SemaExprCXX.cpp revision bea522ff43a3f11c7a2bc7949119dbb9fce19e39
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief Implements semantic analysis for C++ expressions.
12///
13//===----------------------------------------------------------------------===//
14
15#include "clang/Sema/SemaInternal.h"
16#include "TypeLocBuilder.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/EvaluatedExprVisitor.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/ExprObjC.h"
24#include "clang/AST/TypeLoc.h"
25#include "clang/Basic/PartialDiagnostic.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Sema/DeclSpec.h"
29#include "clang/Sema/Initialization.h"
30#include "clang/Sema/Lookup.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Sema/Scope.h"
33#include "clang/Sema/ScopeInfo.h"
34#include "clang/Sema/TemplateDeduction.h"
35#include "llvm/ADT/APInt.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/Support/ErrorHandling.h"
38using namespace clang;
39using namespace sema;
40
41ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
42                                   IdentifierInfo &II,
43                                   SourceLocation NameLoc,
44                                   Scope *S, CXXScopeSpec &SS,
45                                   ParsedType ObjectTypePtr,
46                                   bool EnteringContext) {
47  // Determine where to perform name lookup.
48
49  // FIXME: This area of the standard is very messy, and the current
50  // wording is rather unclear about which scopes we search for the
51  // destructor name; see core issues 399 and 555. Issue 399 in
52  // particular shows where the current description of destructor name
53  // lookup is completely out of line with existing practice, e.g.,
54  // this appears to be ill-formed:
55  //
56  //   namespace N {
57  //     template <typename T> struct S {
58  //       ~S();
59  //     };
60  //   }
61  //
62  //   void f(N::S<int>* s) {
63  //     s->N::S<int>::~S();
64  //   }
65  //
66  // See also PR6358 and PR6359.
67  // For this reason, we're currently only doing the C++03 version of this
68  // code; the C++0x version has to wait until we get a proper spec.
69  QualType SearchType;
70  DeclContext *LookupCtx = 0;
71  bool isDependent = false;
72  bool LookInScope = false;
73
74  // If we have an object type, it's because we are in a
75  // pseudo-destructor-expression or a member access expression, and
76  // we know what type we're looking for.
77  if (ObjectTypePtr)
78    SearchType = GetTypeFromParser(ObjectTypePtr);
79
80  if (SS.isSet()) {
81    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
82
83    bool AlreadySearched = false;
84    bool LookAtPrefix = true;
85    // C++ [basic.lookup.qual]p6:
86    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
87    //   the type-names are looked up as types in the scope designated by the
88    //   nested-name-specifier. In a qualified-id of the form:
89    //
90    //     ::[opt] nested-name-specifier  ~ class-name
91    //
92    //   where the nested-name-specifier designates a namespace scope, and in
93    //   a qualified-id of the form:
94    //
95    //     ::opt nested-name-specifier class-name ::  ~ class-name
96    //
97    //   the class-names are looked up as types in the scope designated by
98    //   the nested-name-specifier.
99    //
100    // Here, we check the first case (completely) and determine whether the
101    // code below is permitted to look at the prefix of the
102    // nested-name-specifier.
103    DeclContext *DC = computeDeclContext(SS, EnteringContext);
104    if (DC && DC->isFileContext()) {
105      AlreadySearched = true;
106      LookupCtx = DC;
107      isDependent = false;
108    } else if (DC && isa<CXXRecordDecl>(DC))
109      LookAtPrefix = false;
110
111    // The second case from the C++03 rules quoted further above.
112    NestedNameSpecifier *Prefix = 0;
113    if (AlreadySearched) {
114      // Nothing left to do.
115    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
116      CXXScopeSpec PrefixSS;
117      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
118      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
119      isDependent = isDependentScopeSpecifier(PrefixSS);
120    } else if (ObjectTypePtr) {
121      LookupCtx = computeDeclContext(SearchType);
122      isDependent = SearchType->isDependentType();
123    } else {
124      LookupCtx = computeDeclContext(SS, EnteringContext);
125      isDependent = LookupCtx && LookupCtx->isDependentContext();
126    }
127
128    LookInScope = false;
129  } else if (ObjectTypePtr) {
130    // C++ [basic.lookup.classref]p3:
131    //   If the unqualified-id is ~type-name, the type-name is looked up
132    //   in the context of the entire postfix-expression. If the type T
133    //   of the object expression is of a class type C, the type-name is
134    //   also looked up in the scope of class C. At least one of the
135    //   lookups shall find a name that refers to (possibly
136    //   cv-qualified) T.
137    LookupCtx = computeDeclContext(SearchType);
138    isDependent = SearchType->isDependentType();
139    assert((isDependent || !SearchType->isIncompleteType()) &&
140           "Caller should have completed object type");
141
142    LookInScope = true;
143  } else {
144    // Perform lookup into the current scope (only).
145    LookInScope = true;
146  }
147
148  TypeDecl *NonMatchingTypeDecl = 0;
149  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
150  for (unsigned Step = 0; Step != 2; ++Step) {
151    // Look for the name first in the computed lookup context (if we
152    // have one) and, if that fails to find a match, in the scope (if
153    // we're allowed to look there).
154    Found.clear();
155    if (Step == 0 && LookupCtx)
156      LookupQualifiedName(Found, LookupCtx);
157    else if (Step == 1 && LookInScope && S)
158      LookupName(Found, S);
159    else
160      continue;
161
162    // FIXME: Should we be suppressing ambiguities here?
163    if (Found.isAmbiguous())
164      return ParsedType();
165
166    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
167      QualType T = Context.getTypeDeclType(Type);
168
169      if (SearchType.isNull() || SearchType->isDependentType() ||
170          Context.hasSameUnqualifiedType(T, SearchType)) {
171        // We found our type!
172
173        return ParsedType::make(T);
174      }
175
176      if (!SearchType.isNull())
177        NonMatchingTypeDecl = Type;
178    }
179
180    // If the name that we found is a class template name, and it is
181    // the same name as the template name in the last part of the
182    // nested-name-specifier (if present) or the object type, then
183    // this is the destructor for that class.
184    // FIXME: This is a workaround until we get real drafting for core
185    // issue 399, for which there isn't even an obvious direction.
186    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
187      QualType MemberOfType;
188      if (SS.isSet()) {
189        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
190          // Figure out the type of the context, if it has one.
191          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
192            MemberOfType = Context.getTypeDeclType(Record);
193        }
194      }
195      if (MemberOfType.isNull())
196        MemberOfType = SearchType;
197
198      if (MemberOfType.isNull())
199        continue;
200
201      // We're referring into a class template specialization. If the
202      // class template we found is the same as the template being
203      // specialized, we found what we are looking for.
204      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
205        if (ClassTemplateSpecializationDecl *Spec
206              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
207          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
208                Template->getCanonicalDecl())
209            return ParsedType::make(MemberOfType);
210        }
211
212        continue;
213      }
214
215      // We're referring to an unresolved class template
216      // specialization. Determine whether we class template we found
217      // is the same as the template being specialized or, if we don't
218      // know which template is being specialized, that it at least
219      // has the same name.
220      if (const TemplateSpecializationType *SpecType
221            = MemberOfType->getAs<TemplateSpecializationType>()) {
222        TemplateName SpecName = SpecType->getTemplateName();
223
224        // The class template we found is the same template being
225        // specialized.
226        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
227          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
228            return ParsedType::make(MemberOfType);
229
230          continue;
231        }
232
233        // The class template we found has the same name as the
234        // (dependent) template name being specialized.
235        if (DependentTemplateName *DepTemplate
236                                    = SpecName.getAsDependentTemplateName()) {
237          if (DepTemplate->isIdentifier() &&
238              DepTemplate->getIdentifier() == Template->getIdentifier())
239            return ParsedType::make(MemberOfType);
240
241          continue;
242        }
243      }
244    }
245  }
246
247  if (isDependent) {
248    // We didn't find our type, but that's okay: it's dependent
249    // anyway.
250
251    // FIXME: What if we have no nested-name-specifier?
252    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
253                                   SS.getWithLocInContext(Context),
254                                   II, NameLoc);
255    return ParsedType::make(T);
256  }
257
258  if (NonMatchingTypeDecl) {
259    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
260    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
261      << T << SearchType;
262    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
263      << T;
264  } else if (ObjectTypePtr)
265    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
266      << &II;
267  else
268    Diag(NameLoc, diag::err_destructor_class_name);
269
270  return ParsedType();
271}
272
273ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
274    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
275      return ParsedType();
276    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
277           && "only get destructor types from declspecs");
278    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
279    QualType SearchType = GetTypeFromParser(ObjectType);
280    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
281      return ParsedType::make(T);
282    }
283
284    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
285      << T << SearchType;
286    return ParsedType();
287}
288
289/// \brief Build a C++ typeid expression with a type operand.
290ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
291                                SourceLocation TypeidLoc,
292                                TypeSourceInfo *Operand,
293                                SourceLocation RParenLoc) {
294  // C++ [expr.typeid]p4:
295  //   The top-level cv-qualifiers of the lvalue expression or the type-id
296  //   that is the operand of typeid are always ignored.
297  //   If the type of the type-id is a class type or a reference to a class
298  //   type, the class shall be completely-defined.
299  Qualifiers Quals;
300  QualType T
301    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
302                                      Quals);
303  if (T->getAs<RecordType>() &&
304      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
305    return ExprError();
306
307  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
308                                           Operand,
309                                           SourceRange(TypeidLoc, RParenLoc)));
310}
311
312/// \brief Build a C++ typeid expression with an expression operand.
313ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
314                                SourceLocation TypeidLoc,
315                                Expr *E,
316                                SourceLocation RParenLoc) {
317  if (E && !E->isTypeDependent()) {
318    if (E->getType()->isPlaceholderType()) {
319      ExprResult result = CheckPlaceholderExpr(E);
320      if (result.isInvalid()) return ExprError();
321      E = result.take();
322    }
323
324    QualType T = E->getType();
325    if (const RecordType *RecordT = T->getAs<RecordType>()) {
326      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
327      // C++ [expr.typeid]p3:
328      //   [...] If the type of the expression is a class type, the class
329      //   shall be completely-defined.
330      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
331        return ExprError();
332
333      // C++ [expr.typeid]p3:
334      //   When typeid is applied to an expression other than an glvalue of a
335      //   polymorphic class type [...] [the] expression is an unevaluated
336      //   operand. [...]
337      if (RecordD->isPolymorphic() && E->isGLValue()) {
338        // The subexpression is potentially evaluated; switch the context
339        // and recheck the subexpression.
340        ExprResult Result = TransformToPotentiallyEvaluated(E);
341        if (Result.isInvalid()) return ExprError();
342        E = Result.take();
343
344        // We require a vtable to query the type at run time.
345        MarkVTableUsed(TypeidLoc, RecordD);
346      }
347    }
348
349    // C++ [expr.typeid]p4:
350    //   [...] If the type of the type-id is a reference to a possibly
351    //   cv-qualified type, the result of the typeid expression refers to a
352    //   std::type_info object representing the cv-unqualified referenced
353    //   type.
354    Qualifiers Quals;
355    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
356    if (!Context.hasSameType(T, UnqualT)) {
357      T = UnqualT;
358      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
359    }
360  }
361
362  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
363                                           E,
364                                           SourceRange(TypeidLoc, RParenLoc)));
365}
366
367/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
368ExprResult
369Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
370                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
371  // Find the std::type_info type.
372  if (!getStdNamespace())
373    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
374
375  if (!CXXTypeInfoDecl) {
376    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
377    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
378    LookupQualifiedName(R, getStdNamespace());
379    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
380    // Microsoft's typeinfo doesn't have type_info in std but in the global
381    // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153.
382    if (!CXXTypeInfoDecl && LangOpts.MicrosoftMode) {
383      LookupQualifiedName(R, Context.getTranslationUnitDecl());
384      CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
385    }
386    if (!CXXTypeInfoDecl)
387      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
388  }
389
390  if (!getLangOpts().RTTI) {
391    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
392  }
393
394  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
395
396  if (isType) {
397    // The operand is a type; handle it as such.
398    TypeSourceInfo *TInfo = 0;
399    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
400                                   &TInfo);
401    if (T.isNull())
402      return ExprError();
403
404    if (!TInfo)
405      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
406
407    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
408  }
409
410  // The operand is an expression.
411  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
412}
413
414/// \brief Build a Microsoft __uuidof expression with a type operand.
415ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
416                                SourceLocation TypeidLoc,
417                                TypeSourceInfo *Operand,
418                                SourceLocation RParenLoc) {
419  if (!Operand->getType()->isDependentType()) {
420    if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType()))
421      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
422  }
423
424  // FIXME: add __uuidof semantic analysis for type operand.
425  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
426                                           Operand,
427                                           SourceRange(TypeidLoc, RParenLoc)));
428}
429
430/// \brief Build a Microsoft __uuidof expression with an expression operand.
431ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
432                                SourceLocation TypeidLoc,
433                                Expr *E,
434                                SourceLocation RParenLoc) {
435  if (!E->getType()->isDependentType()) {
436    if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType()) &&
437        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
438      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
439  }
440  // FIXME: add __uuidof semantic analysis for type operand.
441  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
442                                           E,
443                                           SourceRange(TypeidLoc, RParenLoc)));
444}
445
446/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
447ExprResult
448Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
449                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
450  // If MSVCGuidDecl has not been cached, do the lookup.
451  if (!MSVCGuidDecl) {
452    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
453    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
454    LookupQualifiedName(R, Context.getTranslationUnitDecl());
455    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
456    if (!MSVCGuidDecl)
457      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
458  }
459
460  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
461
462  if (isType) {
463    // The operand is a type; handle it as such.
464    TypeSourceInfo *TInfo = 0;
465    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
466                                   &TInfo);
467    if (T.isNull())
468      return ExprError();
469
470    if (!TInfo)
471      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
472
473    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
474  }
475
476  // The operand is an expression.
477  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
478}
479
480/// ActOnCXXBoolLiteral - Parse {true,false} literals.
481ExprResult
482Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
483  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
484         "Unknown C++ Boolean value!");
485  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
486                                                Context.BoolTy, OpLoc));
487}
488
489/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
490ExprResult
491Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
492  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
493}
494
495/// ActOnCXXThrow - Parse throw expressions.
496ExprResult
497Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
498  bool IsThrownVarInScope = false;
499  if (Ex) {
500    // C++0x [class.copymove]p31:
501    //   When certain criteria are met, an implementation is allowed to omit the
502    //   copy/move construction of a class object [...]
503    //
504    //     - in a throw-expression, when the operand is the name of a
505    //       non-volatile automatic object (other than a function or catch-
506    //       clause parameter) whose scope does not extend beyond the end of the
507    //       innermost enclosing try-block (if there is one), the copy/move
508    //       operation from the operand to the exception object (15.1) can be
509    //       omitted by constructing the automatic object directly into the
510    //       exception object
511    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
512      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
513        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
514          for( ; S; S = S->getParent()) {
515            if (S->isDeclScope(Var)) {
516              IsThrownVarInScope = true;
517              break;
518            }
519
520            if (S->getFlags() &
521                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
522                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
523                 Scope::TryScope))
524              break;
525          }
526        }
527      }
528  }
529
530  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
531}
532
533ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
534                               bool IsThrownVarInScope) {
535  // Don't report an error if 'throw' is used in system headers.
536  if (!getLangOpts().CXXExceptions &&
537      !getSourceManager().isInSystemHeader(OpLoc))
538    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
539
540  if (Ex && !Ex->isTypeDependent()) {
541    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
542    if (ExRes.isInvalid())
543      return ExprError();
544    Ex = ExRes.take();
545  }
546
547  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
548                                          IsThrownVarInScope));
549}
550
551/// CheckCXXThrowOperand - Validate the operand of a throw.
552ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
553                                      bool IsThrownVarInScope) {
554  // C++ [except.throw]p3:
555  //   A throw-expression initializes a temporary object, called the exception
556  //   object, the type of which is determined by removing any top-level
557  //   cv-qualifiers from the static type of the operand of throw and adjusting
558  //   the type from "array of T" or "function returning T" to "pointer to T"
559  //   or "pointer to function returning T", [...]
560  if (E->getType().hasQualifiers())
561    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
562                          E->getValueKind()).take();
563
564  ExprResult Res = DefaultFunctionArrayConversion(E);
565  if (Res.isInvalid())
566    return ExprError();
567  E = Res.take();
568
569  //   If the type of the exception would be an incomplete type or a pointer
570  //   to an incomplete type other than (cv) void the program is ill-formed.
571  QualType Ty = E->getType();
572  bool isPointer = false;
573  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
574    Ty = Ptr->getPointeeType();
575    isPointer = true;
576  }
577  if (!isPointer || !Ty->isVoidType()) {
578    if (RequireCompleteType(ThrowLoc, Ty,
579                            isPointer? diag::err_throw_incomplete_ptr
580                                     : diag::err_throw_incomplete,
581                            E->getSourceRange()))
582      return ExprError();
583
584    if (RequireNonAbstractType(ThrowLoc, E->getType(),
585                               diag::err_throw_abstract_type, E))
586      return ExprError();
587  }
588
589  // Initialize the exception result.  This implicitly weeds out
590  // abstract types or types with inaccessible copy constructors.
591
592  // C++0x [class.copymove]p31:
593  //   When certain criteria are met, an implementation is allowed to omit the
594  //   copy/move construction of a class object [...]
595  //
596  //     - in a throw-expression, when the operand is the name of a
597  //       non-volatile automatic object (other than a function or catch-clause
598  //       parameter) whose scope does not extend beyond the end of the
599  //       innermost enclosing try-block (if there is one), the copy/move
600  //       operation from the operand to the exception object (15.1) can be
601  //       omitted by constructing the automatic object directly into the
602  //       exception object
603  const VarDecl *NRVOVariable = 0;
604  if (IsThrownVarInScope)
605    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
606
607  InitializedEntity Entity =
608      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
609                                             /*NRVO=*/NRVOVariable != 0);
610  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
611                                        QualType(), E,
612                                        IsThrownVarInScope);
613  if (Res.isInvalid())
614    return ExprError();
615  E = Res.take();
616
617  // If the exception has class type, we need additional handling.
618  const RecordType *RecordTy = Ty->getAs<RecordType>();
619  if (!RecordTy)
620    return Owned(E);
621  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
622
623  // If we are throwing a polymorphic class type or pointer thereof,
624  // exception handling will make use of the vtable.
625  MarkVTableUsed(ThrowLoc, RD);
626
627  // If a pointer is thrown, the referenced object will not be destroyed.
628  if (isPointer)
629    return Owned(E);
630
631  // If the class has a destructor, we must be able to call it.
632  if (RD->hasIrrelevantDestructor())
633    return Owned(E);
634
635  CXXDestructorDecl *Destructor = LookupDestructor(RD);
636  if (!Destructor)
637    return Owned(E);
638
639  MarkFunctionReferenced(E->getExprLoc(), Destructor);
640  CheckDestructorAccess(E->getExprLoc(), Destructor,
641                        PDiag(diag::err_access_dtor_exception) << Ty);
642  DiagnoseUseOfDecl(Destructor, E->getExprLoc());
643  return Owned(E);
644}
645
646QualType Sema::getCurrentThisType() {
647  DeclContext *DC = getFunctionLevelDeclContext();
648  QualType ThisTy = CXXThisTypeOverride;
649  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
650    if (method && method->isInstance())
651      ThisTy = method->getThisType(Context);
652  }
653
654  return ThisTy;
655}
656
657Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
658                                         Decl *ContextDecl,
659                                         unsigned CXXThisTypeQuals,
660                                         bool Enabled)
661  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
662{
663  if (!Enabled || !ContextDecl)
664    return;
665
666  CXXRecordDecl *Record = 0;
667  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
668    Record = Template->getTemplatedDecl();
669  else
670    Record = cast<CXXRecordDecl>(ContextDecl);
671
672  S.CXXThisTypeOverride
673    = S.Context.getPointerType(
674        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
675
676  this->Enabled = true;
677}
678
679
680Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
681  if (Enabled) {
682    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
683  }
684}
685
686void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
687  // We don't need to capture this in an unevaluated context.
688  if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
689    return;
690
691  // Otherwise, check that we can capture 'this'.
692  unsigned NumClosures = 0;
693  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
694    if (CapturingScopeInfo *CSI =
695            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
696      if (CSI->CXXThisCaptureIndex != 0) {
697        // 'this' is already being captured; there isn't anything more to do.
698        break;
699      }
700
701      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
702          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
703          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
704          Explicit) {
705        // This closure can capture 'this'; continue looking upwards.
706        NumClosures++;
707        Explicit = false;
708        continue;
709      }
710      // This context can't implicitly capture 'this'; fail out.
711      Diag(Loc, diag::err_this_capture) << Explicit;
712      return;
713    }
714    break;
715  }
716
717  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
718  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
719  // contexts.
720  for (unsigned idx = FunctionScopes.size() - 1;
721       NumClosures; --idx, --NumClosures) {
722    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
723    Expr *ThisExpr = 0;
724    QualType ThisTy = getCurrentThisType();
725    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
726      // For lambda expressions, build a field and an initializing expression.
727      CXXRecordDecl *Lambda = LSI->Lambda;
728      FieldDecl *Field
729        = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
730                            Context.getTrivialTypeSourceInfo(ThisTy, Loc),
731                            0, false, ICIS_NoInit);
732      Field->setImplicit(true);
733      Field->setAccess(AS_private);
734      Lambda->addDecl(Field);
735      ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
736    }
737    bool isNested = NumClosures > 1;
738    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
739  }
740}
741
742ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
743  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
744  /// is a non-lvalue expression whose value is the address of the object for
745  /// which the function is called.
746
747  QualType ThisTy = getCurrentThisType();
748  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
749
750  CheckCXXThisCapture(Loc);
751  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
752}
753
754bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
755  // If we're outside the body of a member function, then we'll have a specified
756  // type for 'this'.
757  if (CXXThisTypeOverride.isNull())
758    return false;
759
760  // Determine whether we're looking into a class that's currently being
761  // defined.
762  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
763  return Class && Class->isBeingDefined();
764}
765
766ExprResult
767Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
768                                SourceLocation LParenLoc,
769                                MultiExprArg exprs,
770                                SourceLocation RParenLoc) {
771  if (!TypeRep)
772    return ExprError();
773
774  TypeSourceInfo *TInfo;
775  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
776  if (!TInfo)
777    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
778
779  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
780}
781
782/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
783/// Can be interpreted either as function-style casting ("int(x)")
784/// or class type construction ("ClassType(x,y,z)")
785/// or creation of a value-initialized type ("int()").
786ExprResult
787Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
788                                SourceLocation LParenLoc,
789                                MultiExprArg exprs,
790                                SourceLocation RParenLoc) {
791  QualType Ty = TInfo->getType();
792  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
793
794  if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(exprs)) {
795    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
796                                                    LParenLoc,
797                                                    exprs,
798                                                    RParenLoc));
799  }
800
801  unsigned NumExprs = exprs.size();
802  Expr **Exprs = exprs.data();
803
804  bool ListInitialization = LParenLoc.isInvalid();
805  assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
806         && "List initialization must have initializer list as expression.");
807  SourceRange FullRange = SourceRange(TyBeginLoc,
808      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
809
810  // C++ [expr.type.conv]p1:
811  // If the expression list is a single expression, the type conversion
812  // expression is equivalent (in definedness, and if defined in meaning) to the
813  // corresponding cast expression.
814  if (NumExprs == 1 && !ListInitialization) {
815    Expr *Arg = Exprs[0];
816    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
817  }
818
819  QualType ElemTy = Ty;
820  if (Ty->isArrayType()) {
821    if (!ListInitialization)
822      return ExprError(Diag(TyBeginLoc,
823                            diag::err_value_init_for_array_type) << FullRange);
824    ElemTy = Context.getBaseElementType(Ty);
825  }
826
827  if (!Ty->isVoidType() &&
828      RequireCompleteType(TyBeginLoc, ElemTy,
829                          diag::err_invalid_incomplete_type_use, FullRange))
830    return ExprError();
831
832  if (RequireNonAbstractType(TyBeginLoc, Ty,
833                             diag::err_allocation_of_abstract_type))
834    return ExprError();
835
836  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
837  InitializationKind Kind
838    = NumExprs ? ListInitialization
839                    ? InitializationKind::CreateDirectList(TyBeginLoc)
840                    : InitializationKind::CreateDirect(TyBeginLoc,
841                                                       LParenLoc, RParenLoc)
842               : InitializationKind::CreateValue(TyBeginLoc,
843                                                 LParenLoc, RParenLoc);
844  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
845  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, exprs);
846
847  if (!Result.isInvalid() && ListInitialization &&
848      isa<InitListExpr>(Result.get())) {
849    // If the list-initialization doesn't involve a constructor call, we'll get
850    // the initializer-list (with corrected type) back, but that's not what we
851    // want, since it will be treated as an initializer list in further
852    // processing. Explicitly insert a cast here.
853    InitListExpr *List = cast<InitListExpr>(Result.take());
854    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
855                                    Expr::getValueKindForType(TInfo->getType()),
856                                                 TInfo, TyBeginLoc, CK_NoOp,
857                                                 List, /*Path=*/0, RParenLoc));
858  }
859
860  // FIXME: Improve AST representation?
861  return Result;
862}
863
864/// doesUsualArrayDeleteWantSize - Answers whether the usual
865/// operator delete[] for the given type has a size_t parameter.
866static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
867                                         QualType allocType) {
868  const RecordType *record =
869    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
870  if (!record) return false;
871
872  // Try to find an operator delete[] in class scope.
873
874  DeclarationName deleteName =
875    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
876  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
877  S.LookupQualifiedName(ops, record->getDecl());
878
879  // We're just doing this for information.
880  ops.suppressDiagnostics();
881
882  // Very likely: there's no operator delete[].
883  if (ops.empty()) return false;
884
885  // If it's ambiguous, it should be illegal to call operator delete[]
886  // on this thing, so it doesn't matter if we allocate extra space or not.
887  if (ops.isAmbiguous()) return false;
888
889  LookupResult::Filter filter = ops.makeFilter();
890  while (filter.hasNext()) {
891    NamedDecl *del = filter.next()->getUnderlyingDecl();
892
893    // C++0x [basic.stc.dynamic.deallocation]p2:
894    //   A template instance is never a usual deallocation function,
895    //   regardless of its signature.
896    if (isa<FunctionTemplateDecl>(del)) {
897      filter.erase();
898      continue;
899    }
900
901    // C++0x [basic.stc.dynamic.deallocation]p2:
902    //   If class T does not declare [an operator delete[] with one
903    //   parameter] but does declare a member deallocation function
904    //   named operator delete[] with exactly two parameters, the
905    //   second of which has type std::size_t, then this function
906    //   is a usual deallocation function.
907    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
908      filter.erase();
909      continue;
910    }
911  }
912  filter.done();
913
914  if (!ops.isSingleResult()) return false;
915
916  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
917  return (del->getNumParams() == 2);
918}
919
920/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
921///
922/// E.g.:
923/// @code new (memory) int[size][4] @endcode
924/// or
925/// @code ::new Foo(23, "hello") @endcode
926///
927/// \param StartLoc The first location of the expression.
928/// \param UseGlobal True if 'new' was prefixed with '::'.
929/// \param PlacementLParen Opening paren of the placement arguments.
930/// \param PlacementArgs Placement new arguments.
931/// \param PlacementRParen Closing paren of the placement arguments.
932/// \param TypeIdParens If the type is in parens, the source range.
933/// \param D The type to be allocated, as well as array dimensions.
934/// \param Initializer The initializing expression or initializer-list, or null
935///   if there is none.
936ExprResult
937Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
938                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
939                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
940                  Declarator &D, Expr *Initializer) {
941  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
942
943  Expr *ArraySize = 0;
944  // If the specified type is an array, unwrap it and save the expression.
945  if (D.getNumTypeObjects() > 0 &&
946      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
947     DeclaratorChunk &Chunk = D.getTypeObject(0);
948    if (TypeContainsAuto)
949      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
950        << D.getSourceRange());
951    if (Chunk.Arr.hasStatic)
952      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
953        << D.getSourceRange());
954    if (!Chunk.Arr.NumElts)
955      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
956        << D.getSourceRange());
957
958    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
959    D.DropFirstTypeObject();
960  }
961
962  // Every dimension shall be of constant size.
963  if (ArraySize) {
964    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
965      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
966        break;
967
968      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
969      if (Expr *NumElts = (Expr *)Array.NumElts) {
970        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
971          Array.NumElts
972            = VerifyIntegerConstantExpression(NumElts, 0,
973                                              diag::err_new_array_nonconst)
974                .take();
975          if (!Array.NumElts)
976            return ExprError();
977        }
978      }
979    }
980  }
981
982  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
983  QualType AllocType = TInfo->getType();
984  if (D.isInvalidType())
985    return ExprError();
986
987  SourceRange DirectInitRange;
988  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
989    DirectInitRange = List->getSourceRange();
990
991  return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal,
992                     PlacementLParen,
993                     PlacementArgs,
994                     PlacementRParen,
995                     TypeIdParens,
996                     AllocType,
997                     TInfo,
998                     ArraySize,
999                     DirectInitRange,
1000                     Initializer,
1001                     TypeContainsAuto);
1002}
1003
1004static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1005                                       Expr *Init) {
1006  if (!Init)
1007    return true;
1008  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1009    return PLE->getNumExprs() == 0;
1010  if (isa<ImplicitValueInitExpr>(Init))
1011    return true;
1012  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1013    return !CCE->isListInitialization() &&
1014           CCE->getConstructor()->isDefaultConstructor();
1015  else if (Style == CXXNewExpr::ListInit) {
1016    assert(isa<InitListExpr>(Init) &&
1017           "Shouldn't create list CXXConstructExprs for arrays.");
1018    return true;
1019  }
1020  return false;
1021}
1022
1023ExprResult
1024Sema::BuildCXXNew(SourceRange Range, bool UseGlobal,
1025                  SourceLocation PlacementLParen,
1026                  MultiExprArg PlacementArgs,
1027                  SourceLocation PlacementRParen,
1028                  SourceRange TypeIdParens,
1029                  QualType AllocType,
1030                  TypeSourceInfo *AllocTypeInfo,
1031                  Expr *ArraySize,
1032                  SourceRange DirectInitRange,
1033                  Expr *Initializer,
1034                  bool TypeMayContainAuto) {
1035  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1036  SourceLocation StartLoc = Range.getBegin();
1037
1038  CXXNewExpr::InitializationStyle initStyle;
1039  if (DirectInitRange.isValid()) {
1040    assert(Initializer && "Have parens but no initializer.");
1041    initStyle = CXXNewExpr::CallInit;
1042  } else if (Initializer && isa<InitListExpr>(Initializer))
1043    initStyle = CXXNewExpr::ListInit;
1044  else {
1045    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1046            isa<CXXConstructExpr>(Initializer)) &&
1047           "Initializer expression that cannot have been implicitly created.");
1048    initStyle = CXXNewExpr::NoInit;
1049  }
1050
1051  Expr **Inits = &Initializer;
1052  unsigned NumInits = Initializer ? 1 : 0;
1053  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) {
1054    assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init");
1055    Inits = List->getExprs();
1056    NumInits = List->getNumExprs();
1057  }
1058
1059  // Determine whether we've already built the initializer.
1060  bool HaveCompleteInit = false;
1061  if (Initializer && isa<CXXConstructExpr>(Initializer) &&
1062      !isa<CXXTemporaryObjectExpr>(Initializer))
1063    HaveCompleteInit = true;
1064  else if (Initializer && isa<ImplicitValueInitExpr>(Initializer))
1065    HaveCompleteInit = true;
1066
1067  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1068  AutoType *AT = 0;
1069  if (TypeMayContainAuto &&
1070      (AT = AllocType->getContainedAutoType()) && !AT->isDeduced()) {
1071    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1072      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1073                       << AllocType << TypeRange);
1074    if (initStyle == CXXNewExpr::ListInit)
1075      return ExprError(Diag(Inits[0]->getLocStart(),
1076                            diag::err_auto_new_requires_parens)
1077                       << AllocType << TypeRange);
1078    if (NumInits > 1) {
1079      Expr *FirstBad = Inits[1];
1080      return ExprError(Diag(FirstBad->getLocStart(),
1081                            diag::err_auto_new_ctor_multiple_expressions)
1082                       << AllocType << TypeRange);
1083    }
1084    Expr *Deduce = Inits[0];
1085    TypeSourceInfo *DeducedType = 0;
1086    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed)
1087      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1088                       << AllocType << Deduce->getType()
1089                       << TypeRange << Deduce->getSourceRange());
1090    if (!DeducedType)
1091      return ExprError();
1092
1093    AllocTypeInfo = DeducedType;
1094    AllocType = AllocTypeInfo->getType();
1095  }
1096
1097  // Per C++0x [expr.new]p5, the type being constructed may be a
1098  // typedef of an array type.
1099  if (!ArraySize) {
1100    if (const ConstantArrayType *Array
1101                              = Context.getAsConstantArrayType(AllocType)) {
1102      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1103                                         Context.getSizeType(),
1104                                         TypeRange.getEnd());
1105      AllocType = Array->getElementType();
1106    }
1107  }
1108
1109  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1110    return ExprError();
1111
1112  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1113    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1114         diag::warn_dangling_std_initializer_list)
1115        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1116  }
1117
1118  // In ARC, infer 'retaining' for the allocated
1119  if (getLangOpts().ObjCAutoRefCount &&
1120      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1121      AllocType->isObjCLifetimeType()) {
1122    AllocType = Context.getLifetimeQualifiedType(AllocType,
1123                                    AllocType->getObjCARCImplicitLifetime());
1124  }
1125
1126  QualType ResultType = Context.getPointerType(AllocType);
1127
1128  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1129  //   integral or enumeration type with a non-negative value."
1130  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1131  //   enumeration type, or a class type for which a single non-explicit
1132  //   conversion function to integral or unscoped enumeration type exists.
1133  if (ArraySize && !ArraySize->isTypeDependent()) {
1134    class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1135      Expr *ArraySize;
1136
1137    public:
1138      SizeConvertDiagnoser(Expr *ArraySize)
1139        : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1140
1141      virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1142                                               QualType T) {
1143        return S.Diag(Loc, diag::err_array_size_not_integral)
1144                 << S.getLangOpts().CPlusPlus11 << T;
1145      }
1146
1147      virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1148                                                   QualType T) {
1149        return S.Diag(Loc, diag::err_array_size_incomplete_type)
1150                 << T << ArraySize->getSourceRange();
1151      }
1152
1153      virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1154                                                     SourceLocation Loc,
1155                                                     QualType T,
1156                                                     QualType ConvTy) {
1157        return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1158      }
1159
1160      virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1161                                                 CXXConversionDecl *Conv,
1162                                                 QualType ConvTy) {
1163        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1164                 << ConvTy->isEnumeralType() << ConvTy;
1165      }
1166
1167      virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1168                                                  QualType T) {
1169        return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1170      }
1171
1172      virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1173                                              QualType ConvTy) {
1174        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1175                 << ConvTy->isEnumeralType() << ConvTy;
1176      }
1177
1178      virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1179                                                   QualType T,
1180                                                   QualType ConvTy) {
1181        return S.Diag(Loc,
1182                      S.getLangOpts().CPlusPlus11
1183                        ? diag::warn_cxx98_compat_array_size_conversion
1184                        : diag::ext_array_size_conversion)
1185                 << T << ConvTy->isEnumeralType() << ConvTy;
1186      }
1187    } SizeDiagnoser(ArraySize);
1188
1189    ExprResult ConvertedSize
1190      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1191                                           /*AllowScopedEnumerations*/ false);
1192    if (ConvertedSize.isInvalid())
1193      return ExprError();
1194
1195    ArraySize = ConvertedSize.take();
1196    QualType SizeType = ArraySize->getType();
1197    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1198      return ExprError();
1199
1200    // C++98 [expr.new]p7:
1201    //   The expression in a direct-new-declarator shall have integral type
1202    //   with a non-negative value.
1203    //
1204    // Let's see if this is a constant < 0. If so, we reject it out of
1205    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1206    // array type.
1207    //
1208    // Note: such a construct has well-defined semantics in C++11: it throws
1209    // std::bad_array_new_length.
1210    if (!ArraySize->isValueDependent()) {
1211      llvm::APSInt Value;
1212      // We've already performed any required implicit conversion to integer or
1213      // unscoped enumeration type.
1214      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1215        if (Value < llvm::APSInt(
1216                        llvm::APInt::getNullValue(Value.getBitWidth()),
1217                                 Value.isUnsigned())) {
1218          if (getLangOpts().CPlusPlus11)
1219            Diag(ArraySize->getLocStart(),
1220                 diag::warn_typecheck_negative_array_new_size)
1221              << ArraySize->getSourceRange();
1222          else
1223            return ExprError(Diag(ArraySize->getLocStart(),
1224                                  diag::err_typecheck_negative_array_size)
1225                             << ArraySize->getSourceRange());
1226        } else if (!AllocType->isDependentType()) {
1227          unsigned ActiveSizeBits =
1228            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1229          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1230            if (getLangOpts().CPlusPlus11)
1231              Diag(ArraySize->getLocStart(),
1232                   diag::warn_array_new_too_large)
1233                << Value.toString(10)
1234                << ArraySize->getSourceRange();
1235            else
1236              return ExprError(Diag(ArraySize->getLocStart(),
1237                                    diag::err_array_too_large)
1238                               << Value.toString(10)
1239                               << ArraySize->getSourceRange());
1240          }
1241        }
1242      } else if (TypeIdParens.isValid()) {
1243        // Can't have dynamic array size when the type-id is in parentheses.
1244        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1245          << ArraySize->getSourceRange()
1246          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1247          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1248
1249        TypeIdParens = SourceRange();
1250      }
1251    }
1252
1253    // Note that we do *not* convert the argument in any way.  It can
1254    // be signed, larger than size_t, whatever.
1255  }
1256
1257  FunctionDecl *OperatorNew = 0;
1258  FunctionDecl *OperatorDelete = 0;
1259  Expr **PlaceArgs = PlacementArgs.data();
1260  unsigned NumPlaceArgs = PlacementArgs.size();
1261
1262  if (!AllocType->isDependentType() &&
1263      !Expr::hasAnyTypeDependentArguments(
1264        llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1265      FindAllocationFunctions(StartLoc,
1266                              SourceRange(PlacementLParen, PlacementRParen),
1267                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1268                              NumPlaceArgs, OperatorNew, OperatorDelete))
1269    return ExprError();
1270
1271  // If this is an array allocation, compute whether the usual array
1272  // deallocation function for the type has a size_t parameter.
1273  bool UsualArrayDeleteWantsSize = false;
1274  if (ArraySize && !AllocType->isDependentType())
1275    UsualArrayDeleteWantsSize
1276      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1277
1278  SmallVector<Expr *, 8> AllPlaceArgs;
1279  if (OperatorNew) {
1280    // Add default arguments, if any.
1281    const FunctionProtoType *Proto =
1282      OperatorNew->getType()->getAs<FunctionProtoType>();
1283    VariadicCallType CallType =
1284      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1285
1286    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1287                               Proto, 1, PlaceArgs, NumPlaceArgs,
1288                               AllPlaceArgs, CallType))
1289      return ExprError();
1290
1291    NumPlaceArgs = AllPlaceArgs.size();
1292    if (NumPlaceArgs > 0)
1293      PlaceArgs = &AllPlaceArgs[0];
1294
1295    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1296                          PlaceArgs, NumPlaceArgs);
1297
1298    // FIXME: Missing call to CheckFunctionCall or equivalent
1299  }
1300
1301  // Warn if the type is over-aligned and is being allocated by global operator
1302  // new.
1303  if (NumPlaceArgs == 0 && OperatorNew &&
1304      (OperatorNew->isImplicit() ||
1305       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1306    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1307      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1308      if (Align > SuitableAlign)
1309        Diag(StartLoc, diag::warn_overaligned_type)
1310            << AllocType
1311            << unsigned(Align / Context.getCharWidth())
1312            << unsigned(SuitableAlign / Context.getCharWidth());
1313    }
1314  }
1315
1316  QualType InitType = AllocType;
1317  // Array 'new' can't have any initializers except empty parentheses.
1318  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1319  // dialect distinction.
1320  if (ResultType->isArrayType() || ArraySize) {
1321    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1322      SourceRange InitRange(Inits[0]->getLocStart(),
1323                            Inits[NumInits - 1]->getLocEnd());
1324      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1325      return ExprError();
1326    }
1327    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1328      // We do the initialization typechecking against the array type
1329      // corresponding to the number of initializers + 1 (to also check
1330      // default-initialization).
1331      unsigned NumElements = ILE->getNumInits() + 1;
1332      InitType = Context.getConstantArrayType(AllocType,
1333          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1334                                              ArrayType::Normal, 0);
1335    }
1336  }
1337
1338  // If we can perform the initialization, and we've not already done so,
1339  // do it now.
1340  if (!AllocType->isDependentType() &&
1341      !Expr::hasAnyTypeDependentArguments(
1342        llvm::makeArrayRef(Inits, NumInits)) &&
1343      !HaveCompleteInit) {
1344    // C++11 [expr.new]p15:
1345    //   A new-expression that creates an object of type T initializes that
1346    //   object as follows:
1347    InitializationKind Kind
1348    //     - If the new-initializer is omitted, the object is default-
1349    //       initialized (8.5); if no initialization is performed,
1350    //       the object has indeterminate value
1351      = initStyle == CXXNewExpr::NoInit
1352          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1353    //     - Otherwise, the new-initializer is interpreted according to the
1354    //       initialization rules of 8.5 for direct-initialization.
1355          : initStyle == CXXNewExpr::ListInit
1356              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1357              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1358                                                 DirectInitRange.getBegin(),
1359                                                 DirectInitRange.getEnd());
1360
1361    InitializedEntity Entity
1362      = InitializedEntity::InitializeNew(StartLoc, InitType);
1363    InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1364    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1365                                          MultiExprArg(Inits, NumInits));
1366    if (FullInit.isInvalid())
1367      return ExprError();
1368
1369    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1370    // we don't want the initialized object to be destructed.
1371    if (CXXBindTemporaryExpr *Binder =
1372            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1373      FullInit = Owned(Binder->getSubExpr());
1374
1375    Initializer = FullInit.take();
1376  }
1377
1378  // Mark the new and delete operators as referenced.
1379  if (OperatorNew) {
1380    DiagnoseUseOfDecl(OperatorNew, StartLoc);
1381    MarkFunctionReferenced(StartLoc, OperatorNew);
1382  }
1383  if (OperatorDelete) {
1384    DiagnoseUseOfDecl(OperatorDelete, StartLoc);
1385    MarkFunctionReferenced(StartLoc, OperatorDelete);
1386  }
1387
1388  // C++0x [expr.new]p17:
1389  //   If the new expression creates an array of objects of class type,
1390  //   access and ambiguity control are done for the destructor.
1391  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1392  if (ArraySize && !BaseAllocType->isDependentType()) {
1393    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1394      if (CXXDestructorDecl *dtor = LookupDestructor(
1395              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1396        MarkFunctionReferenced(StartLoc, dtor);
1397        CheckDestructorAccess(StartLoc, dtor,
1398                              PDiag(diag::err_access_dtor)
1399                                << BaseAllocType);
1400        DiagnoseUseOfDecl(dtor, StartLoc);
1401      }
1402    }
1403  }
1404
1405  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1406                                        OperatorDelete,
1407                                        UsualArrayDeleteWantsSize,
1408                                   llvm::makeArrayRef(PlaceArgs, NumPlaceArgs),
1409                                        TypeIdParens,
1410                                        ArraySize, initStyle, Initializer,
1411                                        ResultType, AllocTypeInfo,
1412                                        Range, DirectInitRange));
1413}
1414
1415/// \brief Checks that a type is suitable as the allocated type
1416/// in a new-expression.
1417bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1418                              SourceRange R) {
1419  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1420  //   abstract class type or array thereof.
1421  if (AllocType->isFunctionType())
1422    return Diag(Loc, diag::err_bad_new_type)
1423      << AllocType << 0 << R;
1424  else if (AllocType->isReferenceType())
1425    return Diag(Loc, diag::err_bad_new_type)
1426      << AllocType << 1 << R;
1427  else if (!AllocType->isDependentType() &&
1428           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1429    return true;
1430  else if (RequireNonAbstractType(Loc, AllocType,
1431                                  diag::err_allocation_of_abstract_type))
1432    return true;
1433  else if (AllocType->isVariablyModifiedType())
1434    return Diag(Loc, diag::err_variably_modified_new_type)
1435             << AllocType;
1436  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1437    return Diag(Loc, diag::err_address_space_qualified_new)
1438      << AllocType.getUnqualifiedType() << AddressSpace;
1439  else if (getLangOpts().ObjCAutoRefCount) {
1440    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1441      QualType BaseAllocType = Context.getBaseElementType(AT);
1442      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1443          BaseAllocType->isObjCLifetimeType())
1444        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1445          << BaseAllocType;
1446    }
1447  }
1448
1449  return false;
1450}
1451
1452/// \brief Determine whether the given function is a non-placement
1453/// deallocation function.
1454static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1455  if (FD->isInvalidDecl())
1456    return false;
1457
1458  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1459    return Method->isUsualDeallocationFunction();
1460
1461  return ((FD->getOverloadedOperator() == OO_Delete ||
1462           FD->getOverloadedOperator() == OO_Array_Delete) &&
1463          FD->getNumParams() == 1);
1464}
1465
1466/// FindAllocationFunctions - Finds the overloads of operator new and delete
1467/// that are appropriate for the allocation.
1468bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1469                                   bool UseGlobal, QualType AllocType,
1470                                   bool IsArray, Expr **PlaceArgs,
1471                                   unsigned NumPlaceArgs,
1472                                   FunctionDecl *&OperatorNew,
1473                                   FunctionDecl *&OperatorDelete) {
1474  // --- Choosing an allocation function ---
1475  // C++ 5.3.4p8 - 14 & 18
1476  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1477  //   in the scope of the allocated class.
1478  // 2) If an array size is given, look for operator new[], else look for
1479  //   operator new.
1480  // 3) The first argument is always size_t. Append the arguments from the
1481  //   placement form.
1482
1483  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1484  // We don't care about the actual value of this argument.
1485  // FIXME: Should the Sema create the expression and embed it in the syntax
1486  // tree? Or should the consumer just recalculate the value?
1487  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1488                      Context.getTargetInfo().getPointerWidth(0)),
1489                      Context.getSizeType(),
1490                      SourceLocation());
1491  AllocArgs[0] = &Size;
1492  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1493
1494  // C++ [expr.new]p8:
1495  //   If the allocated type is a non-array type, the allocation
1496  //   function's name is operator new and the deallocation function's
1497  //   name is operator delete. If the allocated type is an array
1498  //   type, the allocation function's name is operator new[] and the
1499  //   deallocation function's name is operator delete[].
1500  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1501                                        IsArray ? OO_Array_New : OO_New);
1502  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1503                                        IsArray ? OO_Array_Delete : OO_Delete);
1504
1505  QualType AllocElemType = Context.getBaseElementType(AllocType);
1506
1507  if (AllocElemType->isRecordType() && !UseGlobal) {
1508    CXXRecordDecl *Record
1509      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1510    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1511                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1512                          OperatorNew))
1513      return true;
1514  }
1515  if (!OperatorNew) {
1516    // Didn't find a member overload. Look for a global one.
1517    DeclareGlobalNewDelete();
1518    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1519    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1520                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1521                          OperatorNew))
1522      return true;
1523  }
1524
1525  // We don't need an operator delete if we're running under
1526  // -fno-exceptions.
1527  if (!getLangOpts().Exceptions) {
1528    OperatorDelete = 0;
1529    return false;
1530  }
1531
1532  // FindAllocationOverload can change the passed in arguments, so we need to
1533  // copy them back.
1534  if (NumPlaceArgs > 0)
1535    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1536
1537  // C++ [expr.new]p19:
1538  //
1539  //   If the new-expression begins with a unary :: operator, the
1540  //   deallocation function's name is looked up in the global
1541  //   scope. Otherwise, if the allocated type is a class type T or an
1542  //   array thereof, the deallocation function's name is looked up in
1543  //   the scope of T. If this lookup fails to find the name, or if
1544  //   the allocated type is not a class type or array thereof, the
1545  //   deallocation function's name is looked up in the global scope.
1546  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1547  if (AllocElemType->isRecordType() && !UseGlobal) {
1548    CXXRecordDecl *RD
1549      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1550    LookupQualifiedName(FoundDelete, RD);
1551  }
1552  if (FoundDelete.isAmbiguous())
1553    return true; // FIXME: clean up expressions?
1554
1555  if (FoundDelete.empty()) {
1556    DeclareGlobalNewDelete();
1557    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1558  }
1559
1560  FoundDelete.suppressDiagnostics();
1561
1562  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1563
1564  // Whether we're looking for a placement operator delete is dictated
1565  // by whether we selected a placement operator new, not by whether
1566  // we had explicit placement arguments.  This matters for things like
1567  //   struct A { void *operator new(size_t, int = 0); ... };
1568  //   A *a = new A()
1569  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1570
1571  if (isPlacementNew) {
1572    // C++ [expr.new]p20:
1573    //   A declaration of a placement deallocation function matches the
1574    //   declaration of a placement allocation function if it has the
1575    //   same number of parameters and, after parameter transformations
1576    //   (8.3.5), all parameter types except the first are
1577    //   identical. [...]
1578    //
1579    // To perform this comparison, we compute the function type that
1580    // the deallocation function should have, and use that type both
1581    // for template argument deduction and for comparison purposes.
1582    //
1583    // FIXME: this comparison should ignore CC and the like.
1584    QualType ExpectedFunctionType;
1585    {
1586      const FunctionProtoType *Proto
1587        = OperatorNew->getType()->getAs<FunctionProtoType>();
1588
1589      SmallVector<QualType, 4> ArgTypes;
1590      ArgTypes.push_back(Context.VoidPtrTy);
1591      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1592        ArgTypes.push_back(Proto->getArgType(I));
1593
1594      FunctionProtoType::ExtProtoInfo EPI;
1595      EPI.Variadic = Proto->isVariadic();
1596
1597      ExpectedFunctionType
1598        = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI);
1599    }
1600
1601    for (LookupResult::iterator D = FoundDelete.begin(),
1602                             DEnd = FoundDelete.end();
1603         D != DEnd; ++D) {
1604      FunctionDecl *Fn = 0;
1605      if (FunctionTemplateDecl *FnTmpl
1606            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1607        // Perform template argument deduction to try to match the
1608        // expected function type.
1609        TemplateDeductionInfo Info(StartLoc);
1610        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1611          continue;
1612      } else
1613        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1614
1615      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1616        Matches.push_back(std::make_pair(D.getPair(), Fn));
1617    }
1618  } else {
1619    // C++ [expr.new]p20:
1620    //   [...] Any non-placement deallocation function matches a
1621    //   non-placement allocation function. [...]
1622    for (LookupResult::iterator D = FoundDelete.begin(),
1623                             DEnd = FoundDelete.end();
1624         D != DEnd; ++D) {
1625      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1626        if (isNonPlacementDeallocationFunction(Fn))
1627          Matches.push_back(std::make_pair(D.getPair(), Fn));
1628    }
1629  }
1630
1631  // C++ [expr.new]p20:
1632  //   [...] If the lookup finds a single matching deallocation
1633  //   function, that function will be called; otherwise, no
1634  //   deallocation function will be called.
1635  if (Matches.size() == 1) {
1636    OperatorDelete = Matches[0].second;
1637
1638    // C++0x [expr.new]p20:
1639    //   If the lookup finds the two-parameter form of a usual
1640    //   deallocation function (3.7.4.2) and that function, considered
1641    //   as a placement deallocation function, would have been
1642    //   selected as a match for the allocation function, the program
1643    //   is ill-formed.
1644    if (NumPlaceArgs && getLangOpts().CPlusPlus11 &&
1645        isNonPlacementDeallocationFunction(OperatorDelete)) {
1646      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1647        << SourceRange(PlaceArgs[0]->getLocStart(),
1648                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1649      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1650        << DeleteName;
1651    } else {
1652      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1653                            Matches[0].first);
1654    }
1655  }
1656
1657  return false;
1658}
1659
1660/// FindAllocationOverload - Find an fitting overload for the allocation
1661/// function in the specified scope.
1662bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1663                                  DeclarationName Name, Expr** Args,
1664                                  unsigned NumArgs, DeclContext *Ctx,
1665                                  bool AllowMissing, FunctionDecl *&Operator,
1666                                  bool Diagnose) {
1667  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1668  LookupQualifiedName(R, Ctx);
1669  if (R.empty()) {
1670    if (AllowMissing || !Diagnose)
1671      return false;
1672    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1673      << Name << Range;
1674  }
1675
1676  if (R.isAmbiguous())
1677    return true;
1678
1679  R.suppressDiagnostics();
1680
1681  OverloadCandidateSet Candidates(StartLoc);
1682  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1683       Alloc != AllocEnd; ++Alloc) {
1684    // Even member operator new/delete are implicitly treated as
1685    // static, so don't use AddMemberCandidate.
1686    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1687
1688    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1689      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1690                                   /*ExplicitTemplateArgs=*/0,
1691                                   llvm::makeArrayRef(Args, NumArgs),
1692                                   Candidates,
1693                                   /*SuppressUserConversions=*/false);
1694      continue;
1695    }
1696
1697    FunctionDecl *Fn = cast<FunctionDecl>(D);
1698    AddOverloadCandidate(Fn, Alloc.getPair(),
1699                         llvm::makeArrayRef(Args, NumArgs), Candidates,
1700                         /*SuppressUserConversions=*/false);
1701  }
1702
1703  // Do the resolution.
1704  OverloadCandidateSet::iterator Best;
1705  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1706  case OR_Success: {
1707    // Got one!
1708    FunctionDecl *FnDecl = Best->Function;
1709    MarkFunctionReferenced(StartLoc, FnDecl);
1710    // The first argument is size_t, and the first parameter must be size_t,
1711    // too. This is checked on declaration and can be assumed. (It can't be
1712    // asserted on, though, since invalid decls are left in there.)
1713    // Watch out for variadic allocator function.
1714    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1715    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1716      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1717                                                       FnDecl->getParamDecl(i));
1718
1719      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1720        return true;
1721
1722      ExprResult Result
1723        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1724      if (Result.isInvalid())
1725        return true;
1726
1727      Args[i] = Result.takeAs<Expr>();
1728    }
1729
1730    Operator = FnDecl;
1731
1732    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1733                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1734      return true;
1735
1736    return false;
1737  }
1738
1739  case OR_No_Viable_Function:
1740    if (Diagnose) {
1741      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1742        << Name << Range;
1743      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1744                                llvm::makeArrayRef(Args, NumArgs));
1745    }
1746    return true;
1747
1748  case OR_Ambiguous:
1749    if (Diagnose) {
1750      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1751        << Name << Range;
1752      Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1753                                llvm::makeArrayRef(Args, NumArgs));
1754    }
1755    return true;
1756
1757  case OR_Deleted: {
1758    if (Diagnose) {
1759      Diag(StartLoc, diag::err_ovl_deleted_call)
1760        << Best->Function->isDeleted()
1761        << Name
1762        << getDeletedOrUnavailableSuffix(Best->Function)
1763        << Range;
1764      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1765                                llvm::makeArrayRef(Args, NumArgs));
1766    }
1767    return true;
1768  }
1769  }
1770  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1771}
1772
1773
1774/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1775/// delete. These are:
1776/// @code
1777///   // C++03:
1778///   void* operator new(std::size_t) throw(std::bad_alloc);
1779///   void* operator new[](std::size_t) throw(std::bad_alloc);
1780///   void operator delete(void *) throw();
1781///   void operator delete[](void *) throw();
1782///   // C++0x:
1783///   void* operator new(std::size_t);
1784///   void* operator new[](std::size_t);
1785///   void operator delete(void *);
1786///   void operator delete[](void *);
1787/// @endcode
1788/// C++0x operator delete is implicitly noexcept.
1789/// Note that the placement and nothrow forms of new are *not* implicitly
1790/// declared. Their use requires including \<new\>.
1791void Sema::DeclareGlobalNewDelete() {
1792  if (GlobalNewDeleteDeclared)
1793    return;
1794
1795  // C++ [basic.std.dynamic]p2:
1796  //   [...] The following allocation and deallocation functions (18.4) are
1797  //   implicitly declared in global scope in each translation unit of a
1798  //   program
1799  //
1800  //     C++03:
1801  //     void* operator new(std::size_t) throw(std::bad_alloc);
1802  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1803  //     void  operator delete(void*) throw();
1804  //     void  operator delete[](void*) throw();
1805  //     C++0x:
1806  //     void* operator new(std::size_t);
1807  //     void* operator new[](std::size_t);
1808  //     void  operator delete(void*);
1809  //     void  operator delete[](void*);
1810  //
1811  //   These implicit declarations introduce only the function names operator
1812  //   new, operator new[], operator delete, operator delete[].
1813  //
1814  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1815  // "std" or "bad_alloc" as necessary to form the exception specification.
1816  // However, we do not make these implicit declarations visible to name
1817  // lookup.
1818  // Note that the C++0x versions of operator delete are deallocation functions,
1819  // and thus are implicitly noexcept.
1820  if (!StdBadAlloc && !getLangOpts().CPlusPlus11) {
1821    // The "std::bad_alloc" class has not yet been declared, so build it
1822    // implicitly.
1823    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1824                                        getOrCreateStdNamespace(),
1825                                        SourceLocation(), SourceLocation(),
1826                                      &PP.getIdentifierTable().get("bad_alloc"),
1827                                        0);
1828    getStdBadAlloc()->setImplicit(true);
1829  }
1830
1831  GlobalNewDeleteDeclared = true;
1832
1833  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1834  QualType SizeT = Context.getSizeType();
1835  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1836
1837  DeclareGlobalAllocationFunction(
1838      Context.DeclarationNames.getCXXOperatorName(OO_New),
1839      VoidPtr, SizeT, AssumeSaneOperatorNew);
1840  DeclareGlobalAllocationFunction(
1841      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1842      VoidPtr, SizeT, AssumeSaneOperatorNew);
1843  DeclareGlobalAllocationFunction(
1844      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1845      Context.VoidTy, VoidPtr);
1846  DeclareGlobalAllocationFunction(
1847      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1848      Context.VoidTy, VoidPtr);
1849}
1850
1851/// DeclareGlobalAllocationFunction - Declares a single implicit global
1852/// allocation function if it doesn't already exist.
1853void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1854                                           QualType Return, QualType Argument,
1855                                           bool AddMallocAttr) {
1856  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1857
1858  // Check if this function is already declared.
1859  {
1860    DeclContext::lookup_result R = GlobalCtx->lookup(Name);
1861    for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end();
1862         Alloc != AllocEnd; ++Alloc) {
1863      // Only look at non-template functions, as it is the predefined,
1864      // non-templated allocation function we are trying to declare here.
1865      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1866        QualType InitialParamType =
1867          Context.getCanonicalType(
1868            Func->getParamDecl(0)->getType().getUnqualifiedType());
1869        // FIXME: Do we need to check for default arguments here?
1870        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1871          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1872            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1873          return;
1874        }
1875      }
1876    }
1877  }
1878
1879  QualType BadAllocType;
1880  bool HasBadAllocExceptionSpec
1881    = (Name.getCXXOverloadedOperator() == OO_New ||
1882       Name.getCXXOverloadedOperator() == OO_Array_New);
1883  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus11) {
1884    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1885    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1886  }
1887
1888  FunctionProtoType::ExtProtoInfo EPI;
1889  if (HasBadAllocExceptionSpec) {
1890    if (!getLangOpts().CPlusPlus11) {
1891      EPI.ExceptionSpecType = EST_Dynamic;
1892      EPI.NumExceptions = 1;
1893      EPI.Exceptions = &BadAllocType;
1894    }
1895  } else {
1896    EPI.ExceptionSpecType = getLangOpts().CPlusPlus11 ?
1897                                EST_BasicNoexcept : EST_DynamicNone;
1898  }
1899
1900  QualType FnType = Context.getFunctionType(Return, Argument, EPI);
1901  FunctionDecl *Alloc =
1902    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1903                         SourceLocation(), Name,
1904                         FnType, /*TInfo=*/0, SC_None,
1905                         SC_None, false, true);
1906  Alloc->setImplicit();
1907
1908  if (AddMallocAttr)
1909    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1910
1911  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1912                                           SourceLocation(), 0,
1913                                           Argument, /*TInfo=*/0,
1914                                           SC_None, SC_None, 0);
1915  Alloc->setParams(Param);
1916
1917  // FIXME: Also add this declaration to the IdentifierResolver, but
1918  // make sure it is at the end of the chain to coincide with the
1919  // global scope.
1920  Context.getTranslationUnitDecl()->addDecl(Alloc);
1921}
1922
1923bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1924                                    DeclarationName Name,
1925                                    FunctionDecl* &Operator, bool Diagnose) {
1926  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1927  // Try to find operator delete/operator delete[] in class scope.
1928  LookupQualifiedName(Found, RD);
1929
1930  if (Found.isAmbiguous())
1931    return true;
1932
1933  Found.suppressDiagnostics();
1934
1935  SmallVector<DeclAccessPair,4> Matches;
1936  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1937       F != FEnd; ++F) {
1938    NamedDecl *ND = (*F)->getUnderlyingDecl();
1939
1940    // Ignore template operator delete members from the check for a usual
1941    // deallocation function.
1942    if (isa<FunctionTemplateDecl>(ND))
1943      continue;
1944
1945    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1946      Matches.push_back(F.getPair());
1947  }
1948
1949  // There's exactly one suitable operator;  pick it.
1950  if (Matches.size() == 1) {
1951    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1952
1953    if (Operator->isDeleted()) {
1954      if (Diagnose) {
1955        Diag(StartLoc, diag::err_deleted_function_use);
1956        NoteDeletedFunction(Operator);
1957      }
1958      return true;
1959    }
1960
1961    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1962                              Matches[0], Diagnose) == AR_inaccessible)
1963      return true;
1964
1965    return false;
1966
1967  // We found multiple suitable operators;  complain about the ambiguity.
1968  } else if (!Matches.empty()) {
1969    if (Diagnose) {
1970      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1971        << Name << RD;
1972
1973      for (SmallVectorImpl<DeclAccessPair>::iterator
1974             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1975        Diag((*F)->getUnderlyingDecl()->getLocation(),
1976             diag::note_member_declared_here) << Name;
1977    }
1978    return true;
1979  }
1980
1981  // We did find operator delete/operator delete[] declarations, but
1982  // none of them were suitable.
1983  if (!Found.empty()) {
1984    if (Diagnose) {
1985      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1986        << Name << RD;
1987
1988      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1989           F != FEnd; ++F)
1990        Diag((*F)->getUnderlyingDecl()->getLocation(),
1991             diag::note_member_declared_here) << Name;
1992    }
1993    return true;
1994  }
1995
1996  // Look for a global declaration.
1997  DeclareGlobalNewDelete();
1998  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1999
2000  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2001  Expr* DeallocArgs[1];
2002  DeallocArgs[0] = &Null;
2003  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2004                             DeallocArgs, 1, TUDecl, !Diagnose,
2005                             Operator, Diagnose))
2006    return true;
2007
2008  assert(Operator && "Did not find a deallocation function!");
2009  return false;
2010}
2011
2012/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2013/// @code ::delete ptr; @endcode
2014/// or
2015/// @code delete [] ptr; @endcode
2016ExprResult
2017Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2018                     bool ArrayForm, Expr *ExE) {
2019  // C++ [expr.delete]p1:
2020  //   The operand shall have a pointer type, or a class type having a single
2021  //   conversion function to a pointer type. The result has type void.
2022  //
2023  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2024
2025  ExprResult Ex = Owned(ExE);
2026  FunctionDecl *OperatorDelete = 0;
2027  bool ArrayFormAsWritten = ArrayForm;
2028  bool UsualArrayDeleteWantsSize = false;
2029
2030  if (!Ex.get()->isTypeDependent()) {
2031    // Perform lvalue-to-rvalue cast, if needed.
2032    Ex = DefaultLvalueConversion(Ex.take());
2033    if (Ex.isInvalid())
2034      return ExprError();
2035
2036    QualType Type = Ex.get()->getType();
2037
2038    if (const RecordType *Record = Type->getAs<RecordType>()) {
2039      if (RequireCompleteType(StartLoc, Type,
2040                              diag::err_delete_incomplete_class_type))
2041        return ExprError();
2042
2043      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2044
2045      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2046      std::pair<CXXRecordDecl::conversion_iterator,
2047                CXXRecordDecl::conversion_iterator>
2048        Conversions = RD->getVisibleConversionFunctions();
2049      for (CXXRecordDecl::conversion_iterator
2050             I = Conversions.first, E = Conversions.second; I != E; ++I) {
2051        NamedDecl *D = I.getDecl();
2052        if (isa<UsingShadowDecl>(D))
2053          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2054
2055        // Skip over templated conversion functions; they aren't considered.
2056        if (isa<FunctionTemplateDecl>(D))
2057          continue;
2058
2059        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2060
2061        QualType ConvType = Conv->getConversionType().getNonReferenceType();
2062        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2063          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2064            ObjectPtrConversions.push_back(Conv);
2065      }
2066      if (ObjectPtrConversions.size() == 1) {
2067        // We have a single conversion to a pointer-to-object type. Perform
2068        // that conversion.
2069        // TODO: don't redo the conversion calculation.
2070        ExprResult Res =
2071          PerformImplicitConversion(Ex.get(),
2072                            ObjectPtrConversions.front()->getConversionType(),
2073                                    AA_Converting);
2074        if (Res.isUsable()) {
2075          Ex = Res;
2076          Type = Ex.get()->getType();
2077        }
2078      }
2079      else if (ObjectPtrConversions.size() > 1) {
2080        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2081              << Type << Ex.get()->getSourceRange();
2082        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2083          NoteOverloadCandidate(ObjectPtrConversions[i]);
2084        return ExprError();
2085      }
2086    }
2087
2088    if (!Type->isPointerType())
2089      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2090        << Type << Ex.get()->getSourceRange());
2091
2092    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2093    QualType PointeeElem = Context.getBaseElementType(Pointee);
2094
2095    if (unsigned AddressSpace = Pointee.getAddressSpace())
2096      return Diag(Ex.get()->getLocStart(),
2097                  diag::err_address_space_qualified_delete)
2098               << Pointee.getUnqualifiedType() << AddressSpace;
2099
2100    CXXRecordDecl *PointeeRD = 0;
2101    if (Pointee->isVoidType() && !isSFINAEContext()) {
2102      // The C++ standard bans deleting a pointer to a non-object type, which
2103      // effectively bans deletion of "void*". However, most compilers support
2104      // this, so we treat it as a warning unless we're in a SFINAE context.
2105      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2106        << Type << Ex.get()->getSourceRange();
2107    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2108      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2109        << Type << Ex.get()->getSourceRange());
2110    } else if (!Pointee->isDependentType()) {
2111      if (!RequireCompleteType(StartLoc, Pointee,
2112                               diag::warn_delete_incomplete, Ex.get())) {
2113        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2114          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2115      }
2116    }
2117
2118    // C++ [expr.delete]p2:
2119    //   [Note: a pointer to a const type can be the operand of a
2120    //   delete-expression; it is not necessary to cast away the constness
2121    //   (5.2.11) of the pointer expression before it is used as the operand
2122    //   of the delete-expression. ]
2123
2124    if (Pointee->isArrayType() && !ArrayForm) {
2125      Diag(StartLoc, diag::warn_delete_array_type)
2126          << Type << Ex.get()->getSourceRange()
2127          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2128      ArrayForm = true;
2129    }
2130
2131    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2132                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2133
2134    if (PointeeRD) {
2135      if (!UseGlobal &&
2136          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2137                                   OperatorDelete))
2138        return ExprError();
2139
2140      // If we're allocating an array of records, check whether the
2141      // usual operator delete[] has a size_t parameter.
2142      if (ArrayForm) {
2143        // If the user specifically asked to use the global allocator,
2144        // we'll need to do the lookup into the class.
2145        if (UseGlobal)
2146          UsualArrayDeleteWantsSize =
2147            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2148
2149        // Otherwise, the usual operator delete[] should be the
2150        // function we just found.
2151        else if (isa<CXXMethodDecl>(OperatorDelete))
2152          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2153      }
2154
2155      if (!PointeeRD->hasIrrelevantDestructor())
2156        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2157          MarkFunctionReferenced(StartLoc,
2158                                    const_cast<CXXDestructorDecl*>(Dtor));
2159          DiagnoseUseOfDecl(Dtor, StartLoc);
2160        }
2161
2162      // C++ [expr.delete]p3:
2163      //   In the first alternative (delete object), if the static type of the
2164      //   object to be deleted is different from its dynamic type, the static
2165      //   type shall be a base class of the dynamic type of the object to be
2166      //   deleted and the static type shall have a virtual destructor or the
2167      //   behavior is undefined.
2168      //
2169      // Note: a final class cannot be derived from, no issue there
2170      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2171        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2172        if (dtor && !dtor->isVirtual()) {
2173          if (PointeeRD->isAbstract()) {
2174            // If the class is abstract, we warn by default, because we're
2175            // sure the code has undefined behavior.
2176            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2177                << PointeeElem;
2178          } else if (!ArrayForm) {
2179            // Otherwise, if this is not an array delete, it's a bit suspect,
2180            // but not necessarily wrong.
2181            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2182          }
2183        }
2184      }
2185
2186    }
2187
2188    if (!OperatorDelete) {
2189      // Look for a global declaration.
2190      DeclareGlobalNewDelete();
2191      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2192      Expr *Arg = Ex.get();
2193      if (!Context.hasSameType(Arg->getType(), Context.VoidPtrTy))
2194        Arg = ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2195                                       CK_BitCast, Arg, 0, VK_RValue);
2196      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2197                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2198                                 OperatorDelete))
2199        return ExprError();
2200    }
2201
2202    MarkFunctionReferenced(StartLoc, OperatorDelete);
2203
2204    // Check access and ambiguity of operator delete and destructor.
2205    if (PointeeRD) {
2206      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2207          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2208                      PDiag(diag::err_access_dtor) << PointeeElem);
2209      }
2210    }
2211
2212  }
2213
2214  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2215                                           ArrayFormAsWritten,
2216                                           UsualArrayDeleteWantsSize,
2217                                           OperatorDelete, Ex.take(), StartLoc));
2218}
2219
2220/// \brief Check the use of the given variable as a C++ condition in an if,
2221/// while, do-while, or switch statement.
2222ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2223                                        SourceLocation StmtLoc,
2224                                        bool ConvertToBoolean) {
2225  QualType T = ConditionVar->getType();
2226
2227  // C++ [stmt.select]p2:
2228  //   The declarator shall not specify a function or an array.
2229  if (T->isFunctionType())
2230    return ExprError(Diag(ConditionVar->getLocation(),
2231                          diag::err_invalid_use_of_function_type)
2232                       << ConditionVar->getSourceRange());
2233  else if (T->isArrayType())
2234    return ExprError(Diag(ConditionVar->getLocation(),
2235                          diag::err_invalid_use_of_array_type)
2236                     << ConditionVar->getSourceRange());
2237
2238  ExprResult Condition =
2239    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2240                              SourceLocation(),
2241                              ConditionVar,
2242                              /*enclosing*/ false,
2243                              ConditionVar->getLocation(),
2244                              ConditionVar->getType().getNonReferenceType(),
2245                              VK_LValue));
2246
2247  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2248
2249  if (ConvertToBoolean) {
2250    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2251    if (Condition.isInvalid())
2252      return ExprError();
2253  }
2254
2255  return Condition;
2256}
2257
2258/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2259ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2260  // C++ 6.4p4:
2261  // The value of a condition that is an initialized declaration in a statement
2262  // other than a switch statement is the value of the declared variable
2263  // implicitly converted to type bool. If that conversion is ill-formed, the
2264  // program is ill-formed.
2265  // The value of a condition that is an expression is the value of the
2266  // expression, implicitly converted to bool.
2267  //
2268  return PerformContextuallyConvertToBool(CondExpr);
2269}
2270
2271/// Helper function to determine whether this is the (deprecated) C++
2272/// conversion from a string literal to a pointer to non-const char or
2273/// non-const wchar_t (for narrow and wide string literals,
2274/// respectively).
2275bool
2276Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2277  // Look inside the implicit cast, if it exists.
2278  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2279    From = Cast->getSubExpr();
2280
2281  // A string literal (2.13.4) that is not a wide string literal can
2282  // be converted to an rvalue of type "pointer to char"; a wide
2283  // string literal can be converted to an rvalue of type "pointer
2284  // to wchar_t" (C++ 4.2p2).
2285  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2286    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2287      if (const BuiltinType *ToPointeeType
2288          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2289        // This conversion is considered only when there is an
2290        // explicit appropriate pointer target type (C++ 4.2p2).
2291        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2292          switch (StrLit->getKind()) {
2293            case StringLiteral::UTF8:
2294            case StringLiteral::UTF16:
2295            case StringLiteral::UTF32:
2296              // We don't allow UTF literals to be implicitly converted
2297              break;
2298            case StringLiteral::Ascii:
2299              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2300                      ToPointeeType->getKind() == BuiltinType::Char_S);
2301            case StringLiteral::Wide:
2302              return ToPointeeType->isWideCharType();
2303          }
2304        }
2305      }
2306
2307  return false;
2308}
2309
2310static ExprResult BuildCXXCastArgument(Sema &S,
2311                                       SourceLocation CastLoc,
2312                                       QualType Ty,
2313                                       CastKind Kind,
2314                                       CXXMethodDecl *Method,
2315                                       DeclAccessPair FoundDecl,
2316                                       bool HadMultipleCandidates,
2317                                       Expr *From) {
2318  switch (Kind) {
2319  default: llvm_unreachable("Unhandled cast kind!");
2320  case CK_ConstructorConversion: {
2321    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2322    SmallVector<Expr*, 8> ConstructorArgs;
2323
2324    if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs))
2325      return ExprError();
2326
2327    S.CheckConstructorAccess(CastLoc, Constructor,
2328                             InitializedEntity::InitializeTemporary(Ty),
2329                             Constructor->getAccess());
2330
2331    ExprResult Result
2332      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2333                                ConstructorArgs, HadMultipleCandidates,
2334                                /*ListInit*/ false, /*ZeroInit*/ false,
2335                                CXXConstructExpr::CK_Complete, SourceRange());
2336    if (Result.isInvalid())
2337      return ExprError();
2338
2339    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2340  }
2341
2342  case CK_UserDefinedConversion: {
2343    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2344
2345    // Create an implicit call expr that calls it.
2346    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2347    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2348                                                 HadMultipleCandidates);
2349    if (Result.isInvalid())
2350      return ExprError();
2351    // Record usage of conversion in an implicit cast.
2352    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2353                                              Result.get()->getType(),
2354                                              CK_UserDefinedConversion,
2355                                              Result.get(), 0,
2356                                              Result.get()->getValueKind()));
2357
2358    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2359
2360    return S.MaybeBindToTemporary(Result.get());
2361  }
2362  }
2363}
2364
2365/// PerformImplicitConversion - Perform an implicit conversion of the
2366/// expression From to the type ToType using the pre-computed implicit
2367/// conversion sequence ICS. Returns the converted
2368/// expression. Action is the kind of conversion we're performing,
2369/// used in the error message.
2370ExprResult
2371Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2372                                const ImplicitConversionSequence &ICS,
2373                                AssignmentAction Action,
2374                                CheckedConversionKind CCK) {
2375  switch (ICS.getKind()) {
2376  case ImplicitConversionSequence::StandardConversion: {
2377    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2378                                               Action, CCK);
2379    if (Res.isInvalid())
2380      return ExprError();
2381    From = Res.take();
2382    break;
2383  }
2384
2385  case ImplicitConversionSequence::UserDefinedConversion: {
2386
2387      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2388      CastKind CastKind;
2389      QualType BeforeToType;
2390      assert(FD && "FIXME: aggregate initialization from init list");
2391      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2392        CastKind = CK_UserDefinedConversion;
2393
2394        // If the user-defined conversion is specified by a conversion function,
2395        // the initial standard conversion sequence converts the source type to
2396        // the implicit object parameter of the conversion function.
2397        BeforeToType = Context.getTagDeclType(Conv->getParent());
2398      } else {
2399        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2400        CastKind = CK_ConstructorConversion;
2401        // Do no conversion if dealing with ... for the first conversion.
2402        if (!ICS.UserDefined.EllipsisConversion) {
2403          // If the user-defined conversion is specified by a constructor, the
2404          // initial standard conversion sequence converts the source type to the
2405          // type required by the argument of the constructor
2406          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2407        }
2408      }
2409      // Watch out for elipsis conversion.
2410      if (!ICS.UserDefined.EllipsisConversion) {
2411        ExprResult Res =
2412          PerformImplicitConversion(From, BeforeToType,
2413                                    ICS.UserDefined.Before, AA_Converting,
2414                                    CCK);
2415        if (Res.isInvalid())
2416          return ExprError();
2417        From = Res.take();
2418      }
2419
2420      ExprResult CastArg
2421        = BuildCXXCastArgument(*this,
2422                               From->getLocStart(),
2423                               ToType.getNonReferenceType(),
2424                               CastKind, cast<CXXMethodDecl>(FD),
2425                               ICS.UserDefined.FoundConversionFunction,
2426                               ICS.UserDefined.HadMultipleCandidates,
2427                               From);
2428
2429      if (CastArg.isInvalid())
2430        return ExprError();
2431
2432      From = CastArg.take();
2433
2434      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2435                                       AA_Converting, CCK);
2436  }
2437
2438  case ImplicitConversionSequence::AmbiguousConversion:
2439    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2440                          PDiag(diag::err_typecheck_ambiguous_condition)
2441                            << From->getSourceRange());
2442     return ExprError();
2443
2444  case ImplicitConversionSequence::EllipsisConversion:
2445    llvm_unreachable("Cannot perform an ellipsis conversion");
2446
2447  case ImplicitConversionSequence::BadConversion:
2448    return ExprError();
2449  }
2450
2451  // Everything went well.
2452  return Owned(From);
2453}
2454
2455/// PerformImplicitConversion - Perform an implicit conversion of the
2456/// expression From to the type ToType by following the standard
2457/// conversion sequence SCS. Returns the converted
2458/// expression. Flavor is the context in which we're performing this
2459/// conversion, for use in error messages.
2460ExprResult
2461Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2462                                const StandardConversionSequence& SCS,
2463                                AssignmentAction Action,
2464                                CheckedConversionKind CCK) {
2465  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2466
2467  // Overall FIXME: we are recomputing too many types here and doing far too
2468  // much extra work. What this means is that we need to keep track of more
2469  // information that is computed when we try the implicit conversion initially,
2470  // so that we don't need to recompute anything here.
2471  QualType FromType = From->getType();
2472
2473  if (SCS.CopyConstructor) {
2474    // FIXME: When can ToType be a reference type?
2475    assert(!ToType->isReferenceType());
2476    if (SCS.Second == ICK_Derived_To_Base) {
2477      SmallVector<Expr*, 8> ConstructorArgs;
2478      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2479                                  From, /*FIXME:ConstructLoc*/SourceLocation(),
2480                                  ConstructorArgs))
2481        return ExprError();
2482      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2483                                   ToType, SCS.CopyConstructor,
2484                                   ConstructorArgs,
2485                                   /*HadMultipleCandidates*/ false,
2486                                   /*ListInit*/ false, /*ZeroInit*/ false,
2487                                   CXXConstructExpr::CK_Complete,
2488                                   SourceRange());
2489    }
2490    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2491                                 ToType, SCS.CopyConstructor,
2492                                 From, /*HadMultipleCandidates*/ false,
2493                                 /*ListInit*/ false, /*ZeroInit*/ false,
2494                                 CXXConstructExpr::CK_Complete,
2495                                 SourceRange());
2496  }
2497
2498  // Resolve overloaded function references.
2499  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2500    DeclAccessPair Found;
2501    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2502                                                          true, Found);
2503    if (!Fn)
2504      return ExprError();
2505
2506    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2507      return ExprError();
2508
2509    From = FixOverloadedFunctionReference(From, Found, Fn);
2510    FromType = From->getType();
2511  }
2512
2513  // Perform the first implicit conversion.
2514  switch (SCS.First) {
2515  case ICK_Identity:
2516    // Nothing to do.
2517    break;
2518
2519  case ICK_Lvalue_To_Rvalue: {
2520    assert(From->getObjectKind() != OK_ObjCProperty);
2521    FromType = FromType.getUnqualifiedType();
2522    ExprResult FromRes = DefaultLvalueConversion(From);
2523    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2524    From = FromRes.take();
2525    break;
2526  }
2527
2528  case ICK_Array_To_Pointer:
2529    FromType = Context.getArrayDecayedType(FromType);
2530    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2531                             VK_RValue, /*BasePath=*/0, CCK).take();
2532    break;
2533
2534  case ICK_Function_To_Pointer:
2535    FromType = Context.getPointerType(FromType);
2536    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2537                             VK_RValue, /*BasePath=*/0, CCK).take();
2538    break;
2539
2540  default:
2541    llvm_unreachable("Improper first standard conversion");
2542  }
2543
2544  // Perform the second implicit conversion
2545  switch (SCS.Second) {
2546  case ICK_Identity:
2547    // If both sides are functions (or pointers/references to them), there could
2548    // be incompatible exception declarations.
2549    if (CheckExceptionSpecCompatibility(From, ToType))
2550      return ExprError();
2551    // Nothing else to do.
2552    break;
2553
2554  case ICK_NoReturn_Adjustment:
2555    // If both sides are functions (or pointers/references to them), there could
2556    // be incompatible exception declarations.
2557    if (CheckExceptionSpecCompatibility(From, ToType))
2558      return ExprError();
2559
2560    From = ImpCastExprToType(From, ToType, CK_NoOp,
2561                             VK_RValue, /*BasePath=*/0, CCK).take();
2562    break;
2563
2564  case ICK_Integral_Promotion:
2565  case ICK_Integral_Conversion:
2566    if (ToType->isBooleanType()) {
2567      assert(FromType->castAs<EnumType>()->getDecl()->isFixed() &&
2568             SCS.Second == ICK_Integral_Promotion &&
2569             "only enums with fixed underlying type can promote to bool");
2570      From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean,
2571                               VK_RValue, /*BasePath=*/0, CCK).take();
2572    } else {
2573      From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2574                               VK_RValue, /*BasePath=*/0, CCK).take();
2575    }
2576    break;
2577
2578  case ICK_Floating_Promotion:
2579  case ICK_Floating_Conversion:
2580    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2581                             VK_RValue, /*BasePath=*/0, CCK).take();
2582    break;
2583
2584  case ICK_Complex_Promotion:
2585  case ICK_Complex_Conversion: {
2586    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2587    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2588    CastKind CK;
2589    if (FromEl->isRealFloatingType()) {
2590      if (ToEl->isRealFloatingType())
2591        CK = CK_FloatingComplexCast;
2592      else
2593        CK = CK_FloatingComplexToIntegralComplex;
2594    } else if (ToEl->isRealFloatingType()) {
2595      CK = CK_IntegralComplexToFloatingComplex;
2596    } else {
2597      CK = CK_IntegralComplexCast;
2598    }
2599    From = ImpCastExprToType(From, ToType, CK,
2600                             VK_RValue, /*BasePath=*/0, CCK).take();
2601    break;
2602  }
2603
2604  case ICK_Floating_Integral:
2605    if (ToType->isRealFloatingType())
2606      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2607                               VK_RValue, /*BasePath=*/0, CCK).take();
2608    else
2609      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2610                               VK_RValue, /*BasePath=*/0, CCK).take();
2611    break;
2612
2613  case ICK_Compatible_Conversion:
2614      From = ImpCastExprToType(From, ToType, CK_NoOp,
2615                               VK_RValue, /*BasePath=*/0, CCK).take();
2616    break;
2617
2618  case ICK_Writeback_Conversion:
2619  case ICK_Pointer_Conversion: {
2620    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2621      // Diagnose incompatible Objective-C conversions
2622      if (Action == AA_Initializing || Action == AA_Assigning)
2623        Diag(From->getLocStart(),
2624             diag::ext_typecheck_convert_incompatible_pointer)
2625          << ToType << From->getType() << Action
2626          << From->getSourceRange() << 0;
2627      else
2628        Diag(From->getLocStart(),
2629             diag::ext_typecheck_convert_incompatible_pointer)
2630          << From->getType() << ToType << Action
2631          << From->getSourceRange() << 0;
2632
2633      if (From->getType()->isObjCObjectPointerType() &&
2634          ToType->isObjCObjectPointerType())
2635        EmitRelatedResultTypeNote(From);
2636    }
2637    else if (getLangOpts().ObjCAutoRefCount &&
2638             !CheckObjCARCUnavailableWeakConversion(ToType,
2639                                                    From->getType())) {
2640      if (Action == AA_Initializing)
2641        Diag(From->getLocStart(),
2642             diag::err_arc_weak_unavailable_assign);
2643      else
2644        Diag(From->getLocStart(),
2645             diag::err_arc_convesion_of_weak_unavailable)
2646          << (Action == AA_Casting) << From->getType() << ToType
2647          << From->getSourceRange();
2648    }
2649
2650    CastKind Kind = CK_Invalid;
2651    CXXCastPath BasePath;
2652    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2653      return ExprError();
2654
2655    // Make sure we extend blocks if necessary.
2656    // FIXME: doing this here is really ugly.
2657    if (Kind == CK_BlockPointerToObjCPointerCast) {
2658      ExprResult E = From;
2659      (void) PrepareCastToObjCObjectPointer(E);
2660      From = E.take();
2661    }
2662
2663    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2664             .take();
2665    break;
2666  }
2667
2668  case ICK_Pointer_Member: {
2669    CastKind Kind = CK_Invalid;
2670    CXXCastPath BasePath;
2671    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2672      return ExprError();
2673    if (CheckExceptionSpecCompatibility(From, ToType))
2674      return ExprError();
2675    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2676             .take();
2677    break;
2678  }
2679
2680  case ICK_Boolean_Conversion:
2681    // Perform half-to-boolean conversion via float.
2682    if (From->getType()->isHalfType()) {
2683      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2684      FromType = Context.FloatTy;
2685    }
2686
2687    From = ImpCastExprToType(From, Context.BoolTy,
2688                             ScalarTypeToBooleanCastKind(FromType),
2689                             VK_RValue, /*BasePath=*/0, CCK).take();
2690    break;
2691
2692  case ICK_Derived_To_Base: {
2693    CXXCastPath BasePath;
2694    if (CheckDerivedToBaseConversion(From->getType(),
2695                                     ToType.getNonReferenceType(),
2696                                     From->getLocStart(),
2697                                     From->getSourceRange(),
2698                                     &BasePath,
2699                                     CStyle))
2700      return ExprError();
2701
2702    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2703                      CK_DerivedToBase, From->getValueKind(),
2704                      &BasePath, CCK).take();
2705    break;
2706  }
2707
2708  case ICK_Vector_Conversion:
2709    From = ImpCastExprToType(From, ToType, CK_BitCast,
2710                             VK_RValue, /*BasePath=*/0, CCK).take();
2711    break;
2712
2713  case ICK_Vector_Splat:
2714    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2715                             VK_RValue, /*BasePath=*/0, CCK).take();
2716    break;
2717
2718  case ICK_Complex_Real:
2719    // Case 1.  x -> _Complex y
2720    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2721      QualType ElType = ToComplex->getElementType();
2722      bool isFloatingComplex = ElType->isRealFloatingType();
2723
2724      // x -> y
2725      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2726        // do nothing
2727      } else if (From->getType()->isRealFloatingType()) {
2728        From = ImpCastExprToType(From, ElType,
2729                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2730      } else {
2731        assert(From->getType()->isIntegerType());
2732        From = ImpCastExprToType(From, ElType,
2733                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2734      }
2735      // y -> _Complex y
2736      From = ImpCastExprToType(From, ToType,
2737                   isFloatingComplex ? CK_FloatingRealToComplex
2738                                     : CK_IntegralRealToComplex).take();
2739
2740    // Case 2.  _Complex x -> y
2741    } else {
2742      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2743      assert(FromComplex);
2744
2745      QualType ElType = FromComplex->getElementType();
2746      bool isFloatingComplex = ElType->isRealFloatingType();
2747
2748      // _Complex x -> x
2749      From = ImpCastExprToType(From, ElType,
2750                   isFloatingComplex ? CK_FloatingComplexToReal
2751                                     : CK_IntegralComplexToReal,
2752                               VK_RValue, /*BasePath=*/0, CCK).take();
2753
2754      // x -> y
2755      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2756        // do nothing
2757      } else if (ToType->isRealFloatingType()) {
2758        From = ImpCastExprToType(From, ToType,
2759                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2760                                 VK_RValue, /*BasePath=*/0, CCK).take();
2761      } else {
2762        assert(ToType->isIntegerType());
2763        From = ImpCastExprToType(From, ToType,
2764                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2765                                 VK_RValue, /*BasePath=*/0, CCK).take();
2766      }
2767    }
2768    break;
2769
2770  case ICK_Block_Pointer_Conversion: {
2771    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2772                             VK_RValue, /*BasePath=*/0, CCK).take();
2773    break;
2774  }
2775
2776  case ICK_TransparentUnionConversion: {
2777    ExprResult FromRes = Owned(From);
2778    Sema::AssignConvertType ConvTy =
2779      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2780    if (FromRes.isInvalid())
2781      return ExprError();
2782    From = FromRes.take();
2783    assert ((ConvTy == Sema::Compatible) &&
2784            "Improper transparent union conversion");
2785    (void)ConvTy;
2786    break;
2787  }
2788
2789  case ICK_Zero_Event_Conversion:
2790    From = ImpCastExprToType(From, ToType,
2791                             CK_ZeroToOCLEvent,
2792                             From->getValueKind()).take();
2793    break;
2794
2795  case ICK_Lvalue_To_Rvalue:
2796  case ICK_Array_To_Pointer:
2797  case ICK_Function_To_Pointer:
2798  case ICK_Qualification:
2799  case ICK_Num_Conversion_Kinds:
2800    llvm_unreachable("Improper second standard conversion");
2801  }
2802
2803  switch (SCS.Third) {
2804  case ICK_Identity:
2805    // Nothing to do.
2806    break;
2807
2808  case ICK_Qualification: {
2809    // The qualification keeps the category of the inner expression, unless the
2810    // target type isn't a reference.
2811    ExprValueKind VK = ToType->isReferenceType() ?
2812                                  From->getValueKind() : VK_RValue;
2813    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2814                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2815
2816    if (SCS.DeprecatedStringLiteralToCharPtr &&
2817        !getLangOpts().WritableStrings)
2818      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2819        << ToType.getNonReferenceType();
2820
2821    break;
2822    }
2823
2824  default:
2825    llvm_unreachable("Improper third standard conversion");
2826  }
2827
2828  // If this conversion sequence involved a scalar -> atomic conversion, perform
2829  // that conversion now.
2830  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2831    if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2832      From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2833                               CCK).take();
2834
2835  return Owned(From);
2836}
2837
2838ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2839                                     SourceLocation KWLoc,
2840                                     ParsedType Ty,
2841                                     SourceLocation RParen) {
2842  TypeSourceInfo *TSInfo;
2843  QualType T = GetTypeFromParser(Ty, &TSInfo);
2844
2845  if (!TSInfo)
2846    TSInfo = Context.getTrivialTypeSourceInfo(T);
2847  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2848}
2849
2850/// \brief Check the completeness of a type in a unary type trait.
2851///
2852/// If the particular type trait requires a complete type, tries to complete
2853/// it. If completing the type fails, a diagnostic is emitted and false
2854/// returned. If completing the type succeeds or no completion was required,
2855/// returns true.
2856static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2857                                                UnaryTypeTrait UTT,
2858                                                SourceLocation Loc,
2859                                                QualType ArgTy) {
2860  // C++0x [meta.unary.prop]p3:
2861  //   For all of the class templates X declared in this Clause, instantiating
2862  //   that template with a template argument that is a class template
2863  //   specialization may result in the implicit instantiation of the template
2864  //   argument if and only if the semantics of X require that the argument
2865  //   must be a complete type.
2866  // We apply this rule to all the type trait expressions used to implement
2867  // these class templates. We also try to follow any GCC documented behavior
2868  // in these expressions to ensure portability of standard libraries.
2869  switch (UTT) {
2870    // is_complete_type somewhat obviously cannot require a complete type.
2871  case UTT_IsCompleteType:
2872    // Fall-through
2873
2874    // These traits are modeled on the type predicates in C++0x
2875    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2876    // requiring a complete type, as whether or not they return true cannot be
2877    // impacted by the completeness of the type.
2878  case UTT_IsVoid:
2879  case UTT_IsIntegral:
2880  case UTT_IsFloatingPoint:
2881  case UTT_IsArray:
2882  case UTT_IsPointer:
2883  case UTT_IsLvalueReference:
2884  case UTT_IsRvalueReference:
2885  case UTT_IsMemberFunctionPointer:
2886  case UTT_IsMemberObjectPointer:
2887  case UTT_IsEnum:
2888  case UTT_IsUnion:
2889  case UTT_IsClass:
2890  case UTT_IsFunction:
2891  case UTT_IsReference:
2892  case UTT_IsArithmetic:
2893  case UTT_IsFundamental:
2894  case UTT_IsObject:
2895  case UTT_IsScalar:
2896  case UTT_IsCompound:
2897  case UTT_IsMemberPointer:
2898    // Fall-through
2899
2900    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2901    // which requires some of its traits to have the complete type. However,
2902    // the completeness of the type cannot impact these traits' semantics, and
2903    // so they don't require it. This matches the comments on these traits in
2904    // Table 49.
2905  case UTT_IsConst:
2906  case UTT_IsVolatile:
2907  case UTT_IsSigned:
2908  case UTT_IsUnsigned:
2909    return true;
2910
2911    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2912    // applied to a complete type.
2913  case UTT_IsTrivial:
2914  case UTT_IsTriviallyCopyable:
2915  case UTT_IsStandardLayout:
2916  case UTT_IsPOD:
2917  case UTT_IsLiteral:
2918  case UTT_IsEmpty:
2919  case UTT_IsPolymorphic:
2920  case UTT_IsAbstract:
2921  case UTT_IsInterfaceClass:
2922    // Fall-through
2923
2924  // These traits require a complete type.
2925  case UTT_IsFinal:
2926
2927    // These trait expressions are designed to help implement predicates in
2928    // [meta.unary.prop] despite not being named the same. They are specified
2929    // by both GCC and the Embarcadero C++ compiler, and require the complete
2930    // type due to the overarching C++0x type predicates being implemented
2931    // requiring the complete type.
2932  case UTT_HasNothrowAssign:
2933  case UTT_HasNothrowConstructor:
2934  case UTT_HasNothrowCopy:
2935  case UTT_HasTrivialAssign:
2936  case UTT_HasTrivialDefaultConstructor:
2937  case UTT_HasTrivialCopy:
2938  case UTT_HasTrivialDestructor:
2939  case UTT_HasVirtualDestructor:
2940    // Arrays of unknown bound are expressly allowed.
2941    QualType ElTy = ArgTy;
2942    if (ArgTy->isIncompleteArrayType())
2943      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2944
2945    // The void type is expressly allowed.
2946    if (ElTy->isVoidType())
2947      return true;
2948
2949    return !S.RequireCompleteType(
2950      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2951  }
2952  llvm_unreachable("Type trait not handled by switch");
2953}
2954
2955static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2956                                   SourceLocation KeyLoc, QualType T) {
2957  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2958
2959  ASTContext &C = Self.Context;
2960  switch(UTT) {
2961    // Type trait expressions corresponding to the primary type category
2962    // predicates in C++0x [meta.unary.cat].
2963  case UTT_IsVoid:
2964    return T->isVoidType();
2965  case UTT_IsIntegral:
2966    return T->isIntegralType(C);
2967  case UTT_IsFloatingPoint:
2968    return T->isFloatingType();
2969  case UTT_IsArray:
2970    return T->isArrayType();
2971  case UTT_IsPointer:
2972    return T->isPointerType();
2973  case UTT_IsLvalueReference:
2974    return T->isLValueReferenceType();
2975  case UTT_IsRvalueReference:
2976    return T->isRValueReferenceType();
2977  case UTT_IsMemberFunctionPointer:
2978    return T->isMemberFunctionPointerType();
2979  case UTT_IsMemberObjectPointer:
2980    return T->isMemberDataPointerType();
2981  case UTT_IsEnum:
2982    return T->isEnumeralType();
2983  case UTT_IsUnion:
2984    return T->isUnionType();
2985  case UTT_IsClass:
2986    return T->isClassType() || T->isStructureType() || T->isInterfaceType();
2987  case UTT_IsFunction:
2988    return T->isFunctionType();
2989
2990    // Type trait expressions which correspond to the convenient composition
2991    // predicates in C++0x [meta.unary.comp].
2992  case UTT_IsReference:
2993    return T->isReferenceType();
2994  case UTT_IsArithmetic:
2995    return T->isArithmeticType() && !T->isEnumeralType();
2996  case UTT_IsFundamental:
2997    return T->isFundamentalType();
2998  case UTT_IsObject:
2999    return T->isObjectType();
3000  case UTT_IsScalar:
3001    // Note: semantic analysis depends on Objective-C lifetime types to be
3002    // considered scalar types. However, such types do not actually behave
3003    // like scalar types at run time (since they may require retain/release
3004    // operations), so we report them as non-scalar.
3005    if (T->isObjCLifetimeType()) {
3006      switch (T.getObjCLifetime()) {
3007      case Qualifiers::OCL_None:
3008      case Qualifiers::OCL_ExplicitNone:
3009        return true;
3010
3011      case Qualifiers::OCL_Strong:
3012      case Qualifiers::OCL_Weak:
3013      case Qualifiers::OCL_Autoreleasing:
3014        return false;
3015      }
3016    }
3017
3018    return T->isScalarType();
3019  case UTT_IsCompound:
3020    return T->isCompoundType();
3021  case UTT_IsMemberPointer:
3022    return T->isMemberPointerType();
3023
3024    // Type trait expressions which correspond to the type property predicates
3025    // in C++0x [meta.unary.prop].
3026  case UTT_IsConst:
3027    return T.isConstQualified();
3028  case UTT_IsVolatile:
3029    return T.isVolatileQualified();
3030  case UTT_IsTrivial:
3031    return T.isTrivialType(Self.Context);
3032  case UTT_IsTriviallyCopyable:
3033    return T.isTriviallyCopyableType(Self.Context);
3034  case UTT_IsStandardLayout:
3035    return T->isStandardLayoutType();
3036  case UTT_IsPOD:
3037    return T.isPODType(Self.Context);
3038  case UTT_IsLiteral:
3039    return T->isLiteralType();
3040  case UTT_IsEmpty:
3041    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3042      return !RD->isUnion() && RD->isEmpty();
3043    return false;
3044  case UTT_IsPolymorphic:
3045    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3046      return RD->isPolymorphic();
3047    return false;
3048  case UTT_IsAbstract:
3049    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3050      return RD->isAbstract();
3051    return false;
3052  case UTT_IsInterfaceClass:
3053    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3054      return RD->isInterface();
3055    return false;
3056  case UTT_IsFinal:
3057    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3058      return RD->hasAttr<FinalAttr>();
3059    return false;
3060  case UTT_IsSigned:
3061    return T->isSignedIntegerType();
3062  case UTT_IsUnsigned:
3063    return T->isUnsignedIntegerType();
3064
3065    // Type trait expressions which query classes regarding their construction,
3066    // destruction, and copying. Rather than being based directly on the
3067    // related type predicates in the standard, they are specified by both
3068    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3069    // specifications.
3070    //
3071    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3072    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3073    //
3074    // Note that these builtins do not behave as documented in g++: if a class
3075    // has both a trivial and a non-trivial special member of a particular kind,
3076    // they return false! For now, we emulate this behavior.
3077    // FIXME: This appears to be a g++ bug: more complex cases reveal that it
3078    // does not correctly compute triviality in the presence of multiple special
3079    // members of the same kind. Revisit this once the g++ bug is fixed.
3080  case UTT_HasTrivialDefaultConstructor:
3081    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3082    //   If __is_pod (type) is true then the trait is true, else if type is
3083    //   a cv class or union type (or array thereof) with a trivial default
3084    //   constructor ([class.ctor]) then the trait is true, else it is false.
3085    if (T.isPODType(Self.Context))
3086      return true;
3087    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3088      return RD->hasTrivialDefaultConstructor() &&
3089             !RD->hasNonTrivialDefaultConstructor();
3090    return false;
3091  case UTT_HasTrivialCopy:
3092    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3093    //   If __is_pod (type) is true or type is a reference type then
3094    //   the trait is true, else if type is a cv class or union type
3095    //   with a trivial copy constructor ([class.copy]) then the trait
3096    //   is true, else it is false.
3097    if (T.isPODType(Self.Context) || T->isReferenceType())
3098      return true;
3099    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3100      return RD->hasTrivialCopyConstructor() &&
3101             !RD->hasNonTrivialCopyConstructor();
3102    return false;
3103  case UTT_HasTrivialAssign:
3104    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3105    //   If type is const qualified or is a reference type then the
3106    //   trait is false. Otherwise if __is_pod (type) is true then the
3107    //   trait is true, else if type is a cv class or union type with
3108    //   a trivial copy assignment ([class.copy]) then the trait is
3109    //   true, else it is false.
3110    // Note: the const and reference restrictions are interesting,
3111    // given that const and reference members don't prevent a class
3112    // from having a trivial copy assignment operator (but do cause
3113    // errors if the copy assignment operator is actually used, q.v.
3114    // [class.copy]p12).
3115
3116    if (T.isConstQualified())
3117      return false;
3118    if (T.isPODType(Self.Context))
3119      return true;
3120    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3121      return RD->hasTrivialCopyAssignment() &&
3122             !RD->hasNonTrivialCopyAssignment();
3123    return false;
3124  case UTT_HasTrivialDestructor:
3125    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3126    //   If __is_pod (type) is true or type is a reference type
3127    //   then the trait is true, else if type is a cv class or union
3128    //   type (or array thereof) with a trivial destructor
3129    //   ([class.dtor]) then the trait is true, else it is
3130    //   false.
3131    if (T.isPODType(Self.Context) || T->isReferenceType())
3132      return true;
3133
3134    // Objective-C++ ARC: autorelease types don't require destruction.
3135    if (T->isObjCLifetimeType() &&
3136        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3137      return true;
3138
3139    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl())
3140      return RD->hasTrivialDestructor();
3141    return false;
3142  // TODO: Propagate nothrowness for implicitly declared special members.
3143  case UTT_HasNothrowAssign:
3144    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3145    //   If type is const qualified or is a reference type then the
3146    //   trait is false. Otherwise if __has_trivial_assign (type)
3147    //   is true then the trait is true, else if type is a cv class
3148    //   or union type with copy assignment operators that are known
3149    //   not to throw an exception then the trait is true, else it is
3150    //   false.
3151    if (C.getBaseElementType(T).isConstQualified())
3152      return false;
3153    if (T->isReferenceType())
3154      return false;
3155    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3156      return true;
3157    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3158      if (RD->hasTrivialCopyAssignment() && !RD->hasNonTrivialCopyAssignment())
3159        return true;
3160
3161      bool FoundAssign = false;
3162      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3163      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3164                       Sema::LookupOrdinaryName);
3165      if (Self.LookupQualifiedName(Res, RD)) {
3166        Res.suppressDiagnostics();
3167        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3168             Op != OpEnd; ++Op) {
3169          if (isa<FunctionTemplateDecl>(*Op))
3170            continue;
3171
3172          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3173          if (Operator->isCopyAssignmentOperator()) {
3174            FoundAssign = true;
3175            const FunctionProtoType *CPT
3176                = Operator->getType()->getAs<FunctionProtoType>();
3177            CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3178            if (!CPT)
3179              return false;
3180            if (!CPT->isNothrow(Self.Context))
3181              return false;
3182          }
3183        }
3184      }
3185
3186      return FoundAssign;
3187    }
3188    return false;
3189  case UTT_HasNothrowCopy:
3190    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3191    //   If __has_trivial_copy (type) is true then the trait is true, else
3192    //   if type is a cv class or union type with copy constructors that are
3193    //   known not to throw an exception then the trait is true, else it is
3194    //   false.
3195    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3196      return true;
3197    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
3198      if (RD->hasTrivialCopyConstructor() &&
3199          !RD->hasNonTrivialCopyConstructor())
3200        return true;
3201
3202      bool FoundConstructor = false;
3203      unsigned FoundTQs;
3204      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3205      for (DeclContext::lookup_const_iterator Con = R.begin(),
3206           ConEnd = R.end(); Con != ConEnd; ++Con) {
3207        // A template constructor is never a copy constructor.
3208        // FIXME: However, it may actually be selected at the actual overload
3209        // resolution point.
3210        if (isa<FunctionTemplateDecl>(*Con))
3211          continue;
3212        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3213        if (Constructor->isCopyConstructor(FoundTQs)) {
3214          FoundConstructor = true;
3215          const FunctionProtoType *CPT
3216              = Constructor->getType()->getAs<FunctionProtoType>();
3217          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3218          if (!CPT)
3219            return false;
3220          // FIXME: check whether evaluating default arguments can throw.
3221          // For now, we'll be conservative and assume that they can throw.
3222          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3223            return false;
3224        }
3225      }
3226
3227      return FoundConstructor;
3228    }
3229    return false;
3230  case UTT_HasNothrowConstructor:
3231    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3232    //   If __has_trivial_constructor (type) is true then the trait is
3233    //   true, else if type is a cv class or union type (or array
3234    //   thereof) with a default constructor that is known not to
3235    //   throw an exception then the trait is true, else it is false.
3236    if (T.isPODType(C) || T->isObjCLifetimeType())
3237      return true;
3238    if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) {
3239      if (RD->hasTrivialDefaultConstructor() &&
3240          !RD->hasNonTrivialDefaultConstructor())
3241        return true;
3242
3243      DeclContext::lookup_const_result R = Self.LookupConstructors(RD);
3244      for (DeclContext::lookup_const_iterator Con = R.begin(),
3245           ConEnd = R.end(); Con != ConEnd; ++Con) {
3246        // FIXME: In C++0x, a constructor template can be a default constructor.
3247        if (isa<FunctionTemplateDecl>(*Con))
3248          continue;
3249        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3250        if (Constructor->isDefaultConstructor()) {
3251          const FunctionProtoType *CPT
3252              = Constructor->getType()->getAs<FunctionProtoType>();
3253          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3254          if (!CPT)
3255            return false;
3256          // TODO: check whether evaluating default arguments can throw.
3257          // For now, we'll be conservative and assume that they can throw.
3258          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3259        }
3260      }
3261    }
3262    return false;
3263  case UTT_HasVirtualDestructor:
3264    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3265    //   If type is a class type with a virtual destructor ([class.dtor])
3266    //   then the trait is true, else it is false.
3267    if (CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3268      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3269        return Destructor->isVirtual();
3270    return false;
3271
3272    // These type trait expressions are modeled on the specifications for the
3273    // Embarcadero C++0x type trait functions:
3274    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3275  case UTT_IsCompleteType:
3276    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3277    //   Returns True if and only if T is a complete type at the point of the
3278    //   function call.
3279    return !T->isIncompleteType();
3280  }
3281  llvm_unreachable("Type trait not covered by switch");
3282}
3283
3284ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3285                                     SourceLocation KWLoc,
3286                                     TypeSourceInfo *TSInfo,
3287                                     SourceLocation RParen) {
3288  QualType T = TSInfo->getType();
3289  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3290    return ExprError();
3291
3292  bool Value = false;
3293  if (!T->isDependentType())
3294    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3295
3296  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3297                                                RParen, Context.BoolTy));
3298}
3299
3300ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3301                                      SourceLocation KWLoc,
3302                                      ParsedType LhsTy,
3303                                      ParsedType RhsTy,
3304                                      SourceLocation RParen) {
3305  TypeSourceInfo *LhsTSInfo;
3306  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3307  if (!LhsTSInfo)
3308    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3309
3310  TypeSourceInfo *RhsTSInfo;
3311  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3312  if (!RhsTSInfo)
3313    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3314
3315  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3316}
3317
3318/// \brief Determine whether T has a non-trivial Objective-C lifetime in
3319/// ARC mode.
3320static bool hasNontrivialObjCLifetime(QualType T) {
3321  switch (T.getObjCLifetime()) {
3322  case Qualifiers::OCL_ExplicitNone:
3323    return false;
3324
3325  case Qualifiers::OCL_Strong:
3326  case Qualifiers::OCL_Weak:
3327  case Qualifiers::OCL_Autoreleasing:
3328    return true;
3329
3330  case Qualifiers::OCL_None:
3331    return T->isObjCLifetimeType();
3332  }
3333
3334  llvm_unreachable("Unknown ObjC lifetime qualifier");
3335}
3336
3337static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3338                              ArrayRef<TypeSourceInfo *> Args,
3339                              SourceLocation RParenLoc) {
3340  switch (Kind) {
3341  case clang::TT_IsTriviallyConstructible: {
3342    // C++11 [meta.unary.prop]:
3343    //   is_trivially_constructible is defined as:
3344    //
3345    //     is_constructible<T, Args...>::value is true and the variable
3346    //     definition for is_constructible, as defined below, is known to call no
3347    //     operation that is not trivial.
3348    //
3349    //   The predicate condition for a template specialization
3350    //   is_constructible<T, Args...> shall be satisfied if and only if the
3351    //   following variable definition would be well-formed for some invented
3352    //   variable t:
3353    //
3354    //     T t(create<Args>()...);
3355    if (Args.empty()) {
3356      S.Diag(KWLoc, diag::err_type_trait_arity)
3357        << 1 << 1 << 1 << (int)Args.size();
3358      return false;
3359    }
3360
3361    bool SawVoid = false;
3362    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3363      if (Args[I]->getType()->isVoidType()) {
3364        SawVoid = true;
3365        continue;
3366      }
3367
3368      if (!Args[I]->getType()->isIncompleteType() &&
3369        S.RequireCompleteType(KWLoc, Args[I]->getType(),
3370          diag::err_incomplete_type_used_in_type_trait_expr))
3371        return false;
3372    }
3373
3374    // If any argument was 'void', of course it won't type-check.
3375    if (SawVoid)
3376      return false;
3377
3378    SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3379    SmallVector<Expr *, 2> ArgExprs;
3380    ArgExprs.reserve(Args.size() - 1);
3381    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3382      QualType T = Args[I]->getType();
3383      if (T->isObjectType() || T->isFunctionType())
3384        T = S.Context.getRValueReferenceType(T);
3385      OpaqueArgExprs.push_back(
3386        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3387                        T.getNonLValueExprType(S.Context),
3388                        Expr::getValueKindForType(T)));
3389      ArgExprs.push_back(&OpaqueArgExprs.back());
3390    }
3391
3392    // Perform the initialization in an unevaluated context within a SFINAE
3393    // trap at translation unit scope.
3394    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3395    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3396    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3397    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3398    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3399                                                                 RParenLoc));
3400    InitializationSequence Init(S, To, InitKind,
3401                                ArgExprs.begin(), ArgExprs.size());
3402    if (Init.Failed())
3403      return false;
3404
3405    ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs);
3406    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3407      return false;
3408
3409    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3410    // lifetime, this is a non-trivial construction.
3411    if (S.getLangOpts().ObjCAutoRefCount &&
3412        hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType()))
3413      return false;
3414
3415    // The initialization succeeded; now make sure there are no non-trivial
3416    // calls.
3417    return !Result.get()->hasNonTrivialCall(S.Context);
3418  }
3419  }
3420
3421  return false;
3422}
3423
3424ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3425                                ArrayRef<TypeSourceInfo *> Args,
3426                                SourceLocation RParenLoc) {
3427  bool Dependent = false;
3428  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3429    if (Args[I]->getType()->isDependentType()) {
3430      Dependent = true;
3431      break;
3432    }
3433  }
3434
3435  bool Value = false;
3436  if (!Dependent)
3437    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3438
3439  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3440                               Args, RParenLoc, Value);
3441}
3442
3443ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3444                                ArrayRef<ParsedType> Args,
3445                                SourceLocation RParenLoc) {
3446  SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3447  ConvertedArgs.reserve(Args.size());
3448
3449  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3450    TypeSourceInfo *TInfo;
3451    QualType T = GetTypeFromParser(Args[I], &TInfo);
3452    if (!TInfo)
3453      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3454
3455    ConvertedArgs.push_back(TInfo);
3456  }
3457
3458  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3459}
3460
3461static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3462                                    QualType LhsT, QualType RhsT,
3463                                    SourceLocation KeyLoc) {
3464  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3465         "Cannot evaluate traits of dependent types");
3466
3467  switch(BTT) {
3468  case BTT_IsBaseOf: {
3469    // C++0x [meta.rel]p2
3470    // Base is a base class of Derived without regard to cv-qualifiers or
3471    // Base and Derived are not unions and name the same class type without
3472    // regard to cv-qualifiers.
3473
3474    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3475    if (!lhsRecord) return false;
3476
3477    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3478    if (!rhsRecord) return false;
3479
3480    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3481             == (lhsRecord == rhsRecord));
3482
3483    if (lhsRecord == rhsRecord)
3484      return !lhsRecord->getDecl()->isUnion();
3485
3486    // C++0x [meta.rel]p2:
3487    //   If Base and Derived are class types and are different types
3488    //   (ignoring possible cv-qualifiers) then Derived shall be a
3489    //   complete type.
3490    if (Self.RequireCompleteType(KeyLoc, RhsT,
3491                          diag::err_incomplete_type_used_in_type_trait_expr))
3492      return false;
3493
3494    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3495      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3496  }
3497  case BTT_IsSame:
3498    return Self.Context.hasSameType(LhsT, RhsT);
3499  case BTT_TypeCompatible:
3500    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3501                                           RhsT.getUnqualifiedType());
3502  case BTT_IsConvertible:
3503  case BTT_IsConvertibleTo: {
3504    // C++0x [meta.rel]p4:
3505    //   Given the following function prototype:
3506    //
3507    //     template <class T>
3508    //       typename add_rvalue_reference<T>::type create();
3509    //
3510    //   the predicate condition for a template specialization
3511    //   is_convertible<From, To> shall be satisfied if and only if
3512    //   the return expression in the following code would be
3513    //   well-formed, including any implicit conversions to the return
3514    //   type of the function:
3515    //
3516    //     To test() {
3517    //       return create<From>();
3518    //     }
3519    //
3520    //   Access checking is performed as if in a context unrelated to To and
3521    //   From. Only the validity of the immediate context of the expression
3522    //   of the return-statement (including conversions to the return type)
3523    //   is considered.
3524    //
3525    // We model the initialization as a copy-initialization of a temporary
3526    // of the appropriate type, which for this expression is identical to the
3527    // return statement (since NRVO doesn't apply).
3528
3529    // Functions aren't allowed to return function or array types.
3530    if (RhsT->isFunctionType() || RhsT->isArrayType())
3531      return false;
3532
3533    // A return statement in a void function must have void type.
3534    if (RhsT->isVoidType())
3535      return LhsT->isVoidType();
3536
3537    // A function definition requires a complete, non-abstract return type.
3538    if (Self.RequireCompleteType(KeyLoc, RhsT, 0) ||
3539        Self.RequireNonAbstractType(KeyLoc, RhsT, 0))
3540      return false;
3541
3542    // Compute the result of add_rvalue_reference.
3543    if (LhsT->isObjectType() || LhsT->isFunctionType())
3544      LhsT = Self.Context.getRValueReferenceType(LhsT);
3545
3546    // Build a fake source and destination for initialization.
3547    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3548    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3549                         Expr::getValueKindForType(LhsT));
3550    Expr *FromPtr = &From;
3551    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3552                                                           SourceLocation()));
3553
3554    // Perform the initialization in an unevaluated context within a SFINAE
3555    // trap at translation unit scope.
3556    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3557    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3558    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3559    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3560    if (Init.Failed())
3561      return false;
3562
3563    ExprResult Result = Init.Perform(Self, To, Kind, FromPtr);
3564    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3565  }
3566
3567  case BTT_IsTriviallyAssignable: {
3568    // C++11 [meta.unary.prop]p3:
3569    //   is_trivially_assignable is defined as:
3570    //     is_assignable<T, U>::value is true and the assignment, as defined by
3571    //     is_assignable, is known to call no operation that is not trivial
3572    //
3573    //   is_assignable is defined as:
3574    //     The expression declval<T>() = declval<U>() is well-formed when
3575    //     treated as an unevaluated operand (Clause 5).
3576    //
3577    //   For both, T and U shall be complete types, (possibly cv-qualified)
3578    //   void, or arrays of unknown bound.
3579    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3580        Self.RequireCompleteType(KeyLoc, LhsT,
3581          diag::err_incomplete_type_used_in_type_trait_expr))
3582      return false;
3583    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3584        Self.RequireCompleteType(KeyLoc, RhsT,
3585          diag::err_incomplete_type_used_in_type_trait_expr))
3586      return false;
3587
3588    // cv void is never assignable.
3589    if (LhsT->isVoidType() || RhsT->isVoidType())
3590      return false;
3591
3592    // Build expressions that emulate the effect of declval<T>() and
3593    // declval<U>().
3594    if (LhsT->isObjectType() || LhsT->isFunctionType())
3595      LhsT = Self.Context.getRValueReferenceType(LhsT);
3596    if (RhsT->isObjectType() || RhsT->isFunctionType())
3597      RhsT = Self.Context.getRValueReferenceType(RhsT);
3598    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3599                        Expr::getValueKindForType(LhsT));
3600    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3601                        Expr::getValueKindForType(RhsT));
3602
3603    // Attempt the assignment in an unevaluated context within a SFINAE
3604    // trap at translation unit scope.
3605    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3606    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3607    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3608    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3609    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3610      return false;
3611
3612    // Under Objective-C ARC, if the destination has non-trivial Objective-C
3613    // lifetime, this is a non-trivial assignment.
3614    if (Self.getLangOpts().ObjCAutoRefCount &&
3615        hasNontrivialObjCLifetime(LhsT.getNonReferenceType()))
3616      return false;
3617
3618    return !Result.get()->hasNonTrivialCall(Self.Context);
3619  }
3620  }
3621  llvm_unreachable("Unknown type trait or not implemented");
3622}
3623
3624ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3625                                      SourceLocation KWLoc,
3626                                      TypeSourceInfo *LhsTSInfo,
3627                                      TypeSourceInfo *RhsTSInfo,
3628                                      SourceLocation RParen) {
3629  QualType LhsT = LhsTSInfo->getType();
3630  QualType RhsT = RhsTSInfo->getType();
3631
3632  if (BTT == BTT_TypeCompatible) {
3633    if (getLangOpts().CPlusPlus) {
3634      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3635        << SourceRange(KWLoc, RParen);
3636      return ExprError();
3637    }
3638  }
3639
3640  bool Value = false;
3641  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3642    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3643
3644  // Select trait result type.
3645  QualType ResultType;
3646  switch (BTT) {
3647  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3648  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3649  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3650  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3651  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3652  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3653  }
3654
3655  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3656                                                 RhsTSInfo, Value, RParen,
3657                                                 ResultType));
3658}
3659
3660ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3661                                     SourceLocation KWLoc,
3662                                     ParsedType Ty,
3663                                     Expr* DimExpr,
3664                                     SourceLocation RParen) {
3665  TypeSourceInfo *TSInfo;
3666  QualType T = GetTypeFromParser(Ty, &TSInfo);
3667  if (!TSInfo)
3668    TSInfo = Context.getTrivialTypeSourceInfo(T);
3669
3670  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3671}
3672
3673static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3674                                           QualType T, Expr *DimExpr,
3675                                           SourceLocation KeyLoc) {
3676  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3677
3678  switch(ATT) {
3679  case ATT_ArrayRank:
3680    if (T->isArrayType()) {
3681      unsigned Dim = 0;
3682      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3683        ++Dim;
3684        T = AT->getElementType();
3685      }
3686      return Dim;
3687    }
3688    return 0;
3689
3690  case ATT_ArrayExtent: {
3691    llvm::APSInt Value;
3692    uint64_t Dim;
3693    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3694          diag::err_dimension_expr_not_constant_integer,
3695          false).isInvalid())
3696      return 0;
3697    if (Value.isSigned() && Value.isNegative()) {
3698      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3699        << DimExpr->getSourceRange();
3700      return 0;
3701    }
3702    Dim = Value.getLimitedValue();
3703
3704    if (T->isArrayType()) {
3705      unsigned D = 0;
3706      bool Matched = false;
3707      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3708        if (Dim == D) {
3709          Matched = true;
3710          break;
3711        }
3712        ++D;
3713        T = AT->getElementType();
3714      }
3715
3716      if (Matched && T->isArrayType()) {
3717        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3718          return CAT->getSize().getLimitedValue();
3719      }
3720    }
3721    return 0;
3722  }
3723  }
3724  llvm_unreachable("Unknown type trait or not implemented");
3725}
3726
3727ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3728                                     SourceLocation KWLoc,
3729                                     TypeSourceInfo *TSInfo,
3730                                     Expr* DimExpr,
3731                                     SourceLocation RParen) {
3732  QualType T = TSInfo->getType();
3733
3734  // FIXME: This should likely be tracked as an APInt to remove any host
3735  // assumptions about the width of size_t on the target.
3736  uint64_t Value = 0;
3737  if (!T->isDependentType())
3738    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3739
3740  // While the specification for these traits from the Embarcadero C++
3741  // compiler's documentation says the return type is 'unsigned int', Clang
3742  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3743  // compiler, there is no difference. On several other platforms this is an
3744  // important distinction.
3745  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3746                                                DimExpr, RParen,
3747                                                Context.getSizeType()));
3748}
3749
3750ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3751                                      SourceLocation KWLoc,
3752                                      Expr *Queried,
3753                                      SourceLocation RParen) {
3754  // If error parsing the expression, ignore.
3755  if (!Queried)
3756    return ExprError();
3757
3758  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3759
3760  return Result;
3761}
3762
3763static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3764  switch (ET) {
3765  case ET_IsLValueExpr: return E->isLValue();
3766  case ET_IsRValueExpr: return E->isRValue();
3767  }
3768  llvm_unreachable("Expression trait not covered by switch");
3769}
3770
3771ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3772                                      SourceLocation KWLoc,
3773                                      Expr *Queried,
3774                                      SourceLocation RParen) {
3775  if (Queried->isTypeDependent()) {
3776    // Delay type-checking for type-dependent expressions.
3777  } else if (Queried->getType()->isPlaceholderType()) {
3778    ExprResult PE = CheckPlaceholderExpr(Queried);
3779    if (PE.isInvalid()) return ExprError();
3780    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3781  }
3782
3783  bool Value = EvaluateExpressionTrait(ET, Queried);
3784
3785  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3786                                                 RParen, Context.BoolTy));
3787}
3788
3789QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3790                                            ExprValueKind &VK,
3791                                            SourceLocation Loc,
3792                                            bool isIndirect) {
3793  assert(!LHS.get()->getType()->isPlaceholderType() &&
3794         !RHS.get()->getType()->isPlaceholderType() &&
3795         "placeholders should have been weeded out by now");
3796
3797  // The LHS undergoes lvalue conversions if this is ->*.
3798  if (isIndirect) {
3799    LHS = DefaultLvalueConversion(LHS.take());
3800    if (LHS.isInvalid()) return QualType();
3801  }
3802
3803  // The RHS always undergoes lvalue conversions.
3804  RHS = DefaultLvalueConversion(RHS.take());
3805  if (RHS.isInvalid()) return QualType();
3806
3807  const char *OpSpelling = isIndirect ? "->*" : ".*";
3808  // C++ 5.5p2
3809  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3810  //   be of type "pointer to member of T" (where T is a completely-defined
3811  //   class type) [...]
3812  QualType RHSType = RHS.get()->getType();
3813  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3814  if (!MemPtr) {
3815    Diag(Loc, diag::err_bad_memptr_rhs)
3816      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3817    return QualType();
3818  }
3819
3820  QualType Class(MemPtr->getClass(), 0);
3821
3822  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3823  // member pointer points must be completely-defined. However, there is no
3824  // reason for this semantic distinction, and the rule is not enforced by
3825  // other compilers. Therefore, we do not check this property, as it is
3826  // likely to be considered a defect.
3827
3828  // C++ 5.5p2
3829  //   [...] to its first operand, which shall be of class T or of a class of
3830  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3831  //   such a class]
3832  QualType LHSType = LHS.get()->getType();
3833  if (isIndirect) {
3834    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3835      LHSType = Ptr->getPointeeType();
3836    else {
3837      Diag(Loc, diag::err_bad_memptr_lhs)
3838        << OpSpelling << 1 << LHSType
3839        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3840      return QualType();
3841    }
3842  }
3843
3844  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3845    // If we want to check the hierarchy, we need a complete type.
3846    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3847                            OpSpelling, (int)isIndirect)) {
3848      return QualType();
3849    }
3850    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3851                       /*DetectVirtual=*/false);
3852    // FIXME: Would it be useful to print full ambiguity paths, or is that
3853    // overkill?
3854    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3855        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3856      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3857        << (int)isIndirect << LHS.get()->getType();
3858      return QualType();
3859    }
3860    // Cast LHS to type of use.
3861    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3862    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3863
3864    CXXCastPath BasePath;
3865    BuildBasePathArray(Paths, BasePath);
3866    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3867                            &BasePath);
3868  }
3869
3870  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3871    // Diagnose use of pointer-to-member type which when used as
3872    // the functional cast in a pointer-to-member expression.
3873    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3874     return QualType();
3875  }
3876
3877  // C++ 5.5p2
3878  //   The result is an object or a function of the type specified by the
3879  //   second operand.
3880  // The cv qualifiers are the union of those in the pointer and the left side,
3881  // in accordance with 5.5p5 and 5.2.5.
3882  QualType Result = MemPtr->getPointeeType();
3883  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3884
3885  // C++0x [expr.mptr.oper]p6:
3886  //   In a .* expression whose object expression is an rvalue, the program is
3887  //   ill-formed if the second operand is a pointer to member function with
3888  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3889  //   expression is an lvalue, the program is ill-formed if the second operand
3890  //   is a pointer to member function with ref-qualifier &&.
3891  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3892    switch (Proto->getRefQualifier()) {
3893    case RQ_None:
3894      // Do nothing
3895      break;
3896
3897    case RQ_LValue:
3898      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3899        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3900          << RHSType << 1 << LHS.get()->getSourceRange();
3901      break;
3902
3903    case RQ_RValue:
3904      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3905        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3906          << RHSType << 0 << LHS.get()->getSourceRange();
3907      break;
3908    }
3909  }
3910
3911  // C++ [expr.mptr.oper]p6:
3912  //   The result of a .* expression whose second operand is a pointer
3913  //   to a data member is of the same value category as its
3914  //   first operand. The result of a .* expression whose second
3915  //   operand is a pointer to a member function is a prvalue. The
3916  //   result of an ->* expression is an lvalue if its second operand
3917  //   is a pointer to data member and a prvalue otherwise.
3918  if (Result->isFunctionType()) {
3919    VK = VK_RValue;
3920    return Context.BoundMemberTy;
3921  } else if (isIndirect) {
3922    VK = VK_LValue;
3923  } else {
3924    VK = LHS.get()->getValueKind();
3925  }
3926
3927  return Result;
3928}
3929
3930/// \brief Try to convert a type to another according to C++0x 5.16p3.
3931///
3932/// This is part of the parameter validation for the ? operator. If either
3933/// value operand is a class type, the two operands are attempted to be
3934/// converted to each other. This function does the conversion in one direction.
3935/// It returns true if the program is ill-formed and has already been diagnosed
3936/// as such.
3937static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3938                                SourceLocation QuestionLoc,
3939                                bool &HaveConversion,
3940                                QualType &ToType) {
3941  HaveConversion = false;
3942  ToType = To->getType();
3943
3944  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3945                                                           SourceLocation());
3946  // C++0x 5.16p3
3947  //   The process for determining whether an operand expression E1 of type T1
3948  //   can be converted to match an operand expression E2 of type T2 is defined
3949  //   as follows:
3950  //   -- If E2 is an lvalue:
3951  bool ToIsLvalue = To->isLValue();
3952  if (ToIsLvalue) {
3953    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3954    //   type "lvalue reference to T2", subject to the constraint that in the
3955    //   conversion the reference must bind directly to E1.
3956    QualType T = Self.Context.getLValueReferenceType(ToType);
3957    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3958
3959    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3960    if (InitSeq.isDirectReferenceBinding()) {
3961      ToType = T;
3962      HaveConversion = true;
3963      return false;
3964    }
3965
3966    if (InitSeq.isAmbiguous())
3967      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3968  }
3969
3970  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3971  //      -- if E1 and E2 have class type, and the underlying class types are
3972  //         the same or one is a base class of the other:
3973  QualType FTy = From->getType();
3974  QualType TTy = To->getType();
3975  const RecordType *FRec = FTy->getAs<RecordType>();
3976  const RecordType *TRec = TTy->getAs<RecordType>();
3977  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3978                       Self.IsDerivedFrom(FTy, TTy);
3979  if (FRec && TRec &&
3980      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3981    //         E1 can be converted to match E2 if the class of T2 is the
3982    //         same type as, or a base class of, the class of T1, and
3983    //         [cv2 > cv1].
3984    if (FRec == TRec || FDerivedFromT) {
3985      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3986        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3987        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3988        if (InitSeq) {
3989          HaveConversion = true;
3990          return false;
3991        }
3992
3993        if (InitSeq.isAmbiguous())
3994          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3995      }
3996    }
3997
3998    return false;
3999  }
4000
4001  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
4002  //        implicitly converted to the type that expression E2 would have
4003  //        if E2 were converted to an rvalue (or the type it has, if E2 is
4004  //        an rvalue).
4005  //
4006  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
4007  // to the array-to-pointer or function-to-pointer conversions.
4008  if (!TTy->getAs<TagType>())
4009    TTy = TTy.getUnqualifiedType();
4010
4011  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
4012  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
4013  HaveConversion = !InitSeq.Failed();
4014  ToType = TTy;
4015  if (InitSeq.isAmbiguous())
4016    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
4017
4018  return false;
4019}
4020
4021/// \brief Try to find a common type for two according to C++0x 5.16p5.
4022///
4023/// This is part of the parameter validation for the ? operator. If either
4024/// value operand is a class type, overload resolution is used to find a
4025/// conversion to a common type.
4026static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
4027                                    SourceLocation QuestionLoc) {
4028  Expr *Args[2] = { LHS.get(), RHS.get() };
4029  OverloadCandidateSet CandidateSet(QuestionLoc);
4030  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
4031                                    CandidateSet);
4032
4033  OverloadCandidateSet::iterator Best;
4034  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4035    case OR_Success: {
4036      // We found a match. Perform the conversions on the arguments and move on.
4037      ExprResult LHSRes =
4038        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4039                                       Best->Conversions[0], Sema::AA_Converting);
4040      if (LHSRes.isInvalid())
4041        break;
4042      LHS = LHSRes;
4043
4044      ExprResult RHSRes =
4045        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4046                                       Best->Conversions[1], Sema::AA_Converting);
4047      if (RHSRes.isInvalid())
4048        break;
4049      RHS = RHSRes;
4050      if (Best->Function)
4051        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4052      return false;
4053    }
4054
4055    case OR_No_Viable_Function:
4056
4057      // Emit a better diagnostic if one of the expressions is a null pointer
4058      // constant and the other is a pointer type. In this case, the user most
4059      // likely forgot to take the address of the other expression.
4060      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4061        return true;
4062
4063      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4064        << LHS.get()->getType() << RHS.get()->getType()
4065        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4066      return true;
4067
4068    case OR_Ambiguous:
4069      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4070        << LHS.get()->getType() << RHS.get()->getType()
4071        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4072      // FIXME: Print the possible common types by printing the return types of
4073      // the viable candidates.
4074      break;
4075
4076    case OR_Deleted:
4077      llvm_unreachable("Conditional operator has only built-in overloads");
4078  }
4079  return true;
4080}
4081
4082/// \brief Perform an "extended" implicit conversion as returned by
4083/// TryClassUnification.
4084static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4085  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4086  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4087                                                           SourceLocation());
4088  Expr *Arg = E.take();
4089  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4090  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg);
4091  if (Result.isInvalid())
4092    return true;
4093
4094  E = Result;
4095  return false;
4096}
4097
4098/// \brief Check the operands of ?: under C++ semantics.
4099///
4100/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4101/// extension. In this case, LHS == Cond. (But they're not aliases.)
4102QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
4103                                           ExprResult &RHS, ExprValueKind &VK,
4104                                           ExprObjectKind &OK,
4105                                           SourceLocation QuestionLoc) {
4106  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4107  // interface pointers.
4108
4109  // C++11 [expr.cond]p1
4110  //   The first expression is contextually converted to bool.
4111  if (!Cond.get()->isTypeDependent()) {
4112    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4113    if (CondRes.isInvalid())
4114      return QualType();
4115    Cond = CondRes;
4116  }
4117
4118  // Assume r-value.
4119  VK = VK_RValue;
4120  OK = OK_Ordinary;
4121
4122  // Either of the arguments dependent?
4123  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4124    return Context.DependentTy;
4125
4126  // C++11 [expr.cond]p2
4127  //   If either the second or the third operand has type (cv) void, ...
4128  QualType LTy = LHS.get()->getType();
4129  QualType RTy = RHS.get()->getType();
4130  bool LVoid = LTy->isVoidType();
4131  bool RVoid = RTy->isVoidType();
4132  if (LVoid || RVoid) {
4133    //   ... then the [l2r] conversions are performed on the second and third
4134    //   operands ...
4135    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4136    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4137    if (LHS.isInvalid() || RHS.isInvalid())
4138      return QualType();
4139
4140    // Finish off the lvalue-to-rvalue conversion by copy-initializing a
4141    // temporary if necessary. DefaultFunctionArrayLvalueConversion doesn't
4142    // do this part for us.
4143    ExprResult &NonVoid = LVoid ? RHS : LHS;
4144    if (NonVoid.get()->getType()->isRecordType() &&
4145        NonVoid.get()->isGLValue()) {
4146      if (RequireNonAbstractType(QuestionLoc, NonVoid.get()->getType(),
4147                             diag::err_allocation_of_abstract_type))
4148        return QualType();
4149      InitializedEntity Entity =
4150          InitializedEntity::InitializeTemporary(NonVoid.get()->getType());
4151      NonVoid = PerformCopyInitialization(Entity, SourceLocation(), NonVoid);
4152      if (NonVoid.isInvalid())
4153        return QualType();
4154    }
4155
4156    LTy = LHS.get()->getType();
4157    RTy = RHS.get()->getType();
4158
4159    //   ... and one of the following shall hold:
4160    //   -- The second or the third operand (but not both) is a throw-
4161    //      expression; the result is of the type of the other and is a prvalue.
4162    bool LThrow = isa<CXXThrowExpr>(LHS.get());
4163    bool RThrow = isa<CXXThrowExpr>(RHS.get());
4164    if (LThrow && !RThrow)
4165      return RTy;
4166    if (RThrow && !LThrow)
4167      return LTy;
4168
4169    //   -- Both the second and third operands have type void; the result is of
4170    //      type void and is a prvalue.
4171    if (LVoid && RVoid)
4172      return Context.VoidTy;
4173
4174    // Neither holds, error.
4175    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4176      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4177      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4178    return QualType();
4179  }
4180
4181  // Neither is void.
4182
4183  // C++11 [expr.cond]p3
4184  //   Otherwise, if the second and third operand have different types, and
4185  //   either has (cv) class type [...] an attempt is made to convert each of
4186  //   those operands to the type of the other.
4187  if (!Context.hasSameType(LTy, RTy) &&
4188      (LTy->isRecordType() || RTy->isRecordType())) {
4189    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4190    // These return true if a single direction is already ambiguous.
4191    QualType L2RType, R2LType;
4192    bool HaveL2R, HaveR2L;
4193    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4194      return QualType();
4195    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4196      return QualType();
4197
4198    //   If both can be converted, [...] the program is ill-formed.
4199    if (HaveL2R && HaveR2L) {
4200      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4201        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4202      return QualType();
4203    }
4204
4205    //   If exactly one conversion is possible, that conversion is applied to
4206    //   the chosen operand and the converted operands are used in place of the
4207    //   original operands for the remainder of this section.
4208    if (HaveL2R) {
4209      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4210        return QualType();
4211      LTy = LHS.get()->getType();
4212    } else if (HaveR2L) {
4213      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4214        return QualType();
4215      RTy = RHS.get()->getType();
4216    }
4217  }
4218
4219  // C++11 [expr.cond]p3
4220  //   if both are glvalues of the same value category and the same type except
4221  //   for cv-qualification, an attempt is made to convert each of those
4222  //   operands to the type of the other.
4223  ExprValueKind LVK = LHS.get()->getValueKind();
4224  ExprValueKind RVK = RHS.get()->getValueKind();
4225  if (!Context.hasSameType(LTy, RTy) &&
4226      Context.hasSameUnqualifiedType(LTy, RTy) &&
4227      LVK == RVK && LVK != VK_RValue) {
4228    // Since the unqualified types are reference-related and we require the
4229    // result to be as if a reference bound directly, the only conversion
4230    // we can perform is to add cv-qualifiers.
4231    Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers());
4232    Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers());
4233    if (RCVR.isStrictSupersetOf(LCVR)) {
4234      LHS = ImpCastExprToType(LHS.take(), RTy, CK_NoOp, LVK);
4235      LTy = LHS.get()->getType();
4236    }
4237    else if (LCVR.isStrictSupersetOf(RCVR)) {
4238      RHS = ImpCastExprToType(RHS.take(), LTy, CK_NoOp, RVK);
4239      RTy = RHS.get()->getType();
4240    }
4241  }
4242
4243  // C++11 [expr.cond]p4
4244  //   If the second and third operands are glvalues of the same value
4245  //   category and have the same type, the result is of that type and
4246  //   value category and it is a bit-field if the second or the third
4247  //   operand is a bit-field, or if both are bit-fields.
4248  // We only extend this to bitfields, not to the crazy other kinds of
4249  // l-values.
4250  bool Same = Context.hasSameType(LTy, RTy);
4251  if (Same && LVK == RVK && LVK != VK_RValue &&
4252      LHS.get()->isOrdinaryOrBitFieldObject() &&
4253      RHS.get()->isOrdinaryOrBitFieldObject()) {
4254    VK = LHS.get()->getValueKind();
4255    if (LHS.get()->getObjectKind() == OK_BitField ||
4256        RHS.get()->getObjectKind() == OK_BitField)
4257      OK = OK_BitField;
4258    return LTy;
4259  }
4260
4261  // C++11 [expr.cond]p5
4262  //   Otherwise, the result is a prvalue. If the second and third operands
4263  //   do not have the same type, and either has (cv) class type, ...
4264  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4265    //   ... overload resolution is used to determine the conversions (if any)
4266    //   to be applied to the operands. If the overload resolution fails, the
4267    //   program is ill-formed.
4268    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4269      return QualType();
4270  }
4271
4272  // C++11 [expr.cond]p6
4273  //   Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard
4274  //   conversions are performed on the second and third operands.
4275  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4276  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4277  if (LHS.isInvalid() || RHS.isInvalid())
4278    return QualType();
4279  LTy = LHS.get()->getType();
4280  RTy = RHS.get()->getType();
4281
4282  //   After those conversions, one of the following shall hold:
4283  //   -- The second and third operands have the same type; the result
4284  //      is of that type. If the operands have class type, the result
4285  //      is a prvalue temporary of the result type, which is
4286  //      copy-initialized from either the second operand or the third
4287  //      operand depending on the value of the first operand.
4288  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4289    if (LTy->isRecordType()) {
4290      // The operands have class type. Make a temporary copy.
4291      if (RequireNonAbstractType(QuestionLoc, LTy,
4292                                 diag::err_allocation_of_abstract_type))
4293        return QualType();
4294      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4295
4296      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4297                                                     SourceLocation(),
4298                                                     LHS);
4299      if (LHSCopy.isInvalid())
4300        return QualType();
4301
4302      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4303                                                     SourceLocation(),
4304                                                     RHS);
4305      if (RHSCopy.isInvalid())
4306        return QualType();
4307
4308      LHS = LHSCopy;
4309      RHS = RHSCopy;
4310    }
4311
4312    return LTy;
4313  }
4314
4315  // Extension: conditional operator involving vector types.
4316  if (LTy->isVectorType() || RTy->isVectorType())
4317    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4318
4319  //   -- The second and third operands have arithmetic or enumeration type;
4320  //      the usual arithmetic conversions are performed to bring them to a
4321  //      common type, and the result is of that type.
4322  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4323    UsualArithmeticConversions(LHS, RHS);
4324    if (LHS.isInvalid() || RHS.isInvalid())
4325      return QualType();
4326    return LHS.get()->getType();
4327  }
4328
4329  //   -- The second and third operands have pointer type, or one has pointer
4330  //      type and the other is a null pointer constant, or both are null
4331  //      pointer constants, at least one of which is non-integral; pointer
4332  //      conversions and qualification conversions are performed to bring them
4333  //      to their composite pointer type. The result is of the composite
4334  //      pointer type.
4335  //   -- The second and third operands have pointer to member type, or one has
4336  //      pointer to member type and the other is a null pointer constant;
4337  //      pointer to member conversions and qualification conversions are
4338  //      performed to bring them to a common type, whose cv-qualification
4339  //      shall match the cv-qualification of either the second or the third
4340  //      operand. The result is of the common type.
4341  bool NonStandardCompositeType = false;
4342  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4343                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4344  if (!Composite.isNull()) {
4345    if (NonStandardCompositeType)
4346      Diag(QuestionLoc,
4347           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4348        << LTy << RTy << Composite
4349        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4350
4351    return Composite;
4352  }
4353
4354  // Similarly, attempt to find composite type of two objective-c pointers.
4355  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4356  if (!Composite.isNull())
4357    return Composite;
4358
4359  // Check if we are using a null with a non-pointer type.
4360  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4361    return QualType();
4362
4363  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4364    << LHS.get()->getType() << RHS.get()->getType()
4365    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4366  return QualType();
4367}
4368
4369/// \brief Find a merged pointer type and convert the two expressions to it.
4370///
4371/// This finds the composite pointer type (or member pointer type) for @p E1
4372/// and @p E2 according to C++11 5.9p2. It converts both expressions to this
4373/// type and returns it.
4374/// It does not emit diagnostics.
4375///
4376/// \param Loc The location of the operator requiring these two expressions to
4377/// be converted to the composite pointer type.
4378///
4379/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4380/// a non-standard (but still sane) composite type to which both expressions
4381/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4382/// will be set true.
4383QualType Sema::FindCompositePointerType(SourceLocation Loc,
4384                                        Expr *&E1, Expr *&E2,
4385                                        bool *NonStandardCompositeType) {
4386  if (NonStandardCompositeType)
4387    *NonStandardCompositeType = false;
4388
4389  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4390  QualType T1 = E1->getType(), T2 = E2->getType();
4391
4392  // C++11 5.9p2
4393  //   Pointer conversions and qualification conversions are performed on
4394  //   pointer operands to bring them to their composite pointer type. If
4395  //   one operand is a null pointer constant, the composite pointer type is
4396  //   std::nullptr_t if the other operand is also a null pointer constant or,
4397  //   if the other operand is a pointer, the type of the other operand.
4398  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4399      !T2->isAnyPointerType() && !T2->isMemberPointerType()) {
4400    if (T1->isNullPtrType() &&
4401        E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4402      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4403      return T1;
4404    }
4405    if (T2->isNullPtrType() &&
4406        E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4407      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4408      return T2;
4409    }
4410    return QualType();
4411  }
4412
4413  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4414    if (T2->isMemberPointerType())
4415      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4416    else
4417      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4418    return T2;
4419  }
4420  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4421    if (T1->isMemberPointerType())
4422      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4423    else
4424      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4425    return T1;
4426  }
4427
4428  // Now both have to be pointers or member pointers.
4429  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4430      (!T2->isPointerType() && !T2->isMemberPointerType()))
4431    return QualType();
4432
4433  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4434  //   the other has type "pointer to cv2 T" and the composite pointer type is
4435  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4436  //   Otherwise, the composite pointer type is a pointer type similar to the
4437  //   type of one of the operands, with a cv-qualification signature that is
4438  //   the union of the cv-qualification signatures of the operand types.
4439  // In practice, the first part here is redundant; it's subsumed by the second.
4440  // What we do here is, we build the two possible composite types, and try the
4441  // conversions in both directions. If only one works, or if the two composite
4442  // types are the same, we have succeeded.
4443  // FIXME: extended qualifiers?
4444  typedef SmallVector<unsigned, 4> QualifierVector;
4445  QualifierVector QualifierUnion;
4446  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4447      ContainingClassVector;
4448  ContainingClassVector MemberOfClass;
4449  QualType Composite1 = Context.getCanonicalType(T1),
4450           Composite2 = Context.getCanonicalType(T2);
4451  unsigned NeedConstBefore = 0;
4452  do {
4453    const PointerType *Ptr1, *Ptr2;
4454    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4455        (Ptr2 = Composite2->getAs<PointerType>())) {
4456      Composite1 = Ptr1->getPointeeType();
4457      Composite2 = Ptr2->getPointeeType();
4458
4459      // If we're allowed to create a non-standard composite type, keep track
4460      // of where we need to fill in additional 'const' qualifiers.
4461      if (NonStandardCompositeType &&
4462          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4463        NeedConstBefore = QualifierUnion.size();
4464
4465      QualifierUnion.push_back(
4466                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4467      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4468      continue;
4469    }
4470
4471    const MemberPointerType *MemPtr1, *MemPtr2;
4472    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4473        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4474      Composite1 = MemPtr1->getPointeeType();
4475      Composite2 = MemPtr2->getPointeeType();
4476
4477      // If we're allowed to create a non-standard composite type, keep track
4478      // of where we need to fill in additional 'const' qualifiers.
4479      if (NonStandardCompositeType &&
4480          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4481        NeedConstBefore = QualifierUnion.size();
4482
4483      QualifierUnion.push_back(
4484                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4485      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4486                                             MemPtr2->getClass()));
4487      continue;
4488    }
4489
4490    // FIXME: block pointer types?
4491
4492    // Cannot unwrap any more types.
4493    break;
4494  } while (true);
4495
4496  if (NeedConstBefore && NonStandardCompositeType) {
4497    // Extension: Add 'const' to qualifiers that come before the first qualifier
4498    // mismatch, so that our (non-standard!) composite type meets the
4499    // requirements of C++ [conv.qual]p4 bullet 3.
4500    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4501      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4502        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4503        *NonStandardCompositeType = true;
4504      }
4505    }
4506  }
4507
4508  // Rewrap the composites as pointers or member pointers with the union CVRs.
4509  ContainingClassVector::reverse_iterator MOC
4510    = MemberOfClass.rbegin();
4511  for (QualifierVector::reverse_iterator
4512         I = QualifierUnion.rbegin(),
4513         E = QualifierUnion.rend();
4514       I != E; (void)++I, ++MOC) {
4515    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4516    if (MOC->first && MOC->second) {
4517      // Rebuild member pointer type
4518      Composite1 = Context.getMemberPointerType(
4519                                    Context.getQualifiedType(Composite1, Quals),
4520                                    MOC->first);
4521      Composite2 = Context.getMemberPointerType(
4522                                    Context.getQualifiedType(Composite2, Quals),
4523                                    MOC->second);
4524    } else {
4525      // Rebuild pointer type
4526      Composite1
4527        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4528      Composite2
4529        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4530    }
4531  }
4532
4533  // Try to convert to the first composite pointer type.
4534  InitializedEntity Entity1
4535    = InitializedEntity::InitializeTemporary(Composite1);
4536  InitializationKind Kind
4537    = InitializationKind::CreateCopy(Loc, SourceLocation());
4538  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4539  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4540
4541  if (E1ToC1 && E2ToC1) {
4542    // Conversion to Composite1 is viable.
4543    if (!Context.hasSameType(Composite1, Composite2)) {
4544      // Composite2 is a different type from Composite1. Check whether
4545      // Composite2 is also viable.
4546      InitializedEntity Entity2
4547        = InitializedEntity::InitializeTemporary(Composite2);
4548      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4549      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4550      if (E1ToC2 && E2ToC2) {
4551        // Both Composite1 and Composite2 are viable and are different;
4552        // this is an ambiguity.
4553        return QualType();
4554      }
4555    }
4556
4557    // Convert E1 to Composite1
4558    ExprResult E1Result
4559      = E1ToC1.Perform(*this, Entity1, Kind, E1);
4560    if (E1Result.isInvalid())
4561      return QualType();
4562    E1 = E1Result.takeAs<Expr>();
4563
4564    // Convert E2 to Composite1
4565    ExprResult E2Result
4566      = E2ToC1.Perform(*this, Entity1, Kind, E2);
4567    if (E2Result.isInvalid())
4568      return QualType();
4569    E2 = E2Result.takeAs<Expr>();
4570
4571    return Composite1;
4572  }
4573
4574  // Check whether Composite2 is viable.
4575  InitializedEntity Entity2
4576    = InitializedEntity::InitializeTemporary(Composite2);
4577  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4578  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4579  if (!E1ToC2 || !E2ToC2)
4580    return QualType();
4581
4582  // Convert E1 to Composite2
4583  ExprResult E1Result
4584    = E1ToC2.Perform(*this, Entity2, Kind, E1);
4585  if (E1Result.isInvalid())
4586    return QualType();
4587  E1 = E1Result.takeAs<Expr>();
4588
4589  // Convert E2 to Composite2
4590  ExprResult E2Result
4591    = E2ToC2.Perform(*this, Entity2, Kind, E2);
4592  if (E2Result.isInvalid())
4593    return QualType();
4594  E2 = E2Result.takeAs<Expr>();
4595
4596  return Composite2;
4597}
4598
4599ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4600  if (!E)
4601    return ExprError();
4602
4603  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4604
4605  // If the result is a glvalue, we shouldn't bind it.
4606  if (!E->isRValue())
4607    return Owned(E);
4608
4609  // In ARC, calls that return a retainable type can return retained,
4610  // in which case we have to insert a consuming cast.
4611  if (getLangOpts().ObjCAutoRefCount &&
4612      E->getType()->isObjCRetainableType()) {
4613
4614    bool ReturnsRetained;
4615
4616    // For actual calls, we compute this by examining the type of the
4617    // called value.
4618    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4619      Expr *Callee = Call->getCallee()->IgnoreParens();
4620      QualType T = Callee->getType();
4621
4622      if (T == Context.BoundMemberTy) {
4623        // Handle pointer-to-members.
4624        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4625          T = BinOp->getRHS()->getType();
4626        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4627          T = Mem->getMemberDecl()->getType();
4628      }
4629
4630      if (const PointerType *Ptr = T->getAs<PointerType>())
4631        T = Ptr->getPointeeType();
4632      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4633        T = Ptr->getPointeeType();
4634      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4635        T = MemPtr->getPointeeType();
4636
4637      const FunctionType *FTy = T->getAs<FunctionType>();
4638      assert(FTy && "call to value not of function type?");
4639      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4640
4641    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4642    // type always produce a +1 object.
4643    } else if (isa<StmtExpr>(E)) {
4644      ReturnsRetained = true;
4645
4646    // We hit this case with the lambda conversion-to-block optimization;
4647    // we don't want any extra casts here.
4648    } else if (isa<CastExpr>(E) &&
4649               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4650      return Owned(E);
4651
4652    // For message sends and property references, we try to find an
4653    // actual method.  FIXME: we should infer retention by selector in
4654    // cases where we don't have an actual method.
4655    } else {
4656      ObjCMethodDecl *D = 0;
4657      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4658        D = Send->getMethodDecl();
4659      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4660        D = BoxedExpr->getBoxingMethod();
4661      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4662        D = ArrayLit->getArrayWithObjectsMethod();
4663      } else if (ObjCDictionaryLiteral *DictLit
4664                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4665        D = DictLit->getDictWithObjectsMethod();
4666      }
4667
4668      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4669
4670      // Don't do reclaims on performSelector calls; despite their
4671      // return type, the invoked method doesn't necessarily actually
4672      // return an object.
4673      if (!ReturnsRetained &&
4674          D && D->getMethodFamily() == OMF_performSelector)
4675        return Owned(E);
4676    }
4677
4678    // Don't reclaim an object of Class type.
4679    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4680      return Owned(E);
4681
4682    ExprNeedsCleanups = true;
4683
4684    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4685                                   : CK_ARCReclaimReturnedObject);
4686    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4687                                          VK_RValue));
4688  }
4689
4690  if (!getLangOpts().CPlusPlus)
4691    return Owned(E);
4692
4693  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4694  // a fast path for the common case that the type is directly a RecordType.
4695  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4696  const RecordType *RT = 0;
4697  while (!RT) {
4698    switch (T->getTypeClass()) {
4699    case Type::Record:
4700      RT = cast<RecordType>(T);
4701      break;
4702    case Type::ConstantArray:
4703    case Type::IncompleteArray:
4704    case Type::VariableArray:
4705    case Type::DependentSizedArray:
4706      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4707      break;
4708    default:
4709      return Owned(E);
4710    }
4711  }
4712
4713  // That should be enough to guarantee that this type is complete, if we're
4714  // not processing a decltype expression.
4715  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4716  if (RD->isInvalidDecl() || RD->isDependentContext())
4717    return Owned(E);
4718
4719  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4720  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4721
4722  if (Destructor) {
4723    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4724    CheckDestructorAccess(E->getExprLoc(), Destructor,
4725                          PDiag(diag::err_access_dtor_temp)
4726                            << E->getType());
4727    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4728
4729    // If destructor is trivial, we can avoid the extra copy.
4730    if (Destructor->isTrivial())
4731      return Owned(E);
4732
4733    // We need a cleanup, but we don't need to remember the temporary.
4734    ExprNeedsCleanups = true;
4735  }
4736
4737  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4738  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4739
4740  if (IsDecltype)
4741    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4742
4743  return Owned(Bind);
4744}
4745
4746ExprResult
4747Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4748  if (SubExpr.isInvalid())
4749    return ExprError();
4750
4751  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4752}
4753
4754Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4755  assert(SubExpr && "sub expression can't be null!");
4756
4757  CleanupVarDeclMarking();
4758
4759  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4760  assert(ExprCleanupObjects.size() >= FirstCleanup);
4761  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4762  if (!ExprNeedsCleanups)
4763    return SubExpr;
4764
4765  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4766    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4767                         ExprCleanupObjects.size() - FirstCleanup);
4768
4769  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4770  DiscardCleanupsInEvaluationContext();
4771
4772  return E;
4773}
4774
4775Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4776  assert(SubStmt && "sub statement can't be null!");
4777
4778  CleanupVarDeclMarking();
4779
4780  if (!ExprNeedsCleanups)
4781    return SubStmt;
4782
4783  // FIXME: In order to attach the temporaries, wrap the statement into
4784  // a StmtExpr; currently this is only used for asm statements.
4785  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4786  // a new AsmStmtWithTemporaries.
4787  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt,
4788                                                      SourceLocation(),
4789                                                      SourceLocation());
4790  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4791                                   SourceLocation());
4792  return MaybeCreateExprWithCleanups(E);
4793}
4794
4795/// Process the expression contained within a decltype. For such expressions,
4796/// certain semantic checks on temporaries are delayed until this point, and
4797/// are omitted for the 'topmost' call in the decltype expression. If the
4798/// topmost call bound a temporary, strip that temporary off the expression.
4799ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4800  assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression");
4801
4802  // C++11 [expr.call]p11:
4803  //   If a function call is a prvalue of object type,
4804  // -- if the function call is either
4805  //   -- the operand of a decltype-specifier, or
4806  //   -- the right operand of a comma operator that is the operand of a
4807  //      decltype-specifier,
4808  //   a temporary object is not introduced for the prvalue.
4809
4810  // Recursively rebuild ParenExprs and comma expressions to strip out the
4811  // outermost CXXBindTemporaryExpr, if any.
4812  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4813    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4814    if (SubExpr.isInvalid())
4815      return ExprError();
4816    if (SubExpr.get() == PE->getSubExpr())
4817      return Owned(E);
4818    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4819  }
4820  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4821    if (BO->getOpcode() == BO_Comma) {
4822      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4823      if (RHS.isInvalid())
4824        return ExprError();
4825      if (RHS.get() == BO->getRHS())
4826        return Owned(E);
4827      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4828                                                BO_Comma, BO->getType(),
4829                                                BO->getValueKind(),
4830                                                BO->getObjectKind(),
4831                                                BO->getOperatorLoc(),
4832                                                BO->isFPContractable()));
4833    }
4834  }
4835
4836  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4837  if (TopBind)
4838    E = TopBind->getSubExpr();
4839
4840  // Disable the special decltype handling now.
4841  ExprEvalContexts.back().IsDecltype = false;
4842
4843  // In MS mode, don't perform any extra checking of call return types within a
4844  // decltype expression.
4845  if (getLangOpts().MicrosoftMode)
4846    return Owned(E);
4847
4848  // Perform the semantic checks we delayed until this point.
4849  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4850  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size();
4851       I != N; ++I) {
4852    CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I];
4853    if (Call == TopCall)
4854      continue;
4855
4856    if (CheckCallReturnType(Call->getCallReturnType(),
4857                            Call->getLocStart(),
4858                            Call, Call->getDirectCallee()))
4859      return ExprError();
4860  }
4861
4862  // Now all relevant types are complete, check the destructors are accessible
4863  // and non-deleted, and annotate them on the temporaries.
4864  for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size();
4865       I != N; ++I) {
4866    CXXBindTemporaryExpr *Bind =
4867      ExprEvalContexts.back().DelayedDecltypeBinds[I];
4868    if (Bind == TopBind)
4869      continue;
4870
4871    CXXTemporary *Temp = Bind->getTemporary();
4872
4873    CXXRecordDecl *RD =
4874      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4875    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4876    Temp->setDestructor(Destructor);
4877
4878    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4879    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4880                          PDiag(diag::err_access_dtor_temp)
4881                            << Bind->getType());
4882    DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
4883
4884    // We need a cleanup, but we don't need to remember the temporary.
4885    ExprNeedsCleanups = true;
4886  }
4887
4888  // Possibly strip off the top CXXBindTemporaryExpr.
4889  return Owned(E);
4890}
4891
4892ExprResult
4893Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4894                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4895                                   bool &MayBePseudoDestructor) {
4896  // Since this might be a postfix expression, get rid of ParenListExprs.
4897  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4898  if (Result.isInvalid()) return ExprError();
4899  Base = Result.get();
4900
4901  Result = CheckPlaceholderExpr(Base);
4902  if (Result.isInvalid()) return ExprError();
4903  Base = Result.take();
4904
4905  QualType BaseType = Base->getType();
4906  MayBePseudoDestructor = false;
4907  if (BaseType->isDependentType()) {
4908    // If we have a pointer to a dependent type and are using the -> operator,
4909    // the object type is the type that the pointer points to. We might still
4910    // have enough information about that type to do something useful.
4911    if (OpKind == tok::arrow)
4912      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4913        BaseType = Ptr->getPointeeType();
4914
4915    ObjectType = ParsedType::make(BaseType);
4916    MayBePseudoDestructor = true;
4917    return Owned(Base);
4918  }
4919
4920  // C++ [over.match.oper]p8:
4921  //   [...] When operator->returns, the operator-> is applied  to the value
4922  //   returned, with the original second operand.
4923  if (OpKind == tok::arrow) {
4924    // The set of types we've considered so far.
4925    llvm::SmallPtrSet<CanQualType,8> CTypes;
4926    SmallVector<SourceLocation, 8> Locations;
4927    CTypes.insert(Context.getCanonicalType(BaseType));
4928
4929    while (BaseType->isRecordType()) {
4930      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4931      if (Result.isInvalid())
4932        return ExprError();
4933      Base = Result.get();
4934      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4935        Locations.push_back(OpCall->getDirectCallee()->getLocation());
4936      BaseType = Base->getType();
4937      CanQualType CBaseType = Context.getCanonicalType(BaseType);
4938      if (!CTypes.insert(CBaseType)) {
4939        Diag(OpLoc, diag::err_operator_arrow_circular);
4940        for (unsigned i = 0; i < Locations.size(); i++)
4941          Diag(Locations[i], diag::note_declared_at);
4942        return ExprError();
4943      }
4944    }
4945
4946    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4947      BaseType = BaseType->getPointeeType();
4948  }
4949
4950  // Objective-C properties allow "." access on Objective-C pointer types,
4951  // so adjust the base type to the object type itself.
4952  if (BaseType->isObjCObjectPointerType())
4953    BaseType = BaseType->getPointeeType();
4954
4955  // C++ [basic.lookup.classref]p2:
4956  //   [...] If the type of the object expression is of pointer to scalar
4957  //   type, the unqualified-id is looked up in the context of the complete
4958  //   postfix-expression.
4959  //
4960  // This also indicates that we could be parsing a pseudo-destructor-name.
4961  // Note that Objective-C class and object types can be pseudo-destructor
4962  // expressions or normal member (ivar or property) access expressions.
4963  if (BaseType->isObjCObjectOrInterfaceType()) {
4964    MayBePseudoDestructor = true;
4965  } else if (!BaseType->isRecordType()) {
4966    ObjectType = ParsedType();
4967    MayBePseudoDestructor = true;
4968    return Owned(Base);
4969  }
4970
4971  // The object type must be complete (or dependent), or
4972  // C++11 [expr.prim.general]p3:
4973  //   Unlike the object expression in other contexts, *this is not required to
4974  //   be of complete type for purposes of class member access (5.2.5) outside
4975  //   the member function body.
4976  if (!BaseType->isDependentType() &&
4977      !isThisOutsideMemberFunctionBody(BaseType) &&
4978      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
4979    return ExprError();
4980
4981  // C++ [basic.lookup.classref]p2:
4982  //   If the id-expression in a class member access (5.2.5) is an
4983  //   unqualified-id, and the type of the object expression is of a class
4984  //   type C (or of pointer to a class type C), the unqualified-id is looked
4985  //   up in the scope of class C. [...]
4986  ObjectType = ParsedType::make(BaseType);
4987  return Base;
4988}
4989
4990ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4991                                                   Expr *MemExpr) {
4992  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4993  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4994    << isa<CXXPseudoDestructorExpr>(MemExpr)
4995    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4996
4997  return ActOnCallExpr(/*Scope*/ 0,
4998                       MemExpr,
4999                       /*LPLoc*/ ExpectedLParenLoc,
5000                       MultiExprArg(),
5001                       /*RPLoc*/ ExpectedLParenLoc);
5002}
5003
5004static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
5005                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
5006  if (Base->hasPlaceholderType()) {
5007    ExprResult result = S.CheckPlaceholderExpr(Base);
5008    if (result.isInvalid()) return true;
5009    Base = result.take();
5010  }
5011  ObjectType = Base->getType();
5012
5013  // C++ [expr.pseudo]p2:
5014  //   The left-hand side of the dot operator shall be of scalar type. The
5015  //   left-hand side of the arrow operator shall be of pointer to scalar type.
5016  //   This scalar type is the object type.
5017  // Note that this is rather different from the normal handling for the
5018  // arrow operator.
5019  if (OpKind == tok::arrow) {
5020    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
5021      ObjectType = Ptr->getPointeeType();
5022    } else if (!Base->isTypeDependent()) {
5023      // The user wrote "p->" when she probably meant "p."; fix it.
5024      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
5025        << ObjectType << true
5026        << FixItHint::CreateReplacement(OpLoc, ".");
5027      if (S.isSFINAEContext())
5028        return true;
5029
5030      OpKind = tok::period;
5031    }
5032  }
5033
5034  return false;
5035}
5036
5037ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
5038                                           SourceLocation OpLoc,
5039                                           tok::TokenKind OpKind,
5040                                           const CXXScopeSpec &SS,
5041                                           TypeSourceInfo *ScopeTypeInfo,
5042                                           SourceLocation CCLoc,
5043                                           SourceLocation TildeLoc,
5044                                         PseudoDestructorTypeStorage Destructed,
5045                                           bool HasTrailingLParen) {
5046  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
5047
5048  QualType ObjectType;
5049  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5050    return ExprError();
5051
5052  if (!ObjectType->isDependentType() && !ObjectType->isScalarType() &&
5053      !ObjectType->isVectorType()) {
5054    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
5055      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
5056    else
5057      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
5058        << ObjectType << Base->getSourceRange();
5059    return ExprError();
5060  }
5061
5062  // C++ [expr.pseudo]p2:
5063  //   [...] The cv-unqualified versions of the object type and of the type
5064  //   designated by the pseudo-destructor-name shall be the same type.
5065  if (DestructedTypeInfo) {
5066    QualType DestructedType = DestructedTypeInfo->getType();
5067    SourceLocation DestructedTypeStart
5068      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
5069    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
5070      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
5071        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
5072          << ObjectType << DestructedType << Base->getSourceRange()
5073          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5074
5075        // Recover by setting the destructed type to the object type.
5076        DestructedType = ObjectType;
5077        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5078                                                           DestructedTypeStart);
5079        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5080      } else if (DestructedType.getObjCLifetime() !=
5081                                                ObjectType.getObjCLifetime()) {
5082
5083        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
5084          // Okay: just pretend that the user provided the correctly-qualified
5085          // type.
5086        } else {
5087          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
5088            << ObjectType << DestructedType << Base->getSourceRange()
5089            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
5090        }
5091
5092        // Recover by setting the destructed type to the object type.
5093        DestructedType = ObjectType;
5094        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
5095                                                           DestructedTypeStart);
5096        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5097      }
5098    }
5099  }
5100
5101  // C++ [expr.pseudo]p2:
5102  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5103  //   form
5104  //
5105  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5106  //
5107  //   shall designate the same scalar type.
5108  if (ScopeTypeInfo) {
5109    QualType ScopeType = ScopeTypeInfo->getType();
5110    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5111        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5112
5113      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5114           diag::err_pseudo_dtor_type_mismatch)
5115        << ObjectType << ScopeType << Base->getSourceRange()
5116        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5117
5118      ScopeType = QualType();
5119      ScopeTypeInfo = 0;
5120    }
5121  }
5122
5123  Expr *Result
5124    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5125                                            OpKind == tok::arrow, OpLoc,
5126                                            SS.getWithLocInContext(Context),
5127                                            ScopeTypeInfo,
5128                                            CCLoc,
5129                                            TildeLoc,
5130                                            Destructed);
5131
5132  if (HasTrailingLParen)
5133    return Owned(Result);
5134
5135  return DiagnoseDtorReference(Destructed.getLocation(), Result);
5136}
5137
5138ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5139                                           SourceLocation OpLoc,
5140                                           tok::TokenKind OpKind,
5141                                           CXXScopeSpec &SS,
5142                                           UnqualifiedId &FirstTypeName,
5143                                           SourceLocation CCLoc,
5144                                           SourceLocation TildeLoc,
5145                                           UnqualifiedId &SecondTypeName,
5146                                           bool HasTrailingLParen) {
5147  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5148          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5149         "Invalid first type name in pseudo-destructor");
5150  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5151          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5152         "Invalid second type name in pseudo-destructor");
5153
5154  QualType ObjectType;
5155  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5156    return ExprError();
5157
5158  // Compute the object type that we should use for name lookup purposes. Only
5159  // record types and dependent types matter.
5160  ParsedType ObjectTypePtrForLookup;
5161  if (!SS.isSet()) {
5162    if (ObjectType->isRecordType())
5163      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5164    else if (ObjectType->isDependentType())
5165      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5166  }
5167
5168  // Convert the name of the type being destructed (following the ~) into a
5169  // type (with source-location information).
5170  QualType DestructedType;
5171  TypeSourceInfo *DestructedTypeInfo = 0;
5172  PseudoDestructorTypeStorage Destructed;
5173  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5174    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5175                               SecondTypeName.StartLocation,
5176                               S, &SS, true, false, ObjectTypePtrForLookup);
5177    if (!T &&
5178        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5179         (!SS.isSet() && ObjectType->isDependentType()))) {
5180      // The name of the type being destroyed is a dependent name, and we
5181      // couldn't find anything useful in scope. Just store the identifier and
5182      // it's location, and we'll perform (qualified) name lookup again at
5183      // template instantiation time.
5184      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5185                                               SecondTypeName.StartLocation);
5186    } else if (!T) {
5187      Diag(SecondTypeName.StartLocation,
5188           diag::err_pseudo_dtor_destructor_non_type)
5189        << SecondTypeName.Identifier << ObjectType;
5190      if (isSFINAEContext())
5191        return ExprError();
5192
5193      // Recover by assuming we had the right type all along.
5194      DestructedType = ObjectType;
5195    } else
5196      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5197  } else {
5198    // Resolve the template-id to a type.
5199    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5200    ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5201                                       TemplateId->NumArgs);
5202    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5203                                       TemplateId->TemplateKWLoc,
5204                                       TemplateId->Template,
5205                                       TemplateId->TemplateNameLoc,
5206                                       TemplateId->LAngleLoc,
5207                                       TemplateArgsPtr,
5208                                       TemplateId->RAngleLoc);
5209    if (T.isInvalid() || !T.get()) {
5210      // Recover by assuming we had the right type all along.
5211      DestructedType = ObjectType;
5212    } else
5213      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5214  }
5215
5216  // If we've performed some kind of recovery, (re-)build the type source
5217  // information.
5218  if (!DestructedType.isNull()) {
5219    if (!DestructedTypeInfo)
5220      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5221                                                  SecondTypeName.StartLocation);
5222    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5223  }
5224
5225  // Convert the name of the scope type (the type prior to '::') into a type.
5226  TypeSourceInfo *ScopeTypeInfo = 0;
5227  QualType ScopeType;
5228  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5229      FirstTypeName.Identifier) {
5230    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5231      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5232                                 FirstTypeName.StartLocation,
5233                                 S, &SS, true, false, ObjectTypePtrForLookup);
5234      if (!T) {
5235        Diag(FirstTypeName.StartLocation,
5236             diag::err_pseudo_dtor_destructor_non_type)
5237          << FirstTypeName.Identifier << ObjectType;
5238
5239        if (isSFINAEContext())
5240          return ExprError();
5241
5242        // Just drop this type. It's unnecessary anyway.
5243        ScopeType = QualType();
5244      } else
5245        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5246    } else {
5247      // Resolve the template-id to a type.
5248      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5249      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5250                                         TemplateId->NumArgs);
5251      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5252                                         TemplateId->TemplateKWLoc,
5253                                         TemplateId->Template,
5254                                         TemplateId->TemplateNameLoc,
5255                                         TemplateId->LAngleLoc,
5256                                         TemplateArgsPtr,
5257                                         TemplateId->RAngleLoc);
5258      if (T.isInvalid() || !T.get()) {
5259        // Recover by dropping this type.
5260        ScopeType = QualType();
5261      } else
5262        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5263    }
5264  }
5265
5266  if (!ScopeType.isNull() && !ScopeTypeInfo)
5267    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5268                                                  FirstTypeName.StartLocation);
5269
5270
5271  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5272                                   ScopeTypeInfo, CCLoc, TildeLoc,
5273                                   Destructed, HasTrailingLParen);
5274}
5275
5276ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5277                                           SourceLocation OpLoc,
5278                                           tok::TokenKind OpKind,
5279                                           SourceLocation TildeLoc,
5280                                           const DeclSpec& DS,
5281                                           bool HasTrailingLParen) {
5282  QualType ObjectType;
5283  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5284    return ExprError();
5285
5286  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5287
5288  TypeLocBuilder TLB;
5289  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5290  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5291  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5292  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5293
5294  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5295                                   0, SourceLocation(), TildeLoc,
5296                                   Destructed, HasTrailingLParen);
5297}
5298
5299ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5300                                        CXXConversionDecl *Method,
5301                                        bool HadMultipleCandidates) {
5302  if (Method->getParent()->isLambda() &&
5303      Method->getConversionType()->isBlockPointerType()) {
5304    // This is a lambda coversion to block pointer; check if the argument
5305    // is a LambdaExpr.
5306    Expr *SubE = E;
5307    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5308    if (CE && CE->getCastKind() == CK_NoOp)
5309      SubE = CE->getSubExpr();
5310    SubE = SubE->IgnoreParens();
5311    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5312      SubE = BE->getSubExpr();
5313    if (isa<LambdaExpr>(SubE)) {
5314      // For the conversion to block pointer on a lambda expression, we
5315      // construct a special BlockLiteral instead; this doesn't really make
5316      // a difference in ARC, but outside of ARC the resulting block literal
5317      // follows the normal lifetime rules for block literals instead of being
5318      // autoreleased.
5319      DiagnosticErrorTrap Trap(Diags);
5320      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5321                                                     E->getExprLoc(),
5322                                                     Method, E);
5323      if (Exp.isInvalid())
5324        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5325      return Exp;
5326    }
5327  }
5328
5329
5330  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5331                                          FoundDecl, Method);
5332  if (Exp.isInvalid())
5333    return true;
5334
5335  MemberExpr *ME =
5336      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5337                               SourceLocation(), Context.BoundMemberTy,
5338                               VK_RValue, OK_Ordinary);
5339  if (HadMultipleCandidates)
5340    ME->setHadMultipleCandidates(true);
5341  MarkMemberReferenced(ME);
5342
5343  QualType ResultType = Method->getResultType();
5344  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5345  ResultType = ResultType.getNonLValueExprType(Context);
5346
5347  CXXMemberCallExpr *CE =
5348    new (Context) CXXMemberCallExpr(Context, ME, MultiExprArg(), ResultType, VK,
5349                                    Exp.get()->getLocEnd());
5350  return CE;
5351}
5352
5353ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5354                                      SourceLocation RParen) {
5355  CanThrowResult CanThrow = canThrow(Operand);
5356  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5357                                             CanThrow, KeyLoc, RParen));
5358}
5359
5360ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5361                                   Expr *Operand, SourceLocation RParen) {
5362  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5363}
5364
5365static bool IsSpecialDiscardedValue(Expr *E) {
5366  // In C++11, discarded-value expressions of a certain form are special,
5367  // according to [expr]p10:
5368  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5369  //   expression is an lvalue of volatile-qualified type and it has
5370  //   one of the following forms:
5371  E = E->IgnoreParens();
5372
5373  //   - id-expression (5.1.1),
5374  if (isa<DeclRefExpr>(E))
5375    return true;
5376
5377  //   - subscripting (5.2.1),
5378  if (isa<ArraySubscriptExpr>(E))
5379    return true;
5380
5381  //   - class member access (5.2.5),
5382  if (isa<MemberExpr>(E))
5383    return true;
5384
5385  //   - indirection (5.3.1),
5386  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5387    if (UO->getOpcode() == UO_Deref)
5388      return true;
5389
5390  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5391    //   - pointer-to-member operation (5.5),
5392    if (BO->isPtrMemOp())
5393      return true;
5394
5395    //   - comma expression (5.18) where the right operand is one of the above.
5396    if (BO->getOpcode() == BO_Comma)
5397      return IsSpecialDiscardedValue(BO->getRHS());
5398  }
5399
5400  //   - conditional expression (5.16) where both the second and the third
5401  //     operands are one of the above, or
5402  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5403    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5404           IsSpecialDiscardedValue(CO->getFalseExpr());
5405  // The related edge case of "*x ?: *x".
5406  if (BinaryConditionalOperator *BCO =
5407          dyn_cast<BinaryConditionalOperator>(E)) {
5408    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5409      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5410             IsSpecialDiscardedValue(BCO->getFalseExpr());
5411  }
5412
5413  // Objective-C++ extensions to the rule.
5414  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5415    return true;
5416
5417  return false;
5418}
5419
5420/// Perform the conversions required for an expression used in a
5421/// context that ignores the result.
5422ExprResult Sema::IgnoredValueConversions(Expr *E) {
5423  if (E->hasPlaceholderType()) {
5424    ExprResult result = CheckPlaceholderExpr(E);
5425    if (result.isInvalid()) return Owned(E);
5426    E = result.take();
5427  }
5428
5429  // C99 6.3.2.1:
5430  //   [Except in specific positions,] an lvalue that does not have
5431  //   array type is converted to the value stored in the
5432  //   designated object (and is no longer an lvalue).
5433  if (E->isRValue()) {
5434    // In C, function designators (i.e. expressions of function type)
5435    // are r-values, but we still want to do function-to-pointer decay
5436    // on them.  This is both technically correct and convenient for
5437    // some clients.
5438    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5439      return DefaultFunctionArrayConversion(E);
5440
5441    return Owned(E);
5442  }
5443
5444  if (getLangOpts().CPlusPlus)  {
5445    // The C++11 standard defines the notion of a discarded-value expression;
5446    // normally, we don't need to do anything to handle it, but if it is a
5447    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5448    // conversion.
5449    if (getLangOpts().CPlusPlus11 && E->isGLValue() &&
5450        E->getType().isVolatileQualified() &&
5451        IsSpecialDiscardedValue(E)) {
5452      ExprResult Res = DefaultLvalueConversion(E);
5453      if (Res.isInvalid())
5454        return Owned(E);
5455      E = Res.take();
5456    }
5457    return Owned(E);
5458  }
5459
5460  // GCC seems to also exclude expressions of incomplete enum type.
5461  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5462    if (!T->getDecl()->isComplete()) {
5463      // FIXME: stupid workaround for a codegen bug!
5464      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5465      return Owned(E);
5466    }
5467  }
5468
5469  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5470  if (Res.isInvalid())
5471    return Owned(E);
5472  E = Res.take();
5473
5474  if (!E->getType()->isVoidType())
5475    RequireCompleteType(E->getExprLoc(), E->getType(),
5476                        diag::err_incomplete_type);
5477  return Owned(E);
5478}
5479
5480ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC,
5481                                     bool DiscardedValue,
5482                                     bool IsConstexpr) {
5483  ExprResult FullExpr = Owned(FE);
5484
5485  if (!FullExpr.get())
5486    return ExprError();
5487
5488  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5489    return ExprError();
5490
5491  // Top-level expressions default to 'id' when we're in a debugger.
5492  if (DiscardedValue && getLangOpts().DebuggerCastResultToId &&
5493      FullExpr.get()->getType() == Context.UnknownAnyTy) {
5494    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5495    if (FullExpr.isInvalid())
5496      return ExprError();
5497  }
5498
5499  if (DiscardedValue) {
5500    FullExpr = CheckPlaceholderExpr(FullExpr.take());
5501    if (FullExpr.isInvalid())
5502      return ExprError();
5503
5504    FullExpr = IgnoredValueConversions(FullExpr.take());
5505    if (FullExpr.isInvalid())
5506      return ExprError();
5507  }
5508
5509  CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr);
5510  return MaybeCreateExprWithCleanups(FullExpr);
5511}
5512
5513StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5514  if (!FullStmt) return StmtError();
5515
5516  return MaybeCreateStmtWithCleanups(FullStmt);
5517}
5518
5519Sema::IfExistsResult
5520Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5521                                   CXXScopeSpec &SS,
5522                                   const DeclarationNameInfo &TargetNameInfo) {
5523  DeclarationName TargetName = TargetNameInfo.getName();
5524  if (!TargetName)
5525    return IER_DoesNotExist;
5526
5527  // If the name itself is dependent, then the result is dependent.
5528  if (TargetName.isDependentName())
5529    return IER_Dependent;
5530
5531  // Do the redeclaration lookup in the current scope.
5532  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5533                 Sema::NotForRedeclaration);
5534  LookupParsedName(R, S, &SS);
5535  R.suppressDiagnostics();
5536
5537  switch (R.getResultKind()) {
5538  case LookupResult::Found:
5539  case LookupResult::FoundOverloaded:
5540  case LookupResult::FoundUnresolvedValue:
5541  case LookupResult::Ambiguous:
5542    return IER_Exists;
5543
5544  case LookupResult::NotFound:
5545    return IER_DoesNotExist;
5546
5547  case LookupResult::NotFoundInCurrentInstantiation:
5548    return IER_Dependent;
5549  }
5550
5551  llvm_unreachable("Invalid LookupResult Kind!");
5552}
5553
5554Sema::IfExistsResult
5555Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5556                                   bool IsIfExists, CXXScopeSpec &SS,
5557                                   UnqualifiedId &Name) {
5558  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5559
5560  // Check for unexpanded parameter packs.
5561  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5562  collectUnexpandedParameterPacks(SS, Unexpanded);
5563  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5564  if (!Unexpanded.empty()) {
5565    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5566                                     IsIfExists? UPPC_IfExists
5567                                               : UPPC_IfNotExists,
5568                                     Unexpanded);
5569    return IER_Error;
5570  }
5571
5572  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5573}
5574