent a class
3219    // from having a trivial copy assignment operator (but do cause
3220    // errors if the copy assignment operator is actually used, q.v.
3221    // [class.copy]p12).
3222
3223    if (T.isConstQualified())
3224      return false;
3225    if (T.isPODType(Self.Context))
3226      return true;
3227    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3228      return RD->hasTrivialCopyAssignment() &&
3229             !RD->hasNonTrivialCopyAssignment();
3230    return false;
3231  case UTT_HasTrivialDestructor:
3232    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3233    //   If __is_pod (type) is true or type is a reference type
3234    //   then the trait is true, else if type is a cv class or union
3235    //   type (or array thereof) with a trivial destructor
3236    //   ([class.dtor]) then the trait is true, else it is
3237    //   false.
3238    if (T.isPODType(Self.Context) || T->isReferenceType())
3239      return true;
3240
3241    // Objective-C++ ARC: autorelease types don't require destruction.
3242    if (T->isObjCLifetimeType() &&
3243        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3244      return true;
3245
3246    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3247      return RD->hasTrivialDestructor();
3248    return false;
3249  // TODO: Propagate nothrowness for implicitly declared special members.
3250  case UTT_HasNothrowAssign:
3251    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3252    //   If type is const qualified or is a reference type then the
3253    //   trait is false. Otherwise if __has_trivial_assign (type)
3254    //   is true then the trait is true, else if type is a cv class
3255    //   or union type with copy assignment operators that are known
3256    //   not to throw an exception then the trait is true, else it is
3257    //   false.
3258    if (C.getBaseElementType(T).isConstQualified())
3259      return false;
3260    if (T->isReferenceType())
3261      return false;
3262    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3263      return true;
3264
3265    if (const RecordType *RT = T->getAs<RecordType>())
3266      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3267                                &CXXRecordDecl::hasTrivialCopyAssignment,
3268                                &CXXRecordDecl::hasNonTrivialCopyAssignment,
3269                                &CXXMethodDecl::isCopyAssignmentOperator);
3270    return false;
3271  case UTT_HasNothrowMoveAssign:
3272    //  This trait is implemented by MSVC 2012 and needed to parse the
3273    //  standard library headers. Specifically this is used as the logic
3274    //  behind std::is_nothrow_move_assignable (20.9.4.3).
3275    if (T.isPODType(Self.Context))
3276      return true;
3277
3278    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>())
3279      return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C,
3280                                &CXXRecordDecl::hasTrivialMoveAssignment,
3281                                &CXXRecordDecl::hasNonTrivialMoveAssignment,
3282                                &CXXMethodDecl::isMoveAssignmentOperator);
3283    return false;
3284  case UTT_HasNothrowCopy:
3285    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3286    //   If __has_trivial_copy (type) is true then the trait is true, else
3287    //   if type is a cv class or union type with copy constructors that are
3288    //   known not to throw an exception then the trait is true, else it is
3289    //   false.
3290    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3291      return true;
3292    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3293      if (RD->hasTrivialCopyConstructor() &&
3294          !RD->hasNonTrivialCopyConstructor())
3295        return true;
3296
3297      bool FoundConstructor = false;
3298      unsigned FoundTQs;
3299      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3300      for (DeclContext::lookup_const_iterator Con = R.begin(),
3301           ConEnd = R.end(); Con != ConEnd; ++Con) {
3302        // A template constructor is never a copy constructor.
3303        // FIXME: However, it may actually be selected at the actual overload
3304        // resolution point.
3305        if (isa<FunctionTemplateDecl>(*Con))
3306          continue;
3307        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3308        if (Constructor->isCopyConstructor(FoundTQs)) {
3309          FoundConstructor = true;
3310          const FunctionProtoType *CPT
3311              = Constructor->getType()->getAs<FunctionProtoType>();
3312          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3313          if (!CPT)
3314            return false;
3315          // FIXME: check whether evaluating default arguments can throw.
3316          // For now, we'll be conservative and assume that they can throw.
3317          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3318            return false;
3319        }
3320      }
3321
3322      return FoundConstructor;
3323    }
3324    return false;
3325  case UTT_HasNothrowConstructor:
3326    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3327    //   If __has_trivial_constructor (type) is true then the trait is
3328    //   true, else if type is a cv class or union type (or array
3329    //   thereof) with a default constructor that is known not to
3330    //   throw an exception then the trait is true, else it is false.
3331    if (T.isPODType(C) || T->isObjCLifetimeType())
3332      return true;
3333    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3334      if (RD->hasTrivialDefaultConstructor() &&
3335          !RD->hasNonTrivialDefaultConstructor())
3336        return true;
3337
3338      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3339      for (DeclContext::lookup_const_iterator Con = R.begin(),
3340           ConEnd = R.end(); Con != ConEnd; ++Con) {
3341        // FIXME: In C++0x, a constructor template can be a default constructor.
3342        if (isa<FunctionTemplateDecl>(*Con))
3343          continue;
3344        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3345        if (Constructor->isDefaultConstructor()) {
3346          const FunctionProtoType *CPT
3347              = Constructor->getType()->getAs<FunctionProtoType>();
3348          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3349          if (!CPT)
3350            return false;
3351          // TODO: check whether evaluating default arguments can throw.
3352          // For now, we'll be conservative and assume that they can throw.
3353          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3354        }
3355      }
3356    }
3357    return false;
3358  case UTT_HasVirtualDestructor:
3359    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3360    //   If type is a class type with a virtual destructor ([class.dtor])
3361    //   then the trait is true, else it is false.
3362    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3363      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3364        return Destructor->isVirtual();
3365    return false;
3366
3367    // These type trait expressions are modeled on the specifications for the
3368    // Embarcadero C++0x type trait functions:
3369    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3370  case UTT_IsCompleteType:
3371    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3372    //   Returns True if and only if T is a complete type at the point of the
3373    //   function call.
3374    return !T->isIncompleteType();
3375  }
3376  llvm_unreachable("Type trait not covered by switch");
3377}
3378
3379ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3380                                     SourceLocation KWLoc,
3381                                     TypeSourceInfo *TSInfo,
3382                                     SourceLocation RParen) {
3383  QualType T = TSInfo->getType();
3384  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3385    return ExprError();
3386
3387  bool Value = false;
3388  if (!T->isDependentType())
3389    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3390
3391  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3392                                                RParen, Context.BoolTy));
3393}
3394
3395ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3396                                      SourceLocation KWLoc,
3397                                      ParsedType LhsTy,
3398                                      ParsedType RhsTy,
3399                                      SourceLocation RParen) {
3400  TypeSourceInfo *LhsTSInfo;
3401  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3402  if (!LhsTSInfo)
3403    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3404
3405  TypeSourceInfo *RhsTSInfo;
3406  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3407  if (!RhsTSInfo)
3408    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3409
3410  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3411}
3412
3413/// \brief Determine whether T has a non-trivial Objective-C lifetime in
3414/// ARC mode.
3415static bool hasNontrivialObjCLifetime(QualType T) {
3416  switch (T.getObjCLifetime()) {
3417  case Qualifiers::OCL_ExplicitNone:
3418    return false;
3419
3420  case Qualifiers::OCL_Strong:
3421  case Qualifiers::OCL_Weak:
3422  case Qualifiers::OCL_Autoreleasing:
3423    return true;
3424
3425  case Qualifiers::OCL_None:
3426    return T->isObjCLifetimeType();
3427  }
3428
3429  llvm_unreachable("Unknown ObjC lifetime qualifier");
3430}
3431
3432static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3433                              ArrayRef<TypeSourceInfo *> Args,
3434                              SourceLocation RParenLoc) {
3435  switch (Kind) {
3436  case clang::TT_IsTriviallyConstructible: {
3437    // C++11 [meta.unary.prop]:
3438    //   is_trivially_constructible is defined as:
3439    //
3440    //     is_constructible<T, Args...>::value is true and the variable
3441    //     definition for is_constructible, as defined below, is known to call no
3442    //     operation that is not trivial.
3443    //
3444    //   The predicate condition for a template specialization
3445    //   is_constructible<T, Args...> shall be satisfied if and only if the
3446    //   following variable definition would be well-formed for some invented
3447    //   variable t:
3448    //
3449    //     T t(create<Args>()...);
3450    if (Args.empty()) {
3451      S.Diag(KWLoc, diag::err_type_trait_arity)
3452        << 1 << 1 << 1 << (int)Args.size();
3453      return false;
3454    }
3455
3456    bool SawVoid = false;
3457    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3458      if (Args[I]->getType()->isVoidType()) {
3459        SawVoid = true;
3460        continue;
3461      }
3462
3463      if (!Args[I]->getType()->isIncompleteType() &&
3464        S.RequireCompleteType(KWLoc, Args[I]->getType(),
3465          diag::err_incomplete_type_used_in_type_trait_expr))
3466        return false;
3467    }
3468
3469    // If any argument was 'void', of course it won't type-check.
3470    if (SawVoid)
3471      return false;
3472
3473    SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3474    SmallVector<Expr *, 2> ArgExprs;
3475    ArgExprs.reserve(Args.size() - 1);
3476    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3477      QualType T = Args[I]->getType();
3478      if (T->isObjectType() || T->isFunctionType())
3479        T = S.Context.getRValueReferenceType(T);
3480      OpaqueArgExprs.push_back(
3481        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3482                        T.getNonLValueExprType(S.Context),
3483                        Expr::getValueKindForType(T)));
3484      ArgExprs.push_back(&OpaqueArgExprs.back());
3485    }
3486
3487    // Perform the initialization in an unevaluated context within a SFINAE
3488    // trap at translation unit scope.
3489    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3490    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3491    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3492    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3493    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3494                                                                 RParenLoc));
3495    InitializationSequence Init(S, To, InitKind, ArgExprs);
3496    if (Init.Failed())
3497      return false;
3498
3499    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3500    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3501      return false;
3502
3503    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3504    // lifetime, this is a non-trivial construction.
3505    if (S.getLangOpts().ObjCAutoRefCount &&
3506        hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3507      return false;
3508
3509    // The initialization succeeded; now make sure there are no non-trivial
3510    // calls.
3511    return !Result.get()->hasNonTrivialCall(S.Context);
3512  }
3513  }
3514
3515  return false;
3516}
3517
3518ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3519                                ArrayRef<TypeSourceInfo *> Args,
3520                                SourceLocation RParenLoc) {
3521  bool Dependent = false;
3522  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3523    if (Args[I]->getType()->isDependentType()) {
3524      Dependent = true;
3525      break;
3526    }
3527  }
3528
3529  bool Value = false;
3530  if (!Dependent)
3531    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3532
3533  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3534                               Args, RParenLoc, Value);
3535}
3536
3537ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3538                                ArrayRef<ParsedType> Args,
3539                                SourceLocation RParenLoc) {
3540  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3541  ConvertedArgs.reserve(Args.size());
3542
3543  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3544    TypeSourceInfo *TInfo;
3545    QualType T = GetTypeFromParser(Args[I], &TInfo);
3546    if (!TInfo)
3547      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3548
3549    ConvertedArgs.push_back(TInfo);
3550  }
3551
3552  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3553}
3554
3555static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3556                                    QualType LhsT, QualType RhsT,
3557                                    SourceLocation KeyLoc) {
3558  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3559         "Cannot evaluate traits of dependent types");
3560
3561  switch(BTT) {
3562  case BTT_IsBaseOf: {
3563    // C++0x [meta.rel]p2
3564    // Base is a base class of Derived without regard to cv-qualifiers or
3565    // Base and Derived are not unions and name the same class type without
3566    // regard to cv-qualifiers.
3567
3568    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3569    if (!lhsRecord) return false;
3570
3571    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3572    if (!rhsRecord) return false;
3573
3574    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3575             == (lhsRecord == rhsRecord));
3576
3577    if (lhsRecord == rhsRecord)
3578      return !lhsRecord->getDecl()->isUnion();
3579
3580    // C++0x [meta.rel]p2:
3581    //   If Base and Derived are class types and are different types
3582    //   (ignoring possible cv-qualifiers) then Derived shall be a
3583    //   complete type.
3584    if (Self.RequireCompleteType(KeyLoc, RhsT,
3585                          diag::err_incomplete_type_used_in_type_trait_expr))
3586      return false;
3587
3588    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3589      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3590  }
3591  case BTT_IsSame:
3592    return Self.Context.hasSameType(LhsT, RhsT);
3593  case BTT_TypeCompatible:
3594    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3595                                           RhsT.getUnqualifiedType());
3596  case BTT_IsConvertible:
3597  case BTT_IsConvertibleTo: {
3598    // C++0x [meta.rel]p4:
3599    //   Given the following function prototype:
3600    //
3601    //     template <class T>
3602    //       typename add_rvalue_reference<T>::type create();
3603    //
3604    //   the predicate condition for a template specialization
3605    //   is_convertible<From, To> shall be satisfied if and only if
3606    //   the return expression in the following code would be
3607    //   well-formed, including any implicit conversions to the return
3608    //   type of the function:
3609    //
3610    //     To test() {
3611    //       return create<From>();
3612    //     }
3613    //
3614    //   Access checking is performed as if in a context unrelated to To and
3615    //   From. Only the validity of the immediate context of the expression
3616    //   of the return-statement (including conversions to the return type)
3617    //   is considered.
3618    //
3619    // We model the initialization as a copy-initialization of a temporary
3620    // of the appropriate type, which for this expression is identical to the
3621    // return statement (since NRVO doesn't apply).
3622
3623    // Functions aren't allowed to return function or array types.
3624    if (RhsT->isFunctionType() || RhsT->isArrayType())
3625      return false;
3626
3627    // A return statement in a void function must have void type.
3628    if (RhsT->isVoidType())
3629      return LhsT->isVoidType();
3630
3631    // A function definition requires a complete, non-abstract return type.
3632    if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3633        Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3634      return false;
3635
3636    // Compute the result of add_rvalue_reference.
3637    if (LhsT->isObjectType() || LhsT->isFunctionType())
3638      LhsT = Self.Context.getRValueReferenceType(LhsT);
3639
3640    // Build a fake source and destination for initialization.
3641    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3642    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3643                         Expr::getValueKindForType(LhsT));
3644    Expr *FromPtr = &From;
3645    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3646                                                           SourceLocation()));
3647
3648    // Perform the initialization in an unevaluated context within a SFINAE
3649    // trap at translation unit scope.
3650    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3651    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3652    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3653    InitializationSequence Init(Self, To, Kind, FromPtr);
3654    if (Init.Failed())
3655      return false;
3656
3657    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3658    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3659  }
3660
3661  case BTT_IsTriviallyAssignable: {
3662    // C++11 [meta.unary.prop]p3:
3663    //   is_trivially_assignable is defined as:
3664    //     is_assignable<T, U>::value is true and the assignment, as defined by
3665    //     is_assignable, is known to call no operation that is not trivial
3666    //
3667    //   is_assignable is defined as:
3668    //     The expression declval<T>() = declval<U>() is well-formed when
3669    //     treated as an unevaluated operand (Clause 5).
3670    //
3671    //   For both, T and U shall be complete types, (possibly cv-qualified)
3672    //   void, or arrays of unknown bound.
3673    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3674        Self.RequireCompleteType(KeyLoc, LhsT,
3675          diag::err_incomplete_type_used_in_type_trait_expr))
3676      return false;
3677    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3678        Self.RequireCompleteType(KeyLoc, RhsT,
3679          diag::err_incomplete_type_used_in_type_trait_expr))
3680      return false;
3681
3682    // cv void is never assignable.
3683    if (LhsT->isVoidType() || RhsT->isVoidType())
3684      return false;
3685
3686    // Build expressions that emulate the effect of declval<T>() and
3687    // declval<U>().
3688    if (LhsT->isObjectType() || LhsT->isFunctionType())
3689      LhsT = Self.Context.getRValueReferenceType(LhsT);
3690    if (RhsT->isObjectType() || RhsT->isFunctionType())
3691      RhsT = Self.Context.getRValueReferenceType(RhsT);
3692    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3693                        Expr::getValueKindForType(LhsT));
3694    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3695                        Expr::getValueKindForType(RhsT));
3696
3697    // Attempt the assignment in an unevaluated context within a SFINAE
3698    // trap at translation unit scope.
3699    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3700    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3701    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3702    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3703    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3704      return false;
3705
3706    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3707    // lifetime, this is a non-trivial assignment.
3708    if (Self.getLangOpts().ObjCAutoRefCount &&
3709        hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3710      return false;
3711
3712    return !Result.get()->hasNonTrivialCall(Self.Context);
3713  }
3714  }
3715  llvm_unreachable("Unknown type trait or not implemented");
3716}
3717
3718ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3719                                      SourceLocation KWLoc,
3720                                      TypeSourceInfo *LhsTSInfo,
3721                                      TypeSourceInfo *RhsTSInfo,
3722                                      SourceLocation RParen) {
3723  QualType LhsT = LhsTSInfo->getType();
3724  QualType RhsT = RhsTSInfo->getType();
3725
3726  if (BTT == BTT_TypeCompatible) {
3727    if (getLangOpts().CPlusPlus) {
3728      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3729        << SourceRange(KWLoc, RParen);
3730      return ExprError();
3731    }
3732  }
3733
3734  bool Value = false;
3735  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3736    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3737
3738  // Select trait result type.
3739  QualType ResultType;
3740  switch (BTT) {
3741  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3742  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3743  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3744  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3745  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3746  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3747  }
3748
3749  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3750                                                 RhsTSInfo, Value, RParen,
3751                                                 ResultType));
3752}
3753
3754ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3755                                     SourceLocation KWLoc,
3756                                     ParsedType Ty,
3757                                     Expr* DimExpr,
3758                                     SourceLocation RParen) {
3759  TypeSourceInfo *TSInfo;
3760  QualType T = GetTypeFromParser(Ty, &TSInfo);
3761  if (!TSInfo)
3762    TSInfo = Context.getTrivialTypeSourceInfo(T);
3763
3764  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3765}
3766
3767static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3768                                           QualType T, Expr *DimExpr,
3769                                           SourceLocation KeyLoc) {
3770  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3771
3772  switch(ATT) {
3773  case ATT_ArrayRank:
3774    if (T->isArrayType()) {
3775      unsigned Dim = 0;
3776      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3777        ++Dim;
3778        T = AT->getElementType();
3779      }
3780      return Dim;
3781    }
3782    return 0;
3783
3784  case ATT_ArrayExtent: {
3785    llvm::APSInt Value;
3786    uint64_t Dim;
3787    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3788          diag::err_dimension_expr_not_constant_integer,
3789          false).isInvalid())
3790      return 0;
3791    if (Value.isSigned() && Value.isNegative()) {
3792      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3793        << DimExpr->getSourceRange();
3794      return 0;
3795    }
3796    Dim = Value.getLimitedValue();
3797
3798    if (T->isArrayType()) {
3799      unsigned D = 0;
3800      bool Matched = false;
3801      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3802        if (Dim == D) {
3803          Matched = true;
3804          break;
3805        }
3806        ++D;
3807        T = AT->getElementType();
3808      }
3809
3810      if (Matched && T->isArrayType()) {
3811        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3812          return CAT->getSize().getLimitedValue();
3813      }
3814    }
3815    return 0;
3816  }
3817  }
3818  llvm_unreachable("Unknown type trait or not implemented");
3819}
3820
3821ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3822                                     SourceLocation KWLoc,
3823                                     TypeSourceInfo *TSInfo,
3824                                     Expr* DimExpr,
3825                                     SourceLocation RParen) {
3826  QualType T = TSInfo->getType();
3827
3828  // FIXME: This should likely be tracked as an APInt to remove any host
3829  // assumptions about the width of size_t on the target.
3830  uint64_t Value = 0;
3831  if (!T->isDependentType())
3832    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3833
3834  // While the specification for these traits from the Embarcadero C++
3835  // compiler's documentation says the return type is 'unsigned int', Clang
3836  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3837  // compiler, there is no difference. On several other platforms this is an
3838  // important distinction.
3839  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3840                                                DimExpr, RParen,
3841                                                Context.getSizeType()));
3842}
3843
3844ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3845                                      SourceLocation KWLoc,
3846                                      Expr *Queried,
3847                                      SourceLocation RParen) {
3848  // If error parsing the expression, ignore.
3849  if (!Queried)
3850    return ExprError();
3851
3852  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3853
3854  return Result;
3855}
3856
3857static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3858  switch (ET) {
3859  case ET_IsLValueExpr: return E->isLValue();
3860  case ET_IsRValueExpr: return E->isRValue();
3861  }
3862  llvm_unreachable("Expression trait not covered by switch");
3863}
3864
3865ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3866                                      SourceLocation KWLoc,
3867                                      Expr *Queried,
3868                                      SourceLocation RParen) {
3869  if (Queried->isTypeDependent()) {
3870    // Delay type-checking for type-dependent expressions.
3871  } else if (Queried->getType()->isPlaceholderType()) {
3872    ExprResult PE = CheckPlaceholderExpr(Queried);
3873    if (PE.isInvalid()) return ExprError();
3874    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3875  }
3876
3877  bool Value = EvaluateExpressionTrait(ET, Queried);
3878
3879  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3880                                                 RParen, Context.BoolTy));
3881}
3882
3883QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3884                                            ExprValueKind &VK,
3885                                            SourceLocation Loc,
3886                                            bool isIndirect) {
3887  assert(!LHS.get()->getType()->isPlaceholderType() &&
3888         !RHS.get()->getType()->isPlaceholderType() &&
3889         "placeholders should have been weeded out by now");
3890
3891  // The LHS undergoes lvalue conversions if this is ->*.
3892  if (isIndirect) {
3893    LHS = DefaultLvalueConversion(LHS.take());
3894    if (LHS.isInvalid()) return QualType();
3895  }
3896
3897  // The RHS always undergoes lvalue conversions.
3898  RHS = DefaultLvalueConversion(RHS.take());
3899  if (RHS.isInvalid()) return QualType();
3900
3901  const char *OpSpelling = isIndirect ? "->*" : ".*";
3902  // C++ 5.5p2
3903  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3904  //   be of type "pointer to member of T" (where T is a completely-defined
3905  //   class type) [...]
3906  QualType RHSType = RHS.get()->getType();
3907  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3908  if (!MemPtr) {
3909    Diag(Loc, diag::err_bad_memptr_rhs)
3910      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3911    return QualType();
3912  }
3913
3914  QualType Class(MemPtr->getClass(), 0);
3915
3916  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3917  // member pointer points must be completely-defined. However, there is no
3918  // reason for this semantic distinction, and the rule is not enforced by
3919  // other compilers. Therefore, we do not check this property, as it is
3920  // likely to be considered a defect.
3921
3922  // C++ 5.5p2
3923  //   [...] to its first operand, which shall be of class T or of a class of
3924  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3925  //   such a class]
3926  QualType LHSType = LHS.get()->getType();
3927  if (isIndirect) {
3928    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3929      LHSType = Ptr->getPointeeType();
3930    else {
3931      Diag(Loc, diag::err_bad_memptr_lhs)
3932        << OpSpelling << 1 << LHSType
3933        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3934      return QualType();
3935    }
3936  }
3937
3938  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3939    // If we want to check the hierarchy, we need a complete type.
3940    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3941                            OpSpelling, (int)isIndirect)) {
3942      return QualType();
3943    }
3944    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3945                       /*DetectVirtual=*/false);
3946    // FIXME: Would it be useful to print full ambiguity paths, or is that
3947    // overkill?
3948    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3949        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3950      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3951        << (int)isIndirect << LHS.get()->getType();
3952      return QualType();
3953    }
3954    // Cast LHS to type of use.
3955    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3956    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3957
3958    CXXCastPath BasePath;
3959    BuildBasePathArray(Paths, BasePath);
3960    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3961                            &BasePath);
3962  }
3963
3964  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3965    // Diagnose use of pointer-to-member type which when used as
3966    // the functional cast in a pointer-to-member expression.
3967    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3968     return QualType();
3969  }
3970
3971  // C++ 5.5p2
3972  //   The result is an object or a function of the type specified by the
3973  //   second operand.
3974  // The cv qualifiers are the union of those in the pointer and the left side,
3975  // in accordance with 5.5p5 and 5.2.5.
3976  QualType Result = MemPtr->getPointeeType();
3977  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3978
3979  // C++0x [expr.mptr.oper]p6:
3980  //   In a .* expression whose object expression is an rvalue, the program is
3981  //   ill-formed if the second operand is a pointer to member function with
3982  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3983  //   expression is an lvalue, the program is ill-formed if the second operand
3984  //   is a pointer to member function with ref-qualifier &&.
3985  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3986    switch (Proto->getRefQualifier()) {
3987    case RQ_None:
3988      // Do nothing
3989      break;
3990
3991    case RQ_LValue:
3992      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3993        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3994          << RHSType << 1 << LHS.get()->getSourceRange();
3995      break;
3996
3997    case RQ_RValue:
3998      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3999        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
4000          << RHSType << 0 << LHS.get()->getSourceRange();
4001      break;
4002    }
4003  }
4004
4005  // C++ [expr.mptr.oper]p6:
4006  //   The result of a .* expression whose second operand is a pointer
4007  //   to a data member is of the same value category as its
4008  //   first operand. The result of a .* expression whose second
4009  //   operand is a pointer to a member function is a prvalue. The
4010  //   result of an ->* expression is an lvalue if its second operand
4011  //   is a pointer to data member and a prvalue otherwise.
4012  if (Result->isFunctionType()) {
4013    VK = VK_RValue;
4014    return Context.BoundMemberTy;
4015  } else if (isIndirect) {
4016    VK = VK_LValue;
4017  } else {
4018    VK = LHS.get()->getValueKind();
4019  }
4020
4021  return Result;
4022}
4023
4024/// \brief Try to convert a type to another according to C++0x 5.16p3.
4025///
4026/// This is part of the parameter validation for the ? operator. If either
4027/// value operand is a class type, the two operands are attempted to be
4028/// converted to each other. This function does the conversion in one direction.
4029/// It returns true if the program is ill-formed and has already been diagnosed
4030/// as such.
4031static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
4032                                SourceLocation QuestionLoc,
4033                                bool &HaveConversion,
4034                                QualType &ToType) {
4035  HaveConversion = false;
4036  ToType = To->getType();
4037
4038  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
4039                                                           SourceLocation());
4040  // C++0x 5.16p3
4041  //   The process for determining whether an operand expression E1 of type T1
4042  //   can be converted to match an operand expression E2 of type T2 is defined
4043  //   as follows:
4044  //   -- If E2 is an lvalue:
4045  bool ToIsLvalue = To->isLValue();
4046  if (ToIsLvalue) {
4047    //   E1 can be converted to match E2 if E1 can be implicitly converted to
4048    //   type "lvalue reference to T2", subject to the constraint that in the
4049    //   conversion the reference must bind directly to E1.
4050    QualType T = Self.Context.getLValueReferenceType(ToType);
4051    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4052
4053    InitializationSequence InitSeq(Self, Entity, Kind, From);
4054    if (InitSeq.isDirectReferenceBinding()) {
4055      ToType = T;
4056      HaveConversion = true;
4057      return false;
4058    }
4059
4060    if (InitSeq.isAmbiguous())
4061      return InitSeq.Diagnose(Self, Entity, Kind, From);
4062  }
4063
4064  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
4065  //      -- if E1 and E2 have class type, and the underlying class types are
4066  //         the same or one is a base class of the other:
4067  QualType FTy = From->getType();
4068  QualType TTy = To->getType();
4069  const RecordType *FRec = FTy->getAs<RecordType>();
4070  const RecordType *TRec = TTy->getAs<RecordType>();
4071  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
4072                       Self.IsDerivedFrom(FTy, TTy);
4073  if (FRec && TRec &&
4074      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
4075    //         E1 can be converted to match E2 if the class of T2 is the
4076    //         same type as, or a base class of, the class of T1, and
4077    //         [cv2 > cv1].
4078    if (FRec == TRec || FDerivedFromT) {
4079      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
4080        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4081        InitializationSequence InitSeq(Self, Entity, Kind, From);
4082        if (InitSeq) {
4083          HaveConversion = true;
4084          return false;
4085        }
4086
4087        if (InitSeq.isAmbiguous())
4088          return InitSeq.Diagnose(Self, Entity, Kind, From);
4089      }
4090    }
4091
4092    return false;
4093  }
4094
4095  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4096  //        implicitly converted to the type that expression E2 would have
4097  //        if E2 were converted to an rvalue (or the type it has, if E2 is
4098  //        an rvalue).
4099  //
4100  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4101  // to the array-to-pointer or function-to-pointer conversions.
4102  if (!TTy->getAs<TagType>())
4103    TTy = TTy.getUnqualifiedType();
4104
4105  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4106  InitializationSequence InitSeq(Self, Entity, Kind, From);
4107  HaveConversion = !InitSeq.Failed();
4108  ToType = TTy;
4109  if (InitSeq.isAmbiguous())
4110    return InitSeq.Diagnose(Self, Entity, Kind, From);
4111
4112  return false;
4113}
4114
4115/// \brief Try to find a common type for two according to C++0x 5.16p5.
4116///
4117/// This is part of the parameter validation for the ? operator. If either
4118/// value operand is a class type, overload resolution is used to find a
4119/// conversion to a common type.
4120static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4121                                    SourceLocation QuestionLoc) {
4122  Expr *Args[2] = { LHS.get(), RHS.get() };
4123  OverloadCandidateSet CandidateSet(QuestionLoc);
4124  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args,
4125                                    CandidateSet);
4126
4127  OverloadCandidateSet::iterator Best;
4128  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4129    case OR_Success: {
4130      // We found a match. Perform the conversions on the arguments and move on.
4131      ExprResult LHSRes =
4132        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4133                                       Best->Conversions[0], Sema::AA_Converting);
4134      if (LHSRes.isInvalid())
4135        break;
4136      LHS = LHSRes;
4137
4138      ExprResult RHSRes =
4139        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4140                                       Best->Conversions[1], Sema::AA_Converting);
4141      if (RHSRes.isInvalid())
4142        break;
4143      RHS = RHSRes;
4144      if (Best->Function)
4145        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4146      return false;
4147    }
4148
4149    case OR_No_Viable_Function:
4150
4151      // Emit a better diagnostic if one of the expressions is a null pointer
4152      // constant and the other is a pointer type. In this case, the user most
4153      // likely forgot to take the address of the other expression.
4154      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4155        return true;
4156
4157      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4158        << LHS.get()->getType() << RHS.get()->getType()
4159        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4160      return true;
4161
4162    case OR_Ambiguous:
4163      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4164        << LHS.get()->getType() << RHS.get()->getType()
4165        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4166      // FIXME: Print the possible common types by printing the return types of
4167      // the viable candidates.
4168      break;
4169
4170    case OR_Deleted:
4171      llvm_unreachable("Conditional operator has only built-in overloads");
4172  }
4173  return true;
4174}
4175
4176/// \brief Perform an "extended" implicit conversion as returned by
4177/// TryClassUnification.
4178static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4179  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4180  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4181                                                           SourceLocation());
4182  Expr *Arg = E.take();
4183  InitializationSequence InitSeq(Self, Entity, Kind, Arg);
4184  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4185  if (Result.isInvalid())
4186    return true;
4187
4188  E = Result;
4189  return false;
4190}
4191
4192/// \brief Check the operands of ?: under C++ semantics.
4193///
4194/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4195/// extension. In this case, LHS == Cond. (But they're not aliases.)
4196QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4197                                           ExprResult &RHS, ExprValueKind &VK,
4198                                           ExprObjectKind &OK,
4199                                           SourceLocation QuestionLoc) {
4200  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4201  // interface pointers.
4202
4203  // C++11 [expr.cond]p1
4204  //   The first expression is contextually converted to bool.
4205  if (!Cond.get()->isTypeDependent()) {
4206    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4207    if (CondRes.isInvalid())
4208      return QualType();
4209    Cond = CondRes;
4210  }
4211
4212  // Assume r-value.
4213  VK = VK_RValue;
4214  OK = OK_Ordinary;
4215
4216  // Either of the arguments dependent?
4217  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4218    return Context.DependentTy;
4219
4220  // C++11 [expr.cond]p2
4221  //   If either the second or the third operand has type (cv) void, ...
4222  QualType LTy = LHS.get()->getType();
4223  QualType RTy = RHS.get()->getType();
4224  bool LVoid = LTy->isVoidType();
4225  bool RVoid = RTy->isVoidType();
4226  if (LVoid || RVoid) {
4227    //   ... then the [l2r] conversions are performed on the second and third
4228    //   operands ...
4229    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4230    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4231    if (LHS.isInvalid() || RHS.isInvalid())
4232      return QualType();
4233
4234    // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4235    // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4236    // do this part for us.
4237    ExprResult &NonVoid = LVoid ? RHS : LHS;
4238    if (NonVoid.get()->getType()->isRecordType() &&
4239        NonVoid.get()->isGLValue()) {
4240      if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4241                             diag::err_allocation_of_abstract_type))
4242        return QualType();
4243      InitializedEntity Entity =
4244          InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4245      NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4246      if (NonVoid.isInvalid())
4247        return QualType();
4248    }
4249
4250    LTy = LHS.get()->getType();
4251    RTy = RHS.get()->getType();
4252
4253    //   ... and one of the following shall hold:
4254    //   -- The second or the third operand (but not both) is a throw-
4255    //      expression; the result is of the type of the other and is a prvalue.
4256    bool LThrow = isa<CXXThrowExpr>(LHS.get());
4257    bool RThrow = isa<CXXThrowExpr>(RHS.get());
4258    if (LThrow && !RThrow)
4259      return RTy;
4260    if (RThrow && !LThrow)
4261      return LTy;
4262
4263    //   -- Both the second and third operands have type void; the result is of
4264    //      type void and is a prvalue.
4265    if (LVoid && RVoid)
4266      return Context.VoidTy;
4267
4268    // Neither holds, error.
4269    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4270      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4271      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4272    return QualType();
4273  }
4274
4275  // Neither is void.
4276
4277  // C++11 [expr.cond]p3
4278  //   Otherwise, if the second and third operand have different types, and
4279  //   either has (cv) class type [...] an attempt is made to convert each of
4280  //   those operands to the type of the other.
4281  if (!Context.hasSameType(LTy, RTy) &&
4282      (LTy->isRecordType() || RTy->isRecordType())) {
4283    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4284    // These return true if a single direction is already ambiguous.
4285    QualType L2RType, R2LType;
4286    bool HaveL2R, HaveR2L;
4287    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4288      return QualType();
4289    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4290      return QualType();
4291
4292    //   If both can be converted, [...] the program is ill-formed.
4293    if (HaveL2R && HaveR2L) {
4294      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4295        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4296      return QualType();
4297    }
4298
4299    //   If exactly one conversion is possible, that conversion is applied to
4300    //   the chosen operand and the converted operands are used in place of the
4301    //   original operands for the remainder of this section.
4302    if (HaveL2R) {
4303      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4304        return QualType();
4305      LTy = LHS.get()->getType();
4306    } else if (HaveR2L) {
4307      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4308        return QualType();
4309      RTy = RHS.get()->getType();
4310    }
4311  }
4312
4313  // C++11 [expr.cond]p3
4314  //   if both are glvalues of the same value category and the same type except
4315  //   for cv-qualification, an attempt is made to convert each of those
4316  //   operands to the type of the other.
4317  ExprValueKind LVK = LHS.get()->getValueKind();
4318  ExprValueKind RVK = RHS.get()->getValueKind();
4319  if (!Context.hasSameType(LTy, RTy) &&
4320      Context.hasSameUnqualifiedType(LTy, RTy) &&
4321      LVK == RVK && LVK != VK_RValue) {
4322    // Since the unqualified types are reference-related and we require the
4323    // result to be as if a reference bound directly, the only conversion
4324    // we can perform is to add cv-qualifiers.
4325    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4326    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4327    if (RCVR.isStrictSupersetOf(LCVR)) {
4328      LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4329      LTy = LHS.get()->getType();
4330    }
4331    else if (LCVR.isStrictSupersetOf(RCVR)) {
4332      RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4333      RTy = RHS.get()->getType();
4334    }
4335  }
4336
4337  // C++11 [expr.cond]p4
4338  //   If the second and third operands are glvalues of the same value
4339  //   category and have the same type, the result is of that type and
4340  //   value category and it is a bit-field if the second or the third
4341  //   operand is a bit-field, or if both are bit-fields.
4342  // We only extend this to bitfields, not to the crazy other kinds of
4343  // l-values.
4344  bool Same = Context.hasSameType(LTy, RTy);
4345  if (Same && LVK == RVK && LVK != VK_RValue &&
4346      LHS.get()->isOrdinaryOrBitFieldObject() &&
4347      RHS.get()->isOrdinaryOrBitFieldObject()) {
4348    VK = LHS.get()->getValueKind();
4349    if (LHS.get()->getObjectKind() == OK_BitField ||
4350        RHS.get()->getObjectKind() == OK_BitField)
4351      OK = OK_BitField;
4352    return LTy;
4353  }
4354
4355  // C++11 [expr.cond]p5
4356  //   Otherwise, the result is a prvalue. If the second and third operands
4357  //   do not have the same type, and either has (cv) class type, ...
4358  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4359    //   ... overload resolution is used to determine the conversions (if any)
4360    //   to be applied to the operands. If the overload resolution fails, the
4361    //   program is ill-formed.
4362    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4363      return QualType();
4364  }
4365
4366  // C++11 [expr.cond]p6
4367  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4368  //   conversions are performed on the second and third operands.
4369  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4370  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4371  if (LHS.isInvalid() || RHS.isInvalid())
4372    return QualType();
4373  LTy = LHS.get()->getType();
4374  RTy = RHS.get()->getType();
4375
4376  //   After those conversions, one of the following shall hold:
4377  //   -- The second and third operands have the same type; the result
4378  //      is of that type. If the operands have class type, the result
4379  //      is a prvalue temporary of the result type, which is
4380  //      copy-initialized from either the second operand or the third
4381  //      operand depending on the value of the first operand.
4382  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4383    if (LTy->isRecordType()) {
4384      // The operands have class type. Make a temporary copy.
4385      if (RequireNonAbstractType(QuestionLoc, LTy,
4386                                 diag::err_allocation_of_abstract_type))
4387        return QualType();
4388      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4389
4390      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4391                                                     SourceLocation(),
4392                                                     LHS);
4393      if (LHSCopy.isInvalid())
4394        return QualType();
4395
4396      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4397                                                     SourceLocation(),
4398                                                     RHS);
4399      if (RHSCopy.isInvalid())
4400        return QualType();
4401
4402      LHS = LHSCopy;
4403      RHS = RHSCopy;
4404    }
4405
4406    return LTy;
4407  }
4408
4409  // Extension: conditional operator involving vector types.
4410  if (LTy->isVectorType() || RTy->isVectorType())
4411    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4412
4413  //   -- The second and third operands have arithmetic or enumeration type;
4414  //      the usual arithmetic conversions are performed to bring them to a
4415  //      common type, and the result is of that type.
4416  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4417    UsualArithmeticConversions(LHS, RHS);
4418    if (LHS.isInvalid() || RHS.isInvalid())
4419      return QualType();
4420    return LHS.get()->getType();
4421  }
4422
4423  //   -- The second and third operands have pointer type, or one has pointer
4424  //      type and the other is a null pointer constant, or both are null
4425  //      pointer constants, at least one of which is non-integral; pointer
4426  //      conversions and qualification conversions are performed to bring them
4427  //      to their composite pointer type. The result is of the composite
4428  //      pointer type.
4429  //   -- The second and third operands have pointer to member type, or one has
4430  //      pointer to member type and the other is a null pointer constant;
4431  //      pointer to member conversions and qualification conversions are
4432  //      performed to bring them to a common type, whose cv-qualification
4433  //      shall match the cv-qualification of either the second or the third
4434  //      operand. The result is of the common type.
4435  bool NonStandardCompositeType = false;
4436  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4437                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4438  if (!Composite.isNull()) {
4439    if (NonStandardCompositeType)
4440      Diag(QuestionLoc,
4441           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4442        << LTy << RTy << Composite
4443        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4444
4445    return Composite;
4446  }
4447
4448  // Similarly, attempt to find composite type of two objective-c pointers.
4449  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4450  if (!Composite.isNull())
4451    return Composite;
4452
4453  // Check if we are using a null with a non-pointer type.
4454  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4455    return QualType();
4456
4457  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4458    << LHS.get()->getType() << RHS.get()->getType()
4459    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4460  return QualType();
4461}
4462
4463/// \brief Find a merged pointer type and convert the two expressions to it.
4464///
4465/// This finds the composite pointer type (or member pointer type) for @p E1
4466/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4467/// type and returns it.
4468/// It does not emit diagnostics.
4469///
4470/// \param Loc The location of the operator requiring these two expressions to
4471/// be converted to the composite pointer type.
4472///
4473/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4474/// a non-standard (but still sane) composite type to which both expressions
4475/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4476/// will be set true.
4477QualType Sema::FindCompositePointerType(SourceLocation Loc,
4478                                        Expr *&E1, Expr *&E2,
4479                                        bool *NonStandardCompositeType) {
4480  if (NonStandardCompositeType)
4481    *NonStandardCompositeType = false;
4482
4483  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4484  QualType T1 = E1->getType(), T2 = E2->getType();
4485
4486  // C++11 5.9p2
4487  //   Pointer conversions and qualification conversions are performed on
4488  //   pointer operands to bring them to their composite pointer type. If
4489  //   one operand is a null pointer constant, the composite pointer type is
4490  //   std::nullptr_t if the other operand is also a null pointer constant or,
4491  //   if the other operand is a pointer, the type of the other operand.
4492  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4493      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4494    if (T1->isNullPtrType() &&
4495        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4496      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4497      return T1;
4498    }
4499    if (T2->isNullPtrType() &&
4500        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4501      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4502      return T2;
4503    }
4504    return QualType();
4505  }
4506
4507  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4508    if (T2->isMemberPointerType())
4509      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4510    else
4511      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4512    return T2;
4513  }
4514  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4515    if (T1->isMemberPointerType())
4516      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4517    else
4518      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4519    return T1;
4520  }
4521
4522  // Now both have to be pointers or member pointers.
4523  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4524      (!T2->isPointerType() && !T2->isMemberPointerType()))
4525    return QualType();
4526
4527  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4528  //   the other has type "pointer to cv2 T" and the composite pointer type is
4529  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4530  //   Otherwise, the composite pointer type is a pointer type similar to the
4531  //   type of one of the operands, with a cv-qualification signature that is
4532  //   the union of the cv-qualification signatures of the operand types.
4533  // In practice, the first part here is redundant; it's subsumed by the second.
4534  // What we do here is, we build the two possible composite types, and try the
4535  // conversions in both directions. If only one works, or if the two composite
4536  // types are the same, we have succeeded.
4537  // FIXME: extended qualifiers?
4538  typedef SmallVector<unsigned, 4> QualifierVector;
4539  QualifierVector QualifierUnion;
4540  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4541      ContainingClassVector;
4542  ContainingClassVector MemberOfClass;
4543  QualType Composite1 = Context.getCanonicalType(T1),
4544           Composite2 = Context.getCanonicalType(T2);
4545  unsigned NeedConstBefore = 0;
4546  do {
4547    const PointerType *Ptr1, *Ptr2;
4548    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4549        (Ptr2 = Composite2->getAs<PointerType>())) {
4550      Composite1 = Ptr1->getPointeeType();
4551      Composite2 = Ptr2->getPointeeType();
4552
4553      // If we're allowed to create a non-standard composite type, keep track
4554      // of where we need to fill in additional 'const' qualifiers.
4555      if (NonStandardCompositeType &&
4556          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4557        NeedConstBefore = QualifierUnion.size();
4558
4559      QualifierUnion.push_back(
4560                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4561      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4562      continue;
4563    }
4564
4565    const MemberPointerType *MemPtr1, *MemPtr2;
4566    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4567        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4568      Composite1 = MemPtr1->getPointeeType();
4569      Composite2 = MemPtr2->getPointeeType();
4570
4571      // If we're allowed to create a non-standard composite type, keep track
4572      // of where we need to fill in additional 'const' qualifiers.
4573      if (NonStandardCompositeType &&
4574          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4575        NeedConstBefore = QualifierUnion.size();
4576
4577      QualifierUnion.push_back(
4578                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4579      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4580                                             MemPtr2->getClass()));
4581      continue;
4582    }
4583
4584    // FIXME: block pointer types?
4585
4586    // Cannot unwrap any more types.
4587    break;
4588  } while (true);
4589
4590  if (NeedConstBefore && NonStandardCompositeType) {
4591    // Extension: Add 'const' to qualifiers that come before the first qualifier
4592    // mismatch, so that our (non-standard!) composite type meets the
4593    // requirements of C++ [conv.qual]p4 bullet 3.
4594    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4595      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4596        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4597        *NonStandardCompositeType = true;
4598      }
4599    }
4600  }
4601
4602  // Rewrap the composites as pointers or member pointers with the union CVRs.
4603  ContainingClassVector::reverse_iterator MOC
4604    = MemberOfClass.rbegin();
4605  for (QualifierVector::reverse_iterator
4606         I = QualifierUnion.rbegin(),
4607         E = QualifierUnion.rend();
4608       I != E; (void)++I, ++MOC) {
4609    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4610    if (MOC->first && MOC->second) {
4611      // Rebuild member pointer type
4612      Composite1 = Context.getMemberPointerType(
4613                                    Context.getQualifiedType(Composite1, Quals),
4614                                    MOC->first);
4615      Composite2 = Context.getMemberPointerType(
4616                                    Context.getQualifiedType(Composite2, Quals),
4617                                    MOC->second);
4618    } else {
4619      // Rebuild pointer type
4620      Composite1
4621        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4622      Composite2
4623        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4624    }
4625  }
4626
4627  // Try to convert to the first composite pointer type.
4628  InitializedEntity Entity1
4629    = InitializedEntity::InitializeTemporary(Composite1);
4630  InitializationKind Kind
4631    = InitializationKind::CreateCopy(Loc, SourceLocation());
4632  InitializationSequence E1ToC1(*this, Entity1, Kind, E1);
4633  InitializationSequence E2ToC1(*this, Entity1, Kind, E2);
4634
4635  if (E1ToC1 && E2ToC1) {
4636    // Conversion to Composite1 is viable.
4637    if (!Context.hasSameType(Composite1, Composite2)) {
4638      // Composite2 is a different type from Composite1. Check whether
4639      // Composite2 is also viable.
4640      InitializedEntity Entity2
4641        = InitializedEntity::InitializeTemporary(Composite2);
4642      InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4643      InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4644      if (E1ToC2 && E2ToC2) {
4645        // Both Composite1 and Composite2 are viable and are different;
4646        // this is an ambiguity.
4647        return QualType();
4648      }
4649    }
4650
4651    // Convert E1 to Composite1
4652    ExprResult E1Result
4653      = E1ToC1.Perform(*this, Entity1, Kind, E1);
4654    if (E1Result.isInvalid())
4655      return QualType();
4656    E1 = E1Result.takeAs<Expr>();
4657
4658    // Convert E2 to Composite1
4659    ExprResult E2Result
4660      = E2ToC1.Perform(*this, Entity1, Kind, E2);
4661    if (E2Result.isInvalid())
4662      return QualType();
4663    E2 = E2Result.takeAs<Expr>();
4664
4665    return Composite1;
4666  }
4667
4668  // Check whether Composite2 is viable.
4669  InitializedEntity Entity2
4670    = InitializedEntity::InitializeTemporary(Composite2);
4671  InitializationSequence E1ToC2(*this, Entity2, Kind, E1);
4672  InitializationSequence E2ToC2(*this, Entity2, Kind, E2);
4673  if (!E1ToC2 || !E2ToC2)
4674    return QualType();
4675
4676  // Convert E1 to Composite2
4677  ExprResult E1Result
4678    = E1ToC2.Perform(*this, Entity2, Kind, E1);
4679  if (E1Result.isInvalid())
4680    return QualType();
4681  E1 = E1Result.takeAs<Expr>();
4682
4683  // Convert E2 to Composite2
4684  ExprResult E2Result
4685    = E2ToC2.Perform(*this, Entity2, Kind, E2);
4686  if (E2Result.isInvalid())
4687    return QualType();
4688  E2 = E2Result.takeAs<Expr>();
4689
4690  return Composite2;
4691}
4692
4693ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4694  if (!E)
4695    return ExprError();
4696
4697  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4698
4699  // If the result is a glvalue, we shouldn't bind it.
4700  if (!E->isRValue())
4701    return Owned(E);
4702
4703  // In ARC, calls that return a retainable type can return retained,
4704  // in which case we have to insert a consuming cast.
4705  if (getLangOpts().ObjCAutoRefCount &&
4706      E->getType()->isObjCRetainableType()) {
4707
4708    bool ReturnsRetained;
4709
4710    // For actual calls, we compute this by examining the type of the
4711    // called value.
4712    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4713      Expr *Callee = Call->getCallee()->IgnoreParens();
4714      QualType T = Callee->getType();
4715
4716      if (T == Context.BoundMemberTy) {
4717        // Handle pointer-to-members.
4718        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4719          T = BinOp->getRHS()->getType();
4720        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4721          T = Mem->getMemberDecl()->getType();
4722      }
4723
4724      if (const PointerType *Ptr = T->getAs<PointerType>())
4725        T = Ptr->getPointeeType();
4726      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4727        T = Ptr->getPointeeType();
4728      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4729        T = MemPtr->getPointeeType();
4730
4731      const FunctionType *FTy = T->getAs<FunctionType>();
4732      assert(FTy && "call to value not of function type?");
4733      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4734
4735    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4736    // type always produce a +1 object.
4737    } else if (isa<StmtExpr>(E)) {
4738      ReturnsRetained = true;
4739
4740    // We hit this case with the lambda conversion-to-block optimization;
4741    // we don't want any extra casts here.
4742    } else if (isa<CastExpr>(E) &&
4743               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4744      return Owned(E);
4745
4746    // For message sends and property references, we try to find an
4747    // actual method.  FIXME: we should infer retention by selector in
4748    // cases where we don't have an actual method.
4749    } else {
4750      ObjCMethodDecl *D = 0;
4751      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4752        D = Send->getMethodDecl();
4753      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4754        D = BoxedExpr->getBoxingMethod();
4755      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4756        D = ArrayLit->getArrayWithObjectsMethod();
4757      } else if (ObjCDictionaryLiteral *DictLit
4758                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4759        D = DictLit->getDictWithObjectsMethod();
4760      }
4761
4762      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4763
4764      // Don't do reclaims on performSelector calls; despite their
4765      // return type, the invoked method doesn't necessarily actually
4766      // return an object.
4767      if (!ReturnsRetained &&
4768          D && D->getMethodFamily() == OMF_performSelector)
4769        return Owned(E);
4770    }
4771
4772    // Don't reclaim an object of Class type.
4773    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4774      return Owned(E);
4775
4776    ExprNeedsCleanups = true;
4777
4778    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4779                                   : CK_ARCReclaimReturnedObject);
4780    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4781                                          VK_RValue));
4782  }
4783
4784  if (!getLangOpts().CPlusPlus)
4785    return Owned(E);
4786
4787  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4788  // a fast path for the common case that the type is directly a RecordType.
4789  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4790  const RecordType *RT = 0;
4791  while (!RT) {
4792    switch (T->getTypeClass()) {
4793    case Type::Record:
4794      RT = cast<RecordType>(T);
4795      break;
4796    case Type::ConstantArray:
4797    case Type::IncompleteArray:
4798    case Type::VariableArray:
4799    case Type::DependentSizedArray:
4800      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4801      break;
4802    default:
4803      return Owned(E);
4804    }
4805  }
4806
4807  // That should be enough to guarantee that this type is complete, if we're
4808  // not processing a decltype expression.
4809  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4810  if (RD->isInvalidDecl() || RD->isDependentContext())
4811    return Owned(E);
4812
4813  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4814  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4815
4816  if (Destructor) {
4817    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4818    CheckDestructorAccess(E->getExprLoc(), Destructor,
4819                          PDiag(diag::err_access_dtor_temp)
4820                            << E->getType());
4821    if (DiagnoseUseOfDecl(Destructor, E->getExprLoc()))
4822      return ExprError();
4823
4824    // If destructor is trivial, we can avoid the extra copy.
4825    if (Destructor->isTrivial())
4826      return Owned(E);
4827
4828    // We need a cleanup, but we don't need to remember the temporary.
4829    ExprNeedsCleanups = true;
4830  }
4831
4832  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4833  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4834
4835  if (IsDecltype)
4836    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4837
4838  return Owned(Bind);
4839}
4840
4841ExprResult
4842Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4843  if (SubExpr.isInvalid())
4844    return ExprError();
4845
4846  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4847}
4848
4849Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4850  assert(SubExpr && "sub expression can't be null!");
4851
4852  CleanupVarDeclMarking();
4853
4854  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4855  assert(ExprCleanupObjects.size() >= FirstCleanup);
4856  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4857  if (!ExprNeedsCleanups)
4858    return SubExpr;
4859
4860  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4861    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4862                         ExprCleanupObjects.size() - FirstCleanup);
4863
4864  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4865  DiscardCleanupsInEvaluationContext();
4866
4867  return E;
4868}
4869
4870Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4871  assert(SubStmt && "sub statement can't be null!");
4872
4873  CleanupVarDeclMarking();
4874
4875  if (!ExprNeedsCleanups)
4876    return SubStmt;
4877
4878  // FIXME: In order to attach the temporaries, wrap the statement into
4879  // a StmtExpr; currently this is only used for asm statements.
4880  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4881  // a new AsmStmtWithTemporaries.
4882  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
4883                                                      SourceLocation(),
4884                                                      SourceLocation());
4885  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4886                                   SourceLocation());
4887  return MaybeCreateExprWithCleanups(E);
4888}
4889
4890/// Process the expression contained within a decltype. For such expressions,
4891/// certain semantic checks on temporaries are delayed until this point, and
4892/// are omitted for the 'topmost' call in the decltype expression. If the
4893/// topmost call bound a temporary, strip that temporary off the expression.
4894ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4895  assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
4896
4897  // C++11 [expr.call]p11:
4898  //   If a function call is a prvalue of object type,
4899  // -- if the function call is either
4900  //   -- the operand of a decltype-specifier, or
4901  //   -- the right operand of a comma operator that is the operand of a
4902  //      decltype-specifier,
4903  //   a temporary object is not introduced for the prvalue.
4904
4905  // Recursively rebuild ParenExprs and comma expressions to strip out the
4906  // outermost CXXBindTemporaryExpr, if any.
4907  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4908    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4909    if (SubExpr.isInvalid())
4910      return ExprError();
4911    if (SubExpr.get() == PE->getSubExpr())
4912      return Owned(E);
4913    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4914  }
4915  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4916    if (BO->getOpcode() == BO_Comma) {
4917      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4918      if (RHS.isInvalid())
4919        return ExprError();
4920      if (RHS.get() == BO->getRHS())
4921        return Owned(E);
4922      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4923                                                BO_Comma, BO->getType(),
4924                                                BO->getValueKind(),
4925                                                BO->getObjectKind(),
4926                                                BO->getOperatorLoc(),
4927                                                BO->isFPContractable()));
4928    }
4929  }
4930
4931  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4932  if (TopBind)
4933    E = TopBind->getSubExpr();
4934
4935  // Disable the special decltype handling now.
4936  ExprEvalContexts.back().IsDecltype = false;
4937
4938  // In MS mode, don't perform any extra checking of call return types within a
4939  // decltype expression.
4940  if (getLangOpts().MicrosoftMode)
4941    return Owned(E);
4942
4943  // Perform the semantic checks we delayed until this point.
4944  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4945  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
4946       I != N; ++I) {
4947    CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
4948    if (Call == TopCall)
4949      continue;
4950
4951    if (CheckCallReturnType(Call->getCallReturnType(),
4952                            Call->getLocStart(),
4953                            Call, Call->getDirectCallee()))
4954      return ExprError();
4955  }
4956
4957  // Now all relevant types are complete, check the destructors are accessible
4958  // and non-deleted, and annotate them on the temporaries.
4959  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
4960       I != N; ++I) {
4961    CXXBindTemporaryExpr *Bind =
4962      ExprEvalContexts.back().DelayedDecltypeBinds[I];
4963    if (Bind == TopBind)
4964      continue;
4965
4966    CXXTemporary *Temp = Bind->getTemporary();
4967
4968    CXXRecordDecl *RD =
4969      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4970    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4971    Temp->setDestructor(Destructor);
4972
4973    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4974    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4975                          PDiag(diag::err_access_dtor_temp)
4976                            << Bind->getType());
4977    if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc()))
4978      return ExprError();
4979
4980    // We need a cleanup, but we don't need to remember the temporary.
4981    ExprNeedsCleanups = true;
4982  }
4983
4984  // Possibly strip off the top CXXBindTemporaryExpr.
4985  return Owned(E);
4986}
4987
4988ExprResult
4989Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4990                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4991                                   bool &MayBePseudoDestructor) {
4992  // Since this might be a postfix expression, get rid of ParenListExprs.
4993  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4994  if (Result.isInvalid()) return ExprError();
4995  Base = Result.get();
4996
4997  Result = CheckPlaceholderExpr(Base);
4998  if (Result.isInvalid()) return ExprError();
4999  Base = Result.take();
5000
5001  QualType BaseType = Base->getType();
5002  MayBePseudoDestructor = false;
5003  if (BaseType->isDependentType()) {
5004    // If we have a pointer to a dependent type and are using the -> operator,
5005    // the object type is the type that the pointer points to. We might still
5006    // have enough information about that type to do something useful.
5007    if (OpKind == tok::arrow)
5008      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
5009        BaseType = Ptr->getPointeeType();
5010
5011    ObjectType = ParsedType::make(BaseType);
5012    MayBePseudoDestructor = true;
5013    return Owned(Base);
5014  }
5015
5016  // C++ [over.match.oper]p8:
5017  //   [...] When operator->returns, the operator-> is applied  to the value
5018  //   returned, with the original second operand.
5019  if (OpKind == tok::arrow) {
5020    // The set of types we've considered so far.
5021    llvm::SmallPtrSet<CanQualType,8> CTypes;
5022    SmallVector<SourceLocation, 8> Locations;
5023    CTypes.insert(Context.getCanonicalType(BaseType));
5024
5025    while (BaseType->isRecordType()) {
5026      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
5027      if (Result.isInvalid())
5028        return ExprError();
5029      Base = Result.get();
5030      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
5031        Locations.push_back(OpCall->getDirectCallee()->getLocation());
5032      BaseType = Base->getType();
5033      CanQualType CBaseType = Context.getCanonicalType(BaseType);
5034      if (!CTypes.insert(CBaseType)) {
5035        Diag(OpLoc, diag::err_operator_arrow_circular);
5036        for (unsigned i = 0; i < Locations.size(); i++)
5037          Diag(Locations[i], diag::note_declared_at);
5038        return ExprError();
5039      }
5040    }
5041
5042    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
5043      BaseType = BaseType->getPointeeType();
5044  }
5045
5046  // Objective-C properties allow "." access on Objective-C pointer types,
5047  // so adjust the base type to the object type itself.
5048  if (BaseType->isObjCObjectPointerType())
5049    BaseType = BaseType->getPointeeType();
5050
5051  // C++ [basic.lookup.classref]p2:
5052  //   [...] If the type of the object expression is of pointer to scalar
5053  //   type, the unqualified-id is looked up in the context of the complete
5054  //   postfix-expression.
5055  //
5056  // This also indicates that we could be parsing a pseudo-destructor-name.
5057  // Note that Objective-C class and object types can be pseudo-destructor
5058  // expressions or normal member (ivar or property) access expressions.
5059  if (BaseType->isObjCObjectOrInterfaceType()) {
5060    MayBePseudoDestructor = true;
5061  } else if (!BaseType->isRecordType()) {
5062    ObjectType = ParsedType();
5063    MayBePseudoDestructor = true;
5064    return Owned(Base);
5065  }
5066
5067  // The object type must be complete (or dependent), or
5068  // C++11 [expr.prim.general]p3:
5069  //   Unlike the object expression in other contexts, *this is not required to
5070  //   be of complete type for purposes of class member access (5.2.5) outside
5071  //   the member function body.
5072  if (!BaseType->isDependentType() &&
5073      !isThisOutsideMemberFunctionBody(BaseType) &&
5074      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
5075    return ExprError();
5076
5077  // C++ [basic.lookup.classref]p2:
5078  //   If the id-expression in a class member access (5.2.5) is an
5079  //   unqualified-id, and the type of the object expression is of a class
5080  //   type C (or of pointer to a class type C), the unqualified-id is looked
5081  //   up in the scope of class C. [...]
5082  ObjectType = ParsedType::make(BaseType);
5083  return Base;
5084}
5085
5086ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
5087                                                   Expr *MemExpr) {
5088  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
5089  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
5090    << isa<CXXPseudoDestructorExpr>(MemExpr)
5091    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
5092
5093  return ActOnCallExpr(/*Scope*/ 0,
5094                       MemExpr,
5095                       /*LPLoc*/ ExpectedLParenLoc,
5096                       None,
5097                       /*RPLoc*/ ExpectedLParenLoc);
5098}
5099
5100static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5101                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
5102  if (Base->hasPlaceholderType()) {
5103    ExprResult result = S.CheckPlaceholderExpr(Base);
5104    if (result.isInvalid()) return true;
5105    Base = result.take();
5106  }
5107  ObjectType = Base->getType();
5108
5109  // C++ [expr.pseudo]p2:
5110  //   The left-hand side of the dot operator shall be of scalar type. The
5111  //   left-hand side of the arrow operator shall be of pointer to scalar type.
5112  //   This scalar type is the object type.
5113  // Note that this is rather different from the normal handling for the
5114  // arrow operator.
5115  if (OpKind == tok::arrow) {
5116    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5117      ObjectType = Ptr->getPointeeType();
5118    } else if (!Base->isTypeDependent()) {
5119      // The user wrote "p->" when she probably meant "p."; fix it.
5120      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5121        << ObjectType << true
5122        << FixItHint::CreateReplacement(OpLoc, ".");
5123      if (S.isSFINAEContext())
5124        return true;
5125
5126      OpKind = tok::period;
5127    }
5128  }
5129
5130  return false;
5131}
5132
5133ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5134                                           SourceLocation OpLoc,
5135                                           tok::TokenKind OpKind,
5136                                           const CXXScopeSpec &SS,
5137                                           TypeSourceInfo *ScopeTypeInfo,
5138                                           SourceLocation CCLoc,
5139                                           SourceLocation TildeLoc,
5140                                         PseudoDestructorTypeStorage Destructed,
5141                                           bool HasTrailingLParen) {
5142  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5143
5144  QualType ObjectType;
5145  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5146    return ExprError();
5147
5148  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5149      !ObjectType->isVectorType()) {
5150    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5151      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5152    else
5153      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5154        << ObjectType << Base->getSourceRange();
5155    return ExprError();
5156  }
5157
5158  // C++ [expr.pseudo]p2:
5159  //   [...] The cv-unqualified versions of the object type and of the type
5160  //   designated by the pseudo-destructor-name shall be the same type.
5161  if (DestructedTypeInfo) {
5162    QualType DestructedType = DestructedTypeInfo->getType();
5163    SourceLocation DestructedTypeStart
5164      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5165    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5166      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5167        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5168          << ObjectType << DestructedType << Base->getSourceRange()
5169          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5170
5171        // Recover by setting the destructed type to the object type.
5172        DestructedType = ObjectType;
5173        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5174                                                           DestructedTypeStart);
5175        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5176      } else if (DestructedType.getObjCLifetime() !=
5177                                                ObjectType.getObjCLifetime()) {
5178
5179        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5180          // Okay: just pretend that the user provided the correctly-qualified
5181          // type.
5182        } else {
5183          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5184            << ObjectType << DestructedType << Base->getSourceRange()
5185            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5186        }
5187
5188        // Recover by setting the destructed type to the object type.
5189        DestructedType = ObjectType;
5190        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5191                                                           DestructedTypeStart);
5192        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5193      }
5194    }
5195  }
5196
5197  // C++ [expr.pseudo]p2:
5198  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5199  //   form
5200  //
5201  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5202  //
5203  //   shall designate the same scalar type.
5204  if (ScopeTypeInfo) {
5205    QualType ScopeType = ScopeTypeInfo->getType();
5206    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5207        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5208
5209      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5210           diag::err_pseudo_dtor_type_mismatch)
5211        << ObjectType << ScopeType << Base->getSourceRange()
5212        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5213
5214      ScopeType = QualType();
5215      ScopeTypeInfo = 0;
5216    }
5217  }
5218
5219  Expr *Result
5220    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5221                                            OpKind == tok::arrow, OpLoc,
5222                                            SS.getWithLocInContext(Context),
5223                                            ScopeTypeInfo,
5224                                            CCLoc,
5225                                            TildeLoc,
5226                                            Destructed);
5227
5228  if (HasTrailingLParen)
5229    return Owned(Result);
5230
5231  return DiagnoseDtorReference(Destructed.getLocation(), Result);
5232}
5233
5234ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5235                                           SourceLocation OpLoc,
5236                                           tok::TokenKind OpKind,
5237                                           CXXScopeSpec &SS,
5238                                           UnqualifiedId &FirstTypeName,
5239                                           SourceLocation CCLoc,
5240                                           SourceLocation TildeLoc,
5241                                           UnqualifiedId &SecondTypeName,
5242                                           bool HasTrailingLParen) {
5243  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5244          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5245         "Invalid first type name in pseudo-destructor");
5246  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5247          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5248         "Invalid second type name in pseudo-destructor");
5249
5250  QualType ObjectType;
5251  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5252    return ExprError();
5253
5254  // Compute the object type that we should use for name lookup purposes. Only
5255  // record types and dependent types matter.
5256  ParsedType ObjectTypePtrForLookup;
5257  if (!SS.isSet()) {
5258    if (ObjectType->isRecordType())
5259      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5260    else if (ObjectType->isDependentType())
5261      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5262  }
5263
5264  // Convert the name of the type being destructed (following the ~) into a
5265  // type (with source-location information).
5266  QualType DestructedType;
5267  TypeSourceInfo *DestructedTypeInfo = 0;
5268  PseudoDestructorTypeStorage Destructed;
5269  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5270    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5271                               SecondTypeName.StartLocation,
5272                               S, &SS, true, false, ObjectTypePtrForLookup);
5273    if (!T &&
5274        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5275         (!SS.isSet() && ObjectType->isDependentType()))) {
5276      // The name of the type being destroyed is a dependent name, and we
5277      // couldn't find anything useful in scope. Just store the identifier and
5278      // it's location, and we'll perform (qualified) name lookup again at
5279      // template instantiation time.
5280      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5281                                               SecondTypeName.StartLocation);
5282    } else if (!T) {
5283      Diag(SecondTypeName.StartLocation,
5284           diag::err_pseudo_dtor_destructor_non_type)
5285        << SecondTypeName.Identifier << ObjectType;
5286      if (isSFINAEContext())
5287        return ExprError();
5288
5289      // Recover by assuming we had the right type all along.
5290      DestructedType = ObjectType;
5291    } else
5292      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5293  } else {
5294    // Resolve the template-id to a type.
5295    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5296    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5297                                       TemplateId->NumArgs);
5298    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5299                                       TemplateId->TemplateKWLoc,
5300                                       TemplateId->Template,
5301                                       TemplateId->TemplateNameLoc,
5302                                       TemplateId->LAngleLoc,
5303                                       TemplateArgsPtr,
5304                                       TemplateId->RAngleLoc);
5305    if (T.isInvalid() || !T.get()) {
5306      // Recover by assuming we had the right type all along.
5307      DestructedType = ObjectType;
5308    } else
5309      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5310  }
5311
5312  // If we've performed some kind of recovery, (re-)build the type source
5313  // information.
5314  if (!DestructedType.isNull()) {
5315    if (!DestructedTypeInfo)
5316      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5317                                                  SecondTypeName.StartLocation);
5318    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5319  }
5320
5321  // Convert the name of the scope type (the type prior to '::') into a type.
5322  TypeSourceInfo *ScopeTypeInfo = 0;
5323  QualType ScopeType;
5324  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5325      FirstTypeName.Identifier) {
5326    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5327      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5328                                 FirstTypeName.StartLocation,
5329                                 S, &SS, true, false, ObjectTypePtrForLookup);
5330      if (!T) {
5331        Diag(FirstTypeName.StartLocation,
5332             diag::err_pseudo_dtor_destructor_non_type)
5333          << FirstTypeName.Identifier << ObjectType;
5334
5335        if (isSFINAEContext())
5336          return ExprError();
5337
5338        // Just drop this type. It's unnecessary anyway.
5339        ScopeType = QualType();
5340      } else
5341        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5342    } else {
5343      // Resolve the template-id to a type.
5344      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5345      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5346                                         TemplateId->NumArgs);
5347      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5348                                         TemplateId->TemplateKWLoc,
5349                                         TemplateId->Template,
5350                                         TemplateId->TemplateNameLoc,
5351                                         TemplateId->LAngleLoc,
5352                                         TemplateArgsPtr,
5353                                         TemplateId->RAngleLoc);
5354      if (T.isInvalid() || !T.get()) {
5355        // Recover by dropping this type.
5356        ScopeType = QualType();
5357      } else
5358        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5359    }
5360  }
5361
5362  if (!ScopeType.isNull() && !ScopeTypeInfo)
5363    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5364                                                  FirstTypeName.StartLocation);
5365
5366
5367  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5368                                   ScopeTypeInfo, CCLoc, TildeLoc,
5369                                   Destructed, HasTrailingLParen);
5370}
5371
5372ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5373                                           SourceLocation OpLoc,
5374                                           tok::TokenKind OpKind,
5375                                           SourceLocation TildeLoc,
5376                                           const DeclSpec& DS,
5377                                           bool HasTrailingLParen) {
5378  QualType ObjectType;
5379  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5380    return ExprError();
5381
5382  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5383
5384  TypeLocBuilder TLB;
5385  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5386  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5387  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5388  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5389
5390  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5391                                   0, SourceLocation(), TildeLoc,
5392                                   Destructed, HasTrailingLParen);
5393}
5394
5395ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5396                                        CXXConversionDecl *Method,
5397                                        bool HadMultipleCandidates) {
5398  if (Method->getParent()->isLambda() &&
5399      Method->getConversionType()->isBlockPointerType()) {
5400    // This is a lambda coversion to block pointer; check if the argument
5401    // is a LambdaExpr.
5402    Expr *SubE = E;
5403    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5404    if (CE && CE->getCastKind() == CK_NoOp)
5405      SubE = CE->getSubExpr();
5406    SubE = SubE->IgnoreParens();
5407    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5408      SubE = BE->getSubExpr();
5409    if (isa<LambdaExpr>(SubE)) {
5410      // For the conversion to block pointer on a lambda expression, we
5411      // construct a special BlockLiteral instead; this doesn't really make
5412      // a difference in ARC, but outside of ARC the resulting block literal
5413      // follows the normal lifetime rules for block literals instead of being
5414      // autoreleased.
5415      DiagnosticErrorTrap Trap(Diags);
5416      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5417                                                     E->getExprLoc(),
5418                                                     Method, E);
5419      if (Exp.isInvalid())
5420        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5421      return Exp;
5422    }
5423  }
5424
5425
5426  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5427                                          FoundDecl, Method);
5428  if (Exp.isInvalid())
5429    return true;
5430
5431  MemberExpr *ME =
5432      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5433                               SourceLocation(), Context.BoundMemberTy,
5434                               VK_RValue, OK_Ordinary);
5435  if (HadMultipleCandidates)
5436    ME->setHadMultipleCandidates(true);
5437  MarkMemberReferenced(ME);
5438
5439  QualType ResultType = Method->getResultType();
5440  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5441  ResultType = ResultType.getNonLValueExprType(Context);
5442
5443  CXXMemberCallExpr *CE =
5444    new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK,
5445                                    Exp.get()->getLocEnd());
5446  return CE;
5447}
5448
5449ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5450                                      SourceLocation RParen) {
5451  CanThrowResult CanThrow = canThrow(Operand);
5452  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5453                                             CanThrow, KeyLoc, RParen));
5454}
5455
5456ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5457                                   Expr *Operand, SourceLocation RParen) {
5458  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5459}
5460
5461static bool IsSpecialDiscardedValue(Expr *E) {
5462  // In C++11, discarded-value expressions of a certain form are special,
5463  // according to [expr]p10:
5464  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5465  //   expression is an lvalue of volatile-qualified type and it has
5466  //   one of the following forms:
5467  E = E->IgnoreParens();
5468
5469  //   - id-expression (5.1.1),
5470  if (isa<DeclRefExpr>(E))
5471    return true;
5472
5473  //   - subscripting (5.2.1),
5474  if (isa<ArraySubscriptExpr>(E))
5475    return true;
5476
5477  //   - class member access (5.2.5),
5478  if (isa<MemberExpr>(E))
5479    return true;
5480
5481  //   - indirection (5.3.1),
5482  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5483    if (UO->getOpcode() == UO_Deref)
5484      return true;
5485
5486  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5487    //   - pointer-to-member operation (5.5),
5488    if (BO->isPtrMemOp())
5489      return true;
5490
5491    //   - comma expression (5.18) where the right operand is one of the above.
5492    if (BO->getOpcode() == BO_Comma)
5493      return IsSpecialDiscardedValue(BO->getRHS());
5494  }
5495
5496  //   - conditional expression (5.16) where both the second and the third
5497  //     operands are one of the above, or
5498  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5499    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5500           IsSpecialDiscardedValue(CO->getFalseExpr());
5501  // The related edge case of "*x ?: *x".
5502  if (BinaryConditionalOperator *BCO =
5503          dyn_cast<BinaryConditionalOperator>(E)) {
5504    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5505      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5506             IsSpecialDiscardedValue(BCO->getFalseExpr());
5507  }
5508
5509  // Objective-C++ extensions to the rule.
5510  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5511    return true;
5512
5513  return false;
5514}
5515
5516/// Perform the conversions required for an expression used in a
5517/// context that ignores the result.
5518ExprResult Sema::IgnoredValueConversions(Expr *E) {
5519  if (E->hasPlaceholderType()) {
5520    ExprResult result = CheckPlaceholderExpr(E);
5521    if (result.isInvalid()) return Owned(E);
5522    E = result.take();
5523  }
5524
5525  // C99 6.3.2.1:
5526  //   [Except in specific positions,] an lvalue that does not have
5527  //   array type is converted to the value stored in the
5528  //   designated object (and is no longer an lvalue).
5529  if (E->isRValue()) {
5530    // In C, function designators (i.e. expressions of function type)
5531    // are r-values, but we still want to do function-to-pointer decay
5532    // on them.  This is both technically correct and convenient for
5533    // some clients.
5534    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5535      return DefaultFunctionArrayConversion(E);
5536
5537    return Owned(E);
5538  }
5539
5540  if (getLangOpts().CPlusPlus)  {
5541    // The C++11 standard defines the notion of a discarded-value expression;
5542    // normally, we don't need to do anything to handle it, but if it is a
5543    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5544    // conversion.
5545    if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5546        E->getType().isVolatileQualified() &&
5547        IsSpecialDiscardedValue(E)) {
5548      ExprResult Res = DefaultLvalueConversion(E);
5549      if (Res.isInvalid())
5550        return Owned(E);
5551      E = Res.take();
5552    }
5553    return Owned(E);
5554  }
5555
5556  // GCC seems to also exclude expressions of incomplete enum type.
5557  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5558    if (!T->getDecl()->isComplete()) {
5559      // FIXME: stupid workaround for a codegen bug!
5560      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5561      return Owned(E);
5562    }
5563  }
5564
5565  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5566  if (Res.isInvalid())
5567    return Owned(E);
5568  E = Res.take();
5569
5570  if (!E->getType()->isVoidType())
5571    RequireCompleteType(E->getExprLoc(), E->getType(),
5572                        diag::err_incomplete_type);
5573  return Owned(E);
5574}
5575
5576ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5577                                     bool DiscardedValue,
5578                                     bool IsConstexpr) {
5579  ExprResult FullExpr = Owned(FE);
5580
5581  if (!FullExpr.get())
5582    return ExprError();
5583
5584  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5585    return ExprError();
5586
5587  // Top-level expressions default to 'id' when we're in a debugger.
5588  if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5589      FullExpr.get()->getType() == Context.UnknownAnyTy) {
5590    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5591    if (FullExpr.isInvalid())
5592      return ExprError();
5593  }
5594
5595  if (DiscardedValue) {
5596    FullExpr = CheckPlaceholderExpr(FullExpr.take());
5597    if (FullExpr.isInvalid())
5598      return ExprError();
5599
5600    FullExpr = IgnoredValueConversions(FullExpr.take());
5601    if (FullExpr.isInvalid())
5602      return ExprError();
5603  }
5604
5605  CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5606  return MaybeCreateExprWithCleanups(FullExpr);
5607}
5608
5609StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5610  if (!FullStmt) return StmtError();
5611
5612  return MaybeCreateStmtWithCleanups(FullStmt);
5613}
5614
5615Sema::IfExistsResult
5616Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5617                                   CXXScopeSpec &SS,
5618                                   const DeclarationNameInfo &TargetNameInfo) {
5619  DeclarationName TargetName = TargetNameInfo.getName();
5620  if (!TargetName)
5621    return IER_DoesNotExist;
5622
5623  // If the name itself is dependent, then the result is dependent.
5624  if (TargetName.isDependentName())
5625    return IER_Dependent;
5626
5627  // Do the redeclaration lookup in the current scope.
5628  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5629                 Sema::NotForRedeclaration);
5630  LookupParsedName(R, S, &SS);
5631  R.suppressDiagnostics();
5632
5633  switch (R.getResultKind()) {
5634  case LookupResult::Found:
5635  case LookupResult::FoundOverloaded:
5636  case LookupResult::FoundUnresolvedValue:
5637  case LookupResult::Ambiguous:
5638    return IER_Exists;
5639
5640  case LookupResult::NotFound:
5641    return IER_DoesNotExist;
5642
5643  case LookupResult::NotFoundInCurrentInstantiation:
5644    return IER_Dependent;
5645  }
5646
5647  llvm_unreachable("Invalid LookupResult Kind!");
5648}
5649
5650Sema::IfExistsResult
5651Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5652                                   bool IsIfExists, CXXScopeSpec &SS,
5653                                   UnqualifiedId &Name) {
5654  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5655
5656  // Check for unexpanded parameter packs.
5657  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5658  collectUnexpandedParameterPacks(SS, Unexpanded);
5659  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5660  if (!Unexpanded.empty()) {
5661    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5662                                     IsIfExists? UPPC_IfExists
5663                                               : UPPC_IfNotExists,
5664                                     Unexpanded);
5665    return IER_Error;
5666  }
5667
5668  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5669}
5670