SemaExprCXX.cpp revision b9abd87283ac6e929b7e12a577663bc99e61d020
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/TemplateDeduction.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CharUnits.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/TypeLoc.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/Preprocessor.h"
32#include "TypeLocBuilder.h"
33#include "llvm/ADT/APInt.h"
34#include "llvm/ADT/STLExtras.h"
35#include "llvm/Support/ErrorHandling.h"
36using namespace clang;
37using namespace sema;
38
39ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
40                                   IdentifierInfo &II,
41                                   SourceLocation NameLoc,
42                                   Scope *S, CXXScopeSpec &SS,
43                                   ParsedType ObjectTypePtr,
44                                   bool EnteringContext) {
45  // Determine where to perform name lookup.
46
47  // FIXME: This area of the standard is very messy, and the current
48  // wording is rather unclear about which scopes we search for the
49  // destructor name; see core issues 399 and 555. Issue 399 in
50  // particular shows where the current description of destructor name
51  // lookup is completely out of line with existing practice, e.g.,
52  // this appears to be ill-formed:
53  //
54  //   namespace N {
55  //     template <typename T> struct S {
56  //       ~S();
57  //     };
58  //   }
59  //
60  //   void f(N::S<int>* s) {
61  //     s->N::S<int>::~S();
62  //   }
63  //
64  // See also PR6358 and PR6359.
65  // For this reason, we're currently only doing the C++03 version of this
66  // code; the C++0x version has to wait until we get a proper spec.
67  QualType SearchType;
68  DeclContext *LookupCtx = 0;
69  bool isDependent = false;
70  bool LookInScope = false;
71
72  // If we have an object type, it's because we are in a
73  // pseudo-destructor-expression or a member access expression, and
74  // we know what type we're looking for.
75  if (ObjectTypePtr)
76    SearchType = GetTypeFromParser(ObjectTypePtr);
77
78  if (SS.isSet()) {
79    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
80
81    bool AlreadySearched = false;
82    bool LookAtPrefix = true;
83    // C++ [basic.lookup.qual]p6:
84    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
85    //   the type-names are looked up as types in the scope designated by the
86    //   nested-name-specifier. In a qualified-id of the form:
87    //
88    //     ::[opt] nested-name-specifier  ~ class-name
89    //
90    //   where the nested-name-specifier designates a namespace scope, and in
91    //   a qualified-id of the form:
92    //
93    //     ::opt nested-name-specifier class-name ::  ~ class-name
94    //
95    //   the class-names are looked up as types in the scope designated by
96    //   the nested-name-specifier.
97    //
98    // Here, we check the first case (completely) and determine whether the
99    // code below is permitted to look at the prefix of the
100    // nested-name-specifier.
101    DeclContext *DC = computeDeclContext(SS, EnteringContext);
102    if (DC && DC->isFileContext()) {
103      AlreadySearched = true;
104      LookupCtx = DC;
105      isDependent = false;
106    } else if (DC && isa<CXXRecordDecl>(DC))
107      LookAtPrefix = false;
108
109    // The second case from the C++03 rules quoted further above.
110    NestedNameSpecifier *Prefix = 0;
111    if (AlreadySearched) {
112      // Nothing left to do.
113    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
114      CXXScopeSpec PrefixSS;
115      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
116      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
117      isDependent = isDependentScopeSpecifier(PrefixSS);
118    } else if (ObjectTypePtr) {
119      LookupCtx = computeDeclContext(SearchType);
120      isDependent = SearchType->isDependentType();
121    } else {
122      LookupCtx = computeDeclContext(SS, EnteringContext);
123      isDependent = LookupCtx && LookupCtx->isDependentContext();
124    }
125
126    LookInScope = false;
127  } else if (ObjectTypePtr) {
128    // C++ [basic.lookup.classref]p3:
129    //   If the unqualified-id is ~type-name, the type-name is looked up
130    //   in the context of the entire postfix-expression. If the type T
131    //   of the object expression is of a class type C, the type-name is
132    //   also looked up in the scope of class C. At least one of the
133    //   lookups shall find a name that refers to (possibly
134    //   cv-qualified) T.
135    LookupCtx = computeDeclContext(SearchType);
136    isDependent = SearchType->isDependentType();
137    assert((isDependent || !SearchType->isIncompleteType()) &&
138           "Caller should have completed object type");
139
140    LookInScope = true;
141  } else {
142    // Perform lookup into the current scope (only).
143    LookInScope = true;
144  }
145
146  TypeDecl *NonMatchingTypeDecl = 0;
147  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
148  for (unsigned Step = 0; Step != 2; ++Step) {
149    // Look for the name first in the computed lookup context (if we
150    // have one) and, if that fails to find a match, in the scope (if
151    // we're allowed to look there).
152    Found.clear();
153    if (Step == 0 && LookupCtx)
154      LookupQualifiedName(Found, LookupCtx);
155    else if (Step == 1 && LookInScope && S)
156      LookupName(Found, S);
157    else
158      continue;
159
160    // FIXME: Should we be suppressing ambiguities here?
161    if (Found.isAmbiguous())
162      return ParsedType();
163
164    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
165      QualType T = Context.getTypeDeclType(Type);
166
167      if (SearchType.isNull() || SearchType->isDependentType() ||
168          Context.hasSameUnqualifiedType(T, SearchType)) {
169        // We found our type!
170
171        return ParsedType::make(T);
172      }
173
174      if (!SearchType.isNull())
175        NonMatchingTypeDecl = Type;
176    }
177
178    // If the name that we found is a class template name, and it is
179    // the same name as the template name in the last part of the
180    // nested-name-specifier (if present) or the object type, then
181    // this is the destructor for that class.
182    // FIXME: This is a workaround until we get real drafting for core
183    // issue 399, for which there isn't even an obvious direction.
184    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
185      QualType MemberOfType;
186      if (SS.isSet()) {
187        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
188          // Figure out the type of the context, if it has one.
189          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
190            MemberOfType = Context.getTypeDeclType(Record);
191        }
192      }
193      if (MemberOfType.isNull())
194        MemberOfType = SearchType;
195
196      if (MemberOfType.isNull())
197        continue;
198
199      // We're referring into a class template specialization. If the
200      // class template we found is the same as the template being
201      // specialized, we found what we are looking for.
202      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
203        if (ClassTemplateSpecializationDecl *Spec
204              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
205          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
206                Template->getCanonicalDecl())
207            return ParsedType::make(MemberOfType);
208        }
209
210        continue;
211      }
212
213      // We're referring to an unresolved class template
214      // specialization. Determine whether we class template we found
215      // is the same as the template being specialized or, if we don't
216      // know which template is being specialized, that it at least
217      // has the same name.
218      if (const TemplateSpecializationType *SpecType
219            = MemberOfType->getAs<TemplateSpecializationType>()) {
220        TemplateName SpecName = SpecType->getTemplateName();
221
222        // The class template we found is the same template being
223        // specialized.
224        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
225          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
226            return ParsedType::make(MemberOfType);
227
228          continue;
229        }
230
231        // The class template we found has the same name as the
232        // (dependent) template name being specialized.
233        if (DependentTemplateName *DepTemplate
234                                    = SpecName.getAsDependentTemplateName()) {
235          if (DepTemplate->isIdentifier() &&
236              DepTemplate->getIdentifier() == Template->getIdentifier())
237            return ParsedType::make(MemberOfType);
238
239          continue;
240        }
241      }
242    }
243  }
244
245  if (isDependent) {
246    // We didn't find our type, but that's okay: it's dependent
247    // anyway.
248
249    // FIXME: What if we have no nested-name-specifier?
250    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
251                                   SS.getWithLocInContext(Context),
252                                   II, NameLoc);
253    return ParsedType::make(T);
254  }
255
256  if (NonMatchingTypeDecl) {
257    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
258    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
259      << T << SearchType;
260    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
261      << T;
262  } else if (ObjectTypePtr)
263    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
264      << &II;
265  else
266    Diag(NameLoc, diag::err_destructor_class_name);
267
268  return ParsedType();
269}
270
271ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
272    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
273      return ParsedType();
274    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
275           && "only get destructor types from declspecs");
276    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
277    QualType SearchType = GetTypeFromParser(ObjectType);
278    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
279      return ParsedType::make(T);
280    }
281
282    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
283      << T << SearchType;
284    return ParsedType();
285}
286
287/// \brief Build a C++ typeid expression with a type operand.
288ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
289                                SourceLocation TypeidLoc,
290                                TypeSourceInfo *Operand,
291                                SourceLocation RParenLoc) {
292  // C++ [expr.typeid]p4:
293  //   The top-level cv-qualifiers of the lvalue expression or the type-id
294  //   that is the operand of typeid are always ignored.
295  //   If the type of the type-id is a class type or a reference to a class
296  //   type, the class shall be completely-defined.
297  Qualifiers Quals;
298  QualType T
299    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
300                                      Quals);
301  if (T->getAs<RecordType>() &&
302      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
303    return ExprError();
304
305  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
306                                           Operand,
307                                           SourceRange(TypeidLoc, RParenLoc)));
308}
309
310/// \brief Build a C++ typeid expression with an expression operand.
311ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
312                                SourceLocation TypeidLoc,
313                                Expr *E,
314                                SourceLocation RParenLoc) {
315  if (E && !E->isTypeDependent()) {
316    if (E->getType()->isPlaceholderType()) {
317      ExprResult result = CheckPlaceholderExpr(E);
318      if (result.isInvalid()) return ExprError();
319      E = result.take();
320    }
321
322    QualType T = E->getType();
323    if (const RecordType *RecordT = T->getAs<RecordType>()) {
324      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
325      // C++ [expr.typeid]p3:
326      //   [...] If the type of the expression is a class type, the class
327      //   shall be completely-defined.
328      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
329        return ExprError();
330
331      // C++ [expr.typeid]p3:
332      //   When typeid is applied to an expression other than an glvalue of a
333      //   polymorphic class type [...] [the] expression is an unevaluated
334      //   operand. [...]
335      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
336        // The subexpression is potentially evaluated; switch the context
337        // and recheck the subexpression.
338        ExprResult Result = TranformToPotentiallyEvaluated(E);
339        if (Result.isInvalid()) return ExprError();
340        E = Result.take();
341
342        // We require a vtable to query the type at run time.
343        MarkVTableUsed(TypeidLoc, RecordD);
344      }
345    }
346
347    // C++ [expr.typeid]p4:
348    //   [...] If the type of the type-id is a reference to a possibly
349    //   cv-qualified type, the result of the typeid expression refers to a
350    //   std::type_info object representing the cv-unqualified referenced
351    //   type.
352    Qualifiers Quals;
353    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
354    if (!Context.hasSameType(T, UnqualT)) {
355      T = UnqualT;
356      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
357    }
358  }
359
360  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
361                                           E,
362                                           SourceRange(TypeidLoc, RParenLoc)));
363}
364
365/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
366ExprResult
367Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
368                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
369  // Find the std::type_info type.
370  if (!getStdNamespace())
371    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
372
373  if (!CXXTypeInfoDecl) {
374    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
375    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
376    LookupQualifiedName(R, getStdNamespace());
377    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
378    if (!CXXTypeInfoDecl)
379      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
380  }
381
382  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
383
384  if (isType) {
385    // The operand is a type; handle it as such.
386    TypeSourceInfo *TInfo = 0;
387    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
388                                   &TInfo);
389    if (T.isNull())
390      return ExprError();
391
392    if (!TInfo)
393      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
394
395    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
396  }
397
398  // The operand is an expression.
399  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
400}
401
402/// Retrieve the UuidAttr associated with QT.
403static UuidAttr *GetUuidAttrOfType(QualType QT) {
404  // Optionally remove one level of pointer, reference or array indirection.
405  const Type *Ty = QT.getTypePtr();;
406  if (QT->isPointerType() || QT->isReferenceType())
407    Ty = QT->getPointeeType().getTypePtr();
408  else if (QT->isArrayType())
409    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
410
411  // Loop all record redeclaration looking for an uuid attribute.
412  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
413  for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
414       E = RD->redecls_end(); I != E; ++I) {
415    if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
416      return Uuid;
417  }
418
419  return 0;
420}
421
422/// \brief Build a Microsoft __uuidof expression with a type operand.
423ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
424                                SourceLocation TypeidLoc,
425                                TypeSourceInfo *Operand,
426                                SourceLocation RParenLoc) {
427  if (!Operand->getType()->isDependentType()) {
428    if (!GetUuidAttrOfType(Operand->getType()))
429      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
430  }
431
432  // FIXME: add __uuidof semantic analysis for type operand.
433  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
434                                           Operand,
435                                           SourceRange(TypeidLoc, RParenLoc)));
436}
437
438/// \brief Build a Microsoft __uuidof expression with an expression operand.
439ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
440                                SourceLocation TypeidLoc,
441                                Expr *E,
442                                SourceLocation RParenLoc) {
443  if (!E->getType()->isDependentType()) {
444    if (!GetUuidAttrOfType(E->getType()) &&
445        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
446      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
447  }
448  // FIXME: add __uuidof semantic analysis for type operand.
449  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
450                                           E,
451                                           SourceRange(TypeidLoc, RParenLoc)));
452}
453
454/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
455ExprResult
456Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
457                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
458  // If MSVCGuidDecl has not been cached, do the lookup.
459  if (!MSVCGuidDecl) {
460    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
461    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
462    LookupQualifiedName(R, Context.getTranslationUnitDecl());
463    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
464    if (!MSVCGuidDecl)
465      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
466  }
467
468  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
469
470  if (isType) {
471    // The operand is a type; handle it as such.
472    TypeSourceInfo *TInfo = 0;
473    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
474                                   &TInfo);
475    if (T.isNull())
476      return ExprError();
477
478    if (!TInfo)
479      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
480
481    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
482  }
483
484  // The operand is an expression.
485  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
486}
487
488/// ActOnCXXBoolLiteral - Parse {true,false} literals.
489ExprResult
490Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
491  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
492         "Unknown C++ Boolean value!");
493  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
494                                                Context.BoolTy, OpLoc));
495}
496
497/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
498ExprResult
499Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
500  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
501}
502
503/// ActOnCXXThrow - Parse throw expressions.
504ExprResult
505Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
506  bool IsThrownVarInScope = false;
507  if (Ex) {
508    // C++0x [class.copymove]p31:
509    //   When certain criteria are met, an implementation is allowed to omit the
510    //   copy/move construction of a class object [...]
511    //
512    //     - in a throw-expression, when the operand is the name of a
513    //       non-volatile automatic object (other than a function or catch-
514    //       clause parameter) whose scope does not extend beyond the end of the
515    //       innermost enclosing try-block (if there is one), the copy/move
516    //       operation from the operand to the exception object (15.1) can be
517    //       omitted by constructing the automatic object directly into the
518    //       exception object
519    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
520      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
521        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
522          for( ; S; S = S->getParent()) {
523            if (S->isDeclScope(Var)) {
524              IsThrownVarInScope = true;
525              break;
526            }
527
528            if (S->getFlags() &
529                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
530                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
531                 Scope::TryScope))
532              break;
533          }
534        }
535      }
536  }
537
538  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
539}
540
541ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
542                               bool IsThrownVarInScope) {
543  // Don't report an error if 'throw' is used in system headers.
544  if (!getLangOpts().CXXExceptions &&
545      !getSourceManager().isInSystemHeader(OpLoc))
546    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
547
548  if (Ex && !Ex->isTypeDependent()) {
549    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
550    if (ExRes.isInvalid())
551      return ExprError();
552    Ex = ExRes.take();
553  }
554
555  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
556                                          IsThrownVarInScope));
557}
558
559/// CheckCXXThrowOperand - Validate the operand of a throw.
560ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
561                                      bool IsThrownVarInScope) {
562  // C++ [except.throw]p3:
563  //   A throw-expression initializes a temporary object, called the exception
564  //   object, the type of which is determined by removing any top-level
565  //   cv-qualifiers from the static type of the operand of throw and adjusting
566  //   the type from "array of T" or "function returning T" to "pointer to T"
567  //   or "pointer to function returning T", [...]
568  if (E->getType().hasQualifiers())
569    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
570                          E->getValueKind()).take();
571
572  ExprResult Res = DefaultFunctionArrayConversion(E);
573  if (Res.isInvalid())
574    return ExprError();
575  E = Res.take();
576
577  //   If the type of the exception would be an incomplete type or a pointer
578  //   to an incomplete type other than (cv) void the program is ill-formed.
579  QualType Ty = E->getType();
580  bool isPointer = false;
581  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
582    Ty = Ptr->getPointeeType();
583    isPointer = true;
584  }
585  if (!isPointer || !Ty->isVoidType()) {
586    if (RequireCompleteType(ThrowLoc, Ty,
587                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
588                                            : diag::err_throw_incomplete)
589                              << E->getSourceRange()))
590      return ExprError();
591
592    if (RequireNonAbstractType(ThrowLoc, E->getType(),
593                               PDiag(diag::err_throw_abstract_type)
594                                 << E->getSourceRange()))
595      return ExprError();
596  }
597
598  // Initialize the exception result.  This implicitly weeds out
599  // abstract types or types with inaccessible copy constructors.
600
601  // C++0x [class.copymove]p31:
602  //   When certain criteria are met, an implementation is allowed to omit the
603  //   copy/move construction of a class object [...]
604  //
605  //     - in a throw-expression, when the operand is the name of a
606  //       non-volatile automatic object (other than a function or catch-clause
607  //       parameter) whose scope does not extend beyond the end of the
608  //       innermost enclosing try-block (if there is one), the copy/move
609  //       operation from the operand to the exception object (15.1) can be
610  //       omitted by constructing the automatic object directly into the
611  //       exception object
612  const VarDecl *NRVOVariable = 0;
613  if (IsThrownVarInScope)
614    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
615
616  InitializedEntity Entity =
617      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
618                                             /*NRVO=*/NRVOVariable != 0);
619  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
620                                        QualType(), E,
621                                        IsThrownVarInScope);
622  if (Res.isInvalid())
623    return ExprError();
624  E = Res.take();
625
626  // If the exception has class type, we need additional handling.
627  const RecordType *RecordTy = Ty->getAs<RecordType>();
628  if (!RecordTy)
629    return Owned(E);
630  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
631
632  // If we are throwing a polymorphic class type or pointer thereof,
633  // exception handling will make use of the vtable.
634  MarkVTableUsed(ThrowLoc, RD);
635
636  // If a pointer is thrown, the referenced object will not be destroyed.
637  if (isPointer)
638    return Owned(E);
639
640  // If the class has a destructor, we must be able to call it.
641  if (RD->hasIrrelevantDestructor())
642    return Owned(E);
643
644  CXXDestructorDecl *Destructor = LookupDestructor(RD);
645  if (!Destructor)
646    return Owned(E);
647
648  MarkFunctionReferenced(E->getExprLoc(), Destructor);
649  CheckDestructorAccess(E->getExprLoc(), Destructor,
650                        PDiag(diag::err_access_dtor_exception) << Ty);
651  DiagnoseUseOfDecl(Destructor, E->getExprLoc());
652  return Owned(E);
653}
654
655QualType Sema::getCurrentThisType() {
656  DeclContext *DC = getFunctionLevelDeclContext();
657  QualType ThisTy;
658  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
659    if (method && method->isInstance())
660      ThisTy = method->getThisType(Context);
661  } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
662    // C++0x [expr.prim]p4:
663    //   Otherwise, if a member-declarator declares a non-static data member
664    // of a class X, the expression this is a prvalue of type "pointer to X"
665    // within the optional brace-or-equal-initializer.
666    Scope *S = getScopeForContext(DC);
667    if (!S || S->getFlags() & Scope::ThisScope)
668      ThisTy = Context.getPointerType(Context.getRecordType(RD));
669  }
670
671  return ThisTy;
672}
673
674void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
675  // We don't need to capture this in an unevaluated context.
676  if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
677    return;
678
679  // Otherwise, check that we can capture 'this'.
680  unsigned NumClosures = 0;
681  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
682    if (CapturingScopeInfo *CSI =
683            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
684      if (CSI->CXXThisCaptureIndex != 0) {
685        // 'this' is already being captured; there isn't anything more to do.
686        break;
687      }
688
689      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
690          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
691          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
692          Explicit) {
693        // This closure can capture 'this'; continue looking upwards.
694        NumClosures++;
695        Explicit = false;
696        continue;
697      }
698      // This context can't implicitly capture 'this'; fail out.
699      Diag(Loc, diag::err_this_capture) << Explicit;
700      return;
701    }
702    break;
703  }
704
705  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
706  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
707  // contexts.
708  for (unsigned idx = FunctionScopes.size() - 1;
709       NumClosures; --idx, --NumClosures) {
710    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
711    Expr *ThisExpr = 0;
712    QualType ThisTy = getCurrentThisType();
713    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
714      // For lambda expressions, build a field and an initializing expression.
715      CXXRecordDecl *Lambda = LSI->Lambda;
716      FieldDecl *Field
717        = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
718                            Context.getTrivialTypeSourceInfo(ThisTy, Loc),
719                            0, false, false);
720      Field->setImplicit(true);
721      Field->setAccess(AS_private);
722      Lambda->addDecl(Field);
723      ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
724    }
725    bool isNested = NumClosures > 1;
726    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
727  }
728}
729
730ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
731  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
732  /// is a non-lvalue expression whose value is the address of the object for
733  /// which the function is called.
734
735  QualType ThisTy = getCurrentThisType();
736  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
737
738  CheckCXXThisCapture(Loc);
739  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
740}
741
742ExprResult
743Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
744                                SourceLocation LParenLoc,
745                                MultiExprArg exprs,
746                                SourceLocation RParenLoc) {
747  if (!TypeRep)
748    return ExprError();
749
750  TypeSourceInfo *TInfo;
751  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
752  if (!TInfo)
753    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
754
755  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
756}
757
758/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
759/// Can be interpreted either as function-style casting ("int(x)")
760/// or class type construction ("ClassType(x,y,z)")
761/// or creation of a value-initialized type ("int()").
762ExprResult
763Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
764                                SourceLocation LParenLoc,
765                                MultiExprArg exprs,
766                                SourceLocation RParenLoc) {
767  QualType Ty = TInfo->getType();
768  unsigned NumExprs = exprs.size();
769  Expr **Exprs = (Expr**)exprs.get();
770  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
771
772  if (Ty->isDependentType() ||
773      CallExpr::hasAnyTypeDependentArguments(
774        llvm::makeArrayRef(Exprs, NumExprs))) {
775    exprs.release();
776
777    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
778                                                    LParenLoc,
779                                                    Exprs, NumExprs,
780                                                    RParenLoc));
781  }
782
783  bool ListInitialization = LParenLoc.isInvalid();
784  assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
785         && "List initialization must have initializer list as expression.");
786  SourceRange FullRange = SourceRange(TyBeginLoc,
787      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
788
789  // C++ [expr.type.conv]p1:
790  // If the expression list is a single expression, the type conversion
791  // expression is equivalent (in definedness, and if defined in meaning) to the
792  // corresponding cast expression.
793  if (NumExprs == 1 && !ListInitialization) {
794    Expr *Arg = Exprs[0];
795    exprs.release();
796    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
797  }
798
799  QualType ElemTy = Ty;
800  if (Ty->isArrayType()) {
801    if (!ListInitialization)
802      return ExprError(Diag(TyBeginLoc,
803                            diag::err_value_init_for_array_type) << FullRange);
804    ElemTy = Context.getBaseElementType(Ty);
805  }
806
807  if (!Ty->isVoidType() &&
808      RequireCompleteType(TyBeginLoc, ElemTy,
809                          PDiag(diag::err_invalid_incomplete_type_use)
810                            << FullRange))
811    return ExprError();
812
813  if (RequireNonAbstractType(TyBeginLoc, Ty,
814                             diag::err_allocation_of_abstract_type))
815    return ExprError();
816
817  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
818  InitializationKind Kind
819    = NumExprs ? ListInitialization
820                    ? InitializationKind::CreateDirectList(TyBeginLoc)
821                    : InitializationKind::CreateDirect(TyBeginLoc,
822                                                       LParenLoc, RParenLoc)
823               : InitializationKind::CreateValue(TyBeginLoc,
824                                                 LParenLoc, RParenLoc);
825  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
826  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
827
828  if (!Result.isInvalid() && ListInitialization &&
829      isa<InitListExpr>(Result.get())) {
830    // If the list-initialization doesn't involve a constructor call, we'll get
831    // the initializer-list (with corrected type) back, but that's not what we
832    // want, since it will be treated as an initializer list in further
833    // processing. Explicitly insert a cast here.
834    InitListExpr *List = cast<InitListExpr>(Result.take());
835    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
836                                    Expr::getValueKindForType(TInfo->getType()),
837                                                 TInfo, TyBeginLoc, CK_NoOp,
838                                                 List, /*Path=*/0, RParenLoc));
839  }
840
841  // FIXME: Improve AST representation?
842  return move(Result);
843}
844
845/// doesUsualArrayDeleteWantSize - Answers whether the usual
846/// operator delete[] for the given type has a size_t parameter.
847static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
848                                         QualType allocType) {
849  const RecordType *record =
850    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
851  if (!record) return false;
852
853  // Try to find an operator delete[] in class scope.
854
855  DeclarationName deleteName =
856    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
857  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
858  S.LookupQualifiedName(ops, record->getDecl());
859
860  // We're just doing this for information.
861  ops.suppressDiagnostics();
862
863  // Very likely: there's no operator delete[].
864  if (ops.empty()) return false;
865
866  // If it's ambiguous, it should be illegal to call operator delete[]
867  // on this thing, so it doesn't matter if we allocate extra space or not.
868  if (ops.isAmbiguous()) return false;
869
870  LookupResult::Filter filter = ops.makeFilter();
871  while (filter.hasNext()) {
872    NamedDecl *del = filter.next()->getUnderlyingDecl();
873
874    // C++0x [basic.stc.dynamic.deallocation]p2:
875    //   A template instance is never a usual deallocation function,
876    //   regardless of its signature.
877    if (isa<FunctionTemplateDecl>(del)) {
878      filter.erase();
879      continue;
880    }
881
882    // C++0x [basic.stc.dynamic.deallocation]p2:
883    //   If class T does not declare [an operator delete[] with one
884    //   parameter] but does declare a member deallocation function
885    //   named operator delete[] with exactly two parameters, the
886    //   second of which has type std::size_t, then this function
887    //   is a usual deallocation function.
888    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
889      filter.erase();
890      continue;
891    }
892  }
893  filter.done();
894
895  if (!ops.isSingleResult()) return false;
896
897  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
898  return (del->getNumParams() == 2);
899}
900
901/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
902
903/// E.g.:
904/// @code new (memory) int[size][4] @endcode
905/// or
906/// @code ::new Foo(23, "hello") @endcode
907///
908/// \param StartLoc The first location of the expression.
909/// \param UseGlobal True if 'new' was prefixed with '::'.
910/// \param PlacementLParen Opening paren of the placement arguments.
911/// \param PlacementArgs Placement new arguments.
912/// \param PlacementRParen Closing paren of the placement arguments.
913/// \param TypeIdParens If the type is in parens, the source range.
914/// \param D The type to be allocated, as well as array dimensions.
915/// \param ConstructorLParen Opening paren of the constructor args, empty if
916///                          initializer-list syntax is used.
917/// \param ConstructorArgs Constructor/initialization arguments.
918/// \param ConstructorRParen Closing paren of the constructor args.
919ExprResult
920Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
921                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
922                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
923                  Declarator &D, Expr *Initializer) {
924  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
925
926  Expr *ArraySize = 0;
927  // If the specified type is an array, unwrap it and save the expression.
928  if (D.getNumTypeObjects() > 0 &&
929      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
930    DeclaratorChunk &Chunk = D.getTypeObject(0);
931    if (TypeContainsAuto)
932      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
933        << D.getSourceRange());
934    if (Chunk.Arr.hasStatic)
935      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
936        << D.getSourceRange());
937    if (!Chunk.Arr.NumElts)
938      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
939        << D.getSourceRange());
940
941    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
942    D.DropFirstTypeObject();
943  }
944
945  // Every dimension shall be of constant size.
946  if (ArraySize) {
947    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
948      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
949        break;
950
951      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
952      if (Expr *NumElts = (Expr *)Array.NumElts) {
953        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
954          Array.NumElts = VerifyIntegerConstantExpression(NumElts, 0,
955            PDiag(diag::err_new_array_nonconst)).take();
956          if (!Array.NumElts)
957            return ExprError();
958        }
959      }
960    }
961  }
962
963  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
964  QualType AllocType = TInfo->getType();
965  if (D.isInvalidType())
966    return ExprError();
967
968  SourceRange DirectInitRange;
969  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
970    DirectInitRange = List->getSourceRange();
971
972  return BuildCXXNew(StartLoc, UseGlobal,
973                     PlacementLParen,
974                     move(PlacementArgs),
975                     PlacementRParen,
976                     TypeIdParens,
977                     AllocType,
978                     TInfo,
979                     ArraySize,
980                     DirectInitRange,
981                     Initializer,
982                     TypeContainsAuto);
983}
984
985static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
986                                       Expr *Init) {
987  if (!Init)
988    return true;
989  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
990    return PLE->getNumExprs() == 0;
991  if (isa<ImplicitValueInitExpr>(Init))
992    return true;
993  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
994    return !CCE->isListInitialization() &&
995           CCE->getConstructor()->isDefaultConstructor();
996  else if (Style == CXXNewExpr::ListInit) {
997    assert(isa<InitListExpr>(Init) &&
998           "Shouldn't create list CXXConstructExprs for arrays.");
999    return true;
1000  }
1001  return false;
1002}
1003
1004ExprResult
1005Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
1006                  SourceLocation PlacementLParen,
1007                  MultiExprArg PlacementArgs,
1008                  SourceLocation PlacementRParen,
1009                  SourceRange TypeIdParens,
1010                  QualType AllocType,
1011                  TypeSourceInfo *AllocTypeInfo,
1012                  Expr *ArraySize,
1013                  SourceRange DirectInitRange,
1014                  Expr *Initializer,
1015                  bool TypeMayContainAuto) {
1016  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1017
1018  CXXNewExpr::InitializationStyle initStyle;
1019  if (DirectInitRange.isValid()) {
1020    assert(Initializer && "Have parens but no initializer.");
1021    initStyle = CXXNewExpr::CallInit;
1022  } else if (Initializer && isa<InitListExpr>(Initializer))
1023    initStyle = CXXNewExpr::ListInit;
1024  else {
1025    // In template instantiation, the initializer could be a CXXDefaultArgExpr
1026    // unwrapped from a CXXConstructExpr that was implicitly built. There is no
1027    // particularly sane way we can handle this (especially since it can even
1028    // occur for array new), so we throw the initializer away and have it be
1029    // rebuilt.
1030    if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
1031      Initializer = 0;
1032    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1033            isa<CXXConstructExpr>(Initializer)) &&
1034           "Initializer expression that cannot have been implicitly created.");
1035    initStyle = CXXNewExpr::NoInit;
1036  }
1037
1038  Expr **Inits = &Initializer;
1039  unsigned NumInits = Initializer ? 1 : 0;
1040  if (initStyle == CXXNewExpr::CallInit) {
1041    if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
1042      Inits = List->getExprs();
1043      NumInits = List->getNumExprs();
1044    } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
1045      if (!isa<CXXTemporaryObjectExpr>(CCE)) {
1046        // Can happen in template instantiation. Since this is just an implicit
1047        // construction, we just take it apart and rebuild it.
1048        Inits = CCE->getArgs();
1049        NumInits = CCE->getNumArgs();
1050      }
1051    }
1052  }
1053
1054  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1055  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
1056    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1057      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1058                       << AllocType << TypeRange);
1059    if (initStyle == CXXNewExpr::ListInit)
1060      return ExprError(Diag(Inits[0]->getLocStart(),
1061                            diag::err_auto_new_requires_parens)
1062                       << AllocType << TypeRange);
1063    if (NumInits > 1) {
1064      Expr *FirstBad = Inits[1];
1065      return ExprError(Diag(FirstBad->getLocStart(),
1066                            diag::err_auto_new_ctor_multiple_expressions)
1067                       << AllocType << TypeRange);
1068    }
1069    Expr *Deduce = Inits[0];
1070    TypeSourceInfo *DeducedType = 0;
1071    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) ==
1072            DAR_Failed)
1073      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1074                       << AllocType << Deduce->getType()
1075                       << TypeRange << Deduce->getSourceRange());
1076    if (!DeducedType)
1077      return ExprError();
1078
1079    AllocTypeInfo = DeducedType;
1080    AllocType = AllocTypeInfo->getType();
1081  }
1082
1083  // Per C++0x [expr.new]p5, the type being constructed may be a
1084  // typedef of an array type.
1085  if (!ArraySize) {
1086    if (const ConstantArrayType *Array
1087                              = Context.getAsConstantArrayType(AllocType)) {
1088      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1089                                         Context.getSizeType(),
1090                                         TypeRange.getEnd());
1091      AllocType = Array->getElementType();
1092    }
1093  }
1094
1095  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1096    return ExprError();
1097
1098  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1099    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1100         diag::warn_dangling_std_initializer_list)
1101        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1102  }
1103
1104  // In ARC, infer 'retaining' for the allocated
1105  if (getLangOpts().ObjCAutoRefCount &&
1106      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1107      AllocType->isObjCLifetimeType()) {
1108    AllocType = Context.getLifetimeQualifiedType(AllocType,
1109                                    AllocType->getObjCARCImplicitLifetime());
1110  }
1111
1112  QualType ResultType = Context.getPointerType(AllocType);
1113
1114  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1115  //   integral or enumeration type with a non-negative value."
1116  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1117  //   enumeration type, or a class type for which a single non-explicit
1118  //   conversion function to integral or unscoped enumeration type exists.
1119  if (ArraySize && !ArraySize->isTypeDependent()) {
1120    ExprResult ConvertedSize = ConvertToIntegralOrEnumerationType(
1121      StartLoc, ArraySize,
1122      PDiag(diag::err_array_size_not_integral) << getLangOpts().CPlusPlus0x,
1123      PDiag(diag::err_array_size_incomplete_type)
1124        << ArraySize->getSourceRange(),
1125      PDiag(diag::err_array_size_explicit_conversion),
1126      PDiag(diag::note_array_size_conversion),
1127      PDiag(diag::err_array_size_ambiguous_conversion),
1128      PDiag(diag::note_array_size_conversion),
1129      PDiag(getLangOpts().CPlusPlus0x ?
1130              diag::warn_cxx98_compat_array_size_conversion :
1131              diag::ext_array_size_conversion),
1132      /*AllowScopedEnumerations*/ false);
1133    if (ConvertedSize.isInvalid())
1134      return ExprError();
1135
1136    ArraySize = ConvertedSize.take();
1137    QualType SizeType = ArraySize->getType();
1138    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1139      return ExprError();
1140
1141    // C++98 [expr.new]p7:
1142    //   The expression in a direct-new-declarator shall have integral type
1143    //   with a non-negative value.
1144    //
1145    // Let's see if this is a constant < 0. If so, we reject it out of
1146    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1147    // array type.
1148    //
1149    // Note: such a construct has well-defined semantics in C++11: it throws
1150    // std::bad_array_new_length.
1151    if (!ArraySize->isValueDependent()) {
1152      llvm::APSInt Value;
1153      // We've already performed any required implicit conversion to integer or
1154      // unscoped enumeration type.
1155      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1156        if (Value < llvm::APSInt(
1157                        llvm::APInt::getNullValue(Value.getBitWidth()),
1158                                 Value.isUnsigned())) {
1159          if (getLangOpts().CPlusPlus0x)
1160            Diag(ArraySize->getLocStart(),
1161                 diag::warn_typecheck_negative_array_new_size)
1162              << ArraySize->getSourceRange();
1163          else
1164            return ExprError(Diag(ArraySize->getLocStart(),
1165                                  diag::err_typecheck_negative_array_size)
1166                             << ArraySize->getSourceRange());
1167        } else if (!AllocType->isDependentType()) {
1168          unsigned ActiveSizeBits =
1169            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1170          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1171            if (getLangOpts().CPlusPlus0x)
1172              Diag(ArraySize->getLocStart(),
1173                   diag::warn_array_new_too_large)
1174                << Value.toString(10)
1175                << ArraySize->getSourceRange();
1176            else
1177              return ExprError(Diag(ArraySize->getLocStart(),
1178                                    diag::err_array_too_large)
1179                               << Value.toString(10)
1180                               << ArraySize->getSourceRange());
1181          }
1182        }
1183      } else if (TypeIdParens.isValid()) {
1184        // Can't have dynamic array size when the type-id is in parentheses.
1185        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1186          << ArraySize->getSourceRange()
1187          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1188          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1189
1190        TypeIdParens = SourceRange();
1191      }
1192    }
1193
1194    // ARC: warn about ABI issues.
1195    if (getLangOpts().ObjCAutoRefCount) {
1196      QualType BaseAllocType = Context.getBaseElementType(AllocType);
1197      if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1198        Diag(StartLoc, diag::warn_err_new_delete_object_array)
1199          << 0 << BaseAllocType;
1200    }
1201
1202    // Note that we do *not* convert the argument in any way.  It can
1203    // be signed, larger than size_t, whatever.
1204  }
1205
1206  FunctionDecl *OperatorNew = 0;
1207  FunctionDecl *OperatorDelete = 0;
1208  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
1209  unsigned NumPlaceArgs = PlacementArgs.size();
1210
1211  if (!AllocType->isDependentType() &&
1212      !Expr::hasAnyTypeDependentArguments(
1213        llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1214      FindAllocationFunctions(StartLoc,
1215                              SourceRange(PlacementLParen, PlacementRParen),
1216                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1217                              NumPlaceArgs, OperatorNew, OperatorDelete))
1218    return ExprError();
1219
1220  // If this is an array allocation, compute whether the usual array
1221  // deallocation function for the type has a size_t parameter.
1222  bool UsualArrayDeleteWantsSize = false;
1223  if (ArraySize && !AllocType->isDependentType())
1224    UsualArrayDeleteWantsSize
1225      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1226
1227  SmallVector<Expr *, 8> AllPlaceArgs;
1228  if (OperatorNew) {
1229    // Add default arguments, if any.
1230    const FunctionProtoType *Proto =
1231      OperatorNew->getType()->getAs<FunctionProtoType>();
1232    VariadicCallType CallType =
1233      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1234
1235    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1236                               Proto, 1, PlaceArgs, NumPlaceArgs,
1237                               AllPlaceArgs, CallType))
1238      return ExprError();
1239
1240    NumPlaceArgs = AllPlaceArgs.size();
1241    if (NumPlaceArgs > 0)
1242      PlaceArgs = &AllPlaceArgs[0];
1243
1244    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1245                          PlaceArgs, NumPlaceArgs);
1246
1247    // FIXME: Missing call to CheckFunctionCall or equivalent
1248  }
1249
1250  // Warn if the type is over-aligned and is being allocated by global operator
1251  // new.
1252  if (NumPlaceArgs == 0 && OperatorNew &&
1253      (OperatorNew->isImplicit() ||
1254       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1255    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1256      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1257      if (Align > SuitableAlign)
1258        Diag(StartLoc, diag::warn_overaligned_type)
1259            << AllocType
1260            << unsigned(Align / Context.getCharWidth())
1261            << unsigned(SuitableAlign / Context.getCharWidth());
1262    }
1263  }
1264
1265  QualType InitType = AllocType;
1266  // Array 'new' can't have any initializers except empty parentheses.
1267  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1268  // dialect distinction.
1269  if (ResultType->isArrayType() || ArraySize) {
1270    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1271      SourceRange InitRange(Inits[0]->getLocStart(),
1272                            Inits[NumInits - 1]->getLocEnd());
1273      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1274      return ExprError();
1275    }
1276    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1277      // We do the initialization typechecking against the array type
1278      // corresponding to the number of initializers + 1 (to also check
1279      // default-initialization).
1280      unsigned NumElements = ILE->getNumInits() + 1;
1281      InitType = Context.getConstantArrayType(AllocType,
1282          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1283                                              ArrayType::Normal, 0);
1284    }
1285  }
1286
1287  if (!AllocType->isDependentType() &&
1288      !Expr::hasAnyTypeDependentArguments(
1289        llvm::makeArrayRef(Inits, NumInits))) {
1290    // C++11 [expr.new]p15:
1291    //   A new-expression that creates an object of type T initializes that
1292    //   object as follows:
1293    InitializationKind Kind
1294    //     - If the new-initializer is omitted, the object is default-
1295    //       initialized (8.5); if no initialization is performed,
1296    //       the object has indeterminate value
1297      = initStyle == CXXNewExpr::NoInit
1298          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1299    //     - Otherwise, the new-initializer is interpreted according to the
1300    //       initialization rules of 8.5 for direct-initialization.
1301          : initStyle == CXXNewExpr::ListInit
1302              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1303              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1304                                                 DirectInitRange.getBegin(),
1305                                                 DirectInitRange.getEnd());
1306
1307    InitializedEntity Entity
1308      = InitializedEntity::InitializeNew(StartLoc, InitType);
1309    InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1310    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1311                                          MultiExprArg(Inits, NumInits));
1312    if (FullInit.isInvalid())
1313      return ExprError();
1314
1315    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1316    // we don't want the initialized object to be destructed.
1317    if (CXXBindTemporaryExpr *Binder =
1318            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1319      FullInit = Owned(Binder->getSubExpr());
1320
1321    Initializer = FullInit.take();
1322  }
1323
1324  // Mark the new and delete operators as referenced.
1325  if (OperatorNew)
1326    MarkFunctionReferenced(StartLoc, OperatorNew);
1327  if (OperatorDelete)
1328    MarkFunctionReferenced(StartLoc, OperatorDelete);
1329
1330  // C++0x [expr.new]p17:
1331  //   If the new expression creates an array of objects of class type,
1332  //   access and ambiguity control are done for the destructor.
1333  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1334  if (ArraySize && !BaseAllocType->isDependentType()) {
1335    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1336      if (CXXDestructorDecl *dtor = LookupDestructor(
1337              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1338        MarkFunctionReferenced(StartLoc, dtor);
1339        CheckDestructorAccess(StartLoc, dtor,
1340                              PDiag(diag::err_access_dtor)
1341                                << BaseAllocType);
1342        DiagnoseUseOfDecl(dtor, StartLoc);
1343      }
1344    }
1345  }
1346
1347  PlacementArgs.release();
1348
1349  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1350                                        OperatorDelete,
1351                                        UsualArrayDeleteWantsSize,
1352                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1353                                        ArraySize, initStyle, Initializer,
1354                                        ResultType, AllocTypeInfo,
1355                                        StartLoc, DirectInitRange));
1356}
1357
1358/// \brief Checks that a type is suitable as the allocated type
1359/// in a new-expression.
1360bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1361                              SourceRange R) {
1362  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1363  //   abstract class type or array thereof.
1364  if (AllocType->isFunctionType())
1365    return Diag(Loc, diag::err_bad_new_type)
1366      << AllocType << 0 << R;
1367  else if (AllocType->isReferenceType())
1368    return Diag(Loc, diag::err_bad_new_type)
1369      << AllocType << 1 << R;
1370  else if (!AllocType->isDependentType() &&
1371           RequireCompleteType(Loc, AllocType,
1372                               PDiag(diag::err_new_incomplete_type)
1373                                 << R))
1374    return true;
1375  else if (RequireNonAbstractType(Loc, AllocType,
1376                                  diag::err_allocation_of_abstract_type))
1377    return true;
1378  else if (AllocType->isVariablyModifiedType())
1379    return Diag(Loc, diag::err_variably_modified_new_type)
1380             << AllocType;
1381  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1382    return Diag(Loc, diag::err_address_space_qualified_new)
1383      << AllocType.getUnqualifiedType() << AddressSpace;
1384  else if (getLangOpts().ObjCAutoRefCount) {
1385    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1386      QualType BaseAllocType = Context.getBaseElementType(AT);
1387      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1388          BaseAllocType->isObjCLifetimeType())
1389        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1390          << BaseAllocType;
1391    }
1392  }
1393
1394  return false;
1395}
1396
1397/// \brief Determine whether the given function is a non-placement
1398/// deallocation function.
1399static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1400  if (FD->isInvalidDecl())
1401    return false;
1402
1403  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1404    return Method->isUsualDeallocationFunction();
1405
1406  return ((FD->getOverloadedOperator() == OO_Delete ||
1407           FD->getOverloadedOperator() == OO_Array_Delete) &&
1408          FD->getNumParams() == 1);
1409}
1410
1411/// FindAllocationFunctions - Finds the overloads of operator new and delete
1412/// that are appropriate for the allocation.
1413bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1414                                   bool UseGlobal, QualType AllocType,
1415                                   bool IsArray, Expr **PlaceArgs,
1416                                   unsigned NumPlaceArgs,
1417                                   FunctionDecl *&OperatorNew,
1418                                   FunctionDecl *&OperatorDelete) {
1419  // --- Choosing an allocation function ---
1420  // C++ 5.3.4p8 - 14 & 18
1421  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1422  //   in the scope of the allocated class.
1423  // 2) If an array size is given, look for operator new[], else look for
1424  //   operator new.
1425  // 3) The first argument is always size_t. Append the arguments from the
1426  //   placement form.
1427
1428  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1429  // We don't care about the actual value of this argument.
1430  // FIXME: Should the Sema create the expression and embed it in the syntax
1431  // tree? Or should the consumer just recalculate the value?
1432  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1433                      Context.getTargetInfo().getPointerWidth(0)),
1434                      Context.getSizeType(),
1435                      SourceLocation());
1436  AllocArgs[0] = &Size;
1437  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1438
1439  // C++ [expr.new]p8:
1440  //   If the allocated type is a non-array type, the allocation
1441  //   function's name is operator new and the deallocation function's
1442  //   name is operator delete. If the allocated type is an array
1443  //   type, the allocation function's name is operator new[] and the
1444  //   deallocation function's name is operator delete[].
1445  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1446                                        IsArray ? OO_Array_New : OO_New);
1447  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1448                                        IsArray ? OO_Array_Delete : OO_Delete);
1449
1450  QualType AllocElemType = Context.getBaseElementType(AllocType);
1451
1452  if (AllocElemType->isRecordType() && !UseGlobal) {
1453    CXXRecordDecl *Record
1454      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1455    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1456                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1457                          OperatorNew))
1458      return true;
1459  }
1460  if (!OperatorNew) {
1461    // Didn't find a member overload. Look for a global one.
1462    DeclareGlobalNewDelete();
1463    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1464    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1465                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1466                          OperatorNew))
1467      return true;
1468  }
1469
1470  // We don't need an operator delete if we're running under
1471  // -fno-exceptions.
1472  if (!getLangOpts().Exceptions) {
1473    OperatorDelete = 0;
1474    return false;
1475  }
1476
1477  // FindAllocationOverload can change the passed in arguments, so we need to
1478  // copy them back.
1479  if (NumPlaceArgs > 0)
1480    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1481
1482  // C++ [expr.new]p19:
1483  //
1484  //   If the new-expression begins with a unary :: operator, the
1485  //   deallocation function's name is looked up in the global
1486  //   scope. Otherwise, if the allocated type is a class type T or an
1487  //   array thereof, the deallocation function's name is looked up in
1488  //   the scope of T. If this lookup fails to find the name, or if
1489  //   the allocated type is not a class type or array thereof, the
1490  //   deallocation function's name is looked up in the global scope.
1491  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1492  if (AllocElemType->isRecordType() && !UseGlobal) {
1493    CXXRecordDecl *RD
1494      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1495    LookupQualifiedName(FoundDelete, RD);
1496  }
1497  if (FoundDelete.isAmbiguous())
1498    return true; // FIXME: clean up expressions?
1499
1500  if (FoundDelete.empty()) {
1501    DeclareGlobalNewDelete();
1502    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1503  }
1504
1505  FoundDelete.suppressDiagnostics();
1506
1507  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1508
1509  // Whether we're looking for a placement operator delete is dictated
1510  // by whether we selected a placement operator new, not by whether
1511  // we had explicit placement arguments.  This matters for things like
1512  //   struct A { void *operator new(size_t, int = 0); ... };
1513  //   A *a = new A()
1514  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1515
1516  if (isPlacementNew) {
1517    // C++ [expr.new]p20:
1518    //   A declaration of a placement deallocation function matches the
1519    //   declaration of a placement allocation function if it has the
1520    //   same number of parameters and, after parameter transformations
1521    //   (8.3.5), all parameter types except the first are
1522    //   identical. [...]
1523    //
1524    // To perform this comparison, we compute the function type that
1525    // the deallocation function should have, and use that type both
1526    // for template argument deduction and for comparison purposes.
1527    //
1528    // FIXME: this comparison should ignore CC and the like.
1529    QualType ExpectedFunctionType;
1530    {
1531      const FunctionProtoType *Proto
1532        = OperatorNew->getType()->getAs<FunctionProtoType>();
1533
1534      SmallVector<QualType, 4> ArgTypes;
1535      ArgTypes.push_back(Context.VoidPtrTy);
1536      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1537        ArgTypes.push_back(Proto->getArgType(I));
1538
1539      FunctionProtoType::ExtProtoInfo EPI;
1540      EPI.Variadic = Proto->isVariadic();
1541
1542      ExpectedFunctionType
1543        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1544                                  ArgTypes.size(), EPI);
1545    }
1546
1547    for (LookupResult::iterator D = FoundDelete.begin(),
1548                             DEnd = FoundDelete.end();
1549         D != DEnd; ++D) {
1550      FunctionDecl *Fn = 0;
1551      if (FunctionTemplateDecl *FnTmpl
1552            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1553        // Perform template argument deduction to try to match the
1554        // expected function type.
1555        TemplateDeductionInfo Info(Context, StartLoc);
1556        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1557          continue;
1558      } else
1559        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1560
1561      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1562        Matches.push_back(std::make_pair(D.getPair(), Fn));
1563    }
1564  } else {
1565    // C++ [expr.new]p20:
1566    //   [...] Any non-placement deallocation function matches a
1567    //   non-placement allocation function. [...]
1568    for (LookupResult::iterator D = FoundDelete.begin(),
1569                             DEnd = FoundDelete.end();
1570         D != DEnd; ++D) {
1571      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1572        if (isNonPlacementDeallocationFunction(Fn))
1573          Matches.push_back(std::make_pair(D.getPair(), Fn));
1574    }
1575  }
1576
1577  // C++ [expr.new]p20:
1578  //   [...] If the lookup finds a single matching deallocation
1579  //   function, that function will be called; otherwise, no
1580  //   deallocation function will be called.
1581  if (Matches.size() == 1) {
1582    OperatorDelete = Matches[0].second;
1583
1584    // C++0x [expr.new]p20:
1585    //   If the lookup finds the two-parameter form of a usual
1586    //   deallocation function (3.7.4.2) and that function, considered
1587    //   as a placement deallocation function, would have been
1588    //   selected as a match for the allocation function, the program
1589    //   is ill-formed.
1590    if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
1591        isNonPlacementDeallocationFunction(OperatorDelete)) {
1592      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1593        << SourceRange(PlaceArgs[0]->getLocStart(),
1594                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1595      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1596        << DeleteName;
1597    } else {
1598      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1599                            Matches[0].first);
1600    }
1601  }
1602
1603  return false;
1604}
1605
1606/// FindAllocationOverload - Find an fitting overload for the allocation
1607/// function in the specified scope.
1608bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1609                                  DeclarationName Name, Expr** Args,
1610                                  unsigned NumArgs, DeclContext *Ctx,
1611                                  bool AllowMissing, FunctionDecl *&Operator,
1612                                  bool Diagnose) {
1613  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1614  LookupQualifiedName(R, Ctx);
1615  if (R.empty()) {
1616    if (AllowMissing || !Diagnose)
1617      return false;
1618    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1619      << Name << Range;
1620  }
1621
1622  if (R.isAmbiguous())
1623    return true;
1624
1625  R.suppressDiagnostics();
1626
1627  OverloadCandidateSet Candidates(StartLoc);
1628  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1629       Alloc != AllocEnd; ++Alloc) {
1630    // Even member operator new/delete are implicitly treated as
1631    // static, so don't use AddMemberCandidate.
1632    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1633
1634    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1635      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1636                                   /*ExplicitTemplateArgs=*/0,
1637                                   llvm::makeArrayRef(Args, NumArgs),
1638                                   Candidates,
1639                                   /*SuppressUserConversions=*/false);
1640      continue;
1641    }
1642
1643    FunctionDecl *Fn = cast<FunctionDecl>(D);
1644    AddOverloadCandidate(Fn, Alloc.getPair(),
1645                         llvm::makeArrayRef(Args, NumArgs), Candidates,
1646                         /*SuppressUserConversions=*/false);
1647  }
1648
1649  // Do the resolution.
1650  OverloadCandidateSet::iterator Best;
1651  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1652  case OR_Success: {
1653    // Got one!
1654    FunctionDecl *FnDecl = Best->Function;
1655    MarkFunctionReferenced(StartLoc, FnDecl);
1656    // The first argument is size_t, and the first parameter must be size_t,
1657    // too. This is checked on declaration and can be assumed. (It can't be
1658    // asserted on, though, since invalid decls are left in there.)
1659    // Watch out for variadic allocator function.
1660    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1661    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1662      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1663                                                       FnDecl->getParamDecl(i));
1664
1665      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1666        return true;
1667
1668      ExprResult Result
1669        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1670      if (Result.isInvalid())
1671        return true;
1672
1673      Args[i] = Result.takeAs<Expr>();
1674    }
1675
1676    Operator = FnDecl;
1677
1678    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1679                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1680      return true;
1681
1682    return false;
1683  }
1684
1685  case OR_No_Viable_Function:
1686    if (Diagnose) {
1687      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1688        << Name << Range;
1689      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1690                                llvm::makeArrayRef(Args, NumArgs));
1691    }
1692    return true;
1693
1694  case OR_Ambiguous:
1695    if (Diagnose) {
1696      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1697        << Name << Range;
1698      Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1699                                llvm::makeArrayRef(Args, NumArgs));
1700    }
1701    return true;
1702
1703  case OR_Deleted: {
1704    if (Diagnose) {
1705      Diag(StartLoc, diag::err_ovl_deleted_call)
1706        << Best->Function->isDeleted()
1707        << Name
1708        << getDeletedOrUnavailableSuffix(Best->Function)
1709        << Range;
1710      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1711                                llvm::makeArrayRef(Args, NumArgs));
1712    }
1713    return true;
1714  }
1715  }
1716  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1717}
1718
1719
1720/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1721/// delete. These are:
1722/// @code
1723///   // C++03:
1724///   void* operator new(std::size_t) throw(std::bad_alloc);
1725///   void* operator new[](std::size_t) throw(std::bad_alloc);
1726///   void operator delete(void *) throw();
1727///   void operator delete[](void *) throw();
1728///   // C++0x:
1729///   void* operator new(std::size_t);
1730///   void* operator new[](std::size_t);
1731///   void operator delete(void *);
1732///   void operator delete[](void *);
1733/// @endcode
1734/// C++0x operator delete is implicitly noexcept.
1735/// Note that the placement and nothrow forms of new are *not* implicitly
1736/// declared. Their use requires including \<new\>.
1737void Sema::DeclareGlobalNewDelete() {
1738  if (GlobalNewDeleteDeclared)
1739    return;
1740
1741  // C++ [basic.std.dynamic]p2:
1742  //   [...] The following allocation and deallocation functions (18.4) are
1743  //   implicitly declared in global scope in each translation unit of a
1744  //   program
1745  //
1746  //     C++03:
1747  //     void* operator new(std::size_t) throw(std::bad_alloc);
1748  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1749  //     void  operator delete(void*) throw();
1750  //     void  operator delete[](void*) throw();
1751  //     C++0x:
1752  //     void* operator new(std::size_t);
1753  //     void* operator new[](std::size_t);
1754  //     void  operator delete(void*);
1755  //     void  operator delete[](void*);
1756  //
1757  //   These implicit declarations introduce only the function names operator
1758  //   new, operator new[], operator delete, operator delete[].
1759  //
1760  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1761  // "std" or "bad_alloc" as necessary to form the exception specification.
1762  // However, we do not make these implicit declarations visible to name
1763  // lookup.
1764  // Note that the C++0x versions of operator delete are deallocation functions,
1765  // and thus are implicitly noexcept.
1766  if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
1767    // The "std::bad_alloc" class has not yet been declared, so build it
1768    // implicitly.
1769    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1770                                        getOrCreateStdNamespace(),
1771                                        SourceLocation(), SourceLocation(),
1772                                      &PP.getIdentifierTable().get("bad_alloc"),
1773                                        0);
1774    getStdBadAlloc()->setImplicit(true);
1775  }
1776
1777  GlobalNewDeleteDeclared = true;
1778
1779  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1780  QualType SizeT = Context.getSizeType();
1781  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1782
1783  DeclareGlobalAllocationFunction(
1784      Context.DeclarationNames.getCXXOperatorName(OO_New),
1785      VoidPtr, SizeT, AssumeSaneOperatorNew);
1786  DeclareGlobalAllocationFunction(
1787      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1788      VoidPtr, SizeT, AssumeSaneOperatorNew);
1789  DeclareGlobalAllocationFunction(
1790      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1791      Context.VoidTy, VoidPtr);
1792  DeclareGlobalAllocationFunction(
1793      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1794      Context.VoidTy, VoidPtr);
1795}
1796
1797/// DeclareGlobalAllocationFunction - Declares a single implicit global
1798/// allocation function if it doesn't already exist.
1799void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1800                                           QualType Return, QualType Argument,
1801                                           bool AddMallocAttr) {
1802  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1803
1804  // Check if this function is already declared.
1805  {
1806    DeclContext::lookup_iterator Alloc, AllocEnd;
1807    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1808         Alloc != AllocEnd; ++Alloc) {
1809      // Only look at non-template functions, as it is the predefined,
1810      // non-templated allocation function we are trying to declare here.
1811      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1812        QualType InitialParamType =
1813          Context.getCanonicalType(
1814            Func->getParamDecl(0)->getType().getUnqualifiedType());
1815        // FIXME: Do we need to check for default arguments here?
1816        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1817          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1818            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1819          return;
1820        }
1821      }
1822    }
1823  }
1824
1825  QualType BadAllocType;
1826  bool HasBadAllocExceptionSpec
1827    = (Name.getCXXOverloadedOperator() == OO_New ||
1828       Name.getCXXOverloadedOperator() == OO_Array_New);
1829  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
1830    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1831    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1832  }
1833
1834  FunctionProtoType::ExtProtoInfo EPI;
1835  if (HasBadAllocExceptionSpec) {
1836    if (!getLangOpts().CPlusPlus0x) {
1837      EPI.ExceptionSpecType = EST_Dynamic;
1838      EPI.NumExceptions = 1;
1839      EPI.Exceptions = &BadAllocType;
1840    }
1841  } else {
1842    EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
1843                                EST_BasicNoexcept : EST_DynamicNone;
1844  }
1845
1846  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1847  FunctionDecl *Alloc =
1848    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1849                         SourceLocation(), Name,
1850                         FnType, /*TInfo=*/0, SC_None,
1851                         SC_None, false, true);
1852  Alloc->setImplicit();
1853
1854  if (AddMallocAttr)
1855    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1856
1857  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1858                                           SourceLocation(), 0,
1859                                           Argument, /*TInfo=*/0,
1860                                           SC_None, SC_None, 0);
1861  Alloc->setParams(Param);
1862
1863  // FIXME: Also add this declaration to the IdentifierResolver, but
1864  // make sure it is at the end of the chain to coincide with the
1865  // global scope.
1866  Context.getTranslationUnitDecl()->addDecl(Alloc);
1867}
1868
1869bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1870                                    DeclarationName Name,
1871                                    FunctionDecl* &Operator, bool Diagnose) {
1872  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1873  // Try to find operator delete/operator delete[] in class scope.
1874  LookupQualifiedName(Found, RD);
1875
1876  if (Found.isAmbiguous())
1877    return true;
1878
1879  Found.suppressDiagnostics();
1880
1881  SmallVector<DeclAccessPair,4> Matches;
1882  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1883       F != FEnd; ++F) {
1884    NamedDecl *ND = (*F)->getUnderlyingDecl();
1885
1886    // Ignore template operator delete members from the check for a usual
1887    // deallocation function.
1888    if (isa<FunctionTemplateDecl>(ND))
1889      continue;
1890
1891    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1892      Matches.push_back(F.getPair());
1893  }
1894
1895  // There's exactly one suitable operator;  pick it.
1896  if (Matches.size() == 1) {
1897    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1898
1899    if (Operator->isDeleted()) {
1900      if (Diagnose) {
1901        Diag(StartLoc, diag::err_deleted_function_use);
1902        NoteDeletedFunction(Operator);
1903      }
1904      return true;
1905    }
1906
1907    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1908                              Matches[0], Diagnose) == AR_inaccessible)
1909      return true;
1910
1911    return false;
1912
1913  // We found multiple suitable operators;  complain about the ambiguity.
1914  } else if (!Matches.empty()) {
1915    if (Diagnose) {
1916      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1917        << Name << RD;
1918
1919      for (SmallVectorImpl<DeclAccessPair>::iterator
1920             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1921        Diag((*F)->getUnderlyingDecl()->getLocation(),
1922             diag::note_member_declared_here) << Name;
1923    }
1924    return true;
1925  }
1926
1927  // We did find operator delete/operator delete[] declarations, but
1928  // none of them were suitable.
1929  if (!Found.empty()) {
1930    if (Diagnose) {
1931      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1932        << Name << RD;
1933
1934      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1935           F != FEnd; ++F)
1936        Diag((*F)->getUnderlyingDecl()->getLocation(),
1937             diag::note_member_declared_here) << Name;
1938    }
1939    return true;
1940  }
1941
1942  // Look for a global declaration.
1943  DeclareGlobalNewDelete();
1944  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1945
1946  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1947  Expr* DeallocArgs[1];
1948  DeallocArgs[0] = &Null;
1949  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1950                             DeallocArgs, 1, TUDecl, !Diagnose,
1951                             Operator, Diagnose))
1952    return true;
1953
1954  assert(Operator && "Did not find a deallocation function!");
1955  return false;
1956}
1957
1958/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1959/// @code ::delete ptr; @endcode
1960/// or
1961/// @code delete [] ptr; @endcode
1962ExprResult
1963Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1964                     bool ArrayForm, Expr *ExE) {
1965  // C++ [expr.delete]p1:
1966  //   The operand shall have a pointer type, or a class type having a single
1967  //   conversion function to a pointer type. The result has type void.
1968  //
1969  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1970
1971  ExprResult Ex = Owned(ExE);
1972  FunctionDecl *OperatorDelete = 0;
1973  bool ArrayFormAsWritten = ArrayForm;
1974  bool UsualArrayDeleteWantsSize = false;
1975
1976  if (!Ex.get()->isTypeDependent()) {
1977    // Perform lvalue-to-rvalue cast, if needed.
1978    Ex = DefaultLvalueConversion(Ex.take());
1979
1980    QualType Type = Ex.get()->getType();
1981
1982    if (const RecordType *Record = Type->getAs<RecordType>()) {
1983      if (RequireCompleteType(StartLoc, Type,
1984                              PDiag(diag::err_delete_incomplete_class_type)))
1985        return ExprError();
1986
1987      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1988
1989      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1990      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1991      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1992             E = Conversions->end(); I != E; ++I) {
1993        NamedDecl *D = I.getDecl();
1994        if (isa<UsingShadowDecl>(D))
1995          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1996
1997        // Skip over templated conversion functions; they aren't considered.
1998        if (isa<FunctionTemplateDecl>(D))
1999          continue;
2000
2001        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2002
2003        QualType ConvType = Conv->getConversionType().getNonReferenceType();
2004        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2005          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2006            ObjectPtrConversions.push_back(Conv);
2007      }
2008      if (ObjectPtrConversions.size() == 1) {
2009        // We have a single conversion to a pointer-to-object type. Perform
2010        // that conversion.
2011        // TODO: don't redo the conversion calculation.
2012        ExprResult Res =
2013          PerformImplicitConversion(Ex.get(),
2014                            ObjectPtrConversions.front()->getConversionType(),
2015                                    AA_Converting);
2016        if (Res.isUsable()) {
2017          Ex = move(Res);
2018          Type = Ex.get()->getType();
2019        }
2020      }
2021      else if (ObjectPtrConversions.size() > 1) {
2022        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2023              << Type << Ex.get()->getSourceRange();
2024        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2025          NoteOverloadCandidate(ObjectPtrConversions[i]);
2026        return ExprError();
2027      }
2028    }
2029
2030    if (!Type->isPointerType())
2031      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2032        << Type << Ex.get()->getSourceRange());
2033
2034    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2035    QualType PointeeElem = Context.getBaseElementType(Pointee);
2036
2037    if (unsigned AddressSpace = Pointee.getAddressSpace())
2038      return Diag(Ex.get()->getLocStart(),
2039                  diag::err_address_space_qualified_delete)
2040               << Pointee.getUnqualifiedType() << AddressSpace;
2041
2042    CXXRecordDecl *PointeeRD = 0;
2043    if (Pointee->isVoidType() && !isSFINAEContext()) {
2044      // The C++ standard bans deleting a pointer to a non-object type, which
2045      // effectively bans deletion of "void*". However, most compilers support
2046      // this, so we treat it as a warning unless we're in a SFINAE context.
2047      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2048        << Type << Ex.get()->getSourceRange();
2049    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2050      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2051        << Type << Ex.get()->getSourceRange());
2052    } else if (!Pointee->isDependentType()) {
2053      if (!RequireCompleteType(StartLoc, Pointee,
2054                               PDiag(diag::warn_delete_incomplete)
2055                                 << Ex.get()->getSourceRange())) {
2056        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2057          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2058      }
2059    }
2060
2061    // C++ [expr.delete]p2:
2062    //   [Note: a pointer to a const type can be the operand of a
2063    //   delete-expression; it is not necessary to cast away the constness
2064    //   (5.2.11) of the pointer expression before it is used as the operand
2065    //   of the delete-expression. ]
2066    if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
2067      Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2068                                          CK_BitCast, Ex.take(), 0, VK_RValue));
2069
2070    if (Pointee->isArrayType() && !ArrayForm) {
2071      Diag(StartLoc, diag::warn_delete_array_type)
2072          << Type << Ex.get()->getSourceRange()
2073          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2074      ArrayForm = true;
2075    }
2076
2077    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2078                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2079
2080    if (PointeeRD) {
2081      if (!UseGlobal &&
2082          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2083                                   OperatorDelete))
2084        return ExprError();
2085
2086      // If we're allocating an array of records, check whether the
2087      // usual operator delete[] has a size_t parameter.
2088      if (ArrayForm) {
2089        // If the user specifically asked to use the global allocator,
2090        // we'll need to do the lookup into the class.
2091        if (UseGlobal)
2092          UsualArrayDeleteWantsSize =
2093            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2094
2095        // Otherwise, the usual operator delete[] should be the
2096        // function we just found.
2097        else if (isa<CXXMethodDecl>(OperatorDelete))
2098          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2099      }
2100
2101      if (!PointeeRD->hasIrrelevantDestructor())
2102        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2103          MarkFunctionReferenced(StartLoc,
2104                                    const_cast<CXXDestructorDecl*>(Dtor));
2105          DiagnoseUseOfDecl(Dtor, StartLoc);
2106        }
2107
2108      // C++ [expr.delete]p3:
2109      //   In the first alternative (delete object), if the static type of the
2110      //   object to be deleted is different from its dynamic type, the static
2111      //   type shall be a base class of the dynamic type of the object to be
2112      //   deleted and the static type shall have a virtual destructor or the
2113      //   behavior is undefined.
2114      //
2115      // Note: a final class cannot be derived from, no issue there
2116      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2117        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2118        if (dtor && !dtor->isVirtual()) {
2119          if (PointeeRD->isAbstract()) {
2120            // If the class is abstract, we warn by default, because we're
2121            // sure the code has undefined behavior.
2122            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2123                << PointeeElem;
2124          } else if (!ArrayForm) {
2125            // Otherwise, if this is not an array delete, it's a bit suspect,
2126            // but not necessarily wrong.
2127            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2128          }
2129        }
2130      }
2131
2132    } else if (getLangOpts().ObjCAutoRefCount &&
2133               PointeeElem->isObjCLifetimeType() &&
2134               (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
2135                PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
2136               ArrayForm) {
2137      Diag(StartLoc, diag::warn_err_new_delete_object_array)
2138        << 1 << PointeeElem;
2139    }
2140
2141    if (!OperatorDelete) {
2142      // Look for a global declaration.
2143      DeclareGlobalNewDelete();
2144      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2145      Expr *Arg = Ex.get();
2146      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2147                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2148                                 OperatorDelete))
2149        return ExprError();
2150    }
2151
2152    MarkFunctionReferenced(StartLoc, OperatorDelete);
2153
2154    // Check access and ambiguity of operator delete and destructor.
2155    if (PointeeRD) {
2156      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2157          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2158                      PDiag(diag::err_access_dtor) << PointeeElem);
2159      }
2160    }
2161
2162  }
2163
2164  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2165                                           ArrayFormAsWritten,
2166                                           UsualArrayDeleteWantsSize,
2167                                           OperatorDelete, Ex.take(), StartLoc));
2168}
2169
2170/// \brief Check the use of the given variable as a C++ condition in an if,
2171/// while, do-while, or switch statement.
2172ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2173                                        SourceLocation StmtLoc,
2174                                        bool ConvertToBoolean) {
2175  QualType T = ConditionVar->getType();
2176
2177  // C++ [stmt.select]p2:
2178  //   The declarator shall not specify a function or an array.
2179  if (T->isFunctionType())
2180    return ExprError(Diag(ConditionVar->getLocation(),
2181                          diag::err_invalid_use_of_function_type)
2182                       << ConditionVar->getSourceRange());
2183  else if (T->isArrayType())
2184    return ExprError(Diag(ConditionVar->getLocation(),
2185                          diag::err_invalid_use_of_array_type)
2186                     << ConditionVar->getSourceRange());
2187
2188  ExprResult Condition =
2189    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2190                              SourceLocation(),
2191                              ConditionVar,
2192                              /*enclosing*/ false,
2193                              ConditionVar->getLocation(),
2194                              ConditionVar->getType().getNonReferenceType(),
2195                              VK_LValue));
2196
2197  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2198
2199  if (ConvertToBoolean) {
2200    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2201    if (Condition.isInvalid())
2202      return ExprError();
2203  }
2204
2205  return move(Condition);
2206}
2207
2208/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2209ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2210  // C++ 6.4p4:
2211  // The value of a condition that is an initialized declaration in a statement
2212  // other than a switch statement is the value of the declared variable
2213  // implicitly converted to type bool. If that conversion is ill-formed, the
2214  // program is ill-formed.
2215  // The value of a condition that is an expression is the value of the
2216  // expression, implicitly converted to bool.
2217  //
2218  return PerformContextuallyConvertToBool(CondExpr);
2219}
2220
2221/// Helper function to determine whether this is the (deprecated) C++
2222/// conversion from a string literal to a pointer to non-const char or
2223/// non-const wchar_t (for narrow and wide string literals,
2224/// respectively).
2225bool
2226Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2227  // Look inside the implicit cast, if it exists.
2228  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2229    From = Cast->getSubExpr();
2230
2231  // A string literal (2.13.4) that is not a wide string literal can
2232  // be converted to an rvalue of type "pointer to char"; a wide
2233  // string literal can be converted to an rvalue of type "pointer
2234  // to wchar_t" (C++ 4.2p2).
2235  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2236    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2237      if (const BuiltinType *ToPointeeType
2238          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2239        // This conversion is considered only when there is an
2240        // explicit appropriate pointer target type (C++ 4.2p2).
2241        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2242          switch (StrLit->getKind()) {
2243            case StringLiteral::UTF8:
2244            case StringLiteral::UTF16:
2245            case StringLiteral::UTF32:
2246              // We don't allow UTF literals to be implicitly converted
2247              break;
2248            case StringLiteral::Ascii:
2249              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2250                      ToPointeeType->getKind() == BuiltinType::Char_S);
2251            case StringLiteral::Wide:
2252              return ToPointeeType->isWideCharType();
2253          }
2254        }
2255      }
2256
2257  return false;
2258}
2259
2260static ExprResult BuildCXXCastArgument(Sema &S,
2261                                       SourceLocation CastLoc,
2262                                       QualType Ty,
2263                                       CastKind Kind,
2264                                       CXXMethodDecl *Method,
2265                                       DeclAccessPair FoundDecl,
2266                                       bool HadMultipleCandidates,
2267                                       Expr *From) {
2268  switch (Kind) {
2269  default: llvm_unreachable("Unhandled cast kind!");
2270  case CK_ConstructorConversion: {
2271    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2272    ASTOwningVector<Expr*> ConstructorArgs(S);
2273
2274    if (S.CompleteConstructorCall(Constructor,
2275                                  MultiExprArg(&From, 1),
2276                                  CastLoc, ConstructorArgs))
2277      return ExprError();
2278
2279    S.CheckConstructorAccess(CastLoc, Constructor,
2280                             InitializedEntity::InitializeTemporary(Ty),
2281                             Constructor->getAccess());
2282
2283    ExprResult Result
2284      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2285                                move_arg(ConstructorArgs),
2286                                HadMultipleCandidates, /*ZeroInit*/ false,
2287                                CXXConstructExpr::CK_Complete, SourceRange());
2288    if (Result.isInvalid())
2289      return ExprError();
2290
2291    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2292  }
2293
2294  case CK_UserDefinedConversion: {
2295    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2296
2297    // Create an implicit call expr that calls it.
2298    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2299    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2300                                                 HadMultipleCandidates);
2301    if (Result.isInvalid())
2302      return ExprError();
2303    // Record usage of conversion in an implicit cast.
2304    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2305                                              Result.get()->getType(),
2306                                              CK_UserDefinedConversion,
2307                                              Result.get(), 0,
2308                                              Result.get()->getValueKind()));
2309
2310    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2311
2312    return S.MaybeBindToTemporary(Result.get());
2313  }
2314  }
2315}
2316
2317/// PerformImplicitConversion - Perform an implicit conversion of the
2318/// expression From to the type ToType using the pre-computed implicit
2319/// conversion sequence ICS. Returns the converted
2320/// expression. Action is the kind of conversion we're performing,
2321/// used in the error message.
2322ExprResult
2323Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2324                                const ImplicitConversionSequence &ICS,
2325                                AssignmentAction Action,
2326                                CheckedConversionKind CCK) {
2327  switch (ICS.getKind()) {
2328  case ImplicitConversionSequence::StandardConversion: {
2329    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2330                                               Action, CCK);
2331    if (Res.isInvalid())
2332      return ExprError();
2333    From = Res.take();
2334    break;
2335  }
2336
2337  case ImplicitConversionSequence::UserDefinedConversion: {
2338
2339      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2340      CastKind CastKind;
2341      QualType BeforeToType;
2342      assert(FD && "FIXME: aggregate initialization from init list");
2343      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2344        CastKind = CK_UserDefinedConversion;
2345
2346        // If the user-defined conversion is specified by a conversion function,
2347        // the initial standard conversion sequence converts the source type to
2348        // the implicit object parameter of the conversion function.
2349        BeforeToType = Context.getTagDeclType(Conv->getParent());
2350      } else {
2351        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2352        CastKind = CK_ConstructorConversion;
2353        // Do no conversion if dealing with ... for the first conversion.
2354        if (!ICS.UserDefined.EllipsisConversion) {
2355          // If the user-defined conversion is specified by a constructor, the
2356          // initial standard conversion sequence converts the source type to the
2357          // type required by the argument of the constructor
2358          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2359        }
2360      }
2361      // Watch out for elipsis conversion.
2362      if (!ICS.UserDefined.EllipsisConversion) {
2363        ExprResult Res =
2364          PerformImplicitConversion(From, BeforeToType,
2365                                    ICS.UserDefined.Before, AA_Converting,
2366                                    CCK);
2367        if (Res.isInvalid())
2368          return ExprError();
2369        From = Res.take();
2370      }
2371
2372      ExprResult CastArg
2373        = BuildCXXCastArgument(*this,
2374                               From->getLocStart(),
2375                               ToType.getNonReferenceType(),
2376                               CastKind, cast<CXXMethodDecl>(FD),
2377                               ICS.UserDefined.FoundConversionFunction,
2378                               ICS.UserDefined.HadMultipleCandidates,
2379                               From);
2380
2381      if (CastArg.isInvalid())
2382        return ExprError();
2383
2384      From = CastArg.take();
2385
2386      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2387                                       AA_Converting, CCK);
2388  }
2389
2390  case ImplicitConversionSequence::AmbiguousConversion:
2391    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2392                          PDiag(diag::err_typecheck_ambiguous_condition)
2393                            << From->getSourceRange());
2394     return ExprError();
2395
2396  case ImplicitConversionSequence::EllipsisConversion:
2397    llvm_unreachable("Cannot perform an ellipsis conversion");
2398
2399  case ImplicitConversionSequence::BadConversion:
2400    return ExprError();
2401  }
2402
2403  // Everything went well.
2404  return Owned(From);
2405}
2406
2407/// PerformImplicitConversion - Perform an implicit conversion of the
2408/// expression From to the type ToType by following the standard
2409/// conversion sequence SCS. Returns the converted
2410/// expression. Flavor is the context in which we're performing this
2411/// conversion, for use in error messages.
2412ExprResult
2413Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2414                                const StandardConversionSequence& SCS,
2415                                AssignmentAction Action,
2416                                CheckedConversionKind CCK) {
2417  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2418
2419  // Overall FIXME: we are recomputing too many types here and doing far too
2420  // much extra work. What this means is that we need to keep track of more
2421  // information that is computed when we try the implicit conversion initially,
2422  // so that we don't need to recompute anything here.
2423  QualType FromType = From->getType();
2424
2425  if (SCS.CopyConstructor) {
2426    // FIXME: When can ToType be a reference type?
2427    assert(!ToType->isReferenceType());
2428    if (SCS.Second == ICK_Derived_To_Base) {
2429      ASTOwningVector<Expr*> ConstructorArgs(*this);
2430      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2431                                  MultiExprArg(*this, &From, 1),
2432                                  /*FIXME:ConstructLoc*/SourceLocation(),
2433                                  ConstructorArgs))
2434        return ExprError();
2435      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2436                                   ToType, SCS.CopyConstructor,
2437                                   move_arg(ConstructorArgs),
2438                                   /*HadMultipleCandidates*/ false,
2439                                   /*ZeroInit*/ false,
2440                                   CXXConstructExpr::CK_Complete,
2441                                   SourceRange());
2442    }
2443    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2444                                 ToType, SCS.CopyConstructor,
2445                                 MultiExprArg(*this, &From, 1),
2446                                 /*HadMultipleCandidates*/ false,
2447                                 /*ZeroInit*/ false,
2448                                 CXXConstructExpr::CK_Complete,
2449                                 SourceRange());
2450  }
2451
2452  // Resolve overloaded function references.
2453  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2454    DeclAccessPair Found;
2455    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2456                                                          true, Found);
2457    if (!Fn)
2458      return ExprError();
2459
2460    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2461      return ExprError();
2462
2463    From = FixOverloadedFunctionReference(From, Found, Fn);
2464    FromType = From->getType();
2465  }
2466
2467  // Perform the first implicit conversion.
2468  switch (SCS.First) {
2469  case ICK_Identity:
2470    // Nothing to do.
2471    break;
2472
2473  case ICK_Lvalue_To_Rvalue: {
2474    assert(From->getObjectKind() != OK_ObjCProperty);
2475    FromType = FromType.getUnqualifiedType();
2476    ExprResult FromRes = DefaultLvalueConversion(From);
2477    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2478    From = FromRes.take();
2479    break;
2480  }
2481
2482  case ICK_Array_To_Pointer:
2483    FromType = Context.getArrayDecayedType(FromType);
2484    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2485                             VK_RValue, /*BasePath=*/0, CCK).take();
2486    break;
2487
2488  case ICK_Function_To_Pointer:
2489    FromType = Context.getPointerType(FromType);
2490    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2491                             VK_RValue, /*BasePath=*/0, CCK).take();
2492    break;
2493
2494  default:
2495    llvm_unreachable("Improper first standard conversion");
2496  }
2497
2498  // Perform the second implicit conversion
2499  switch (SCS.Second) {
2500  case ICK_Identity:
2501    // If both sides are functions (or pointers/references to them), there could
2502    // be incompatible exception declarations.
2503    if (CheckExceptionSpecCompatibility(From, ToType))
2504      return ExprError();
2505    // Nothing else to do.
2506    break;
2507
2508  case ICK_NoReturn_Adjustment:
2509    // If both sides are functions (or pointers/references to them), there could
2510    // be incompatible exception declarations.
2511    if (CheckExceptionSpecCompatibility(From, ToType))
2512      return ExprError();
2513
2514    From = ImpCastExprToType(From, ToType, CK_NoOp,
2515                             VK_RValue, /*BasePath=*/0, CCK).take();
2516    break;
2517
2518  case ICK_Integral_Promotion:
2519  case ICK_Integral_Conversion:
2520    From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2521                             VK_RValue, /*BasePath=*/0, CCK).take();
2522    break;
2523
2524  case ICK_Floating_Promotion:
2525  case ICK_Floating_Conversion:
2526    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2527                             VK_RValue, /*BasePath=*/0, CCK).take();
2528    break;
2529
2530  case ICK_Complex_Promotion:
2531  case ICK_Complex_Conversion: {
2532    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2533    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2534    CastKind CK;
2535    if (FromEl->isRealFloatingType()) {
2536      if (ToEl->isRealFloatingType())
2537        CK = CK_FloatingComplexCast;
2538      else
2539        CK = CK_FloatingComplexToIntegralComplex;
2540    } else if (ToEl->isRealFloatingType()) {
2541      CK = CK_IntegralComplexToFloatingComplex;
2542    } else {
2543      CK = CK_IntegralComplexCast;
2544    }
2545    From = ImpCastExprToType(From, ToType, CK,
2546                             VK_RValue, /*BasePath=*/0, CCK).take();
2547    break;
2548  }
2549
2550  case ICK_Floating_Integral:
2551    if (ToType->isRealFloatingType())
2552      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2553                               VK_RValue, /*BasePath=*/0, CCK).take();
2554    else
2555      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2556                               VK_RValue, /*BasePath=*/0, CCK).take();
2557    break;
2558
2559  case ICK_Compatible_Conversion:
2560      From = ImpCastExprToType(From, ToType, CK_NoOp,
2561                               VK_RValue, /*BasePath=*/0, CCK).take();
2562    break;
2563
2564  case ICK_Writeback_Conversion:
2565  case ICK_Pointer_Conversion: {
2566    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2567      // Diagnose incompatible Objective-C conversions
2568      if (Action == AA_Initializing || Action == AA_Assigning)
2569        Diag(From->getLocStart(),
2570             diag::ext_typecheck_convert_incompatible_pointer)
2571          << ToType << From->getType() << Action
2572          << From->getSourceRange() << 0;
2573      else
2574        Diag(From->getLocStart(),
2575             diag::ext_typecheck_convert_incompatible_pointer)
2576          << From->getType() << ToType << Action
2577          << From->getSourceRange() << 0;
2578
2579      if (From->getType()->isObjCObjectPointerType() &&
2580          ToType->isObjCObjectPointerType())
2581        EmitRelatedResultTypeNote(From);
2582    }
2583    else if (getLangOpts().ObjCAutoRefCount &&
2584             !CheckObjCARCUnavailableWeakConversion(ToType,
2585                                                    From->getType())) {
2586      if (Action == AA_Initializing)
2587        Diag(From->getLocStart(),
2588             diag::err_arc_weak_unavailable_assign);
2589      else
2590        Diag(From->getLocStart(),
2591             diag::err_arc_convesion_of_weak_unavailable)
2592          << (Action == AA_Casting) << From->getType() << ToType
2593          << From->getSourceRange();
2594    }
2595
2596    CastKind Kind = CK_Invalid;
2597    CXXCastPath BasePath;
2598    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2599      return ExprError();
2600
2601    // Make sure we extend blocks if necessary.
2602    // FIXME: doing this here is really ugly.
2603    if (Kind == CK_BlockPointerToObjCPointerCast) {
2604      ExprResult E = From;
2605      (void) PrepareCastToObjCObjectPointer(E);
2606      From = E.take();
2607    }
2608
2609    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2610             .take();
2611    break;
2612  }
2613
2614  case ICK_Pointer_Member: {
2615    CastKind Kind = CK_Invalid;
2616    CXXCastPath BasePath;
2617    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2618      return ExprError();
2619    if (CheckExceptionSpecCompatibility(From, ToType))
2620      return ExprError();
2621    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2622             .take();
2623    break;
2624  }
2625
2626  case ICK_Boolean_Conversion:
2627    // Perform half-to-boolean conversion via float.
2628    if (From->getType()->isHalfType()) {
2629      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2630      FromType = Context.FloatTy;
2631    }
2632
2633    From = ImpCastExprToType(From, Context.BoolTy,
2634                             ScalarTypeToBooleanCastKind(FromType),
2635                             VK_RValue, /*BasePath=*/0, CCK).take();
2636    break;
2637
2638  case ICK_Derived_To_Base: {
2639    CXXCastPath BasePath;
2640    if (CheckDerivedToBaseConversion(From->getType(),
2641                                     ToType.getNonReferenceType(),
2642                                     From->getLocStart(),
2643                                     From->getSourceRange(),
2644                                     &BasePath,
2645                                     CStyle))
2646      return ExprError();
2647
2648    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2649                      CK_DerivedToBase, From->getValueKind(),
2650                      &BasePath, CCK).take();
2651    break;
2652  }
2653
2654  case ICK_Vector_Conversion:
2655    From = ImpCastExprToType(From, ToType, CK_BitCast,
2656                             VK_RValue, /*BasePath=*/0, CCK).take();
2657    break;
2658
2659  case ICK_Vector_Splat:
2660    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2661                             VK_RValue, /*BasePath=*/0, CCK).take();
2662    break;
2663
2664  case ICK_Complex_Real:
2665    // Case 1.  x -> _Complex y
2666    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2667      QualType ElType = ToComplex->getElementType();
2668      bool isFloatingComplex = ElType->isRealFloatingType();
2669
2670      // x -> y
2671      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2672        // do nothing
2673      } else if (From->getType()->isRealFloatingType()) {
2674        From = ImpCastExprToType(From, ElType,
2675                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2676      } else {
2677        assert(From->getType()->isIntegerType());
2678        From = ImpCastExprToType(From, ElType,
2679                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2680      }
2681      // y -> _Complex y
2682      From = ImpCastExprToType(From, ToType,
2683                   isFloatingComplex ? CK_FloatingRealToComplex
2684                                     : CK_IntegralRealToComplex).take();
2685
2686    // Case 2.  _Complex x -> y
2687    } else {
2688      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2689      assert(FromComplex);
2690
2691      QualType ElType = FromComplex->getElementType();
2692      bool isFloatingComplex = ElType->isRealFloatingType();
2693
2694      // _Complex x -> x
2695      From = ImpCastExprToType(From, ElType,
2696                   isFloatingComplex ? CK_FloatingComplexToReal
2697                                     : CK_IntegralComplexToReal,
2698                               VK_RValue, /*BasePath=*/0, CCK).take();
2699
2700      // x -> y
2701      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2702        // do nothing
2703      } else if (ToType->isRealFloatingType()) {
2704        From = ImpCastExprToType(From, ToType,
2705                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2706                                 VK_RValue, /*BasePath=*/0, CCK).take();
2707      } else {
2708        assert(ToType->isIntegerType());
2709        From = ImpCastExprToType(From, ToType,
2710                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2711                                 VK_RValue, /*BasePath=*/0, CCK).take();
2712      }
2713    }
2714    break;
2715
2716  case ICK_Block_Pointer_Conversion: {
2717    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2718                             VK_RValue, /*BasePath=*/0, CCK).take();
2719    break;
2720  }
2721
2722  case ICK_TransparentUnionConversion: {
2723    ExprResult FromRes = Owned(From);
2724    Sema::AssignConvertType ConvTy =
2725      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2726    if (FromRes.isInvalid())
2727      return ExprError();
2728    From = FromRes.take();
2729    assert ((ConvTy == Sema::Compatible) &&
2730            "Improper transparent union conversion");
2731    (void)ConvTy;
2732    break;
2733  }
2734
2735  case ICK_Lvalue_To_Rvalue:
2736  case ICK_Array_To_Pointer:
2737  case ICK_Function_To_Pointer:
2738  case ICK_Qualification:
2739  case ICK_Num_Conversion_Kinds:
2740    llvm_unreachable("Improper second standard conversion");
2741  }
2742
2743  switch (SCS.Third) {
2744  case ICK_Identity:
2745    // Nothing to do.
2746    break;
2747
2748  case ICK_Qualification: {
2749    // The qualification keeps the category of the inner expression, unless the
2750    // target type isn't a reference.
2751    ExprValueKind VK = ToType->isReferenceType() ?
2752                                  From->getValueKind() : VK_RValue;
2753    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2754                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2755
2756    if (SCS.DeprecatedStringLiteralToCharPtr &&
2757        !getLangOpts().WritableStrings)
2758      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2759        << ToType.getNonReferenceType();
2760
2761    break;
2762    }
2763
2764  default:
2765    llvm_unreachable("Improper third standard conversion");
2766  }
2767
2768  return Owned(From);
2769}
2770
2771ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2772                                     SourceLocation KWLoc,
2773                                     ParsedType Ty,
2774                                     SourceLocation RParen) {
2775  TypeSourceInfo *TSInfo;
2776  QualType T = GetTypeFromParser(Ty, &TSInfo);
2777
2778  if (!TSInfo)
2779    TSInfo = Context.getTrivialTypeSourceInfo(T);
2780  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2781}
2782
2783/// \brief Check the completeness of a type in a unary type trait.
2784///
2785/// If the particular type trait requires a complete type, tries to complete
2786/// it. If completing the type fails, a diagnostic is emitted and false
2787/// returned. If completing the type succeeds or no completion was required,
2788/// returns true.
2789static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2790                                                UnaryTypeTrait UTT,
2791                                                SourceLocation Loc,
2792                                                QualType ArgTy) {
2793  // C++0x [meta.unary.prop]p3:
2794  //   For all of the class templates X declared in this Clause, instantiating
2795  //   that template with a template argument that is a class template
2796  //   specialization may result in the implicit instantiation of the template
2797  //   argument if and only if the semantics of X require that the argument
2798  //   must be a complete type.
2799  // We apply this rule to all the type trait expressions used to implement
2800  // these class templates. We also try to follow any GCC documented behavior
2801  // in these expressions to ensure portability of standard libraries.
2802  switch (UTT) {
2803    // is_complete_type somewhat obviously cannot require a complete type.
2804  case UTT_IsCompleteType:
2805    // Fall-through
2806
2807    // These traits are modeled on the type predicates in C++0x
2808    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2809    // requiring a complete type, as whether or not they return true cannot be
2810    // impacted by the completeness of the type.
2811  case UTT_IsVoid:
2812  case UTT_IsIntegral:
2813  case UTT_IsFloatingPoint:
2814  case UTT_IsArray:
2815  case UTT_IsPointer:
2816  case UTT_IsLvalueReference:
2817  case UTT_IsRvalueReference:
2818  case UTT_IsMemberFunctionPointer:
2819  case UTT_IsMemberObjectPointer:
2820  case UTT_IsEnum:
2821  case UTT_IsUnion:
2822  case UTT_IsClass:
2823  case UTT_IsFunction:
2824  case UTT_IsReference:
2825  case UTT_IsArithmetic:
2826  case UTT_IsFundamental:
2827  case UTT_IsObject:
2828  case UTT_IsScalar:
2829  case UTT_IsCompound:
2830  case UTT_IsMemberPointer:
2831    // Fall-through
2832
2833    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2834    // which requires some of its traits to have the complete type. However,
2835    // the completeness of the type cannot impact these traits' semantics, and
2836    // so they don't require it. This matches the comments on these traits in
2837    // Table 49.
2838  case UTT_IsConst:
2839  case UTT_IsVolatile:
2840  case UTT_IsSigned:
2841  case UTT_IsUnsigned:
2842    return true;
2843
2844    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2845    // applied to a complete type.
2846  case UTT_IsTrivial:
2847  case UTT_IsTriviallyCopyable:
2848  case UTT_IsStandardLayout:
2849  case UTT_IsPOD:
2850  case UTT_IsLiteral:
2851  case UTT_IsEmpty:
2852  case UTT_IsPolymorphic:
2853  case UTT_IsAbstract:
2854    // Fall-through
2855
2856  // These traits require a complete type.
2857  case UTT_IsFinal:
2858
2859    // These trait expressions are designed to help implement predicates in
2860    // [meta.unary.prop] despite not being named the same. They are specified
2861    // by both GCC and the Embarcadero C++ compiler, and require the complete
2862    // type due to the overarching C++0x type predicates being implemented
2863    // requiring the complete type.
2864  case UTT_HasNothrowAssign:
2865  case UTT_HasNothrowConstructor:
2866  case UTT_HasNothrowCopy:
2867  case UTT_HasTrivialAssign:
2868  case UTT_HasTrivialDefaultConstructor:
2869  case UTT_HasTrivialCopy:
2870  case UTT_HasTrivialDestructor:
2871  case UTT_HasVirtualDestructor:
2872    // Arrays of unknown bound are expressly allowed.
2873    QualType ElTy = ArgTy;
2874    if (ArgTy->isIncompleteArrayType())
2875      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2876
2877    // The void type is expressly allowed.
2878    if (ElTy->isVoidType())
2879      return true;
2880
2881    return !S.RequireCompleteType(
2882      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2883  }
2884  llvm_unreachable("Type trait not handled by switch");
2885}
2886
2887static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2888                                   SourceLocation KeyLoc, QualType T) {
2889  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2890
2891  ASTContext &C = Self.Context;
2892  switch(UTT) {
2893    // Type trait expressions corresponding to the primary type category
2894    // predicates in C++0x [meta.unary.cat].
2895  case UTT_IsVoid:
2896    return T->isVoidType();
2897  case UTT_IsIntegral:
2898    return T->isIntegralType(C);
2899  case UTT_IsFloatingPoint:
2900    return T->isFloatingType();
2901  case UTT_IsArray:
2902    return T->isArrayType();
2903  case UTT_IsPointer:
2904    return T->isPointerType();
2905  case UTT_IsLvalueReference:
2906    return T->isLValueReferenceType();
2907  case UTT_IsRvalueReference:
2908    return T->isRValueReferenceType();
2909  case UTT_IsMemberFunctionPointer:
2910    return T->isMemberFunctionPointerType();
2911  case UTT_IsMemberObjectPointer:
2912    return T->isMemberDataPointerType();
2913  case UTT_IsEnum:
2914    return T->isEnumeralType();
2915  case UTT_IsUnion:
2916    return T->isUnionType();
2917  case UTT_IsClass:
2918    return T->isClassType() || T->isStructureType();
2919  case UTT_IsFunction:
2920    return T->isFunctionType();
2921
2922    // Type trait expressions which correspond to the convenient composition
2923    // predicates in C++0x [meta.unary.comp].
2924  case UTT_IsReference:
2925    return T->isReferenceType();
2926  case UTT_IsArithmetic:
2927    return T->isArithmeticType() && !T->isEnumeralType();
2928  case UTT_IsFundamental:
2929    return T->isFundamentalType();
2930  case UTT_IsObject:
2931    return T->isObjectType();
2932  case UTT_IsScalar:
2933    // Note: semantic analysis depends on Objective-C lifetime types to be
2934    // considered scalar types. However, such types do not actually behave
2935    // like scalar types at run time (since they may require retain/release
2936    // operations), so we report them as non-scalar.
2937    if (T->isObjCLifetimeType()) {
2938      switch (T.getObjCLifetime()) {
2939      case Qualifiers::OCL_None:
2940      case Qualifiers::OCL_ExplicitNone:
2941        return true;
2942
2943      case Qualifiers::OCL_Strong:
2944      case Qualifiers::OCL_Weak:
2945      case Qualifiers::OCL_Autoreleasing:
2946        return false;
2947      }
2948    }
2949
2950    return T->isScalarType();
2951  case UTT_IsCompound:
2952    return T->isCompoundType();
2953  case UTT_IsMemberPointer:
2954    return T->isMemberPointerType();
2955
2956    // Type trait expressions which correspond to the type property predicates
2957    // in C++0x [meta.unary.prop].
2958  case UTT_IsConst:
2959    return T.isConstQualified();
2960  case UTT_IsVolatile:
2961    return T.isVolatileQualified();
2962  case UTT_IsTrivial:
2963    return T.isTrivialType(Self.Context);
2964  case UTT_IsTriviallyCopyable:
2965    return T.isTriviallyCopyableType(Self.Context);
2966  case UTT_IsStandardLayout:
2967    return T->isStandardLayoutType();
2968  case UTT_IsPOD:
2969    return T.isPODType(Self.Context);
2970  case UTT_IsLiteral:
2971    return T->isLiteralType();
2972  case UTT_IsEmpty:
2973    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2974      return !RD->isUnion() && RD->isEmpty();
2975    return false;
2976  case UTT_IsPolymorphic:
2977    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2978      return RD->isPolymorphic();
2979    return false;
2980  case UTT_IsAbstract:
2981    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2982      return RD->isAbstract();
2983    return false;
2984  case UTT_IsFinal:
2985    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2986      return RD->hasAttr<FinalAttr>();
2987    return false;
2988  case UTT_IsSigned:
2989    return T->isSignedIntegerType();
2990  case UTT_IsUnsigned:
2991    return T->isUnsignedIntegerType();
2992
2993    // Type trait expressions which query classes regarding their construction,
2994    // destruction, and copying. Rather than being based directly on the
2995    // related type predicates in the standard, they are specified by both
2996    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
2997    // specifications.
2998    //
2999    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3000    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3001  case UTT_HasTrivialDefaultConstructor:
3002    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3003    //   If __is_pod (type) is true then the trait is true, else if type is
3004    //   a cv class or union type (or array thereof) with a trivial default
3005    //   constructor ([class.ctor]) then the trait is true, else it is false.
3006    if (T.isPODType(Self.Context))
3007      return true;
3008    if (const RecordType *RT =
3009          C.getBaseElementType(T)->getAs<RecordType>())
3010      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
3011    return false;
3012  case UTT_HasTrivialCopy:
3013    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3014    //   If __is_pod (type) is true or type is a reference type then
3015    //   the trait is true, else if type is a cv class or union type
3016    //   with a trivial copy constructor ([class.copy]) then the trait
3017    //   is true, else it is false.
3018    if (T.isPODType(Self.Context) || T->isReferenceType())
3019      return true;
3020    if (const RecordType *RT = T->getAs<RecordType>())
3021      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
3022    return false;
3023  case UTT_HasTrivialAssign:
3024    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3025    //   If type is const qualified or is a reference type then the
3026    //   trait is false. Otherwise if __is_pod (type) is true then the
3027    //   trait is true, else if type is a cv class or union type with
3028    //   a trivial copy assignment ([class.copy]) then the trait is
3029    //   true, else it is false.
3030    // Note: the const and reference restrictions are interesting,
3031    // given that const and reference members don't prevent a class
3032    // from having a trivial copy assignment operator (but do cause
3033    // errors if the copy assignment operator is actually used, q.v.
3034    // [class.copy]p12).
3035
3036    if (C.getBaseElementType(T).isConstQualified())
3037      return false;
3038    if (T.isPODType(Self.Context))
3039      return true;
3040    if (const RecordType *RT = T->getAs<RecordType>())
3041      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
3042    return false;
3043  case UTT_HasTrivialDestructor:
3044    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3045    //   If __is_pod (type) is true or type is a reference type
3046    //   then the trait is true, else if type is a cv class or union
3047    //   type (or array thereof) with a trivial destructor
3048    //   ([class.dtor]) then the trait is true, else it is
3049    //   false.
3050    if (T.isPODType(Self.Context) || T->isReferenceType())
3051      return true;
3052
3053    // Objective-C++ ARC: autorelease types don't require destruction.
3054    if (T->isObjCLifetimeType() &&
3055        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3056      return true;
3057
3058    if (const RecordType *RT =
3059          C.getBaseElementType(T)->getAs<RecordType>())
3060      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
3061    return false;
3062  // TODO: Propagate nothrowness for implicitly declared special members.
3063  case UTT_HasNothrowAssign:
3064    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3065    //   If type is const qualified or is a reference type then the
3066    //   trait is false. Otherwise if __has_trivial_assign (type)
3067    //   is true then the trait is true, else if type is a cv class
3068    //   or union type with copy assignment operators that are known
3069    //   not to throw an exception then the trait is true, else it is
3070    //   false.
3071    if (C.getBaseElementType(T).isConstQualified())
3072      return false;
3073    if (T->isReferenceType())
3074      return false;
3075    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3076      return true;
3077    if (const RecordType *RT = T->getAs<RecordType>()) {
3078      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
3079      if (RD->hasTrivialCopyAssignment())
3080        return true;
3081
3082      bool FoundAssign = false;
3083      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3084      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3085                       Sema::LookupOrdinaryName);
3086      if (Self.LookupQualifiedName(Res, RD)) {
3087        Res.suppressDiagnostics();
3088        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3089             Op != OpEnd; ++Op) {
3090          if (isa<FunctionTemplateDecl>(*Op))
3091            continue;
3092
3093          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3094          if (Operator->isCopyAssignmentOperator()) {
3095            FoundAssign = true;
3096            const FunctionProtoType *CPT
3097                = Operator->getType()->getAs<FunctionProtoType>();
3098            if (CPT->getExceptionSpecType() == EST_Delayed)
3099              return false;
3100            if (!CPT->isNothrow(Self.Context))
3101              return false;
3102          }
3103        }
3104      }
3105
3106      return FoundAssign;
3107    }
3108    return false;
3109  case UTT_HasNothrowCopy:
3110    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3111    //   If __has_trivial_copy (type) is true then the trait is true, else
3112    //   if type is a cv class or union type with copy constructors that are
3113    //   known not to throw an exception then the trait is true, else it is
3114    //   false.
3115    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3116      return true;
3117    if (const RecordType *RT = T->getAs<RecordType>()) {
3118      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3119      if (RD->hasTrivialCopyConstructor())
3120        return true;
3121
3122      bool FoundConstructor = false;
3123      unsigned FoundTQs;
3124      DeclContext::lookup_const_iterator Con, ConEnd;
3125      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3126           Con != ConEnd; ++Con) {
3127        // A template constructor is never a copy constructor.
3128        // FIXME: However, it may actually be selected at the actual overload
3129        // resolution point.
3130        if (isa<FunctionTemplateDecl>(*Con))
3131          continue;
3132        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3133        if (Constructor->isCopyConstructor(FoundTQs)) {
3134          FoundConstructor = true;
3135          const FunctionProtoType *CPT
3136              = Constructor->getType()->getAs<FunctionProtoType>();
3137          if (CPT->getExceptionSpecType() == EST_Delayed)
3138            return false;
3139          // FIXME: check whether evaluating default arguments can throw.
3140          // For now, we'll be conservative and assume that they can throw.
3141          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3142            return false;
3143        }
3144      }
3145
3146      return FoundConstructor;
3147    }
3148    return false;
3149  case UTT_HasNothrowConstructor:
3150    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3151    //   If __has_trivial_constructor (type) is true then the trait is
3152    //   true, else if type is a cv class or union type (or array
3153    //   thereof) with a default constructor that is known not to
3154    //   throw an exception then the trait is true, else it is false.
3155    if (T.isPODType(C) || T->isObjCLifetimeType())
3156      return true;
3157    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
3158      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3159      if (RD->hasTrivialDefaultConstructor())
3160        return true;
3161
3162      DeclContext::lookup_const_iterator Con, ConEnd;
3163      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3164           Con != ConEnd; ++Con) {
3165        // FIXME: In C++0x, a constructor template can be a default constructor.
3166        if (isa<FunctionTemplateDecl>(*Con))
3167          continue;
3168        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3169        if (Constructor->isDefaultConstructor()) {
3170          const FunctionProtoType *CPT
3171              = Constructor->getType()->getAs<FunctionProtoType>();
3172          if (CPT->getExceptionSpecType() == EST_Delayed)
3173            return false;
3174          // TODO: check whether evaluating default arguments can throw.
3175          // For now, we'll be conservative and assume that they can throw.
3176          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3177        }
3178      }
3179    }
3180    return false;
3181  case UTT_HasVirtualDestructor:
3182    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3183    //   If type is a class type with a virtual destructor ([class.dtor])
3184    //   then the trait is true, else it is false.
3185    if (const RecordType *Record = T->getAs<RecordType>()) {
3186      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
3187      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3188        return Destructor->isVirtual();
3189    }
3190    return false;
3191
3192    // These type trait expressions are modeled on the specifications for the
3193    // Embarcadero C++0x type trait functions:
3194    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3195  case UTT_IsCompleteType:
3196    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3197    //   Returns True if and only if T is a complete type at the point of the
3198    //   function call.
3199    return !T->isIncompleteType();
3200  }
3201  llvm_unreachable("Type trait not covered by switch");
3202}
3203
3204ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3205                                     SourceLocation KWLoc,
3206                                     TypeSourceInfo *TSInfo,
3207                                     SourceLocation RParen) {
3208  QualType T = TSInfo->getType();
3209  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3210    return ExprError();
3211
3212  bool Value = false;
3213  if (!T->isDependentType())
3214    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3215
3216  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3217                                                RParen, Context.BoolTy));
3218}
3219
3220ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3221                                      SourceLocation KWLoc,
3222                                      ParsedType LhsTy,
3223                                      ParsedType RhsTy,
3224                                      SourceLocation RParen) {
3225  TypeSourceInfo *LhsTSInfo;
3226  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3227  if (!LhsTSInfo)
3228    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3229
3230  TypeSourceInfo *RhsTSInfo;
3231  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3232  if (!RhsTSInfo)
3233    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3234
3235  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3236}
3237
3238static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3239                              ArrayRef<TypeSourceInfo *> Args,
3240                              SourceLocation RParenLoc) {
3241  switch (Kind) {
3242  case clang::TT_IsTriviallyConstructible: {
3243    // C++11 [meta.unary.prop]:
3244    //   is_trivially_constructible is defined as:
3245    //
3246    //     is_constructible<T, Args...>::value is true and the variable
3247    //     definition for is_constructible, as defined below, is known to call no
3248    //     operation that is not trivial.
3249    //
3250    //   The predicate condition for a template specialization
3251    //   is_constructible<T, Args...> shall be satisfied if and only if the
3252    //   following variable definition would be well-formed for some invented
3253    //   variable t:
3254    //
3255    //     T t(create<Args>()...);
3256    if (Args.empty()) {
3257      S.Diag(KWLoc, diag::err_type_trait_arity)
3258        << 1 << 1 << 1 << (int)Args.size();
3259      return false;
3260    }
3261
3262    bool SawVoid = false;
3263    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3264      if (Args[I]->getType()->isVoidType()) {
3265        SawVoid = true;
3266        continue;
3267      }
3268
3269      if (!Args[I]->getType()->isIncompleteType() &&
3270        S.RequireCompleteType(KWLoc, Args[I]->getType(),
3271          diag::err_incomplete_type_used_in_type_trait_expr))
3272        return false;
3273    }
3274
3275    // If any argument was 'void', of course it won't type-check.
3276    if (SawVoid)
3277      return false;
3278
3279    llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3280    llvm::SmallVector<Expr *, 2> ArgExprs;
3281    ArgExprs.reserve(Args.size() - 1);
3282    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3283      QualType T = Args[I]->getType();
3284      if (T->isObjectType() || T->isFunctionType())
3285        T = S.Context.getRValueReferenceType(T);
3286      OpaqueArgExprs.push_back(
3287        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3288                        T.getNonLValueExprType(S.Context),
3289                        Expr::getValueKindForType(T)));
3290      ArgExprs.push_back(&OpaqueArgExprs.back());
3291    }
3292
3293    // Perform the initialization in an unevaluated context within a SFINAE
3294    // trap at translation unit scope.
3295    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3296    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3297    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3298    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3299    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3300                                                                 RParenLoc));
3301    InitializationSequence Init(S, To, InitKind,
3302                                ArgExprs.begin(), ArgExprs.size());
3303    if (Init.Failed())
3304      return false;
3305
3306    ExprResult Result = Init.Perform(S, To, InitKind,
3307                                     MultiExprArg(ArgExprs.data(),
3308                                                  ArgExprs.size()));
3309    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3310      return false;
3311
3312    // The initialization succeeded; not make sure there are no non-trivial
3313    // calls.
3314    return !Result.get()->hasNonTrivialCall(S.Context);
3315  }
3316  }
3317
3318  return false;
3319}
3320
3321ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3322                                ArrayRef<TypeSourceInfo *> Args,
3323                                SourceLocation RParenLoc) {
3324  bool Dependent = false;
3325  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3326    if (Args[I]->getType()->isDependentType()) {
3327      Dependent = true;
3328      break;
3329    }
3330  }
3331
3332  bool Value = false;
3333  if (!Dependent)
3334    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3335
3336  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3337                               Args, RParenLoc, Value);
3338}
3339
3340ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3341                                ArrayRef<ParsedType> Args,
3342                                SourceLocation RParenLoc) {
3343  llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3344  ConvertedArgs.reserve(Args.size());
3345
3346  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3347    TypeSourceInfo *TInfo;
3348    QualType T = GetTypeFromParser(Args[I], &TInfo);
3349    if (!TInfo)
3350      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3351
3352    ConvertedArgs.push_back(TInfo);
3353  }
3354
3355  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3356}
3357
3358static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3359                                    QualType LhsT, QualType RhsT,
3360                                    SourceLocation KeyLoc) {
3361  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3362         "Cannot evaluate traits of dependent types");
3363
3364  switch(BTT) {
3365  case BTT_IsBaseOf: {
3366    // C++0x [meta.rel]p2
3367    // Base is a base class of Derived without regard to cv-qualifiers or
3368    // Base and Derived are not unions and name the same class type without
3369    // regard to cv-qualifiers.
3370
3371    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3372    if (!lhsRecord) return false;
3373
3374    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3375    if (!rhsRecord) return false;
3376
3377    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3378             == (lhsRecord == rhsRecord));
3379
3380    if (lhsRecord == rhsRecord)
3381      return !lhsRecord->getDecl()->isUnion();
3382
3383    // C++0x [meta.rel]p2:
3384    //   If Base and Derived are class types and are different types
3385    //   (ignoring possible cv-qualifiers) then Derived shall be a
3386    //   complete type.
3387    if (Self.RequireCompleteType(KeyLoc, RhsT,
3388                          diag::err_incomplete_type_used_in_type_trait_expr))
3389      return false;
3390
3391    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3392      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3393  }
3394  case BTT_IsSame:
3395    return Self.Context.hasSameType(LhsT, RhsT);
3396  case BTT_TypeCompatible:
3397    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3398                                           RhsT.getUnqualifiedType());
3399  case BTT_IsConvertible:
3400  case BTT_IsConvertibleTo: {
3401    // C++0x [meta.rel]p4:
3402    //   Given the following function prototype:
3403    //
3404    //     template <class T>
3405    //       typename add_rvalue_reference<T>::type create();
3406    //
3407    //   the predicate condition for a template specialization
3408    //   is_convertible<From, To> shall be satisfied if and only if
3409    //   the return expression in the following code would be
3410    //   well-formed, including any implicit conversions to the return
3411    //   type of the function:
3412    //
3413    //     To test() {
3414    //       return create<From>();
3415    //     }
3416    //
3417    //   Access checking is performed as if in a context unrelated to To and
3418    //   From. Only the validity of the immediate context of the expression
3419    //   of the return-statement (including conversions to the return type)
3420    //   is considered.
3421    //
3422    // We model the initialization as a copy-initialization of a temporary
3423    // of the appropriate type, which for this expression is identical to the
3424    // return statement (since NRVO doesn't apply).
3425    if (LhsT->isObjectType() || LhsT->isFunctionType())
3426      LhsT = Self.Context.getRValueReferenceType(LhsT);
3427
3428    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3429    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3430                         Expr::getValueKindForType(LhsT));
3431    Expr *FromPtr = &From;
3432    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3433                                                           SourceLocation()));
3434
3435    // Perform the initialization in an unevaluated context within a SFINAE
3436    // trap at translation unit scope.
3437    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3438    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3439    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3440    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3441    if (Init.Failed())
3442      return false;
3443
3444    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
3445    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3446  }
3447
3448  case BTT_IsTriviallyAssignable: {
3449    // C++11 [meta.unary.prop]p3:
3450    //   is_trivially_assignable is defined as:
3451    //     is_assignable<T, U>::value is true and the assignment, as defined by
3452    //     is_assignable, is known to call no operation that is not trivial
3453    //
3454    //   is_assignable is defined as:
3455    //     The expression declval<T>() = declval<U>() is well-formed when
3456    //     treated as an unevaluated operand (Clause 5).
3457    //
3458    //   For both, T and U shall be complete types, (possibly cv-qualified)
3459    //   void, or arrays of unknown bound.
3460    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3461        Self.RequireCompleteType(KeyLoc, LhsT,
3462          diag::err_incomplete_type_used_in_type_trait_expr))
3463      return false;
3464    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3465        Self.RequireCompleteType(KeyLoc, RhsT,
3466          diag::err_incomplete_type_used_in_type_trait_expr))
3467      return false;
3468
3469    // cv void is never assignable.
3470    if (LhsT->isVoidType() || RhsT->isVoidType())
3471      return false;
3472
3473    // Build expressions that emulate the effect of declval<T>() and
3474    // declval<U>().
3475    if (LhsT->isObjectType() || LhsT->isFunctionType())
3476      LhsT = Self.Context.getRValueReferenceType(LhsT);
3477    if (RhsT->isObjectType() || RhsT->isFunctionType())
3478      RhsT = Self.Context.getRValueReferenceType(RhsT);
3479    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3480                        Expr::getValueKindForType(LhsT));
3481    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3482                        Expr::getValueKindForType(RhsT));
3483
3484    // Attempt the assignment in an unevaluated context within a SFINAE
3485    // trap at translation unit scope.
3486    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3487    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3488    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3489    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3490    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3491      return false;
3492
3493    return !Result.get()->hasNonTrivialCall(Self.Context);
3494  }
3495  }
3496  llvm_unreachable("Unknown type trait or not implemented");
3497}
3498
3499ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3500                                      SourceLocation KWLoc,
3501                                      TypeSourceInfo *LhsTSInfo,
3502                                      TypeSourceInfo *RhsTSInfo,
3503                                      SourceLocation RParen) {
3504  QualType LhsT = LhsTSInfo->getType();
3505  QualType RhsT = RhsTSInfo->getType();
3506
3507  if (BTT == BTT_TypeCompatible) {
3508    if (getLangOpts().CPlusPlus) {
3509      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3510        << SourceRange(KWLoc, RParen);
3511      return ExprError();
3512    }
3513  }
3514
3515  bool Value = false;
3516  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3517    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3518
3519  // Select trait result type.
3520  QualType ResultType;
3521  switch (BTT) {
3522  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3523  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3524  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3525  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3526  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3527  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3528  }
3529
3530  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3531                                                 RhsTSInfo, Value, RParen,
3532                                                 ResultType));
3533}
3534
3535ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3536                                     SourceLocation KWLoc,
3537                                     ParsedType Ty,
3538                                     Expr* DimExpr,
3539                                     SourceLocation RParen) {
3540  TypeSourceInfo *TSInfo;
3541  QualType T = GetTypeFromParser(Ty, &TSInfo);
3542  if (!TSInfo)
3543    TSInfo = Context.getTrivialTypeSourceInfo(T);
3544
3545  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3546}
3547
3548static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3549                                           QualType T, Expr *DimExpr,
3550                                           SourceLocation KeyLoc) {
3551  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3552
3553  switch(ATT) {
3554  case ATT_ArrayRank:
3555    if (T->isArrayType()) {
3556      unsigned Dim = 0;
3557      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3558        ++Dim;
3559        T = AT->getElementType();
3560      }
3561      return Dim;
3562    }
3563    return 0;
3564
3565  case ATT_ArrayExtent: {
3566    llvm::APSInt Value;
3567    uint64_t Dim;
3568    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3569          Self.PDiag(diag::err_dimension_expr_not_constant_integer),
3570          false).isInvalid())
3571      return 0;
3572    if (Value.isSigned() && Value.isNegative()) {
3573      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3574        << DimExpr->getSourceRange();
3575      return 0;
3576    }
3577    Dim = Value.getLimitedValue();
3578
3579    if (T->isArrayType()) {
3580      unsigned D = 0;
3581      bool Matched = false;
3582      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3583        if (Dim == D) {
3584          Matched = true;
3585          break;
3586        }
3587        ++D;
3588        T = AT->getElementType();
3589      }
3590
3591      if (Matched && T->isArrayType()) {
3592        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3593          return CAT->getSize().getLimitedValue();
3594      }
3595    }
3596    return 0;
3597  }
3598  }
3599  llvm_unreachable("Unknown type trait or not implemented");
3600}
3601
3602ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3603                                     SourceLocation KWLoc,
3604                                     TypeSourceInfo *TSInfo,
3605                                     Expr* DimExpr,
3606                                     SourceLocation RParen) {
3607  QualType T = TSInfo->getType();
3608
3609  // FIXME: This should likely be tracked as an APInt to remove any host
3610  // assumptions about the width of size_t on the target.
3611  uint64_t Value = 0;
3612  if (!T->isDependentType())
3613    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3614
3615  // While the specification for these traits from the Embarcadero C++
3616  // compiler's documentation says the return type is 'unsigned int', Clang
3617  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3618  // compiler, there is no difference. On several other platforms this is an
3619  // important distinction.
3620  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3621                                                DimExpr, RParen,
3622                                                Context.getSizeType()));
3623}
3624
3625ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3626                                      SourceLocation KWLoc,
3627                                      Expr *Queried,
3628                                      SourceLocation RParen) {
3629  // If error parsing the expression, ignore.
3630  if (!Queried)
3631    return ExprError();
3632
3633  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3634
3635  return move(Result);
3636}
3637
3638static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3639  switch (ET) {
3640  case ET_IsLValueExpr: return E->isLValue();
3641  case ET_IsRValueExpr: return E->isRValue();
3642  }
3643  llvm_unreachable("Expression trait not covered by switch");
3644}
3645
3646ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3647                                      SourceLocation KWLoc,
3648                                      Expr *Queried,
3649                                      SourceLocation RParen) {
3650  if (Queried->isTypeDependent()) {
3651    // Delay type-checking for type-dependent expressions.
3652  } else if (Queried->getType()->isPlaceholderType()) {
3653    ExprResult PE = CheckPlaceholderExpr(Queried);
3654    if (PE.isInvalid()) return ExprError();
3655    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3656  }
3657
3658  bool Value = EvaluateExpressionTrait(ET, Queried);
3659
3660  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3661                                                 RParen, Context.BoolTy));
3662}
3663
3664QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3665                                            ExprValueKind &VK,
3666                                            SourceLocation Loc,
3667                                            bool isIndirect) {
3668  assert(!LHS.get()->getType()->isPlaceholderType() &&
3669         !RHS.get()->getType()->isPlaceholderType() &&
3670         "placeholders should have been weeded out by now");
3671
3672  // The LHS undergoes lvalue conversions if this is ->*.
3673  if (isIndirect) {
3674    LHS = DefaultLvalueConversion(LHS.take());
3675    if (LHS.isInvalid()) return QualType();
3676  }
3677
3678  // The RHS always undergoes lvalue conversions.
3679  RHS = DefaultLvalueConversion(RHS.take());
3680  if (RHS.isInvalid()) return QualType();
3681
3682  const char *OpSpelling = isIndirect ? "->*" : ".*";
3683  // C++ 5.5p2
3684  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3685  //   be of type "pointer to member of T" (where T is a completely-defined
3686  //   class type) [...]
3687  QualType RHSType = RHS.get()->getType();
3688  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3689  if (!MemPtr) {
3690    Diag(Loc, diag::err_bad_memptr_rhs)
3691      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3692    return QualType();
3693  }
3694
3695  QualType Class(MemPtr->getClass(), 0);
3696
3697  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3698  // member pointer points must be completely-defined. However, there is no
3699  // reason for this semantic distinction, and the rule is not enforced by
3700  // other compilers. Therefore, we do not check this property, as it is
3701  // likely to be considered a defect.
3702
3703  // C++ 5.5p2
3704  //   [...] to its first operand, which shall be of class T or of a class of
3705  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3706  //   such a class]
3707  QualType LHSType = LHS.get()->getType();
3708  if (isIndirect) {
3709    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3710      LHSType = Ptr->getPointeeType();
3711    else {
3712      Diag(Loc, diag::err_bad_memptr_lhs)
3713        << OpSpelling << 1 << LHSType
3714        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3715      return QualType();
3716    }
3717  }
3718
3719  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3720    // If we want to check the hierarchy, we need a complete type.
3721    if (RequireCompleteType(Loc, LHSType, PDiag(diag::err_bad_memptr_lhs)
3722        << OpSpelling << (int)isIndirect)) {
3723      return QualType();
3724    }
3725    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3726                       /*DetectVirtual=*/false);
3727    // FIXME: Would it be useful to print full ambiguity paths, or is that
3728    // overkill?
3729    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3730        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3731      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3732        << (int)isIndirect << LHS.get()->getType();
3733      return QualType();
3734    }
3735    // Cast LHS to type of use.
3736    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3737    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3738
3739    CXXCastPath BasePath;
3740    BuildBasePathArray(Paths, BasePath);
3741    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3742                            &BasePath);
3743  }
3744
3745  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3746    // Diagnose use of pointer-to-member type which when used as
3747    // the functional cast in a pointer-to-member expression.
3748    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3749     return QualType();
3750  }
3751
3752  // C++ 5.5p2
3753  //   The result is an object or a function of the type specified by the
3754  //   second operand.
3755  // The cv qualifiers are the union of those in the pointer and the left side,
3756  // in accordance with 5.5p5 and 5.2.5.
3757  QualType Result = MemPtr->getPointeeType();
3758  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3759
3760  // C++0x [expr.mptr.oper]p6:
3761  //   In a .* expression whose object expression is an rvalue, the program is
3762  //   ill-formed if the second operand is a pointer to member function with
3763  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3764  //   expression is an lvalue, the program is ill-formed if the second operand
3765  //   is a pointer to member function with ref-qualifier &&.
3766  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3767    switch (Proto->getRefQualifier()) {
3768    case RQ_None:
3769      // Do nothing
3770      break;
3771
3772    case RQ_LValue:
3773      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3774        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3775          << RHSType << 1 << LHS.get()->getSourceRange();
3776      break;
3777
3778    case RQ_RValue:
3779      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3780        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3781          << RHSType << 0 << LHS.get()->getSourceRange();
3782      break;
3783    }
3784  }
3785
3786  // C++ [expr.mptr.oper]p6:
3787  //   The result of a .* expression whose second operand is a pointer
3788  //   to a data member is of the same value category as its
3789  //   first operand. The result of a .* expression whose second
3790  //   operand is a pointer to a member function is a prvalue. The
3791  //   result of an ->* expression is an lvalue if its second operand
3792  //   is a pointer to data member and a prvalue otherwise.
3793  if (Result->isFunctionType()) {
3794    VK = VK_RValue;
3795    return Context.BoundMemberTy;
3796  } else if (isIndirect) {
3797    VK = VK_LValue;
3798  } else {
3799    VK = LHS.get()->getValueKind();
3800  }
3801
3802  return Result;
3803}
3804
3805/// \brief Try to convert a type to another according to C++0x 5.16p3.
3806///
3807/// This is part of the parameter validation for the ? operator. If either
3808/// value operand is a class type, the two operands are attempted to be
3809/// converted to each other. This function does the conversion in one direction.
3810/// It returns true if the program is ill-formed and has already been diagnosed
3811/// as such.
3812static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3813                                SourceLocation QuestionLoc,
3814                                bool &HaveConversion,
3815                                QualType &ToType) {
3816  HaveConversion = false;
3817  ToType = To->getType();
3818
3819  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3820                                                           SourceLocation());
3821  // C++0x 5.16p3
3822  //   The process for determining whether an operand expression E1 of type T1
3823  //   can be converted to match an operand expression E2 of type T2 is defined
3824  //   as follows:
3825  //   -- If E2 is an lvalue:
3826  bool ToIsLvalue = To->isLValue();
3827  if (ToIsLvalue) {
3828    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3829    //   type "lvalue reference to T2", subject to the constraint that in the
3830    //   conversion the reference must bind directly to E1.
3831    QualType T = Self.Context.getLValueReferenceType(ToType);
3832    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3833
3834    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3835    if (InitSeq.isDirectReferenceBinding()) {
3836      ToType = T;
3837      HaveConversion = true;
3838      return false;
3839    }
3840
3841    if (InitSeq.isAmbiguous())
3842      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3843  }
3844
3845  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3846  //      -- if E1 and E2 have class type, and the underlying class types are
3847  //         the same or one is a base class of the other:
3848  QualType FTy = From->getType();
3849  QualType TTy = To->getType();
3850  const RecordType *FRec = FTy->getAs<RecordType>();
3851  const RecordType *TRec = TTy->getAs<RecordType>();
3852  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3853                       Self.IsDerivedFrom(FTy, TTy);
3854  if (FRec && TRec &&
3855      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3856    //         E1 can be converted to match E2 if the class of T2 is the
3857    //         same type as, or a base class of, the class of T1, and
3858    //         [cv2 > cv1].
3859    if (FRec == TRec || FDerivedFromT) {
3860      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3861        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3862        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3863        if (InitSeq) {
3864          HaveConversion = true;
3865          return false;
3866        }
3867
3868        if (InitSeq.isAmbiguous())
3869          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3870      }
3871    }
3872
3873    return false;
3874  }
3875
3876  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
3877  //        implicitly converted to the type that expression E2 would have
3878  //        if E2 were converted to an rvalue (or the type it has, if E2 is
3879  //        an rvalue).
3880  //
3881  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3882  // to the array-to-pointer or function-to-pointer conversions.
3883  if (!TTy->getAs<TagType>())
3884    TTy = TTy.getUnqualifiedType();
3885
3886  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3887  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3888  HaveConversion = !InitSeq.Failed();
3889  ToType = TTy;
3890  if (InitSeq.isAmbiguous())
3891    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3892
3893  return false;
3894}
3895
3896/// \brief Try to find a common type for two according to C++0x 5.16p5.
3897///
3898/// This is part of the parameter validation for the ? operator. If either
3899/// value operand is a class type, overload resolution is used to find a
3900/// conversion to a common type.
3901static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3902                                    SourceLocation QuestionLoc) {
3903  Expr *Args[2] = { LHS.get(), RHS.get() };
3904  OverloadCandidateSet CandidateSet(QuestionLoc);
3905  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3906                                    CandidateSet);
3907
3908  OverloadCandidateSet::iterator Best;
3909  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
3910    case OR_Success: {
3911      // We found a match. Perform the conversions on the arguments and move on.
3912      ExprResult LHSRes =
3913        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
3914                                       Best->Conversions[0], Sema::AA_Converting);
3915      if (LHSRes.isInvalid())
3916        break;
3917      LHS = move(LHSRes);
3918
3919      ExprResult RHSRes =
3920        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
3921                                       Best->Conversions[1], Sema::AA_Converting);
3922      if (RHSRes.isInvalid())
3923        break;
3924      RHS = move(RHSRes);
3925      if (Best->Function)
3926        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
3927      return false;
3928    }
3929
3930    case OR_No_Viable_Function:
3931
3932      // Emit a better diagnostic if one of the expressions is a null pointer
3933      // constant and the other is a pointer type. In this case, the user most
3934      // likely forgot to take the address of the other expression.
3935      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
3936        return true;
3937
3938      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
3939        << LHS.get()->getType() << RHS.get()->getType()
3940        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3941      return true;
3942
3943    case OR_Ambiguous:
3944      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
3945        << LHS.get()->getType() << RHS.get()->getType()
3946        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
3947      // FIXME: Print the possible common types by printing the return types of
3948      // the viable candidates.
3949      break;
3950
3951    case OR_Deleted:
3952      llvm_unreachable("Conditional operator has only built-in overloads");
3953  }
3954  return true;
3955}
3956
3957/// \brief Perform an "extended" implicit conversion as returned by
3958/// TryClassUnification.
3959static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
3960  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3961  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
3962                                                           SourceLocation());
3963  Expr *Arg = E.take();
3964  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
3965  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
3966  if (Result.isInvalid())
3967    return true;
3968
3969  E = Result;
3970  return false;
3971}
3972
3973/// \brief Check the operands of ?: under C++ semantics.
3974///
3975/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
3976/// extension. In this case, LHS == Cond. (But they're not aliases.)
3977QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
3978                                           ExprValueKind &VK, ExprObjectKind &OK,
3979                                           SourceLocation QuestionLoc) {
3980  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
3981  // interface pointers.
3982
3983  // C++0x 5.16p1
3984  //   The first expression is contextually converted to bool.
3985  if (!Cond.get()->isTypeDependent()) {
3986    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
3987    if (CondRes.isInvalid())
3988      return QualType();
3989    Cond = move(CondRes);
3990  }
3991
3992  // Assume r-value.
3993  VK = VK_RValue;
3994  OK = OK_Ordinary;
3995
3996  // Either of the arguments dependent?
3997  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
3998    return Context.DependentTy;
3999
4000  // C++0x 5.16p2
4001  //   If either the second or the third operand has type (cv) void, ...
4002  QualType LTy = LHS.get()->getType();
4003  QualType RTy = RHS.get()->getType();
4004  bool LVoid = LTy->isVoidType();
4005  bool RVoid = RTy->isVoidType();
4006  if (LVoid || RVoid) {
4007    //   ... then the [l2r] conversions are performed on the second and third
4008    //   operands ...
4009    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4010    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4011    if (LHS.isInvalid() || RHS.isInvalid())
4012      return QualType();
4013    LTy = LHS.get()->getType();
4014    RTy = RHS.get()->getType();
4015
4016    //   ... and one of the following shall hold:
4017    //   -- The second or the third operand (but not both) is a throw-
4018    //      expression; the result is of the type of the other and is an rvalue.
4019    bool LThrow = isa<CXXThrowExpr>(LHS.get());
4020    bool RThrow = isa<CXXThrowExpr>(RHS.get());
4021    if (LThrow && !RThrow)
4022      return RTy;
4023    if (RThrow && !LThrow)
4024      return LTy;
4025
4026    //   -- Both the second and third operands have type void; the result is of
4027    //      type void and is an rvalue.
4028    if (LVoid && RVoid)
4029      return Context.VoidTy;
4030
4031    // Neither holds, error.
4032    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4033      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4034      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4035    return QualType();
4036  }
4037
4038  // Neither is void.
4039
4040  // C++0x 5.16p3
4041  //   Otherwise, if the second and third operand have different types, and
4042  //   either has (cv) class type, and attempt is made to convert each of those
4043  //   operands to the other.
4044  if (!Context.hasSameType(LTy, RTy) &&
4045      (LTy->isRecordType() || RTy->isRecordType())) {
4046    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4047    // These return true if a single direction is already ambiguous.
4048    QualType L2RType, R2LType;
4049    bool HaveL2R, HaveR2L;
4050    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4051      return QualType();
4052    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4053      return QualType();
4054
4055    //   If both can be converted, [...] the program is ill-formed.
4056    if (HaveL2R && HaveR2L) {
4057      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4058        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4059      return QualType();
4060    }
4061
4062    //   If exactly one conversion is possible, that conversion is applied to
4063    //   the chosen operand and the converted operands are used in place of the
4064    //   original operands for the remainder of this section.
4065    if (HaveL2R) {
4066      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4067        return QualType();
4068      LTy = LHS.get()->getType();
4069    } else if (HaveR2L) {
4070      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4071        return QualType();
4072      RTy = RHS.get()->getType();
4073    }
4074  }
4075
4076  // C++0x 5.16p4
4077  //   If the second and third operands are glvalues of the same value
4078  //   category and have the same type, the result is of that type and
4079  //   value category and it is a bit-field if the second or the third
4080  //   operand is a bit-field, or if both are bit-fields.
4081  // We only extend this to bitfields, not to the crazy other kinds of
4082  // l-values.
4083  bool Same = Context.hasSameType(LTy, RTy);
4084  if (Same &&
4085      LHS.get()->isGLValue() &&
4086      LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
4087      LHS.get()->isOrdinaryOrBitFieldObject() &&
4088      RHS.get()->isOrdinaryOrBitFieldObject()) {
4089    VK = LHS.get()->getValueKind();
4090    if (LHS.get()->getObjectKind() == OK_BitField ||
4091        RHS.get()->getObjectKind() == OK_BitField)
4092      OK = OK_BitField;
4093    return LTy;
4094  }
4095
4096  // C++0x 5.16p5
4097  //   Otherwise, the result is an rvalue. If the second and third operands
4098  //   do not have the same type, and either has (cv) class type, ...
4099  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4100    //   ... overload resolution is used to determine the conversions (if any)
4101    //   to be applied to the operands. If the overload resolution fails, the
4102    //   program is ill-formed.
4103    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4104      return QualType();
4105  }
4106
4107  // C++0x 5.16p6
4108  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
4109  //   conversions are performed on the second and third operands.
4110  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4111  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4112  if (LHS.isInvalid() || RHS.isInvalid())
4113    return QualType();
4114  LTy = LHS.get()->getType();
4115  RTy = RHS.get()->getType();
4116
4117  //   After those conversions, one of the following shall hold:
4118  //   -- The second and third operands have the same type; the result
4119  //      is of that type. If the operands have class type, the result
4120  //      is a prvalue temporary of the result type, which is
4121  //      copy-initialized from either the second operand or the third
4122  //      operand depending on the value of the first operand.
4123  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4124    if (LTy->isRecordType()) {
4125      // The operands have class type. Make a temporary copy.
4126      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4127      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4128                                                     SourceLocation(),
4129                                                     LHS);
4130      if (LHSCopy.isInvalid())
4131        return QualType();
4132
4133      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4134                                                     SourceLocation(),
4135                                                     RHS);
4136      if (RHSCopy.isInvalid())
4137        return QualType();
4138
4139      LHS = LHSCopy;
4140      RHS = RHSCopy;
4141    }
4142
4143    return LTy;
4144  }
4145
4146  // Extension: conditional operator involving vector types.
4147  if (LTy->isVectorType() || RTy->isVectorType())
4148    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4149
4150  //   -- The second and third operands have arithmetic or enumeration type;
4151  //      the usual arithmetic conversions are performed to bring them to a
4152  //      common type, and the result is of that type.
4153  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4154    UsualArithmeticConversions(LHS, RHS);
4155    if (LHS.isInvalid() || RHS.isInvalid())
4156      return QualType();
4157    return LHS.get()->getType();
4158  }
4159
4160  //   -- The second and third operands have pointer type, or one has pointer
4161  //      type and the other is a null pointer constant; pointer conversions
4162  //      and qualification conversions are performed to bring them to their
4163  //      composite pointer type. The result is of the composite pointer type.
4164  //   -- The second and third operands have pointer to member type, or one has
4165  //      pointer to member type and the other is a null pointer constant;
4166  //      pointer to member conversions and qualification conversions are
4167  //      performed to bring them to a common type, whose cv-qualification
4168  //      shall match the cv-qualification of either the second or the third
4169  //      operand. The result is of the common type.
4170  bool NonStandardCompositeType = false;
4171  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4172                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4173  if (!Composite.isNull()) {
4174    if (NonStandardCompositeType)
4175      Diag(QuestionLoc,
4176           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4177        << LTy << RTy << Composite
4178        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4179
4180    return Composite;
4181  }
4182
4183  // Similarly, attempt to find composite type of two objective-c pointers.
4184  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4185  if (!Composite.isNull())
4186    return Composite;
4187
4188  // Check if we are using a null with a non-pointer type.
4189  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4190    return QualType();
4191
4192  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4193    << LHS.get()->getType() << RHS.get()->getType()
4194    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4195  return QualType();
4196}
4197
4198/// \brief Find a merged pointer type and convert the two expressions to it.
4199///
4200/// This finds the composite pointer type (or member pointer type) for @p E1
4201/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
4202/// type and returns it.
4203/// It does not emit diagnostics.
4204///
4205/// \param Loc The location of the operator requiring these two expressions to
4206/// be converted to the composite pointer type.
4207///
4208/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4209/// a non-standard (but still sane) composite type to which both expressions
4210/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4211/// will be set true.
4212QualType Sema::FindCompositePointerType(SourceLocation Loc,
4213                                        Expr *&E1, Expr *&E2,
4214                                        bool *NonStandardCompositeType) {
4215  if (NonStandardCompositeType)
4216    *NonStandardCompositeType = false;
4217
4218  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4219  QualType T1 = E1->getType(), T2 = E2->getType();
4220
4221  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4222      !T2->isAnyPointerType() && !T2->isMemberPointerType())
4223   return QualType();
4224
4225  // C++0x 5.9p2
4226  //   Pointer conversions and qualification conversions are performed on
4227  //   pointer operands to bring them to their composite pointer type. If
4228  //   one operand is a null pointer constant, the composite pointer type is
4229  //   the type of the other operand.
4230  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4231    if (T2->isMemberPointerType())
4232      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4233    else
4234      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4235    return T2;
4236  }
4237  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4238    if (T1->isMemberPointerType())
4239      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4240    else
4241      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4242    return T1;
4243  }
4244
4245  // Now both have to be pointers or member pointers.
4246  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4247      (!T2->isPointerType() && !T2->isMemberPointerType()))
4248    return QualType();
4249
4250  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4251  //   the other has type "pointer to cv2 T" and the composite pointer type is
4252  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4253  //   Otherwise, the composite pointer type is a pointer type similar to the
4254  //   type of one of the operands, with a cv-qualification signature that is
4255  //   the union of the cv-qualification signatures of the operand types.
4256  // In practice, the first part here is redundant; it's subsumed by the second.
4257  // What we do here is, we build the two possible composite types, and try the
4258  // conversions in both directions. If only one works, or if the two composite
4259  // types are the same, we have succeeded.
4260  // FIXME: extended qualifiers?
4261  typedef SmallVector<unsigned, 4> QualifierVector;
4262  QualifierVector QualifierUnion;
4263  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4264      ContainingClassVector;
4265  ContainingClassVector MemberOfClass;
4266  QualType Composite1 = Context.getCanonicalType(T1),
4267           Composite2 = Context.getCanonicalType(T2);
4268  unsigned NeedConstBefore = 0;
4269  do {
4270    const PointerType *Ptr1, *Ptr2;
4271    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4272        (Ptr2 = Composite2->getAs<PointerType>())) {
4273      Composite1 = Ptr1->getPointeeType();
4274      Composite2 = Ptr2->getPointeeType();
4275
4276      // If we're allowed to create a non-standard composite type, keep track
4277      // of where we need to fill in additional 'const' qualifiers.
4278      if (NonStandardCompositeType &&
4279          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4280        NeedConstBefore = QualifierUnion.size();
4281
4282      QualifierUnion.push_back(
4283                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4284      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4285      continue;
4286    }
4287
4288    const MemberPointerType *MemPtr1, *MemPtr2;
4289    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4290        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4291      Composite1 = MemPtr1->getPointeeType();
4292      Composite2 = MemPtr2->getPointeeType();
4293
4294      // If we're allowed to create a non-standard composite type, keep track
4295      // of where we need to fill in additional 'const' qualifiers.
4296      if (NonStandardCompositeType &&
4297          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4298        NeedConstBefore = QualifierUnion.size();
4299
4300      QualifierUnion.push_back(
4301                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4302      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4303                                             MemPtr2->getClass()));
4304      continue;
4305    }
4306
4307    // FIXME: block pointer types?
4308
4309    // Cannot unwrap any more types.
4310    break;
4311  } while (true);
4312
4313  if (NeedConstBefore && NonStandardCompositeType) {
4314    // Extension: Add 'const' to qualifiers that come before the first qualifier
4315    // mismatch, so that our (non-standard!) composite type meets the
4316    // requirements of C++ [conv.qual]p4 bullet 3.
4317    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4318      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4319        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4320        *NonStandardCompositeType = true;
4321      }
4322    }
4323  }
4324
4325  // Rewrap the composites as pointers or member pointers with the union CVRs.
4326  ContainingClassVector::reverse_iterator MOC
4327    = MemberOfClass.rbegin();
4328  for (QualifierVector::reverse_iterator
4329         I = QualifierUnion.rbegin(),
4330         E = QualifierUnion.rend();
4331       I != E; (void)++I, ++MOC) {
4332    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4333    if (MOC->first && MOC->second) {
4334      // Rebuild member pointer type
4335      Composite1 = Context.getMemberPointerType(
4336                                    Context.getQualifiedType(Composite1, Quals),
4337                                    MOC->first);
4338      Composite2 = Context.getMemberPointerType(
4339                                    Context.getQualifiedType(Composite2, Quals),
4340                                    MOC->second);
4341    } else {
4342      // Rebuild pointer type
4343      Composite1
4344        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4345      Composite2
4346        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4347    }
4348  }
4349
4350  // Try to convert to the first composite pointer type.
4351  InitializedEntity Entity1
4352    = InitializedEntity::InitializeTemporary(Composite1);
4353  InitializationKind Kind
4354    = InitializationKind::CreateCopy(Loc, SourceLocation());
4355  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4356  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4357
4358  if (E1ToC1 && E2ToC1) {
4359    // Conversion to Composite1 is viable.
4360    if (!Context.hasSameType(Composite1, Composite2)) {
4361      // Composite2 is a different type from Composite1. Check whether
4362      // Composite2 is also viable.
4363      InitializedEntity Entity2
4364        = InitializedEntity::InitializeTemporary(Composite2);
4365      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4366      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4367      if (E1ToC2 && E2ToC2) {
4368        // Both Composite1 and Composite2 are viable and are different;
4369        // this is an ambiguity.
4370        return QualType();
4371      }
4372    }
4373
4374    // Convert E1 to Composite1
4375    ExprResult E1Result
4376      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
4377    if (E1Result.isInvalid())
4378      return QualType();
4379    E1 = E1Result.takeAs<Expr>();
4380
4381    // Convert E2 to Composite1
4382    ExprResult E2Result
4383      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
4384    if (E2Result.isInvalid())
4385      return QualType();
4386    E2 = E2Result.takeAs<Expr>();
4387
4388    return Composite1;
4389  }
4390
4391  // Check whether Composite2 is viable.
4392  InitializedEntity Entity2
4393    = InitializedEntity::InitializeTemporary(Composite2);
4394  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4395  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4396  if (!E1ToC2 || !E2ToC2)
4397    return QualType();
4398
4399  // Convert E1 to Composite2
4400  ExprResult E1Result
4401    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
4402  if (E1Result.isInvalid())
4403    return QualType();
4404  E1 = E1Result.takeAs<Expr>();
4405
4406  // Convert E2 to Composite2
4407  ExprResult E2Result
4408    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
4409  if (E2Result.isInvalid())
4410    return QualType();
4411  E2 = E2Result.takeAs<Expr>();
4412
4413  return Composite2;
4414}
4415
4416ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4417  if (!E)
4418    return ExprError();
4419
4420  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4421
4422  // If the result is a glvalue, we shouldn't bind it.
4423  if (!E->isRValue())
4424    return Owned(E);
4425
4426  // In ARC, calls that return a retainable type can return retained,
4427  // in which case we have to insert a consuming cast.
4428  if (getLangOpts().ObjCAutoRefCount &&
4429      E->getType()->isObjCRetainableType()) {
4430
4431    bool ReturnsRetained;
4432
4433    // For actual calls, we compute this by examining the type of the
4434    // called value.
4435    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4436      Expr *Callee = Call->getCallee()->IgnoreParens();
4437      QualType T = Callee->getType();
4438
4439      if (T == Context.BoundMemberTy) {
4440        // Handle pointer-to-members.
4441        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4442          T = BinOp->getRHS()->getType();
4443        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4444          T = Mem->getMemberDecl()->getType();
4445      }
4446
4447      if (const PointerType *Ptr = T->getAs<PointerType>())
4448        T = Ptr->getPointeeType();
4449      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4450        T = Ptr->getPointeeType();
4451      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4452        T = MemPtr->getPointeeType();
4453
4454      const FunctionType *FTy = T->getAs<FunctionType>();
4455      assert(FTy && "call to value not of function type?");
4456      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4457
4458    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4459    // type always produce a +1 object.
4460    } else if (isa<StmtExpr>(E)) {
4461      ReturnsRetained = true;
4462
4463    // We hit this case with the lambda conversion-to-block optimization;
4464    // we don't want any extra casts here.
4465    } else if (isa<CastExpr>(E) &&
4466               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4467      return Owned(E);
4468
4469    // For message sends and property references, we try to find an
4470    // actual method.  FIXME: we should infer retention by selector in
4471    // cases where we don't have an actual method.
4472    } else {
4473      ObjCMethodDecl *D = 0;
4474      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4475        D = Send->getMethodDecl();
4476      } else if (ObjCNumericLiteral *NumLit = dyn_cast<ObjCNumericLiteral>(E)) {
4477        D = NumLit->getObjCNumericLiteralMethod();
4478      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4479        D = ArrayLit->getArrayWithObjectsMethod();
4480      } else if (ObjCDictionaryLiteral *DictLit
4481                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4482        D = DictLit->getDictWithObjectsMethod();
4483      }
4484
4485      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4486
4487      // Don't do reclaims on performSelector calls; despite their
4488      // return type, the invoked method doesn't necessarily actually
4489      // return an object.
4490      if (!ReturnsRetained &&
4491          D && D->getMethodFamily() == OMF_performSelector)
4492        return Owned(E);
4493    }
4494
4495    // Don't reclaim an object of Class type.
4496    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4497      return Owned(E);
4498
4499    ExprNeedsCleanups = true;
4500
4501    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4502                                   : CK_ARCReclaimReturnedObject);
4503    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4504                                          VK_RValue));
4505  }
4506
4507  if (!getLangOpts().CPlusPlus)
4508    return Owned(E);
4509
4510  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4511  // a fast path for the common case that the type is directly a RecordType.
4512  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4513  const RecordType *RT = 0;
4514  while (!RT) {
4515    switch (T->getTypeClass()) {
4516    case Type::Record:
4517      RT = cast<RecordType>(T);
4518      break;
4519    case Type::ConstantArray:
4520    case Type::IncompleteArray:
4521    case Type::VariableArray:
4522    case Type::DependentSizedArray:
4523      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4524      break;
4525    default:
4526      return Owned(E);
4527    }
4528  }
4529
4530  // That should be enough to guarantee that this type is complete, if we're
4531  // not processing a decltype expression.
4532  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4533  if (RD->isInvalidDecl() || RD->isDependentContext())
4534    return Owned(E);
4535
4536  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4537  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4538
4539  if (Destructor) {
4540    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4541    CheckDestructorAccess(E->getExprLoc(), Destructor,
4542                          PDiag(diag::err_access_dtor_temp)
4543                            << E->getType());
4544    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4545
4546    // If destructor is trivial, we can avoid the extra copy.
4547    if (Destructor->isTrivial())
4548      return Owned(E);
4549
4550    // We need a cleanup, but we don't need to remember the temporary.
4551    ExprNeedsCleanups = true;
4552  }
4553
4554  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4555  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4556
4557  if (IsDecltype)
4558    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4559
4560  return Owned(Bind);
4561}
4562
4563ExprResult
4564Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4565  if (SubExpr.isInvalid())
4566    return ExprError();
4567
4568  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4569}
4570
4571Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4572  assert(SubExpr && "sub expression can't be null!");
4573
4574  CleanupVarDeclMarking();
4575
4576  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4577  assert(ExprCleanupObjects.size() >= FirstCleanup);
4578  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4579  if (!ExprNeedsCleanups)
4580    return SubExpr;
4581
4582  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4583    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4584                         ExprCleanupObjects.size() - FirstCleanup);
4585
4586  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4587  DiscardCleanupsInEvaluationContext();
4588
4589  return E;
4590}
4591
4592Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4593  assert(SubStmt && "sub statement can't be null!");
4594
4595  CleanupVarDeclMarking();
4596
4597  if (!ExprNeedsCleanups)
4598    return SubStmt;
4599
4600  // FIXME: In order to attach the temporaries, wrap the statement into
4601  // a StmtExpr; currently this is only used for asm statements.
4602  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4603  // a new AsmStmtWithTemporaries.
4604  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4605                                                      SourceLocation(),
4606                                                      SourceLocation());
4607  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4608                                   SourceLocation());
4609  return MaybeCreateExprWithCleanups(E);
4610}
4611
4612/// Process the expression contained within a decltype. For such expressions,
4613/// certain semantic checks on temporaries are delayed until this point, and
4614/// are omitted for the 'topmost' call in the decltype expression. If the
4615/// topmost call bound a temporary, strip that temporary off the expression.
4616ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4617  ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
4618  assert(Rec.IsDecltype && "not in a decltype expression");
4619
4620  // C++11 [expr.call]p11:
4621  //   If a function call is a prvalue of object type,
4622  // -- if the function call is either
4623  //   -- the operand of a decltype-specifier, or
4624  //   -- the right operand of a comma operator that is the operand of a
4625  //      decltype-specifier,
4626  //   a temporary object is not introduced for the prvalue.
4627
4628  // Recursively rebuild ParenExprs and comma expressions to strip out the
4629  // outermost CXXBindTemporaryExpr, if any.
4630  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4631    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4632    if (SubExpr.isInvalid())
4633      return ExprError();
4634    if (SubExpr.get() == PE->getSubExpr())
4635      return Owned(E);
4636    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4637  }
4638  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4639    if (BO->getOpcode() == BO_Comma) {
4640      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4641      if (RHS.isInvalid())
4642        return ExprError();
4643      if (RHS.get() == BO->getRHS())
4644        return Owned(E);
4645      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4646                                                BO_Comma, BO->getType(),
4647                                                BO->getValueKind(),
4648                                                BO->getObjectKind(),
4649                                                BO->getOperatorLoc()));
4650    }
4651  }
4652
4653  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4654  if (TopBind)
4655    E = TopBind->getSubExpr();
4656
4657  // Disable the special decltype handling now.
4658  Rec.IsDecltype = false;
4659
4660  // Perform the semantic checks we delayed until this point.
4661  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4662  for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
4663    CallExpr *Call = Rec.DelayedDecltypeCalls[I];
4664    if (Call == TopCall)
4665      continue;
4666
4667    if (CheckCallReturnType(Call->getCallReturnType(),
4668                            Call->getLocStart(),
4669                            Call, Call->getDirectCallee()))
4670      return ExprError();
4671  }
4672
4673  // Now all relevant types are complete, check the destructors are accessible
4674  // and non-deleted, and annotate them on the temporaries.
4675  for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
4676    CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
4677    if (Bind == TopBind)
4678      continue;
4679
4680    CXXTemporary *Temp = Bind->getTemporary();
4681
4682    CXXRecordDecl *RD =
4683      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4684    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4685    Temp->setDestructor(Destructor);
4686
4687    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4688    CheckDestructorAccess(E->getExprLoc(), Destructor,
4689                          PDiag(diag::err_access_dtor_temp)
4690                            << E->getType());
4691    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4692
4693    // We need a cleanup, but we don't need to remember the temporary.
4694    ExprNeedsCleanups = true;
4695  }
4696
4697  // Possibly strip off the top CXXBindTemporaryExpr.
4698  return Owned(E);
4699}
4700
4701ExprResult
4702Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4703                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4704                                   bool &MayBePseudoDestructor) {
4705  // Since this might be a postfix expression, get rid of ParenListExprs.
4706  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4707  if (Result.isInvalid()) return ExprError();
4708  Base = Result.get();
4709
4710  Result = CheckPlaceholderExpr(Base);
4711  if (Result.isInvalid()) return ExprError();
4712  Base = Result.take();
4713
4714  QualType BaseType = Base->getType();
4715  MayBePseudoDestructor = false;
4716  if (BaseType->isDependentType()) {
4717    // If we have a pointer to a dependent type and are using the -> operator,
4718    // the object type is the type that the pointer points to. We might still
4719    // have enough information about that type to do something useful.
4720    if (OpKind == tok::arrow)
4721      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4722        BaseType = Ptr->getPointeeType();
4723
4724    ObjectType = ParsedType::make(BaseType);
4725    MayBePseudoDestructor = true;
4726    return Owned(Base);
4727  }
4728
4729  // C++ [over.match.oper]p8:
4730  //   [...] When operator->returns, the operator-> is applied  to the value
4731  //   returned, with the original second operand.
4732  if (OpKind == tok::arrow) {
4733    // The set of types we've considered so far.
4734    llvm::SmallPtrSet<CanQualType,8> CTypes;
4735    SmallVector<SourceLocation, 8> Locations;
4736    CTypes.insert(Context.getCanonicalType(BaseType));
4737
4738    while (BaseType->isRecordType()) {
4739      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4740      if (Result.isInvalid())
4741        return ExprError();
4742      Base = Result.get();
4743      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4744        Locations.push_back(OpCall->getDirectCallee()->getLocation());
4745      BaseType = Base->getType();
4746      CanQualType CBaseType = Context.getCanonicalType(BaseType);
4747      if (!CTypes.insert(CBaseType)) {
4748        Diag(OpLoc, diag::err_operator_arrow_circular);
4749        for (unsigned i = 0; i < Locations.size(); i++)
4750          Diag(Locations[i], diag::note_declared_at);
4751        return ExprError();
4752      }
4753    }
4754
4755    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4756      BaseType = BaseType->getPointeeType();
4757  }
4758
4759  // Objective-C properties allow "." access on Objective-C pointer types,
4760  // so adjust the base type to the object type itself.
4761  if (BaseType->isObjCObjectPointerType())
4762    BaseType = BaseType->getPointeeType();
4763
4764  // C++ [basic.lookup.classref]p2:
4765  //   [...] If the type of the object expression is of pointer to scalar
4766  //   type, the unqualified-id is looked up in the context of the complete
4767  //   postfix-expression.
4768  //
4769  // This also indicates that we could be parsing a pseudo-destructor-name.
4770  // Note that Objective-C class and object types can be pseudo-destructor
4771  // expressions or normal member (ivar or property) access expressions.
4772  if (BaseType->isObjCObjectOrInterfaceType()) {
4773    MayBePseudoDestructor = true;
4774  } else if (!BaseType->isRecordType()) {
4775    ObjectType = ParsedType();
4776    MayBePseudoDestructor = true;
4777    return Owned(Base);
4778  }
4779
4780  // The object type must be complete (or dependent).
4781  if (!BaseType->isDependentType() &&
4782      RequireCompleteType(OpLoc, BaseType,
4783                          PDiag(diag::err_incomplete_member_access)))
4784    return ExprError();
4785
4786  // C++ [basic.lookup.classref]p2:
4787  //   If the id-expression in a class member access (5.2.5) is an
4788  //   unqualified-id, and the type of the object expression is of a class
4789  //   type C (or of pointer to a class type C), the unqualified-id is looked
4790  //   up in the scope of class C. [...]
4791  ObjectType = ParsedType::make(BaseType);
4792  return move(Base);
4793}
4794
4795ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4796                                                   Expr *MemExpr) {
4797  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4798  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4799    << isa<CXXPseudoDestructorExpr>(MemExpr)
4800    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4801
4802  return ActOnCallExpr(/*Scope*/ 0,
4803                       MemExpr,
4804                       /*LPLoc*/ ExpectedLParenLoc,
4805                       MultiExprArg(),
4806                       /*RPLoc*/ ExpectedLParenLoc);
4807}
4808
4809static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
4810                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
4811  if (Base->hasPlaceholderType()) {
4812    ExprResult result = S.CheckPlaceholderExpr(Base);
4813    if (result.isInvalid()) return true;
4814    Base = result.take();
4815  }
4816  ObjectType = Base->getType();
4817
4818  // C++ [expr.pseudo]p2:
4819  //   The left-hand side of the dot operator shall be of scalar type. The
4820  //   left-hand side of the arrow operator shall be of pointer to scalar type.
4821  //   This scalar type is the object type.
4822  // Note that this is rather different from the normal handling for the
4823  // arrow operator.
4824  if (OpKind == tok::arrow) {
4825    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4826      ObjectType = Ptr->getPointeeType();
4827    } else if (!Base->isTypeDependent()) {
4828      // The user wrote "p->" when she probably meant "p."; fix it.
4829      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4830        << ObjectType << true
4831        << FixItHint::CreateReplacement(OpLoc, ".");
4832      if (S.isSFINAEContext())
4833        return true;
4834
4835      OpKind = tok::period;
4836    }
4837  }
4838
4839  return false;
4840}
4841
4842ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
4843                                           SourceLocation OpLoc,
4844                                           tok::TokenKind OpKind,
4845                                           const CXXScopeSpec &SS,
4846                                           TypeSourceInfo *ScopeTypeInfo,
4847                                           SourceLocation CCLoc,
4848                                           SourceLocation TildeLoc,
4849                                         PseudoDestructorTypeStorage Destructed,
4850                                           bool HasTrailingLParen) {
4851  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
4852
4853  QualType ObjectType;
4854  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
4855    return ExprError();
4856
4857  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4858    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
4859      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
4860    else
4861      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4862        << ObjectType << Base->getSourceRange();
4863    return ExprError();
4864  }
4865
4866  // C++ [expr.pseudo]p2:
4867  //   [...] The cv-unqualified versions of the object type and of the type
4868  //   designated by the pseudo-destructor-name shall be the same type.
4869  if (DestructedTypeInfo) {
4870    QualType DestructedType = DestructedTypeInfo->getType();
4871    SourceLocation DestructedTypeStart
4872      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4873    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
4874      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4875        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4876          << ObjectType << DestructedType << Base->getSourceRange()
4877          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4878
4879        // Recover by setting the destructed type to the object type.
4880        DestructedType = ObjectType;
4881        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4882                                                           DestructedTypeStart);
4883        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4884      } else if (DestructedType.getObjCLifetime() !=
4885                                                ObjectType.getObjCLifetime()) {
4886
4887        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
4888          // Okay: just pretend that the user provided the correctly-qualified
4889          // type.
4890        } else {
4891          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
4892            << ObjectType << DestructedType << Base->getSourceRange()
4893            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4894        }
4895
4896        // Recover by setting the destructed type to the object type.
4897        DestructedType = ObjectType;
4898        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4899                                                           DestructedTypeStart);
4900        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4901      }
4902    }
4903  }
4904
4905  // C++ [expr.pseudo]p2:
4906  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
4907  //   form
4908  //
4909  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
4910  //
4911  //   shall designate the same scalar type.
4912  if (ScopeTypeInfo) {
4913    QualType ScopeType = ScopeTypeInfo->getType();
4914    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
4915        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
4916
4917      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
4918           diag::err_pseudo_dtor_type_mismatch)
4919        << ObjectType << ScopeType << Base->getSourceRange()
4920        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
4921
4922      ScopeType = QualType();
4923      ScopeTypeInfo = 0;
4924    }
4925  }
4926
4927  Expr *Result
4928    = new (Context) CXXPseudoDestructorExpr(Context, Base,
4929                                            OpKind == tok::arrow, OpLoc,
4930                                            SS.getWithLocInContext(Context),
4931                                            ScopeTypeInfo,
4932                                            CCLoc,
4933                                            TildeLoc,
4934                                            Destructed);
4935
4936  if (HasTrailingLParen)
4937    return Owned(Result);
4938
4939  return DiagnoseDtorReference(Destructed.getLocation(), Result);
4940}
4941
4942ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
4943                                           SourceLocation OpLoc,
4944                                           tok::TokenKind OpKind,
4945                                           CXXScopeSpec &SS,
4946                                           UnqualifiedId &FirstTypeName,
4947                                           SourceLocation CCLoc,
4948                                           SourceLocation TildeLoc,
4949                                           UnqualifiedId &SecondTypeName,
4950                                           bool HasTrailingLParen) {
4951  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4952          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4953         "Invalid first type name in pseudo-destructor");
4954  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
4955          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
4956         "Invalid second type name in pseudo-destructor");
4957
4958  QualType ObjectType;
4959  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
4960    return ExprError();
4961
4962  // Compute the object type that we should use for name lookup purposes. Only
4963  // record types and dependent types matter.
4964  ParsedType ObjectTypePtrForLookup;
4965  if (!SS.isSet()) {
4966    if (ObjectType->isRecordType())
4967      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
4968    else if (ObjectType->isDependentType())
4969      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
4970  }
4971
4972  // Convert the name of the type being destructed (following the ~) into a
4973  // type (with source-location information).
4974  QualType DestructedType;
4975  TypeSourceInfo *DestructedTypeInfo = 0;
4976  PseudoDestructorTypeStorage Destructed;
4977  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
4978    ParsedType T = getTypeName(*SecondTypeName.Identifier,
4979                               SecondTypeName.StartLocation,
4980                               S, &SS, true, false, ObjectTypePtrForLookup);
4981    if (!T &&
4982        ((SS.isSet() && !computeDeclContext(SS, false)) ||
4983         (!SS.isSet() && ObjectType->isDependentType()))) {
4984      // The name of the type being destroyed is a dependent name, and we
4985      // couldn't find anything useful in scope. Just store the identifier and
4986      // it's location, and we'll perform (qualified) name lookup again at
4987      // template instantiation time.
4988      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
4989                                               SecondTypeName.StartLocation);
4990    } else if (!T) {
4991      Diag(SecondTypeName.StartLocation,
4992           diag::err_pseudo_dtor_destructor_non_type)
4993        << SecondTypeName.Identifier << ObjectType;
4994      if (isSFINAEContext())
4995        return ExprError();
4996
4997      // Recover by assuming we had the right type all along.
4998      DestructedType = ObjectType;
4999    } else
5000      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5001  } else {
5002    // Resolve the template-id to a type.
5003    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5004    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5005                                       TemplateId->getTemplateArgs(),
5006                                       TemplateId->NumArgs);
5007    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5008                                       TemplateId->TemplateKWLoc,
5009                                       TemplateId->Template,
5010                                       TemplateId->TemplateNameLoc,
5011                                       TemplateId->LAngleLoc,
5012                                       TemplateArgsPtr,
5013                                       TemplateId->RAngleLoc);
5014    if (T.isInvalid() || !T.get()) {
5015      // Recover by assuming we had the right type all along.
5016      DestructedType = ObjectType;
5017    } else
5018      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5019  }
5020
5021  // If we've performed some kind of recovery, (re-)build the type source
5022  // information.
5023  if (!DestructedType.isNull()) {
5024    if (!DestructedTypeInfo)
5025      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5026                                                  SecondTypeName.StartLocation);
5027    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5028  }
5029
5030  // Convert the name of the scope type (the type prior to '::') into a type.
5031  TypeSourceInfo *ScopeTypeInfo = 0;
5032  QualType ScopeType;
5033  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5034      FirstTypeName.Identifier) {
5035    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5036      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5037                                 FirstTypeName.StartLocation,
5038                                 S, &SS, true, false, ObjectTypePtrForLookup);
5039      if (!T) {
5040        Diag(FirstTypeName.StartLocation,
5041             diag::err_pseudo_dtor_destructor_non_type)
5042          << FirstTypeName.Identifier << ObjectType;
5043
5044        if (isSFINAEContext())
5045          return ExprError();
5046
5047        // Just drop this type. It's unnecessary anyway.
5048        ScopeType = QualType();
5049      } else
5050        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5051    } else {
5052      // Resolve the template-id to a type.
5053      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5054      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5055                                         TemplateId->getTemplateArgs(),
5056                                         TemplateId->NumArgs);
5057      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5058                                         TemplateId->TemplateKWLoc,
5059                                         TemplateId->Template,
5060                                         TemplateId->TemplateNameLoc,
5061                                         TemplateId->LAngleLoc,
5062                                         TemplateArgsPtr,
5063                                         TemplateId->RAngleLoc);
5064      if (T.isInvalid() || !T.get()) {
5065        // Recover by dropping this type.
5066        ScopeType = QualType();
5067      } else
5068        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5069    }
5070  }
5071
5072  if (!ScopeType.isNull() && !ScopeTypeInfo)
5073    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5074                                                  FirstTypeName.StartLocation);
5075
5076
5077  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5078                                   ScopeTypeInfo, CCLoc, TildeLoc,
5079                                   Destructed, HasTrailingLParen);
5080}
5081
5082ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5083                                           SourceLocation OpLoc,
5084                                           tok::TokenKind OpKind,
5085                                           SourceLocation TildeLoc,
5086                                           const DeclSpec& DS,
5087                                           bool HasTrailingLParen) {
5088  QualType ObjectType;
5089  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5090    return ExprError();
5091
5092  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5093
5094  TypeLocBuilder TLB;
5095  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5096  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5097  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5098  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5099
5100  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5101                                   0, SourceLocation(), TildeLoc,
5102                                   Destructed, HasTrailingLParen);
5103}
5104
5105ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5106                                        CXXConversionDecl *Method,
5107                                        bool HadMultipleCandidates) {
5108  if (Method->getParent()->isLambda() &&
5109      Method->getConversionType()->isBlockPointerType()) {
5110    // This is a lambda coversion to block pointer; check if the argument
5111    // is a LambdaExpr.
5112    Expr *SubE = E;
5113    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5114    if (CE && CE->getCastKind() == CK_NoOp)
5115      SubE = CE->getSubExpr();
5116    SubE = SubE->IgnoreParens();
5117    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5118      SubE = BE->getSubExpr();
5119    if (isa<LambdaExpr>(SubE)) {
5120      // For the conversion to block pointer on a lambda expression, we
5121      // construct a special BlockLiteral instead; this doesn't really make
5122      // a difference in ARC, but outside of ARC the resulting block literal
5123      // follows the normal lifetime rules for block literals instead of being
5124      // autoreleased.
5125      DiagnosticErrorTrap Trap(Diags);
5126      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5127                                                     E->getExprLoc(),
5128                                                     Method, E);
5129      if (Exp.isInvalid())
5130        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5131      return Exp;
5132    }
5133  }
5134
5135
5136  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5137                                          FoundDecl, Method);
5138  if (Exp.isInvalid())
5139    return true;
5140
5141  MemberExpr *ME =
5142      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5143                               SourceLocation(), Context.BoundMemberTy,
5144                               VK_RValue, OK_Ordinary);
5145  if (HadMultipleCandidates)
5146    ME->setHadMultipleCandidates(true);
5147
5148  QualType ResultType = Method->getResultType();
5149  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5150  ResultType = ResultType.getNonLValueExprType(Context);
5151
5152  MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
5153  CXXMemberCallExpr *CE =
5154    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
5155                                    Exp.get()->getLocEnd());
5156  return CE;
5157}
5158
5159ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5160                                      SourceLocation RParen) {
5161  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5162                                             Operand->CanThrow(Context),
5163                                             KeyLoc, RParen));
5164}
5165
5166ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5167                                   Expr *Operand, SourceLocation RParen) {
5168  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5169}
5170
5171/// Perform the conversions required for an expression used in a
5172/// context that ignores the result.
5173ExprResult Sema::IgnoredValueConversions(Expr *E) {
5174  if (E->hasPlaceholderType()) {
5175    ExprResult result = CheckPlaceholderExpr(E);
5176    if (result.isInvalid()) return Owned(E);
5177    E = result.take();
5178  }
5179
5180  // C99 6.3.2.1:
5181  //   [Except in specific positions,] an lvalue that does not have
5182  //   array type is converted to the value stored in the
5183  //   designated object (and is no longer an lvalue).
5184  if (E->isRValue()) {
5185    // In C, function designators (i.e. expressions of function type)
5186    // are r-values, but we still want to do function-to-pointer decay
5187    // on them.  This is both technically correct and convenient for
5188    // some clients.
5189    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5190      return DefaultFunctionArrayConversion(E);
5191
5192    return Owned(E);
5193  }
5194
5195  // Otherwise, this rule does not apply in C++, at least not for the moment.
5196  if (getLangOpts().CPlusPlus) return Owned(E);
5197
5198  // GCC seems to also exclude expressions of incomplete enum type.
5199  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5200    if (!T->getDecl()->isComplete()) {
5201      // FIXME: stupid workaround for a codegen bug!
5202      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5203      return Owned(E);
5204    }
5205  }
5206
5207  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5208  if (Res.isInvalid())
5209    return Owned(E);
5210  E = Res.take();
5211
5212  if (!E->getType()->isVoidType())
5213    RequireCompleteType(E->getExprLoc(), E->getType(),
5214                        diag::err_incomplete_type);
5215  return Owned(E);
5216}
5217
5218ExprResult Sema::ActOnFinishFullExpr(Expr *FE) {
5219  ExprResult FullExpr = Owned(FE);
5220
5221  if (!FullExpr.get())
5222    return ExprError();
5223
5224  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5225    return ExprError();
5226
5227  // Top-level message sends default to 'id' when we're in a debugger.
5228  if (getLangOpts().DebuggerCastResultToId &&
5229      FullExpr.get()->getType() == Context.UnknownAnyTy &&
5230      isa<ObjCMessageExpr>(FullExpr.get())) {
5231    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5232    if (FullExpr.isInvalid())
5233      return ExprError();
5234  }
5235
5236  FullExpr = CheckPlaceholderExpr(FullExpr.take());
5237  if (FullExpr.isInvalid())
5238    return ExprError();
5239
5240  FullExpr = IgnoredValueConversions(FullExpr.take());
5241  if (FullExpr.isInvalid())
5242    return ExprError();
5243
5244  CheckImplicitConversions(FullExpr.get(), FullExpr.get()->getExprLoc());
5245  return MaybeCreateExprWithCleanups(FullExpr);
5246}
5247
5248StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5249  if (!FullStmt) return StmtError();
5250
5251  return MaybeCreateStmtWithCleanups(FullStmt);
5252}
5253
5254Sema::IfExistsResult
5255Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5256                                   CXXScopeSpec &SS,
5257                                   const DeclarationNameInfo &TargetNameInfo) {
5258  DeclarationName TargetName = TargetNameInfo.getName();
5259  if (!TargetName)
5260    return IER_DoesNotExist;
5261
5262  // If the name itself is dependent, then the result is dependent.
5263  if (TargetName.isDependentName())
5264    return IER_Dependent;
5265
5266  // Do the redeclaration lookup in the current scope.
5267  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5268                 Sema::NotForRedeclaration);
5269  LookupParsedName(R, S, &SS);
5270  R.suppressDiagnostics();
5271
5272  switch (R.getResultKind()) {
5273  case LookupResult::Found:
5274  case LookupResult::FoundOverloaded:
5275  case LookupResult::FoundUnresolvedValue:
5276  case LookupResult::Ambiguous:
5277    return IER_Exists;
5278
5279  case LookupResult::NotFound:
5280    return IER_DoesNotExist;
5281
5282  case LookupResult::NotFoundInCurrentInstantiation:
5283    return IER_Dependent;
5284  }
5285
5286  llvm_unreachable("Invalid LookupResult Kind!");
5287}
5288
5289Sema::IfExistsResult
5290Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5291                                   bool IsIfExists, CXXScopeSpec &SS,
5292                                   UnqualifiedId &Name) {
5293  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5294
5295  // Check for unexpanded parameter packs.
5296  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5297  collectUnexpandedParameterPacks(SS, Unexpanded);
5298  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5299  if (!Unexpanded.empty()) {
5300    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5301                                     IsIfExists? UPPC_IfExists
5302                                               : UPPC_IfNotExists,
5303                                     Unexpanded);
5304    return IER_Error;
5305  }
5306
5307  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5308}
5309