SemaExprCXX.cpp revision cd965b97cfac7b7a53a835810ec2bc2ac7a9dd1a
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for C++ expressions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ExprCXX.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/Parse/DeclSpec.h"
18#include "clang/Lex/Preprocessor.h"
19#include "clang/Basic/Diagnostic.h"
20#include "clang/Basic/TargetInfo.h"
21#include "llvm/ADT/STLExtras.h"
22using namespace clang;
23
24/// ActOnCXXConversionFunctionExpr - Parse a C++ conversion function
25/// name (e.g., operator void const *) as an expression. This is
26/// very similar to ActOnIdentifierExpr, except that instead of
27/// providing an identifier the parser provides the type of the
28/// conversion function.
29Sema::OwningExprResult
30Sema::ActOnCXXConversionFunctionExpr(Scope *S, SourceLocation OperatorLoc,
31                                     TypeTy *Ty, bool HasTrailingLParen,
32                                     const CXXScopeSpec &SS) {
33  QualType ConvType = QualType::getFromOpaquePtr(Ty);
34  QualType ConvTypeCanon = Context.getCanonicalType(ConvType);
35  DeclarationName ConvName
36    = Context.DeclarationNames.getCXXConversionFunctionName(ConvTypeCanon);
37  return ActOnDeclarationNameExpr(S, OperatorLoc, ConvName, HasTrailingLParen,
38                                  &SS);
39}
40
41/// ActOnCXXOperatorFunctionIdExpr - Parse a C++ overloaded operator
42/// name (e.g., @c operator+ ) as an expression. This is very
43/// similar to ActOnIdentifierExpr, except that instead of providing
44/// an identifier the parser provides the kind of overloaded
45/// operator that was parsed.
46Sema::OwningExprResult
47Sema::ActOnCXXOperatorFunctionIdExpr(Scope *S, SourceLocation OperatorLoc,
48                                     OverloadedOperatorKind Op,
49                                     bool HasTrailingLParen,
50                                     const CXXScopeSpec &SS) {
51  DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(Op);
52  return ActOnDeclarationNameExpr(S, OperatorLoc, Name, HasTrailingLParen, &SS);
53}
54
55/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
56Action::ExprResult
57Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
58                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
59  const NamespaceDecl *StdNs = GetStdNamespace();
60  if (!StdNs)
61    return Diag(OpLoc, diag::err_need_header_before_typeid);
62
63  IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
64  Decl *TypeInfoDecl = LookupDecl(TypeInfoII, Decl::IDNS_Tag,
65                                  0, StdNs, /*createBuiltins=*/false);
66  RecordDecl *TypeInfoRecordDecl = dyn_cast_or_null<RecordDecl>(TypeInfoDecl);
67  if (!TypeInfoRecordDecl)
68    return Diag(OpLoc, diag::err_need_header_before_typeid);
69
70  QualType TypeInfoType = Context.getTypeDeclType(TypeInfoRecordDecl);
71
72  return new CXXTypeidExpr(isType, TyOrExpr, TypeInfoType.withConst(),
73                           SourceRange(OpLoc, RParenLoc));
74}
75
76/// ActOnCXXBoolLiteral - Parse {true,false} literals.
77Action::ExprResult
78Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
79  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
80         "Unknown C++ Boolean value!");
81  return new CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc);
82}
83
84/// ActOnCXXThrow - Parse throw expressions.
85Action::ExprResult
86Sema::ActOnCXXThrow(SourceLocation OpLoc, ExprTy *E) {
87  return new CXXThrowExpr((Expr*)E, Context.VoidTy, OpLoc);
88}
89
90Action::ExprResult Sema::ActOnCXXThis(SourceLocation ThisLoc) {
91  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
92  /// is a non-lvalue expression whose value is the address of the object for
93  /// which the function is called.
94
95  if (!isa<FunctionDecl>(CurContext)) {
96    Diag(ThisLoc, diag::err_invalid_this_use);
97    return ExprResult(true);
98  }
99
100  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(CurContext))
101    if (MD->isInstance())
102      return new CXXThisExpr(ThisLoc, MD->getThisType(Context));
103
104  return Diag(ThisLoc, diag::err_invalid_this_use);
105}
106
107/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
108/// Can be interpreted either as function-style casting ("int(x)")
109/// or class type construction ("ClassType(x,y,z)")
110/// or creation of a value-initialized type ("int()").
111Action::ExprResult
112Sema::ActOnCXXTypeConstructExpr(SourceRange TypeRange, TypeTy *TypeRep,
113                                SourceLocation LParenLoc,
114                                ExprTy **ExprTys, unsigned NumExprs,
115                                SourceLocation *CommaLocs,
116                                SourceLocation RParenLoc) {
117  assert(TypeRep && "Missing type!");
118  QualType Ty = QualType::getFromOpaquePtr(TypeRep);
119  Expr **Exprs = (Expr**)ExprTys;
120  SourceLocation TyBeginLoc = TypeRange.getBegin();
121  SourceRange FullRange = SourceRange(TyBeginLoc, RParenLoc);
122
123  // C++ [expr.type.conv]p1:
124  // If the expression list is a single expression, the type conversion
125  // expression is equivalent (in definedness, and if defined in meaning) to the
126  // corresponding cast expression.
127  //
128  if (NumExprs == 1) {
129    if (CheckCastTypes(TypeRange, Ty, Exprs[0]))
130      return true;
131    return new CXXFunctionalCastExpr(Ty.getNonReferenceType(), Ty, TyBeginLoc,
132                                     Exprs[0], RParenLoc);
133  }
134
135  if (const RecordType *RT = Ty->getAsRecordType()) {
136    CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
137
138    if (NumExprs > 1 || Record->hasUserDeclaredConstructor()) {
139      CXXConstructorDecl *Constructor
140        = PerformInitializationByConstructor(Ty, Exprs, NumExprs,
141                                             TypeRange.getBegin(),
142                                             SourceRange(TypeRange.getBegin(),
143                                                         RParenLoc),
144                                             DeclarationName(),
145                                             IK_Direct);
146
147      if (!Constructor)
148        return true;
149
150      return new CXXTemporaryObjectExpr(Constructor, Ty, TyBeginLoc,
151                                        Exprs, NumExprs, RParenLoc);
152    }
153
154    // Fall through to value-initialize an object of class type that
155    // doesn't have a user-declared default constructor.
156  }
157
158  // C++ [expr.type.conv]p1:
159  // If the expression list specifies more than a single value, the type shall
160  // be a class with a suitably declared constructor.
161  //
162  if (NumExprs > 1)
163    return Diag(CommaLocs[0], diag::err_builtin_func_cast_more_than_one_arg)
164      << FullRange;
165
166  assert(NumExprs == 0 && "Expected 0 expressions");
167
168  // C++ [expr.type.conv]p2:
169  // The expression T(), where T is a simple-type-specifier for a non-array
170  // complete object type or the (possibly cv-qualified) void type, creates an
171  // rvalue of the specified type, which is value-initialized.
172  //
173  if (Ty->isArrayType())
174    return Diag(TyBeginLoc, diag::err_value_init_for_array_type) << FullRange;
175  if (!Ty->isDependentType() && Ty->isIncompleteType() && !Ty->isVoidType())
176    return Diag(TyBeginLoc, diag::err_invalid_incomplete_type_use)
177             << Ty << FullRange;
178
179  return new CXXZeroInitValueExpr(Ty, TyBeginLoc, RParenLoc);
180}
181
182
183/// ActOnCXXNew - Parsed a C++ 'new' expression (C++ 5.3.4), as in e.g.:
184/// @code new (memory) int[size][4] @endcode
185/// or
186/// @code ::new Foo(23, "hello") @endcode
187/// For the interpretation of this heap of arguments, consult the base version.
188Action::ExprResult
189Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
190                  SourceLocation PlacementLParen,
191                  ExprTy **PlacementArgs, unsigned NumPlaceArgs,
192                  SourceLocation PlacementRParen, bool ParenTypeId,
193                  Declarator &D, SourceLocation ConstructorLParen,
194                  ExprTy **ConstructorArgs, unsigned NumConsArgs,
195                  SourceLocation ConstructorRParen)
196{
197  // FIXME: Throughout this function, we have rather bad location information.
198  // Implementing Declarator::getSourceRange() would go a long way toward
199  // fixing that.
200
201  Expr *ArraySize = 0;
202  unsigned Skip = 0;
203  // If the specified type is an array, unwrap it and save the expression.
204  if (D.getNumTypeObjects() > 0 &&
205      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
206    DeclaratorChunk &Chunk = D.getTypeObject(0);
207    if (Chunk.Arr.hasStatic)
208      return Diag(Chunk.Loc, diag::err_static_illegal_in_new);
209    if (!Chunk.Arr.NumElts)
210      return Diag(Chunk.Loc, diag::err_array_new_needs_size);
211    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
212    Skip = 1;
213  }
214
215  QualType AllocType = GetTypeForDeclarator(D, /*Scope=*/0, Skip);
216  if (D.getInvalidType())
217    return true;
218
219  if (CheckAllocatedType(AllocType, D))
220    return true;
221
222  QualType ResultType = Context.getPointerType(AllocType);
223
224  // That every array dimension except the first is constant was already
225  // checked by the type check above.
226
227  // C++ 5.3.4p6: "The expression in a direct-new-declarator shall have integral
228  //   or enumeration type with a non-negative value."
229  if (ArraySize) {
230    QualType SizeType = ArraySize->getType();
231    if (!SizeType->isIntegralType() && !SizeType->isEnumeralType())
232      return Diag(ArraySize->getSourceRange().getBegin(),
233                  diag::err_array_size_not_integral)
234        << SizeType << ArraySize->getSourceRange();
235    // Let's see if this is a constant < 0. If so, we reject it out of hand.
236    // We don't care about special rules, so we tell the machinery it's not
237    // evaluated - it gives us a result in more cases.
238    llvm::APSInt Value;
239    if (ArraySize->isIntegerConstantExpr(Value, Context, 0, false)) {
240      if (Value < llvm::APSInt(
241                      llvm::APInt::getNullValue(Value.getBitWidth()), false))
242        return Diag(ArraySize->getSourceRange().getBegin(),
243                    diag::err_typecheck_negative_array_size)
244          << ArraySize->getSourceRange();
245    }
246  }
247
248  FunctionDecl *OperatorNew = 0;
249  FunctionDecl *OperatorDelete = 0;
250  Expr **PlaceArgs = (Expr**)PlacementArgs;
251  if (FindAllocationFunctions(StartLoc, UseGlobal, AllocType, ArraySize,
252                              PlaceArgs, NumPlaceArgs, OperatorNew,
253                              OperatorDelete))
254    return true;
255
256  bool Init = ConstructorLParen.isValid();
257  // --- Choosing a constructor ---
258  // C++ 5.3.4p15
259  // 1) If T is a POD and there's no initializer (ConstructorLParen is invalid)
260  //   the object is not initialized. If the object, or any part of it, is
261  //   const-qualified, it's an error.
262  // 2) If T is a POD and there's an empty initializer, the object is value-
263  //   initialized.
264  // 3) If T is a POD and there's one initializer argument, the object is copy-
265  //   constructed.
266  // 4) If T is a POD and there's more initializer arguments, it's an error.
267  // 5) If T is not a POD, the initializer arguments are used as constructor
268  //   arguments.
269  //
270  // Or by the C++0x formulation:
271  // 1) If there's no initializer, the object is default-initialized according
272  //    to C++0x rules.
273  // 2) Otherwise, the object is direct-initialized.
274  CXXConstructorDecl *Constructor = 0;
275  Expr **ConsArgs = (Expr**)ConstructorArgs;
276  if (const RecordType *RT = AllocType->getAsRecordType()) {
277    // FIXME: This is incorrect for when there is an empty initializer and
278    // no user-defined constructor. Must zero-initialize, not default-construct.
279    Constructor = PerformInitializationByConstructor(
280                      AllocType, ConsArgs, NumConsArgs,
281                      D.getDeclSpec().getSourceRange().getBegin(),
282                      SourceRange(D.getDeclSpec().getSourceRange().getBegin(),
283                                  ConstructorRParen),
284                      RT->getDecl()->getDeclName(),
285                      NumConsArgs != 0 ? IK_Direct : IK_Default);
286    if (!Constructor)
287      return true;
288  } else {
289    if (!Init) {
290      // FIXME: Check that no subpart is const.
291      if (AllocType.isConstQualified()) {
292        Diag(StartLoc, diag::err_new_uninitialized_const)
293          << D.getSourceRange();
294        return true;
295      }
296    } else if (NumConsArgs == 0) {
297      // Object is value-initialized. Do nothing.
298    } else if (NumConsArgs == 1) {
299      // Object is direct-initialized.
300      // FIXME: WHAT DeclarationName do we pass in here?
301      if (CheckInitializerTypes(ConsArgs[0], AllocType, StartLoc,
302                                DeclarationName() /*AllocType.getAsString()*/,
303                                /*DirectInit=*/true))
304        return true;
305    } else {
306      Diag(StartLoc, diag::err_builtin_direct_init_more_than_one_arg)
307        << SourceRange(ConstructorLParen, ConstructorRParen);
308    }
309  }
310
311  // FIXME: Also check that the destructor is accessible. (C++ 5.3.4p16)
312
313  return new CXXNewExpr(UseGlobal, OperatorNew, PlaceArgs, NumPlaceArgs,
314                        ParenTypeId, ArraySize, Constructor, Init,
315                        ConsArgs, NumConsArgs, OperatorDelete, ResultType,
316                        StartLoc, Init ? ConstructorRParen : SourceLocation());
317}
318
319/// CheckAllocatedType - Checks that a type is suitable as the allocated type
320/// in a new-expression.
321/// dimension off and stores the size expression in ArraySize.
322bool Sema::CheckAllocatedType(QualType AllocType, const Declarator &D)
323{
324  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
325  //   abstract class type or array thereof.
326  // FIXME: We don't have abstract types yet.
327  // FIXME: Under C++ semantics, an incomplete object type is still an object
328  // type. This code assumes the C semantics, where it's not.
329  if (!AllocType->isObjectType()) {
330    unsigned type; // For the select in the message.
331    if (AllocType->isFunctionType()) {
332      type = 0;
333    } else if(AllocType->isIncompleteType()) {
334      type = 1;
335    } else {
336      assert(AllocType->isReferenceType() && "What else could it be?");
337      type = 2;
338    }
339    SourceRange TyR = D.getDeclSpec().getSourceRange();
340    // FIXME: This is very much a guess and won't work for, e.g., pointers.
341    if (D.getNumTypeObjects() > 0)
342      TyR.setEnd(D.getTypeObject(0).Loc);
343    Diag(TyR.getBegin(), diag::err_bad_new_type)
344      << AllocType.getAsString() << type << TyR;
345    return true;
346  }
347
348  // Every dimension shall be of constant size.
349  unsigned i = 1;
350  while (const ArrayType *Array = Context.getAsArrayType(AllocType)) {
351    if (!Array->isConstantArrayType()) {
352      Diag(D.getTypeObject(i).Loc, diag::err_new_array_nonconst)
353        << static_cast<Expr*>(D.getTypeObject(i).Arr.NumElts)->getSourceRange();
354      return true;
355    }
356    AllocType = Array->getElementType();
357    ++i;
358  }
359
360  return false;
361}
362
363/// FindAllocationFunctions - Finds the overloads of operator new and delete
364/// that are appropriate for the allocation.
365bool Sema::FindAllocationFunctions(SourceLocation StartLoc, bool UseGlobal,
366                                   QualType AllocType, bool IsArray,
367                                   Expr **PlaceArgs, unsigned NumPlaceArgs,
368                                   FunctionDecl *&OperatorNew,
369                                   FunctionDecl *&OperatorDelete)
370{
371  // --- Choosing an allocation function ---
372  // C++ 5.3.4p8 - 14 & 18
373  // 1) If UseGlobal is true, only look in the global scope. Else, also look
374  //   in the scope of the allocated class.
375  // 2) If an array size is given, look for operator new[], else look for
376  //   operator new.
377  // 3) The first argument is always size_t. Append the arguments from the
378  //   placement form.
379  // FIXME: Also find the appropriate delete operator.
380
381  llvm::SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
382  // We don't care about the actual value of this argument.
383  // FIXME: Should the Sema create the expression and embed it in the syntax
384  // tree? Or should the consumer just recalculate the value?
385  AllocArgs[0] = new IntegerLiteral(llvm::APInt::getNullValue(
386                                        Context.Target.getPointerWidth(0)),
387                                    Context.getSizeType(),
388                                    SourceLocation());
389  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
390
391  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
392                                        IsArray ? OO_Array_New : OO_New);
393  if (AllocType->isRecordType() && !UseGlobal) {
394    CXXRecordDecl *Record = cast<CXXRecordType>(AllocType->getAsRecordType())
395                                ->getDecl();
396    // FIXME: We fail to find inherited overloads.
397    if (FindAllocationOverload(StartLoc, NewName, &AllocArgs[0],
398                          AllocArgs.size(), Record, /*AllowMissing=*/true,
399                          OperatorNew))
400      return true;
401  }
402  if (!OperatorNew) {
403    // Didn't find a member overload. Look for a global one.
404    DeclareGlobalNewDelete();
405    DeclContext *TUDecl = Context.getTranslationUnitDecl();
406    if (FindAllocationOverload(StartLoc, NewName, &AllocArgs[0],
407                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
408                          OperatorNew))
409      return true;
410  }
411
412  // FIXME: This is leaked on error. But so much is currently in Sema that it's
413  // easier to clean it in one go.
414  AllocArgs[0]->Destroy(Context);
415  return false;
416}
417
418/// FindAllocationOverload - Find an fitting overload for the allocation
419/// function in the specified scope.
420bool Sema::FindAllocationOverload(SourceLocation StartLoc, DeclarationName Name,
421                                  Expr** Args, unsigned NumArgs,
422                                  DeclContext *Ctx, bool AllowMissing,
423                                  FunctionDecl *&Operator)
424{
425  DeclContext::lookup_iterator Alloc, AllocEnd;
426  llvm::tie(Alloc, AllocEnd) = Ctx->lookup(Name);
427  if (Alloc == AllocEnd) {
428    if (AllowMissing)
429      return false;
430    // FIXME: Bad location information.
431    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
432      << Name << 0;
433  }
434
435  OverloadCandidateSet Candidates;
436  for (; Alloc != AllocEnd; ++Alloc) {
437    // Even member operator new/delete are implicitly treated as
438    // static, so don't use AddMemberCandidate.
439    if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*Alloc))
440      AddOverloadCandidate(Fn, Args, NumArgs, Candidates,
441                           /*SuppressUserConversions=*/false);
442  }
443
444  // Do the resolution.
445  OverloadCandidateSet::iterator Best;
446  switch(BestViableFunction(Candidates, Best)) {
447  case OR_Success: {
448    // Got one!
449    FunctionDecl *FnDecl = Best->Function;
450    // The first argument is size_t, and the first parameter must be size_t,
451    // too. This is checked on declaration and can be assumed. (It can't be
452    // asserted on, though, since invalid decls are left in there.)
453    for (unsigned i = 1; i < NumArgs; ++i) {
454      // FIXME: Passing word to diagnostic.
455      if (PerformCopyInitialization(Args[i-1],
456                                    FnDecl->getParamDecl(i)->getType(),
457                                    "passing"))
458        return true;
459    }
460    Operator = FnDecl;
461    return false;
462  }
463
464  case OR_No_Viable_Function:
465    if (AllowMissing)
466      return false;
467    // FIXME: Bad location information.
468    Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
469      << Name << (unsigned)Candidates.size();
470    PrintOverloadCandidates(Candidates, /*OnlyViable=*/false);
471    return true;
472
473  case OR_Ambiguous:
474    // FIXME: Bad location information.
475    Diag(StartLoc, diag::err_ovl_ambiguous_call)
476      << Name;
477    PrintOverloadCandidates(Candidates, /*OnlyViable=*/true);
478    return true;
479  }
480  assert(false && "Unreachable, bad result from BestViableFunction");
481  return true;
482}
483
484
485/// DeclareGlobalNewDelete - Declare the global forms of operator new and
486/// delete. These are:
487/// @code
488///   void* operator new(std::size_t) throw(std::bad_alloc);
489///   void* operator new[](std::size_t) throw(std::bad_alloc);
490///   void operator delete(void *) throw();
491///   void operator delete[](void *) throw();
492/// @endcode
493/// Note that the placement and nothrow forms of new are *not* implicitly
494/// declared. Their use requires including \<new\>.
495void Sema::DeclareGlobalNewDelete()
496{
497  if (GlobalNewDeleteDeclared)
498    return;
499  GlobalNewDeleteDeclared = true;
500
501  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
502  QualType SizeT = Context.getSizeType();
503
504  // FIXME: Exception specifications are not added.
505  DeclareGlobalAllocationFunction(
506      Context.DeclarationNames.getCXXOperatorName(OO_New),
507      VoidPtr, SizeT);
508  DeclareGlobalAllocationFunction(
509      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
510      VoidPtr, SizeT);
511  DeclareGlobalAllocationFunction(
512      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
513      Context.VoidTy, VoidPtr);
514  DeclareGlobalAllocationFunction(
515      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
516      Context.VoidTy, VoidPtr);
517}
518
519/// DeclareGlobalAllocationFunction - Declares a single implicit global
520/// allocation function if it doesn't already exist.
521void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
522                                           QualType Return, QualType Argument)
523{
524  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
525
526  // Check if this function is already declared.
527  {
528    DeclContext::lookup_iterator Alloc, AllocEnd;
529    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
530         Alloc != AllocEnd; ++Alloc) {
531      // FIXME: Do we need to check for default arguments here?
532      FunctionDecl *Func = cast<FunctionDecl>(*Alloc);
533      if (Func->getNumParams() == 1 &&
534          Context.getCanonicalType(Func->getParamDecl(0)->getType()) == Argument)
535        return;
536    }
537  }
538
539  QualType FnType = Context.getFunctionType(Return, &Argument, 1, false, 0);
540  FunctionDecl *Alloc =
541    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), Name,
542                         FnType, FunctionDecl::None, false, 0,
543                         SourceLocation());
544  Alloc->setImplicit();
545  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
546                                           0, Argument, VarDecl::None, 0, 0);
547  Alloc->setParams(Context, &Param, 1);
548
549  // FIXME: Also add this declaration to the IdentifierResolver, but
550  // make sure it is at the end of the chain to coincide with the
551  // global scope.
552  ((DeclContext *)TUScope->getEntity())->addDecl(Alloc);
553}
554
555/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
556/// @code ::delete ptr; @endcode
557/// or
558/// @code delete [] ptr; @endcode
559Action::ExprResult
560Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
561                     bool ArrayForm, ExprTy *Operand)
562{
563  // C++ 5.3.5p1: "The operand shall have a pointer type, or a class type
564  //   having a single conversion function to a pointer type. The result has
565  //   type void."
566  // DR599 amends "pointer type" to "pointer to object type" in both cases.
567
568  Expr *Ex = (Expr *)Operand;
569  QualType Type = Ex->getType();
570
571  if (Type->isRecordType()) {
572    // FIXME: Find that one conversion function and amend the type.
573  }
574
575  if (!Type->isPointerType()) {
576    Diag(StartLoc, diag::err_delete_operand) << Type << Ex->getSourceRange();
577    return true;
578  }
579
580  QualType Pointee = Type->getAsPointerType()->getPointeeType();
581  if (Pointee->isIncompleteType() && !Pointee->isVoidType())
582    Diag(StartLoc, diag::warn_delete_incomplete)
583      << Pointee << Ex->getSourceRange();
584  else if (!Pointee->isObjectType()) {
585    Diag(StartLoc, diag::err_delete_operand)
586      << Type << Ex->getSourceRange();
587    return true;
588  }
589
590  // FIXME: Look up the correct operator delete overload and pass a pointer
591  // along.
592  // FIXME: Check access and ambiguity of operator delete and destructor.
593
594  return new CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm, 0, Ex,
595                           StartLoc);
596}
597
598
599/// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
600/// C++ if/switch/while/for statement.
601/// e.g: "if (int x = f()) {...}"
602Action::ExprResult
603Sema::ActOnCXXConditionDeclarationExpr(Scope *S, SourceLocation StartLoc,
604                                       Declarator &D,
605                                       SourceLocation EqualLoc,
606                                       ExprTy *AssignExprVal) {
607  assert(AssignExprVal && "Null assignment expression");
608
609  // C++ 6.4p2:
610  // The declarator shall not specify a function or an array.
611  // The type-specifier-seq shall not contain typedef and shall not declare a
612  // new class or enumeration.
613
614  assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
615         "Parser allowed 'typedef' as storage class of condition decl.");
616
617  QualType Ty = GetTypeForDeclarator(D, S);
618
619  if (Ty->isFunctionType()) { // The declarator shall not specify a function...
620    // We exit without creating a CXXConditionDeclExpr because a FunctionDecl
621    // would be created and CXXConditionDeclExpr wants a VarDecl.
622    return Diag(StartLoc, diag::err_invalid_use_of_function_type)
623      << SourceRange(StartLoc, EqualLoc);
624  } else if (Ty->isArrayType()) { // ...or an array.
625    Diag(StartLoc, diag::err_invalid_use_of_array_type)
626      << SourceRange(StartLoc, EqualLoc);
627  } else if (const RecordType *RT = Ty->getAsRecordType()) {
628    RecordDecl *RD = RT->getDecl();
629    // The type-specifier-seq shall not declare a new class...
630    if (RD->isDefinition() && (RD->getIdentifier() == 0 || S->isDeclScope(RD)))
631      Diag(RD->getLocation(), diag::err_type_defined_in_condition);
632  } else if (const EnumType *ET = Ty->getAsEnumType()) {
633    EnumDecl *ED = ET->getDecl();
634    // ...or enumeration.
635    if (ED->isDefinition() && (ED->getIdentifier() == 0 || S->isDeclScope(ED)))
636      Diag(ED->getLocation(), diag::err_type_defined_in_condition);
637  }
638
639  DeclTy *Dcl = ActOnDeclarator(S, D, 0);
640  if (!Dcl)
641    return true;
642  AddInitializerToDecl(Dcl, ExprArg(*this, AssignExprVal));
643
644  // Mark this variable as one that is declared within a conditional.
645  if (VarDecl *VD = dyn_cast<VarDecl>((Decl *)Dcl))
646    VD->setDeclaredInCondition(true);
647
648  return new CXXConditionDeclExpr(StartLoc, EqualLoc,
649                                       cast<VarDecl>(static_cast<Decl *>(Dcl)));
650}
651
652/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
653bool Sema::CheckCXXBooleanCondition(Expr *&CondExpr) {
654  // C++ 6.4p4:
655  // The value of a condition that is an initialized declaration in a statement
656  // other than a switch statement is the value of the declared variable
657  // implicitly converted to type bool. If that conversion is ill-formed, the
658  // program is ill-formed.
659  // The value of a condition that is an expression is the value of the
660  // expression, implicitly converted to bool.
661  //
662  return PerformContextuallyConvertToBool(CondExpr);
663}
664
665/// Helper function to determine whether this is the (deprecated) C++
666/// conversion from a string literal to a pointer to non-const char or
667/// non-const wchar_t (for narrow and wide string literals,
668/// respectively).
669bool
670Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
671  // Look inside the implicit cast, if it exists.
672  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
673    From = Cast->getSubExpr();
674
675  // A string literal (2.13.4) that is not a wide string literal can
676  // be converted to an rvalue of type "pointer to char"; a wide
677  // string literal can be converted to an rvalue of type "pointer
678  // to wchar_t" (C++ 4.2p2).
679  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From))
680    if (const PointerType *ToPtrType = ToType->getAsPointerType())
681      if (const BuiltinType *ToPointeeType
682          = ToPtrType->getPointeeType()->getAsBuiltinType()) {
683        // This conversion is considered only when there is an
684        // explicit appropriate pointer target type (C++ 4.2p2).
685        if (ToPtrType->getPointeeType().getCVRQualifiers() == 0 &&
686            ((StrLit->isWide() && ToPointeeType->isWideCharType()) ||
687             (!StrLit->isWide() &&
688              (ToPointeeType->getKind() == BuiltinType::Char_U ||
689               ToPointeeType->getKind() == BuiltinType::Char_S))))
690          return true;
691      }
692
693  return false;
694}
695
696/// PerformImplicitConversion - Perform an implicit conversion of the
697/// expression From to the type ToType. Returns true if there was an
698/// error, false otherwise. The expression From is replaced with the
699/// converted expression. Flavor is the kind of conversion we're
700/// performing, used in the error message. If @p AllowExplicit,
701/// explicit user-defined conversions are permitted.
702bool
703Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
704                                const char *Flavor, bool AllowExplicit)
705{
706  ImplicitConversionSequence ICS = TryImplicitConversion(From, ToType, false,
707                                                         AllowExplicit);
708  return PerformImplicitConversion(From, ToType, ICS, Flavor);
709}
710
711/// PerformImplicitConversion - Perform an implicit conversion of the
712/// expression From to the type ToType using the pre-computed implicit
713/// conversion sequence ICS. Returns true if there was an error, false
714/// otherwise. The expression From is replaced with the converted
715/// expression. Flavor is the kind of conversion we're performing,
716/// used in the error message.
717bool
718Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
719                                const ImplicitConversionSequence &ICS,
720                                const char* Flavor) {
721  switch (ICS.ConversionKind) {
722  case ImplicitConversionSequence::StandardConversion:
723    if (PerformImplicitConversion(From, ToType, ICS.Standard, Flavor))
724      return true;
725    break;
726
727  case ImplicitConversionSequence::UserDefinedConversion:
728    // FIXME: This is, of course, wrong. We'll need to actually call
729    // the constructor or conversion operator, and then cope with the
730    // standard conversions.
731    ImpCastExprToType(From, ToType.getNonReferenceType(),
732                      ToType->isReferenceType());
733    return false;
734
735  case ImplicitConversionSequence::EllipsisConversion:
736    assert(false && "Cannot perform an ellipsis conversion");
737    return false;
738
739  case ImplicitConversionSequence::BadConversion:
740    return true;
741  }
742
743  // Everything went well.
744  return false;
745}
746
747/// PerformImplicitConversion - Perform an implicit conversion of the
748/// expression From to the type ToType by following the standard
749/// conversion sequence SCS. Returns true if there was an error, false
750/// otherwise. The expression From is replaced with the converted
751/// expression. Flavor is the context in which we're performing this
752/// conversion, for use in error messages.
753bool
754Sema::PerformImplicitConversion(Expr *&From, QualType ToType,
755                                const StandardConversionSequence& SCS,
756                                const char *Flavor) {
757  // Overall FIXME: we are recomputing too many types here and doing
758  // far too much extra work. What this means is that we need to keep
759  // track of more information that is computed when we try the
760  // implicit conversion initially, so that we don't need to recompute
761  // anything here.
762  QualType FromType = From->getType();
763
764  if (SCS.CopyConstructor) {
765    // FIXME: Create a temporary object by calling the copy
766    // constructor.
767    ImpCastExprToType(From, ToType.getNonReferenceType(),
768                      ToType->isReferenceType());
769    return false;
770  }
771
772  // Perform the first implicit conversion.
773  switch (SCS.First) {
774  case ICK_Identity:
775  case ICK_Lvalue_To_Rvalue:
776    // Nothing to do.
777    break;
778
779  case ICK_Array_To_Pointer:
780    if (FromType->isOverloadType()) {
781      FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, true);
782      if (!Fn)
783        return true;
784
785      FixOverloadedFunctionReference(From, Fn);
786      FromType = From->getType();
787    } else {
788      FromType = Context.getArrayDecayedType(FromType);
789    }
790    ImpCastExprToType(From, FromType);
791    break;
792
793  case ICK_Function_To_Pointer:
794    FromType = Context.getPointerType(FromType);
795    ImpCastExprToType(From, FromType);
796    break;
797
798  default:
799    assert(false && "Improper first standard conversion");
800    break;
801  }
802
803  // Perform the second implicit conversion
804  switch (SCS.Second) {
805  case ICK_Identity:
806    // Nothing to do.
807    break;
808
809  case ICK_Integral_Promotion:
810  case ICK_Floating_Promotion:
811  case ICK_Integral_Conversion:
812  case ICK_Floating_Conversion:
813  case ICK_Floating_Integral:
814    FromType = ToType.getUnqualifiedType();
815    ImpCastExprToType(From, FromType);
816    break;
817
818  case ICK_Pointer_Conversion:
819    if (SCS.IncompatibleObjC) {
820      // Diagnose incompatible Objective-C conversions
821      Diag(From->getSourceRange().getBegin(),
822           diag::ext_typecheck_convert_incompatible_pointer)
823        << From->getType() << ToType << Flavor
824        << From->getSourceRange();
825    }
826
827    if (CheckPointerConversion(From, ToType))
828      return true;
829    ImpCastExprToType(From, ToType);
830    break;
831
832  case ICK_Pointer_Member:
833    // FIXME: Implement pointer-to-member conversions.
834    assert(false && "Pointer-to-member conversions are unsupported");
835    break;
836
837  case ICK_Boolean_Conversion:
838    FromType = Context.BoolTy;
839    ImpCastExprToType(From, FromType);
840    break;
841
842  default:
843    assert(false && "Improper second standard conversion");
844    break;
845  }
846
847  switch (SCS.Third) {
848  case ICK_Identity:
849    // Nothing to do.
850    break;
851
852  case ICK_Qualification:
853    ImpCastExprToType(From, ToType.getNonReferenceType(),
854                      ToType->isReferenceType());
855    break;
856
857  default:
858    assert(false && "Improper second standard conversion");
859    break;
860  }
861
862  return false;
863}
864
865Sema::OwningExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
866                                                 SourceLocation KWLoc,
867                                                 SourceLocation LParen,
868                                                 TypeTy *Ty,
869                                                 SourceLocation RParen) {
870  // FIXME: Some of the type traits have requirements. Interestingly, only the
871  // __is_base_of requirement is explicitly stated to be diagnosed. Indeed,
872  // G++ accepts __is_pod(Incomplete) without complaints, and claims that the
873  // type is indeed a POD.
874
875  // There is no point in eagerly computing the value. The traits are designed
876  // to be used from type trait templates, so Ty will be a template parameter
877  // 99% of the time.
878  return Owned(new UnaryTypeTraitExpr(KWLoc, OTT,
879                                      QualType::getFromOpaquePtr(Ty),
880                                      RParen, Context.BoolTy));
881}
882