SemaExprCXX.cpp revision c2ca81d9dcd0ffacdea0e1530a2d2f56c5f56e74
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DeclSpec.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "clang/Sema/TemplateDeduction.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/ExprObjC.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "llvm/ADT/STLExtras.h"
30using namespace clang;
31using namespace sema;
32
33ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
34                                   IdentifierInfo &II,
35                                   SourceLocation NameLoc,
36                                   Scope *S, CXXScopeSpec &SS,
37                                   ParsedType ObjectTypePtr,
38                                   bool EnteringContext) {
39  // Determine where to perform name lookup.
40
41  // FIXME: This area of the standard is very messy, and the current
42  // wording is rather unclear about which scopes we search for the
43  // destructor name; see core issues 399 and 555. Issue 399 in
44  // particular shows where the current description of destructor name
45  // lookup is completely out of line with existing practice, e.g.,
46  // this appears to be ill-formed:
47  //
48  //   namespace N {
49  //     template <typename T> struct S {
50  //       ~S();
51  //     };
52  //   }
53  //
54  //   void f(N::S<int>* s) {
55  //     s->N::S<int>::~S();
56  //   }
57  //
58  // See also PR6358 and PR6359.
59  // For this reason, we're currently only doing the C++03 version of this
60  // code; the C++0x version has to wait until we get a proper spec.
61  QualType SearchType;
62  DeclContext *LookupCtx = 0;
63  bool isDependent = false;
64  bool LookInScope = false;
65
66  // If we have an object type, it's because we are in a
67  // pseudo-destructor-expression or a member access expression, and
68  // we know what type we're looking for.
69  if (ObjectTypePtr)
70    SearchType = GetTypeFromParser(ObjectTypePtr);
71
72  if (SS.isSet()) {
73    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
74
75    bool AlreadySearched = false;
76    bool LookAtPrefix = true;
77    // C++ [basic.lookup.qual]p6:
78    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
79    //   the type-names are looked up as types in the scope designated by the
80    //   nested-name-specifier. In a qualified-id of the form:
81    //
82    //     ::[opt] nested-name-specifier  ̃ class-name
83    //
84    //   where the nested-name-specifier designates a namespace scope, and in
85    //   a qualified-id of the form:
86    //
87    //     ::opt nested-name-specifier class-name ::  ̃ class-name
88    //
89    //   the class-names are looked up as types in the scope designated by
90    //   the nested-name-specifier.
91    //
92    // Here, we check the first case (completely) and determine whether the
93    // code below is permitted to look at the prefix of the
94    // nested-name-specifier.
95    DeclContext *DC = computeDeclContext(SS, EnteringContext);
96    if (DC && DC->isFileContext()) {
97      AlreadySearched = true;
98      LookupCtx = DC;
99      isDependent = false;
100    } else if (DC && isa<CXXRecordDecl>(DC))
101      LookAtPrefix = false;
102
103    // The second case from the C++03 rules quoted further above.
104    NestedNameSpecifier *Prefix = 0;
105    if (AlreadySearched) {
106      // Nothing left to do.
107    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
108      CXXScopeSpec PrefixSS;
109      PrefixSS.setScopeRep(Prefix);
110      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
111      isDependent = isDependentScopeSpecifier(PrefixSS);
112    } else if (ObjectTypePtr) {
113      LookupCtx = computeDeclContext(SearchType);
114      isDependent = SearchType->isDependentType();
115    } else {
116      LookupCtx = computeDeclContext(SS, EnteringContext);
117      isDependent = LookupCtx && LookupCtx->isDependentContext();
118    }
119
120    LookInScope = false;
121  } else if (ObjectTypePtr) {
122    // C++ [basic.lookup.classref]p3:
123    //   If the unqualified-id is ~type-name, the type-name is looked up
124    //   in the context of the entire postfix-expression. If the type T
125    //   of the object expression is of a class type C, the type-name is
126    //   also looked up in the scope of class C. At least one of the
127    //   lookups shall find a name that refers to (possibly
128    //   cv-qualified) T.
129    LookupCtx = computeDeclContext(SearchType);
130    isDependent = SearchType->isDependentType();
131    assert((isDependent || !SearchType->isIncompleteType()) &&
132           "Caller should have completed object type");
133
134    LookInScope = true;
135  } else {
136    // Perform lookup into the current scope (only).
137    LookInScope = true;
138  }
139
140  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
141  for (unsigned Step = 0; Step != 2; ++Step) {
142    // Look for the name first in the computed lookup context (if we
143    // have one) and, if that fails to find a match, in the sope (if
144    // we're allowed to look there).
145    Found.clear();
146    if (Step == 0 && LookupCtx)
147      LookupQualifiedName(Found, LookupCtx);
148    else if (Step == 1 && LookInScope && S)
149      LookupName(Found, S);
150    else
151      continue;
152
153    // FIXME: Should we be suppressing ambiguities here?
154    if (Found.isAmbiguous())
155      return ParsedType();
156
157    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
158      QualType T = Context.getTypeDeclType(Type);
159
160      if (SearchType.isNull() || SearchType->isDependentType() ||
161          Context.hasSameUnqualifiedType(T, SearchType)) {
162        // We found our type!
163
164        return ParsedType::make(T);
165      }
166    }
167
168    // If the name that we found is a class template name, and it is
169    // the same name as the template name in the last part of the
170    // nested-name-specifier (if present) or the object type, then
171    // this is the destructor for that class.
172    // FIXME: This is a workaround until we get real drafting for core
173    // issue 399, for which there isn't even an obvious direction.
174    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
175      QualType MemberOfType;
176      if (SS.isSet()) {
177        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
178          // Figure out the type of the context, if it has one.
179          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
180            MemberOfType = Context.getTypeDeclType(Record);
181        }
182      }
183      if (MemberOfType.isNull())
184        MemberOfType = SearchType;
185
186      if (MemberOfType.isNull())
187        continue;
188
189      // We're referring into a class template specialization. If the
190      // class template we found is the same as the template being
191      // specialized, we found what we are looking for.
192      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
193        if (ClassTemplateSpecializationDecl *Spec
194              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
195          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
196                Template->getCanonicalDecl())
197            return ParsedType::make(MemberOfType);
198        }
199
200        continue;
201      }
202
203      // We're referring to an unresolved class template
204      // specialization. Determine whether we class template we found
205      // is the same as the template being specialized or, if we don't
206      // know which template is being specialized, that it at least
207      // has the same name.
208      if (const TemplateSpecializationType *SpecType
209            = MemberOfType->getAs<TemplateSpecializationType>()) {
210        TemplateName SpecName = SpecType->getTemplateName();
211
212        // The class template we found is the same template being
213        // specialized.
214        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
215          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
216            return ParsedType::make(MemberOfType);
217
218          continue;
219        }
220
221        // The class template we found has the same name as the
222        // (dependent) template name being specialized.
223        if (DependentTemplateName *DepTemplate
224                                    = SpecName.getAsDependentTemplateName()) {
225          if (DepTemplate->isIdentifier() &&
226              DepTemplate->getIdentifier() == Template->getIdentifier())
227            return ParsedType::make(MemberOfType);
228
229          continue;
230        }
231      }
232    }
233  }
234
235  if (isDependent) {
236    // We didn't find our type, but that's okay: it's dependent
237    // anyway.
238    NestedNameSpecifier *NNS = 0;
239    SourceRange Range;
240    if (SS.isSet()) {
241      NNS = (NestedNameSpecifier *)SS.getScopeRep();
242      Range = SourceRange(SS.getRange().getBegin(), NameLoc);
243    } else {
244      NNS = NestedNameSpecifier::Create(Context, &II);
245      Range = SourceRange(NameLoc);
246    }
247
248    QualType T = CheckTypenameType(ETK_None, NNS, II,
249                                   SourceLocation(),
250                                   Range, NameLoc);
251    return ParsedType::make(T);
252  }
253
254  if (ObjectTypePtr)
255    Diag(NameLoc, diag::err_ident_in_pseudo_dtor_not_a_type)
256      << &II;
257  else
258    Diag(NameLoc, diag::err_destructor_class_name);
259
260  return ParsedType();
261}
262
263/// \brief Build a C++ typeid expression with a type operand.
264ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
265                                SourceLocation TypeidLoc,
266                                TypeSourceInfo *Operand,
267                                SourceLocation RParenLoc) {
268  // C++ [expr.typeid]p4:
269  //   The top-level cv-qualifiers of the lvalue expression or the type-id
270  //   that is the operand of typeid are always ignored.
271  //   If the type of the type-id is a class type or a reference to a class
272  //   type, the class shall be completely-defined.
273  Qualifiers Quals;
274  QualType T
275    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
276                                      Quals);
277  if (T->getAs<RecordType>() &&
278      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
279    return ExprError();
280
281  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
282                                           Operand,
283                                           SourceRange(TypeidLoc, RParenLoc)));
284}
285
286/// \brief Build a C++ typeid expression with an expression operand.
287ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
288                                SourceLocation TypeidLoc,
289                                Expr *E,
290                                SourceLocation RParenLoc) {
291  bool isUnevaluatedOperand = true;
292  if (E && !E->isTypeDependent()) {
293    QualType T = E->getType();
294    if (const RecordType *RecordT = T->getAs<RecordType>()) {
295      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
296      // C++ [expr.typeid]p3:
297      //   [...] If the type of the expression is a class type, the class
298      //   shall be completely-defined.
299      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
300        return ExprError();
301
302      // C++ [expr.typeid]p3:
303      //   When typeid is applied to an expression other than an glvalue of a
304      //   polymorphic class type [...] [the] expression is an unevaluated
305      //   operand. [...]
306      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
307        isUnevaluatedOperand = false;
308
309        // We require a vtable to query the type at run time.
310        MarkVTableUsed(TypeidLoc, RecordD);
311      }
312    }
313
314    // C++ [expr.typeid]p4:
315    //   [...] If the type of the type-id is a reference to a possibly
316    //   cv-qualified type, the result of the typeid expression refers to a
317    //   std::type_info object representing the cv-unqualified referenced
318    //   type.
319    Qualifiers Quals;
320    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
321    if (!Context.hasSameType(T, UnqualT)) {
322      T = UnqualT;
323      ImpCastExprToType(E, UnqualT, CK_NoOp, CastCategory(E));
324    }
325  }
326
327  // If this is an unevaluated operand, clear out the set of
328  // declaration references we have been computing and eliminate any
329  // temporaries introduced in its computation.
330  if (isUnevaluatedOperand)
331    ExprEvalContexts.back().Context = Unevaluated;
332
333  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
334                                           E,
335                                           SourceRange(TypeidLoc, RParenLoc)));
336}
337
338/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
339ExprResult
340Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
341                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
342  // Find the std::type_info type.
343  if (!StdNamespace)
344    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
345
346  if (!CXXTypeInfoDecl) {
347    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
348    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
349    LookupQualifiedName(R, getStdNamespace());
350    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
351    if (!CXXTypeInfoDecl)
352      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
353  }
354
355  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
356
357  if (isType) {
358    // The operand is a type; handle it as such.
359    TypeSourceInfo *TInfo = 0;
360    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
361                                   &TInfo);
362    if (T.isNull())
363      return ExprError();
364
365    if (!TInfo)
366      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
367
368    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
369  }
370
371  // The operand is an expression.
372  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
373}
374
375/// \brief Build a Microsoft __uuidof expression with a type operand.
376ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
377                                SourceLocation TypeidLoc,
378                                TypeSourceInfo *Operand,
379                                SourceLocation RParenLoc) {
380  // FIXME: add __uuidof semantic analysis for type operand.
381  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
382                                           Operand,
383                                           SourceRange(TypeidLoc, RParenLoc)));
384}
385
386/// \brief Build a Microsoft __uuidof expression with an expression operand.
387ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
388                                SourceLocation TypeidLoc,
389                                Expr *E,
390                                SourceLocation RParenLoc) {
391  // FIXME: add __uuidof semantic analysis for expr operand.
392  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
393                                           E,
394                                           SourceRange(TypeidLoc, RParenLoc)));
395}
396
397/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
398ExprResult
399Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
400                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
401  // If MSVCGuidDecl has not been cached, do the lookup.
402  if (!MSVCGuidDecl) {
403    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
404    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
405    LookupQualifiedName(R, Context.getTranslationUnitDecl());
406    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
407    if (!MSVCGuidDecl)
408      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
409  }
410
411  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
412
413  if (isType) {
414    // The operand is a type; handle it as such.
415    TypeSourceInfo *TInfo = 0;
416    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
417                                   &TInfo);
418    if (T.isNull())
419      return ExprError();
420
421    if (!TInfo)
422      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
423
424    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
425  }
426
427  // The operand is an expression.
428  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
429}
430
431/// ActOnCXXBoolLiteral - Parse {true,false} literals.
432ExprResult
433Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
434  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
435         "Unknown C++ Boolean value!");
436  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
437                                                Context.BoolTy, OpLoc));
438}
439
440/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
441ExprResult
442Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
443  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
444}
445
446/// ActOnCXXThrow - Parse throw expressions.
447ExprResult
448Sema::ActOnCXXThrow(SourceLocation OpLoc, Expr *Ex) {
449  if (Ex && !Ex->isTypeDependent() && CheckCXXThrowOperand(OpLoc, Ex))
450    return ExprError();
451  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc));
452}
453
454/// CheckCXXThrowOperand - Validate the operand of a throw.
455bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *&E) {
456  // C++ [except.throw]p3:
457  //   A throw-expression initializes a temporary object, called the exception
458  //   object, the type of which is determined by removing any top-level
459  //   cv-qualifiers from the static type of the operand of throw and adjusting
460  //   the type from "array of T" or "function returning T" to "pointer to T"
461  //   or "pointer to function returning T", [...]
462  if (E->getType().hasQualifiers())
463    ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
464                      CastCategory(E));
465
466  DefaultFunctionArrayConversion(E);
467
468  //   If the type of the exception would be an incomplete type or a pointer
469  //   to an incomplete type other than (cv) void the program is ill-formed.
470  QualType Ty = E->getType();
471  bool isPointer = false;
472  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
473    Ty = Ptr->getPointeeType();
474    isPointer = true;
475  }
476  if (!isPointer || !Ty->isVoidType()) {
477    if (RequireCompleteType(ThrowLoc, Ty,
478                            PDiag(isPointer ? diag::err_throw_incomplete_ptr
479                                            : diag::err_throw_incomplete)
480                              << E->getSourceRange()))
481      return true;
482
483    if (RequireNonAbstractType(ThrowLoc, E->getType(),
484                               PDiag(diag::err_throw_abstract_type)
485                                 << E->getSourceRange()))
486      return true;
487  }
488
489  // Initialize the exception result.  This implicitly weeds out
490  // abstract types or types with inaccessible copy constructors.
491  // FIXME: Determine whether we can elide this copy per C++0x [class.copy]p34.
492  InitializedEntity Entity =
493    InitializedEntity::InitializeException(ThrowLoc, E->getType(),
494                                           /*NRVO=*/false);
495  ExprResult Res = PerformCopyInitialization(Entity,
496                                                   SourceLocation(),
497                                                   Owned(E));
498  if (Res.isInvalid())
499    return true;
500  E = Res.takeAs<Expr>();
501
502  // If the exception has class type, we need additional handling.
503  const RecordType *RecordTy = Ty->getAs<RecordType>();
504  if (!RecordTy)
505    return false;
506  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
507
508  // If we are throwing a polymorphic class type or pointer thereof,
509  // exception handling will make use of the vtable.
510  MarkVTableUsed(ThrowLoc, RD);
511
512  // If the class has a non-trivial destructor, we must be able to call it.
513  if (RD->hasTrivialDestructor())
514    return false;
515
516  CXXDestructorDecl *Destructor
517    = const_cast<CXXDestructorDecl*>(LookupDestructor(RD));
518  if (!Destructor)
519    return false;
520
521  MarkDeclarationReferenced(E->getExprLoc(), Destructor);
522  CheckDestructorAccess(E->getExprLoc(), Destructor,
523                        PDiag(diag::err_access_dtor_exception) << Ty);
524  return false;
525}
526
527ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
528  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
529  /// is a non-lvalue expression whose value is the address of the object for
530  /// which the function is called.
531
532  DeclContext *DC = getFunctionLevelDeclContext();
533  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
534    if (MD->isInstance())
535      return Owned(new (Context) CXXThisExpr(ThisLoc,
536                                             MD->getThisType(Context),
537                                             /*isImplicit=*/false));
538
539  return ExprError(Diag(ThisLoc, diag::err_invalid_this_use));
540}
541
542ExprResult
543Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
544                                SourceLocation LParenLoc,
545                                MultiExprArg exprs,
546                                SourceLocation RParenLoc) {
547  if (!TypeRep)
548    return ExprError();
549
550  TypeSourceInfo *TInfo;
551  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
552  if (!TInfo)
553    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
554
555  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
556}
557
558/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
559/// Can be interpreted either as function-style casting ("int(x)")
560/// or class type construction ("ClassType(x,y,z)")
561/// or creation of a value-initialized type ("int()").
562ExprResult
563Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
564                                SourceLocation LParenLoc,
565                                MultiExprArg exprs,
566                                SourceLocation RParenLoc) {
567  QualType Ty = TInfo->getType();
568  unsigned NumExprs = exprs.size();
569  Expr **Exprs = (Expr**)exprs.get();
570  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
571  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
572
573  if (Ty->isDependentType() ||
574      CallExpr::hasAnyTypeDependentArguments(Exprs, NumExprs)) {
575    exprs.release();
576
577    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
578                                                    LParenLoc,
579                                                    Exprs, NumExprs,
580                                                    RParenLoc));
581  }
582
583  if (Ty->isArrayType())
584    return ExprError(Diag(TyBeginLoc,
585                          diag::err_value_init_for_array_type) << FullRange);
586  if (!Ty->isVoidType() &&
587      RequireCompleteType(TyBeginLoc, Ty,
588                          PDiag(diag::err_invalid_incomplete_type_use)
589                            << FullRange))
590    return ExprError();
591
592  if (RequireNonAbstractType(TyBeginLoc, Ty,
593                             diag::err_allocation_of_abstract_type))
594    return ExprError();
595
596
597  // C++ [expr.type.conv]p1:
598  // If the expression list is a single expression, the type conversion
599  // expression is equivalent (in definedness, and if defined in meaning) to the
600  // corresponding cast expression.
601  //
602  if (NumExprs == 1) {
603    CastKind Kind = CK_Unknown;
604    CXXCastPath BasePath;
605    if (CheckCastTypes(TInfo->getTypeLoc().getSourceRange(), Ty, Exprs[0],
606                       Kind, BasePath,
607                       /*FunctionalStyle=*/true))
608      return ExprError();
609
610    exprs.release();
611
612    return Owned(CXXFunctionalCastExpr::Create(Context,
613                                               Ty.getNonLValueExprType(Context),
614                                               TInfo, TyBeginLoc, Kind,
615                                               Exprs[0], &BasePath,
616                                               RParenLoc));
617  }
618
619  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
620  InitializationKind Kind
621    = NumExprs ? InitializationKind::CreateDirect(TyBeginLoc,
622                                                  LParenLoc, RParenLoc)
623               : InitializationKind::CreateValue(TyBeginLoc,
624                                                 LParenLoc, RParenLoc);
625  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
626  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
627
628  // FIXME: Improve AST representation?
629  return move(Result);
630}
631
632
633/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
634/// @code new (memory) int[size][4] @endcode
635/// or
636/// @code ::new Foo(23, "hello") @endcode
637/// For the interpretation of this heap of arguments, consult the base version.
638ExprResult
639Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
640                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
641                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
642                  Declarator &D, SourceLocation ConstructorLParen,
643                  MultiExprArg ConstructorArgs,
644                  SourceLocation ConstructorRParen) {
645  Expr *ArraySize = 0;
646  // If the specified type is an array, unwrap it and save the expression.
647  if (D.getNumTypeObjects() > 0 &&
648      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
649    DeclaratorChunk &Chunk = D.getTypeObject(0);
650    if (Chunk.Arr.hasStatic)
651      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
652        << D.getSourceRange());
653    if (!Chunk.Arr.NumElts)
654      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
655        << D.getSourceRange());
656
657    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
658    D.DropFirstTypeObject();
659  }
660
661  // Every dimension shall be of constant size.
662  if (ArraySize) {
663    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
664      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
665        break;
666
667      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
668      if (Expr *NumElts = (Expr *)Array.NumElts) {
669        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent() &&
670            !NumElts->isIntegerConstantExpr(Context)) {
671          Diag(D.getTypeObject(I).Loc, diag::err_new_array_nonconst)
672            << NumElts->getSourceRange();
673          return ExprError();
674        }
675      }
676    }
677  }
678
679  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
680  QualType AllocType = TInfo->getType();
681  if (D.isInvalidType())
682    return ExprError();
683
684  if (!TInfo)
685    TInfo = Context.getTrivialTypeSourceInfo(AllocType);
686
687  SourceRange R = TInfo->getTypeLoc().getSourceRange();
688  return BuildCXXNew(StartLoc, UseGlobal,
689                     PlacementLParen,
690                     move(PlacementArgs),
691                     PlacementRParen,
692                     TypeIdParens,
693                     AllocType,
694                     TInfo,
695                     ArraySize,
696                     ConstructorLParen,
697                     move(ConstructorArgs),
698                     ConstructorRParen);
699}
700
701ExprResult
702Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
703                  SourceLocation PlacementLParen,
704                  MultiExprArg PlacementArgs,
705                  SourceLocation PlacementRParen,
706                  SourceRange TypeIdParens,
707                  QualType AllocType,
708                  TypeSourceInfo *AllocTypeInfo,
709                  Expr *ArraySize,
710                  SourceLocation ConstructorLParen,
711                  MultiExprArg ConstructorArgs,
712                  SourceLocation ConstructorRParen) {
713  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
714  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
715    return ExprError();
716
717  // Per C++0x [expr.new]p5, the type being constructed may be a
718  // typedef of an array type.
719  if (!ArraySize) {
720    if (const ConstantArrayType *Array
721                              = Context.getAsConstantArrayType(AllocType)) {
722      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
723                                         Context.getSizeType(),
724                                         TypeRange.getEnd());
725      AllocType = Array->getElementType();
726    }
727  }
728
729  QualType ResultType = Context.getPointerType(AllocType);
730
731  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
732  //   or enumeration type with a non-negative value."
733  if (ArraySize && !ArraySize->isTypeDependent()) {
734
735    QualType SizeType = ArraySize->getType();
736
737    ExprResult ConvertedSize
738      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize,
739                                       PDiag(diag::err_array_size_not_integral),
740                                     PDiag(diag::err_array_size_incomplete_type)
741                                       << ArraySize->getSourceRange(),
742                               PDiag(diag::err_array_size_explicit_conversion),
743                                       PDiag(diag::note_array_size_conversion),
744                               PDiag(diag::err_array_size_ambiguous_conversion),
745                                       PDiag(diag::note_array_size_conversion),
746                          PDiag(getLangOptions().CPlusPlus0x? 0
747                                            : diag::ext_array_size_conversion));
748    if (ConvertedSize.isInvalid())
749      return ExprError();
750
751    ArraySize = ConvertedSize.take();
752    SizeType = ArraySize->getType();
753    if (!SizeType->isIntegralOrEnumerationType())
754      return ExprError();
755
756    // Let's see if this is a constant < 0. If so, we reject it out of hand.
757    // We don't care about special rules, so we tell the machinery it's not
758    // evaluated - it gives us a result in more cases.
759    if (!ArraySize->isValueDependent()) {
760      llvm::APSInt Value;
761      if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
762        if (Value < llvm::APSInt(
763                        llvm::APInt::getNullValue(Value.getBitWidth()),
764                                 Value.isUnsigned()))
765          return ExprError(Diag(ArraySize->getSourceRange().getBegin(),
766                                diag::err_typecheck_negative_array_size)
767            << ArraySize->getSourceRange());
768
769        if (!AllocType->isDependentType()) {
770          unsigned ActiveSizeBits
771            = ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
772          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
773            Diag(ArraySize->getSourceRange().getBegin(),
774                 diag::err_array_too_large)
775              << Value.toString(10)
776              << ArraySize->getSourceRange();
777            return ExprError();
778          }
779        }
780      } else if (TypeIdParens.isValid()) {
781        // Can't have dynamic array size when the type-id is in parentheses.
782        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
783          << ArraySize->getSourceRange()
784          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
785          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
786
787        TypeIdParens = SourceRange();
788      }
789    }
790
791    ImpCastExprToType(ArraySize, Context.getSizeType(),
792                      CK_IntegralCast);
793  }
794
795  FunctionDecl *OperatorNew = 0;
796  FunctionDecl *OperatorDelete = 0;
797  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
798  unsigned NumPlaceArgs = PlacementArgs.size();
799
800  if (!AllocType->isDependentType() &&
801      !Expr::hasAnyTypeDependentArguments(PlaceArgs, NumPlaceArgs) &&
802      FindAllocationFunctions(StartLoc,
803                              SourceRange(PlacementLParen, PlacementRParen),
804                              UseGlobal, AllocType, ArraySize, PlaceArgs,
805                              NumPlaceArgs, OperatorNew, OperatorDelete))
806    return ExprError();
807  llvm::SmallVector<Expr *, 8> AllPlaceArgs;
808  if (OperatorNew) {
809    // Add default arguments, if any.
810    const FunctionProtoType *Proto =
811      OperatorNew->getType()->getAs<FunctionProtoType>();
812    VariadicCallType CallType =
813      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
814
815    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
816                               Proto, 1, PlaceArgs, NumPlaceArgs,
817                               AllPlaceArgs, CallType))
818      return ExprError();
819
820    NumPlaceArgs = AllPlaceArgs.size();
821    if (NumPlaceArgs > 0)
822      PlaceArgs = &AllPlaceArgs[0];
823  }
824
825  bool Init = ConstructorLParen.isValid();
826  // --- Choosing a constructor ---
827  CXXConstructorDecl *Constructor = 0;
828  Expr **ConsArgs = (Expr**)ConstructorArgs.get();
829  unsigned NumConsArgs = ConstructorArgs.size();
830  ASTOwningVector<Expr*> ConvertedConstructorArgs(*this);
831
832  // Array 'new' can't have any initializers.
833  if (NumConsArgs && (ResultType->isArrayType() || ArraySize)) {
834    SourceRange InitRange(ConsArgs[0]->getLocStart(),
835                          ConsArgs[NumConsArgs - 1]->getLocEnd());
836
837    Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
838    return ExprError();
839  }
840
841  if (!AllocType->isDependentType() &&
842      !Expr::hasAnyTypeDependentArguments(ConsArgs, NumConsArgs)) {
843    // C++0x [expr.new]p15:
844    //   A new-expression that creates an object of type T initializes that
845    //   object as follows:
846    InitializationKind Kind
847    //     - If the new-initializer is omitted, the object is default-
848    //       initialized (8.5); if no initialization is performed,
849    //       the object has indeterminate value
850      = !Init? InitializationKind::CreateDefault(TypeRange.getBegin())
851    //     - Otherwise, the new-initializer is interpreted according to the
852    //       initialization rules of 8.5 for direct-initialization.
853             : InitializationKind::CreateDirect(TypeRange.getBegin(),
854                                                ConstructorLParen,
855                                                ConstructorRParen);
856
857    InitializedEntity Entity
858      = InitializedEntity::InitializeNew(StartLoc, AllocType);
859    InitializationSequence InitSeq(*this, Entity, Kind, ConsArgs, NumConsArgs);
860    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
861                                                move(ConstructorArgs));
862    if (FullInit.isInvalid())
863      return ExprError();
864
865    // FullInit is our initializer; walk through it to determine if it's a
866    // constructor call, which CXXNewExpr handles directly.
867    if (Expr *FullInitExpr = (Expr *)FullInit.get()) {
868      if (CXXBindTemporaryExpr *Binder
869            = dyn_cast<CXXBindTemporaryExpr>(FullInitExpr))
870        FullInitExpr = Binder->getSubExpr();
871      if (CXXConstructExpr *Construct
872                    = dyn_cast<CXXConstructExpr>(FullInitExpr)) {
873        Constructor = Construct->getConstructor();
874        for (CXXConstructExpr::arg_iterator A = Construct->arg_begin(),
875                                         AEnd = Construct->arg_end();
876             A != AEnd; ++A)
877          ConvertedConstructorArgs.push_back(A->Retain());
878      } else {
879        // Take the converted initializer.
880        ConvertedConstructorArgs.push_back(FullInit.release());
881      }
882    } else {
883      // No initialization required.
884    }
885
886    // Take the converted arguments and use them for the new expression.
887    NumConsArgs = ConvertedConstructorArgs.size();
888    ConsArgs = (Expr **)ConvertedConstructorArgs.take();
889  }
890
891  // Mark the new and delete operators as referenced.
892  if (OperatorNew)
893    MarkDeclarationReferenced(StartLoc, OperatorNew);
894  if (OperatorDelete)
895    MarkDeclarationReferenced(StartLoc, OperatorDelete);
896
897  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
898
899  PlacementArgs.release();
900  ConstructorArgs.release();
901
902  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
903                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
904                                        ArraySize, Constructor, Init,
905                                        ConsArgs, NumConsArgs, OperatorDelete,
906                                        ResultType, AllocTypeInfo,
907                                        StartLoc,
908                                        Init ? ConstructorRParen :
909                                               TypeRange.getEnd()));
910}
911
912/// CheckAllocatedType - Checks that a type is suitable as the allocated type
913/// in a new-expression.
914/// dimension off and stores the size expression in ArraySize.
915bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
916                              SourceRange R) {
917  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
918  //   abstract class type or array thereof.
919  if (AllocType->isFunctionType())
920    return Diag(Loc, diag::err_bad_new_type)
921      << AllocType << 0 << R;
922  else if (AllocType->isReferenceType())
923    return Diag(Loc, diag::err_bad_new_type)
924      << AllocType << 1 << R;
925  else if (!AllocType->isDependentType() &&
926           RequireCompleteType(Loc, AllocType,
927                               PDiag(diag::err_new_incomplete_type)
928                                 << R))
929    return true;
930  else if (RequireNonAbstractType(Loc, AllocType,
931                                  diag::err_allocation_of_abstract_type))
932    return true;
933
934  return false;
935}
936
937/// \brief Determine whether the given function is a non-placement
938/// deallocation function.
939static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
940  if (FD->isInvalidDecl())
941    return false;
942
943  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
944    return Method->isUsualDeallocationFunction();
945
946  return ((FD->getOverloadedOperator() == OO_Delete ||
947           FD->getOverloadedOperator() == OO_Array_Delete) &&
948          FD->getNumParams() == 1);
949}
950
951/// FindAllocationFunctions - Finds the overloads of operator new and delete
952/// that are appropriate for the allocation.
953bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
954                                   bool UseGlobal, QualType AllocType,
955                                   bool IsArray, Expr **PlaceArgs,
956                                   unsigned NumPlaceArgs,
957                                   FunctionDecl *&OperatorNew,
958                                   FunctionDecl *&OperatorDelete) {
959  // --- Choosing an allocation function ---
960  // C++ 5.3.4p8 - 14 & 18
961  // 1) If UseGlobal is true, only look in the global scope. Else, also look
962  //   in the scope of the allocated class.
963  // 2) If an array size is given, look for operator new[], else look for
964  //   operator new.
965  // 3) The first argument is always size_t. Append the arguments from the
966  //   placement form.
967
968  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
969  // We don't care about the actual value of this argument.
970  // FIXME: Should the Sema create the expression and embed it in the syntax
971  // tree? Or should the consumer just recalculate the value?
972  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
973                      Context.Target.getPointerWidth(0)),
974                      Context.getSizeType(),
975                      SourceLocation());
976  AllocArgs[0] = &Size;
977  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
978
979  // C++ [expr.new]p8:
980  //   If the allocated type is a non-array type, the allocation
981  //   function’s name is operator new and the deallocation function’s
982  //   name is operator delete. If the allocated type is an array
983  //   type, the allocation function’s name is operator new[] and the
984  //   deallocation function’s name is operator delete[].
985  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
986                                        IsArray ? OO_Array_New : OO_New);
987  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
988                                        IsArray ? OO_Array_Delete : OO_Delete);
989
990  QualType AllocElemType = Context.getBaseElementType(AllocType);
991
992  if (AllocElemType->isRecordType() && !UseGlobal) {
993    CXXRecordDecl *Record
994      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
995    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
996                          AllocArgs.size(), Record, /*AllowMissing=*/true,
997                          OperatorNew))
998      return true;
999  }
1000  if (!OperatorNew) {
1001    // Didn't find a member overload. Look for a global one.
1002    DeclareGlobalNewDelete();
1003    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1004    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1005                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1006                          OperatorNew))
1007      return true;
1008  }
1009
1010  // We don't need an operator delete if we're running under
1011  // -fno-exceptions.
1012  if (!getLangOptions().Exceptions) {
1013    OperatorDelete = 0;
1014    return false;
1015  }
1016
1017  // FindAllocationOverload can change the passed in arguments, so we need to
1018  // copy them back.
1019  if (NumPlaceArgs > 0)
1020    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1021
1022  // C++ [expr.new]p19:
1023  //
1024  //   If the new-expression begins with a unary :: operator, the
1025  //   deallocation function’s name is looked up in the global
1026  //   scope. Otherwise, if the allocated type is a class type T or an
1027  //   array thereof, the deallocation function’s name is looked up in
1028  //   the scope of T. If this lookup fails to find the name, or if
1029  //   the allocated type is not a class type or array thereof, the
1030  //   deallocation function’s name is looked up in the global scope.
1031  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1032  if (AllocElemType->isRecordType() && !UseGlobal) {
1033    CXXRecordDecl *RD
1034      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1035    LookupQualifiedName(FoundDelete, RD);
1036  }
1037  if (FoundDelete.isAmbiguous())
1038    return true; // FIXME: clean up expressions?
1039
1040  if (FoundDelete.empty()) {
1041    DeclareGlobalNewDelete();
1042    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1043  }
1044
1045  FoundDelete.suppressDiagnostics();
1046
1047  llvm::SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1048
1049  // Whether we're looking for a placement operator delete is dictated
1050  // by whether we selected a placement operator new, not by whether
1051  // we had explicit placement arguments.  This matters for things like
1052  //   struct A { void *operator new(size_t, int = 0); ... };
1053  //   A *a = new A()
1054  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1055
1056  if (isPlacementNew) {
1057    // C++ [expr.new]p20:
1058    //   A declaration of a placement deallocation function matches the
1059    //   declaration of a placement allocation function if it has the
1060    //   same number of parameters and, after parameter transformations
1061    //   (8.3.5), all parameter types except the first are
1062    //   identical. [...]
1063    //
1064    // To perform this comparison, we compute the function type that
1065    // the deallocation function should have, and use that type both
1066    // for template argument deduction and for comparison purposes.
1067    QualType ExpectedFunctionType;
1068    {
1069      const FunctionProtoType *Proto
1070        = OperatorNew->getType()->getAs<FunctionProtoType>();
1071      llvm::SmallVector<QualType, 4> ArgTypes;
1072      ArgTypes.push_back(Context.VoidPtrTy);
1073      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1074        ArgTypes.push_back(Proto->getArgType(I));
1075
1076      ExpectedFunctionType
1077        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1078                                  ArgTypes.size(),
1079                                  Proto->isVariadic(),
1080                                  0, false, false, 0, 0,
1081                                  FunctionType::ExtInfo());
1082    }
1083
1084    for (LookupResult::iterator D = FoundDelete.begin(),
1085                             DEnd = FoundDelete.end();
1086         D != DEnd; ++D) {
1087      FunctionDecl *Fn = 0;
1088      if (FunctionTemplateDecl *FnTmpl
1089            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1090        // Perform template argument deduction to try to match the
1091        // expected function type.
1092        TemplateDeductionInfo Info(Context, StartLoc);
1093        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1094          continue;
1095      } else
1096        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1097
1098      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1099        Matches.push_back(std::make_pair(D.getPair(), Fn));
1100    }
1101  } else {
1102    // C++ [expr.new]p20:
1103    //   [...] Any non-placement deallocation function matches a
1104    //   non-placement allocation function. [...]
1105    for (LookupResult::iterator D = FoundDelete.begin(),
1106                             DEnd = FoundDelete.end();
1107         D != DEnd; ++D) {
1108      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1109        if (isNonPlacementDeallocationFunction(Fn))
1110          Matches.push_back(std::make_pair(D.getPair(), Fn));
1111    }
1112  }
1113
1114  // C++ [expr.new]p20:
1115  //   [...] If the lookup finds a single matching deallocation
1116  //   function, that function will be called; otherwise, no
1117  //   deallocation function will be called.
1118  if (Matches.size() == 1) {
1119    OperatorDelete = Matches[0].second;
1120
1121    // C++0x [expr.new]p20:
1122    //   If the lookup finds the two-parameter form of a usual
1123    //   deallocation function (3.7.4.2) and that function, considered
1124    //   as a placement deallocation function, would have been
1125    //   selected as a match for the allocation function, the program
1126    //   is ill-formed.
1127    if (NumPlaceArgs && getLangOptions().CPlusPlus0x &&
1128        isNonPlacementDeallocationFunction(OperatorDelete)) {
1129      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1130        << SourceRange(PlaceArgs[0]->getLocStart(),
1131                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1132      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1133        << DeleteName;
1134    } else {
1135      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1136                            Matches[0].first);
1137    }
1138  }
1139
1140  return false;
1141}
1142
1143/// FindAllocationOverload - Find an fitting overload for the allocation
1144/// function in the specified scope.
1145bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1146                                  DeclarationName Name, Expr** Args,
1147                                  unsigned NumArgs, DeclContext *Ctx,
1148                                  bool AllowMissing, FunctionDecl *&Operator) {
1149  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1150  LookupQualifiedName(R, Ctx);
1151  if (R.empty()) {
1152    if (AllowMissing)
1153      return false;
1154    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1155      << Name << Range;
1156  }
1157
1158  if (R.isAmbiguous())
1159    return true;
1160
1161  R.suppressDiagnostics();
1162
1163  OverloadCandidateSet Candidates(StartLoc);
1164  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1165       Alloc != AllocEnd; ++Alloc) {
1166    // Even member operator new/delete are implicitly treated as
1167    // static, so don't use AddMemberCandidate.
1168    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1169
1170    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1171      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1172                                   /*ExplicitTemplateArgs=*/0, Args, NumArgs,
1173                                   Candidates,
1174                                   /*SuppressUserConversions=*/false);
1175      continue;
1176    }
1177
1178    FunctionDecl *Fn = cast<FunctionDecl>(D);
1179    AddOverloadCandidate(Fn, Alloc.getPair(), Args, NumArgs, Candidates,
1180                         /*SuppressUserConversions=*/false);
1181  }
1182
1183  // Do the resolution.
1184  OverloadCandidateSet::iterator Best;
1185  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1186  case OR_Success: {
1187    // Got one!
1188    FunctionDecl *FnDecl = Best->Function;
1189    // The first argument is size_t, and the first parameter must be size_t,
1190    // too. This is checked on declaration and can be assumed. (It can't be
1191    // asserted on, though, since invalid decls are left in there.)
1192    // Watch out for variadic allocator function.
1193    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1194    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1195      ExprResult Result
1196        = PerformCopyInitialization(InitializedEntity::InitializeParameter(
1197                                                       Context,
1198                                                       FnDecl->getParamDecl(i)),
1199                                    SourceLocation(),
1200                                    Owned(Args[i]->Retain()));
1201      if (Result.isInvalid())
1202        return true;
1203
1204      Args[i] = Result.takeAs<Expr>();
1205    }
1206    Operator = FnDecl;
1207    CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), Best->FoundDecl);
1208    return false;
1209  }
1210
1211  case OR_No_Viable_Function:
1212    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1213      << Name << Range;
1214    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1215    return true;
1216
1217  case OR_Ambiguous:
1218    Diag(StartLoc, diag::err_ovl_ambiguous_call)
1219      << Name << Range;
1220    Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
1221    return true;
1222
1223  case OR_Deleted:
1224    Diag(StartLoc, diag::err_ovl_deleted_call)
1225      << Best->Function->isDeleted()
1226      << Name << Range;
1227    Candidates.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
1228    return true;
1229  }
1230  assert(false && "Unreachable, bad result from BestViableFunction");
1231  return true;
1232}
1233
1234
1235/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1236/// delete. These are:
1237/// @code
1238///   void* operator new(std::size_t) throw(std::bad_alloc);
1239///   void* operator new[](std::size_t) throw(std::bad_alloc);
1240///   void operator delete(void *) throw();
1241///   void operator delete[](void *) throw();
1242/// @endcode
1243/// Note that the placement and nothrow forms of new are *not* implicitly
1244/// declared. Their use requires including \<new\>.
1245void Sema::DeclareGlobalNewDelete() {
1246  if (GlobalNewDeleteDeclared)
1247    return;
1248
1249  // C++ [basic.std.dynamic]p2:
1250  //   [...] The following allocation and deallocation functions (18.4) are
1251  //   implicitly declared in global scope in each translation unit of a
1252  //   program
1253  //
1254  //     void* operator new(std::size_t) throw(std::bad_alloc);
1255  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1256  //     void  operator delete(void*) throw();
1257  //     void  operator delete[](void*) throw();
1258  //
1259  //   These implicit declarations introduce only the function names operator
1260  //   new, operator new[], operator delete, operator delete[].
1261  //
1262  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1263  // "std" or "bad_alloc" as necessary to form the exception specification.
1264  // However, we do not make these implicit declarations visible to name
1265  // lookup.
1266  if (!StdBadAlloc) {
1267    // The "std::bad_alloc" class has not yet been declared, so build it
1268    // implicitly.
1269    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1270                                        getOrCreateStdNamespace(),
1271                                        SourceLocation(),
1272                                      &PP.getIdentifierTable().get("bad_alloc"),
1273                                        SourceLocation(), 0);
1274    getStdBadAlloc()->setImplicit(true);
1275  }
1276
1277  GlobalNewDeleteDeclared = true;
1278
1279  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1280  QualType SizeT = Context.getSizeType();
1281  bool AssumeSaneOperatorNew = getLangOptions().AssumeSaneOperatorNew;
1282
1283  DeclareGlobalAllocationFunction(
1284      Context.DeclarationNames.getCXXOperatorName(OO_New),
1285      VoidPtr, SizeT, AssumeSaneOperatorNew);
1286  DeclareGlobalAllocationFunction(
1287      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1288      VoidPtr, SizeT, AssumeSaneOperatorNew);
1289  DeclareGlobalAllocationFunction(
1290      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1291      Context.VoidTy, VoidPtr);
1292  DeclareGlobalAllocationFunction(
1293      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1294      Context.VoidTy, VoidPtr);
1295}
1296
1297/// DeclareGlobalAllocationFunction - Declares a single implicit global
1298/// allocation function if it doesn't already exist.
1299void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1300                                           QualType Return, QualType Argument,
1301                                           bool AddMallocAttr) {
1302  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1303
1304  // Check if this function is already declared.
1305  {
1306    DeclContext::lookup_iterator Alloc, AllocEnd;
1307    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1308         Alloc != AllocEnd; ++Alloc) {
1309      // Only look at non-template functions, as it is the predefined,
1310      // non-templated allocation function we are trying to declare here.
1311      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1312        QualType InitialParamType =
1313          Context.getCanonicalType(
1314            Func->getParamDecl(0)->getType().getUnqualifiedType());
1315        // FIXME: Do we need to check for default arguments here?
1316        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1317          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1318            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1319          return;
1320        }
1321      }
1322    }
1323  }
1324
1325  QualType BadAllocType;
1326  bool HasBadAllocExceptionSpec
1327    = (Name.getCXXOverloadedOperator() == OO_New ||
1328       Name.getCXXOverloadedOperator() == OO_Array_New);
1329  if (HasBadAllocExceptionSpec) {
1330    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1331    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1332  }
1333
1334  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0,
1335                                            true, false,
1336                                            HasBadAllocExceptionSpec? 1 : 0,
1337                                            &BadAllocType,
1338                                            FunctionType::ExtInfo());
1339  FunctionDecl *Alloc =
1340    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
1341                         FnType, /*TInfo=*/0, SC_None,
1342                         SC_None, false, true);
1343  Alloc->setImplicit();
1344
1345  if (AddMallocAttr)
1346    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1347
1348  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1349                                           0, Argument, /*TInfo=*/0,
1350                                           SC_None,
1351                                           SC_None, 0);
1352  Alloc->setParams(&Param, 1);
1353
1354  // FIXME: Also add this declaration to the IdentifierResolver, but
1355  // make sure it is at the end of the chain to coincide with the
1356  // global scope.
1357  Context.getTranslationUnitDecl()->addDecl(Alloc);
1358}
1359
1360bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1361                                    DeclarationName Name,
1362                                    FunctionDecl* &Operator) {
1363  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1364  // Try to find operator delete/operator delete[] in class scope.
1365  LookupQualifiedName(Found, RD);
1366
1367  if (Found.isAmbiguous())
1368    return true;
1369
1370  Found.suppressDiagnostics();
1371
1372  llvm::SmallVector<DeclAccessPair,4> Matches;
1373  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1374       F != FEnd; ++F) {
1375    NamedDecl *ND = (*F)->getUnderlyingDecl();
1376
1377    // Ignore template operator delete members from the check for a usual
1378    // deallocation function.
1379    if (isa<FunctionTemplateDecl>(ND))
1380      continue;
1381
1382    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1383      Matches.push_back(F.getPair());
1384  }
1385
1386  // There's exactly one suitable operator;  pick it.
1387  if (Matches.size() == 1) {
1388    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1389    CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1390                          Matches[0]);
1391    return false;
1392
1393  // We found multiple suitable operators;  complain about the ambiguity.
1394  } else if (!Matches.empty()) {
1395    Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1396      << Name << RD;
1397
1398    for (llvm::SmallVectorImpl<DeclAccessPair>::iterator
1399           F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1400      Diag((*F)->getUnderlyingDecl()->getLocation(),
1401           diag::note_member_declared_here) << Name;
1402    return true;
1403  }
1404
1405  // We did find operator delete/operator delete[] declarations, but
1406  // none of them were suitable.
1407  if (!Found.empty()) {
1408    Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
1409      << Name << RD;
1410
1411    for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1412         F != FEnd; ++F)
1413      Diag((*F)->getUnderlyingDecl()->getLocation(),
1414           diag::note_member_declared_here) << Name;
1415
1416    return true;
1417  }
1418
1419  // Look for a global declaration.
1420  DeclareGlobalNewDelete();
1421  DeclContext *TUDecl = Context.getTranslationUnitDecl();
1422
1423  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
1424  Expr* DeallocArgs[1];
1425  DeallocArgs[0] = &Null;
1426  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
1427                             DeallocArgs, 1, TUDecl, /*AllowMissing=*/false,
1428                             Operator))
1429    return true;
1430
1431  assert(Operator && "Did not find a deallocation function!");
1432  return false;
1433}
1434
1435/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
1436/// @code ::delete ptr; @endcode
1437/// or
1438/// @code delete [] ptr; @endcode
1439ExprResult
1440Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
1441                     bool ArrayForm, Expr *Ex) {
1442  // C++ [expr.delete]p1:
1443  //   The operand shall have a pointer type, or a class type having a single
1444  //   conversion function to a pointer type. The result has type void.
1445  //
1446  // DR599 amends "pointer type" to "pointer to object type" in both cases.
1447
1448  FunctionDecl *OperatorDelete = 0;
1449  bool ArrayFormAsWritten = ArrayForm;
1450
1451  if (!Ex->isTypeDependent()) {
1452    QualType Type = Ex->getType();
1453
1454    if (const RecordType *Record = Type->getAs<RecordType>()) {
1455      if (RequireCompleteType(StartLoc, Type,
1456                              PDiag(diag::err_delete_incomplete_class_type)))
1457        return ExprError();
1458
1459      llvm::SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
1460
1461      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1462      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
1463      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
1464             E = Conversions->end(); I != E; ++I) {
1465        NamedDecl *D = I.getDecl();
1466        if (isa<UsingShadowDecl>(D))
1467          D = cast<UsingShadowDecl>(D)->getTargetDecl();
1468
1469        // Skip over templated conversion functions; they aren't considered.
1470        if (isa<FunctionTemplateDecl>(D))
1471          continue;
1472
1473        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
1474
1475        QualType ConvType = Conv->getConversionType().getNonReferenceType();
1476        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
1477          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
1478            ObjectPtrConversions.push_back(Conv);
1479      }
1480      if (ObjectPtrConversions.size() == 1) {
1481        // We have a single conversion to a pointer-to-object type. Perform
1482        // that conversion.
1483        // TODO: don't redo the conversion calculation.
1484        if (!PerformImplicitConversion(Ex,
1485                            ObjectPtrConversions.front()->getConversionType(),
1486                                      AA_Converting)) {
1487          Type = Ex->getType();
1488        }
1489      }
1490      else if (ObjectPtrConversions.size() > 1) {
1491        Diag(StartLoc, diag::err_ambiguous_delete_operand)
1492              << Type << Ex->getSourceRange();
1493        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
1494          NoteOverloadCandidate(ObjectPtrConversions[i]);
1495        return ExprError();
1496      }
1497    }
1498
1499    if (!Type->isPointerType())
1500      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1501        << Type << Ex->getSourceRange());
1502
1503    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
1504    if (Pointee->isVoidType() && !isSFINAEContext()) {
1505      // The C++ standard bans deleting a pointer to a non-object type, which
1506      // effectively bans deletion of "void*". However, most compilers support
1507      // this, so we treat it as a warning unless we're in a SFINAE context.
1508      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
1509        << Type << Ex->getSourceRange();
1510    } else if (Pointee->isFunctionType() || Pointee->isVoidType())
1511      return ExprError(Diag(StartLoc, diag::err_delete_operand)
1512        << Type << Ex->getSourceRange());
1513    else if (!Pointee->isDependentType() &&
1514             RequireCompleteType(StartLoc, Pointee,
1515                                 PDiag(diag::warn_delete_incomplete)
1516                                   << Ex->getSourceRange()))
1517      return ExprError();
1518
1519    // C++ [expr.delete]p2:
1520    //   [Note: a pointer to a const type can be the operand of a
1521    //   delete-expression; it is not necessary to cast away the constness
1522    //   (5.2.11) of the pointer expression before it is used as the operand
1523    //   of the delete-expression. ]
1524    ImpCastExprToType(Ex, Context.getPointerType(Context.VoidTy),
1525                      CK_NoOp);
1526
1527    if (Pointee->isArrayType() && !ArrayForm) {
1528      Diag(StartLoc, diag::warn_delete_array_type)
1529          << Type << Ex->getSourceRange()
1530          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
1531      ArrayForm = true;
1532    }
1533
1534    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1535                                      ArrayForm ? OO_Array_Delete : OO_Delete);
1536
1537    QualType PointeeElem = Context.getBaseElementType(Pointee);
1538    if (const RecordType *RT = PointeeElem->getAs<RecordType>()) {
1539      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1540
1541      if (!UseGlobal &&
1542          FindDeallocationFunction(StartLoc, RD, DeleteName, OperatorDelete))
1543        return ExprError();
1544
1545      if (!RD->hasTrivialDestructor())
1546        if (const CXXDestructorDecl *Dtor = LookupDestructor(RD))
1547          MarkDeclarationReferenced(StartLoc,
1548                                    const_cast<CXXDestructorDecl*>(Dtor));
1549    }
1550
1551    if (!OperatorDelete) {
1552      // Look for a global declaration.
1553      DeclareGlobalNewDelete();
1554      DeclContext *TUDecl = Context.getTranslationUnitDecl();
1555      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
1556                                 &Ex, 1, TUDecl, /*AllowMissing=*/false,
1557                                 OperatorDelete))
1558        return ExprError();
1559    }
1560
1561    MarkDeclarationReferenced(StartLoc, OperatorDelete);
1562
1563    // FIXME: Check access and ambiguity of operator delete and destructor.
1564  }
1565
1566  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
1567                                           ArrayFormAsWritten, OperatorDelete,
1568                                           Ex, StartLoc));
1569}
1570
1571/// \brief Check the use of the given variable as a C++ condition in an if,
1572/// while, do-while, or switch statement.
1573ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
1574                                                      SourceLocation StmtLoc,
1575                                                      bool ConvertToBoolean) {
1576  QualType T = ConditionVar->getType();
1577
1578  // C++ [stmt.select]p2:
1579  //   The declarator shall not specify a function or an array.
1580  if (T->isFunctionType())
1581    return ExprError(Diag(ConditionVar->getLocation(),
1582                          diag::err_invalid_use_of_function_type)
1583                       << ConditionVar->getSourceRange());
1584  else if (T->isArrayType())
1585    return ExprError(Diag(ConditionVar->getLocation(),
1586                          diag::err_invalid_use_of_array_type)
1587                     << ConditionVar->getSourceRange());
1588
1589  Expr *Condition = DeclRefExpr::Create(Context, 0, SourceRange(), ConditionVar,
1590                                        ConditionVar->getLocation(),
1591                                 ConditionVar->getType().getNonReferenceType());
1592  if (ConvertToBoolean && CheckBooleanCondition(Condition, StmtLoc))
1593    return ExprError();
1594
1595  return Owned(Condition);
1596}
1597
1598/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
1599bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
1600  // C++ 6.4p4:
1601  // The value of a condition that is an initialized declaration in a statement
1602  // other than a switch statement is the value of the declared variable
1603  // implicitly converted to type bool. If that conversion is ill-formed, the
1604  // program is ill-formed.
1605  // The value of a condition that is an expression is the value of the
1606  // expression, implicitly converted to bool.
1607  //
1608  return PerformContextuallyConvertToBool(CondExpr);
1609}
1610
1611/// Helper function to determine whether this is the (deprecated) C++
1612/// conversion from a string literal to a pointer to non-const char or
1613/// non-const wchar_t (for narrow and wide string literals,
1614/// respectively).
1615bool
1616Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
1617  // Look inside the implicit cast, if it exists.
1618  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
1619    From = Cast->getSubExpr();
1620
1621  // A string literal (2.13.4) that is not a wide string literal can
1622  // be converted to an rvalue of type "pointer to char"; a wide
1623  // string literal can be converted to an rvalue of type "pointer
1624  // to wchar_t" (C++ 4.2p2).
1625  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
1626    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
1627      if (const BuiltinType *ToPointeeType
1628          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
1629        // This conversion is considered only when there is an
1630        // explicit appropriate pointer target type (C++ 4.2p2).
1631        if (!ToPtrType->getPointeeType().hasQualifiers() &&
1632            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
1633             (!StrLit->isWide() &&
1634              (ToPointeeType->getKind() == BuiltinType::Char_U ||
1635               ToPointeeType->getKind() == BuiltinType::Char_S))))
1636          return true;
1637      }
1638
1639  return false;
1640}
1641
1642static ExprResult BuildCXXCastArgument(Sema &S,
1643                                       SourceLocation CastLoc,
1644                                       QualType Ty,
1645                                       CastKind Kind,
1646                                       CXXMethodDecl *Method,
1647                                       Expr *From) {
1648  switch (Kind) {
1649  default: assert(0 && "Unhandled cast kind!");
1650  case CK_ConstructorConversion: {
1651    ASTOwningVector<Expr*> ConstructorArgs(S);
1652
1653    if (S.CompleteConstructorCall(cast<CXXConstructorDecl>(Method),
1654                                  MultiExprArg(&From, 1),
1655                                  CastLoc, ConstructorArgs))
1656      return ExprError();
1657
1658    ExprResult Result =
1659    S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
1660                            move_arg(ConstructorArgs),
1661                            /*ZeroInit*/ false, CXXConstructExpr::CK_Complete);
1662    if (Result.isInvalid())
1663      return ExprError();
1664
1665    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
1666  }
1667
1668  case CK_UserDefinedConversion: {
1669    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
1670
1671    // Create an implicit call expr that calls it.
1672    // FIXME: pass the FoundDecl for the user-defined conversion here
1673    CXXMemberCallExpr *CE = S.BuildCXXMemberCallExpr(From, Method, Method);
1674    return S.MaybeBindToTemporary(CE);
1675  }
1676  }
1677}
1678
1679/// PerformImplicitConversion - Perform an implicit conversion of the
1680/// expression From to the type ToType using the pre-computed implicit
1681/// conversion sequence ICS. Returns true if there was an error, false
1682/// otherwise. The expression From is replaced with the converted
1683/// expression. Action is the kind of conversion we're performing,
1684/// used in the error message.
1685bool
1686Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1687                                const ImplicitConversionSequence &ICS,
1688                                AssignmentAction Action, bool IgnoreBaseAccess) {
1689  switch (ICS.getKind()) {
1690  case ImplicitConversionSequence::StandardConversion:
1691    if (PerformImplicitConversion(From, ToType, ICS.Standard, Action,
1692                                  IgnoreBaseAccess))
1693      return true;
1694    break;
1695
1696  case ImplicitConversionSequence::UserDefinedConversion: {
1697
1698      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
1699      CastKind CastKind = CK_Unknown;
1700      QualType BeforeToType;
1701      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
1702        CastKind = CK_UserDefinedConversion;
1703
1704        // If the user-defined conversion is specified by a conversion function,
1705        // the initial standard conversion sequence converts the source type to
1706        // the implicit object parameter of the conversion function.
1707        BeforeToType = Context.getTagDeclType(Conv->getParent());
1708      } else if (const CXXConstructorDecl *Ctor =
1709                  dyn_cast<CXXConstructorDecl>(FD)) {
1710        CastKind = CK_ConstructorConversion;
1711        // Do no conversion if dealing with ... for the first conversion.
1712        if (!ICS.UserDefined.EllipsisConversion) {
1713          // If the user-defined conversion is specified by a constructor, the
1714          // initial standard conversion sequence converts the source type to the
1715          // type required by the argument of the constructor
1716          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
1717        }
1718      }
1719      else
1720        assert(0 && "Unknown conversion function kind!");
1721      // Whatch out for elipsis conversion.
1722      if (!ICS.UserDefined.EllipsisConversion) {
1723        if (PerformImplicitConversion(From, BeforeToType,
1724                                      ICS.UserDefined.Before, AA_Converting,
1725                                      IgnoreBaseAccess))
1726          return true;
1727      }
1728
1729      ExprResult CastArg
1730        = BuildCXXCastArgument(*this,
1731                               From->getLocStart(),
1732                               ToType.getNonReferenceType(),
1733                               CastKind, cast<CXXMethodDecl>(FD),
1734                               From);
1735
1736      if (CastArg.isInvalid())
1737        return true;
1738
1739      From = CastArg.takeAs<Expr>();
1740
1741      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
1742                                       AA_Converting, IgnoreBaseAccess);
1743  }
1744
1745  case ImplicitConversionSequence::AmbiguousConversion:
1746    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
1747                          PDiag(diag::err_typecheck_ambiguous_condition)
1748                            << From->getSourceRange());
1749     return true;
1750
1751  case ImplicitConversionSequence::EllipsisConversion:
1752    assert(false && "Cannot perform an ellipsis conversion");
1753    return false;
1754
1755  case ImplicitConversionSequence::BadConversion:
1756    return true;
1757  }
1758
1759  // Everything went well.
1760  return false;
1761}
1762
1763/// PerformImplicitConversion - Perform an implicit conversion of the
1764/// expression From to the type ToType by following the standard
1765/// conversion sequence SCS. Returns true if there was an error, false
1766/// otherwise. The expression From is replaced with the converted
1767/// expression. Flavor is the context in which we're performing this
1768/// conversion, for use in error messages.
1769bool
1770Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
1771                                const StandardConversionSequence& SCS,
1772                                AssignmentAction Action, bool IgnoreBaseAccess) {
1773  // Overall FIXME: we are recomputing too many types here and doing far too
1774  // much extra work. What this means is that we need to keep track of more
1775  // information that is computed when we try the implicit conversion initially,
1776  // so that we don't need to recompute anything here.
1777  QualType FromType = From->getType();
1778
1779  if (SCS.CopyConstructor) {
1780    // FIXME: When can ToType be a reference type?
1781    assert(!ToType->isReferenceType());
1782    if (SCS.Second == ICK_Derived_To_Base) {
1783      ASTOwningVector<Expr*> ConstructorArgs(*this);
1784      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
1785                                  MultiExprArg(*this, &From, 1),
1786                                  /*FIXME:ConstructLoc*/SourceLocation(),
1787                                  ConstructorArgs))
1788        return true;
1789      ExprResult FromResult =
1790        BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1791                              ToType, SCS.CopyConstructor,
1792                              move_arg(ConstructorArgs),
1793                              /*ZeroInit*/ false,
1794                              CXXConstructExpr::CK_Complete);
1795      if (FromResult.isInvalid())
1796        return true;
1797      From = FromResult.takeAs<Expr>();
1798      return false;
1799    }
1800    ExprResult FromResult =
1801      BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
1802                            ToType, SCS.CopyConstructor,
1803                            MultiExprArg(*this, &From, 1),
1804                            /*ZeroInit*/ false,
1805                            CXXConstructExpr::CK_Complete);
1806
1807    if (FromResult.isInvalid())
1808      return true;
1809
1810    From = FromResult.takeAs<Expr>();
1811    return false;
1812  }
1813
1814  // Resolve overloaded function references.
1815  if (Context.hasSameType(FromType, Context.OverloadTy)) {
1816    DeclAccessPair Found;
1817    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
1818                                                          true, Found);
1819    if (!Fn)
1820      return true;
1821
1822    if (DiagnoseUseOfDecl(Fn, From->getSourceRange().getBegin()))
1823      return true;
1824
1825    From = FixOverloadedFunctionReference(From, Found, Fn);
1826    FromType = From->getType();
1827  }
1828
1829  // Perform the first implicit conversion.
1830  switch (SCS.First) {
1831  case ICK_Identity:
1832  case ICK_Lvalue_To_Rvalue:
1833    // Nothing to do.
1834    break;
1835
1836  case ICK_Array_To_Pointer:
1837    FromType = Context.getArrayDecayedType(FromType);
1838    ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay);
1839    break;
1840
1841  case ICK_Function_To_Pointer:
1842    FromType = Context.getPointerType(FromType);
1843    ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay);
1844    break;
1845
1846  default:
1847    assert(false && "Improper first standard conversion");
1848    break;
1849  }
1850
1851  // Perform the second implicit conversion
1852  switch (SCS.Second) {
1853  case ICK_Identity:
1854    // If both sides are functions (or pointers/references to them), there could
1855    // be incompatible exception declarations.
1856    if (CheckExceptionSpecCompatibility(From, ToType))
1857      return true;
1858    // Nothing else to do.
1859    break;
1860
1861  case ICK_NoReturn_Adjustment:
1862    // If both sides are functions (or pointers/references to them), there could
1863    // be incompatible exception declarations.
1864    if (CheckExceptionSpecCompatibility(From, ToType))
1865      return true;
1866
1867    ImpCastExprToType(From, Context.getNoReturnType(From->getType(), false),
1868                      CK_NoOp);
1869    break;
1870
1871  case ICK_Integral_Promotion:
1872  case ICK_Integral_Conversion:
1873    ImpCastExprToType(From, ToType, CK_IntegralCast);
1874    break;
1875
1876  case ICK_Floating_Promotion:
1877  case ICK_Floating_Conversion:
1878    ImpCastExprToType(From, ToType, CK_FloatingCast);
1879    break;
1880
1881  case ICK_Complex_Promotion:
1882  case ICK_Complex_Conversion:
1883    ImpCastExprToType(From, ToType, CK_Unknown);
1884    break;
1885
1886  case ICK_Floating_Integral:
1887    if (ToType->isRealFloatingType())
1888      ImpCastExprToType(From, ToType, CK_IntegralToFloating);
1889    else
1890      ImpCastExprToType(From, ToType, CK_FloatingToIntegral);
1891    break;
1892
1893  case ICK_Compatible_Conversion:
1894    ImpCastExprToType(From, ToType, CK_NoOp);
1895    break;
1896
1897  case ICK_Pointer_Conversion: {
1898    if (SCS.IncompatibleObjC) {
1899      // Diagnose incompatible Objective-C conversions
1900      Diag(From->getSourceRange().getBegin(),
1901           diag::ext_typecheck_convert_incompatible_pointer)
1902        << From->getType() << ToType << Action
1903        << From->getSourceRange();
1904    }
1905
1906
1907    CastKind Kind = CK_Unknown;
1908    CXXCastPath BasePath;
1909    if (CheckPointerConversion(From, ToType, Kind, BasePath, IgnoreBaseAccess))
1910      return true;
1911    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
1912    break;
1913  }
1914
1915  case ICK_Pointer_Member: {
1916    CastKind Kind = CK_Unknown;
1917    CXXCastPath BasePath;
1918    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath,
1919                                     IgnoreBaseAccess))
1920      return true;
1921    if (CheckExceptionSpecCompatibility(From, ToType))
1922      return true;
1923    ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath);
1924    break;
1925  }
1926  case ICK_Boolean_Conversion: {
1927    CastKind Kind = CK_Unknown;
1928    if (FromType->isMemberPointerType())
1929      Kind = CK_MemberPointerToBoolean;
1930
1931    ImpCastExprToType(From, Context.BoolTy, Kind);
1932    break;
1933  }
1934
1935  case ICK_Derived_To_Base: {
1936    CXXCastPath BasePath;
1937    if (CheckDerivedToBaseConversion(From->getType(),
1938                                     ToType.getNonReferenceType(),
1939                                     From->getLocStart(),
1940                                     From->getSourceRange(),
1941                                     &BasePath,
1942                                     IgnoreBaseAccess))
1943      return true;
1944
1945    ImpCastExprToType(From, ToType.getNonReferenceType(),
1946                      CK_DerivedToBase, CastCategory(From),
1947                      &BasePath);
1948    break;
1949  }
1950
1951  case ICK_Vector_Conversion:
1952    ImpCastExprToType(From, ToType, CK_BitCast);
1953    break;
1954
1955  case ICK_Vector_Splat:
1956    ImpCastExprToType(From, ToType, CK_VectorSplat);
1957    break;
1958
1959  case ICK_Complex_Real:
1960    ImpCastExprToType(From, ToType, CK_Unknown);
1961    break;
1962
1963  case ICK_Lvalue_To_Rvalue:
1964  case ICK_Array_To_Pointer:
1965  case ICK_Function_To_Pointer:
1966  case ICK_Qualification:
1967  case ICK_Num_Conversion_Kinds:
1968    assert(false && "Improper second standard conversion");
1969    break;
1970  }
1971
1972  switch (SCS.Third) {
1973  case ICK_Identity:
1974    // Nothing to do.
1975    break;
1976
1977  case ICK_Qualification: {
1978    // The qualification keeps the category of the inner expression, unless the
1979    // target type isn't a reference.
1980    ExprValueKind VK = ToType->isReferenceType() ?
1981                                  CastCategory(From) : VK_RValue;
1982    ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
1983                      CK_NoOp, VK);
1984
1985    if (SCS.DeprecatedStringLiteralToCharPtr)
1986      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
1987        << ToType.getNonReferenceType();
1988
1989    break;
1990    }
1991
1992  default:
1993    assert(false && "Improper third standard conversion");
1994    break;
1995  }
1996
1997  return false;
1998}
1999
2000ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2001                                     SourceLocation KWLoc,
2002                                     ParsedType Ty,
2003                                     SourceLocation RParen) {
2004  TypeSourceInfo *TSInfo;
2005  QualType T = GetTypeFromParser(Ty, &TSInfo);
2006
2007  if (!TSInfo)
2008    TSInfo = Context.getTrivialTypeSourceInfo(T);
2009  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2010}
2011
2012static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT, QualType T,
2013                                   SourceLocation KeyLoc) {
2014  assert(!T->isDependentType() &&
2015         "Cannot evaluate traits for dependent types.");
2016  ASTContext &C = Self.Context;
2017  switch(UTT) {
2018  default: assert(false && "Unknown type trait or not implemented");
2019  case UTT_IsPOD: return T->isPODType();
2020  case UTT_IsLiteral: return T->isLiteralType();
2021  case UTT_IsClass: // Fallthrough
2022  case UTT_IsUnion:
2023    if (const RecordType *Record = T->getAs<RecordType>()) {
2024      bool Union = Record->getDecl()->isUnion();
2025      return UTT == UTT_IsUnion ? Union : !Union;
2026    }
2027    return false;
2028  case UTT_IsEnum: return T->isEnumeralType();
2029  case UTT_IsPolymorphic:
2030    if (const RecordType *Record = T->getAs<RecordType>()) {
2031      // Type traits are only parsed in C++, so we've got CXXRecords.
2032      return cast<CXXRecordDecl>(Record->getDecl())->isPolymorphic();
2033    }
2034    return false;
2035  case UTT_IsAbstract:
2036    if (const RecordType *RT = T->getAs<RecordType>())
2037      return cast<CXXRecordDecl>(RT->getDecl())->isAbstract();
2038    return false;
2039  case UTT_IsEmpty:
2040    if (const RecordType *Record = T->getAs<RecordType>()) {
2041      return !Record->getDecl()->isUnion()
2042          && cast<CXXRecordDecl>(Record->getDecl())->isEmpty();
2043    }
2044    return false;
2045  case UTT_HasTrivialConstructor:
2046    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2047    //   If __is_pod (type) is true then the trait is true, else if type is
2048    //   a cv class or union type (or array thereof) with a trivial default
2049    //   constructor ([class.ctor]) then the trait is true, else it is false.
2050    if (T->isPODType())
2051      return true;
2052    if (const RecordType *RT =
2053          C.getBaseElementType(T)->getAs<RecordType>())
2054      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialConstructor();
2055    return false;
2056  case UTT_HasTrivialCopy:
2057    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2058    //   If __is_pod (type) is true or type is a reference type then
2059    //   the trait is true, else if type is a cv class or union type
2060    //   with a trivial copy constructor ([class.copy]) then the trait
2061    //   is true, else it is false.
2062    if (T->isPODType() || T->isReferenceType())
2063      return true;
2064    if (const RecordType *RT = T->getAs<RecordType>())
2065      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
2066    return false;
2067  case UTT_HasTrivialAssign:
2068    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2069    //   If type is const qualified or is a reference type then the
2070    //   trait is false. Otherwise if __is_pod (type) is true then the
2071    //   trait is true, else if type is a cv class or union type with
2072    //   a trivial copy assignment ([class.copy]) then the trait is
2073    //   true, else it is false.
2074    // Note: the const and reference restrictions are interesting,
2075    // given that const and reference members don't prevent a class
2076    // from having a trivial copy assignment operator (but do cause
2077    // errors if the copy assignment operator is actually used, q.v.
2078    // [class.copy]p12).
2079
2080    if (C.getBaseElementType(T).isConstQualified())
2081      return false;
2082    if (T->isPODType())
2083      return true;
2084    if (const RecordType *RT = T->getAs<RecordType>())
2085      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
2086    return false;
2087  case UTT_HasTrivialDestructor:
2088    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2089    //   If __is_pod (type) is true or type is a reference type
2090    //   then the trait is true, else if type is a cv class or union
2091    //   type (or array thereof) with a trivial destructor
2092    //   ([class.dtor]) then the trait is true, else it is
2093    //   false.
2094    if (T->isPODType() || T->isReferenceType())
2095      return true;
2096    if (const RecordType *RT =
2097          C.getBaseElementType(T)->getAs<RecordType>())
2098      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
2099    return false;
2100  // TODO: Propagate nothrowness for implicitly declared special members.
2101  case UTT_HasNothrowAssign:
2102    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2103    //   If type is const qualified or is a reference type then the
2104    //   trait is false. Otherwise if __has_trivial_assign (type)
2105    //   is true then the trait is true, else if type is a cv class
2106    //   or union type with copy assignment operators that are known
2107    //   not to throw an exception then the trait is true, else it is
2108    //   false.
2109    if (C.getBaseElementType(T).isConstQualified())
2110      return false;
2111    if (T->isReferenceType())
2112      return false;
2113    if (T->isPODType())
2114      return true;
2115    if (const RecordType *RT = T->getAs<RecordType>()) {
2116      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
2117      if (RD->hasTrivialCopyAssignment())
2118        return true;
2119
2120      bool FoundAssign = false;
2121      bool AllNoThrow = true;
2122      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
2123      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
2124                       Sema::LookupOrdinaryName);
2125      if (Self.LookupQualifiedName(Res, RD)) {
2126        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
2127             Op != OpEnd; ++Op) {
2128          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
2129          if (Operator->isCopyAssignmentOperator()) {
2130            FoundAssign = true;
2131            const FunctionProtoType *CPT
2132                = Operator->getType()->getAs<FunctionProtoType>();
2133            if (!CPT->hasEmptyExceptionSpec()) {
2134              AllNoThrow = false;
2135              break;
2136            }
2137          }
2138        }
2139      }
2140
2141      return FoundAssign && AllNoThrow;
2142    }
2143    return false;
2144  case UTT_HasNothrowCopy:
2145    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2146    //   If __has_trivial_copy (type) is true then the trait is true, else
2147    //   if type is a cv class or union type with copy constructors that are
2148    //   known not to throw an exception then the trait is true, else it is
2149    //   false.
2150    if (T->isPODType() || T->isReferenceType())
2151      return true;
2152    if (const RecordType *RT = T->getAs<RecordType>()) {
2153      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2154      if (RD->hasTrivialCopyConstructor())
2155        return true;
2156
2157      bool FoundConstructor = false;
2158      bool AllNoThrow = true;
2159      unsigned FoundTQs;
2160      DeclContext::lookup_const_iterator Con, ConEnd;
2161      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2162           Con != ConEnd; ++Con) {
2163        // A template constructor is never a copy constructor.
2164        // FIXME: However, it may actually be selected at the actual overload
2165        // resolution point.
2166        if (isa<FunctionTemplateDecl>(*Con))
2167          continue;
2168        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2169        if (Constructor->isCopyConstructor(FoundTQs)) {
2170          FoundConstructor = true;
2171          const FunctionProtoType *CPT
2172              = Constructor->getType()->getAs<FunctionProtoType>();
2173          // TODO: check whether evaluating default arguments can throw.
2174          // For now, we'll be conservative and assume that they can throw.
2175          if (!CPT->hasEmptyExceptionSpec() || CPT->getNumArgs() > 1) {
2176            AllNoThrow = false;
2177            break;
2178          }
2179        }
2180      }
2181
2182      return FoundConstructor && AllNoThrow;
2183    }
2184    return false;
2185  case UTT_HasNothrowConstructor:
2186    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2187    //   If __has_trivial_constructor (type) is true then the trait is
2188    //   true, else if type is a cv class or union type (or array
2189    //   thereof) with a default constructor that is known not to
2190    //   throw an exception then the trait is true, else it is false.
2191    if (T->isPODType())
2192      return true;
2193    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
2194      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2195      if (RD->hasTrivialConstructor())
2196        return true;
2197
2198      DeclContext::lookup_const_iterator Con, ConEnd;
2199      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
2200           Con != ConEnd; ++Con) {
2201        // FIXME: In C++0x, a constructor template can be a default constructor.
2202        if (isa<FunctionTemplateDecl>(*Con))
2203          continue;
2204        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
2205        if (Constructor->isDefaultConstructor()) {
2206          const FunctionProtoType *CPT
2207              = Constructor->getType()->getAs<FunctionProtoType>();
2208          // TODO: check whether evaluating default arguments can throw.
2209          // For now, we'll be conservative and assume that they can throw.
2210          return CPT->hasEmptyExceptionSpec() && CPT->getNumArgs() == 0;
2211        }
2212      }
2213    }
2214    return false;
2215  case UTT_HasVirtualDestructor:
2216    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
2217    //   If type is a class type with a virtual destructor ([class.dtor])
2218    //   then the trait is true, else it is false.
2219    if (const RecordType *Record = T->getAs<RecordType>()) {
2220      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2221      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
2222        return Destructor->isVirtual();
2223    }
2224    return false;
2225  }
2226}
2227
2228ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
2229                                     SourceLocation KWLoc,
2230                                     TypeSourceInfo *TSInfo,
2231                                     SourceLocation RParen) {
2232  QualType T = TSInfo->getType();
2233
2234  // According to http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html
2235  // all traits except __is_class, __is_enum and __is_union require a the type
2236  // to be complete, an array of unknown bound, or void.
2237  if (UTT != UTT_IsClass && UTT != UTT_IsEnum && UTT != UTT_IsUnion) {
2238    QualType E = T;
2239    if (T->isIncompleteArrayType())
2240      E = Context.getAsArrayType(T)->getElementType();
2241    if (!T->isVoidType() &&
2242        RequireCompleteType(KWLoc, E,
2243                            diag::err_incomplete_type_used_in_type_trait_expr))
2244      return ExprError();
2245  }
2246
2247  bool Value = false;
2248  if (!T->isDependentType())
2249    Value = EvaluateUnaryTypeTrait(*this, UTT, T, KWLoc);
2250
2251  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
2252                                                RParen, Context.BoolTy));
2253}
2254
2255QualType Sema::CheckPointerToMemberOperands(
2256  Expr *&lex, Expr *&rex, SourceLocation Loc, bool isIndirect) {
2257  const char *OpSpelling = isIndirect ? "->*" : ".*";
2258  // C++ 5.5p2
2259  //   The binary operator .* [p3: ->*] binds its second operand, which shall
2260  //   be of type "pointer to member of T" (where T is a completely-defined
2261  //   class type) [...]
2262  QualType RType = rex->getType();
2263  const MemberPointerType *MemPtr = RType->getAs<MemberPointerType>();
2264  if (!MemPtr) {
2265    Diag(Loc, diag::err_bad_memptr_rhs)
2266      << OpSpelling << RType << rex->getSourceRange();
2267    return QualType();
2268  }
2269
2270  QualType Class(MemPtr->getClass(), 0);
2271
2272  if (RequireCompleteType(Loc, Class, diag::err_memptr_rhs_to_incomplete))
2273    return QualType();
2274
2275  // C++ 5.5p2
2276  //   [...] to its first operand, which shall be of class T or of a class of
2277  //   which T is an unambiguous and accessible base class. [p3: a pointer to
2278  //   such a class]
2279  QualType LType = lex->getType();
2280  if (isIndirect) {
2281    if (const PointerType *Ptr = LType->getAs<PointerType>())
2282      LType = Ptr->getPointeeType().getNonReferenceType();
2283    else {
2284      Diag(Loc, diag::err_bad_memptr_lhs)
2285        << OpSpelling << 1 << LType
2286        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
2287      return QualType();
2288    }
2289  }
2290
2291  if (!Context.hasSameUnqualifiedType(Class, LType)) {
2292    // If we want to check the hierarchy, we need a complete type.
2293    if (RequireCompleteType(Loc, LType, PDiag(diag::err_bad_memptr_lhs)
2294        << OpSpelling << (int)isIndirect)) {
2295      return QualType();
2296    }
2297    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2298                       /*DetectVirtual=*/false);
2299    // FIXME: Would it be useful to print full ambiguity paths, or is that
2300    // overkill?
2301    if (!IsDerivedFrom(LType, Class, Paths) ||
2302        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
2303      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
2304        << (int)isIndirect << lex->getType();
2305      return QualType();
2306    }
2307    // Cast LHS to type of use.
2308    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
2309    ExprValueKind VK =
2310        isIndirect ? VK_RValue : CastCategory(lex);
2311
2312    CXXCastPath BasePath;
2313    BuildBasePathArray(Paths, BasePath);
2314    ImpCastExprToType(lex, UseType, CK_DerivedToBase, VK, &BasePath);
2315  }
2316
2317  if (isa<CXXScalarValueInitExpr>(rex->IgnoreParens())) {
2318    // Diagnose use of pointer-to-member type which when used as
2319    // the functional cast in a pointer-to-member expression.
2320    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
2321     return QualType();
2322  }
2323  // C++ 5.5p2
2324  //   The result is an object or a function of the type specified by the
2325  //   second operand.
2326  // The cv qualifiers are the union of those in the pointer and the left side,
2327  // in accordance with 5.5p5 and 5.2.5.
2328  // FIXME: This returns a dereferenced member function pointer as a normal
2329  // function type. However, the only operation valid on such functions is
2330  // calling them. There's also a GCC extension to get a function pointer to the
2331  // thing, which is another complication, because this type - unlike the type
2332  // that is the result of this expression - takes the class as the first
2333  // argument.
2334  // We probably need a "MemberFunctionClosureType" or something like that.
2335  QualType Result = MemPtr->getPointeeType();
2336  Result = Context.getCVRQualifiedType(Result, LType.getCVRQualifiers());
2337  return Result;
2338}
2339
2340/// \brief Try to convert a type to another according to C++0x 5.16p3.
2341///
2342/// This is part of the parameter validation for the ? operator. If either
2343/// value operand is a class type, the two operands are attempted to be
2344/// converted to each other. This function does the conversion in one direction.
2345/// It returns true if the program is ill-formed and has already been diagnosed
2346/// as such.
2347static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
2348                                SourceLocation QuestionLoc,
2349                                bool &HaveConversion,
2350                                QualType &ToType) {
2351  HaveConversion = false;
2352  ToType = To->getType();
2353
2354  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
2355                                                           SourceLocation());
2356  // C++0x 5.16p3
2357  //   The process for determining whether an operand expression E1 of type T1
2358  //   can be converted to match an operand expression E2 of type T2 is defined
2359  //   as follows:
2360  //   -- If E2 is an lvalue:
2361  bool ToIsLvalue = (To->isLvalue(Self.Context) == Expr::LV_Valid);
2362  if (ToIsLvalue) {
2363    //   E1 can be converted to match E2 if E1 can be implicitly converted to
2364    //   type "lvalue reference to T2", subject to the constraint that in the
2365    //   conversion the reference must bind directly to E1.
2366    QualType T = Self.Context.getLValueReferenceType(ToType);
2367    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2368
2369    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2370    if (InitSeq.isDirectReferenceBinding()) {
2371      ToType = T;
2372      HaveConversion = true;
2373      return false;
2374    }
2375
2376    if (InitSeq.isAmbiguous())
2377      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2378  }
2379
2380  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
2381  //      -- if E1 and E2 have class type, and the underlying class types are
2382  //         the same or one is a base class of the other:
2383  QualType FTy = From->getType();
2384  QualType TTy = To->getType();
2385  const RecordType *FRec = FTy->getAs<RecordType>();
2386  const RecordType *TRec = TTy->getAs<RecordType>();
2387  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
2388                       Self.IsDerivedFrom(FTy, TTy);
2389  if (FRec && TRec &&
2390      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
2391    //         E1 can be converted to match E2 if the class of T2 is the
2392    //         same type as, or a base class of, the class of T1, and
2393    //         [cv2 > cv1].
2394    if (FRec == TRec || FDerivedFromT) {
2395      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
2396        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2397        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2398        if (InitSeq.getKind() != InitializationSequence::FailedSequence) {
2399          HaveConversion = true;
2400          return false;
2401        }
2402
2403        if (InitSeq.isAmbiguous())
2404          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2405      }
2406    }
2407
2408    return false;
2409  }
2410
2411  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
2412  //        implicitly converted to the type that expression E2 would have
2413  //        if E2 were converted to an rvalue (or the type it has, if E2 is
2414  //        an rvalue).
2415  //
2416  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
2417  // to the array-to-pointer or function-to-pointer conversions.
2418  if (!TTy->getAs<TagType>())
2419    TTy = TTy.getUnqualifiedType();
2420
2421  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
2422  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
2423  HaveConversion = InitSeq.getKind() != InitializationSequence::FailedSequence;
2424  ToType = TTy;
2425  if (InitSeq.isAmbiguous())
2426    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
2427
2428  return false;
2429}
2430
2431/// \brief Try to find a common type for two according to C++0x 5.16p5.
2432///
2433/// This is part of the parameter validation for the ? operator. If either
2434/// value operand is a class type, overload resolution is used to find a
2435/// conversion to a common type.
2436static bool FindConditionalOverload(Sema &Self, Expr *&LHS, Expr *&RHS,
2437                                    SourceLocation Loc) {
2438  Expr *Args[2] = { LHS, RHS };
2439  OverloadCandidateSet CandidateSet(Loc);
2440  Self.AddBuiltinOperatorCandidates(OO_Conditional, Loc, Args, 2, CandidateSet);
2441
2442  OverloadCandidateSet::iterator Best;
2443  switch (CandidateSet.BestViableFunction(Self, Loc, Best)) {
2444    case OR_Success:
2445      // We found a match. Perform the conversions on the arguments and move on.
2446      if (Self.PerformImplicitConversion(LHS, Best->BuiltinTypes.ParamTypes[0],
2447                                         Best->Conversions[0], Sema::AA_Converting) ||
2448          Self.PerformImplicitConversion(RHS, Best->BuiltinTypes.ParamTypes[1],
2449                                         Best->Conversions[1], Sema::AA_Converting))
2450        break;
2451      return false;
2452
2453    case OR_No_Viable_Function:
2454      Self.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
2455        << LHS->getType() << RHS->getType()
2456        << LHS->getSourceRange() << RHS->getSourceRange();
2457      return true;
2458
2459    case OR_Ambiguous:
2460      Self.Diag(Loc, diag::err_conditional_ambiguous_ovl)
2461        << LHS->getType() << RHS->getType()
2462        << LHS->getSourceRange() << RHS->getSourceRange();
2463      // FIXME: Print the possible common types by printing the return types of
2464      // the viable candidates.
2465      break;
2466
2467    case OR_Deleted:
2468      assert(false && "Conditional operator has only built-in overloads");
2469      break;
2470  }
2471  return true;
2472}
2473
2474/// \brief Perform an "extended" implicit conversion as returned by
2475/// TryClassUnification.
2476static bool ConvertForConditional(Sema &Self, Expr *&E, QualType T) {
2477  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
2478  InitializationKind Kind = InitializationKind::CreateCopy(E->getLocStart(),
2479                                                           SourceLocation());
2480  InitializationSequence InitSeq(Self, Entity, Kind, &E, 1);
2481  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&E, 1));
2482  if (Result.isInvalid())
2483    return true;
2484
2485  E = Result.takeAs<Expr>();
2486  return false;
2487}
2488
2489/// \brief Check the operands of ?: under C++ semantics.
2490///
2491/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
2492/// extension. In this case, LHS == Cond. (But they're not aliases.)
2493QualType Sema::CXXCheckConditionalOperands(Expr *&Cond, Expr *&LHS, Expr *&RHS,
2494                                           Expr *&SAVE,
2495                                           SourceLocation QuestionLoc) {
2496  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
2497  // interface pointers.
2498
2499  // C++0x 5.16p1
2500  //   The first expression is contextually converted to bool.
2501  if (!Cond->isTypeDependent()) {
2502    if (SAVE && Cond->getType()->isArrayType()) {
2503      QualType CondTy = Cond->getType();
2504      CondTy = Context.getArrayDecayedType(CondTy);
2505      ImpCastExprToType(Cond, CondTy, CK_ArrayToPointerDecay);
2506      SAVE = LHS = Cond;
2507    }
2508    if (CheckCXXBooleanCondition(Cond))
2509      return QualType();
2510  }
2511
2512  // Either of the arguments dependent?
2513  if (LHS->isTypeDependent() || RHS->isTypeDependent())
2514    return Context.DependentTy;
2515
2516  // C++0x 5.16p2
2517  //   If either the second or the third operand has type (cv) void, ...
2518  QualType LTy = LHS->getType();
2519  QualType RTy = RHS->getType();
2520  bool LVoid = LTy->isVoidType();
2521  bool RVoid = RTy->isVoidType();
2522  if (LVoid || RVoid) {
2523    //   ... then the [l2r] conversions are performed on the second and third
2524    //   operands ...
2525    DefaultFunctionArrayLvalueConversion(LHS);
2526    DefaultFunctionArrayLvalueConversion(RHS);
2527    LTy = LHS->getType();
2528    RTy = RHS->getType();
2529
2530    //   ... and one of the following shall hold:
2531    //   -- The second or the third operand (but not both) is a throw-
2532    //      expression; the result is of the type of the other and is an rvalue.
2533    bool LThrow = isa<CXXThrowExpr>(LHS);
2534    bool RThrow = isa<CXXThrowExpr>(RHS);
2535    if (LThrow && !RThrow)
2536      return RTy;
2537    if (RThrow && !LThrow)
2538      return LTy;
2539
2540    //   -- Both the second and third operands have type void; the result is of
2541    //      type void and is an rvalue.
2542    if (LVoid && RVoid)
2543      return Context.VoidTy;
2544
2545    // Neither holds, error.
2546    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
2547      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
2548      << LHS->getSourceRange() << RHS->getSourceRange();
2549    return QualType();
2550  }
2551
2552  // Neither is void.
2553
2554  // C++0x 5.16p3
2555  //   Otherwise, if the second and third operand have different types, and
2556  //   either has (cv) class type, and attempt is made to convert each of those
2557  //   operands to the other.
2558  if (!Context.hasSameType(LTy, RTy) &&
2559      (LTy->isRecordType() || RTy->isRecordType())) {
2560    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
2561    // These return true if a single direction is already ambiguous.
2562    QualType L2RType, R2LType;
2563    bool HaveL2R, HaveR2L;
2564    if (TryClassUnification(*this, LHS, RHS, QuestionLoc, HaveL2R, L2RType))
2565      return QualType();
2566    if (TryClassUnification(*this, RHS, LHS, QuestionLoc, HaveR2L, R2LType))
2567      return QualType();
2568
2569    //   If both can be converted, [...] the program is ill-formed.
2570    if (HaveL2R && HaveR2L) {
2571      Diag(QuestionLoc, diag::err_conditional_ambiguous)
2572        << LTy << RTy << LHS->getSourceRange() << RHS->getSourceRange();
2573      return QualType();
2574    }
2575
2576    //   If exactly one conversion is possible, that conversion is applied to
2577    //   the chosen operand and the converted operands are used in place of the
2578    //   original operands for the remainder of this section.
2579    if (HaveL2R) {
2580      if (ConvertForConditional(*this, LHS, L2RType))
2581        return QualType();
2582      LTy = LHS->getType();
2583    } else if (HaveR2L) {
2584      if (ConvertForConditional(*this, RHS, R2LType))
2585        return QualType();
2586      RTy = RHS->getType();
2587    }
2588  }
2589
2590  // C++0x 5.16p4
2591  //   If the second and third operands are lvalues and have the same type,
2592  //   the result is of that type [...]
2593  bool Same = Context.hasSameType(LTy, RTy);
2594  if (Same && LHS->isLvalue(Context) == Expr::LV_Valid &&
2595      RHS->isLvalue(Context) == Expr::LV_Valid) {
2596    // In this context, property reference is really a message call and
2597    // is not considered an l-value.
2598    bool lhsProperty = (isa<ObjCPropertyRefExpr>(LHS) ||
2599                        isa<ObjCImplicitSetterGetterRefExpr>(LHS));
2600    bool rhsProperty = (isa<ObjCPropertyRefExpr>(RHS) ||
2601                        isa<ObjCImplicitSetterGetterRefExpr>(RHS));
2602    if (!lhsProperty && !rhsProperty)
2603      return LTy;
2604  }
2605
2606  // C++0x 5.16p5
2607  //   Otherwise, the result is an rvalue. If the second and third operands
2608  //   do not have the same type, and either has (cv) class type, ...
2609  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
2610    //   ... overload resolution is used to determine the conversions (if any)
2611    //   to be applied to the operands. If the overload resolution fails, the
2612    //   program is ill-formed.
2613    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
2614      return QualType();
2615  }
2616
2617  // C++0x 5.16p6
2618  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
2619  //   conversions are performed on the second and third operands.
2620  DefaultFunctionArrayLvalueConversion(LHS);
2621  DefaultFunctionArrayLvalueConversion(RHS);
2622  LTy = LHS->getType();
2623  RTy = RHS->getType();
2624
2625  //   After those conversions, one of the following shall hold:
2626  //   -- The second and third operands have the same type; the result
2627  //      is of that type. If the operands have class type, the result
2628  //      is a prvalue temporary of the result type, which is
2629  //      copy-initialized from either the second operand or the third
2630  //      operand depending on the value of the first operand.
2631  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
2632    if (LTy->isRecordType()) {
2633      // The operands have class type. Make a temporary copy.
2634      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
2635      ExprResult LHSCopy = PerformCopyInitialization(Entity,
2636                                                           SourceLocation(),
2637                                                           Owned(LHS));
2638      if (LHSCopy.isInvalid())
2639        return QualType();
2640
2641      ExprResult RHSCopy = PerformCopyInitialization(Entity,
2642                                                           SourceLocation(),
2643                                                           Owned(RHS));
2644      if (RHSCopy.isInvalid())
2645        return QualType();
2646
2647      LHS = LHSCopy.takeAs<Expr>();
2648      RHS = RHSCopy.takeAs<Expr>();
2649    }
2650
2651    return LTy;
2652  }
2653
2654  // Extension: conditional operator involving vector types.
2655  if (LTy->isVectorType() || RTy->isVectorType())
2656    return CheckVectorOperands(QuestionLoc, LHS, RHS);
2657
2658  //   -- The second and third operands have arithmetic or enumeration type;
2659  //      the usual arithmetic conversions are performed to bring them to a
2660  //      common type, and the result is of that type.
2661  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
2662    UsualArithmeticConversions(LHS, RHS);
2663    return LHS->getType();
2664  }
2665
2666  //   -- The second and third operands have pointer type, or one has pointer
2667  //      type and the other is a null pointer constant; pointer conversions
2668  //      and qualification conversions are performed to bring them to their
2669  //      composite pointer type. The result is of the composite pointer type.
2670  //   -- The second and third operands have pointer to member type, or one has
2671  //      pointer to member type and the other is a null pointer constant;
2672  //      pointer to member conversions and qualification conversions are
2673  //      performed to bring them to a common type, whose cv-qualification
2674  //      shall match the cv-qualification of either the second or the third
2675  //      operand. The result is of the common type.
2676  bool NonStandardCompositeType = false;
2677  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
2678                              isSFINAEContext()? 0 : &NonStandardCompositeType);
2679  if (!Composite.isNull()) {
2680    if (NonStandardCompositeType)
2681      Diag(QuestionLoc,
2682           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
2683        << LTy << RTy << Composite
2684        << LHS->getSourceRange() << RHS->getSourceRange();
2685
2686    return Composite;
2687  }
2688
2689  // Similarly, attempt to find composite type of two objective-c pointers.
2690  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
2691  if (!Composite.isNull())
2692    return Composite;
2693
2694  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
2695    << LHS->getType() << RHS->getType()
2696    << LHS->getSourceRange() << RHS->getSourceRange();
2697  return QualType();
2698}
2699
2700/// \brief Find a merged pointer type and convert the two expressions to it.
2701///
2702/// This finds the composite pointer type (or member pointer type) for @p E1
2703/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
2704/// type and returns it.
2705/// It does not emit diagnostics.
2706///
2707/// \param Loc The location of the operator requiring these two expressions to
2708/// be converted to the composite pointer type.
2709///
2710/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
2711/// a non-standard (but still sane) composite type to which both expressions
2712/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
2713/// will be set true.
2714QualType Sema::FindCompositePointerType(SourceLocation Loc,
2715                                        Expr *&E1, Expr *&E2,
2716                                        bool *NonStandardCompositeType) {
2717  if (NonStandardCompositeType)
2718    *NonStandardCompositeType = false;
2719
2720  assert(getLangOptions().CPlusPlus && "This function assumes C++");
2721  QualType T1 = E1->getType(), T2 = E2->getType();
2722
2723  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
2724      !T2->isAnyPointerType() && !T2->isMemberPointerType())
2725   return QualType();
2726
2727  // C++0x 5.9p2
2728  //   Pointer conversions and qualification conversions are performed on
2729  //   pointer operands to bring them to their composite pointer type. If
2730  //   one operand is a null pointer constant, the composite pointer type is
2731  //   the type of the other operand.
2732  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
2733    if (T2->isMemberPointerType())
2734      ImpCastExprToType(E1, T2, CK_NullToMemberPointer);
2735    else
2736      ImpCastExprToType(E1, T2, CK_IntegralToPointer);
2737    return T2;
2738  }
2739  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
2740    if (T1->isMemberPointerType())
2741      ImpCastExprToType(E2, T1, CK_NullToMemberPointer);
2742    else
2743      ImpCastExprToType(E2, T1, CK_IntegralToPointer);
2744    return T1;
2745  }
2746
2747  // Now both have to be pointers or member pointers.
2748  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
2749      (!T2->isPointerType() && !T2->isMemberPointerType()))
2750    return QualType();
2751
2752  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
2753  //   the other has type "pointer to cv2 T" and the composite pointer type is
2754  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
2755  //   Otherwise, the composite pointer type is a pointer type similar to the
2756  //   type of one of the operands, with a cv-qualification signature that is
2757  //   the union of the cv-qualification signatures of the operand types.
2758  // In practice, the first part here is redundant; it's subsumed by the second.
2759  // What we do here is, we build the two possible composite types, and try the
2760  // conversions in both directions. If only one works, or if the two composite
2761  // types are the same, we have succeeded.
2762  // FIXME: extended qualifiers?
2763  typedef llvm::SmallVector<unsigned, 4> QualifierVector;
2764  QualifierVector QualifierUnion;
2765  typedef llvm::SmallVector<std::pair<const Type *, const Type *>, 4>
2766      ContainingClassVector;
2767  ContainingClassVector MemberOfClass;
2768  QualType Composite1 = Context.getCanonicalType(T1),
2769           Composite2 = Context.getCanonicalType(T2);
2770  unsigned NeedConstBefore = 0;
2771  do {
2772    const PointerType *Ptr1, *Ptr2;
2773    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
2774        (Ptr2 = Composite2->getAs<PointerType>())) {
2775      Composite1 = Ptr1->getPointeeType();
2776      Composite2 = Ptr2->getPointeeType();
2777
2778      // If we're allowed to create a non-standard composite type, keep track
2779      // of where we need to fill in additional 'const' qualifiers.
2780      if (NonStandardCompositeType &&
2781          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
2782        NeedConstBefore = QualifierUnion.size();
2783
2784      QualifierUnion.push_back(
2785                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
2786      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
2787      continue;
2788    }
2789
2790    const MemberPointerType *MemPtr1, *MemPtr2;
2791    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
2792        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
2793      Composite1 = MemPtr1->getPointeeType();
2794      Composite2 = MemPtr2->getPointeeType();
2795
2796      // If we're allowed to create a non-standard composite type, keep track
2797      // of where we need to fill in additional 'const' qualifiers.
2798      if (NonStandardCompositeType &&
2799          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
2800        NeedConstBefore = QualifierUnion.size();
2801
2802      QualifierUnion.push_back(
2803                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
2804      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
2805                                             MemPtr2->getClass()));
2806      continue;
2807    }
2808
2809    // FIXME: block pointer types?
2810
2811    // Cannot unwrap any more types.
2812    break;
2813  } while (true);
2814
2815  if (NeedConstBefore && NonStandardCompositeType) {
2816    // Extension: Add 'const' to qualifiers that come before the first qualifier
2817    // mismatch, so that our (non-standard!) composite type meets the
2818    // requirements of C++ [conv.qual]p4 bullet 3.
2819    for (unsigned I = 0; I != NeedConstBefore; ++I) {
2820      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
2821        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
2822        *NonStandardCompositeType = true;
2823      }
2824    }
2825  }
2826
2827  // Rewrap the composites as pointers or member pointers with the union CVRs.
2828  ContainingClassVector::reverse_iterator MOC
2829    = MemberOfClass.rbegin();
2830  for (QualifierVector::reverse_iterator
2831         I = QualifierUnion.rbegin(),
2832         E = QualifierUnion.rend();
2833       I != E; (void)++I, ++MOC) {
2834    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
2835    if (MOC->first && MOC->second) {
2836      // Rebuild member pointer type
2837      Composite1 = Context.getMemberPointerType(
2838                                    Context.getQualifiedType(Composite1, Quals),
2839                                    MOC->first);
2840      Composite2 = Context.getMemberPointerType(
2841                                    Context.getQualifiedType(Composite2, Quals),
2842                                    MOC->second);
2843    } else {
2844      // Rebuild pointer type
2845      Composite1
2846        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
2847      Composite2
2848        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
2849    }
2850  }
2851
2852  // Try to convert to the first composite pointer type.
2853  InitializedEntity Entity1
2854    = InitializedEntity::InitializeTemporary(Composite1);
2855  InitializationKind Kind
2856    = InitializationKind::CreateCopy(Loc, SourceLocation());
2857  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
2858  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
2859
2860  if (E1ToC1 && E2ToC1) {
2861    // Conversion to Composite1 is viable.
2862    if (!Context.hasSameType(Composite1, Composite2)) {
2863      // Composite2 is a different type from Composite1. Check whether
2864      // Composite2 is also viable.
2865      InitializedEntity Entity2
2866        = InitializedEntity::InitializeTemporary(Composite2);
2867      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
2868      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
2869      if (E1ToC2 && E2ToC2) {
2870        // Both Composite1 and Composite2 are viable and are different;
2871        // this is an ambiguity.
2872        return QualType();
2873      }
2874    }
2875
2876    // Convert E1 to Composite1
2877    ExprResult E1Result
2878      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
2879    if (E1Result.isInvalid())
2880      return QualType();
2881    E1 = E1Result.takeAs<Expr>();
2882
2883    // Convert E2 to Composite1
2884    ExprResult E2Result
2885      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
2886    if (E2Result.isInvalid())
2887      return QualType();
2888    E2 = E2Result.takeAs<Expr>();
2889
2890    return Composite1;
2891  }
2892
2893  // Check whether Composite2 is viable.
2894  InitializedEntity Entity2
2895    = InitializedEntity::InitializeTemporary(Composite2);
2896  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
2897  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
2898  if (!E1ToC2 || !E2ToC2)
2899    return QualType();
2900
2901  // Convert E1 to Composite2
2902  ExprResult E1Result
2903    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
2904  if (E1Result.isInvalid())
2905    return QualType();
2906  E1 = E1Result.takeAs<Expr>();
2907
2908  // Convert E2 to Composite2
2909  ExprResult E2Result
2910    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
2911  if (E2Result.isInvalid())
2912    return QualType();
2913  E2 = E2Result.takeAs<Expr>();
2914
2915  return Composite2;
2916}
2917
2918ExprResult Sema::MaybeBindToTemporary(Expr *E) {
2919  if (!Context.getLangOptions().CPlusPlus)
2920    return Owned(E);
2921
2922  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
2923
2924  const RecordType *RT = E->getType()->getAs<RecordType>();
2925  if (!RT)
2926    return Owned(E);
2927
2928  // If this is the result of a call or an Objective-C message send expression,
2929  // our source might actually be a reference, in which case we shouldn't bind.
2930  if (CallExpr *CE = dyn_cast<CallExpr>(E)) {
2931    if (CE->getCallReturnType()->isReferenceType())
2932      return Owned(E);
2933  } else if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
2934    if (const ObjCMethodDecl *MD = ME->getMethodDecl()) {
2935      if (MD->getResultType()->isReferenceType())
2936        return Owned(E);
2937    }
2938  }
2939
2940  // That should be enough to guarantee that this type is complete.
2941  // If it has a trivial destructor, we can avoid the extra copy.
2942  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
2943  if (RD->isInvalidDecl() || RD->hasTrivialDestructor())
2944    return Owned(E);
2945
2946  CXXTemporary *Temp = CXXTemporary::Create(Context, LookupDestructor(RD));
2947  ExprTemporaries.push_back(Temp);
2948  if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
2949    MarkDeclarationReferenced(E->getExprLoc(), Destructor);
2950    CheckDestructorAccess(E->getExprLoc(), Destructor,
2951                          PDiag(diag::err_access_dtor_temp)
2952                            << E->getType());
2953  }
2954  // FIXME: Add the temporary to the temporaries vector.
2955  return Owned(CXXBindTemporaryExpr::Create(Context, Temp, E));
2956}
2957
2958Expr *Sema::MaybeCreateCXXExprWithTemporaries(Expr *SubExpr) {
2959  assert(SubExpr && "sub expression can't be null!");
2960
2961  // Check any implicit conversions within the expression.
2962  CheckImplicitConversions(SubExpr);
2963
2964  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
2965  assert(ExprTemporaries.size() >= FirstTemporary);
2966  if (ExprTemporaries.size() == FirstTemporary)
2967    return SubExpr;
2968
2969  Expr *E = CXXExprWithTemporaries::Create(Context, SubExpr,
2970                                           &ExprTemporaries[FirstTemporary],
2971                                       ExprTemporaries.size() - FirstTemporary);
2972  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
2973                        ExprTemporaries.end());
2974
2975  return E;
2976}
2977
2978ExprResult
2979Sema::MaybeCreateCXXExprWithTemporaries(ExprResult SubExpr) {
2980  if (SubExpr.isInvalid())
2981    return ExprError();
2982
2983  return Owned(MaybeCreateCXXExprWithTemporaries(SubExpr.takeAs<Expr>()));
2984}
2985
2986FullExpr Sema::CreateFullExpr(Expr *SubExpr) {
2987  unsigned FirstTemporary = ExprEvalContexts.back().NumTemporaries;
2988  assert(ExprTemporaries.size() >= FirstTemporary);
2989
2990  unsigned NumTemporaries = ExprTemporaries.size() - FirstTemporary;
2991  CXXTemporary **Temporaries =
2992    NumTemporaries == 0 ? 0 : &ExprTemporaries[FirstTemporary];
2993
2994  FullExpr E = FullExpr::Create(Context, SubExpr, Temporaries, NumTemporaries);
2995
2996  ExprTemporaries.erase(ExprTemporaries.begin() + FirstTemporary,
2997                        ExprTemporaries.end());
2998
2999  return E;
3000}
3001
3002ExprResult
3003Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
3004                                   tok::TokenKind OpKind, ParsedType &ObjectType,
3005                                   bool &MayBePseudoDestructor) {
3006  // Since this might be a postfix expression, get rid of ParenListExprs.
3007  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
3008  if (Result.isInvalid()) return ExprError();
3009  Base = Result.get();
3010
3011  QualType BaseType = Base->getType();
3012  MayBePseudoDestructor = false;
3013  if (BaseType->isDependentType()) {
3014    // If we have a pointer to a dependent type and are using the -> operator,
3015    // the object type is the type that the pointer points to. We might still
3016    // have enough information about that type to do something useful.
3017    if (OpKind == tok::arrow)
3018      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
3019        BaseType = Ptr->getPointeeType();
3020
3021    ObjectType = ParsedType::make(BaseType);
3022    MayBePseudoDestructor = true;
3023    return Owned(Base);
3024  }
3025
3026  // C++ [over.match.oper]p8:
3027  //   [...] When operator->returns, the operator-> is applied  to the value
3028  //   returned, with the original second operand.
3029  if (OpKind == tok::arrow) {
3030    // The set of types we've considered so far.
3031    llvm::SmallPtrSet<CanQualType,8> CTypes;
3032    llvm::SmallVector<SourceLocation, 8> Locations;
3033    CTypes.insert(Context.getCanonicalType(BaseType));
3034
3035    while (BaseType->isRecordType()) {
3036      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
3037      if (Result.isInvalid())
3038        return ExprError();
3039      Base = Result.get();
3040      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
3041        Locations.push_back(OpCall->getDirectCallee()->getLocation());
3042      BaseType = Base->getType();
3043      CanQualType CBaseType = Context.getCanonicalType(BaseType);
3044      if (!CTypes.insert(CBaseType)) {
3045        Diag(OpLoc, diag::err_operator_arrow_circular);
3046        for (unsigned i = 0; i < Locations.size(); i++)
3047          Diag(Locations[i], diag::note_declared_at);
3048        return ExprError();
3049      }
3050    }
3051
3052    if (BaseType->isPointerType())
3053      BaseType = BaseType->getPointeeType();
3054  }
3055
3056  // We could end up with various non-record types here, such as extended
3057  // vector types or Objective-C interfaces. Just return early and let
3058  // ActOnMemberReferenceExpr do the work.
3059  if (!BaseType->isRecordType()) {
3060    // C++ [basic.lookup.classref]p2:
3061    //   [...] If the type of the object expression is of pointer to scalar
3062    //   type, the unqualified-id is looked up in the context of the complete
3063    //   postfix-expression.
3064    //
3065    // This also indicates that we should be parsing a
3066    // pseudo-destructor-name.
3067    ObjectType = ParsedType();
3068    MayBePseudoDestructor = true;
3069    return Owned(Base);
3070  }
3071
3072  // The object type must be complete (or dependent).
3073  if (!BaseType->isDependentType() &&
3074      RequireCompleteType(OpLoc, BaseType,
3075                          PDiag(diag::err_incomplete_member_access)))
3076    return ExprError();
3077
3078  // C++ [basic.lookup.classref]p2:
3079  //   If the id-expression in a class member access (5.2.5) is an
3080  //   unqualified-id, and the type of the object expression is of a class
3081  //   type C (or of pointer to a class type C), the unqualified-id is looked
3082  //   up in the scope of class C. [...]
3083  ObjectType = ParsedType::make(BaseType);
3084  return move(Base);
3085}
3086
3087ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
3088                                                   Expr *MemExpr) {
3089  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
3090  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
3091    << isa<CXXPseudoDestructorExpr>(MemExpr)
3092    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
3093
3094  return ActOnCallExpr(/*Scope*/ 0,
3095                       MemExpr,
3096                       /*LPLoc*/ ExpectedLParenLoc,
3097                       MultiExprArg(),
3098                       /*RPLoc*/ ExpectedLParenLoc);
3099}
3100
3101ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
3102                                                       SourceLocation OpLoc,
3103                                                       tok::TokenKind OpKind,
3104                                                       const CXXScopeSpec &SS,
3105                                                 TypeSourceInfo *ScopeTypeInfo,
3106                                                       SourceLocation CCLoc,
3107                                                       SourceLocation TildeLoc,
3108                                         PseudoDestructorTypeStorage Destructed,
3109                                                       bool HasTrailingLParen) {
3110  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
3111
3112  // C++ [expr.pseudo]p2:
3113  //   The left-hand side of the dot operator shall be of scalar type. The
3114  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3115  //   This scalar type is the object type.
3116  QualType ObjectType = Base->getType();
3117  if (OpKind == tok::arrow) {
3118    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3119      ObjectType = Ptr->getPointeeType();
3120    } else if (!Base->isTypeDependent()) {
3121      // The user wrote "p->" when she probably meant "p."; fix it.
3122      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3123        << ObjectType << true
3124        << FixItHint::CreateReplacement(OpLoc, ".");
3125      if (isSFINAEContext())
3126        return ExprError();
3127
3128      OpKind = tok::period;
3129    }
3130  }
3131
3132  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
3133    Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
3134      << ObjectType << Base->getSourceRange();
3135    return ExprError();
3136  }
3137
3138  // C++ [expr.pseudo]p2:
3139  //   [...] The cv-unqualified versions of the object type and of the type
3140  //   designated by the pseudo-destructor-name shall be the same type.
3141  if (DestructedTypeInfo) {
3142    QualType DestructedType = DestructedTypeInfo->getType();
3143    SourceLocation DestructedTypeStart
3144      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
3145    if (!DestructedType->isDependentType() && !ObjectType->isDependentType() &&
3146        !Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
3147      Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
3148        << ObjectType << DestructedType << Base->getSourceRange()
3149        << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
3150
3151      // Recover by setting the destructed type to the object type.
3152      DestructedType = ObjectType;
3153      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
3154                                                           DestructedTypeStart);
3155      Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3156    }
3157  }
3158
3159  // C++ [expr.pseudo]p2:
3160  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
3161  //   form
3162  //
3163  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
3164  //
3165  //   shall designate the same scalar type.
3166  if (ScopeTypeInfo) {
3167    QualType ScopeType = ScopeTypeInfo->getType();
3168    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
3169        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
3170
3171      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
3172           diag::err_pseudo_dtor_type_mismatch)
3173        << ObjectType << ScopeType << Base->getSourceRange()
3174        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
3175
3176      ScopeType = QualType();
3177      ScopeTypeInfo = 0;
3178    }
3179  }
3180
3181  Expr *Result
3182    = new (Context) CXXPseudoDestructorExpr(Context, Base,
3183                                            OpKind == tok::arrow, OpLoc,
3184                                            SS.getScopeRep(), SS.getRange(),
3185                                            ScopeTypeInfo,
3186                                            CCLoc,
3187                                            TildeLoc,
3188                                            Destructed);
3189
3190  if (HasTrailingLParen)
3191    return Owned(Result);
3192
3193  return DiagnoseDtorReference(Destructed.getLocation(), Result);
3194}
3195
3196ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
3197                                                       SourceLocation OpLoc,
3198                                                       tok::TokenKind OpKind,
3199                                                       CXXScopeSpec &SS,
3200                                                  UnqualifiedId &FirstTypeName,
3201                                                       SourceLocation CCLoc,
3202                                                       SourceLocation TildeLoc,
3203                                                 UnqualifiedId &SecondTypeName,
3204                                                       bool HasTrailingLParen) {
3205  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3206          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3207         "Invalid first type name in pseudo-destructor");
3208  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3209          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
3210         "Invalid second type name in pseudo-destructor");
3211
3212  // C++ [expr.pseudo]p2:
3213  //   The left-hand side of the dot operator shall be of scalar type. The
3214  //   left-hand side of the arrow operator shall be of pointer to scalar type.
3215  //   This scalar type is the object type.
3216  QualType ObjectType = Base->getType();
3217  if (OpKind == tok::arrow) {
3218    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
3219      ObjectType = Ptr->getPointeeType();
3220    } else if (!ObjectType->isDependentType()) {
3221      // The user wrote "p->" when she probably meant "p."; fix it.
3222      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
3223        << ObjectType << true
3224        << FixItHint::CreateReplacement(OpLoc, ".");
3225      if (isSFINAEContext())
3226        return ExprError();
3227
3228      OpKind = tok::period;
3229    }
3230  }
3231
3232  // Compute the object type that we should use for name lookup purposes. Only
3233  // record types and dependent types matter.
3234  ParsedType ObjectTypePtrForLookup;
3235  if (!SS.isSet()) {
3236    if (const Type *T = ObjectType->getAs<RecordType>())
3237      ObjectTypePtrForLookup = ParsedType::make(QualType(T, 0));
3238    else if (ObjectType->isDependentType())
3239      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
3240  }
3241
3242  // Convert the name of the type being destructed (following the ~) into a
3243  // type (with source-location information).
3244  QualType DestructedType;
3245  TypeSourceInfo *DestructedTypeInfo = 0;
3246  PseudoDestructorTypeStorage Destructed;
3247  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3248    ParsedType T = getTypeName(*SecondTypeName.Identifier,
3249                               SecondTypeName.StartLocation,
3250                               S, &SS, true, ObjectTypePtrForLookup);
3251    if (!T &&
3252        ((SS.isSet() && !computeDeclContext(SS, false)) ||
3253         (!SS.isSet() && ObjectType->isDependentType()))) {
3254      // The name of the type being destroyed is a dependent name, and we
3255      // couldn't find anything useful in scope. Just store the identifier and
3256      // it's location, and we'll perform (qualified) name lookup again at
3257      // template instantiation time.
3258      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
3259                                               SecondTypeName.StartLocation);
3260    } else if (!T) {
3261      Diag(SecondTypeName.StartLocation,
3262           diag::err_pseudo_dtor_destructor_non_type)
3263        << SecondTypeName.Identifier << ObjectType;
3264      if (isSFINAEContext())
3265        return ExprError();
3266
3267      // Recover by assuming we had the right type all along.
3268      DestructedType = ObjectType;
3269    } else
3270      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
3271  } else {
3272    // Resolve the template-id to a type.
3273    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
3274    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3275                                       TemplateId->getTemplateArgs(),
3276                                       TemplateId->NumArgs);
3277    TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3278                                       TemplateId->TemplateNameLoc,
3279                                       TemplateId->LAngleLoc,
3280                                       TemplateArgsPtr,
3281                                       TemplateId->RAngleLoc);
3282    if (T.isInvalid() || !T.get()) {
3283      // Recover by assuming we had the right type all along.
3284      DestructedType = ObjectType;
3285    } else
3286      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
3287  }
3288
3289  // If we've performed some kind of recovery, (re-)build the type source
3290  // information.
3291  if (!DestructedType.isNull()) {
3292    if (!DestructedTypeInfo)
3293      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
3294                                                  SecondTypeName.StartLocation);
3295    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
3296  }
3297
3298  // Convert the name of the scope type (the type prior to '::') into a type.
3299  TypeSourceInfo *ScopeTypeInfo = 0;
3300  QualType ScopeType;
3301  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
3302      FirstTypeName.Identifier) {
3303    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
3304      ParsedType T = getTypeName(*FirstTypeName.Identifier,
3305                                 FirstTypeName.StartLocation,
3306                                 S, &SS, false, ObjectTypePtrForLookup);
3307      if (!T) {
3308        Diag(FirstTypeName.StartLocation,
3309             diag::err_pseudo_dtor_destructor_non_type)
3310          << FirstTypeName.Identifier << ObjectType;
3311
3312        if (isSFINAEContext())
3313          return ExprError();
3314
3315        // Just drop this type. It's unnecessary anyway.
3316        ScopeType = QualType();
3317      } else
3318        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
3319    } else {
3320      // Resolve the template-id to a type.
3321      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
3322      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3323                                         TemplateId->getTemplateArgs(),
3324                                         TemplateId->NumArgs);
3325      TypeResult T = ActOnTemplateIdType(TemplateId->Template,
3326                                         TemplateId->TemplateNameLoc,
3327                                         TemplateId->LAngleLoc,
3328                                         TemplateArgsPtr,
3329                                         TemplateId->RAngleLoc);
3330      if (T.isInvalid() || !T.get()) {
3331        // Recover by dropping this type.
3332        ScopeType = QualType();
3333      } else
3334        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
3335    }
3336  }
3337
3338  if (!ScopeType.isNull() && !ScopeTypeInfo)
3339    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
3340                                                  FirstTypeName.StartLocation);
3341
3342
3343  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
3344                                   ScopeTypeInfo, CCLoc, TildeLoc,
3345                                   Destructed, HasTrailingLParen);
3346}
3347
3348CXXMemberCallExpr *Sema::BuildCXXMemberCallExpr(Expr *Exp,
3349                                                NamedDecl *FoundDecl,
3350                                                CXXMethodDecl *Method) {
3351  if (PerformObjectArgumentInitialization(Exp, /*Qualifier=*/0,
3352                                          FoundDecl, Method))
3353    assert(0 && "Calling BuildCXXMemberCallExpr with invalid call?");
3354
3355  MemberExpr *ME =
3356      new (Context) MemberExpr(Exp, /*IsArrow=*/false, Method,
3357                               SourceLocation(), Method->getType());
3358  QualType ResultType = Method->getCallResultType();
3359  MarkDeclarationReferenced(Exp->getLocStart(), Method);
3360  CXXMemberCallExpr *CE =
3361    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType,
3362                                    Exp->getLocEnd());
3363  return CE;
3364}
3365
3366ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
3367                                      SourceLocation RParen) {
3368  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
3369                                             Operand->CanThrow(Context),
3370                                             KeyLoc, RParen));
3371}
3372
3373ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
3374                                   Expr *Operand, SourceLocation RParen) {
3375  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
3376}
3377
3378ExprResult Sema::ActOnFinishFullExpr(Expr *FullExpr) {
3379  if (!FullExpr) return ExprError();
3380  return MaybeCreateCXXExprWithTemporaries(FullExpr);
3381}
3382