SemaExprCXX.cpp revision ef2b5b327b524f9ea3243c07e04fb24706e63120
1//===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9
10// \file
11// \brief Implements semantic analysis for C++ expressions.
12
13#include "clang/Sema/SemaInternal.h"
14#include "clang/Sema/DeclSpec.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/ParsedTemplate.h"
18#include "clang/Sema/ScopeInfo.h"
19#include "clang/Sema/Scope.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CharUnits.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclObjC.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/ExprObjC.h"
27#include "clang/AST/TypeLoc.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/Preprocessor.h"
31#include "TypeLocBuilder.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/STLExtras.h"
34#include "llvm/Support/ErrorHandling.h"
35using namespace clang;
36using namespace sema;
37
38ParsedType Sema::getDestructorName(SourceLocation TildeLoc,
39                                   IdentifierInfo &II,
40                                   SourceLocation NameLoc,
41                                   Scope *S, CXXScopeSpec &SS,
42                                   ParsedType ObjectTypePtr,
43                                   bool EnteringContext) {
44  // Determine where to perform name lookup.
45
46  // FIXME: This area of the standard is very messy, and the current
47  // wording is rather unclear about which scopes we search for the
48  // destructor name; see core issues 399 and 555. Issue 399 in
49  // particular shows where the current description of destructor name
50  // lookup is completely out of line with existing practice, e.g.,
51  // this appears to be ill-formed:
52  //
53  //   namespace N {
54  //     template <typename T> struct S {
55  //       ~S();
56  //     };
57  //   }
58  //
59  //   void f(N::S<int>* s) {
60  //     s->N::S<int>::~S();
61  //   }
62  //
63  // See also PR6358 and PR6359.
64  // For this reason, we're currently only doing the C++03 version of this
65  // code; the C++0x version has to wait until we get a proper spec.
66  QualType SearchType;
67  DeclContext *LookupCtx = 0;
68  bool isDependent = false;
69  bool LookInScope = false;
70
71  // If we have an object type, it's because we are in a
72  // pseudo-destructor-expression or a member access expression, and
73  // we know what type we're looking for.
74  if (ObjectTypePtr)
75    SearchType = GetTypeFromParser(ObjectTypePtr);
76
77  if (SS.isSet()) {
78    NestedNameSpecifier *NNS = (NestedNameSpecifier *)SS.getScopeRep();
79
80    bool AlreadySearched = false;
81    bool LookAtPrefix = true;
82    // C++ [basic.lookup.qual]p6:
83    //   If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier,
84    //   the type-names are looked up as types in the scope designated by the
85    //   nested-name-specifier. In a qualified-id of the form:
86    //
87    //     ::[opt] nested-name-specifier  ~ class-name
88    //
89    //   where the nested-name-specifier designates a namespace scope, and in
90    //   a qualified-id of the form:
91    //
92    //     ::opt nested-name-specifier class-name ::  ~ class-name
93    //
94    //   the class-names are looked up as types in the scope designated by
95    //   the nested-name-specifier.
96    //
97    // Here, we check the first case (completely) and determine whether the
98    // code below is permitted to look at the prefix of the
99    // nested-name-specifier.
100    DeclContext *DC = computeDeclContext(SS, EnteringContext);
101    if (DC && DC->isFileContext()) {
102      AlreadySearched = true;
103      LookupCtx = DC;
104      isDependent = false;
105    } else if (DC && isa<CXXRecordDecl>(DC))
106      LookAtPrefix = false;
107
108    // The second case from the C++03 rules quoted further above.
109    NestedNameSpecifier *Prefix = 0;
110    if (AlreadySearched) {
111      // Nothing left to do.
112    } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) {
113      CXXScopeSpec PrefixSS;
114      PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data()));
115      LookupCtx = computeDeclContext(PrefixSS, EnteringContext);
116      isDependent = isDependentScopeSpecifier(PrefixSS);
117    } else if (ObjectTypePtr) {
118      LookupCtx = computeDeclContext(SearchType);
119      isDependent = SearchType->isDependentType();
120    } else {
121      LookupCtx = computeDeclContext(SS, EnteringContext);
122      isDependent = LookupCtx && LookupCtx->isDependentContext();
123    }
124
125    LookInScope = false;
126  } else if (ObjectTypePtr) {
127    // C++ [basic.lookup.classref]p3:
128    //   If the unqualified-id is ~type-name, the type-name is looked up
129    //   in the context of the entire postfix-expression. If the type T
130    //   of the object expression is of a class type C, the type-name is
131    //   also looked up in the scope of class C. At least one of the
132    //   lookups shall find a name that refers to (possibly
133    //   cv-qualified) T.
134    LookupCtx = computeDeclContext(SearchType);
135    isDependent = SearchType->isDependentType();
136    assert((isDependent || !SearchType->isIncompleteType()) &&
137           "Caller should have completed object type");
138
139    LookInScope = true;
140  } else {
141    // Perform lookup into the current scope (only).
142    LookInScope = true;
143  }
144
145  TypeDecl *NonMatchingTypeDecl = 0;
146  LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName);
147  for (unsigned Step = 0; Step != 2; ++Step) {
148    // Look for the name first in the computed lookup context (if we
149    // have one) and, if that fails to find a match, in the scope (if
150    // we're allowed to look there).
151    Found.clear();
152    if (Step == 0 && LookupCtx)
153      LookupQualifiedName(Found, LookupCtx);
154    else if (Step == 1 && LookInScope && S)
155      LookupName(Found, S);
156    else
157      continue;
158
159    // FIXME: Should we be suppressing ambiguities here?
160    if (Found.isAmbiguous())
161      return ParsedType();
162
163    if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) {
164      QualType T = Context.getTypeDeclType(Type);
165
166      if (SearchType.isNull() || SearchType->isDependentType() ||
167          Context.hasSameUnqualifiedType(T, SearchType)) {
168        // We found our type!
169
170        return ParsedType::make(T);
171      }
172
173      if (!SearchType.isNull())
174        NonMatchingTypeDecl = Type;
175    }
176
177    // If the name that we found is a class template name, and it is
178    // the same name as the template name in the last part of the
179    // nested-name-specifier (if present) or the object type, then
180    // this is the destructor for that class.
181    // FIXME: This is a workaround until we get real drafting for core
182    // issue 399, for which there isn't even an obvious direction.
183    if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) {
184      QualType MemberOfType;
185      if (SS.isSet()) {
186        if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) {
187          // Figure out the type of the context, if it has one.
188          if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx))
189            MemberOfType = Context.getTypeDeclType(Record);
190        }
191      }
192      if (MemberOfType.isNull())
193        MemberOfType = SearchType;
194
195      if (MemberOfType.isNull())
196        continue;
197
198      // We're referring into a class template specialization. If the
199      // class template we found is the same as the template being
200      // specialized, we found what we are looking for.
201      if (const RecordType *Record = MemberOfType->getAs<RecordType>()) {
202        if (ClassTemplateSpecializationDecl *Spec
203              = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) {
204          if (Spec->getSpecializedTemplate()->getCanonicalDecl() ==
205                Template->getCanonicalDecl())
206            return ParsedType::make(MemberOfType);
207        }
208
209        continue;
210      }
211
212      // We're referring to an unresolved class template
213      // specialization. Determine whether we class template we found
214      // is the same as the template being specialized or, if we don't
215      // know which template is being specialized, that it at least
216      // has the same name.
217      if (const TemplateSpecializationType *SpecType
218            = MemberOfType->getAs<TemplateSpecializationType>()) {
219        TemplateName SpecName = SpecType->getTemplateName();
220
221        // The class template we found is the same template being
222        // specialized.
223        if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) {
224          if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl())
225            return ParsedType::make(MemberOfType);
226
227          continue;
228        }
229
230        // The class template we found has the same name as the
231        // (dependent) template name being specialized.
232        if (DependentTemplateName *DepTemplate
233                                    = SpecName.getAsDependentTemplateName()) {
234          if (DepTemplate->isIdentifier() &&
235              DepTemplate->getIdentifier() == Template->getIdentifier())
236            return ParsedType::make(MemberOfType);
237
238          continue;
239        }
240      }
241    }
242  }
243
244  if (isDependent) {
245    // We didn't find our type, but that's okay: it's dependent
246    // anyway.
247
248    // FIXME: What if we have no nested-name-specifier?
249    QualType T = CheckTypenameType(ETK_None, SourceLocation(),
250                                   SS.getWithLocInContext(Context),
251                                   II, NameLoc);
252    return ParsedType::make(T);
253  }
254
255  if (NonMatchingTypeDecl) {
256    QualType T = Context.getTypeDeclType(NonMatchingTypeDecl);
257    Diag(NameLoc, diag::err_destructor_expr_type_mismatch)
258      << T << SearchType;
259    Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here)
260      << T;
261  } else if (ObjectTypePtr)
262    Diag(NameLoc, diag::err_ident_in_dtor_not_a_type)
263      << &II;
264  else
265    Diag(NameLoc, diag::err_destructor_class_name);
266
267  return ParsedType();
268}
269
270ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) {
271    if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType)
272      return ParsedType();
273    assert(DS.getTypeSpecType() == DeclSpec::TST_decltype
274           && "only get destructor types from declspecs");
275    QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
276    QualType SearchType = GetTypeFromParser(ObjectType);
277    if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) {
278      return ParsedType::make(T);
279    }
280
281    Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch)
282      << T << SearchType;
283    return ParsedType();
284}
285
286/// \brief Build a C++ typeid expression with a type operand.
287ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
288                                SourceLocation TypeidLoc,
289                                TypeSourceInfo *Operand,
290                                SourceLocation RParenLoc) {
291  // C++ [expr.typeid]p4:
292  //   The top-level cv-qualifiers of the lvalue expression or the type-id
293  //   that is the operand of typeid are always ignored.
294  //   If the type of the type-id is a class type or a reference to a class
295  //   type, the class shall be completely-defined.
296  Qualifiers Quals;
297  QualType T
298    = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(),
299                                      Quals);
300  if (T->getAs<RecordType>() &&
301      RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
302    return ExprError();
303
304  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
305                                           Operand,
306                                           SourceRange(TypeidLoc, RParenLoc)));
307}
308
309/// \brief Build a C++ typeid expression with an expression operand.
310ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType,
311                                SourceLocation TypeidLoc,
312                                Expr *E,
313                                SourceLocation RParenLoc) {
314  if (E && !E->isTypeDependent()) {
315    if (E->getType()->isPlaceholderType()) {
316      ExprResult result = CheckPlaceholderExpr(E);
317      if (result.isInvalid()) return ExprError();
318      E = result.take();
319    }
320
321    QualType T = E->getType();
322    if (const RecordType *RecordT = T->getAs<RecordType>()) {
323      CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl());
324      // C++ [expr.typeid]p3:
325      //   [...] If the type of the expression is a class type, the class
326      //   shall be completely-defined.
327      if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid))
328        return ExprError();
329
330      // C++ [expr.typeid]p3:
331      //   When typeid is applied to an expression other than an glvalue of a
332      //   polymorphic class type [...] [the] expression is an unevaluated
333      //   operand. [...]
334      if (RecordD->isPolymorphic() && E->Classify(Context).isGLValue()) {
335        // The subexpression is potentially evaluated; switch the context
336        // and recheck the subexpression.
337        ExprResult Result = TranformToPotentiallyEvaluated(E);
338        if (Result.isInvalid()) return ExprError();
339        E = Result.take();
340
341        // We require a vtable to query the type at run time.
342        MarkVTableUsed(TypeidLoc, RecordD);
343      }
344    }
345
346    // C++ [expr.typeid]p4:
347    //   [...] If the type of the type-id is a reference to a possibly
348    //   cv-qualified type, the result of the typeid expression refers to a
349    //   std::type_info object representing the cv-unqualified referenced
350    //   type.
351    Qualifiers Quals;
352    QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals);
353    if (!Context.hasSameType(T, UnqualT)) {
354      T = UnqualT;
355      E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).take();
356    }
357  }
358
359  return Owned(new (Context) CXXTypeidExpr(TypeInfoType.withConst(),
360                                           E,
361                                           SourceRange(TypeidLoc, RParenLoc)));
362}
363
364/// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression);
365ExprResult
366Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc,
367                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
368  // Find the std::type_info type.
369  if (!getStdNamespace())
370    return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
371
372  if (!CXXTypeInfoDecl) {
373    IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info");
374    LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName);
375    LookupQualifiedName(R, getStdNamespace());
376    CXXTypeInfoDecl = R.getAsSingle<RecordDecl>();
377    if (!CXXTypeInfoDecl)
378      return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid));
379  }
380
381  if (!getLangOpts().RTTI) {
382    return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti));
383  }
384
385  QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl);
386
387  if (isType) {
388    // The operand is a type; handle it as such.
389    TypeSourceInfo *TInfo = 0;
390    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
391                                   &TInfo);
392    if (T.isNull())
393      return ExprError();
394
395    if (!TInfo)
396      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
397
398    return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc);
399  }
400
401  // The operand is an expression.
402  return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
403}
404
405/// Retrieve the UuidAttr associated with QT.
406static UuidAttr *GetUuidAttrOfType(QualType QT) {
407  // Optionally remove one level of pointer, reference or array indirection.
408  const Type *Ty = QT.getTypePtr();;
409  if (QT->isPointerType() || QT->isReferenceType())
410    Ty = QT->getPointeeType().getTypePtr();
411  else if (QT->isArrayType())
412    Ty = cast<ArrayType>(QT)->getElementType().getTypePtr();
413
414  // Loop all record redeclaration looking for an uuid attribute.
415  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
416  for (CXXRecordDecl::redecl_iterator I = RD->redecls_begin(),
417       E = RD->redecls_end(); I != E; ++I) {
418    if (UuidAttr *Uuid = I->getAttr<UuidAttr>())
419      return Uuid;
420  }
421
422  return 0;
423}
424
425/// \brief Build a Microsoft __uuidof expression with a type operand.
426ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
427                                SourceLocation TypeidLoc,
428                                TypeSourceInfo *Operand,
429                                SourceLocation RParenLoc) {
430  if (!Operand->getType()->isDependentType()) {
431    if (!GetUuidAttrOfType(Operand->getType()))
432      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
433  }
434
435  // FIXME: add __uuidof semantic analysis for type operand.
436  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
437                                           Operand,
438                                           SourceRange(TypeidLoc, RParenLoc)));
439}
440
441/// \brief Build a Microsoft __uuidof expression with an expression operand.
442ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType,
443                                SourceLocation TypeidLoc,
444                                Expr *E,
445                                SourceLocation RParenLoc) {
446  if (!E->getType()->isDependentType()) {
447    if (!GetUuidAttrOfType(E->getType()) &&
448        !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull))
449      return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid));
450  }
451  // FIXME: add __uuidof semantic analysis for type operand.
452  return Owned(new (Context) CXXUuidofExpr(TypeInfoType.withConst(),
453                                           E,
454                                           SourceRange(TypeidLoc, RParenLoc)));
455}
456
457/// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression);
458ExprResult
459Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc,
460                     bool isType, void *TyOrExpr, SourceLocation RParenLoc) {
461  // If MSVCGuidDecl has not been cached, do the lookup.
462  if (!MSVCGuidDecl) {
463    IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID");
464    LookupResult R(*this, GuidII, SourceLocation(), LookupTagName);
465    LookupQualifiedName(R, Context.getTranslationUnitDecl());
466    MSVCGuidDecl = R.getAsSingle<RecordDecl>();
467    if (!MSVCGuidDecl)
468      return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof));
469  }
470
471  QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl);
472
473  if (isType) {
474    // The operand is a type; handle it as such.
475    TypeSourceInfo *TInfo = 0;
476    QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr),
477                                   &TInfo);
478    if (T.isNull())
479      return ExprError();
480
481    if (!TInfo)
482      TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc);
483
484    return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc);
485  }
486
487  // The operand is an expression.
488  return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc);
489}
490
491/// ActOnCXXBoolLiteral - Parse {true,false} literals.
492ExprResult
493Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
494  assert((Kind == tok::kw_true || Kind == tok::kw_false) &&
495         "Unknown C++ Boolean value!");
496  return Owned(new (Context) CXXBoolLiteralExpr(Kind == tok::kw_true,
497                                                Context.BoolTy, OpLoc));
498}
499
500/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
501ExprResult
502Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) {
503  return Owned(new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc));
504}
505
506/// ActOnCXXThrow - Parse throw expressions.
507ExprResult
508Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) {
509  bool IsThrownVarInScope = false;
510  if (Ex) {
511    // C++0x [class.copymove]p31:
512    //   When certain criteria are met, an implementation is allowed to omit the
513    //   copy/move construction of a class object [...]
514    //
515    //     - in a throw-expression, when the operand is the name of a
516    //       non-volatile automatic object (other than a function or catch-
517    //       clause parameter) whose scope does not extend beyond the end of the
518    //       innermost enclosing try-block (if there is one), the copy/move
519    //       operation from the operand to the exception object (15.1) can be
520    //       omitted by constructing the automatic object directly into the
521    //       exception object
522    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens()))
523      if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
524        if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) {
525          for( ; S; S = S->getParent()) {
526            if (S->isDeclScope(Var)) {
527              IsThrownVarInScope = true;
528              break;
529            }
530
531            if (S->getFlags() &
532                (Scope::FnScope | Scope::ClassScope | Scope::BlockScope |
533                 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope |
534                 Scope::TryScope))
535              break;
536          }
537        }
538      }
539  }
540
541  return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope);
542}
543
544ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex,
545                               bool IsThrownVarInScope) {
546  // Don't report an error if 'throw' is used in system headers.
547  if (!getLangOpts().CXXExceptions &&
548      !getSourceManager().isInSystemHeader(OpLoc))
549    Diag(OpLoc, diag::err_exceptions_disabled) << "throw";
550
551  if (Ex && !Ex->isTypeDependent()) {
552    ExprResult ExRes = CheckCXXThrowOperand(OpLoc, Ex, IsThrownVarInScope);
553    if (ExRes.isInvalid())
554      return ExprError();
555    Ex = ExRes.take();
556  }
557
558  return Owned(new (Context) CXXThrowExpr(Ex, Context.VoidTy, OpLoc,
559                                          IsThrownVarInScope));
560}
561
562/// CheckCXXThrowOperand - Validate the operand of a throw.
563ExprResult Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, Expr *E,
564                                      bool IsThrownVarInScope) {
565  // C++ [except.throw]p3:
566  //   A throw-expression initializes a temporary object, called the exception
567  //   object, the type of which is determined by removing any top-level
568  //   cv-qualifiers from the static type of the operand of throw and adjusting
569  //   the type from "array of T" or "function returning T" to "pointer to T"
570  //   or "pointer to function returning T", [...]
571  if (E->getType().hasQualifiers())
572    E = ImpCastExprToType(E, E->getType().getUnqualifiedType(), CK_NoOp,
573                          E->getValueKind()).take();
574
575  ExprResult Res = DefaultFunctionArrayConversion(E);
576  if (Res.isInvalid())
577    return ExprError();
578  E = Res.take();
579
580  //   If the type of the exception would be an incomplete type or a pointer
581  //   to an incomplete type other than (cv) void the program is ill-formed.
582  QualType Ty = E->getType();
583  bool isPointer = false;
584  if (const PointerType* Ptr = Ty->getAs<PointerType>()) {
585    Ty = Ptr->getPointeeType();
586    isPointer = true;
587  }
588  if (!isPointer || !Ty->isVoidType()) {
589    if (RequireCompleteType(ThrowLoc, Ty,
590                            isPointer? diag::err_throw_incomplete_ptr
591                                     : diag::err_throw_incomplete,
592                            E->getSourceRange()))
593      return ExprError();
594
595    if (RequireNonAbstractType(ThrowLoc, E->getType(),
596                               diag::err_throw_abstract_type, E))
597      return ExprError();
598  }
599
600  // Initialize the exception result.  This implicitly weeds out
601  // abstract types or types with inaccessible copy constructors.
602
603  // C++0x [class.copymove]p31:
604  //   When certain criteria are met, an implementation is allowed to omit the
605  //   copy/move construction of a class object [...]
606  //
607  //     - in a throw-expression, when the operand is the name of a
608  //       non-volatile automatic object (other than a function or catch-clause
609  //       parameter) whose scope does not extend beyond the end of the
610  //       innermost enclosing try-block (if there is one), the copy/move
611  //       operation from the operand to the exception object (15.1) can be
612  //       omitted by constructing the automatic object directly into the
613  //       exception object
614  const VarDecl *NRVOVariable = 0;
615  if (IsThrownVarInScope)
616    NRVOVariable = getCopyElisionCandidate(QualType(), E, false);
617
618  InitializedEntity Entity =
619      InitializedEntity::InitializeException(ThrowLoc, E->getType(),
620                                             /*NRVO=*/NRVOVariable != 0);
621  Res = PerformMoveOrCopyInitialization(Entity, NRVOVariable,
622                                        QualType(), E,
623                                        IsThrownVarInScope);
624  if (Res.isInvalid())
625    return ExprError();
626  E = Res.take();
627
628  // If the exception has class type, we need additional handling.
629  const RecordType *RecordTy = Ty->getAs<RecordType>();
630  if (!RecordTy)
631    return Owned(E);
632  CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
633
634  // If we are throwing a polymorphic class type or pointer thereof,
635  // exception handling will make use of the vtable.
636  MarkVTableUsed(ThrowLoc, RD);
637
638  // If a pointer is thrown, the referenced object will not be destroyed.
639  if (isPointer)
640    return Owned(E);
641
642  // If the class has a destructor, we must be able to call it.
643  if (RD->hasIrrelevantDestructor())
644    return Owned(E);
645
646  CXXDestructorDecl *Destructor = LookupDestructor(RD);
647  if (!Destructor)
648    return Owned(E);
649
650  MarkFunctionReferenced(E->getExprLoc(), Destructor);
651  CheckDestructorAccess(E->getExprLoc(), Destructor,
652                        PDiag(diag::err_access_dtor_exception) << Ty);
653  DiagnoseUseOfDecl(Destructor, E->getExprLoc());
654  return Owned(E);
655}
656
657QualType Sema::getCurrentThisType() {
658  DeclContext *DC = getFunctionLevelDeclContext();
659  QualType ThisTy = CXXThisTypeOverride;
660  if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) {
661    if (method && method->isInstance())
662      ThisTy = method->getThisType(Context);
663  }
664
665  return ThisTy;
666}
667
668Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S,
669                                         Decl *ContextDecl,
670                                         unsigned CXXThisTypeQuals,
671                                         bool Enabled)
672  : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false)
673{
674  if (!Enabled || !ContextDecl)
675    return;
676
677  CXXRecordDecl *Record = 0;
678  if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl))
679    Record = Template->getTemplatedDecl();
680  else
681    Record = cast<CXXRecordDecl>(ContextDecl);
682
683  S.CXXThisTypeOverride
684    = S.Context.getPointerType(
685        S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals));
686
687  this->Enabled = true;
688}
689
690
691Sema::CXXThisScopeRAII::~CXXThisScopeRAII() {
692  if (Enabled) {
693    S.CXXThisTypeOverride = OldCXXThisTypeOverride;
694  }
695}
696
697void Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit) {
698  // We don't need to capture this in an unevaluated context.
699  if (ExprEvalContexts.back().Context == Unevaluated && !Explicit)
700    return;
701
702  // Otherwise, check that we can capture 'this'.
703  unsigned NumClosures = 0;
704  for (unsigned idx = FunctionScopes.size() - 1; idx != 0; idx--) {
705    if (CapturingScopeInfo *CSI =
706            dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) {
707      if (CSI->CXXThisCaptureIndex != 0) {
708        // 'this' is already being captured; there isn't anything more to do.
709        break;
710      }
711
712      if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref ||
713          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval ||
714          CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block ||
715          Explicit) {
716        // This closure can capture 'this'; continue looking upwards.
717        NumClosures++;
718        Explicit = false;
719        continue;
720      }
721      // This context can't implicitly capture 'this'; fail out.
722      Diag(Loc, diag::err_this_capture) << Explicit;
723      return;
724    }
725    break;
726  }
727
728  // Mark that we're implicitly capturing 'this' in all the scopes we skipped.
729  // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated
730  // contexts.
731  for (unsigned idx = FunctionScopes.size() - 1;
732       NumClosures; --idx, --NumClosures) {
733    CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]);
734    Expr *ThisExpr = 0;
735    QualType ThisTy = getCurrentThisType();
736    if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
737      // For lambda expressions, build a field and an initializing expression.
738      CXXRecordDecl *Lambda = LSI->Lambda;
739      FieldDecl *Field
740        = FieldDecl::Create(Context, Lambda, Loc, Loc, 0, ThisTy,
741                            Context.getTrivialTypeSourceInfo(ThisTy, Loc),
742                            0, false, ICIS_NoInit);
743      Field->setImplicit(true);
744      Field->setAccess(AS_private);
745      Lambda->addDecl(Field);
746      ThisExpr = new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/true);
747    }
748    bool isNested = NumClosures > 1;
749    CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr);
750  }
751}
752
753ExprResult Sema::ActOnCXXThis(SourceLocation Loc) {
754  /// C++ 9.3.2: In the body of a non-static member function, the keyword this
755  /// is a non-lvalue expression whose value is the address of the object for
756  /// which the function is called.
757
758  QualType ThisTy = getCurrentThisType();
759  if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use);
760
761  CheckCXXThisCapture(Loc);
762  return Owned(new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false));
763}
764
765bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) {
766  // If we're outside the body of a member function, then we'll have a specified
767  // type for 'this'.
768  if (CXXThisTypeOverride.isNull())
769    return false;
770
771  // Determine whether we're looking into a class that's currently being
772  // defined.
773  CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl();
774  return Class && Class->isBeingDefined();
775}
776
777ExprResult
778Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep,
779                                SourceLocation LParenLoc,
780                                MultiExprArg exprs,
781                                SourceLocation RParenLoc) {
782  if (!TypeRep)
783    return ExprError();
784
785  TypeSourceInfo *TInfo;
786  QualType Ty = GetTypeFromParser(TypeRep, &TInfo);
787  if (!TInfo)
788    TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation());
789
790  return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc);
791}
792
793/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
794/// Can be interpreted either as function-style casting ("int(x)")
795/// or class type construction ("ClassType(x,y,z)")
796/// or creation of a value-initialized type ("int()").
797ExprResult
798Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo,
799                                SourceLocation LParenLoc,
800                                MultiExprArg exprs,
801                                SourceLocation RParenLoc) {
802  QualType Ty = TInfo->getType();
803  unsigned NumExprs = exprs.size();
804  Expr **Exprs = (Expr**)exprs.get();
805  SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc();
806
807  if (Ty->isDependentType() ||
808      CallExpr::hasAnyTypeDependentArguments(
809        llvm::makeArrayRef(Exprs, NumExprs))) {
810    exprs.release();
811
812    return Owned(CXXUnresolvedConstructExpr::Create(Context, TInfo,
813                                                    LParenLoc,
814                                                    Exprs, NumExprs,
815                                                    RParenLoc));
816  }
817
818  bool ListInitialization = LParenLoc.isInvalid();
819  assert((!ListInitialization || (NumExprs == 1 && isa<InitListExpr>(Exprs[0])))
820         && "List initialization must have initializer list as expression.");
821  SourceRange FullRange = SourceRange(TyBeginLoc,
822      ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc);
823
824  // C++ [expr.type.conv]p1:
825  // If the expression list is a single expression, the type conversion
826  // expression is equivalent (in definedness, and if defined in meaning) to the
827  // corresponding cast expression.
828  if (NumExprs == 1 && !ListInitialization) {
829    Expr *Arg = Exprs[0];
830    exprs.release();
831    return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc);
832  }
833
834  QualType ElemTy = Ty;
835  if (Ty->isArrayType()) {
836    if (!ListInitialization)
837      return ExprError(Diag(TyBeginLoc,
838                            diag::err_value_init_for_array_type) << FullRange);
839    ElemTy = Context.getBaseElementType(Ty);
840  }
841
842  if (!Ty->isVoidType() &&
843      RequireCompleteType(TyBeginLoc, ElemTy,
844                          diag::err_invalid_incomplete_type_use, FullRange))
845    return ExprError();
846
847  if (RequireNonAbstractType(TyBeginLoc, Ty,
848                             diag::err_allocation_of_abstract_type))
849    return ExprError();
850
851  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo);
852  InitializationKind Kind
853    = NumExprs ? ListInitialization
854                    ? InitializationKind::CreateDirectList(TyBeginLoc)
855                    : InitializationKind::CreateDirect(TyBeginLoc,
856                                                       LParenLoc, RParenLoc)
857               : InitializationKind::CreateValue(TyBeginLoc,
858                                                 LParenLoc, RParenLoc);
859  InitializationSequence InitSeq(*this, Entity, Kind, Exprs, NumExprs);
860  ExprResult Result = InitSeq.Perform(*this, Entity, Kind, move(exprs));
861
862  if (!Result.isInvalid() && ListInitialization &&
863      isa<InitListExpr>(Result.get())) {
864    // If the list-initialization doesn't involve a constructor call, we'll get
865    // the initializer-list (with corrected type) back, but that's not what we
866    // want, since it will be treated as an initializer list in further
867    // processing. Explicitly insert a cast here.
868    InitListExpr *List = cast<InitListExpr>(Result.take());
869    Result = Owned(CXXFunctionalCastExpr::Create(Context, List->getType(),
870                                    Expr::getValueKindForType(TInfo->getType()),
871                                                 TInfo, TyBeginLoc, CK_NoOp,
872                                                 List, /*Path=*/0, RParenLoc));
873  }
874
875  // FIXME: Improve AST representation?
876  return move(Result);
877}
878
879/// doesUsualArrayDeleteWantSize - Answers whether the usual
880/// operator delete[] for the given type has a size_t parameter.
881static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc,
882                                         QualType allocType) {
883  const RecordType *record =
884    allocType->getBaseElementTypeUnsafe()->getAs<RecordType>();
885  if (!record) return false;
886
887  // Try to find an operator delete[] in class scope.
888
889  DeclarationName deleteName =
890    S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete);
891  LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName);
892  S.LookupQualifiedName(ops, record->getDecl());
893
894  // We're just doing this for information.
895  ops.suppressDiagnostics();
896
897  // Very likely: there's no operator delete[].
898  if (ops.empty()) return false;
899
900  // If it's ambiguous, it should be illegal to call operator delete[]
901  // on this thing, so it doesn't matter if we allocate extra space or not.
902  if (ops.isAmbiguous()) return false;
903
904  LookupResult::Filter filter = ops.makeFilter();
905  while (filter.hasNext()) {
906    NamedDecl *del = filter.next()->getUnderlyingDecl();
907
908    // C++0x [basic.stc.dynamic.deallocation]p2:
909    //   A template instance is never a usual deallocation function,
910    //   regardless of its signature.
911    if (isa<FunctionTemplateDecl>(del)) {
912      filter.erase();
913      continue;
914    }
915
916    // C++0x [basic.stc.dynamic.deallocation]p2:
917    //   If class T does not declare [an operator delete[] with one
918    //   parameter] but does declare a member deallocation function
919    //   named operator delete[] with exactly two parameters, the
920    //   second of which has type std::size_t, then this function
921    //   is a usual deallocation function.
922    if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) {
923      filter.erase();
924      continue;
925    }
926  }
927  filter.done();
928
929  if (!ops.isSingleResult()) return false;
930
931  const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl());
932  return (del->getNumParams() == 2);
933}
934
935/// \brief Parsed a C++ 'new' expression (C++ 5.3.4).
936///
937/// E.g.:
938/// @code new (memory) int[size][4] @endcode
939/// or
940/// @code ::new Foo(23, "hello") @endcode
941///
942/// \param StartLoc The first location of the expression.
943/// \param UseGlobal True if 'new' was prefixed with '::'.
944/// \param PlacementLParen Opening paren of the placement arguments.
945/// \param PlacementArgs Placement new arguments.
946/// \param PlacementRParen Closing paren of the placement arguments.
947/// \param TypeIdParens If the type is in parens, the source range.
948/// \param D The type to be allocated, as well as array dimensions.
949/// \param Initializer The initializing expression or initializer-list, or null
950///   if there is none.
951ExprResult
952Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
953                  SourceLocation PlacementLParen, MultiExprArg PlacementArgs,
954                  SourceLocation PlacementRParen, SourceRange TypeIdParens,
955                  Declarator &D, Expr *Initializer) {
956  bool TypeContainsAuto = D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
957
958  Expr *ArraySize = 0;
959  // If the specified type is an array, unwrap it and save the expression.
960  if (D.getNumTypeObjects() > 0 &&
961      D.getTypeObject(0).Kind == DeclaratorChunk::Array) {
962     DeclaratorChunk &Chunk = D.getTypeObject(0);
963    if (TypeContainsAuto)
964      return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto)
965        << D.getSourceRange());
966    if (Chunk.Arr.hasStatic)
967      return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new)
968        << D.getSourceRange());
969    if (!Chunk.Arr.NumElts)
970      return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size)
971        << D.getSourceRange());
972
973    ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts);
974    D.DropFirstTypeObject();
975  }
976
977  // Every dimension shall be of constant size.
978  if (ArraySize) {
979    for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) {
980      if (D.getTypeObject(I).Kind != DeclaratorChunk::Array)
981        break;
982
983      DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr;
984      if (Expr *NumElts = (Expr *)Array.NumElts) {
985        if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) {
986          Array.NumElts
987            = VerifyIntegerConstantExpression(NumElts, 0,
988                                              diag::err_new_array_nonconst)
989                .take();
990          if (!Array.NumElts)
991            return ExprError();
992        }
993      }
994    }
995  }
996
997  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/0);
998  QualType AllocType = TInfo->getType();
999  if (D.isInvalidType())
1000    return ExprError();
1001
1002  SourceRange DirectInitRange;
1003  if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer))
1004    DirectInitRange = List->getSourceRange();
1005
1006  return BuildCXXNew(StartLoc, UseGlobal,
1007                     PlacementLParen,
1008                     move(PlacementArgs),
1009                     PlacementRParen,
1010                     TypeIdParens,
1011                     AllocType,
1012                     TInfo,
1013                     ArraySize,
1014                     DirectInitRange,
1015                     Initializer,
1016                     TypeContainsAuto);
1017}
1018
1019static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style,
1020                                       Expr *Init) {
1021  if (!Init)
1022    return true;
1023  if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init))
1024    return PLE->getNumExprs() == 0;
1025  if (isa<ImplicitValueInitExpr>(Init))
1026    return true;
1027  else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init))
1028    return !CCE->isListInitialization() &&
1029           CCE->getConstructor()->isDefaultConstructor();
1030  else if (Style == CXXNewExpr::ListInit) {
1031    assert(isa<InitListExpr>(Init) &&
1032           "Shouldn't create list CXXConstructExprs for arrays.");
1033    return true;
1034  }
1035  return false;
1036}
1037
1038ExprResult
1039Sema::BuildCXXNew(SourceLocation StartLoc, bool UseGlobal,
1040                  SourceLocation PlacementLParen,
1041                  MultiExprArg PlacementArgs,
1042                  SourceLocation PlacementRParen,
1043                  SourceRange TypeIdParens,
1044                  QualType AllocType,
1045                  TypeSourceInfo *AllocTypeInfo,
1046                  Expr *ArraySize,
1047                  SourceRange DirectInitRange,
1048                  Expr *Initializer,
1049                  bool TypeMayContainAuto) {
1050  SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange();
1051
1052  CXXNewExpr::InitializationStyle initStyle;
1053  if (DirectInitRange.isValid()) {
1054    assert(Initializer && "Have parens but no initializer.");
1055    initStyle = CXXNewExpr::CallInit;
1056  } else if (Initializer && isa<InitListExpr>(Initializer))
1057    initStyle = CXXNewExpr::ListInit;
1058  else {
1059    // In template instantiation, the initializer could be a CXXDefaultArgExpr
1060    // unwrapped from a CXXConstructExpr that was implicitly built. There is no
1061    // particularly sane way we can handle this (especially since it can even
1062    // occur for array new), so we throw the initializer away and have it be
1063    // rebuilt.
1064    if (Initializer && isa<CXXDefaultArgExpr>(Initializer))
1065      Initializer = 0;
1066    assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) ||
1067            isa<CXXConstructExpr>(Initializer)) &&
1068           "Initializer expression that cannot have been implicitly created.");
1069    initStyle = CXXNewExpr::NoInit;
1070  }
1071
1072  Expr **Inits = &Initializer;
1073  unsigned NumInits = Initializer ? 1 : 0;
1074  if (initStyle == CXXNewExpr::CallInit) {
1075    if (ParenListExpr *List = dyn_cast<ParenListExpr>(Initializer)) {
1076      Inits = List->getExprs();
1077      NumInits = List->getNumExprs();
1078    } else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Initializer)){
1079      if (!isa<CXXTemporaryObjectExpr>(CCE)) {
1080        // Can happen in template instantiation. Since this is just an implicit
1081        // construction, we just take it apart and rebuild it.
1082        Inits = CCE->getArgs();
1083        NumInits = CCE->getNumArgs();
1084      }
1085    }
1086  }
1087
1088  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
1089  if (TypeMayContainAuto && AllocType->getContainedAutoType()) {
1090    if (initStyle == CXXNewExpr::NoInit || NumInits == 0)
1091      return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg)
1092                       << AllocType << TypeRange);
1093    if (initStyle == CXXNewExpr::ListInit)
1094      return ExprError(Diag(Inits[0]->getLocStart(),
1095                            diag::err_auto_new_requires_parens)
1096                       << AllocType << TypeRange);
1097    if (NumInits > 1) {
1098      Expr *FirstBad = Inits[1];
1099      return ExprError(Diag(FirstBad->getLocStart(),
1100                            diag::err_auto_new_ctor_multiple_expressions)
1101                       << AllocType << TypeRange);
1102    }
1103    Expr *Deduce = Inits[0];
1104    TypeSourceInfo *DeducedType = 0;
1105    if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) ==
1106            DAR_Failed)
1107      return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure)
1108                       << AllocType << Deduce->getType()
1109                       << TypeRange << Deduce->getSourceRange());
1110    if (!DeducedType)
1111      return ExprError();
1112
1113    AllocTypeInfo = DeducedType;
1114    AllocType = AllocTypeInfo->getType();
1115  }
1116
1117  // Per C++0x [expr.new]p5, the type being constructed may be a
1118  // typedef of an array type.
1119  if (!ArraySize) {
1120    if (const ConstantArrayType *Array
1121                              = Context.getAsConstantArrayType(AllocType)) {
1122      ArraySize = IntegerLiteral::Create(Context, Array->getSize(),
1123                                         Context.getSizeType(),
1124                                         TypeRange.getEnd());
1125      AllocType = Array->getElementType();
1126    }
1127  }
1128
1129  if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange))
1130    return ExprError();
1131
1132  if (initStyle == CXXNewExpr::ListInit && isStdInitializerList(AllocType, 0)) {
1133    Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(),
1134         diag::warn_dangling_std_initializer_list)
1135        << /*at end of FE*/0 << Inits[0]->getSourceRange();
1136  }
1137
1138  // In ARC, infer 'retaining' for the allocated
1139  if (getLangOpts().ObjCAutoRefCount &&
1140      AllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1141      AllocType->isObjCLifetimeType()) {
1142    AllocType = Context.getLifetimeQualifiedType(AllocType,
1143                                    AllocType->getObjCARCImplicitLifetime());
1144  }
1145
1146  QualType ResultType = Context.getPointerType(AllocType);
1147
1148  // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have
1149  //   integral or enumeration type with a non-negative value."
1150  // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped
1151  //   enumeration type, or a class type for which a single non-explicit
1152  //   conversion function to integral or unscoped enumeration type exists.
1153  if (ArraySize && !ArraySize->isTypeDependent()) {
1154    class SizeConvertDiagnoser : public ICEConvertDiagnoser {
1155      Expr *ArraySize;
1156
1157    public:
1158      SizeConvertDiagnoser(Expr *ArraySize)
1159        : ICEConvertDiagnoser(false, false), ArraySize(ArraySize) { }
1160
1161      virtual DiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
1162                                               QualType T) {
1163        return S.Diag(Loc, diag::err_array_size_not_integral)
1164                 << S.getLangOpts().CPlusPlus0x << T;
1165      }
1166
1167      virtual DiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc,
1168                                                   QualType T) {
1169        return S.Diag(Loc, diag::err_array_size_incomplete_type)
1170                 << T << ArraySize->getSourceRange();
1171      }
1172
1173      virtual DiagnosticBuilder diagnoseExplicitConv(Sema &S,
1174                                                     SourceLocation Loc,
1175                                                     QualType T,
1176                                                     QualType ConvTy) {
1177        return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy;
1178      }
1179
1180      virtual DiagnosticBuilder noteExplicitConv(Sema &S,
1181                                                 CXXConversionDecl *Conv,
1182                                                 QualType ConvTy) {
1183        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1184                 << ConvTy->isEnumeralType() << ConvTy;
1185      }
1186
1187      virtual DiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
1188                                                  QualType T) {
1189        return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T;
1190      }
1191
1192      virtual DiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv,
1193                                              QualType ConvTy) {
1194        return S.Diag(Conv->getLocation(), diag::note_array_size_conversion)
1195                 << ConvTy->isEnumeralType() << ConvTy;
1196      }
1197
1198      virtual DiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc,
1199                                                   QualType T,
1200                                                   QualType ConvTy) {
1201        return S.Diag(Loc,
1202                      S.getLangOpts().CPlusPlus0x
1203                        ? diag::warn_cxx98_compat_array_size_conversion
1204                        : diag::ext_array_size_conversion)
1205                 << T << ConvTy->isEnumeralType() << ConvTy;
1206      }
1207    } SizeDiagnoser(ArraySize);
1208
1209    ExprResult ConvertedSize
1210      = ConvertToIntegralOrEnumerationType(StartLoc, ArraySize, SizeDiagnoser,
1211                                           /*AllowScopedEnumerations*/ false);
1212    if (ConvertedSize.isInvalid())
1213      return ExprError();
1214
1215    ArraySize = ConvertedSize.take();
1216    QualType SizeType = ArraySize->getType();
1217    if (!SizeType->isIntegralOrUnscopedEnumerationType())
1218      return ExprError();
1219
1220    // C++98 [expr.new]p7:
1221    //   The expression in a direct-new-declarator shall have integral type
1222    //   with a non-negative value.
1223    //
1224    // Let's see if this is a constant < 0. If so, we reject it out of
1225    // hand. Otherwise, if it's not a constant, we must have an unparenthesized
1226    // array type.
1227    //
1228    // Note: such a construct has well-defined semantics in C++11: it throws
1229    // std::bad_array_new_length.
1230    if (!ArraySize->isValueDependent()) {
1231      llvm::APSInt Value;
1232      // We've already performed any required implicit conversion to integer or
1233      // unscoped enumeration type.
1234      if (ArraySize->isIntegerConstantExpr(Value, Context)) {
1235        if (Value < llvm::APSInt(
1236                        llvm::APInt::getNullValue(Value.getBitWidth()),
1237                                 Value.isUnsigned())) {
1238          if (getLangOpts().CPlusPlus0x)
1239            Diag(ArraySize->getLocStart(),
1240                 diag::warn_typecheck_negative_array_new_size)
1241              << ArraySize->getSourceRange();
1242          else
1243            return ExprError(Diag(ArraySize->getLocStart(),
1244                                  diag::err_typecheck_negative_array_size)
1245                             << ArraySize->getSourceRange());
1246        } else if (!AllocType->isDependentType()) {
1247          unsigned ActiveSizeBits =
1248            ConstantArrayType::getNumAddressingBits(Context, AllocType, Value);
1249          if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
1250            if (getLangOpts().CPlusPlus0x)
1251              Diag(ArraySize->getLocStart(),
1252                   diag::warn_array_new_too_large)
1253                << Value.toString(10)
1254                << ArraySize->getSourceRange();
1255            else
1256              return ExprError(Diag(ArraySize->getLocStart(),
1257                                    diag::err_array_too_large)
1258                               << Value.toString(10)
1259                               << ArraySize->getSourceRange());
1260          }
1261        }
1262      } else if (TypeIdParens.isValid()) {
1263        // Can't have dynamic array size when the type-id is in parentheses.
1264        Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst)
1265          << ArraySize->getSourceRange()
1266          << FixItHint::CreateRemoval(TypeIdParens.getBegin())
1267          << FixItHint::CreateRemoval(TypeIdParens.getEnd());
1268
1269        TypeIdParens = SourceRange();
1270      }
1271    }
1272
1273    // ARC: warn about ABI issues.
1274    if (getLangOpts().ObjCAutoRefCount) {
1275      QualType BaseAllocType = Context.getBaseElementType(AllocType);
1276      if (BaseAllocType.hasStrongOrWeakObjCLifetime())
1277        Diag(StartLoc, diag::warn_err_new_delete_object_array)
1278          << 0 << BaseAllocType;
1279    }
1280
1281    // Note that we do *not* convert the argument in any way.  It can
1282    // be signed, larger than size_t, whatever.
1283  }
1284
1285  FunctionDecl *OperatorNew = 0;
1286  FunctionDecl *OperatorDelete = 0;
1287  Expr **PlaceArgs = (Expr**)PlacementArgs.get();
1288  unsigned NumPlaceArgs = PlacementArgs.size();
1289
1290  if (!AllocType->isDependentType() &&
1291      !Expr::hasAnyTypeDependentArguments(
1292        llvm::makeArrayRef(PlaceArgs, NumPlaceArgs)) &&
1293      FindAllocationFunctions(StartLoc,
1294                              SourceRange(PlacementLParen, PlacementRParen),
1295                              UseGlobal, AllocType, ArraySize, PlaceArgs,
1296                              NumPlaceArgs, OperatorNew, OperatorDelete))
1297    return ExprError();
1298
1299  // If this is an array allocation, compute whether the usual array
1300  // deallocation function for the type has a size_t parameter.
1301  bool UsualArrayDeleteWantsSize = false;
1302  if (ArraySize && !AllocType->isDependentType())
1303    UsualArrayDeleteWantsSize
1304      = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType);
1305
1306  SmallVector<Expr *, 8> AllPlaceArgs;
1307  if (OperatorNew) {
1308    // Add default arguments, if any.
1309    const FunctionProtoType *Proto =
1310      OperatorNew->getType()->getAs<FunctionProtoType>();
1311    VariadicCallType CallType =
1312      Proto->isVariadic() ? VariadicFunction : VariadicDoesNotApply;
1313
1314    if (GatherArgumentsForCall(PlacementLParen, OperatorNew,
1315                               Proto, 1, PlaceArgs, NumPlaceArgs,
1316                               AllPlaceArgs, CallType))
1317      return ExprError();
1318
1319    NumPlaceArgs = AllPlaceArgs.size();
1320    if (NumPlaceArgs > 0)
1321      PlaceArgs = &AllPlaceArgs[0];
1322
1323    DiagnoseSentinelCalls(OperatorNew, PlacementLParen,
1324                          PlaceArgs, NumPlaceArgs);
1325
1326    // FIXME: Missing call to CheckFunctionCall or equivalent
1327  }
1328
1329  // Warn if the type is over-aligned and is being allocated by global operator
1330  // new.
1331  if (NumPlaceArgs == 0 && OperatorNew &&
1332      (OperatorNew->isImplicit() ||
1333       getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) {
1334    if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){
1335      unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign();
1336      if (Align > SuitableAlign)
1337        Diag(StartLoc, diag::warn_overaligned_type)
1338            << AllocType
1339            << unsigned(Align / Context.getCharWidth())
1340            << unsigned(SuitableAlign / Context.getCharWidth());
1341    }
1342  }
1343
1344  QualType InitType = AllocType;
1345  // Array 'new' can't have any initializers except empty parentheses.
1346  // Initializer lists are also allowed, in C++11. Rely on the parser for the
1347  // dialect distinction.
1348  if (ResultType->isArrayType() || ArraySize) {
1349    if (!isLegalArrayNewInitializer(initStyle, Initializer)) {
1350      SourceRange InitRange(Inits[0]->getLocStart(),
1351                            Inits[NumInits - 1]->getLocEnd());
1352      Diag(StartLoc, diag::err_new_array_init_args) << InitRange;
1353      return ExprError();
1354    }
1355    if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) {
1356      // We do the initialization typechecking against the array type
1357      // corresponding to the number of initializers + 1 (to also check
1358      // default-initialization).
1359      unsigned NumElements = ILE->getNumInits() + 1;
1360      InitType = Context.getConstantArrayType(AllocType,
1361          llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements),
1362                                              ArrayType::Normal, 0);
1363    }
1364  }
1365
1366  if (!AllocType->isDependentType() &&
1367      !Expr::hasAnyTypeDependentArguments(
1368        llvm::makeArrayRef(Inits, NumInits))) {
1369    // C++11 [expr.new]p15:
1370    //   A new-expression that creates an object of type T initializes that
1371    //   object as follows:
1372    InitializationKind Kind
1373    //     - If the new-initializer is omitted, the object is default-
1374    //       initialized (8.5); if no initialization is performed,
1375    //       the object has indeterminate value
1376      = initStyle == CXXNewExpr::NoInit
1377          ? InitializationKind::CreateDefault(TypeRange.getBegin())
1378    //     - Otherwise, the new-initializer is interpreted according to the
1379    //       initialization rules of 8.5 for direct-initialization.
1380          : initStyle == CXXNewExpr::ListInit
1381              ? InitializationKind::CreateDirectList(TypeRange.getBegin())
1382              : InitializationKind::CreateDirect(TypeRange.getBegin(),
1383                                                 DirectInitRange.getBegin(),
1384                                                 DirectInitRange.getEnd());
1385
1386    InitializedEntity Entity
1387      = InitializedEntity::InitializeNew(StartLoc, InitType);
1388    InitializationSequence InitSeq(*this, Entity, Kind, Inits, NumInits);
1389    ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind,
1390                                          MultiExprArg(Inits, NumInits));
1391    if (FullInit.isInvalid())
1392      return ExprError();
1393
1394    // FullInit is our initializer; strip off CXXBindTemporaryExprs, because
1395    // we don't want the initialized object to be destructed.
1396    if (CXXBindTemporaryExpr *Binder =
1397            dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get()))
1398      FullInit = Owned(Binder->getSubExpr());
1399
1400    Initializer = FullInit.take();
1401  }
1402
1403  // Mark the new and delete operators as referenced.
1404  if (OperatorNew)
1405    MarkFunctionReferenced(StartLoc, OperatorNew);
1406  if (OperatorDelete)
1407    MarkFunctionReferenced(StartLoc, OperatorDelete);
1408
1409  // C++0x [expr.new]p17:
1410  //   If the new expression creates an array of objects of class type,
1411  //   access and ambiguity control are done for the destructor.
1412  QualType BaseAllocType = Context.getBaseElementType(AllocType);
1413  if (ArraySize && !BaseAllocType->isDependentType()) {
1414    if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) {
1415      if (CXXDestructorDecl *dtor = LookupDestructor(
1416              cast<CXXRecordDecl>(BaseRecordType->getDecl()))) {
1417        MarkFunctionReferenced(StartLoc, dtor);
1418        CheckDestructorAccess(StartLoc, dtor,
1419                              PDiag(diag::err_access_dtor)
1420                                << BaseAllocType);
1421        DiagnoseUseOfDecl(dtor, StartLoc);
1422      }
1423    }
1424  }
1425
1426  PlacementArgs.release();
1427
1428  return Owned(new (Context) CXXNewExpr(Context, UseGlobal, OperatorNew,
1429                                        OperatorDelete,
1430                                        UsualArrayDeleteWantsSize,
1431                                        PlaceArgs, NumPlaceArgs, TypeIdParens,
1432                                        ArraySize, initStyle, Initializer,
1433                                        ResultType, AllocTypeInfo,
1434                                        StartLoc, DirectInitRange));
1435}
1436
1437/// \brief Checks that a type is suitable as the allocated type
1438/// in a new-expression.
1439bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc,
1440                              SourceRange R) {
1441  // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an
1442  //   abstract class type or array thereof.
1443  if (AllocType->isFunctionType())
1444    return Diag(Loc, diag::err_bad_new_type)
1445      << AllocType << 0 << R;
1446  else if (AllocType->isReferenceType())
1447    return Diag(Loc, diag::err_bad_new_type)
1448      << AllocType << 1 << R;
1449  else if (!AllocType->isDependentType() &&
1450           RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R))
1451    return true;
1452  else if (RequireNonAbstractType(Loc, AllocType,
1453                                  diag::err_allocation_of_abstract_type))
1454    return true;
1455  else if (AllocType->isVariablyModifiedType())
1456    return Diag(Loc, diag::err_variably_modified_new_type)
1457             << AllocType;
1458  else if (unsigned AddressSpace = AllocType.getAddressSpace())
1459    return Diag(Loc, diag::err_address_space_qualified_new)
1460      << AllocType.getUnqualifiedType() << AddressSpace;
1461  else if (getLangOpts().ObjCAutoRefCount) {
1462    if (const ArrayType *AT = Context.getAsArrayType(AllocType)) {
1463      QualType BaseAllocType = Context.getBaseElementType(AT);
1464      if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None &&
1465          BaseAllocType->isObjCLifetimeType())
1466        return Diag(Loc, diag::err_arc_new_array_without_ownership)
1467          << BaseAllocType;
1468    }
1469  }
1470
1471  return false;
1472}
1473
1474/// \brief Determine whether the given function is a non-placement
1475/// deallocation function.
1476static bool isNonPlacementDeallocationFunction(FunctionDecl *FD) {
1477  if (FD->isInvalidDecl())
1478    return false;
1479
1480  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
1481    return Method->isUsualDeallocationFunction();
1482
1483  return ((FD->getOverloadedOperator() == OO_Delete ||
1484           FD->getOverloadedOperator() == OO_Array_Delete) &&
1485          FD->getNumParams() == 1);
1486}
1487
1488/// FindAllocationFunctions - Finds the overloads of operator new and delete
1489/// that are appropriate for the allocation.
1490bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range,
1491                                   bool UseGlobal, QualType AllocType,
1492                                   bool IsArray, Expr **PlaceArgs,
1493                                   unsigned NumPlaceArgs,
1494                                   FunctionDecl *&OperatorNew,
1495                                   FunctionDecl *&OperatorDelete) {
1496  // --- Choosing an allocation function ---
1497  // C++ 5.3.4p8 - 14 & 18
1498  // 1) If UseGlobal is true, only look in the global scope. Else, also look
1499  //   in the scope of the allocated class.
1500  // 2) If an array size is given, look for operator new[], else look for
1501  //   operator new.
1502  // 3) The first argument is always size_t. Append the arguments from the
1503  //   placement form.
1504
1505  SmallVector<Expr*, 8> AllocArgs(1 + NumPlaceArgs);
1506  // We don't care about the actual value of this argument.
1507  // FIXME: Should the Sema create the expression and embed it in the syntax
1508  // tree? Or should the consumer just recalculate the value?
1509  IntegerLiteral Size(Context, llvm::APInt::getNullValue(
1510                      Context.getTargetInfo().getPointerWidth(0)),
1511                      Context.getSizeType(),
1512                      SourceLocation());
1513  AllocArgs[0] = &Size;
1514  std::copy(PlaceArgs, PlaceArgs + NumPlaceArgs, AllocArgs.begin() + 1);
1515
1516  // C++ [expr.new]p8:
1517  //   If the allocated type is a non-array type, the allocation
1518  //   function's name is operator new and the deallocation function's
1519  //   name is operator delete. If the allocated type is an array
1520  //   type, the allocation function's name is operator new[] and the
1521  //   deallocation function's name is operator delete[].
1522  DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName(
1523                                        IsArray ? OO_Array_New : OO_New);
1524  DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
1525                                        IsArray ? OO_Array_Delete : OO_Delete);
1526
1527  QualType AllocElemType = Context.getBaseElementType(AllocType);
1528
1529  if (AllocElemType->isRecordType() && !UseGlobal) {
1530    CXXRecordDecl *Record
1531      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1532    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1533                          AllocArgs.size(), Record, /*AllowMissing=*/true,
1534                          OperatorNew))
1535      return true;
1536  }
1537  if (!OperatorNew) {
1538    // Didn't find a member overload. Look for a global one.
1539    DeclareGlobalNewDelete();
1540    DeclContext *TUDecl = Context.getTranslationUnitDecl();
1541    if (FindAllocationOverload(StartLoc, Range, NewName, &AllocArgs[0],
1542                          AllocArgs.size(), TUDecl, /*AllowMissing=*/false,
1543                          OperatorNew))
1544      return true;
1545  }
1546
1547  // We don't need an operator delete if we're running under
1548  // -fno-exceptions.
1549  if (!getLangOpts().Exceptions) {
1550    OperatorDelete = 0;
1551    return false;
1552  }
1553
1554  // FindAllocationOverload can change the passed in arguments, so we need to
1555  // copy them back.
1556  if (NumPlaceArgs > 0)
1557    std::copy(&AllocArgs[1], AllocArgs.end(), PlaceArgs);
1558
1559  // C++ [expr.new]p19:
1560  //
1561  //   If the new-expression begins with a unary :: operator, the
1562  //   deallocation function's name is looked up in the global
1563  //   scope. Otherwise, if the allocated type is a class type T or an
1564  //   array thereof, the deallocation function's name is looked up in
1565  //   the scope of T. If this lookup fails to find the name, or if
1566  //   the allocated type is not a class type or array thereof, the
1567  //   deallocation function's name is looked up in the global scope.
1568  LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName);
1569  if (AllocElemType->isRecordType() && !UseGlobal) {
1570    CXXRecordDecl *RD
1571      = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl());
1572    LookupQualifiedName(FoundDelete, RD);
1573  }
1574  if (FoundDelete.isAmbiguous())
1575    return true; // FIXME: clean up expressions?
1576
1577  if (FoundDelete.empty()) {
1578    DeclareGlobalNewDelete();
1579    LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl());
1580  }
1581
1582  FoundDelete.suppressDiagnostics();
1583
1584  SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches;
1585
1586  // Whether we're looking for a placement operator delete is dictated
1587  // by whether we selected a placement operator new, not by whether
1588  // we had explicit placement arguments.  This matters for things like
1589  //   struct A { void *operator new(size_t, int = 0); ... };
1590  //   A *a = new A()
1591  bool isPlacementNew = (NumPlaceArgs > 0 || OperatorNew->param_size() != 1);
1592
1593  if (isPlacementNew) {
1594    // C++ [expr.new]p20:
1595    //   A declaration of a placement deallocation function matches the
1596    //   declaration of a placement allocation function if it has the
1597    //   same number of parameters and, after parameter transformations
1598    //   (8.3.5), all parameter types except the first are
1599    //   identical. [...]
1600    //
1601    // To perform this comparison, we compute the function type that
1602    // the deallocation function should have, and use that type both
1603    // for template argument deduction and for comparison purposes.
1604    //
1605    // FIXME: this comparison should ignore CC and the like.
1606    QualType ExpectedFunctionType;
1607    {
1608      const FunctionProtoType *Proto
1609        = OperatorNew->getType()->getAs<FunctionProtoType>();
1610
1611      SmallVector<QualType, 4> ArgTypes;
1612      ArgTypes.push_back(Context.VoidPtrTy);
1613      for (unsigned I = 1, N = Proto->getNumArgs(); I < N; ++I)
1614        ArgTypes.push_back(Proto->getArgType(I));
1615
1616      FunctionProtoType::ExtProtoInfo EPI;
1617      EPI.Variadic = Proto->isVariadic();
1618
1619      ExpectedFunctionType
1620        = Context.getFunctionType(Context.VoidTy, ArgTypes.data(),
1621                                  ArgTypes.size(), EPI);
1622    }
1623
1624    for (LookupResult::iterator D = FoundDelete.begin(),
1625                             DEnd = FoundDelete.end();
1626         D != DEnd; ++D) {
1627      FunctionDecl *Fn = 0;
1628      if (FunctionTemplateDecl *FnTmpl
1629            = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) {
1630        // Perform template argument deduction to try to match the
1631        // expected function type.
1632        TemplateDeductionInfo Info(Context, StartLoc);
1633        if (DeduceTemplateArguments(FnTmpl, 0, ExpectedFunctionType, Fn, Info))
1634          continue;
1635      } else
1636        Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl());
1637
1638      if (Context.hasSameType(Fn->getType(), ExpectedFunctionType))
1639        Matches.push_back(std::make_pair(D.getPair(), Fn));
1640    }
1641  } else {
1642    // C++ [expr.new]p20:
1643    //   [...] Any non-placement deallocation function matches a
1644    //   non-placement allocation function. [...]
1645    for (LookupResult::iterator D = FoundDelete.begin(),
1646                             DEnd = FoundDelete.end();
1647         D != DEnd; ++D) {
1648      if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl()))
1649        if (isNonPlacementDeallocationFunction(Fn))
1650          Matches.push_back(std::make_pair(D.getPair(), Fn));
1651    }
1652  }
1653
1654  // C++ [expr.new]p20:
1655  //   [...] If the lookup finds a single matching deallocation
1656  //   function, that function will be called; otherwise, no
1657  //   deallocation function will be called.
1658  if (Matches.size() == 1) {
1659    OperatorDelete = Matches[0].second;
1660
1661    // C++0x [expr.new]p20:
1662    //   If the lookup finds the two-parameter form of a usual
1663    //   deallocation function (3.7.4.2) and that function, considered
1664    //   as a placement deallocation function, would have been
1665    //   selected as a match for the allocation function, the program
1666    //   is ill-formed.
1667    if (NumPlaceArgs && getLangOpts().CPlusPlus0x &&
1668        isNonPlacementDeallocationFunction(OperatorDelete)) {
1669      Diag(StartLoc, diag::err_placement_new_non_placement_delete)
1670        << SourceRange(PlaceArgs[0]->getLocStart(),
1671                       PlaceArgs[NumPlaceArgs - 1]->getLocEnd());
1672      Diag(OperatorDelete->getLocation(), diag::note_previous_decl)
1673        << DeleteName;
1674    } else {
1675      CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(),
1676                            Matches[0].first);
1677    }
1678  }
1679
1680  return false;
1681}
1682
1683/// FindAllocationOverload - Find an fitting overload for the allocation
1684/// function in the specified scope.
1685bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range,
1686                                  DeclarationName Name, Expr** Args,
1687                                  unsigned NumArgs, DeclContext *Ctx,
1688                                  bool AllowMissing, FunctionDecl *&Operator,
1689                                  bool Diagnose) {
1690  LookupResult R(*this, Name, StartLoc, LookupOrdinaryName);
1691  LookupQualifiedName(R, Ctx);
1692  if (R.empty()) {
1693    if (AllowMissing || !Diagnose)
1694      return false;
1695    return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1696      << Name << Range;
1697  }
1698
1699  if (R.isAmbiguous())
1700    return true;
1701
1702  R.suppressDiagnostics();
1703
1704  OverloadCandidateSet Candidates(StartLoc);
1705  for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end();
1706       Alloc != AllocEnd; ++Alloc) {
1707    // Even member operator new/delete are implicitly treated as
1708    // static, so don't use AddMemberCandidate.
1709    NamedDecl *D = (*Alloc)->getUnderlyingDecl();
1710
1711    if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) {
1712      AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(),
1713                                   /*ExplicitTemplateArgs=*/0,
1714                                   llvm::makeArrayRef(Args, NumArgs),
1715                                   Candidates,
1716                                   /*SuppressUserConversions=*/false);
1717      continue;
1718    }
1719
1720    FunctionDecl *Fn = cast<FunctionDecl>(D);
1721    AddOverloadCandidate(Fn, Alloc.getPair(),
1722                         llvm::makeArrayRef(Args, NumArgs), Candidates,
1723                         /*SuppressUserConversions=*/false);
1724  }
1725
1726  // Do the resolution.
1727  OverloadCandidateSet::iterator Best;
1728  switch (Candidates.BestViableFunction(*this, StartLoc, Best)) {
1729  case OR_Success: {
1730    // Got one!
1731    FunctionDecl *FnDecl = Best->Function;
1732    MarkFunctionReferenced(StartLoc, FnDecl);
1733    // The first argument is size_t, and the first parameter must be size_t,
1734    // too. This is checked on declaration and can be assumed. (It can't be
1735    // asserted on, though, since invalid decls are left in there.)
1736    // Watch out for variadic allocator function.
1737    unsigned NumArgsInFnDecl = FnDecl->getNumParams();
1738    for (unsigned i = 0; (i < NumArgs && i < NumArgsInFnDecl); ++i) {
1739      InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
1740                                                       FnDecl->getParamDecl(i));
1741
1742      if (!Diagnose && !CanPerformCopyInitialization(Entity, Owned(Args[i])))
1743        return true;
1744
1745      ExprResult Result
1746        = PerformCopyInitialization(Entity, SourceLocation(), Owned(Args[i]));
1747      if (Result.isInvalid())
1748        return true;
1749
1750      Args[i] = Result.takeAs<Expr>();
1751    }
1752
1753    Operator = FnDecl;
1754
1755    if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(),
1756                              Best->FoundDecl, Diagnose) == AR_inaccessible)
1757      return true;
1758
1759    return false;
1760  }
1761
1762  case OR_No_Viable_Function:
1763    if (Diagnose) {
1764      Diag(StartLoc, diag::err_ovl_no_viable_function_in_call)
1765        << Name << Range;
1766      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1767                                llvm::makeArrayRef(Args, NumArgs));
1768    }
1769    return true;
1770
1771  case OR_Ambiguous:
1772    if (Diagnose) {
1773      Diag(StartLoc, diag::err_ovl_ambiguous_call)
1774        << Name << Range;
1775      Candidates.NoteCandidates(*this, OCD_ViableCandidates,
1776                                llvm::makeArrayRef(Args, NumArgs));
1777    }
1778    return true;
1779
1780  case OR_Deleted: {
1781    if (Diagnose) {
1782      Diag(StartLoc, diag::err_ovl_deleted_call)
1783        << Best->Function->isDeleted()
1784        << Name
1785        << getDeletedOrUnavailableSuffix(Best->Function)
1786        << Range;
1787      Candidates.NoteCandidates(*this, OCD_AllCandidates,
1788                                llvm::makeArrayRef(Args, NumArgs));
1789    }
1790    return true;
1791  }
1792  }
1793  llvm_unreachable("Unreachable, bad result from BestViableFunction");
1794}
1795
1796
1797/// DeclareGlobalNewDelete - Declare the global forms of operator new and
1798/// delete. These are:
1799/// @code
1800///   // C++03:
1801///   void* operator new(std::size_t) throw(std::bad_alloc);
1802///   void* operator new[](std::size_t) throw(std::bad_alloc);
1803///   void operator delete(void *) throw();
1804///   void operator delete[](void *) throw();
1805///   // C++0x:
1806///   void* operator new(std::size_t);
1807///   void* operator new[](std::size_t);
1808///   void operator delete(void *);
1809///   void operator delete[](void *);
1810/// @endcode
1811/// C++0x operator delete is implicitly noexcept.
1812/// Note that the placement and nothrow forms of new are *not* implicitly
1813/// declared. Their use requires including \<new\>.
1814void Sema::DeclareGlobalNewDelete() {
1815  if (GlobalNewDeleteDeclared)
1816    return;
1817
1818  // C++ [basic.std.dynamic]p2:
1819  //   [...] The following allocation and deallocation functions (18.4) are
1820  //   implicitly declared in global scope in each translation unit of a
1821  //   program
1822  //
1823  //     C++03:
1824  //     void* operator new(std::size_t) throw(std::bad_alloc);
1825  //     void* operator new[](std::size_t) throw(std::bad_alloc);
1826  //     void  operator delete(void*) throw();
1827  //     void  operator delete[](void*) throw();
1828  //     C++0x:
1829  //     void* operator new(std::size_t);
1830  //     void* operator new[](std::size_t);
1831  //     void  operator delete(void*);
1832  //     void  operator delete[](void*);
1833  //
1834  //   These implicit declarations introduce only the function names operator
1835  //   new, operator new[], operator delete, operator delete[].
1836  //
1837  // Here, we need to refer to std::bad_alloc, so we will implicitly declare
1838  // "std" or "bad_alloc" as necessary to form the exception specification.
1839  // However, we do not make these implicit declarations visible to name
1840  // lookup.
1841  // Note that the C++0x versions of operator delete are deallocation functions,
1842  // and thus are implicitly noexcept.
1843  if (!StdBadAlloc && !getLangOpts().CPlusPlus0x) {
1844    // The "std::bad_alloc" class has not yet been declared, so build it
1845    // implicitly.
1846    StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class,
1847                                        getOrCreateStdNamespace(),
1848                                        SourceLocation(), SourceLocation(),
1849                                      &PP.getIdentifierTable().get("bad_alloc"),
1850                                        0);
1851    getStdBadAlloc()->setImplicit(true);
1852  }
1853
1854  GlobalNewDeleteDeclared = true;
1855
1856  QualType VoidPtr = Context.getPointerType(Context.VoidTy);
1857  QualType SizeT = Context.getSizeType();
1858  bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew;
1859
1860  DeclareGlobalAllocationFunction(
1861      Context.DeclarationNames.getCXXOperatorName(OO_New),
1862      VoidPtr, SizeT, AssumeSaneOperatorNew);
1863  DeclareGlobalAllocationFunction(
1864      Context.DeclarationNames.getCXXOperatorName(OO_Array_New),
1865      VoidPtr, SizeT, AssumeSaneOperatorNew);
1866  DeclareGlobalAllocationFunction(
1867      Context.DeclarationNames.getCXXOperatorName(OO_Delete),
1868      Context.VoidTy, VoidPtr);
1869  DeclareGlobalAllocationFunction(
1870      Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete),
1871      Context.VoidTy, VoidPtr);
1872}
1873
1874/// DeclareGlobalAllocationFunction - Declares a single implicit global
1875/// allocation function if it doesn't already exist.
1876void Sema::DeclareGlobalAllocationFunction(DeclarationName Name,
1877                                           QualType Return, QualType Argument,
1878                                           bool AddMallocAttr) {
1879  DeclContext *GlobalCtx = Context.getTranslationUnitDecl();
1880
1881  // Check if this function is already declared.
1882  {
1883    DeclContext::lookup_iterator Alloc, AllocEnd;
1884    for (llvm::tie(Alloc, AllocEnd) = GlobalCtx->lookup(Name);
1885         Alloc != AllocEnd; ++Alloc) {
1886      // Only look at non-template functions, as it is the predefined,
1887      // non-templated allocation function we are trying to declare here.
1888      if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) {
1889        QualType InitialParamType =
1890          Context.getCanonicalType(
1891            Func->getParamDecl(0)->getType().getUnqualifiedType());
1892        // FIXME: Do we need to check for default arguments here?
1893        if (Func->getNumParams() == 1 && InitialParamType == Argument) {
1894          if(AddMallocAttr && !Func->hasAttr<MallocAttr>())
1895            Func->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1896          return;
1897        }
1898      }
1899    }
1900  }
1901
1902  QualType BadAllocType;
1903  bool HasBadAllocExceptionSpec
1904    = (Name.getCXXOverloadedOperator() == OO_New ||
1905       Name.getCXXOverloadedOperator() == OO_Array_New);
1906  if (HasBadAllocExceptionSpec && !getLangOpts().CPlusPlus0x) {
1907    assert(StdBadAlloc && "Must have std::bad_alloc declared");
1908    BadAllocType = Context.getTypeDeclType(getStdBadAlloc());
1909  }
1910
1911  FunctionProtoType::ExtProtoInfo EPI;
1912  if (HasBadAllocExceptionSpec) {
1913    if (!getLangOpts().CPlusPlus0x) {
1914      EPI.ExceptionSpecType = EST_Dynamic;
1915      EPI.NumExceptions = 1;
1916      EPI.Exceptions = &BadAllocType;
1917    }
1918  } else {
1919    EPI.ExceptionSpecType = getLangOpts().CPlusPlus0x ?
1920                                EST_BasicNoexcept : EST_DynamicNone;
1921  }
1922
1923  QualType FnType = Context.getFunctionType(Return, &Argument, 1, EPI);
1924  FunctionDecl *Alloc =
1925    FunctionDecl::Create(Context, GlobalCtx, SourceLocation(),
1926                         SourceLocation(), Name,
1927                         FnType, /*TInfo=*/0, SC_None,
1928                         SC_None, false, true);
1929  Alloc->setImplicit();
1930
1931  if (AddMallocAttr)
1932    Alloc->addAttr(::new (Context) MallocAttr(SourceLocation(), Context));
1933
1934  ParmVarDecl *Param = ParmVarDecl::Create(Context, Alloc, SourceLocation(),
1935                                           SourceLocation(), 0,
1936                                           Argument, /*TInfo=*/0,
1937                                           SC_None, SC_None, 0);
1938  Alloc->setParams(Param);
1939
1940  // FIXME: Also add this declaration to the IdentifierResolver, but
1941  // make sure it is at the end of the chain to coincide with the
1942  // global scope.
1943  Context.getTranslationUnitDecl()->addDecl(Alloc);
1944}
1945
1946bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD,
1947                                    DeclarationName Name,
1948                                    FunctionDecl* &Operator, bool Diagnose) {
1949  LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName);
1950  // Try to find operator delete/operator delete[] in class scope.
1951  LookupQualifiedName(Found, RD);
1952
1953  if (Found.isAmbiguous())
1954    return true;
1955
1956  Found.suppressDiagnostics();
1957
1958  SmallVector<DeclAccessPair,4> Matches;
1959  for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
1960       F != FEnd; ++F) {
1961    NamedDecl *ND = (*F)->getUnderlyingDecl();
1962
1963    // Ignore template operator delete members from the check for a usual
1964    // deallocation function.
1965    if (isa<FunctionTemplateDecl>(ND))
1966      continue;
1967
1968    if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction())
1969      Matches.push_back(F.getPair());
1970  }
1971
1972  // There's exactly one suitable operator;  pick it.
1973  if (Matches.size() == 1) {
1974    Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl());
1975
1976    if (Operator->isDeleted()) {
1977      if (Diagnose) {
1978        Diag(StartLoc, diag::err_deleted_function_use);
1979        NoteDeletedFunction(Operator);
1980      }
1981      return true;
1982    }
1983
1984    if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(),
1985                              Matches[0], Diagnose) == AR_inaccessible)
1986      return true;
1987
1988    return false;
1989
1990  // We found multiple suitable operators;  complain about the ambiguity.
1991  } else if (!Matches.empty()) {
1992    if (Diagnose) {
1993      Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found)
1994        << Name << RD;
1995
1996      for (SmallVectorImpl<DeclAccessPair>::iterator
1997             F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F)
1998        Diag((*F)->getUnderlyingDecl()->getLocation(),
1999             diag::note_member_declared_here) << Name;
2000    }
2001    return true;
2002  }
2003
2004  // We did find operator delete/operator delete[] declarations, but
2005  // none of them were suitable.
2006  if (!Found.empty()) {
2007    if (Diagnose) {
2008      Diag(StartLoc, diag::err_no_suitable_delete_member_function_found)
2009        << Name << RD;
2010
2011      for (LookupResult::iterator F = Found.begin(), FEnd = Found.end();
2012           F != FEnd; ++F)
2013        Diag((*F)->getUnderlyingDecl()->getLocation(),
2014             diag::note_member_declared_here) << Name;
2015    }
2016    return true;
2017  }
2018
2019  // Look for a global declaration.
2020  DeclareGlobalNewDelete();
2021  DeclContext *TUDecl = Context.getTranslationUnitDecl();
2022
2023  CXXNullPtrLiteralExpr Null(Context.VoidPtrTy, SourceLocation());
2024  Expr* DeallocArgs[1];
2025  DeallocArgs[0] = &Null;
2026  if (FindAllocationOverload(StartLoc, SourceRange(), Name,
2027                             DeallocArgs, 1, TUDecl, !Diagnose,
2028                             Operator, Diagnose))
2029    return true;
2030
2031  assert(Operator && "Did not find a deallocation function!");
2032  return false;
2033}
2034
2035/// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in:
2036/// @code ::delete ptr; @endcode
2037/// or
2038/// @code delete [] ptr; @endcode
2039ExprResult
2040Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal,
2041                     bool ArrayForm, Expr *ExE) {
2042  // C++ [expr.delete]p1:
2043  //   The operand shall have a pointer type, or a class type having a single
2044  //   conversion function to a pointer type. The result has type void.
2045  //
2046  // DR599 amends "pointer type" to "pointer to object type" in both cases.
2047
2048  ExprResult Ex = Owned(ExE);
2049  FunctionDecl *OperatorDelete = 0;
2050  bool ArrayFormAsWritten = ArrayForm;
2051  bool UsualArrayDeleteWantsSize = false;
2052
2053  if (!Ex.get()->isTypeDependent()) {
2054    // Perform lvalue-to-rvalue cast, if needed.
2055    Ex = DefaultLvalueConversion(Ex.take());
2056
2057    QualType Type = Ex.get()->getType();
2058
2059    if (const RecordType *Record = Type->getAs<RecordType>()) {
2060      if (RequireCompleteType(StartLoc, Type,
2061                              diag::err_delete_incomplete_class_type))
2062        return ExprError();
2063
2064      SmallVector<CXXConversionDecl*, 4> ObjectPtrConversions;
2065
2066      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2067      const UnresolvedSetImpl *Conversions = RD->getVisibleConversionFunctions();
2068      for (UnresolvedSetImpl::iterator I = Conversions->begin(),
2069             E = Conversions->end(); I != E; ++I) {
2070        NamedDecl *D = I.getDecl();
2071        if (isa<UsingShadowDecl>(D))
2072          D = cast<UsingShadowDecl>(D)->getTargetDecl();
2073
2074        // Skip over templated conversion functions; they aren't considered.
2075        if (isa<FunctionTemplateDecl>(D))
2076          continue;
2077
2078        CXXConversionDecl *Conv = cast<CXXConversionDecl>(D);
2079
2080        QualType ConvType = Conv->getConversionType().getNonReferenceType();
2081        if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>())
2082          if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType())
2083            ObjectPtrConversions.push_back(Conv);
2084      }
2085      if (ObjectPtrConversions.size() == 1) {
2086        // We have a single conversion to a pointer-to-object type. Perform
2087        // that conversion.
2088        // TODO: don't redo the conversion calculation.
2089        ExprResult Res =
2090          PerformImplicitConversion(Ex.get(),
2091                            ObjectPtrConversions.front()->getConversionType(),
2092                                    AA_Converting);
2093        if (Res.isUsable()) {
2094          Ex = move(Res);
2095          Type = Ex.get()->getType();
2096        }
2097      }
2098      else if (ObjectPtrConversions.size() > 1) {
2099        Diag(StartLoc, diag::err_ambiguous_delete_operand)
2100              << Type << Ex.get()->getSourceRange();
2101        for (unsigned i= 0; i < ObjectPtrConversions.size(); i++)
2102          NoteOverloadCandidate(ObjectPtrConversions[i]);
2103        return ExprError();
2104      }
2105    }
2106
2107    if (!Type->isPointerType())
2108      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2109        << Type << Ex.get()->getSourceRange());
2110
2111    QualType Pointee = Type->getAs<PointerType>()->getPointeeType();
2112    QualType PointeeElem = Context.getBaseElementType(Pointee);
2113
2114    if (unsigned AddressSpace = Pointee.getAddressSpace())
2115      return Diag(Ex.get()->getLocStart(),
2116                  diag::err_address_space_qualified_delete)
2117               << Pointee.getUnqualifiedType() << AddressSpace;
2118
2119    CXXRecordDecl *PointeeRD = 0;
2120    if (Pointee->isVoidType() && !isSFINAEContext()) {
2121      // The C++ standard bans deleting a pointer to a non-object type, which
2122      // effectively bans deletion of "void*". However, most compilers support
2123      // this, so we treat it as a warning unless we're in a SFINAE context.
2124      Diag(StartLoc, diag::ext_delete_void_ptr_operand)
2125        << Type << Ex.get()->getSourceRange();
2126    } else if (Pointee->isFunctionType() || Pointee->isVoidType()) {
2127      return ExprError(Diag(StartLoc, diag::err_delete_operand)
2128        << Type << Ex.get()->getSourceRange());
2129    } else if (!Pointee->isDependentType()) {
2130      if (!RequireCompleteType(StartLoc, Pointee,
2131                               diag::warn_delete_incomplete, Ex.get())) {
2132        if (const RecordType *RT = PointeeElem->getAs<RecordType>())
2133          PointeeRD = cast<CXXRecordDecl>(RT->getDecl());
2134      }
2135    }
2136
2137    // C++ [expr.delete]p2:
2138    //   [Note: a pointer to a const type can be the operand of a
2139    //   delete-expression; it is not necessary to cast away the constness
2140    //   (5.2.11) of the pointer expression before it is used as the operand
2141    //   of the delete-expression. ]
2142    if (!Context.hasSameType(Ex.get()->getType(), Context.VoidPtrTy))
2143      Ex = Owned(ImplicitCastExpr::Create(Context, Context.VoidPtrTy,
2144                                          CK_BitCast, Ex.take(), 0, VK_RValue));
2145
2146    if (Pointee->isArrayType() && !ArrayForm) {
2147      Diag(StartLoc, diag::warn_delete_array_type)
2148          << Type << Ex.get()->getSourceRange()
2149          << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]");
2150      ArrayForm = true;
2151    }
2152
2153    DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName(
2154                                      ArrayForm ? OO_Array_Delete : OO_Delete);
2155
2156    if (PointeeRD) {
2157      if (!UseGlobal &&
2158          FindDeallocationFunction(StartLoc, PointeeRD, DeleteName,
2159                                   OperatorDelete))
2160        return ExprError();
2161
2162      // If we're allocating an array of records, check whether the
2163      // usual operator delete[] has a size_t parameter.
2164      if (ArrayForm) {
2165        // If the user specifically asked to use the global allocator,
2166        // we'll need to do the lookup into the class.
2167        if (UseGlobal)
2168          UsualArrayDeleteWantsSize =
2169            doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem);
2170
2171        // Otherwise, the usual operator delete[] should be the
2172        // function we just found.
2173        else if (isa<CXXMethodDecl>(OperatorDelete))
2174          UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2);
2175      }
2176
2177      if (!PointeeRD->hasIrrelevantDestructor())
2178        if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2179          MarkFunctionReferenced(StartLoc,
2180                                    const_cast<CXXDestructorDecl*>(Dtor));
2181          DiagnoseUseOfDecl(Dtor, StartLoc);
2182        }
2183
2184      // C++ [expr.delete]p3:
2185      //   In the first alternative (delete object), if the static type of the
2186      //   object to be deleted is different from its dynamic type, the static
2187      //   type shall be a base class of the dynamic type of the object to be
2188      //   deleted and the static type shall have a virtual destructor or the
2189      //   behavior is undefined.
2190      //
2191      // Note: a final class cannot be derived from, no issue there
2192      if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) {
2193        CXXDestructorDecl *dtor = PointeeRD->getDestructor();
2194        if (dtor && !dtor->isVirtual()) {
2195          if (PointeeRD->isAbstract()) {
2196            // If the class is abstract, we warn by default, because we're
2197            // sure the code has undefined behavior.
2198            Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor)
2199                << PointeeElem;
2200          } else if (!ArrayForm) {
2201            // Otherwise, if this is not an array delete, it's a bit suspect,
2202            // but not necessarily wrong.
2203            Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem;
2204          }
2205        }
2206      }
2207
2208    } else if (getLangOpts().ObjCAutoRefCount &&
2209               PointeeElem->isObjCLifetimeType() &&
2210               (PointeeElem.getObjCLifetime() == Qualifiers::OCL_Strong ||
2211                PointeeElem.getObjCLifetime() == Qualifiers::OCL_Weak) &&
2212               ArrayForm) {
2213      Diag(StartLoc, diag::warn_err_new_delete_object_array)
2214        << 1 << PointeeElem;
2215    }
2216
2217    if (!OperatorDelete) {
2218      // Look for a global declaration.
2219      DeclareGlobalNewDelete();
2220      DeclContext *TUDecl = Context.getTranslationUnitDecl();
2221      Expr *Arg = Ex.get();
2222      if (FindAllocationOverload(StartLoc, SourceRange(), DeleteName,
2223                                 &Arg, 1, TUDecl, /*AllowMissing=*/false,
2224                                 OperatorDelete))
2225        return ExprError();
2226    }
2227
2228    MarkFunctionReferenced(StartLoc, OperatorDelete);
2229
2230    // Check access and ambiguity of operator delete and destructor.
2231    if (PointeeRD) {
2232      if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) {
2233          CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor,
2234                      PDiag(diag::err_access_dtor) << PointeeElem);
2235      }
2236    }
2237
2238  }
2239
2240  return Owned(new (Context) CXXDeleteExpr(Context.VoidTy, UseGlobal, ArrayForm,
2241                                           ArrayFormAsWritten,
2242                                           UsualArrayDeleteWantsSize,
2243                                           OperatorDelete, Ex.take(), StartLoc));
2244}
2245
2246/// \brief Check the use of the given variable as a C++ condition in an if,
2247/// while, do-while, or switch statement.
2248ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar,
2249                                        SourceLocation StmtLoc,
2250                                        bool ConvertToBoolean) {
2251  QualType T = ConditionVar->getType();
2252
2253  // C++ [stmt.select]p2:
2254  //   The declarator shall not specify a function or an array.
2255  if (T->isFunctionType())
2256    return ExprError(Diag(ConditionVar->getLocation(),
2257                          diag::err_invalid_use_of_function_type)
2258                       << ConditionVar->getSourceRange());
2259  else if (T->isArrayType())
2260    return ExprError(Diag(ConditionVar->getLocation(),
2261                          diag::err_invalid_use_of_array_type)
2262                     << ConditionVar->getSourceRange());
2263
2264  ExprResult Condition =
2265    Owned(DeclRefExpr::Create(Context, NestedNameSpecifierLoc(),
2266                              SourceLocation(),
2267                              ConditionVar,
2268                              /*enclosing*/ false,
2269                              ConditionVar->getLocation(),
2270                              ConditionVar->getType().getNonReferenceType(),
2271                              VK_LValue));
2272
2273  MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get()));
2274
2275  if (ConvertToBoolean) {
2276    Condition = CheckBooleanCondition(Condition.take(), StmtLoc);
2277    if (Condition.isInvalid())
2278      return ExprError();
2279  }
2280
2281  return move(Condition);
2282}
2283
2284/// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid.
2285ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) {
2286  // C++ 6.4p4:
2287  // The value of a condition that is an initialized declaration in a statement
2288  // other than a switch statement is the value of the declared variable
2289  // implicitly converted to type bool. If that conversion is ill-formed, the
2290  // program is ill-formed.
2291  // The value of a condition that is an expression is the value of the
2292  // expression, implicitly converted to bool.
2293  //
2294  return PerformContextuallyConvertToBool(CondExpr);
2295}
2296
2297/// Helper function to determine whether this is the (deprecated) C++
2298/// conversion from a string literal to a pointer to non-const char or
2299/// non-const wchar_t (for narrow and wide string literals,
2300/// respectively).
2301bool
2302Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) {
2303  // Look inside the implicit cast, if it exists.
2304  if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From))
2305    From = Cast->getSubExpr();
2306
2307  // A string literal (2.13.4) that is not a wide string literal can
2308  // be converted to an rvalue of type "pointer to char"; a wide
2309  // string literal can be converted to an rvalue of type "pointer
2310  // to wchar_t" (C++ 4.2p2).
2311  if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens()))
2312    if (const PointerType *ToPtrType = ToType->getAs<PointerType>())
2313      if (const BuiltinType *ToPointeeType
2314          = ToPtrType->getPointeeType()->getAs<BuiltinType>()) {
2315        // This conversion is considered only when there is an
2316        // explicit appropriate pointer target type (C++ 4.2p2).
2317        if (!ToPtrType->getPointeeType().hasQualifiers()) {
2318          switch (StrLit->getKind()) {
2319            case StringLiteral::UTF8:
2320            case StringLiteral::UTF16:
2321            case StringLiteral::UTF32:
2322              // We don't allow UTF literals to be implicitly converted
2323              break;
2324            case StringLiteral::Ascii:
2325              return (ToPointeeType->getKind() == BuiltinType::Char_U ||
2326                      ToPointeeType->getKind() == BuiltinType::Char_S);
2327            case StringLiteral::Wide:
2328              return ToPointeeType->isWideCharType();
2329          }
2330        }
2331      }
2332
2333  return false;
2334}
2335
2336static ExprResult BuildCXXCastArgument(Sema &S,
2337                                       SourceLocation CastLoc,
2338                                       QualType Ty,
2339                                       CastKind Kind,
2340                                       CXXMethodDecl *Method,
2341                                       DeclAccessPair FoundDecl,
2342                                       bool HadMultipleCandidates,
2343                                       Expr *From) {
2344  switch (Kind) {
2345  default: llvm_unreachable("Unhandled cast kind!");
2346  case CK_ConstructorConversion: {
2347    CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method);
2348    ASTOwningVector<Expr*> ConstructorArgs(S);
2349
2350    if (S.CompleteConstructorCall(Constructor,
2351                                  MultiExprArg(&From, 1),
2352                                  CastLoc, ConstructorArgs))
2353      return ExprError();
2354
2355    S.CheckConstructorAccess(CastLoc, Constructor,
2356                             InitializedEntity::InitializeTemporary(Ty),
2357                             Constructor->getAccess());
2358
2359    ExprResult Result
2360      = S.BuildCXXConstructExpr(CastLoc, Ty, cast<CXXConstructorDecl>(Method),
2361                                move_arg(ConstructorArgs),
2362                                HadMultipleCandidates, /*ZeroInit*/ false,
2363                                CXXConstructExpr::CK_Complete, SourceRange());
2364    if (Result.isInvalid())
2365      return ExprError();
2366
2367    return S.MaybeBindToTemporary(Result.takeAs<Expr>());
2368  }
2369
2370  case CK_UserDefinedConversion: {
2371    assert(!From->getType()->isPointerType() && "Arg can't have pointer type!");
2372
2373    // Create an implicit call expr that calls it.
2374    CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method);
2375    ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv,
2376                                                 HadMultipleCandidates);
2377    if (Result.isInvalid())
2378      return ExprError();
2379    // Record usage of conversion in an implicit cast.
2380    Result = S.Owned(ImplicitCastExpr::Create(S.Context,
2381                                              Result.get()->getType(),
2382                                              CK_UserDefinedConversion,
2383                                              Result.get(), 0,
2384                                              Result.get()->getValueKind()));
2385
2386    S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ 0, FoundDecl);
2387
2388    return S.MaybeBindToTemporary(Result.get());
2389  }
2390  }
2391}
2392
2393/// PerformImplicitConversion - Perform an implicit conversion of the
2394/// expression From to the type ToType using the pre-computed implicit
2395/// conversion sequence ICS. Returns the converted
2396/// expression. Action is the kind of conversion we're performing,
2397/// used in the error message.
2398ExprResult
2399Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2400                                const ImplicitConversionSequence &ICS,
2401                                AssignmentAction Action,
2402                                CheckedConversionKind CCK) {
2403  switch (ICS.getKind()) {
2404  case ImplicitConversionSequence::StandardConversion: {
2405    ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard,
2406                                               Action, CCK);
2407    if (Res.isInvalid())
2408      return ExprError();
2409    From = Res.take();
2410    break;
2411  }
2412
2413  case ImplicitConversionSequence::UserDefinedConversion: {
2414
2415      FunctionDecl *FD = ICS.UserDefined.ConversionFunction;
2416      CastKind CastKind;
2417      QualType BeforeToType;
2418      assert(FD && "FIXME: aggregate initialization from init list");
2419      if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) {
2420        CastKind = CK_UserDefinedConversion;
2421
2422        // If the user-defined conversion is specified by a conversion function,
2423        // the initial standard conversion sequence converts the source type to
2424        // the implicit object parameter of the conversion function.
2425        BeforeToType = Context.getTagDeclType(Conv->getParent());
2426      } else {
2427        const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD);
2428        CastKind = CK_ConstructorConversion;
2429        // Do no conversion if dealing with ... for the first conversion.
2430        if (!ICS.UserDefined.EllipsisConversion) {
2431          // If the user-defined conversion is specified by a constructor, the
2432          // initial standard conversion sequence converts the source type to the
2433          // type required by the argument of the constructor
2434          BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType();
2435        }
2436      }
2437      // Watch out for elipsis conversion.
2438      if (!ICS.UserDefined.EllipsisConversion) {
2439        ExprResult Res =
2440          PerformImplicitConversion(From, BeforeToType,
2441                                    ICS.UserDefined.Before, AA_Converting,
2442                                    CCK);
2443        if (Res.isInvalid())
2444          return ExprError();
2445        From = Res.take();
2446      }
2447
2448      ExprResult CastArg
2449        = BuildCXXCastArgument(*this,
2450                               From->getLocStart(),
2451                               ToType.getNonReferenceType(),
2452                               CastKind, cast<CXXMethodDecl>(FD),
2453                               ICS.UserDefined.FoundConversionFunction,
2454                               ICS.UserDefined.HadMultipleCandidates,
2455                               From);
2456
2457      if (CastArg.isInvalid())
2458        return ExprError();
2459
2460      From = CastArg.take();
2461
2462      return PerformImplicitConversion(From, ToType, ICS.UserDefined.After,
2463                                       AA_Converting, CCK);
2464  }
2465
2466  case ImplicitConversionSequence::AmbiguousConversion:
2467    ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(),
2468                          PDiag(diag::err_typecheck_ambiguous_condition)
2469                            << From->getSourceRange());
2470     return ExprError();
2471
2472  case ImplicitConversionSequence::EllipsisConversion:
2473    llvm_unreachable("Cannot perform an ellipsis conversion");
2474
2475  case ImplicitConversionSequence::BadConversion:
2476    return ExprError();
2477  }
2478
2479  // Everything went well.
2480  return Owned(From);
2481}
2482
2483/// PerformImplicitConversion - Perform an implicit conversion of the
2484/// expression From to the type ToType by following the standard
2485/// conversion sequence SCS. Returns the converted
2486/// expression. Flavor is the context in which we're performing this
2487/// conversion, for use in error messages.
2488ExprResult
2489Sema::PerformImplicitConversion(Expr *From, QualType ToType,
2490                                const StandardConversionSequence& SCS,
2491                                AssignmentAction Action,
2492                                CheckedConversionKind CCK) {
2493  bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast);
2494
2495  // Overall FIXME: we are recomputing too many types here and doing far too
2496  // much extra work. What this means is that we need to keep track of more
2497  // information that is computed when we try the implicit conversion initially,
2498  // so that we don't need to recompute anything here.
2499  QualType FromType = From->getType();
2500
2501  if (SCS.CopyConstructor) {
2502    // FIXME: When can ToType be a reference type?
2503    assert(!ToType->isReferenceType());
2504    if (SCS.Second == ICK_Derived_To_Base) {
2505      ASTOwningVector<Expr*> ConstructorArgs(*this);
2506      if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor),
2507                                  MultiExprArg(*this, &From, 1),
2508                                  /*FIXME:ConstructLoc*/SourceLocation(),
2509                                  ConstructorArgs))
2510        return ExprError();
2511      return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2512                                   ToType, SCS.CopyConstructor,
2513                                   move_arg(ConstructorArgs),
2514                                   /*HadMultipleCandidates*/ false,
2515                                   /*ZeroInit*/ false,
2516                                   CXXConstructExpr::CK_Complete,
2517                                   SourceRange());
2518    }
2519    return BuildCXXConstructExpr(/*FIXME:ConstructLoc*/SourceLocation(),
2520                                 ToType, SCS.CopyConstructor,
2521                                 MultiExprArg(*this, &From, 1),
2522                                 /*HadMultipleCandidates*/ false,
2523                                 /*ZeroInit*/ false,
2524                                 CXXConstructExpr::CK_Complete,
2525                                 SourceRange());
2526  }
2527
2528  // Resolve overloaded function references.
2529  if (Context.hasSameType(FromType, Context.OverloadTy)) {
2530    DeclAccessPair Found;
2531    FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType,
2532                                                          true, Found);
2533    if (!Fn)
2534      return ExprError();
2535
2536    if (DiagnoseUseOfDecl(Fn, From->getLocStart()))
2537      return ExprError();
2538
2539    From = FixOverloadedFunctionReference(From, Found, Fn);
2540    FromType = From->getType();
2541  }
2542
2543  // Perform the first implicit conversion.
2544  switch (SCS.First) {
2545  case ICK_Identity:
2546    // Nothing to do.
2547    break;
2548
2549  case ICK_Lvalue_To_Rvalue: {
2550    assert(From->getObjectKind() != OK_ObjCProperty);
2551    FromType = FromType.getUnqualifiedType();
2552    ExprResult FromRes = DefaultLvalueConversion(From);
2553    assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!");
2554    From = FromRes.take();
2555    break;
2556  }
2557
2558  case ICK_Array_To_Pointer:
2559    FromType = Context.getArrayDecayedType(FromType);
2560    From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay,
2561                             VK_RValue, /*BasePath=*/0, CCK).take();
2562    break;
2563
2564  case ICK_Function_To_Pointer:
2565    FromType = Context.getPointerType(FromType);
2566    From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay,
2567                             VK_RValue, /*BasePath=*/0, CCK).take();
2568    break;
2569
2570  default:
2571    llvm_unreachable("Improper first standard conversion");
2572  }
2573
2574  // Perform the second implicit conversion
2575  switch (SCS.Second) {
2576  case ICK_Identity:
2577    // If both sides are functions (or pointers/references to them), there could
2578    // be incompatible exception declarations.
2579    if (CheckExceptionSpecCompatibility(From, ToType))
2580      return ExprError();
2581    // Nothing else to do.
2582    break;
2583
2584  case ICK_NoReturn_Adjustment:
2585    // If both sides are functions (or pointers/references to them), there could
2586    // be incompatible exception declarations.
2587    if (CheckExceptionSpecCompatibility(From, ToType))
2588      return ExprError();
2589
2590    From = ImpCastExprToType(From, ToType, CK_NoOp,
2591                             VK_RValue, /*BasePath=*/0, CCK).take();
2592    break;
2593
2594  case ICK_Integral_Promotion:
2595  case ICK_Integral_Conversion:
2596    From = ImpCastExprToType(From, ToType, CK_IntegralCast,
2597                             VK_RValue, /*BasePath=*/0, CCK).take();
2598    break;
2599
2600  case ICK_Floating_Promotion:
2601  case ICK_Floating_Conversion:
2602    From = ImpCastExprToType(From, ToType, CK_FloatingCast,
2603                             VK_RValue, /*BasePath=*/0, CCK).take();
2604    break;
2605
2606  case ICK_Complex_Promotion:
2607  case ICK_Complex_Conversion: {
2608    QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType();
2609    QualType ToEl = ToType->getAs<ComplexType>()->getElementType();
2610    CastKind CK;
2611    if (FromEl->isRealFloatingType()) {
2612      if (ToEl->isRealFloatingType())
2613        CK = CK_FloatingComplexCast;
2614      else
2615        CK = CK_FloatingComplexToIntegralComplex;
2616    } else if (ToEl->isRealFloatingType()) {
2617      CK = CK_IntegralComplexToFloatingComplex;
2618    } else {
2619      CK = CK_IntegralComplexCast;
2620    }
2621    From = ImpCastExprToType(From, ToType, CK,
2622                             VK_RValue, /*BasePath=*/0, CCK).take();
2623    break;
2624  }
2625
2626  case ICK_Floating_Integral:
2627    if (ToType->isRealFloatingType())
2628      From = ImpCastExprToType(From, ToType, CK_IntegralToFloating,
2629                               VK_RValue, /*BasePath=*/0, CCK).take();
2630    else
2631      From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral,
2632                               VK_RValue, /*BasePath=*/0, CCK).take();
2633    break;
2634
2635  case ICK_Compatible_Conversion:
2636      From = ImpCastExprToType(From, ToType, CK_NoOp,
2637                               VK_RValue, /*BasePath=*/0, CCK).take();
2638    break;
2639
2640  case ICK_Writeback_Conversion:
2641  case ICK_Pointer_Conversion: {
2642    if (SCS.IncompatibleObjC && Action != AA_Casting) {
2643      // Diagnose incompatible Objective-C conversions
2644      if (Action == AA_Initializing || Action == AA_Assigning)
2645        Diag(From->getLocStart(),
2646             diag::ext_typecheck_convert_incompatible_pointer)
2647          << ToType << From->getType() << Action
2648          << From->getSourceRange() << 0;
2649      else
2650        Diag(From->getLocStart(),
2651             diag::ext_typecheck_convert_incompatible_pointer)
2652          << From->getType() << ToType << Action
2653          << From->getSourceRange() << 0;
2654
2655      if (From->getType()->isObjCObjectPointerType() &&
2656          ToType->isObjCObjectPointerType())
2657        EmitRelatedResultTypeNote(From);
2658    }
2659    else if (getLangOpts().ObjCAutoRefCount &&
2660             !CheckObjCARCUnavailableWeakConversion(ToType,
2661                                                    From->getType())) {
2662      if (Action == AA_Initializing)
2663        Diag(From->getLocStart(),
2664             diag::err_arc_weak_unavailable_assign);
2665      else
2666        Diag(From->getLocStart(),
2667             diag::err_arc_convesion_of_weak_unavailable)
2668          << (Action == AA_Casting) << From->getType() << ToType
2669          << From->getSourceRange();
2670    }
2671
2672    CastKind Kind = CK_Invalid;
2673    CXXCastPath BasePath;
2674    if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle))
2675      return ExprError();
2676
2677    // Make sure we extend blocks if necessary.
2678    // FIXME: doing this here is really ugly.
2679    if (Kind == CK_BlockPointerToObjCPointerCast) {
2680      ExprResult E = From;
2681      (void) PrepareCastToObjCObjectPointer(E);
2682      From = E.take();
2683    }
2684
2685    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2686             .take();
2687    break;
2688  }
2689
2690  case ICK_Pointer_Member: {
2691    CastKind Kind = CK_Invalid;
2692    CXXCastPath BasePath;
2693    if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle))
2694      return ExprError();
2695    if (CheckExceptionSpecCompatibility(From, ToType))
2696      return ExprError();
2697    From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK)
2698             .take();
2699    break;
2700  }
2701
2702  case ICK_Boolean_Conversion:
2703    // Perform half-to-boolean conversion via float.
2704    if (From->getType()->isHalfType()) {
2705      From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).take();
2706      FromType = Context.FloatTy;
2707    }
2708
2709    From = ImpCastExprToType(From, Context.BoolTy,
2710                             ScalarTypeToBooleanCastKind(FromType),
2711                             VK_RValue, /*BasePath=*/0, CCK).take();
2712    break;
2713
2714  case ICK_Derived_To_Base: {
2715    CXXCastPath BasePath;
2716    if (CheckDerivedToBaseConversion(From->getType(),
2717                                     ToType.getNonReferenceType(),
2718                                     From->getLocStart(),
2719                                     From->getSourceRange(),
2720                                     &BasePath,
2721                                     CStyle))
2722      return ExprError();
2723
2724    From = ImpCastExprToType(From, ToType.getNonReferenceType(),
2725                      CK_DerivedToBase, From->getValueKind(),
2726                      &BasePath, CCK).take();
2727    break;
2728  }
2729
2730  case ICK_Vector_Conversion:
2731    From = ImpCastExprToType(From, ToType, CK_BitCast,
2732                             VK_RValue, /*BasePath=*/0, CCK).take();
2733    break;
2734
2735  case ICK_Vector_Splat:
2736    From = ImpCastExprToType(From, ToType, CK_VectorSplat,
2737                             VK_RValue, /*BasePath=*/0, CCK).take();
2738    break;
2739
2740  case ICK_Complex_Real:
2741    // Case 1.  x -> _Complex y
2742    if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) {
2743      QualType ElType = ToComplex->getElementType();
2744      bool isFloatingComplex = ElType->isRealFloatingType();
2745
2746      // x -> y
2747      if (Context.hasSameUnqualifiedType(ElType, From->getType())) {
2748        // do nothing
2749      } else if (From->getType()->isRealFloatingType()) {
2750        From = ImpCastExprToType(From, ElType,
2751                isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).take();
2752      } else {
2753        assert(From->getType()->isIntegerType());
2754        From = ImpCastExprToType(From, ElType,
2755                isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).take();
2756      }
2757      // y -> _Complex y
2758      From = ImpCastExprToType(From, ToType,
2759                   isFloatingComplex ? CK_FloatingRealToComplex
2760                                     : CK_IntegralRealToComplex).take();
2761
2762    // Case 2.  _Complex x -> y
2763    } else {
2764      const ComplexType *FromComplex = From->getType()->getAs<ComplexType>();
2765      assert(FromComplex);
2766
2767      QualType ElType = FromComplex->getElementType();
2768      bool isFloatingComplex = ElType->isRealFloatingType();
2769
2770      // _Complex x -> x
2771      From = ImpCastExprToType(From, ElType,
2772                   isFloatingComplex ? CK_FloatingComplexToReal
2773                                     : CK_IntegralComplexToReal,
2774                               VK_RValue, /*BasePath=*/0, CCK).take();
2775
2776      // x -> y
2777      if (Context.hasSameUnqualifiedType(ElType, ToType)) {
2778        // do nothing
2779      } else if (ToType->isRealFloatingType()) {
2780        From = ImpCastExprToType(From, ToType,
2781                   isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating,
2782                                 VK_RValue, /*BasePath=*/0, CCK).take();
2783      } else {
2784        assert(ToType->isIntegerType());
2785        From = ImpCastExprToType(From, ToType,
2786                   isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast,
2787                                 VK_RValue, /*BasePath=*/0, CCK).take();
2788      }
2789    }
2790    break;
2791
2792  case ICK_Block_Pointer_Conversion: {
2793    From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast,
2794                             VK_RValue, /*BasePath=*/0, CCK).take();
2795    break;
2796  }
2797
2798  case ICK_TransparentUnionConversion: {
2799    ExprResult FromRes = Owned(From);
2800    Sema::AssignConvertType ConvTy =
2801      CheckTransparentUnionArgumentConstraints(ToType, FromRes);
2802    if (FromRes.isInvalid())
2803      return ExprError();
2804    From = FromRes.take();
2805    assert ((ConvTy == Sema::Compatible) &&
2806            "Improper transparent union conversion");
2807    (void)ConvTy;
2808    break;
2809  }
2810
2811  case ICK_Lvalue_To_Rvalue:
2812  case ICK_Array_To_Pointer:
2813  case ICK_Function_To_Pointer:
2814  case ICK_Qualification:
2815  case ICK_Num_Conversion_Kinds:
2816    llvm_unreachable("Improper second standard conversion");
2817  }
2818
2819  switch (SCS.Third) {
2820  case ICK_Identity:
2821    // Nothing to do.
2822    break;
2823
2824  case ICK_Qualification: {
2825    // The qualification keeps the category of the inner expression, unless the
2826    // target type isn't a reference.
2827    ExprValueKind VK = ToType->isReferenceType() ?
2828                                  From->getValueKind() : VK_RValue;
2829    From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context),
2830                             CK_NoOp, VK, /*BasePath=*/0, CCK).take();
2831
2832    if (SCS.DeprecatedStringLiteralToCharPtr &&
2833        !getLangOpts().WritableStrings)
2834      Diag(From->getLocStart(), diag::warn_deprecated_string_literal_conversion)
2835        << ToType.getNonReferenceType();
2836
2837    break;
2838    }
2839
2840  default:
2841    llvm_unreachable("Improper third standard conversion");
2842  }
2843
2844  // If this conversion sequence involved a scalar -> atomic conversion, perform
2845  // that conversion now.
2846  if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>())
2847    if (Context.hasSameType(ToAtomic->getValueType(), From->getType()))
2848      From = ImpCastExprToType(From, ToType, CK_NonAtomicToAtomic, VK_RValue, 0,
2849                               CCK).take();
2850
2851  return Owned(From);
2852}
2853
2854ExprResult Sema::ActOnUnaryTypeTrait(UnaryTypeTrait UTT,
2855                                     SourceLocation KWLoc,
2856                                     ParsedType Ty,
2857                                     SourceLocation RParen) {
2858  TypeSourceInfo *TSInfo;
2859  QualType T = GetTypeFromParser(Ty, &TSInfo);
2860
2861  if (!TSInfo)
2862    TSInfo = Context.getTrivialTypeSourceInfo(T);
2863  return BuildUnaryTypeTrait(UTT, KWLoc, TSInfo, RParen);
2864}
2865
2866/// \brief Check the completeness of a type in a unary type trait.
2867///
2868/// If the particular type trait requires a complete type, tries to complete
2869/// it. If completing the type fails, a diagnostic is emitted and false
2870/// returned. If completing the type succeeds or no completion was required,
2871/// returns true.
2872static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S,
2873                                                UnaryTypeTrait UTT,
2874                                                SourceLocation Loc,
2875                                                QualType ArgTy) {
2876  // C++0x [meta.unary.prop]p3:
2877  //   For all of the class templates X declared in this Clause, instantiating
2878  //   that template with a template argument that is a class template
2879  //   specialization may result in the implicit instantiation of the template
2880  //   argument if and only if the semantics of X require that the argument
2881  //   must be a complete type.
2882  // We apply this rule to all the type trait expressions used to implement
2883  // these class templates. We also try to follow any GCC documented behavior
2884  // in these expressions to ensure portability of standard libraries.
2885  switch (UTT) {
2886    // is_complete_type somewhat obviously cannot require a complete type.
2887  case UTT_IsCompleteType:
2888    // Fall-through
2889
2890    // These traits are modeled on the type predicates in C++0x
2891    // [meta.unary.cat] and [meta.unary.comp]. They are not specified as
2892    // requiring a complete type, as whether or not they return true cannot be
2893    // impacted by the completeness of the type.
2894  case UTT_IsVoid:
2895  case UTT_IsIntegral:
2896  case UTT_IsFloatingPoint:
2897  case UTT_IsArray:
2898  case UTT_IsPointer:
2899  case UTT_IsLvalueReference:
2900  case UTT_IsRvalueReference:
2901  case UTT_IsMemberFunctionPointer:
2902  case UTT_IsMemberObjectPointer:
2903  case UTT_IsEnum:
2904  case UTT_IsUnion:
2905  case UTT_IsClass:
2906  case UTT_IsFunction:
2907  case UTT_IsReference:
2908  case UTT_IsArithmetic:
2909  case UTT_IsFundamental:
2910  case UTT_IsObject:
2911  case UTT_IsScalar:
2912  case UTT_IsCompound:
2913  case UTT_IsMemberPointer:
2914    // Fall-through
2915
2916    // These traits are modeled on type predicates in C++0x [meta.unary.prop]
2917    // which requires some of its traits to have the complete type. However,
2918    // the completeness of the type cannot impact these traits' semantics, and
2919    // so they don't require it. This matches the comments on these traits in
2920    // Table 49.
2921  case UTT_IsConst:
2922  case UTT_IsVolatile:
2923  case UTT_IsSigned:
2924  case UTT_IsUnsigned:
2925    return true;
2926
2927    // C++0x [meta.unary.prop] Table 49 requires the following traits to be
2928    // applied to a complete type.
2929  case UTT_IsTrivial:
2930  case UTT_IsTriviallyCopyable:
2931  case UTT_IsStandardLayout:
2932  case UTT_IsPOD:
2933  case UTT_IsLiteral:
2934  case UTT_IsEmpty:
2935  case UTT_IsPolymorphic:
2936  case UTT_IsAbstract:
2937    // Fall-through
2938
2939  // These traits require a complete type.
2940  case UTT_IsFinal:
2941
2942    // These trait expressions are designed to help implement predicates in
2943    // [meta.unary.prop] despite not being named the same. They are specified
2944    // by both GCC and the Embarcadero C++ compiler, and require the complete
2945    // type due to the overarching C++0x type predicates being implemented
2946    // requiring the complete type.
2947  case UTT_HasNothrowAssign:
2948  case UTT_HasNothrowConstructor:
2949  case UTT_HasNothrowCopy:
2950  case UTT_HasTrivialAssign:
2951  case UTT_HasTrivialDefaultConstructor:
2952  case UTT_HasTrivialCopy:
2953  case UTT_HasTrivialDestructor:
2954  case UTT_HasVirtualDestructor:
2955    // Arrays of unknown bound are expressly allowed.
2956    QualType ElTy = ArgTy;
2957    if (ArgTy->isIncompleteArrayType())
2958      ElTy = S.Context.getAsArrayType(ArgTy)->getElementType();
2959
2960    // The void type is expressly allowed.
2961    if (ElTy->isVoidType())
2962      return true;
2963
2964    return !S.RequireCompleteType(
2965      Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr);
2966  }
2967  llvm_unreachable("Type trait not handled by switch");
2968}
2969
2970static bool EvaluateUnaryTypeTrait(Sema &Self, UnaryTypeTrait UTT,
2971                                   SourceLocation KeyLoc, QualType T) {
2972  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
2973
2974  ASTContext &C = Self.Context;
2975  switch(UTT) {
2976    // Type trait expressions corresponding to the primary type category
2977    // predicates in C++0x [meta.unary.cat].
2978  case UTT_IsVoid:
2979    return T->isVoidType();
2980  case UTT_IsIntegral:
2981    return T->isIntegralType(C);
2982  case UTT_IsFloatingPoint:
2983    return T->isFloatingType();
2984  case UTT_IsArray:
2985    return T->isArrayType();
2986  case UTT_IsPointer:
2987    return T->isPointerType();
2988  case UTT_IsLvalueReference:
2989    return T->isLValueReferenceType();
2990  case UTT_IsRvalueReference:
2991    return T->isRValueReferenceType();
2992  case UTT_IsMemberFunctionPointer:
2993    return T->isMemberFunctionPointerType();
2994  case UTT_IsMemberObjectPointer:
2995    return T->isMemberDataPointerType();
2996  case UTT_IsEnum:
2997    return T->isEnumeralType();
2998  case UTT_IsUnion:
2999    return T->isUnionType();
3000  case UTT_IsClass:
3001    return T->isClassType() || T->isStructureType();
3002  case UTT_IsFunction:
3003    return T->isFunctionType();
3004
3005    // Type trait expressions which correspond to the convenient composition
3006    // predicates in C++0x [meta.unary.comp].
3007  case UTT_IsReference:
3008    return T->isReferenceType();
3009  case UTT_IsArithmetic:
3010    return T->isArithmeticType() && !T->isEnumeralType();
3011  case UTT_IsFundamental:
3012    return T->isFundamentalType();
3013  case UTT_IsObject:
3014    return T->isObjectType();
3015  case UTT_IsScalar:
3016    // Note: semantic analysis depends on Objective-C lifetime types to be
3017    // considered scalar types. However, such types do not actually behave
3018    // like scalar types at run time (since they may require retain/release
3019    // operations), so we report them as non-scalar.
3020    if (T->isObjCLifetimeType()) {
3021      switch (T.getObjCLifetime()) {
3022      case Qualifiers::OCL_None:
3023      case Qualifiers::OCL_ExplicitNone:
3024        return true;
3025
3026      case Qualifiers::OCL_Strong:
3027      case Qualifiers::OCL_Weak:
3028      case Qualifiers::OCL_Autoreleasing:
3029        return false;
3030      }
3031    }
3032
3033    return T->isScalarType();
3034  case UTT_IsCompound:
3035    return T->isCompoundType();
3036  case UTT_IsMemberPointer:
3037    return T->isMemberPointerType();
3038
3039    // Type trait expressions which correspond to the type property predicates
3040    // in C++0x [meta.unary.prop].
3041  case UTT_IsConst:
3042    return T.isConstQualified();
3043  case UTT_IsVolatile:
3044    return T.isVolatileQualified();
3045  case UTT_IsTrivial:
3046    return T.isTrivialType(Self.Context);
3047  case UTT_IsTriviallyCopyable:
3048    return T.isTriviallyCopyableType(Self.Context);
3049  case UTT_IsStandardLayout:
3050    return T->isStandardLayoutType();
3051  case UTT_IsPOD:
3052    return T.isPODType(Self.Context);
3053  case UTT_IsLiteral:
3054    return T->isLiteralType();
3055  case UTT_IsEmpty:
3056    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3057      return !RD->isUnion() && RD->isEmpty();
3058    return false;
3059  case UTT_IsPolymorphic:
3060    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3061      return RD->isPolymorphic();
3062    return false;
3063  case UTT_IsAbstract:
3064    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3065      return RD->isAbstract();
3066    return false;
3067  case UTT_IsFinal:
3068    if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
3069      return RD->hasAttr<FinalAttr>();
3070    return false;
3071  case UTT_IsSigned:
3072    return T->isSignedIntegerType();
3073  case UTT_IsUnsigned:
3074    return T->isUnsignedIntegerType();
3075
3076    // Type trait expressions which query classes regarding their construction,
3077    // destruction, and copying. Rather than being based directly on the
3078    // related type predicates in the standard, they are specified by both
3079    // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those
3080    // specifications.
3081    //
3082    //   1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html
3083    //   2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3084  case UTT_HasTrivialDefaultConstructor:
3085    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3086    //   If __is_pod (type) is true then the trait is true, else if type is
3087    //   a cv class or union type (or array thereof) with a trivial default
3088    //   constructor ([class.ctor]) then the trait is true, else it is false.
3089    if (T.isPODType(Self.Context))
3090      return true;
3091    if (const RecordType *RT =
3092          C.getBaseElementType(T)->getAs<RecordType>())
3093      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDefaultConstructor();
3094    return false;
3095  case UTT_HasTrivialCopy:
3096    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3097    //   If __is_pod (type) is true or type is a reference type then
3098    //   the trait is true, else if type is a cv class or union type
3099    //   with a trivial copy constructor ([class.copy]) then the trait
3100    //   is true, else it is false.
3101    if (T.isPODType(Self.Context) || T->isReferenceType())
3102      return true;
3103    if (const RecordType *RT = T->getAs<RecordType>())
3104      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyConstructor();
3105    return false;
3106  case UTT_HasTrivialAssign:
3107    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3108    //   If type is const qualified or is a reference type then the
3109    //   trait is false. Otherwise if __is_pod (type) is true then the
3110    //   trait is true, else if type is a cv class or union type with
3111    //   a trivial copy assignment ([class.copy]) then the trait is
3112    //   true, else it is false.
3113    // Note: the const and reference restrictions are interesting,
3114    // given that const and reference members don't prevent a class
3115    // from having a trivial copy assignment operator (but do cause
3116    // errors if the copy assignment operator is actually used, q.v.
3117    // [class.copy]p12).
3118
3119    if (C.getBaseElementType(T).isConstQualified())
3120      return false;
3121    if (T.isPODType(Self.Context))
3122      return true;
3123    if (const RecordType *RT = T->getAs<RecordType>())
3124      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialCopyAssignment();
3125    return false;
3126  case UTT_HasTrivialDestructor:
3127    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3128    //   If __is_pod (type) is true or type is a reference type
3129    //   then the trait is true, else if type is a cv class or union
3130    //   type (or array thereof) with a trivial destructor
3131    //   ([class.dtor]) then the trait is true, else it is
3132    //   false.
3133    if (T.isPODType(Self.Context) || T->isReferenceType())
3134      return true;
3135
3136    // Objective-C++ ARC: autorelease types don't require destruction.
3137    if (T->isObjCLifetimeType() &&
3138        T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing)
3139      return true;
3140
3141    if (const RecordType *RT =
3142          C.getBaseElementType(T)->getAs<RecordType>())
3143      return cast<CXXRecordDecl>(RT->getDecl())->hasTrivialDestructor();
3144    return false;
3145  // TODO: Propagate nothrowness for implicitly declared special members.
3146  case UTT_HasNothrowAssign:
3147    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3148    //   If type is const qualified or is a reference type then the
3149    //   trait is false. Otherwise if __has_trivial_assign (type)
3150    //   is true then the trait is true, else if type is a cv class
3151    //   or union type with copy assignment operators that are known
3152    //   not to throw an exception then the trait is true, else it is
3153    //   false.
3154    if (C.getBaseElementType(T).isConstQualified())
3155      return false;
3156    if (T->isReferenceType())
3157      return false;
3158    if (T.isPODType(Self.Context) || T->isObjCLifetimeType())
3159      return true;
3160    if (const RecordType *RT = T->getAs<RecordType>()) {
3161      CXXRecordDecl* RD = cast<CXXRecordDecl>(RT->getDecl());
3162      if (RD->hasTrivialCopyAssignment())
3163        return true;
3164
3165      bool FoundAssign = false;
3166      DeclarationName Name = C.DeclarationNames.getCXXOperatorName(OO_Equal);
3167      LookupResult Res(Self, DeclarationNameInfo(Name, KeyLoc),
3168                       Sema::LookupOrdinaryName);
3169      if (Self.LookupQualifiedName(Res, RD)) {
3170        Res.suppressDiagnostics();
3171        for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end();
3172             Op != OpEnd; ++Op) {
3173          if (isa<FunctionTemplateDecl>(*Op))
3174            continue;
3175
3176          CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op);
3177          if (Operator->isCopyAssignmentOperator()) {
3178            FoundAssign = true;
3179            const FunctionProtoType *CPT
3180                = Operator->getType()->getAs<FunctionProtoType>();
3181            CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3182            if (!CPT)
3183              return false;
3184            if (CPT->getExceptionSpecType() == EST_Delayed)
3185              return false;
3186            if (!CPT->isNothrow(Self.Context))
3187              return false;
3188          }
3189        }
3190      }
3191
3192      return FoundAssign;
3193    }
3194    return false;
3195  case UTT_HasNothrowCopy:
3196    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3197    //   If __has_trivial_copy (type) is true then the trait is true, else
3198    //   if type is a cv class or union type with copy constructors that are
3199    //   known not to throw an exception then the trait is true, else it is
3200    //   false.
3201    if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType())
3202      return true;
3203    if (const RecordType *RT = T->getAs<RecordType>()) {
3204      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3205      if (RD->hasTrivialCopyConstructor())
3206        return true;
3207
3208      bool FoundConstructor = false;
3209      unsigned FoundTQs;
3210      DeclContext::lookup_const_iterator Con, ConEnd;
3211      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3212           Con != ConEnd; ++Con) {
3213        // A template constructor is never a copy constructor.
3214        // FIXME: However, it may actually be selected at the actual overload
3215        // resolution point.
3216        if (isa<FunctionTemplateDecl>(*Con))
3217          continue;
3218        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3219        if (Constructor->isCopyConstructor(FoundTQs)) {
3220          FoundConstructor = true;
3221          const FunctionProtoType *CPT
3222              = Constructor->getType()->getAs<FunctionProtoType>();
3223          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3224          if (!CPT)
3225            return false;
3226          if (CPT->getExceptionSpecType() == EST_Delayed)
3227            return false;
3228          // FIXME: check whether evaluating default arguments can throw.
3229          // For now, we'll be conservative and assume that they can throw.
3230          if (!CPT->isNothrow(Self.Context) || CPT->getNumArgs() > 1)
3231            return false;
3232        }
3233      }
3234
3235      return FoundConstructor;
3236    }
3237    return false;
3238  case UTT_HasNothrowConstructor:
3239    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3240    //   If __has_trivial_constructor (type) is true then the trait is
3241    //   true, else if type is a cv class or union type (or array
3242    //   thereof) with a default constructor that is known not to
3243    //   throw an exception then the trait is true, else it is false.
3244    if (T.isPODType(C) || T->isObjCLifetimeType())
3245      return true;
3246    if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) {
3247      CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
3248      if (RD->hasTrivialDefaultConstructor())
3249        return true;
3250
3251      DeclContext::lookup_const_iterator Con, ConEnd;
3252      for (llvm::tie(Con, ConEnd) = Self.LookupConstructors(RD);
3253           Con != ConEnd; ++Con) {
3254        // FIXME: In C++0x, a constructor template can be a default constructor.
3255        if (isa<FunctionTemplateDecl>(*Con))
3256          continue;
3257        CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con);
3258        if (Constructor->isDefaultConstructor()) {
3259          const FunctionProtoType *CPT
3260              = Constructor->getType()->getAs<FunctionProtoType>();
3261          CPT = Self.ResolveExceptionSpec(KeyLoc, CPT);
3262          if (!CPT)
3263            return false;
3264          if (CPT->getExceptionSpecType() == EST_Delayed)
3265            return false;
3266          // TODO: check whether evaluating default arguments can throw.
3267          // For now, we'll be conservative and assume that they can throw.
3268          return CPT->isNothrow(Self.Context) && CPT->getNumArgs() == 0;
3269        }
3270      }
3271    }
3272    return false;
3273  case UTT_HasVirtualDestructor:
3274    // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html:
3275    //   If type is a class type with a virtual destructor ([class.dtor])
3276    //   then the trait is true, else it is false.
3277    if (const RecordType *Record = T->getAs<RecordType>()) {
3278      CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
3279      if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD))
3280        return Destructor->isVirtual();
3281    }
3282    return false;
3283
3284    // These type trait expressions are modeled on the specifications for the
3285    // Embarcadero C++0x type trait functions:
3286    //   http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index
3287  case UTT_IsCompleteType:
3288    // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_):
3289    //   Returns True if and only if T is a complete type at the point of the
3290    //   function call.
3291    return !T->isIncompleteType();
3292  }
3293  llvm_unreachable("Type trait not covered by switch");
3294}
3295
3296ExprResult Sema::BuildUnaryTypeTrait(UnaryTypeTrait UTT,
3297                                     SourceLocation KWLoc,
3298                                     TypeSourceInfo *TSInfo,
3299                                     SourceLocation RParen) {
3300  QualType T = TSInfo->getType();
3301  if (!CheckUnaryTypeTraitTypeCompleteness(*this, UTT, KWLoc, T))
3302    return ExprError();
3303
3304  bool Value = false;
3305  if (!T->isDependentType())
3306    Value = EvaluateUnaryTypeTrait(*this, UTT, KWLoc, T);
3307
3308  return Owned(new (Context) UnaryTypeTraitExpr(KWLoc, UTT, TSInfo, Value,
3309                                                RParen, Context.BoolTy));
3310}
3311
3312ExprResult Sema::ActOnBinaryTypeTrait(BinaryTypeTrait BTT,
3313                                      SourceLocation KWLoc,
3314                                      ParsedType LhsTy,
3315                                      ParsedType RhsTy,
3316                                      SourceLocation RParen) {
3317  TypeSourceInfo *LhsTSInfo;
3318  QualType LhsT = GetTypeFromParser(LhsTy, &LhsTSInfo);
3319  if (!LhsTSInfo)
3320    LhsTSInfo = Context.getTrivialTypeSourceInfo(LhsT);
3321
3322  TypeSourceInfo *RhsTSInfo;
3323  QualType RhsT = GetTypeFromParser(RhsTy, &RhsTSInfo);
3324  if (!RhsTSInfo)
3325    RhsTSInfo = Context.getTrivialTypeSourceInfo(RhsT);
3326
3327  return BuildBinaryTypeTrait(BTT, KWLoc, LhsTSInfo, RhsTSInfo, RParen);
3328}
3329
3330static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc,
3331                              ArrayRef<TypeSourceInfo *> Args,
3332                              SourceLocation RParenLoc) {
3333  switch (Kind) {
3334  case clang::TT_IsTriviallyConstructible: {
3335    // C++11 [meta.unary.prop]:
3336    //   is_trivially_constructible is defined as:
3337    //
3338    //     is_constructible<T, Args...>::value is true and the variable
3339    //     definition for is_constructible, as defined below, is known to call no
3340    //     operation that is not trivial.
3341    //
3342    //   The predicate condition for a template specialization
3343    //   is_constructible<T, Args...> shall be satisfied if and only if the
3344    //   following variable definition would be well-formed for some invented
3345    //   variable t:
3346    //
3347    //     T t(create<Args>()...);
3348    if (Args.empty()) {
3349      S.Diag(KWLoc, diag::err_type_trait_arity)
3350        << 1 << 1 << 1 << (int)Args.size();
3351      return false;
3352    }
3353
3354    bool SawVoid = false;
3355    for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3356      if (Args[I]->getType()->isVoidType()) {
3357        SawVoid = true;
3358        continue;
3359      }
3360
3361      if (!Args[I]->getType()->isIncompleteType() &&
3362        S.RequireCompleteType(KWLoc, Args[I]->getType(),
3363          diag::err_incomplete_type_used_in_type_trait_expr))
3364        return false;
3365    }
3366
3367    // If any argument was 'void', of course it won't type-check.
3368    if (SawVoid)
3369      return false;
3370
3371    llvm::SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs;
3372    llvm::SmallVector<Expr *, 2> ArgExprs;
3373    ArgExprs.reserve(Args.size() - 1);
3374    for (unsigned I = 1, N = Args.size(); I != N; ++I) {
3375      QualType T = Args[I]->getType();
3376      if (T->isObjectType() || T->isFunctionType())
3377        T = S.Context.getRValueReferenceType(T);
3378      OpaqueArgExprs.push_back(
3379        OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(),
3380                        T.getNonLValueExprType(S.Context),
3381                        Expr::getValueKindForType(T)));
3382      ArgExprs.push_back(&OpaqueArgExprs.back());
3383    }
3384
3385    // Perform the initialization in an unevaluated context within a SFINAE
3386    // trap at translation unit scope.
3387    EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
3388    Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true);
3389    Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl());
3390    InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0]));
3391    InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc,
3392                                                                 RParenLoc));
3393    InitializationSequence Init(S, To, InitKind,
3394                                ArgExprs.begin(), ArgExprs.size());
3395    if (Init.Failed())
3396      return false;
3397
3398    ExprResult Result = Init.Perform(S, To, InitKind,
3399                                     MultiExprArg(ArgExprs.data(),
3400                                                  ArgExprs.size()));
3401    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3402      return false;
3403
3404    // The initialization succeeded; not make sure there are no non-trivial
3405    // calls.
3406    return !Result.get()->hasNonTrivialCall(S.Context);
3407  }
3408  }
3409
3410  return false;
3411}
3412
3413ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3414                                ArrayRef<TypeSourceInfo *> Args,
3415                                SourceLocation RParenLoc) {
3416  bool Dependent = false;
3417  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3418    if (Args[I]->getType()->isDependentType()) {
3419      Dependent = true;
3420      break;
3421    }
3422  }
3423
3424  bool Value = false;
3425  if (!Dependent)
3426    Value = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc);
3427
3428  return TypeTraitExpr::Create(Context, Context.BoolTy, KWLoc, Kind,
3429                               Args, RParenLoc, Value);
3430}
3431
3432ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc,
3433                                ArrayRef<ParsedType> Args,
3434                                SourceLocation RParenLoc) {
3435  llvm::SmallVector<TypeSourceInfo *, 4> ConvertedArgs;
3436  ConvertedArgs.reserve(Args.size());
3437
3438  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
3439    TypeSourceInfo *TInfo;
3440    QualType T = GetTypeFromParser(Args[I], &TInfo);
3441    if (!TInfo)
3442      TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc);
3443
3444    ConvertedArgs.push_back(TInfo);
3445  }
3446
3447  return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc);
3448}
3449
3450static bool EvaluateBinaryTypeTrait(Sema &Self, BinaryTypeTrait BTT,
3451                                    QualType LhsT, QualType RhsT,
3452                                    SourceLocation KeyLoc) {
3453  assert(!LhsT->isDependentType() && !RhsT->isDependentType() &&
3454         "Cannot evaluate traits of dependent types");
3455
3456  switch(BTT) {
3457  case BTT_IsBaseOf: {
3458    // C++0x [meta.rel]p2
3459    // Base is a base class of Derived without regard to cv-qualifiers or
3460    // Base and Derived are not unions and name the same class type without
3461    // regard to cv-qualifiers.
3462
3463    const RecordType *lhsRecord = LhsT->getAs<RecordType>();
3464    if (!lhsRecord) return false;
3465
3466    const RecordType *rhsRecord = RhsT->getAs<RecordType>();
3467    if (!rhsRecord) return false;
3468
3469    assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT)
3470             == (lhsRecord == rhsRecord));
3471
3472    if (lhsRecord == rhsRecord)
3473      return !lhsRecord->getDecl()->isUnion();
3474
3475    // C++0x [meta.rel]p2:
3476    //   If Base and Derived are class types and are different types
3477    //   (ignoring possible cv-qualifiers) then Derived shall be a
3478    //   complete type.
3479    if (Self.RequireCompleteType(KeyLoc, RhsT,
3480                          diag::err_incomplete_type_used_in_type_trait_expr))
3481      return false;
3482
3483    return cast<CXXRecordDecl>(rhsRecord->getDecl())
3484      ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl()));
3485  }
3486  case BTT_IsSame:
3487    return Self.Context.hasSameType(LhsT, RhsT);
3488  case BTT_TypeCompatible:
3489    return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(),
3490                                           RhsT.getUnqualifiedType());
3491  case BTT_IsConvertible:
3492  case BTT_IsConvertibleTo: {
3493    // C++0x [meta.rel]p4:
3494    //   Given the following function prototype:
3495    //
3496    //     template <class T>
3497    //       typename add_rvalue_reference<T>::type create();
3498    //
3499    //   the predicate condition for a template specialization
3500    //   is_convertible<From, To> shall be satisfied if and only if
3501    //   the return expression in the following code would be
3502    //   well-formed, including any implicit conversions to the return
3503    //   type of the function:
3504    //
3505    //     To test() {
3506    //       return create<From>();
3507    //     }
3508    //
3509    //   Access checking is performed as if in a context unrelated to To and
3510    //   From. Only the validity of the immediate context of the expression
3511    //   of the return-statement (including conversions to the return type)
3512    //   is considered.
3513    //
3514    // We model the initialization as a copy-initialization of a temporary
3515    // of the appropriate type, which for this expression is identical to the
3516    // return statement (since NRVO doesn't apply).
3517    if (LhsT->isObjectType() || LhsT->isFunctionType())
3518      LhsT = Self.Context.getRValueReferenceType(LhsT);
3519
3520    InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT));
3521    OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3522                         Expr::getValueKindForType(LhsT));
3523    Expr *FromPtr = &From;
3524    InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc,
3525                                                           SourceLocation()));
3526
3527    // Perform the initialization in an unevaluated context within a SFINAE
3528    // trap at translation unit scope.
3529    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3530    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3531    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3532    InitializationSequence Init(Self, To, Kind, &FromPtr, 1);
3533    if (Init.Failed())
3534      return false;
3535
3536    ExprResult Result = Init.Perform(Self, To, Kind, MultiExprArg(&FromPtr, 1));
3537    return !Result.isInvalid() && !SFINAE.hasErrorOccurred();
3538  }
3539
3540  case BTT_IsTriviallyAssignable: {
3541    // C++11 [meta.unary.prop]p3:
3542    //   is_trivially_assignable is defined as:
3543    //     is_assignable<T, U>::value is true and the assignment, as defined by
3544    //     is_assignable, is known to call no operation that is not trivial
3545    //
3546    //   is_assignable is defined as:
3547    //     The expression declval<T>() = declval<U>() is well-formed when
3548    //     treated as an unevaluated operand (Clause 5).
3549    //
3550    //   For both, T and U shall be complete types, (possibly cv-qualified)
3551    //   void, or arrays of unknown bound.
3552    if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() &&
3553        Self.RequireCompleteType(KeyLoc, LhsT,
3554          diag::err_incomplete_type_used_in_type_trait_expr))
3555      return false;
3556    if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() &&
3557        Self.RequireCompleteType(KeyLoc, RhsT,
3558          diag::err_incomplete_type_used_in_type_trait_expr))
3559      return false;
3560
3561    // cv void is never assignable.
3562    if (LhsT->isVoidType() || RhsT->isVoidType())
3563      return false;
3564
3565    // Build expressions that emulate the effect of declval<T>() and
3566    // declval<U>().
3567    if (LhsT->isObjectType() || LhsT->isFunctionType())
3568      LhsT = Self.Context.getRValueReferenceType(LhsT);
3569    if (RhsT->isObjectType() || RhsT->isFunctionType())
3570      RhsT = Self.Context.getRValueReferenceType(RhsT);
3571    OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context),
3572                        Expr::getValueKindForType(LhsT));
3573    OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context),
3574                        Expr::getValueKindForType(RhsT));
3575
3576    // Attempt the assignment in an unevaluated context within a SFINAE
3577    // trap at translation unit scope.
3578    EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated);
3579    Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true);
3580    Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl());
3581    ExprResult Result = Self.BuildBinOp(/*S=*/0, KeyLoc, BO_Assign, &Lhs, &Rhs);
3582    if (Result.isInvalid() || SFINAE.hasErrorOccurred())
3583      return false;
3584
3585    return !Result.get()->hasNonTrivialCall(Self.Context);
3586  }
3587  }
3588  llvm_unreachable("Unknown type trait or not implemented");
3589}
3590
3591ExprResult Sema::BuildBinaryTypeTrait(BinaryTypeTrait BTT,
3592                                      SourceLocation KWLoc,
3593                                      TypeSourceInfo *LhsTSInfo,
3594                                      TypeSourceInfo *RhsTSInfo,
3595                                      SourceLocation RParen) {
3596  QualType LhsT = LhsTSInfo->getType();
3597  QualType RhsT = RhsTSInfo->getType();
3598
3599  if (BTT == BTT_TypeCompatible) {
3600    if (getLangOpts().CPlusPlus) {
3601      Diag(KWLoc, diag::err_types_compatible_p_in_cplusplus)
3602        << SourceRange(KWLoc, RParen);
3603      return ExprError();
3604    }
3605  }
3606
3607  bool Value = false;
3608  if (!LhsT->isDependentType() && !RhsT->isDependentType())
3609    Value = EvaluateBinaryTypeTrait(*this, BTT, LhsT, RhsT, KWLoc);
3610
3611  // Select trait result type.
3612  QualType ResultType;
3613  switch (BTT) {
3614  case BTT_IsBaseOf:       ResultType = Context.BoolTy; break;
3615  case BTT_IsConvertible:  ResultType = Context.BoolTy; break;
3616  case BTT_IsSame:         ResultType = Context.BoolTy; break;
3617  case BTT_TypeCompatible: ResultType = Context.IntTy; break;
3618  case BTT_IsConvertibleTo: ResultType = Context.BoolTy; break;
3619  case BTT_IsTriviallyAssignable: ResultType = Context.BoolTy;
3620  }
3621
3622  return Owned(new (Context) BinaryTypeTraitExpr(KWLoc, BTT, LhsTSInfo,
3623                                                 RhsTSInfo, Value, RParen,
3624                                                 ResultType));
3625}
3626
3627ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT,
3628                                     SourceLocation KWLoc,
3629                                     ParsedType Ty,
3630                                     Expr* DimExpr,
3631                                     SourceLocation RParen) {
3632  TypeSourceInfo *TSInfo;
3633  QualType T = GetTypeFromParser(Ty, &TSInfo);
3634  if (!TSInfo)
3635    TSInfo = Context.getTrivialTypeSourceInfo(T);
3636
3637  return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen);
3638}
3639
3640static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT,
3641                                           QualType T, Expr *DimExpr,
3642                                           SourceLocation KeyLoc) {
3643  assert(!T->isDependentType() && "Cannot evaluate traits of dependent type");
3644
3645  switch(ATT) {
3646  case ATT_ArrayRank:
3647    if (T->isArrayType()) {
3648      unsigned Dim = 0;
3649      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3650        ++Dim;
3651        T = AT->getElementType();
3652      }
3653      return Dim;
3654    }
3655    return 0;
3656
3657  case ATT_ArrayExtent: {
3658    llvm::APSInt Value;
3659    uint64_t Dim;
3660    if (Self.VerifyIntegerConstantExpression(DimExpr, &Value,
3661          diag::err_dimension_expr_not_constant_integer,
3662          false).isInvalid())
3663      return 0;
3664    if (Value.isSigned() && Value.isNegative()) {
3665      Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer)
3666        << DimExpr->getSourceRange();
3667      return 0;
3668    }
3669    Dim = Value.getLimitedValue();
3670
3671    if (T->isArrayType()) {
3672      unsigned D = 0;
3673      bool Matched = false;
3674      while (const ArrayType *AT = Self.Context.getAsArrayType(T)) {
3675        if (Dim == D) {
3676          Matched = true;
3677          break;
3678        }
3679        ++D;
3680        T = AT->getElementType();
3681      }
3682
3683      if (Matched && T->isArrayType()) {
3684        if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T))
3685          return CAT->getSize().getLimitedValue();
3686      }
3687    }
3688    return 0;
3689  }
3690  }
3691  llvm_unreachable("Unknown type trait or not implemented");
3692}
3693
3694ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT,
3695                                     SourceLocation KWLoc,
3696                                     TypeSourceInfo *TSInfo,
3697                                     Expr* DimExpr,
3698                                     SourceLocation RParen) {
3699  QualType T = TSInfo->getType();
3700
3701  // FIXME: This should likely be tracked as an APInt to remove any host
3702  // assumptions about the width of size_t on the target.
3703  uint64_t Value = 0;
3704  if (!T->isDependentType())
3705    Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc);
3706
3707  // While the specification for these traits from the Embarcadero C++
3708  // compiler's documentation says the return type is 'unsigned int', Clang
3709  // returns 'size_t'. On Windows, the primary platform for the Embarcadero
3710  // compiler, there is no difference. On several other platforms this is an
3711  // important distinction.
3712  return Owned(new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value,
3713                                                DimExpr, RParen,
3714                                                Context.getSizeType()));
3715}
3716
3717ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET,
3718                                      SourceLocation KWLoc,
3719                                      Expr *Queried,
3720                                      SourceLocation RParen) {
3721  // If error parsing the expression, ignore.
3722  if (!Queried)
3723    return ExprError();
3724
3725  ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen);
3726
3727  return move(Result);
3728}
3729
3730static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) {
3731  switch (ET) {
3732  case ET_IsLValueExpr: return E->isLValue();
3733  case ET_IsRValueExpr: return E->isRValue();
3734  }
3735  llvm_unreachable("Expression trait not covered by switch");
3736}
3737
3738ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET,
3739                                      SourceLocation KWLoc,
3740                                      Expr *Queried,
3741                                      SourceLocation RParen) {
3742  if (Queried->isTypeDependent()) {
3743    // Delay type-checking for type-dependent expressions.
3744  } else if (Queried->getType()->isPlaceholderType()) {
3745    ExprResult PE = CheckPlaceholderExpr(Queried);
3746    if (PE.isInvalid()) return ExprError();
3747    return BuildExpressionTrait(ET, KWLoc, PE.take(), RParen);
3748  }
3749
3750  bool Value = EvaluateExpressionTrait(ET, Queried);
3751
3752  return Owned(new (Context) ExpressionTraitExpr(KWLoc, ET, Queried, Value,
3753                                                 RParen, Context.BoolTy));
3754}
3755
3756QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS,
3757                                            ExprValueKind &VK,
3758                                            SourceLocation Loc,
3759                                            bool isIndirect) {
3760  assert(!LHS.get()->getType()->isPlaceholderType() &&
3761         !RHS.get()->getType()->isPlaceholderType() &&
3762         "placeholders should have been weeded out by now");
3763
3764  // The LHS undergoes lvalue conversions if this is ->*.
3765  if (isIndirect) {
3766    LHS = DefaultLvalueConversion(LHS.take());
3767    if (LHS.isInvalid()) return QualType();
3768  }
3769
3770  // The RHS always undergoes lvalue conversions.
3771  RHS = DefaultLvalueConversion(RHS.take());
3772  if (RHS.isInvalid()) return QualType();
3773
3774  const char *OpSpelling = isIndirect ? "->*" : ".*";
3775  // C++ 5.5p2
3776  //   The binary operator .* [p3: ->*] binds its second operand, which shall
3777  //   be of type "pointer to member of T" (where T is a completely-defined
3778  //   class type) [...]
3779  QualType RHSType = RHS.get()->getType();
3780  const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>();
3781  if (!MemPtr) {
3782    Diag(Loc, diag::err_bad_memptr_rhs)
3783      << OpSpelling << RHSType << RHS.get()->getSourceRange();
3784    return QualType();
3785  }
3786
3787  QualType Class(MemPtr->getClass(), 0);
3788
3789  // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the
3790  // member pointer points must be completely-defined. However, there is no
3791  // reason for this semantic distinction, and the rule is not enforced by
3792  // other compilers. Therefore, we do not check this property, as it is
3793  // likely to be considered a defect.
3794
3795  // C++ 5.5p2
3796  //   [...] to its first operand, which shall be of class T or of a class of
3797  //   which T is an unambiguous and accessible base class. [p3: a pointer to
3798  //   such a class]
3799  QualType LHSType = LHS.get()->getType();
3800  if (isIndirect) {
3801    if (const PointerType *Ptr = LHSType->getAs<PointerType>())
3802      LHSType = Ptr->getPointeeType();
3803    else {
3804      Diag(Loc, diag::err_bad_memptr_lhs)
3805        << OpSpelling << 1 << LHSType
3806        << FixItHint::CreateReplacement(SourceRange(Loc), ".*");
3807      return QualType();
3808    }
3809  }
3810
3811  if (!Context.hasSameUnqualifiedType(Class, LHSType)) {
3812    // If we want to check the hierarchy, we need a complete type.
3813    if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs,
3814                            OpSpelling, (int)isIndirect)) {
3815      return QualType();
3816    }
3817    CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3818                       /*DetectVirtual=*/false);
3819    // FIXME: Would it be useful to print full ambiguity paths, or is that
3820    // overkill?
3821    if (!IsDerivedFrom(LHSType, Class, Paths) ||
3822        Paths.isAmbiguous(Context.getCanonicalType(Class))) {
3823      Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling
3824        << (int)isIndirect << LHS.get()->getType();
3825      return QualType();
3826    }
3827    // Cast LHS to type of use.
3828    QualType UseType = isIndirect ? Context.getPointerType(Class) : Class;
3829    ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind();
3830
3831    CXXCastPath BasePath;
3832    BuildBasePathArray(Paths, BasePath);
3833    LHS = ImpCastExprToType(LHS.take(), UseType, CK_DerivedToBase, VK,
3834                            &BasePath);
3835  }
3836
3837  if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) {
3838    // Diagnose use of pointer-to-member type which when used as
3839    // the functional cast in a pointer-to-member expression.
3840    Diag(Loc, diag::err_pointer_to_member_type) << isIndirect;
3841     return QualType();
3842  }
3843
3844  // C++ 5.5p2
3845  //   The result is an object or a function of the type specified by the
3846  //   second operand.
3847  // The cv qualifiers are the union of those in the pointer and the left side,
3848  // in accordance with 5.5p5 and 5.2.5.
3849  QualType Result = MemPtr->getPointeeType();
3850  Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers());
3851
3852  // C++0x [expr.mptr.oper]p6:
3853  //   In a .* expression whose object expression is an rvalue, the program is
3854  //   ill-formed if the second operand is a pointer to member function with
3855  //   ref-qualifier &. In a ->* expression or in a .* expression whose object
3856  //   expression is an lvalue, the program is ill-formed if the second operand
3857  //   is a pointer to member function with ref-qualifier &&.
3858  if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) {
3859    switch (Proto->getRefQualifier()) {
3860    case RQ_None:
3861      // Do nothing
3862      break;
3863
3864    case RQ_LValue:
3865      if (!isIndirect && !LHS.get()->Classify(Context).isLValue())
3866        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3867          << RHSType << 1 << LHS.get()->getSourceRange();
3868      break;
3869
3870    case RQ_RValue:
3871      if (isIndirect || !LHS.get()->Classify(Context).isRValue())
3872        Diag(Loc, diag::err_pointer_to_member_oper_value_classify)
3873          << RHSType << 0 << LHS.get()->getSourceRange();
3874      break;
3875    }
3876  }
3877
3878  // C++ [expr.mptr.oper]p6:
3879  //   The result of a .* expression whose second operand is a pointer
3880  //   to a data member is of the same value category as its
3881  //   first operand. The result of a .* expression whose second
3882  //   operand is a pointer to a member function is a prvalue. The
3883  //   result of an ->* expression is an lvalue if its second operand
3884  //   is a pointer to data member and a prvalue otherwise.
3885  if (Result->isFunctionType()) {
3886    VK = VK_RValue;
3887    return Context.BoundMemberTy;
3888  } else if (isIndirect) {
3889    VK = VK_LValue;
3890  } else {
3891    VK = LHS.get()->getValueKind();
3892  }
3893
3894  return Result;
3895}
3896
3897/// \brief Try to convert a type to another according to C++0x 5.16p3.
3898///
3899/// This is part of the parameter validation for the ? operator. If either
3900/// value operand is a class type, the two operands are attempted to be
3901/// converted to each other. This function does the conversion in one direction.
3902/// It returns true if the program is ill-formed and has already been diagnosed
3903/// as such.
3904static bool TryClassUnification(Sema &Self, Expr *From, Expr *To,
3905                                SourceLocation QuestionLoc,
3906                                bool &HaveConversion,
3907                                QualType &ToType) {
3908  HaveConversion = false;
3909  ToType = To->getType();
3910
3911  InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(),
3912                                                           SourceLocation());
3913  // C++0x 5.16p3
3914  //   The process for determining whether an operand expression E1 of type T1
3915  //   can be converted to match an operand expression E2 of type T2 is defined
3916  //   as follows:
3917  //   -- If E2 is an lvalue:
3918  bool ToIsLvalue = To->isLValue();
3919  if (ToIsLvalue) {
3920    //   E1 can be converted to match E2 if E1 can be implicitly converted to
3921    //   type "lvalue reference to T2", subject to the constraint that in the
3922    //   conversion the reference must bind directly to E1.
3923    QualType T = Self.Context.getLValueReferenceType(ToType);
3924    InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
3925
3926    InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3927    if (InitSeq.isDirectReferenceBinding()) {
3928      ToType = T;
3929      HaveConversion = true;
3930      return false;
3931    }
3932
3933    if (InitSeq.isAmbiguous())
3934      return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3935  }
3936
3937  //   -- If E2 is an rvalue, or if the conversion above cannot be done:
3938  //      -- if E1 and E2 have class type, and the underlying class types are
3939  //         the same or one is a base class of the other:
3940  QualType FTy = From->getType();
3941  QualType TTy = To->getType();
3942  const RecordType *FRec = FTy->getAs<RecordType>();
3943  const RecordType *TRec = TTy->getAs<RecordType>();
3944  bool FDerivedFromT = FRec && TRec && FRec != TRec &&
3945                       Self.IsDerivedFrom(FTy, TTy);
3946  if (FRec && TRec &&
3947      (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) {
3948    //         E1 can be converted to match E2 if the class of T2 is the
3949    //         same type as, or a base class of, the class of T1, and
3950    //         [cv2 > cv1].
3951    if (FRec == TRec || FDerivedFromT) {
3952      if (TTy.isAtLeastAsQualifiedAs(FTy)) {
3953        InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3954        InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3955        if (InitSeq) {
3956          HaveConversion = true;
3957          return false;
3958        }
3959
3960        if (InitSeq.isAmbiguous())
3961          return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3962      }
3963    }
3964
3965    return false;
3966  }
3967
3968  //     -- Otherwise: E1 can be converted to match E2 if E1 can be
3969  //        implicitly converted to the type that expression E2 would have
3970  //        if E2 were converted to an rvalue (or the type it has, if E2 is
3971  //        an rvalue).
3972  //
3973  // This actually refers very narrowly to the lvalue-to-rvalue conversion, not
3974  // to the array-to-pointer or function-to-pointer conversions.
3975  if (!TTy->getAs<TagType>())
3976    TTy = TTy.getUnqualifiedType();
3977
3978  InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy);
3979  InitializationSequence InitSeq(Self, Entity, Kind, &From, 1);
3980  HaveConversion = !InitSeq.Failed();
3981  ToType = TTy;
3982  if (InitSeq.isAmbiguous())
3983    return InitSeq.Diagnose(Self, Entity, Kind, &From, 1);
3984
3985  return false;
3986}
3987
3988/// \brief Try to find a common type for two according to C++0x 5.16p5.
3989///
3990/// This is part of the parameter validation for the ? operator. If either
3991/// value operand is a class type, overload resolution is used to find a
3992/// conversion to a common type.
3993static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS,
3994                                    SourceLocation QuestionLoc) {
3995  Expr *Args[2] = { LHS.get(), RHS.get() };
3996  OverloadCandidateSet CandidateSet(QuestionLoc);
3997  Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 2,
3998                                    CandidateSet);
3999
4000  OverloadCandidateSet::iterator Best;
4001  switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) {
4002    case OR_Success: {
4003      // We found a match. Perform the conversions on the arguments and move on.
4004      ExprResult LHSRes =
4005        Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0],
4006                                       Best->Conversions[0], Sema::AA_Converting);
4007      if (LHSRes.isInvalid())
4008        break;
4009      LHS = move(LHSRes);
4010
4011      ExprResult RHSRes =
4012        Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1],
4013                                       Best->Conversions[1], Sema::AA_Converting);
4014      if (RHSRes.isInvalid())
4015        break;
4016      RHS = move(RHSRes);
4017      if (Best->Function)
4018        Self.MarkFunctionReferenced(QuestionLoc, Best->Function);
4019      return false;
4020    }
4021
4022    case OR_No_Viable_Function:
4023
4024      // Emit a better diagnostic if one of the expressions is a null pointer
4025      // constant and the other is a pointer type. In this case, the user most
4026      // likely forgot to take the address of the other expression.
4027      if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4028        return true;
4029
4030      Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4031        << LHS.get()->getType() << RHS.get()->getType()
4032        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4033      return true;
4034
4035    case OR_Ambiguous:
4036      Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl)
4037        << LHS.get()->getType() << RHS.get()->getType()
4038        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4039      // FIXME: Print the possible common types by printing the return types of
4040      // the viable candidates.
4041      break;
4042
4043    case OR_Deleted:
4044      llvm_unreachable("Conditional operator has only built-in overloads");
4045  }
4046  return true;
4047}
4048
4049/// \brief Perform an "extended" implicit conversion as returned by
4050/// TryClassUnification.
4051static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) {
4052  InitializedEntity Entity = InitializedEntity::InitializeTemporary(T);
4053  InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(),
4054                                                           SourceLocation());
4055  Expr *Arg = E.take();
4056  InitializationSequence InitSeq(Self, Entity, Kind, &Arg, 1);
4057  ExprResult Result = InitSeq.Perform(Self, Entity, Kind, MultiExprArg(&Arg, 1));
4058  if (Result.isInvalid())
4059    return true;
4060
4061  E = Result;
4062  return false;
4063}
4064
4065/// \brief Check the operands of ?: under C++ semantics.
4066///
4067/// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y
4068/// extension. In this case, LHS == Cond. (But they're not aliases.)
4069QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, ExprResult &RHS,
4070                                           ExprValueKind &VK, ExprObjectKind &OK,
4071                                           SourceLocation QuestionLoc) {
4072  // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++
4073  // interface pointers.
4074
4075  // C++0x 5.16p1
4076  //   The first expression is contextually converted to bool.
4077  if (!Cond.get()->isTypeDependent()) {
4078    ExprResult CondRes = CheckCXXBooleanCondition(Cond.take());
4079    if (CondRes.isInvalid())
4080      return QualType();
4081    Cond = move(CondRes);
4082  }
4083
4084  // Assume r-value.
4085  VK = VK_RValue;
4086  OK = OK_Ordinary;
4087
4088  // Either of the arguments dependent?
4089  if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent())
4090    return Context.DependentTy;
4091
4092  // C++0x 5.16p2
4093  //   If either the second or the third operand has type (cv) void, ...
4094  QualType LTy = LHS.get()->getType();
4095  QualType RTy = RHS.get()->getType();
4096  bool LVoid = LTy->isVoidType();
4097  bool RVoid = RTy->isVoidType();
4098  if (LVoid || RVoid) {
4099    //   ... then the [l2r] conversions are performed on the second and third
4100    //   operands ...
4101    LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4102    RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4103    if (LHS.isInvalid() || RHS.isInvalid())
4104      return QualType();
4105    LTy = LHS.get()->getType();
4106    RTy = RHS.get()->getType();
4107
4108    //   ... and one of the following shall hold:
4109    //   -- The second or the third operand (but not both) is a throw-
4110    //      expression; the result is of the type of the other and is an rvalue.
4111    bool LThrow = isa<CXXThrowExpr>(LHS.get());
4112    bool RThrow = isa<CXXThrowExpr>(RHS.get());
4113    if (LThrow && !RThrow)
4114      return RTy;
4115    if (RThrow && !LThrow)
4116      return LTy;
4117
4118    //   -- Both the second and third operands have type void; the result is of
4119    //      type void and is an rvalue.
4120    if (LVoid && RVoid)
4121      return Context.VoidTy;
4122
4123    // Neither holds, error.
4124    Diag(QuestionLoc, diag::err_conditional_void_nonvoid)
4125      << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1)
4126      << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4127    return QualType();
4128  }
4129
4130  // Neither is void.
4131
4132  // C++0x 5.16p3
4133  //   Otherwise, if the second and third operand have different types, and
4134  //   either has (cv) class type, and attempt is made to convert each of those
4135  //   operands to the other.
4136  if (!Context.hasSameType(LTy, RTy) &&
4137      (LTy->isRecordType() || RTy->isRecordType())) {
4138    ImplicitConversionSequence ICSLeftToRight, ICSRightToLeft;
4139    // These return true if a single direction is already ambiguous.
4140    QualType L2RType, R2LType;
4141    bool HaveL2R, HaveR2L;
4142    if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType))
4143      return QualType();
4144    if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType))
4145      return QualType();
4146
4147    //   If both can be converted, [...] the program is ill-formed.
4148    if (HaveL2R && HaveR2L) {
4149      Diag(QuestionLoc, diag::err_conditional_ambiguous)
4150        << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4151      return QualType();
4152    }
4153
4154    //   If exactly one conversion is possible, that conversion is applied to
4155    //   the chosen operand and the converted operands are used in place of the
4156    //   original operands for the remainder of this section.
4157    if (HaveL2R) {
4158      if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid())
4159        return QualType();
4160      LTy = LHS.get()->getType();
4161    } else if (HaveR2L) {
4162      if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid())
4163        return QualType();
4164      RTy = RHS.get()->getType();
4165    }
4166  }
4167
4168  // C++0x 5.16p4
4169  //   If the second and third operands are glvalues of the same value
4170  //   category and have the same type, the result is of that type and
4171  //   value category and it is a bit-field if the second or the third
4172  //   operand is a bit-field, or if both are bit-fields.
4173  // We only extend this to bitfields, not to the crazy other kinds of
4174  // l-values.
4175  bool Same = Context.hasSameType(LTy, RTy);
4176  if (Same &&
4177      LHS.get()->isGLValue() &&
4178      LHS.get()->getValueKind() == RHS.get()->getValueKind() &&
4179      LHS.get()->isOrdinaryOrBitFieldObject() &&
4180      RHS.get()->isOrdinaryOrBitFieldObject()) {
4181    VK = LHS.get()->getValueKind();
4182    if (LHS.get()->getObjectKind() == OK_BitField ||
4183        RHS.get()->getObjectKind() == OK_BitField)
4184      OK = OK_BitField;
4185    return LTy;
4186  }
4187
4188  // C++0x 5.16p5
4189  //   Otherwise, the result is an rvalue. If the second and third operands
4190  //   do not have the same type, and either has (cv) class type, ...
4191  if (!Same && (LTy->isRecordType() || RTy->isRecordType())) {
4192    //   ... overload resolution is used to determine the conversions (if any)
4193    //   to be applied to the operands. If the overload resolution fails, the
4194    //   program is ill-formed.
4195    if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc))
4196      return QualType();
4197  }
4198
4199  // C++0x 5.16p6
4200  //   LValue-to-rvalue, array-to-pointer, and function-to-pointer standard
4201  //   conversions are performed on the second and third operands.
4202  LHS = DefaultFunctionArrayLvalueConversion(LHS.take());
4203  RHS = DefaultFunctionArrayLvalueConversion(RHS.take());
4204  if (LHS.isInvalid() || RHS.isInvalid())
4205    return QualType();
4206  LTy = LHS.get()->getType();
4207  RTy = RHS.get()->getType();
4208
4209  //   After those conversions, one of the following shall hold:
4210  //   -- The second and third operands have the same type; the result
4211  //      is of that type. If the operands have class type, the result
4212  //      is a prvalue temporary of the result type, which is
4213  //      copy-initialized from either the second operand or the third
4214  //      operand depending on the value of the first operand.
4215  if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) {
4216    if (LTy->isRecordType()) {
4217      // The operands have class type. Make a temporary copy.
4218      InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy);
4219      ExprResult LHSCopy = PerformCopyInitialization(Entity,
4220                                                     SourceLocation(),
4221                                                     LHS);
4222      if (LHSCopy.isInvalid())
4223        return QualType();
4224
4225      ExprResult RHSCopy = PerformCopyInitialization(Entity,
4226                                                     SourceLocation(),
4227                                                     RHS);
4228      if (RHSCopy.isInvalid())
4229        return QualType();
4230
4231      LHS = LHSCopy;
4232      RHS = RHSCopy;
4233    }
4234
4235    return LTy;
4236  }
4237
4238  // Extension: conditional operator involving vector types.
4239  if (LTy->isVectorType() || RTy->isVectorType())
4240    return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false);
4241
4242  //   -- The second and third operands have arithmetic or enumeration type;
4243  //      the usual arithmetic conversions are performed to bring them to a
4244  //      common type, and the result is of that type.
4245  if (LTy->isArithmeticType() && RTy->isArithmeticType()) {
4246    UsualArithmeticConversions(LHS, RHS);
4247    if (LHS.isInvalid() || RHS.isInvalid())
4248      return QualType();
4249    return LHS.get()->getType();
4250  }
4251
4252  //   -- The second and third operands have pointer type, or one has pointer
4253  //      type and the other is a null pointer constant; pointer conversions
4254  //      and qualification conversions are performed to bring them to their
4255  //      composite pointer type. The result is of the composite pointer type.
4256  //   -- The second and third operands have pointer to member type, or one has
4257  //      pointer to member type and the other is a null pointer constant;
4258  //      pointer to member conversions and qualification conversions are
4259  //      performed to bring them to a common type, whose cv-qualification
4260  //      shall match the cv-qualification of either the second or the third
4261  //      operand. The result is of the common type.
4262  bool NonStandardCompositeType = false;
4263  QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS,
4264                              isSFINAEContext()? 0 : &NonStandardCompositeType);
4265  if (!Composite.isNull()) {
4266    if (NonStandardCompositeType)
4267      Diag(QuestionLoc,
4268           diag::ext_typecheck_cond_incompatible_operands_nonstandard)
4269        << LTy << RTy << Composite
4270        << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4271
4272    return Composite;
4273  }
4274
4275  // Similarly, attempt to find composite type of two objective-c pointers.
4276  Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc);
4277  if (!Composite.isNull())
4278    return Composite;
4279
4280  // Check if we are using a null with a non-pointer type.
4281  if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
4282    return QualType();
4283
4284  Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
4285    << LHS.get()->getType() << RHS.get()->getType()
4286    << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
4287  return QualType();
4288}
4289
4290/// \brief Find a merged pointer type and convert the two expressions to it.
4291///
4292/// This finds the composite pointer type (or member pointer type) for @p E1
4293/// and @p E2 according to C++0x 5.9p2. It converts both expressions to this
4294/// type and returns it.
4295/// It does not emit diagnostics.
4296///
4297/// \param Loc The location of the operator requiring these two expressions to
4298/// be converted to the composite pointer type.
4299///
4300/// If \p NonStandardCompositeType is non-NULL, then we are permitted to find
4301/// a non-standard (but still sane) composite type to which both expressions
4302/// can be converted. When such a type is chosen, \c *NonStandardCompositeType
4303/// will be set true.
4304QualType Sema::FindCompositePointerType(SourceLocation Loc,
4305                                        Expr *&E1, Expr *&E2,
4306                                        bool *NonStandardCompositeType) {
4307  if (NonStandardCompositeType)
4308    *NonStandardCompositeType = false;
4309
4310  assert(getLangOpts().CPlusPlus && "This function assumes C++");
4311  QualType T1 = E1->getType(), T2 = E2->getType();
4312
4313  if (!T1->isAnyPointerType() && !T1->isMemberPointerType() &&
4314      !T2->isAnyPointerType() && !T2->isMemberPointerType())
4315   return QualType();
4316
4317  // C++0x 5.9p2
4318  //   Pointer conversions and qualification conversions are performed on
4319  //   pointer operands to bring them to their composite pointer type. If
4320  //   one operand is a null pointer constant, the composite pointer type is
4321  //   the type of the other operand.
4322  if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4323    if (T2->isMemberPointerType())
4324      E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).take();
4325    else
4326      E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).take();
4327    return T2;
4328  }
4329  if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) {
4330    if (T1->isMemberPointerType())
4331      E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).take();
4332    else
4333      E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).take();
4334    return T1;
4335  }
4336
4337  // Now both have to be pointers or member pointers.
4338  if ((!T1->isPointerType() && !T1->isMemberPointerType()) ||
4339      (!T2->isPointerType() && !T2->isMemberPointerType()))
4340    return QualType();
4341
4342  //   Otherwise, of one of the operands has type "pointer to cv1 void," then
4343  //   the other has type "pointer to cv2 T" and the composite pointer type is
4344  //   "pointer to cv12 void," where cv12 is the union of cv1 and cv2.
4345  //   Otherwise, the composite pointer type is a pointer type similar to the
4346  //   type of one of the operands, with a cv-qualification signature that is
4347  //   the union of the cv-qualification signatures of the operand types.
4348  // In practice, the first part here is redundant; it's subsumed by the second.
4349  // What we do here is, we build the two possible composite types, and try the
4350  // conversions in both directions. If only one works, or if the two composite
4351  // types are the same, we have succeeded.
4352  // FIXME: extended qualifiers?
4353  typedef SmallVector<unsigned, 4> QualifierVector;
4354  QualifierVector QualifierUnion;
4355  typedef SmallVector<std::pair<const Type *, const Type *>, 4>
4356      ContainingClassVector;
4357  ContainingClassVector MemberOfClass;
4358  QualType Composite1 = Context.getCanonicalType(T1),
4359           Composite2 = Context.getCanonicalType(T2);
4360  unsigned NeedConstBefore = 0;
4361  do {
4362    const PointerType *Ptr1, *Ptr2;
4363    if ((Ptr1 = Composite1->getAs<PointerType>()) &&
4364        (Ptr2 = Composite2->getAs<PointerType>())) {
4365      Composite1 = Ptr1->getPointeeType();
4366      Composite2 = Ptr2->getPointeeType();
4367
4368      // If we're allowed to create a non-standard composite type, keep track
4369      // of where we need to fill in additional 'const' qualifiers.
4370      if (NonStandardCompositeType &&
4371          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4372        NeedConstBefore = QualifierUnion.size();
4373
4374      QualifierUnion.push_back(
4375                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4376      MemberOfClass.push_back(std::make_pair((const Type *)0, (const Type *)0));
4377      continue;
4378    }
4379
4380    const MemberPointerType *MemPtr1, *MemPtr2;
4381    if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) &&
4382        (MemPtr2 = Composite2->getAs<MemberPointerType>())) {
4383      Composite1 = MemPtr1->getPointeeType();
4384      Composite2 = MemPtr2->getPointeeType();
4385
4386      // If we're allowed to create a non-standard composite type, keep track
4387      // of where we need to fill in additional 'const' qualifiers.
4388      if (NonStandardCompositeType &&
4389          Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers())
4390        NeedConstBefore = QualifierUnion.size();
4391
4392      QualifierUnion.push_back(
4393                 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers());
4394      MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(),
4395                                             MemPtr2->getClass()));
4396      continue;
4397    }
4398
4399    // FIXME: block pointer types?
4400
4401    // Cannot unwrap any more types.
4402    break;
4403  } while (true);
4404
4405  if (NeedConstBefore && NonStandardCompositeType) {
4406    // Extension: Add 'const' to qualifiers that come before the first qualifier
4407    // mismatch, so that our (non-standard!) composite type meets the
4408    // requirements of C++ [conv.qual]p4 bullet 3.
4409    for (unsigned I = 0; I != NeedConstBefore; ++I) {
4410      if ((QualifierUnion[I] & Qualifiers::Const) == 0) {
4411        QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const;
4412        *NonStandardCompositeType = true;
4413      }
4414    }
4415  }
4416
4417  // Rewrap the composites as pointers or member pointers with the union CVRs.
4418  ContainingClassVector::reverse_iterator MOC
4419    = MemberOfClass.rbegin();
4420  for (QualifierVector::reverse_iterator
4421         I = QualifierUnion.rbegin(),
4422         E = QualifierUnion.rend();
4423       I != E; (void)++I, ++MOC) {
4424    Qualifiers Quals = Qualifiers::fromCVRMask(*I);
4425    if (MOC->first && MOC->second) {
4426      // Rebuild member pointer type
4427      Composite1 = Context.getMemberPointerType(
4428                                    Context.getQualifiedType(Composite1, Quals),
4429                                    MOC->first);
4430      Composite2 = Context.getMemberPointerType(
4431                                    Context.getQualifiedType(Composite2, Quals),
4432                                    MOC->second);
4433    } else {
4434      // Rebuild pointer type
4435      Composite1
4436        = Context.getPointerType(Context.getQualifiedType(Composite1, Quals));
4437      Composite2
4438        = Context.getPointerType(Context.getQualifiedType(Composite2, Quals));
4439    }
4440  }
4441
4442  // Try to convert to the first composite pointer type.
4443  InitializedEntity Entity1
4444    = InitializedEntity::InitializeTemporary(Composite1);
4445  InitializationKind Kind
4446    = InitializationKind::CreateCopy(Loc, SourceLocation());
4447  InitializationSequence E1ToC1(*this, Entity1, Kind, &E1, 1);
4448  InitializationSequence E2ToC1(*this, Entity1, Kind, &E2, 1);
4449
4450  if (E1ToC1 && E2ToC1) {
4451    // Conversion to Composite1 is viable.
4452    if (!Context.hasSameType(Composite1, Composite2)) {
4453      // Composite2 is a different type from Composite1. Check whether
4454      // Composite2 is also viable.
4455      InitializedEntity Entity2
4456        = InitializedEntity::InitializeTemporary(Composite2);
4457      InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4458      InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4459      if (E1ToC2 && E2ToC2) {
4460        // Both Composite1 and Composite2 are viable and are different;
4461        // this is an ambiguity.
4462        return QualType();
4463      }
4464    }
4465
4466    // Convert E1 to Composite1
4467    ExprResult E1Result
4468      = E1ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E1,1));
4469    if (E1Result.isInvalid())
4470      return QualType();
4471    E1 = E1Result.takeAs<Expr>();
4472
4473    // Convert E2 to Composite1
4474    ExprResult E2Result
4475      = E2ToC1.Perform(*this, Entity1, Kind, MultiExprArg(*this,&E2,1));
4476    if (E2Result.isInvalid())
4477      return QualType();
4478    E2 = E2Result.takeAs<Expr>();
4479
4480    return Composite1;
4481  }
4482
4483  // Check whether Composite2 is viable.
4484  InitializedEntity Entity2
4485    = InitializedEntity::InitializeTemporary(Composite2);
4486  InitializationSequence E1ToC2(*this, Entity2, Kind, &E1, 1);
4487  InitializationSequence E2ToC2(*this, Entity2, Kind, &E2, 1);
4488  if (!E1ToC2 || !E2ToC2)
4489    return QualType();
4490
4491  // Convert E1 to Composite2
4492  ExprResult E1Result
4493    = E1ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E1, 1));
4494  if (E1Result.isInvalid())
4495    return QualType();
4496  E1 = E1Result.takeAs<Expr>();
4497
4498  // Convert E2 to Composite2
4499  ExprResult E2Result
4500    = E2ToC2.Perform(*this, Entity2, Kind, MultiExprArg(*this, &E2, 1));
4501  if (E2Result.isInvalid())
4502    return QualType();
4503  E2 = E2Result.takeAs<Expr>();
4504
4505  return Composite2;
4506}
4507
4508ExprResult Sema::MaybeBindToTemporary(Expr *E) {
4509  if (!E)
4510    return ExprError();
4511
4512  assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?");
4513
4514  // If the result is a glvalue, we shouldn't bind it.
4515  if (!E->isRValue())
4516    return Owned(E);
4517
4518  // In ARC, calls that return a retainable type can return retained,
4519  // in which case we have to insert a consuming cast.
4520  if (getLangOpts().ObjCAutoRefCount &&
4521      E->getType()->isObjCRetainableType()) {
4522
4523    bool ReturnsRetained;
4524
4525    // For actual calls, we compute this by examining the type of the
4526    // called value.
4527    if (CallExpr *Call = dyn_cast<CallExpr>(E)) {
4528      Expr *Callee = Call->getCallee()->IgnoreParens();
4529      QualType T = Callee->getType();
4530
4531      if (T == Context.BoundMemberTy) {
4532        // Handle pointer-to-members.
4533        if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee))
4534          T = BinOp->getRHS()->getType();
4535        else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee))
4536          T = Mem->getMemberDecl()->getType();
4537      }
4538
4539      if (const PointerType *Ptr = T->getAs<PointerType>())
4540        T = Ptr->getPointeeType();
4541      else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>())
4542        T = Ptr->getPointeeType();
4543      else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>())
4544        T = MemPtr->getPointeeType();
4545
4546      const FunctionType *FTy = T->getAs<FunctionType>();
4547      assert(FTy && "call to value not of function type?");
4548      ReturnsRetained = FTy->getExtInfo().getProducesResult();
4549
4550    // ActOnStmtExpr arranges things so that StmtExprs of retainable
4551    // type always produce a +1 object.
4552    } else if (isa<StmtExpr>(E)) {
4553      ReturnsRetained = true;
4554
4555    // We hit this case with the lambda conversion-to-block optimization;
4556    // we don't want any extra casts here.
4557    } else if (isa<CastExpr>(E) &&
4558               isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) {
4559      return Owned(E);
4560
4561    // For message sends and property references, we try to find an
4562    // actual method.  FIXME: we should infer retention by selector in
4563    // cases where we don't have an actual method.
4564    } else {
4565      ObjCMethodDecl *D = 0;
4566      if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) {
4567        D = Send->getMethodDecl();
4568      } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) {
4569        D = BoxedExpr->getBoxingMethod();
4570      } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) {
4571        D = ArrayLit->getArrayWithObjectsMethod();
4572      } else if (ObjCDictionaryLiteral *DictLit
4573                                        = dyn_cast<ObjCDictionaryLiteral>(E)) {
4574        D = DictLit->getDictWithObjectsMethod();
4575      }
4576
4577      ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>());
4578
4579      // Don't do reclaims on performSelector calls; despite their
4580      // return type, the invoked method doesn't necessarily actually
4581      // return an object.
4582      if (!ReturnsRetained &&
4583          D && D->getMethodFamily() == OMF_performSelector)
4584        return Owned(E);
4585    }
4586
4587    // Don't reclaim an object of Class type.
4588    if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType())
4589      return Owned(E);
4590
4591    ExprNeedsCleanups = true;
4592
4593    CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject
4594                                   : CK_ARCReclaimReturnedObject);
4595    return Owned(ImplicitCastExpr::Create(Context, E->getType(), ck, E, 0,
4596                                          VK_RValue));
4597  }
4598
4599  if (!getLangOpts().CPlusPlus)
4600    return Owned(E);
4601
4602  // Search for the base element type (cf. ASTContext::getBaseElementType) with
4603  // a fast path for the common case that the type is directly a RecordType.
4604  const Type *T = Context.getCanonicalType(E->getType().getTypePtr());
4605  const RecordType *RT = 0;
4606  while (!RT) {
4607    switch (T->getTypeClass()) {
4608    case Type::Record:
4609      RT = cast<RecordType>(T);
4610      break;
4611    case Type::ConstantArray:
4612    case Type::IncompleteArray:
4613    case Type::VariableArray:
4614    case Type::DependentSizedArray:
4615      T = cast<ArrayType>(T)->getElementType().getTypePtr();
4616      break;
4617    default:
4618      return Owned(E);
4619    }
4620  }
4621
4622  // That should be enough to guarantee that this type is complete, if we're
4623  // not processing a decltype expression.
4624  CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4625  if (RD->isInvalidDecl() || RD->isDependentContext())
4626    return Owned(E);
4627
4628  bool IsDecltype = ExprEvalContexts.back().IsDecltype;
4629  CXXDestructorDecl *Destructor = IsDecltype ? 0 : LookupDestructor(RD);
4630
4631  if (Destructor) {
4632    MarkFunctionReferenced(E->getExprLoc(), Destructor);
4633    CheckDestructorAccess(E->getExprLoc(), Destructor,
4634                          PDiag(diag::err_access_dtor_temp)
4635                            << E->getType());
4636    DiagnoseUseOfDecl(Destructor, E->getExprLoc());
4637
4638    // If destructor is trivial, we can avoid the extra copy.
4639    if (Destructor->isTrivial())
4640      return Owned(E);
4641
4642    // We need a cleanup, but we don't need to remember the temporary.
4643    ExprNeedsCleanups = true;
4644  }
4645
4646  CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor);
4647  CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E);
4648
4649  if (IsDecltype)
4650    ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind);
4651
4652  return Owned(Bind);
4653}
4654
4655ExprResult
4656Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) {
4657  if (SubExpr.isInvalid())
4658    return ExprError();
4659
4660  return Owned(MaybeCreateExprWithCleanups(SubExpr.take()));
4661}
4662
4663Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) {
4664  assert(SubExpr && "sub expression can't be null!");
4665
4666  CleanupVarDeclMarking();
4667
4668  unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects;
4669  assert(ExprCleanupObjects.size() >= FirstCleanup);
4670  assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup);
4671  if (!ExprNeedsCleanups)
4672    return SubExpr;
4673
4674  ArrayRef<ExprWithCleanups::CleanupObject> Cleanups
4675    = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup,
4676                         ExprCleanupObjects.size() - FirstCleanup);
4677
4678  Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups);
4679  DiscardCleanupsInEvaluationContext();
4680
4681  return E;
4682}
4683
4684Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) {
4685  assert(SubStmt && "sub statement can't be null!");
4686
4687  CleanupVarDeclMarking();
4688
4689  if (!ExprNeedsCleanups)
4690    return SubStmt;
4691
4692  // FIXME: In order to attach the temporaries, wrap the statement into
4693  // a StmtExpr; currently this is only used for asm statements.
4694  // This is hacky, either create a new CXXStmtWithTemporaries statement or
4695  // a new AsmStmtWithTemporaries.
4696  CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, &SubStmt, 1,
4697                                                      SourceLocation(),
4698                                                      SourceLocation());
4699  Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(),
4700                                   SourceLocation());
4701  return MaybeCreateExprWithCleanups(E);
4702}
4703
4704/// Process the expression contained within a decltype. For such expressions,
4705/// certain semantic checks on temporaries are delayed until this point, and
4706/// are omitted for the 'topmost' call in the decltype expression. If the
4707/// topmost call bound a temporary, strip that temporary off the expression.
4708ExprResult Sema::ActOnDecltypeExpression(Expr *E) {
4709  ExpressionEvaluationContextRecord &Rec = ExprEvalContexts.back();
4710  assert(Rec.IsDecltype && "not in a decltype expression");
4711
4712  // C++11 [expr.call]p11:
4713  //   If a function call is a prvalue of object type,
4714  // -- if the function call is either
4715  //   -- the operand of a decltype-specifier, or
4716  //   -- the right operand of a comma operator that is the operand of a
4717  //      decltype-specifier,
4718  //   a temporary object is not introduced for the prvalue.
4719
4720  // Recursively rebuild ParenExprs and comma expressions to strip out the
4721  // outermost CXXBindTemporaryExpr, if any.
4722  if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
4723    ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr());
4724    if (SubExpr.isInvalid())
4725      return ExprError();
4726    if (SubExpr.get() == PE->getSubExpr())
4727      return Owned(E);
4728    return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.take());
4729  }
4730  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
4731    if (BO->getOpcode() == BO_Comma) {
4732      ExprResult RHS = ActOnDecltypeExpression(BO->getRHS());
4733      if (RHS.isInvalid())
4734        return ExprError();
4735      if (RHS.get() == BO->getRHS())
4736        return Owned(E);
4737      return Owned(new (Context) BinaryOperator(BO->getLHS(), RHS.take(),
4738                                                BO_Comma, BO->getType(),
4739                                                BO->getValueKind(),
4740                                                BO->getObjectKind(),
4741                                                BO->getOperatorLoc()));
4742    }
4743  }
4744
4745  CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E);
4746  if (TopBind)
4747    E = TopBind->getSubExpr();
4748
4749  // Disable the special decltype handling now.
4750  Rec.IsDecltype = false;
4751
4752  // Perform the semantic checks we delayed until this point.
4753  CallExpr *TopCall = dyn_cast<CallExpr>(E);
4754  for (unsigned I = 0, N = Rec.DelayedDecltypeCalls.size(); I != N; ++I) {
4755    CallExpr *Call = Rec.DelayedDecltypeCalls[I];
4756    if (Call == TopCall)
4757      continue;
4758
4759    if (CheckCallReturnType(Call->getCallReturnType(),
4760                            Call->getLocStart(),
4761                            Call, Call->getDirectCallee()))
4762      return ExprError();
4763  }
4764
4765  // Now all relevant types are complete, check the destructors are accessible
4766  // and non-deleted, and annotate them on the temporaries.
4767  for (unsigned I = 0, N = Rec.DelayedDecltypeBinds.size(); I != N; ++I) {
4768    CXXBindTemporaryExpr *Bind = Rec.DelayedDecltypeBinds[I];
4769    if (Bind == TopBind)
4770      continue;
4771
4772    CXXTemporary *Temp = Bind->getTemporary();
4773
4774    CXXRecordDecl *RD =
4775      Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
4776    CXXDestructorDecl *Destructor = LookupDestructor(RD);
4777    Temp->setDestructor(Destructor);
4778
4779    MarkFunctionReferenced(Bind->getExprLoc(), Destructor);
4780    CheckDestructorAccess(Bind->getExprLoc(), Destructor,
4781                          PDiag(diag::err_access_dtor_temp)
4782                            << Bind->getType());
4783    DiagnoseUseOfDecl(Destructor, Bind->getExprLoc());
4784
4785    // We need a cleanup, but we don't need to remember the temporary.
4786    ExprNeedsCleanups = true;
4787  }
4788
4789  // Possibly strip off the top CXXBindTemporaryExpr.
4790  return Owned(E);
4791}
4792
4793ExprResult
4794Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, SourceLocation OpLoc,
4795                                   tok::TokenKind OpKind, ParsedType &ObjectType,
4796                                   bool &MayBePseudoDestructor) {
4797  // Since this might be a postfix expression, get rid of ParenListExprs.
4798  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
4799  if (Result.isInvalid()) return ExprError();
4800  Base = Result.get();
4801
4802  Result = CheckPlaceholderExpr(Base);
4803  if (Result.isInvalid()) return ExprError();
4804  Base = Result.take();
4805
4806  QualType BaseType = Base->getType();
4807  MayBePseudoDestructor = false;
4808  if (BaseType->isDependentType()) {
4809    // If we have a pointer to a dependent type and are using the -> operator,
4810    // the object type is the type that the pointer points to. We might still
4811    // have enough information about that type to do something useful.
4812    if (OpKind == tok::arrow)
4813      if (const PointerType *Ptr = BaseType->getAs<PointerType>())
4814        BaseType = Ptr->getPointeeType();
4815
4816    ObjectType = ParsedType::make(BaseType);
4817    MayBePseudoDestructor = true;
4818    return Owned(Base);
4819  }
4820
4821  // C++ [over.match.oper]p8:
4822  //   [...] When operator->returns, the operator-> is applied  to the value
4823  //   returned, with the original second operand.
4824  if (OpKind == tok::arrow) {
4825    // The set of types we've considered so far.
4826    llvm::SmallPtrSet<CanQualType,8> CTypes;
4827    SmallVector<SourceLocation, 8> Locations;
4828    CTypes.insert(Context.getCanonicalType(BaseType));
4829
4830    while (BaseType->isRecordType()) {
4831      Result = BuildOverloadedArrowExpr(S, Base, OpLoc);
4832      if (Result.isInvalid())
4833        return ExprError();
4834      Base = Result.get();
4835      if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base))
4836        Locations.push_back(OpCall->getDirectCallee()->getLocation());
4837      BaseType = Base->getType();
4838      CanQualType CBaseType = Context.getCanonicalType(BaseType);
4839      if (!CTypes.insert(CBaseType)) {
4840        Diag(OpLoc, diag::err_operator_arrow_circular);
4841        for (unsigned i = 0; i < Locations.size(); i++)
4842          Diag(Locations[i], diag::note_declared_at);
4843        return ExprError();
4844      }
4845    }
4846
4847    if (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())
4848      BaseType = BaseType->getPointeeType();
4849  }
4850
4851  // Objective-C properties allow "." access on Objective-C pointer types,
4852  // so adjust the base type to the object type itself.
4853  if (BaseType->isObjCObjectPointerType())
4854    BaseType = BaseType->getPointeeType();
4855
4856  // C++ [basic.lookup.classref]p2:
4857  //   [...] If the type of the object expression is of pointer to scalar
4858  //   type, the unqualified-id is looked up in the context of the complete
4859  //   postfix-expression.
4860  //
4861  // This also indicates that we could be parsing a pseudo-destructor-name.
4862  // Note that Objective-C class and object types can be pseudo-destructor
4863  // expressions or normal member (ivar or property) access expressions.
4864  if (BaseType->isObjCObjectOrInterfaceType()) {
4865    MayBePseudoDestructor = true;
4866  } else if (!BaseType->isRecordType()) {
4867    ObjectType = ParsedType();
4868    MayBePseudoDestructor = true;
4869    return Owned(Base);
4870  }
4871
4872  // The object type must be complete (or dependent), or
4873  // C++11 [expr.prim.general]p3:
4874  //   Unlike the object expression in other contexts, *this is not required to
4875  //   be of complete type for purposes of class member access (5.2.5) outside
4876  //   the member function body.
4877  if (!BaseType->isDependentType() &&
4878      !isThisOutsideMemberFunctionBody(BaseType) &&
4879      RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access))
4880    return ExprError();
4881
4882  // C++ [basic.lookup.classref]p2:
4883  //   If the id-expression in a class member access (5.2.5) is an
4884  //   unqualified-id, and the type of the object expression is of a class
4885  //   type C (or of pointer to a class type C), the unqualified-id is looked
4886  //   up in the scope of class C. [...]
4887  ObjectType = ParsedType::make(BaseType);
4888  return move(Base);
4889}
4890
4891ExprResult Sema::DiagnoseDtorReference(SourceLocation NameLoc,
4892                                                   Expr *MemExpr) {
4893  SourceLocation ExpectedLParenLoc = PP.getLocForEndOfToken(NameLoc);
4894  Diag(MemExpr->getLocStart(), diag::err_dtor_expr_without_call)
4895    << isa<CXXPseudoDestructorExpr>(MemExpr)
4896    << FixItHint::CreateInsertion(ExpectedLParenLoc, "()");
4897
4898  return ActOnCallExpr(/*Scope*/ 0,
4899                       MemExpr,
4900                       /*LPLoc*/ ExpectedLParenLoc,
4901                       MultiExprArg(),
4902                       /*RPLoc*/ ExpectedLParenLoc);
4903}
4904
4905static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base,
4906                   tok::TokenKind& OpKind, SourceLocation OpLoc) {
4907  if (Base->hasPlaceholderType()) {
4908    ExprResult result = S.CheckPlaceholderExpr(Base);
4909    if (result.isInvalid()) return true;
4910    Base = result.take();
4911  }
4912  ObjectType = Base->getType();
4913
4914  // C++ [expr.pseudo]p2:
4915  //   The left-hand side of the dot operator shall be of scalar type. The
4916  //   left-hand side of the arrow operator shall be of pointer to scalar type.
4917  //   This scalar type is the object type.
4918  // Note that this is rather different from the normal handling for the
4919  // arrow operator.
4920  if (OpKind == tok::arrow) {
4921    if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) {
4922      ObjectType = Ptr->getPointeeType();
4923    } else if (!Base->isTypeDependent()) {
4924      // The user wrote "p->" when she probably meant "p."; fix it.
4925      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
4926        << ObjectType << true
4927        << FixItHint::CreateReplacement(OpLoc, ".");
4928      if (S.isSFINAEContext())
4929        return true;
4930
4931      OpKind = tok::period;
4932    }
4933  }
4934
4935  return false;
4936}
4937
4938ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base,
4939                                           SourceLocation OpLoc,
4940                                           tok::TokenKind OpKind,
4941                                           const CXXScopeSpec &SS,
4942                                           TypeSourceInfo *ScopeTypeInfo,
4943                                           SourceLocation CCLoc,
4944                                           SourceLocation TildeLoc,
4945                                         PseudoDestructorTypeStorage Destructed,
4946                                           bool HasTrailingLParen) {
4947  TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo();
4948
4949  QualType ObjectType;
4950  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
4951    return ExprError();
4952
4953  if (!ObjectType->isDependentType() && !ObjectType->isScalarType()) {
4954    if (getLangOpts().MicrosoftMode && ObjectType->isVoidType())
4955      Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange();
4956    else
4957      Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar)
4958        << ObjectType << Base->getSourceRange();
4959    return ExprError();
4960  }
4961
4962  // C++ [expr.pseudo]p2:
4963  //   [...] The cv-unqualified versions of the object type and of the type
4964  //   designated by the pseudo-destructor-name shall be the same type.
4965  if (DestructedTypeInfo) {
4966    QualType DestructedType = DestructedTypeInfo->getType();
4967    SourceLocation DestructedTypeStart
4968      = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin();
4969    if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) {
4970      if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) {
4971        Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch)
4972          << ObjectType << DestructedType << Base->getSourceRange()
4973          << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4974
4975        // Recover by setting the destructed type to the object type.
4976        DestructedType = ObjectType;
4977        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4978                                                           DestructedTypeStart);
4979        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4980      } else if (DestructedType.getObjCLifetime() !=
4981                                                ObjectType.getObjCLifetime()) {
4982
4983        if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) {
4984          // Okay: just pretend that the user provided the correctly-qualified
4985          // type.
4986        } else {
4987          Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals)
4988            << ObjectType << DestructedType << Base->getSourceRange()
4989            << DestructedTypeInfo->getTypeLoc().getLocalSourceRange();
4990        }
4991
4992        // Recover by setting the destructed type to the object type.
4993        DestructedType = ObjectType;
4994        DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType,
4995                                                           DestructedTypeStart);
4996        Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
4997      }
4998    }
4999  }
5000
5001  // C++ [expr.pseudo]p2:
5002  //   [...] Furthermore, the two type-names in a pseudo-destructor-name of the
5003  //   form
5004  //
5005  //     ::[opt] nested-name-specifier[opt] type-name :: ~ type-name
5006  //
5007  //   shall designate the same scalar type.
5008  if (ScopeTypeInfo) {
5009    QualType ScopeType = ScopeTypeInfo->getType();
5010    if (!ScopeType->isDependentType() && !ObjectType->isDependentType() &&
5011        !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) {
5012
5013      Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(),
5014           diag::err_pseudo_dtor_type_mismatch)
5015        << ObjectType << ScopeType << Base->getSourceRange()
5016        << ScopeTypeInfo->getTypeLoc().getLocalSourceRange();
5017
5018      ScopeType = QualType();
5019      ScopeTypeInfo = 0;
5020    }
5021  }
5022
5023  Expr *Result
5024    = new (Context) CXXPseudoDestructorExpr(Context, Base,
5025                                            OpKind == tok::arrow, OpLoc,
5026                                            SS.getWithLocInContext(Context),
5027                                            ScopeTypeInfo,
5028                                            CCLoc,
5029                                            TildeLoc,
5030                                            Destructed);
5031
5032  if (HasTrailingLParen)
5033    return Owned(Result);
5034
5035  return DiagnoseDtorReference(Destructed.getLocation(), Result);
5036}
5037
5038ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5039                                           SourceLocation OpLoc,
5040                                           tok::TokenKind OpKind,
5041                                           CXXScopeSpec &SS,
5042                                           UnqualifiedId &FirstTypeName,
5043                                           SourceLocation CCLoc,
5044                                           SourceLocation TildeLoc,
5045                                           UnqualifiedId &SecondTypeName,
5046                                           bool HasTrailingLParen) {
5047  assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5048          FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5049         "Invalid first type name in pseudo-destructor");
5050  assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5051          SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) &&
5052         "Invalid second type name in pseudo-destructor");
5053
5054  QualType ObjectType;
5055  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5056    return ExprError();
5057
5058  // Compute the object type that we should use for name lookup purposes. Only
5059  // record types and dependent types matter.
5060  ParsedType ObjectTypePtrForLookup;
5061  if (!SS.isSet()) {
5062    if (ObjectType->isRecordType())
5063      ObjectTypePtrForLookup = ParsedType::make(ObjectType);
5064    else if (ObjectType->isDependentType())
5065      ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy);
5066  }
5067
5068  // Convert the name of the type being destructed (following the ~) into a
5069  // type (with source-location information).
5070  QualType DestructedType;
5071  TypeSourceInfo *DestructedTypeInfo = 0;
5072  PseudoDestructorTypeStorage Destructed;
5073  if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5074    ParsedType T = getTypeName(*SecondTypeName.Identifier,
5075                               SecondTypeName.StartLocation,
5076                               S, &SS, true, false, ObjectTypePtrForLookup);
5077    if (!T &&
5078        ((SS.isSet() && !computeDeclContext(SS, false)) ||
5079         (!SS.isSet() && ObjectType->isDependentType()))) {
5080      // The name of the type being destroyed is a dependent name, and we
5081      // couldn't find anything useful in scope. Just store the identifier and
5082      // it's location, and we'll perform (qualified) name lookup again at
5083      // template instantiation time.
5084      Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier,
5085                                               SecondTypeName.StartLocation);
5086    } else if (!T) {
5087      Diag(SecondTypeName.StartLocation,
5088           diag::err_pseudo_dtor_destructor_non_type)
5089        << SecondTypeName.Identifier << ObjectType;
5090      if (isSFINAEContext())
5091        return ExprError();
5092
5093      // Recover by assuming we had the right type all along.
5094      DestructedType = ObjectType;
5095    } else
5096      DestructedType = GetTypeFromParser(T, &DestructedTypeInfo);
5097  } else {
5098    // Resolve the template-id to a type.
5099    TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId;
5100    ASTTemplateArgsPtr TemplateArgsPtr(*this,
5101                                       TemplateId->getTemplateArgs(),
5102                                       TemplateId->NumArgs);
5103    TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5104                                       TemplateId->TemplateKWLoc,
5105                                       TemplateId->Template,
5106                                       TemplateId->TemplateNameLoc,
5107                                       TemplateId->LAngleLoc,
5108                                       TemplateArgsPtr,
5109                                       TemplateId->RAngleLoc);
5110    if (T.isInvalid() || !T.get()) {
5111      // Recover by assuming we had the right type all along.
5112      DestructedType = ObjectType;
5113    } else
5114      DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo);
5115  }
5116
5117  // If we've performed some kind of recovery, (re-)build the type source
5118  // information.
5119  if (!DestructedType.isNull()) {
5120    if (!DestructedTypeInfo)
5121      DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType,
5122                                                  SecondTypeName.StartLocation);
5123    Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo);
5124  }
5125
5126  // Convert the name of the scope type (the type prior to '::') into a type.
5127  TypeSourceInfo *ScopeTypeInfo = 0;
5128  QualType ScopeType;
5129  if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId ||
5130      FirstTypeName.Identifier) {
5131    if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) {
5132      ParsedType T = getTypeName(*FirstTypeName.Identifier,
5133                                 FirstTypeName.StartLocation,
5134                                 S, &SS, true, false, ObjectTypePtrForLookup);
5135      if (!T) {
5136        Diag(FirstTypeName.StartLocation,
5137             diag::err_pseudo_dtor_destructor_non_type)
5138          << FirstTypeName.Identifier << ObjectType;
5139
5140        if (isSFINAEContext())
5141          return ExprError();
5142
5143        // Just drop this type. It's unnecessary anyway.
5144        ScopeType = QualType();
5145      } else
5146        ScopeType = GetTypeFromParser(T, &ScopeTypeInfo);
5147    } else {
5148      // Resolve the template-id to a type.
5149      TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId;
5150      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5151                                         TemplateId->getTemplateArgs(),
5152                                         TemplateId->NumArgs);
5153      TypeResult T = ActOnTemplateIdType(TemplateId->SS,
5154                                         TemplateId->TemplateKWLoc,
5155                                         TemplateId->Template,
5156                                         TemplateId->TemplateNameLoc,
5157                                         TemplateId->LAngleLoc,
5158                                         TemplateArgsPtr,
5159                                         TemplateId->RAngleLoc);
5160      if (T.isInvalid() || !T.get()) {
5161        // Recover by dropping this type.
5162        ScopeType = QualType();
5163      } else
5164        ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo);
5165    }
5166  }
5167
5168  if (!ScopeType.isNull() && !ScopeTypeInfo)
5169    ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType,
5170                                                  FirstTypeName.StartLocation);
5171
5172
5173  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS,
5174                                   ScopeTypeInfo, CCLoc, TildeLoc,
5175                                   Destructed, HasTrailingLParen);
5176}
5177
5178ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base,
5179                                           SourceLocation OpLoc,
5180                                           tok::TokenKind OpKind,
5181                                           SourceLocation TildeLoc,
5182                                           const DeclSpec& DS,
5183                                           bool HasTrailingLParen) {
5184  QualType ObjectType;
5185  if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc))
5186    return ExprError();
5187
5188  QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
5189
5190  TypeLocBuilder TLB;
5191  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
5192  DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc());
5193  TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T);
5194  PseudoDestructorTypeStorage Destructed(DestructedTypeInfo);
5195
5196  return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(),
5197                                   0, SourceLocation(), TildeLoc,
5198                                   Destructed, HasTrailingLParen);
5199}
5200
5201ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl,
5202                                        CXXConversionDecl *Method,
5203                                        bool HadMultipleCandidates) {
5204  if (Method->getParent()->isLambda() &&
5205      Method->getConversionType()->isBlockPointerType()) {
5206    // This is a lambda coversion to block pointer; check if the argument
5207    // is a LambdaExpr.
5208    Expr *SubE = E;
5209    CastExpr *CE = dyn_cast<CastExpr>(SubE);
5210    if (CE && CE->getCastKind() == CK_NoOp)
5211      SubE = CE->getSubExpr();
5212    SubE = SubE->IgnoreParens();
5213    if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE))
5214      SubE = BE->getSubExpr();
5215    if (isa<LambdaExpr>(SubE)) {
5216      // For the conversion to block pointer on a lambda expression, we
5217      // construct a special BlockLiteral instead; this doesn't really make
5218      // a difference in ARC, but outside of ARC the resulting block literal
5219      // follows the normal lifetime rules for block literals instead of being
5220      // autoreleased.
5221      DiagnosticErrorTrap Trap(Diags);
5222      ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(),
5223                                                     E->getExprLoc(),
5224                                                     Method, E);
5225      if (Exp.isInvalid())
5226        Diag(E->getExprLoc(), diag::note_lambda_to_block_conv);
5227      return Exp;
5228    }
5229  }
5230
5231
5232  ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/0,
5233                                          FoundDecl, Method);
5234  if (Exp.isInvalid())
5235    return true;
5236
5237  MemberExpr *ME =
5238      new (Context) MemberExpr(Exp.take(), /*IsArrow=*/false, Method,
5239                               SourceLocation(), Context.BoundMemberTy,
5240                               VK_RValue, OK_Ordinary);
5241  if (HadMultipleCandidates)
5242    ME->setHadMultipleCandidates(true);
5243
5244  QualType ResultType = Method->getResultType();
5245  ExprValueKind VK = Expr::getValueKindForType(ResultType);
5246  ResultType = ResultType.getNonLValueExprType(Context);
5247
5248  MarkFunctionReferenced(Exp.get()->getLocStart(), Method);
5249  CXXMemberCallExpr *CE =
5250    new (Context) CXXMemberCallExpr(Context, ME, 0, 0, ResultType, VK,
5251                                    Exp.get()->getLocEnd());
5252  return CE;
5253}
5254
5255ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand,
5256                                      SourceLocation RParen) {
5257  CanThrowResult CanThrow = canThrow(Operand);
5258  return Owned(new (Context) CXXNoexceptExpr(Context.BoolTy, Operand,
5259                                             CanThrow, KeyLoc, RParen));
5260}
5261
5262ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation,
5263                                   Expr *Operand, SourceLocation RParen) {
5264  return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen);
5265}
5266
5267static bool IsSpecialDiscardedValue(Expr *E) {
5268  // In C++11, discarded-value expressions of a certain form are special,
5269  // according to [expr]p10:
5270  //   The lvalue-to-rvalue conversion (4.1) is applied only if the
5271  //   expression is an lvalue of volatile-qualified type and it has
5272  //   one of the following forms:
5273  E = E->IgnoreParens();
5274
5275  //   - id-expression (5.1.1),
5276  if (isa<DeclRefExpr>(E))
5277    return true;
5278
5279  //   - subscripting (5.2.1),
5280  if (isa<ArraySubscriptExpr>(E))
5281    return true;
5282
5283  //   - class member access (5.2.5),
5284  if (isa<MemberExpr>(E))
5285    return true;
5286
5287  //   - indirection (5.3.1),
5288  if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
5289    if (UO->getOpcode() == UO_Deref)
5290      return true;
5291
5292  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
5293    //   - pointer-to-member operation (5.5),
5294    if (BO->isPtrMemOp())
5295      return true;
5296
5297    //   - comma expression (5.18) where the right operand is one of the above.
5298    if (BO->getOpcode() == BO_Comma)
5299      return IsSpecialDiscardedValue(BO->getRHS());
5300  }
5301
5302  //   - conditional expression (5.16) where both the second and the third
5303  //     operands are one of the above, or
5304  if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
5305    return IsSpecialDiscardedValue(CO->getTrueExpr()) &&
5306           IsSpecialDiscardedValue(CO->getFalseExpr());
5307  // The related edge case of "*x ?: *x".
5308  if (BinaryConditionalOperator *BCO =
5309          dyn_cast<BinaryConditionalOperator>(E)) {
5310    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr()))
5311      return IsSpecialDiscardedValue(OVE->getSourceExpr()) &&
5312             IsSpecialDiscardedValue(BCO->getFalseExpr());
5313  }
5314
5315  // Objective-C++ extensions to the rule.
5316  if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E))
5317    return true;
5318
5319  return false;
5320}
5321
5322/// Perform the conversions required for an expression used in a
5323/// context that ignores the result.
5324ExprResult Sema::IgnoredValueConversions(Expr *E) {
5325  if (E->hasPlaceholderType()) {
5326    ExprResult result = CheckPlaceholderExpr(E);
5327    if (result.isInvalid()) return Owned(E);
5328    E = result.take();
5329  }
5330
5331  // C99 6.3.2.1:
5332  //   [Except in specific positions,] an lvalue that does not have
5333  //   array type is converted to the value stored in the
5334  //   designated object (and is no longer an lvalue).
5335  if (E->isRValue()) {
5336    // In C, function designators (i.e. expressions of function type)
5337    // are r-values, but we still want to do function-to-pointer decay
5338    // on them.  This is both technically correct and convenient for
5339    // some clients.
5340    if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType())
5341      return DefaultFunctionArrayConversion(E);
5342
5343    return Owned(E);
5344  }
5345
5346  if (getLangOpts().CPlusPlus)  {
5347    // The C++11 standard defines the notion of a discarded-value expression;
5348    // normally, we don't need to do anything to handle it, but if it is a
5349    // volatile lvalue with a special form, we perform an lvalue-to-rvalue
5350    // conversion.
5351    if (getLangOpts().CPlusPlus0x && E->isGLValue() &&
5352        E->getType().isVolatileQualified() &&
5353        IsSpecialDiscardedValue(E)) {
5354      ExprResult Res = DefaultLvalueConversion(E);
5355      if (Res.isInvalid())
5356        return Owned(E);
5357      E = Res.take();
5358    }
5359    return Owned(E);
5360  }
5361
5362  // GCC seems to also exclude expressions of incomplete enum type.
5363  if (const EnumType *T = E->getType()->getAs<EnumType>()) {
5364    if (!T->getDecl()->isComplete()) {
5365      // FIXME: stupid workaround for a codegen bug!
5366      E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).take();
5367      return Owned(E);
5368    }
5369  }
5370
5371  ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
5372  if (Res.isInvalid())
5373    return Owned(E);
5374  E = Res.take();
5375
5376  if (!E->getType()->isVoidType())
5377    RequireCompleteType(E->getExprLoc(), E->getType(),
5378                        diag::err_incomplete_type);
5379  return Owned(E);
5380}
5381
5382ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC) {
5383  ExprResult FullExpr = Owned(FE);
5384
5385  if (!FullExpr.get())
5386    return ExprError();
5387
5388  if (DiagnoseUnexpandedParameterPack(FullExpr.get()))
5389    return ExprError();
5390
5391  // Top-level message sends default to 'id' when we're in a debugger.
5392  if (getLangOpts().DebuggerCastResultToId &&
5393      FullExpr.get()->getType() == Context.UnknownAnyTy &&
5394      isa<ObjCMessageExpr>(FullExpr.get())) {
5395    FullExpr = forceUnknownAnyToType(FullExpr.take(), Context.getObjCIdType());
5396    if (FullExpr.isInvalid())
5397      return ExprError();
5398  }
5399
5400  FullExpr = CheckPlaceholderExpr(FullExpr.take());
5401  if (FullExpr.isInvalid())
5402    return ExprError();
5403
5404  FullExpr = IgnoredValueConversions(FullExpr.take());
5405  if (FullExpr.isInvalid())
5406    return ExprError();
5407
5408  CheckImplicitConversions(FullExpr.get(), CC);
5409  return MaybeCreateExprWithCleanups(FullExpr);
5410}
5411
5412StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) {
5413  if (!FullStmt) return StmtError();
5414
5415  return MaybeCreateStmtWithCleanups(FullStmt);
5416}
5417
5418Sema::IfExistsResult
5419Sema::CheckMicrosoftIfExistsSymbol(Scope *S,
5420                                   CXXScopeSpec &SS,
5421                                   const DeclarationNameInfo &TargetNameInfo) {
5422  DeclarationName TargetName = TargetNameInfo.getName();
5423  if (!TargetName)
5424    return IER_DoesNotExist;
5425
5426  // If the name itself is dependent, then the result is dependent.
5427  if (TargetName.isDependentName())
5428    return IER_Dependent;
5429
5430  // Do the redeclaration lookup in the current scope.
5431  LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName,
5432                 Sema::NotForRedeclaration);
5433  LookupParsedName(R, S, &SS);
5434  R.suppressDiagnostics();
5435
5436  switch (R.getResultKind()) {
5437  case LookupResult::Found:
5438  case LookupResult::FoundOverloaded:
5439  case LookupResult::FoundUnresolvedValue:
5440  case LookupResult::Ambiguous:
5441    return IER_Exists;
5442
5443  case LookupResult::NotFound:
5444    return IER_DoesNotExist;
5445
5446  case LookupResult::NotFoundInCurrentInstantiation:
5447    return IER_Dependent;
5448  }
5449
5450  llvm_unreachable("Invalid LookupResult Kind!");
5451}
5452
5453Sema::IfExistsResult
5454Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc,
5455                                   bool IsIfExists, CXXScopeSpec &SS,
5456                                   UnqualifiedId &Name) {
5457  DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
5458
5459  // Check for unexpanded parameter packs.
5460  SmallVector<UnexpandedParameterPack, 4> Unexpanded;
5461  collectUnexpandedParameterPacks(SS, Unexpanded);
5462  collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded);
5463  if (!Unexpanded.empty()) {
5464    DiagnoseUnexpandedParameterPacks(KeywordLoc,
5465                                     IsIfExists? UPPC_IfExists
5466                                               : UPPC_IfNotExists,
5467                                     Unexpanded);
5468    return IER_Error;
5469  }
5470
5471  return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo);
5472}
5473