SemaExprMember.cpp revision 0ec56b7add7be643f490ea9b430823570f01b4e2
1//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis member access expressions.
11//
12//===----------------------------------------------------------------------===//
13#include "clang/Sema/SemaInternal.h"
14#include "clang/Sema/Lookup.h"
15#include "clang/Sema/Scope.h"
16#include "clang/Sema/ScopeInfo.h"
17#include "clang/AST/DeclCXX.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/AST/ExprObjC.h"
22#include "clang/Lex/Preprocessor.h"
23
24using namespace clang;
25using namespace sema;
26
27/// Determines if the given class is provably not derived from all of
28/// the prospective base classes.
29static bool IsProvablyNotDerivedFrom(Sema &SemaRef,
30                                     CXXRecordDecl *Record,
31                            const llvm::SmallPtrSet<CXXRecordDecl*, 4> &Bases) {
32  if (Bases.count(Record->getCanonicalDecl()))
33    return false;
34
35  RecordDecl *RD = Record->getDefinition();
36  if (!RD) return false;
37  Record = cast<CXXRecordDecl>(RD);
38
39  for (CXXRecordDecl::base_class_iterator I = Record->bases_begin(),
40         E = Record->bases_end(); I != E; ++I) {
41    CanQualType BaseT = SemaRef.Context.getCanonicalType((*I).getType());
42    CanQual<RecordType> BaseRT = BaseT->getAs<RecordType>();
43    if (!BaseRT) return false;
44
45    CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
46    if (!IsProvablyNotDerivedFrom(SemaRef, BaseRecord, Bases))
47      return false;
48  }
49
50  return true;
51}
52
53enum IMAKind {
54  /// The reference is definitely not an instance member access.
55  IMA_Static,
56
57  /// The reference may be an implicit instance member access.
58  IMA_Mixed,
59
60  /// The reference may be to an instance member, but it might be invalid if
61  /// so, because the context is not an instance method.
62  IMA_Mixed_StaticContext,
63
64  /// The reference may be to an instance member, but it is invalid if
65  /// so, because the context is from an unrelated class.
66  IMA_Mixed_Unrelated,
67
68  /// The reference is definitely an implicit instance member access.
69  IMA_Instance,
70
71  /// The reference may be to an unresolved using declaration.
72  IMA_Unresolved,
73
74  /// The reference may be to an unresolved using declaration and the
75  /// context is not an instance method.
76  IMA_Unresolved_StaticContext,
77
78  // The reference refers to a field which is not a member of the containing
79  // class, which is allowed because we're in C++11 mode and the context is
80  // unevaluated.
81  IMA_Field_Uneval_Context,
82
83  /// All possible referrents are instance members and the current
84  /// context is not an instance method.
85  IMA_Error_StaticContext,
86
87  /// All possible referrents are instance members of an unrelated
88  /// class.
89  IMA_Error_Unrelated
90};
91
92/// The given lookup names class member(s) and is not being used for
93/// an address-of-member expression.  Classify the type of access
94/// according to whether it's possible that this reference names an
95/// instance member.  This is best-effort in dependent contexts; it is okay to
96/// conservatively answer "yes", in which case some errors will simply
97/// not be caught until template-instantiation.
98static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
99                                            Scope *CurScope,
100                                            const LookupResult &R) {
101  assert(!R.empty() && (*R.begin())->isCXXClassMember());
102
103  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
104
105  bool isStaticContext = SemaRef.CXXThisTypeOverride.isNull() &&
106    (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic());
107
108  if (R.isUnresolvableResult())
109    return isStaticContext ? IMA_Unresolved_StaticContext : IMA_Unresolved;
110
111  // Collect all the declaring classes of instance members we find.
112  bool hasNonInstance = false;
113  bool isField = false;
114  llvm::SmallPtrSet<CXXRecordDecl*, 4> Classes;
115  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
116    NamedDecl *D = *I;
117
118    if (D->isCXXInstanceMember()) {
119      if (dyn_cast<FieldDecl>(D) || dyn_cast<IndirectFieldDecl>(D))
120        isField = true;
121
122      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
123      Classes.insert(R->getCanonicalDecl());
124    }
125    else
126      hasNonInstance = true;
127  }
128
129  // If we didn't find any instance members, it can't be an implicit
130  // member reference.
131  if (Classes.empty())
132    return IMA_Static;
133
134  bool IsCXX11UnevaluatedField = false;
135  if (SemaRef.getLangOpts().CPlusPlus0x && isField) {
136    // C++11 [expr.prim.general]p12:
137    //   An id-expression that denotes a non-static data member or non-static
138    //   member function of a class can only be used:
139    //   (...)
140    //   - if that id-expression denotes a non-static data member and it
141    //     appears in an unevaluated operand.
142    const Sema::ExpressionEvaluationContextRecord& record
143      = SemaRef.ExprEvalContexts.back();
144    if (record.Context == Sema::Unevaluated)
145      IsCXX11UnevaluatedField = true;
146  }
147
148  // If the current context is not an instance method, it can't be
149  // an implicit member reference.
150  if (isStaticContext) {
151    if (hasNonInstance)
152      return IMA_Mixed_StaticContext;
153
154    return IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context
155                                   : IMA_Error_StaticContext;
156  }
157
158  CXXRecordDecl *contextClass;
159  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC))
160    contextClass = MD->getParent()->getCanonicalDecl();
161  else
162    contextClass = cast<CXXRecordDecl>(DC);
163
164  // [class.mfct.non-static]p3:
165  // ...is used in the body of a non-static member function of class X,
166  // if name lookup (3.4.1) resolves the name in the id-expression to a
167  // non-static non-type member of some class C [...]
168  // ...if C is not X or a base class of X, the class member access expression
169  // is ill-formed.
170  if (R.getNamingClass() &&
171      contextClass->getCanonicalDecl() !=
172        R.getNamingClass()->getCanonicalDecl() &&
173      contextClass->isProvablyNotDerivedFrom(R.getNamingClass()))
174    return hasNonInstance ? IMA_Mixed_Unrelated :
175           IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
176                                     IMA_Error_Unrelated;
177
178  // If we can prove that the current context is unrelated to all the
179  // declaring classes, it can't be an implicit member reference (in
180  // which case it's an error if any of those members are selected).
181  if (IsProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
182    return hasNonInstance ? IMA_Mixed_Unrelated :
183           IsCXX11UnevaluatedField ? IMA_Field_Uneval_Context :
184                                     IMA_Error_Unrelated;
185
186  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
187}
188
189/// Diagnose a reference to a field with no object available.
190static void diagnoseInstanceReference(Sema &SemaRef,
191                                      const CXXScopeSpec &SS,
192                                      NamedDecl *Rep,
193                                      const DeclarationNameInfo &nameInfo) {
194  SourceLocation Loc = nameInfo.getLoc();
195  SourceRange Range(Loc);
196  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
197
198  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
199  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
200  CXXRecordDecl *ContextClass = Method ? Method->getParent() : 0;
201  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
202
203  bool InStaticMethod = Method && Method->isStatic();
204  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
205
206  if (IsField && InStaticMethod)
207    // "invalid use of member 'x' in static member function"
208    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_static_method)
209        << Range << nameInfo.getName();
210  else if (ContextClass && RepClass && SS.isEmpty() && !InStaticMethod &&
211           !RepClass->Equals(ContextClass) && RepClass->Encloses(ContextClass))
212    // Unqualified lookup in a non-static member function found a member of an
213    // enclosing class.
214    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
215      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
216  else if (IsField)
217    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
218      << nameInfo.getName() << Range;
219  else
220    SemaRef.Diag(Loc, diag::err_member_call_without_object)
221      << Range;
222}
223
224/// Builds an expression which might be an implicit member expression.
225ExprResult
226Sema::BuildPossibleImplicitMemberExpr(const CXXScopeSpec &SS,
227                                      SourceLocation TemplateKWLoc,
228                                      LookupResult &R,
229                                const TemplateArgumentListInfo *TemplateArgs) {
230  switch (ClassifyImplicitMemberAccess(*this, CurScope, R)) {
231  case IMA_Instance:
232    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true);
233
234  case IMA_Mixed:
235  case IMA_Mixed_Unrelated:
236  case IMA_Unresolved:
237    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false);
238
239  case IMA_Field_Uneval_Context:
240    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
241      << R.getLookupNameInfo().getName();
242    // Fall through.
243  case IMA_Static:
244  case IMA_Mixed_StaticContext:
245  case IMA_Unresolved_StaticContext:
246    if (TemplateArgs || TemplateKWLoc.isValid())
247      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
248    return BuildDeclarationNameExpr(SS, R, false);
249
250  case IMA_Error_StaticContext:
251  case IMA_Error_Unrelated:
252    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
253                              R.getLookupNameInfo());
254    return ExprError();
255  }
256
257  llvm_unreachable("unexpected instance member access kind");
258}
259
260/// Check an ext-vector component access expression.
261///
262/// VK should be set in advance to the value kind of the base
263/// expression.
264static QualType
265CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
266                        SourceLocation OpLoc, const IdentifierInfo *CompName,
267                        SourceLocation CompLoc) {
268  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
269  // see FIXME there.
270  //
271  // FIXME: This logic can be greatly simplified by splitting it along
272  // halving/not halving and reworking the component checking.
273  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
274
275  // The vector accessor can't exceed the number of elements.
276  const char *compStr = CompName->getNameStart();
277
278  // This flag determines whether or not the component is one of the four
279  // special names that indicate a subset of exactly half the elements are
280  // to be selected.
281  bool HalvingSwizzle = false;
282
283  // This flag determines whether or not CompName has an 's' char prefix,
284  // indicating that it is a string of hex values to be used as vector indices.
285  bool HexSwizzle = *compStr == 's' || *compStr == 'S';
286
287  bool HasRepeated = false;
288  bool HasIndex[16] = {};
289
290  int Idx;
291
292  // Check that we've found one of the special components, or that the component
293  // names must come from the same set.
294  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
295      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
296    HalvingSwizzle = true;
297  } else if (!HexSwizzle &&
298             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
299    do {
300      if (HasIndex[Idx]) HasRepeated = true;
301      HasIndex[Idx] = true;
302      compStr++;
303    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
304  } else {
305    if (HexSwizzle) compStr++;
306    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
307      if (HasIndex[Idx]) HasRepeated = true;
308      HasIndex[Idx] = true;
309      compStr++;
310    }
311  }
312
313  if (!HalvingSwizzle && *compStr) {
314    // We didn't get to the end of the string. This means the component names
315    // didn't come from the same set *or* we encountered an illegal name.
316    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
317      << StringRef(compStr, 1) << SourceRange(CompLoc);
318    return QualType();
319  }
320
321  // Ensure no component accessor exceeds the width of the vector type it
322  // operates on.
323  if (!HalvingSwizzle) {
324    compStr = CompName->getNameStart();
325
326    if (HexSwizzle)
327      compStr++;
328
329    while (*compStr) {
330      if (!vecType->isAccessorWithinNumElements(*compStr++)) {
331        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
332          << baseType << SourceRange(CompLoc);
333        return QualType();
334      }
335    }
336  }
337
338  // The component accessor looks fine - now we need to compute the actual type.
339  // The vector type is implied by the component accessor. For example,
340  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
341  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
342  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
343  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
344                                     : CompName->getLength();
345  if (HexSwizzle)
346    CompSize--;
347
348  if (CompSize == 1)
349    return vecType->getElementType();
350
351  if (HasRepeated) VK = VK_RValue;
352
353  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
354  // Now look up the TypeDefDecl from the vector type. Without this,
355  // diagostics look bad. We want extended vector types to appear built-in.
356  for (Sema::ExtVectorDeclsType::iterator
357         I = S.ExtVectorDecls.begin(S.getExternalSource()),
358         E = S.ExtVectorDecls.end();
359       I != E; ++I) {
360    if ((*I)->getUnderlyingType() == VT)
361      return S.Context.getTypedefType(*I);
362  }
363
364  return VT; // should never get here (a typedef type should always be found).
365}
366
367static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
368                                                IdentifierInfo *Member,
369                                                const Selector &Sel,
370                                                ASTContext &Context) {
371  if (Member)
372    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(Member))
373      return PD;
374  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
375    return OMD;
376
377  for (ObjCProtocolDecl::protocol_iterator I = PDecl->protocol_begin(),
378       E = PDecl->protocol_end(); I != E; ++I) {
379    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
380                                                           Context))
381      return D;
382  }
383  return 0;
384}
385
386static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
387                                      IdentifierInfo *Member,
388                                      const Selector &Sel,
389                                      ASTContext &Context) {
390  // Check protocols on qualified interfaces.
391  Decl *GDecl = 0;
392  for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
393       E = QIdTy->qual_end(); I != E; ++I) {
394    if (Member)
395      if (ObjCPropertyDecl *PD = (*I)->FindPropertyDeclaration(Member)) {
396        GDecl = PD;
397        break;
398      }
399    // Also must look for a getter or setter name which uses property syntax.
400    if (ObjCMethodDecl *OMD = (*I)->getInstanceMethod(Sel)) {
401      GDecl = OMD;
402      break;
403    }
404  }
405  if (!GDecl) {
406    for (ObjCObjectPointerType::qual_iterator I = QIdTy->qual_begin(),
407         E = QIdTy->qual_end(); I != E; ++I) {
408      // Search in the protocol-qualifier list of current protocol.
409      GDecl = FindGetterSetterNameDeclFromProtocolList(*I, Member, Sel,
410                                                       Context);
411      if (GDecl)
412        return GDecl;
413    }
414  }
415  return GDecl;
416}
417
418ExprResult
419Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
420                               bool IsArrow, SourceLocation OpLoc,
421                               const CXXScopeSpec &SS,
422                               SourceLocation TemplateKWLoc,
423                               NamedDecl *FirstQualifierInScope,
424                               const DeclarationNameInfo &NameInfo,
425                               const TemplateArgumentListInfo *TemplateArgs) {
426  // Even in dependent contexts, try to diagnose base expressions with
427  // obviously wrong types, e.g.:
428  //
429  // T* t;
430  // t.f;
431  //
432  // In Obj-C++, however, the above expression is valid, since it could be
433  // accessing the 'f' property if T is an Obj-C interface. The extra check
434  // allows this, while still reporting an error if T is a struct pointer.
435  if (!IsArrow) {
436    const PointerType *PT = BaseType->getAs<PointerType>();
437    if (PT && (!getLangOpts().ObjC1 ||
438               PT->getPointeeType()->isRecordType())) {
439      assert(BaseExpr && "cannot happen with implicit member accesses");
440      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
441        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
442      return ExprError();
443    }
444  }
445
446  assert(BaseType->isDependentType() ||
447         NameInfo.getName().isDependentName() ||
448         isDependentScopeSpecifier(SS));
449
450  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
451  // must have pointer type, and the accessed type is the pointee.
452  return Owned(CXXDependentScopeMemberExpr::Create(Context, BaseExpr, BaseType,
453                                                   IsArrow, OpLoc,
454                                               SS.getWithLocInContext(Context),
455                                                   TemplateKWLoc,
456                                                   FirstQualifierInScope,
457                                                   NameInfo, TemplateArgs));
458}
459
460/// We know that the given qualified member reference points only to
461/// declarations which do not belong to the static type of the base
462/// expression.  Diagnose the problem.
463static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
464                                             Expr *BaseExpr,
465                                             QualType BaseType,
466                                             const CXXScopeSpec &SS,
467                                             NamedDecl *rep,
468                                       const DeclarationNameInfo &nameInfo) {
469  // If this is an implicit member access, use a different set of
470  // diagnostics.
471  if (!BaseExpr)
472    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
473
474  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
475    << SS.getRange() << rep << BaseType;
476}
477
478// Check whether the declarations we found through a nested-name
479// specifier in a member expression are actually members of the base
480// type.  The restriction here is:
481//
482//   C++ [expr.ref]p2:
483//     ... In these cases, the id-expression shall name a
484//     member of the class or of one of its base classes.
485//
486// So it's perfectly legitimate for the nested-name specifier to name
487// an unrelated class, and for us to find an overload set including
488// decls from classes which are not superclasses, as long as the decl
489// we actually pick through overload resolution is from a superclass.
490bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
491                                         QualType BaseType,
492                                         const CXXScopeSpec &SS,
493                                         const LookupResult &R) {
494  const RecordType *BaseRT = BaseType->getAs<RecordType>();
495  if (!BaseRT) {
496    // We can't check this yet because the base type is still
497    // dependent.
498    assert(BaseType->isDependentType());
499    return false;
500  }
501  CXXRecordDecl *BaseRecord = cast<CXXRecordDecl>(BaseRT->getDecl());
502
503  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
504    // If this is an implicit member reference and we find a
505    // non-instance member, it's not an error.
506    if (!BaseExpr && !(*I)->isCXXInstanceMember())
507      return false;
508
509    // Note that we use the DC of the decl, not the underlying decl.
510    DeclContext *DC = (*I)->getDeclContext();
511    while (DC->isTransparentContext())
512      DC = DC->getParent();
513
514    if (!DC->isRecord())
515      continue;
516
517    llvm::SmallPtrSet<CXXRecordDecl*,4> MemberRecord;
518    MemberRecord.insert(cast<CXXRecordDecl>(DC)->getCanonicalDecl());
519
520    if (!IsProvablyNotDerivedFrom(*this, BaseRecord, MemberRecord))
521      return false;
522  }
523
524  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
525                                   R.getRepresentativeDecl(),
526                                   R.getLookupNameInfo());
527  return true;
528}
529
530namespace {
531
532// Callback to only accept typo corrections that are either a ValueDecl or a
533// FunctionTemplateDecl.
534class RecordMemberExprValidatorCCC : public CorrectionCandidateCallback {
535 public:
536  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
537    NamedDecl *ND = candidate.getCorrectionDecl();
538    return ND && (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND));
539  }
540};
541
542}
543
544static bool
545LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
546                         SourceRange BaseRange, const RecordType *RTy,
547                         SourceLocation OpLoc, CXXScopeSpec &SS,
548                         bool HasTemplateArgs) {
549  RecordDecl *RDecl = RTy->getDecl();
550  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
551      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
552                                  diag::err_typecheck_incomplete_tag,
553                                  BaseRange))
554    return true;
555
556  if (HasTemplateArgs) {
557    // LookupTemplateName doesn't expect these both to exist simultaneously.
558    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
559
560    bool MOUS;
561    SemaRef.LookupTemplateName(R, 0, SS, ObjectType, false, MOUS);
562    return false;
563  }
564
565  DeclContext *DC = RDecl;
566  if (SS.isSet()) {
567    // If the member name was a qualified-id, look into the
568    // nested-name-specifier.
569    DC = SemaRef.computeDeclContext(SS, false);
570
571    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
572      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
573        << SS.getRange() << DC;
574      return true;
575    }
576
577    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
578
579    if (!isa<TypeDecl>(DC)) {
580      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
581        << DC << SS.getRange();
582      return true;
583    }
584  }
585
586  // The record definition is complete, now look up the member.
587  SemaRef.LookupQualifiedName(R, DC);
588
589  if (!R.empty())
590    return false;
591
592  // We didn't find anything with the given name, so try to correct
593  // for typos.
594  DeclarationName Name = R.getLookupName();
595  RecordMemberExprValidatorCCC Validator;
596  TypoCorrection Corrected = SemaRef.CorrectTypo(R.getLookupNameInfo(),
597                                                 R.getLookupKind(), NULL,
598                                                 &SS, Validator, DC);
599  R.clear();
600  if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
601    std::string CorrectedStr(
602        Corrected.getAsString(SemaRef.getLangOpts()));
603    std::string CorrectedQuotedStr(
604        Corrected.getQuoted(SemaRef.getLangOpts()));
605    R.setLookupName(Corrected.getCorrection());
606    R.addDecl(ND);
607    SemaRef.Diag(R.getNameLoc(), diag::err_no_member_suggest)
608      << Name << DC << CorrectedQuotedStr << SS.getRange()
609      << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
610                                      CorrectedStr);
611    SemaRef.Diag(ND->getLocation(), diag::note_previous_decl)
612      << ND->getDeclName();
613  }
614
615  return false;
616}
617
618ExprResult
619Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
620                               SourceLocation OpLoc, bool IsArrow,
621                               CXXScopeSpec &SS,
622                               SourceLocation TemplateKWLoc,
623                               NamedDecl *FirstQualifierInScope,
624                               const DeclarationNameInfo &NameInfo,
625                               const TemplateArgumentListInfo *TemplateArgs) {
626  if (BaseType->isDependentType() ||
627      (SS.isSet() && isDependentScopeSpecifier(SS)))
628    return ActOnDependentMemberExpr(Base, BaseType,
629                                    IsArrow, OpLoc,
630                                    SS, TemplateKWLoc, FirstQualifierInScope,
631                                    NameInfo, TemplateArgs);
632
633  LookupResult R(*this, NameInfo, LookupMemberName);
634
635  // Implicit member accesses.
636  if (!Base) {
637    QualType RecordTy = BaseType;
638    if (IsArrow) RecordTy = RecordTy->getAs<PointerType>()->getPointeeType();
639    if (LookupMemberExprInRecord(*this, R, SourceRange(),
640                                 RecordTy->getAs<RecordType>(),
641                                 OpLoc, SS, TemplateArgs != 0))
642      return ExprError();
643
644  // Explicit member accesses.
645  } else {
646    ExprResult BaseResult = Owned(Base);
647    ExprResult Result =
648      LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
649                       SS, /*ObjCImpDecl*/ 0, TemplateArgs != 0);
650
651    if (BaseResult.isInvalid())
652      return ExprError();
653    Base = BaseResult.take();
654
655    if (Result.isInvalid()) {
656      Owned(Base);
657      return ExprError();
658    }
659
660    if (Result.get())
661      return Result;
662
663    // LookupMemberExpr can modify Base, and thus change BaseType
664    BaseType = Base->getType();
665  }
666
667  return BuildMemberReferenceExpr(Base, BaseType,
668                                  OpLoc, IsArrow, SS, TemplateKWLoc,
669                                  FirstQualifierInScope, R, TemplateArgs);
670}
671
672static ExprResult
673BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
674                        const CXXScopeSpec &SS, FieldDecl *Field,
675                        DeclAccessPair FoundDecl,
676                        const DeclarationNameInfo &MemberNameInfo);
677
678ExprResult
679Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
680                                               SourceLocation loc,
681                                               IndirectFieldDecl *indirectField,
682                                               Expr *baseObjectExpr,
683                                               SourceLocation opLoc) {
684  // First, build the expression that refers to the base object.
685
686  bool baseObjectIsPointer = false;
687  Qualifiers baseQuals;
688
689  // Case 1:  the base of the indirect field is not a field.
690  VarDecl *baseVariable = indirectField->getVarDecl();
691  CXXScopeSpec EmptySS;
692  if (baseVariable) {
693    assert(baseVariable->getType()->isRecordType());
694
695    // In principle we could have a member access expression that
696    // accesses an anonymous struct/union that's a static member of
697    // the base object's class.  However, under the current standard,
698    // static data members cannot be anonymous structs or unions.
699    // Supporting this is as easy as building a MemberExpr here.
700    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
701
702    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
703
704    ExprResult result
705      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
706    if (result.isInvalid()) return ExprError();
707
708    baseObjectExpr = result.take();
709    baseObjectIsPointer = false;
710    baseQuals = baseObjectExpr->getType().getQualifiers();
711
712    // Case 2: the base of the indirect field is a field and the user
713    // wrote a member expression.
714  } else if (baseObjectExpr) {
715    // The caller provided the base object expression. Determine
716    // whether its a pointer and whether it adds any qualifiers to the
717    // anonymous struct/union fields we're looking into.
718    QualType objectType = baseObjectExpr->getType();
719
720    if (const PointerType *ptr = objectType->getAs<PointerType>()) {
721      baseObjectIsPointer = true;
722      objectType = ptr->getPointeeType();
723    } else {
724      baseObjectIsPointer = false;
725    }
726    baseQuals = objectType.getQualifiers();
727
728    // Case 3: the base of the indirect field is a field and we should
729    // build an implicit member access.
730  } else {
731    // We've found a member of an anonymous struct/union that is
732    // inside a non-anonymous struct/union, so in a well-formed
733    // program our base object expression is "this".
734    QualType ThisTy = getCurrentThisType();
735    if (ThisTy.isNull()) {
736      Diag(loc, diag::err_invalid_member_use_in_static_method)
737        << indirectField->getDeclName();
738      return ExprError();
739    }
740
741    // Our base object expression is "this".
742    CheckCXXThisCapture(loc);
743    baseObjectExpr
744      = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/ true);
745    baseObjectIsPointer = true;
746    baseQuals = ThisTy->castAs<PointerType>()->getPointeeType().getQualifiers();
747  }
748
749  // Build the implicit member references to the field of the
750  // anonymous struct/union.
751  Expr *result = baseObjectExpr;
752  IndirectFieldDecl::chain_iterator
753  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
754
755  // Build the first member access in the chain with full information.
756  if (!baseVariable) {
757    FieldDecl *field = cast<FieldDecl>(*FI);
758
759    // FIXME: use the real found-decl info!
760    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
761
762    // Make a nameInfo that properly uses the anonymous name.
763    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
764
765    result = BuildFieldReferenceExpr(*this, result, baseObjectIsPointer,
766                                     EmptySS, field, foundDecl,
767                                     memberNameInfo).take();
768    baseObjectIsPointer = false;
769
770    // FIXME: check qualified member access
771  }
772
773  // In all cases, we should now skip the first declaration in the chain.
774  ++FI;
775
776  while (FI != FEnd) {
777    FieldDecl *field = cast<FieldDecl>(*FI++);
778
779    // FIXME: these are somewhat meaningless
780    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
781    DeclAccessPair foundDecl = DeclAccessPair::make(field, field->getAccess());
782
783    result = BuildFieldReferenceExpr(*this, result, /*isarrow*/ false,
784                                     (FI == FEnd? SS : EmptySS), field,
785                                     foundDecl, memberNameInfo).take();
786  }
787
788  return Owned(result);
789}
790
791/// \brief Build a MemberExpr AST node.
792static MemberExpr *BuildMemberExpr(Sema &SemaRef,
793                                   ASTContext &C, Expr *Base, bool isArrow,
794                                   const CXXScopeSpec &SS,
795                                   SourceLocation TemplateKWLoc,
796                                   ValueDecl *Member,
797                                   DeclAccessPair FoundDecl,
798                                   const DeclarationNameInfo &MemberNameInfo,
799                                   QualType Ty,
800                                   ExprValueKind VK, ExprObjectKind OK,
801                                   const TemplateArgumentListInfo *TemplateArgs = 0) {
802  assert((!isArrow || Base->isRValue()) && "-> base must be a pointer rvalue");
803  MemberExpr *E =
804      MemberExpr::Create(C, Base, isArrow, SS.getWithLocInContext(C),
805                         TemplateKWLoc, Member, FoundDecl, MemberNameInfo,
806                         TemplateArgs, Ty, VK, OK);
807  SemaRef.MarkMemberReferenced(E);
808  return E;
809}
810
811ExprResult
812Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
813                               SourceLocation OpLoc, bool IsArrow,
814                               const CXXScopeSpec &SS,
815                               SourceLocation TemplateKWLoc,
816                               NamedDecl *FirstQualifierInScope,
817                               LookupResult &R,
818                               const TemplateArgumentListInfo *TemplateArgs,
819                               bool SuppressQualifierCheck,
820                               ActOnMemberAccessExtraArgs *ExtraArgs) {
821  QualType BaseType = BaseExprType;
822  if (IsArrow) {
823    assert(BaseType->isPointerType());
824    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
825  }
826  R.setBaseObjectType(BaseType);
827
828  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
829  DeclarationName MemberName = MemberNameInfo.getName();
830  SourceLocation MemberLoc = MemberNameInfo.getLoc();
831
832  if (R.isAmbiguous())
833    return ExprError();
834
835  if (R.empty()) {
836    // Rederive where we looked up.
837    DeclContext *DC = (SS.isSet()
838                       ? computeDeclContext(SS, false)
839                       : BaseType->getAs<RecordType>()->getDecl());
840
841    if (ExtraArgs) {
842      ExprResult RetryExpr;
843      if (!IsArrow && BaseExpr) {
844        SFINAETrap Trap(*this, true);
845        ParsedType ObjectType;
846        bool MayBePseudoDestructor = false;
847        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
848                                                 OpLoc, tok::arrow, ObjectType,
849                                                 MayBePseudoDestructor);
850        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
851          CXXScopeSpec TempSS(SS);
852          RetryExpr = ActOnMemberAccessExpr(
853              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
854              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl,
855              ExtraArgs->HasTrailingLParen);
856        }
857        if (Trap.hasErrorOccurred())
858          RetryExpr = ExprError();
859      }
860      if (RetryExpr.isUsable()) {
861        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
862          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
863        return RetryExpr;
864      }
865    }
866
867    Diag(R.getNameLoc(), diag::err_no_member)
868      << MemberName << DC
869      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
870    return ExprError();
871  }
872
873  // Diagnose lookups that find only declarations from a non-base
874  // type.  This is possible for either qualified lookups (which may
875  // have been qualified with an unrelated type) or implicit member
876  // expressions (which were found with unqualified lookup and thus
877  // may have come from an enclosing scope).  Note that it's okay for
878  // lookup to find declarations from a non-base type as long as those
879  // aren't the ones picked by overload resolution.
880  if ((SS.isSet() || !BaseExpr ||
881       (isa<CXXThisExpr>(BaseExpr) &&
882        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
883      !SuppressQualifierCheck &&
884      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
885    return ExprError();
886
887  // Construct an unresolved result if we in fact got an unresolved
888  // result.
889  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
890    // Suppress any lookup-related diagnostics; we'll do these when we
891    // pick a member.
892    R.suppressDiagnostics();
893
894    UnresolvedMemberExpr *MemExpr
895      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
896                                     BaseExpr, BaseExprType,
897                                     IsArrow, OpLoc,
898                                     SS.getWithLocInContext(Context),
899                                     TemplateKWLoc, MemberNameInfo,
900                                     TemplateArgs, R.begin(), R.end());
901
902    return Owned(MemExpr);
903  }
904
905  assert(R.isSingleResult());
906  DeclAccessPair FoundDecl = R.begin().getPair();
907  NamedDecl *MemberDecl = R.getFoundDecl();
908
909  // FIXME: diagnose the presence of template arguments now.
910
911  // If the decl being referenced had an error, return an error for this
912  // sub-expr without emitting another error, in order to avoid cascading
913  // error cases.
914  if (MemberDecl->isInvalidDecl())
915    return ExprError();
916
917  // Handle the implicit-member-access case.
918  if (!BaseExpr) {
919    // If this is not an instance member, convert to a non-member access.
920    if (!MemberDecl->isCXXInstanceMember())
921      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl);
922
923    SourceLocation Loc = R.getNameLoc();
924    if (SS.getRange().isValid())
925      Loc = SS.getRange().getBegin();
926    CheckCXXThisCapture(Loc);
927    BaseExpr = new (Context) CXXThisExpr(Loc, BaseExprType,/*isImplicit=*/true);
928  }
929
930  bool ShouldCheckUse = true;
931  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MemberDecl)) {
932    // Don't diagnose the use of a virtual member function unless it's
933    // explicitly qualified.
934    if (MD->isVirtual() && !SS.isSet())
935      ShouldCheckUse = false;
936  }
937
938  // Check the use of this member.
939  if (ShouldCheckUse && DiagnoseUseOfDecl(MemberDecl, MemberLoc)) {
940    Owned(BaseExpr);
941    return ExprError();
942  }
943
944  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
945    return BuildFieldReferenceExpr(*this, BaseExpr, IsArrow,
946                                   SS, FD, FoundDecl, MemberNameInfo);
947
948  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
949    // We may have found a field within an anonymous union or struct
950    // (C++ [class.union]).
951    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
952                                                    BaseExpr, OpLoc);
953
954  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
955    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
956                                 TemplateKWLoc, Var, FoundDecl, MemberNameInfo,
957                                 Var->getType().getNonReferenceType(),
958                                 VK_LValue, OK_Ordinary));
959  }
960
961  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
962    ExprValueKind valueKind;
963    QualType type;
964    if (MemberFn->isInstance()) {
965      valueKind = VK_RValue;
966      type = Context.BoundMemberTy;
967    } else {
968      valueKind = VK_LValue;
969      type = MemberFn->getType();
970    }
971
972    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
973                                 TemplateKWLoc, MemberFn, FoundDecl,
974                                 MemberNameInfo, type, valueKind,
975                                 OK_Ordinary));
976  }
977  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
978
979  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
980    return Owned(BuildMemberExpr(*this, Context, BaseExpr, IsArrow, SS,
981                                 TemplateKWLoc, Enum, FoundDecl, MemberNameInfo,
982                                 Enum->getType(), VK_RValue, OK_Ordinary));
983  }
984
985  Owned(BaseExpr);
986
987  // We found something that we didn't expect. Complain.
988  if (isa<TypeDecl>(MemberDecl))
989    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
990      << MemberName << BaseType << int(IsArrow);
991  else
992    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
993      << MemberName << BaseType << int(IsArrow);
994
995  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
996    << MemberName;
997  R.suppressDiagnostics();
998  return ExprError();
999}
1000
1001/// Given that normal member access failed on the given expression,
1002/// and given that the expression's type involves builtin-id or
1003/// builtin-Class, decide whether substituting in the redefinition
1004/// types would be profitable.  The redefinition type is whatever
1005/// this translation unit tried to typedef to id/Class;  we store
1006/// it to the side and then re-use it in places like this.
1007static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1008  const ObjCObjectPointerType *opty
1009    = base.get()->getType()->getAs<ObjCObjectPointerType>();
1010  if (!opty) return false;
1011
1012  const ObjCObjectType *ty = opty->getObjectType();
1013
1014  QualType redef;
1015  if (ty->isObjCId()) {
1016    redef = S.Context.getObjCIdRedefinitionType();
1017  } else if (ty->isObjCClass()) {
1018    redef = S.Context.getObjCClassRedefinitionType();
1019  } else {
1020    return false;
1021  }
1022
1023  // Do the substitution as long as the redefinition type isn't just a
1024  // possibly-qualified pointer to builtin-id or builtin-Class again.
1025  opty = redef->getAs<ObjCObjectPointerType>();
1026  if (opty && !opty->getObjectType()->getInterface())
1027    return false;
1028
1029  base = S.ImpCastExprToType(base.take(), redef, CK_BitCast);
1030  return true;
1031}
1032
1033static bool isRecordType(QualType T) {
1034  return T->isRecordType();
1035}
1036static bool isPointerToRecordType(QualType T) {
1037  if (const PointerType *PT = T->getAs<PointerType>())
1038    return PT->getPointeeType()->isRecordType();
1039  return false;
1040}
1041
1042/// Perform conversions on the LHS of a member access expression.
1043ExprResult
1044Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1045  if (IsArrow && !Base->getType()->isFunctionType())
1046    return DefaultFunctionArrayLvalueConversion(Base);
1047
1048  return CheckPlaceholderExpr(Base);
1049}
1050
1051/// Look up the given member of the given non-type-dependent
1052/// expression.  This can return in one of two ways:
1053///  * If it returns a sentinel null-but-valid result, the caller will
1054///    assume that lookup was performed and the results written into
1055///    the provided structure.  It will take over from there.
1056///  * Otherwise, the returned expression will be produced in place of
1057///    an ordinary member expression.
1058///
1059/// The ObjCImpDecl bit is a gross hack that will need to be properly
1060/// fixed for ObjC++.
1061ExprResult
1062Sema::LookupMemberExpr(LookupResult &R, ExprResult &BaseExpr,
1063                       bool &IsArrow, SourceLocation OpLoc,
1064                       CXXScopeSpec &SS,
1065                       Decl *ObjCImpDecl, bool HasTemplateArgs) {
1066  assert(BaseExpr.get() && "no base expression");
1067
1068  // Perform default conversions.
1069  BaseExpr = PerformMemberExprBaseConversion(BaseExpr.take(), IsArrow);
1070  if (BaseExpr.isInvalid())
1071    return ExprError();
1072
1073  QualType BaseType = BaseExpr.get()->getType();
1074  assert(!BaseType->isDependentType());
1075
1076  DeclarationName MemberName = R.getLookupName();
1077  SourceLocation MemberLoc = R.getNameLoc();
1078
1079  // For later type-checking purposes, turn arrow accesses into dot
1080  // accesses.  The only access type we support that doesn't follow
1081  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1082  // and those never use arrows, so this is unaffected.
1083  if (IsArrow) {
1084    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1085      BaseType = Ptr->getPointeeType();
1086    else if (const ObjCObjectPointerType *Ptr
1087               = BaseType->getAs<ObjCObjectPointerType>())
1088      BaseType = Ptr->getPointeeType();
1089    else if (BaseType->isRecordType()) {
1090      // Recover from arrow accesses to records, e.g.:
1091      //   struct MyRecord foo;
1092      //   foo->bar
1093      // This is actually well-formed in C++ if MyRecord has an
1094      // overloaded operator->, but that should have been dealt with
1095      // by now.
1096      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1097        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1098        << FixItHint::CreateReplacement(OpLoc, ".");
1099      IsArrow = false;
1100    } else if (BaseType->isFunctionType()) {
1101      goto fail;
1102    } else {
1103      Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1104        << BaseType << BaseExpr.get()->getSourceRange();
1105      return ExprError();
1106    }
1107  }
1108
1109  // Handle field access to simple records.
1110  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1111    if (LookupMemberExprInRecord(*this, R, BaseExpr.get()->getSourceRange(),
1112                                 RTy, OpLoc, SS, HasTemplateArgs))
1113      return ExprError();
1114
1115    // Returning valid-but-null is how we indicate to the caller that
1116    // the lookup result was filled in.
1117    return Owned((Expr*) 0);
1118  }
1119
1120  // Handle ivar access to Objective-C objects.
1121  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1122    if (!SS.isEmpty() && !SS.isInvalid()) {
1123      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1124        << 1 << SS.getScopeRep()
1125        << FixItHint::CreateRemoval(SS.getRange());
1126      SS.clear();
1127    }
1128
1129    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1130
1131    // There are three cases for the base type:
1132    //   - builtin id (qualified or unqualified)
1133    //   - builtin Class (qualified or unqualified)
1134    //   - an interface
1135    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1136    if (!IDecl) {
1137      if (getLangOpts().ObjCAutoRefCount &&
1138          (OTy->isObjCId() || OTy->isObjCClass()))
1139        goto fail;
1140      // There's an implicit 'isa' ivar on all objects.
1141      // But we only actually find it this way on objects of type 'id',
1142      // apparently.
1143      if (OTy->isObjCId() && Member->isStr("isa")) {
1144        Diag(MemberLoc, diag::warn_objc_isa_use);
1145        return Owned(new (Context) ObjCIsaExpr(BaseExpr.take(), IsArrow, MemberLoc,
1146                                               Context.getObjCClassType()));
1147      }
1148
1149      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1150        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1151                                ObjCImpDecl, HasTemplateArgs);
1152      goto fail;
1153    }
1154    else if (Member && Member->isStr("isa")) {
1155      // If an ivar is (1) the first ivar in a root class and (2) named `isa`,
1156      // then issue the same deprecated warning that id->isa gets.
1157      ObjCInterfaceDecl *ClassDeclared = 0;
1158      if (ObjCIvarDecl *IV =
1159            IDecl->lookupInstanceVariable(Member, ClassDeclared)) {
1160        if (!ClassDeclared->getSuperClass()
1161            && (*ClassDeclared->ivar_begin()) == IV) {
1162          Diag(MemberLoc, diag::warn_objc_isa_use);
1163          Diag(IV->getLocation(), diag::note_ivar_decl);
1164        }
1165      }
1166    }
1167
1168    if (RequireCompleteType(OpLoc, BaseType, diag::err_typecheck_incomplete_tag,
1169                            BaseExpr.get()))
1170      return ExprError();
1171
1172    ObjCInterfaceDecl *ClassDeclared = 0;
1173    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1174
1175    if (!IV) {
1176      // Attempt to correct for typos in ivar names.
1177      DeclFilterCCC<ObjCIvarDecl> Validator;
1178      Validator.IsObjCIvarLookup = IsArrow;
1179      if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
1180                                                 LookupMemberName, NULL, NULL,
1181                                                 Validator, IDecl)) {
1182        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1183        Diag(R.getNameLoc(),
1184             diag::err_typecheck_member_reference_ivar_suggest)
1185          << IDecl->getDeclName() << MemberName << IV->getDeclName()
1186          << FixItHint::CreateReplacement(R.getNameLoc(),
1187                                          IV->getNameAsString());
1188        Diag(IV->getLocation(), diag::note_previous_decl)
1189          << IV->getDeclName();
1190
1191        // Figure out the class that declares the ivar.
1192        assert(!ClassDeclared);
1193        Decl *D = cast<Decl>(IV->getDeclContext());
1194        if (ObjCCategoryDecl *CAT = dyn_cast<ObjCCategoryDecl>(D))
1195          D = CAT->getClassInterface();
1196        ClassDeclared = cast<ObjCInterfaceDecl>(D);
1197      } else {
1198        if (IsArrow && IDecl->FindPropertyDeclaration(Member)) {
1199          Diag(MemberLoc,
1200          diag::err_property_found_suggest)
1201          << Member << BaseExpr.get()->getType()
1202          << FixItHint::CreateReplacement(OpLoc, ".");
1203          return ExprError();
1204        }
1205
1206        Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1207          << IDecl->getDeclName() << MemberName
1208          << BaseExpr.get()->getSourceRange();
1209        return ExprError();
1210      }
1211    }
1212
1213    assert(ClassDeclared);
1214
1215    // If the decl being referenced had an error, return an error for this
1216    // sub-expr without emitting another error, in order to avoid cascading
1217    // error cases.
1218    if (IV->isInvalidDecl())
1219      return ExprError();
1220
1221    // Check whether we can reference this field.
1222    if (DiagnoseUseOfDecl(IV, MemberLoc))
1223      return ExprError();
1224    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1225        IV->getAccessControl() != ObjCIvarDecl::Package) {
1226      ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1227      if (ObjCMethodDecl *MD = getCurMethodDecl())
1228        ClassOfMethodDecl =  MD->getClassInterface();
1229      else if (ObjCImpDecl && getCurFunctionDecl()) {
1230        // Case of a c-function declared inside an objc implementation.
1231        // FIXME: For a c-style function nested inside an objc implementation
1232        // class, there is no implementation context available, so we pass
1233        // down the context as argument to this routine. Ideally, this context
1234        // need be passed down in the AST node and somehow calculated from the
1235        // AST for a function decl.
1236        if (ObjCImplementationDecl *IMPD =
1237              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1238          ClassOfMethodDecl = IMPD->getClassInterface();
1239        else if (ObjCCategoryImplDecl* CatImplClass =
1240                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1241          ClassOfMethodDecl = CatImplClass->getClassInterface();
1242      }
1243      if (!getLangOpts().DebuggerSupport) {
1244        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1245          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1246              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1247            Diag(MemberLoc, diag::error_private_ivar_access)
1248              << IV->getDeclName();
1249        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1250          // @protected
1251          Diag(MemberLoc, diag::error_protected_ivar_access)
1252            << IV->getDeclName();
1253      }
1254    }
1255    bool warn = true;
1256    if (getLangOpts().ObjCAutoRefCount) {
1257      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1258      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1259        if (UO->getOpcode() == UO_Deref)
1260          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1261
1262      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1263        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1264          Diag(DE->getLocation(), diag::error_arc_weak_ivar_access);
1265          warn = false;
1266        }
1267    }
1268    if (warn) {
1269      if (ObjCMethodDecl *MD = getCurMethodDecl()) {
1270        ObjCMethodFamily MF = MD->getMethodFamily();
1271        warn = (MF != OMF_init && MF != OMF_dealloc &&
1272                MF != OMF_finalize);
1273      }
1274      if (warn)
1275        Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1276    }
1277
1278    ObjCIvarRefExpr *Result = new (Context) ObjCIvarRefExpr(IV, IV->getType(),
1279                                                            MemberLoc,
1280                                                            BaseExpr.take(),
1281                                                            IsArrow);
1282
1283    if (getLangOpts().ObjCAutoRefCount) {
1284      if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1285        DiagnosticsEngine::Level Level =
1286          Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
1287                                   MemberLoc);
1288        if (Level != DiagnosticsEngine::Ignored)
1289          getCurFunction()->recordUseOfWeak(Result);
1290      }
1291    }
1292
1293    return Owned(Result);
1294  }
1295
1296  // Objective-C property access.
1297  const ObjCObjectPointerType *OPT;
1298  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1299    if (!SS.isEmpty() && !SS.isInvalid()) {
1300      Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1301        << 0 << SS.getScopeRep()
1302        << FixItHint::CreateRemoval(SS.getRange());
1303      SS.clear();
1304    }
1305
1306    // This actually uses the base as an r-value.
1307    BaseExpr = DefaultLvalueConversion(BaseExpr.take());
1308    if (BaseExpr.isInvalid())
1309      return ExprError();
1310
1311    assert(Context.hasSameUnqualifiedType(BaseType, BaseExpr.get()->getType()));
1312
1313    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1314
1315    const ObjCObjectType *OT = OPT->getObjectType();
1316
1317    // id, with and without qualifiers.
1318    if (OT->isObjCId()) {
1319      // Check protocols on qualified interfaces.
1320      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1321      if (Decl *PMDecl = FindGetterSetterNameDecl(OPT, Member, Sel, Context)) {
1322        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1323          // Check the use of this declaration
1324          if (DiagnoseUseOfDecl(PD, MemberLoc))
1325            return ExprError();
1326
1327          return Owned(new (Context) ObjCPropertyRefExpr(PD,
1328                                                         Context.PseudoObjectTy,
1329                                                         VK_LValue,
1330                                                         OK_ObjCProperty,
1331                                                         MemberLoc,
1332                                                         BaseExpr.take()));
1333        }
1334
1335        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1336          // Check the use of this method.
1337          if (DiagnoseUseOfDecl(OMD, MemberLoc))
1338            return ExprError();
1339          Selector SetterSel =
1340            SelectorTable::constructSetterName(PP.getIdentifierTable(),
1341                                               PP.getSelectorTable(), Member);
1342          ObjCMethodDecl *SMD = 0;
1343          if (Decl *SDecl = FindGetterSetterNameDecl(OPT, /*Property id*/0,
1344                                                     SetterSel, Context))
1345            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1346
1347          return Owned(new (Context) ObjCPropertyRefExpr(OMD, SMD,
1348                                                         Context.PseudoObjectTy,
1349                                                         VK_LValue, OK_ObjCProperty,
1350                                                         MemberLoc, BaseExpr.take()));
1351        }
1352      }
1353      // Use of id.member can only be for a property reference. Do not
1354      // use the 'id' redefinition in this case.
1355      if (IsArrow && ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1356        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1357                                ObjCImpDecl, HasTemplateArgs);
1358
1359      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1360                         << MemberName << BaseType);
1361    }
1362
1363    // 'Class', unqualified only.
1364    if (OT->isObjCClass()) {
1365      // Only works in a method declaration (??!).
1366      ObjCMethodDecl *MD = getCurMethodDecl();
1367      if (!MD) {
1368        if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1369          return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1370                                  ObjCImpDecl, HasTemplateArgs);
1371
1372        goto fail;
1373      }
1374
1375      // Also must look for a getter name which uses property syntax.
1376      Selector Sel = PP.getSelectorTable().getNullarySelector(Member);
1377      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1378      ObjCMethodDecl *Getter;
1379      if ((Getter = IFace->lookupClassMethod(Sel))) {
1380        // Check the use of this method.
1381        if (DiagnoseUseOfDecl(Getter, MemberLoc))
1382          return ExprError();
1383      } else
1384        Getter = IFace->lookupPrivateMethod(Sel, false);
1385      // If we found a getter then this may be a valid dot-reference, we
1386      // will look for the matching setter, in case it is needed.
1387      Selector SetterSel =
1388        SelectorTable::constructSetterName(PP.getIdentifierTable(),
1389                                           PP.getSelectorTable(), Member);
1390      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1391      if (!Setter) {
1392        // If this reference is in an @implementation, also check for 'private'
1393        // methods.
1394        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1395      }
1396
1397      if (Setter && DiagnoseUseOfDecl(Setter, MemberLoc))
1398        return ExprError();
1399
1400      if (Getter || Setter) {
1401        return Owned(new (Context) ObjCPropertyRefExpr(Getter, Setter,
1402                                                       Context.PseudoObjectTy,
1403                                                       VK_LValue, OK_ObjCProperty,
1404                                                       MemberLoc, BaseExpr.take()));
1405      }
1406
1407      if (ShouldTryAgainWithRedefinitionType(*this, BaseExpr))
1408        return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1409                                ObjCImpDecl, HasTemplateArgs);
1410
1411      return ExprError(Diag(MemberLoc, diag::err_property_not_found)
1412                         << MemberName << BaseType);
1413    }
1414
1415    // Normal property access.
1416    return HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc,
1417                                     MemberName, MemberLoc,
1418                                     SourceLocation(), QualType(), false);
1419  }
1420
1421  // Handle 'field access' to vectors, such as 'V.xx'.
1422  if (BaseType->isExtVectorType()) {
1423    // FIXME: this expr should store IsArrow.
1424    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1425    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1426    QualType ret = CheckExtVectorComponent(*this, BaseType, VK, OpLoc,
1427                                           Member, MemberLoc);
1428    if (ret.isNull())
1429      return ExprError();
1430
1431    return Owned(new (Context) ExtVectorElementExpr(ret, VK, BaseExpr.take(),
1432                                                    *Member, MemberLoc));
1433  }
1434
1435  // Adjust builtin-sel to the appropriate redefinition type if that's
1436  // not just a pointer to builtin-sel again.
1437  if (IsArrow &&
1438      BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1439      !Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1440    BaseExpr = ImpCastExprToType(BaseExpr.take(),
1441                                 Context.getObjCSelRedefinitionType(),
1442                                 CK_BitCast);
1443    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1444                            ObjCImpDecl, HasTemplateArgs);
1445  }
1446
1447  // Failure cases.
1448 fail:
1449
1450  // Recover from dot accesses to pointers, e.g.:
1451  //   type *foo;
1452  //   foo.bar
1453  // This is actually well-formed in two cases:
1454  //   - 'type' is an Objective C type
1455  //   - 'bar' is a pseudo-destructor name which happens to refer to
1456  //     the appropriate pointer type
1457  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1458    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1459        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1460      Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1461        << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1462          << FixItHint::CreateReplacement(OpLoc, "->");
1463
1464      // Recurse as an -> access.
1465      IsArrow = true;
1466      return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1467                              ObjCImpDecl, HasTemplateArgs);
1468    }
1469  }
1470
1471  // If the user is trying to apply -> or . to a function name, it's probably
1472  // because they forgot parentheses to call that function.
1473  if (tryToRecoverWithCall(BaseExpr,
1474                           PDiag(diag::err_member_reference_needs_call),
1475                           /*complain*/ false,
1476                           IsArrow ? &isPointerToRecordType : &isRecordType)) {
1477    if (BaseExpr.isInvalid())
1478      return ExprError();
1479    BaseExpr = DefaultFunctionArrayConversion(BaseExpr.take());
1480    return LookupMemberExpr(R, BaseExpr, IsArrow, OpLoc, SS,
1481                            ObjCImpDecl, HasTemplateArgs);
1482  }
1483
1484  Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1485    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1486
1487  return ExprError();
1488}
1489
1490/// The main callback when the parser finds something like
1491///   expression . [nested-name-specifier] identifier
1492///   expression -> [nested-name-specifier] identifier
1493/// where 'identifier' encompasses a fairly broad spectrum of
1494/// possibilities, including destructor and operator references.
1495///
1496/// \param OpKind either tok::arrow or tok::period
1497/// \param HasTrailingLParen whether the next token is '(', which
1498///   is used to diagnose mis-uses of special members that can
1499///   only be called
1500/// \param ObjCImpDecl the current Objective-C \@implementation
1501///   decl; this is an ugly hack around the fact that Objective-C
1502///   \@implementations aren't properly put in the context chain
1503ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1504                                       SourceLocation OpLoc,
1505                                       tok::TokenKind OpKind,
1506                                       CXXScopeSpec &SS,
1507                                       SourceLocation TemplateKWLoc,
1508                                       UnqualifiedId &Id,
1509                                       Decl *ObjCImpDecl,
1510                                       bool HasTrailingLParen) {
1511  if (SS.isSet() && SS.isInvalid())
1512    return ExprError();
1513
1514  // Warn about the explicit constructor calls Microsoft extension.
1515  if (getLangOpts().MicrosoftExt &&
1516      Id.getKind() == UnqualifiedId::IK_ConstructorName)
1517    Diag(Id.getSourceRange().getBegin(),
1518         diag::ext_ms_explicit_constructor_call);
1519
1520  TemplateArgumentListInfo TemplateArgsBuffer;
1521
1522  // Decompose the name into its component parts.
1523  DeclarationNameInfo NameInfo;
1524  const TemplateArgumentListInfo *TemplateArgs;
1525  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1526                         NameInfo, TemplateArgs);
1527
1528  DeclarationName Name = NameInfo.getName();
1529  bool IsArrow = (OpKind == tok::arrow);
1530
1531  NamedDecl *FirstQualifierInScope
1532    = (!SS.isSet() ? 0 : FindFirstQualifierInScope(S,
1533                       static_cast<NestedNameSpecifier*>(SS.getScopeRep())));
1534
1535  // This is a postfix expression, so get rid of ParenListExprs.
1536  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1537  if (Result.isInvalid()) return ExprError();
1538  Base = Result.take();
1539
1540  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1541      isDependentScopeSpecifier(SS)) {
1542    Result = ActOnDependentMemberExpr(Base, Base->getType(),
1543                                      IsArrow, OpLoc,
1544                                      SS, TemplateKWLoc, FirstQualifierInScope,
1545                                      NameInfo, TemplateArgs);
1546  } else {
1547    LookupResult R(*this, NameInfo, LookupMemberName);
1548    ExprResult BaseResult = Owned(Base);
1549    Result = LookupMemberExpr(R, BaseResult, IsArrow, OpLoc,
1550                              SS, ObjCImpDecl, TemplateArgs != 0);
1551    if (BaseResult.isInvalid())
1552      return ExprError();
1553    Base = BaseResult.take();
1554
1555    if (Result.isInvalid()) {
1556      Owned(Base);
1557      return ExprError();
1558    }
1559
1560    if (Result.get()) {
1561      // The only way a reference to a destructor can be used is to
1562      // immediately call it, which falls into this case.  If the
1563      // next token is not a '(', produce a diagnostic and build the
1564      // call now.
1565      if (!HasTrailingLParen &&
1566          Id.getKind() == UnqualifiedId::IK_DestructorName)
1567        return DiagnoseDtorReference(NameInfo.getLoc(), Result.get());
1568
1569      return Result;
1570    }
1571
1572    ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl, HasTrailingLParen};
1573    Result = BuildMemberReferenceExpr(Base, Base->getType(),
1574                                      OpLoc, IsArrow, SS, TemplateKWLoc,
1575                                      FirstQualifierInScope, R, TemplateArgs,
1576                                      false, &ExtraArgs);
1577  }
1578
1579  return Result;
1580}
1581
1582static ExprResult
1583BuildFieldReferenceExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
1584                        const CXXScopeSpec &SS, FieldDecl *Field,
1585                        DeclAccessPair FoundDecl,
1586                        const DeclarationNameInfo &MemberNameInfo) {
1587  // x.a is an l-value if 'a' has a reference type. Otherwise:
1588  // x.a is an l-value/x-value/pr-value if the base is (and note
1589  //   that *x is always an l-value), except that if the base isn't
1590  //   an ordinary object then we must have an rvalue.
1591  ExprValueKind VK = VK_LValue;
1592  ExprObjectKind OK = OK_Ordinary;
1593  if (!IsArrow) {
1594    if (BaseExpr->getObjectKind() == OK_Ordinary)
1595      VK = BaseExpr->getValueKind();
1596    else
1597      VK = VK_RValue;
1598  }
1599  if (VK != VK_RValue && Field->isBitField())
1600    OK = OK_BitField;
1601
1602  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1603  QualType MemberType = Field->getType();
1604  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1605    MemberType = Ref->getPointeeType();
1606    VK = VK_LValue;
1607  } else {
1608    QualType BaseType = BaseExpr->getType();
1609    if (IsArrow) BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1610
1611    Qualifiers BaseQuals = BaseType.getQualifiers();
1612
1613    // GC attributes are never picked up by members.
1614    BaseQuals.removeObjCGCAttr();
1615
1616    // CVR attributes from the base are picked up by members,
1617    // except that 'mutable' members don't pick up 'const'.
1618    if (Field->isMutable()) BaseQuals.removeConst();
1619
1620    Qualifiers MemberQuals
1621    = S.Context.getCanonicalType(MemberType).getQualifiers();
1622
1623    // TR 18037 does not allow fields to be declared with address spaces.
1624    assert(!MemberQuals.hasAddressSpace());
1625
1626    Qualifiers Combined = BaseQuals + MemberQuals;
1627    if (Combined != MemberQuals)
1628      MemberType = S.Context.getQualifiedType(MemberType, Combined);
1629  }
1630
1631  S.UnusedPrivateFields.remove(Field);
1632
1633  ExprResult Base =
1634  S.PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1635                                  FoundDecl, Field);
1636  if (Base.isInvalid())
1637    return ExprError();
1638  return S.Owned(BuildMemberExpr(S, S.Context, Base.take(), IsArrow, SS,
1639                                 /*TemplateKWLoc=*/SourceLocation(),
1640                                 Field, FoundDecl, MemberNameInfo,
1641                                 MemberType, VK, OK));
1642}
1643
1644/// Builds an implicit member access expression.  The current context
1645/// is known to be an instance method, and the given unqualified lookup
1646/// set is known to contain only instance members, at least one of which
1647/// is from an appropriate type.
1648ExprResult
1649Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1650                              SourceLocation TemplateKWLoc,
1651                              LookupResult &R,
1652                              const TemplateArgumentListInfo *TemplateArgs,
1653                              bool IsKnownInstance) {
1654  assert(!R.empty() && !R.isAmbiguous());
1655
1656  SourceLocation loc = R.getNameLoc();
1657
1658  // We may have found a field within an anonymous union or struct
1659  // (C++ [class.union]).
1660  // FIXME: template-ids inside anonymous structs?
1661  if (IndirectFieldDecl *FD = R.getAsSingle<IndirectFieldDecl>())
1662    return BuildAnonymousStructUnionMemberReference(SS, R.getNameLoc(), FD);
1663
1664  // If this is known to be an instance access, go ahead and build an
1665  // implicit 'this' expression now.
1666  // 'this' expression now.
1667  QualType ThisTy = getCurrentThisType();
1668  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1669
1670  Expr *baseExpr = 0; // null signifies implicit access
1671  if (IsKnownInstance) {
1672    SourceLocation Loc = R.getNameLoc();
1673    if (SS.getRange().isValid())
1674      Loc = SS.getRange().getBegin();
1675    CheckCXXThisCapture(Loc);
1676    baseExpr = new (Context) CXXThisExpr(loc, ThisTy, /*isImplicit=*/true);
1677  }
1678
1679  return BuildMemberReferenceExpr(baseExpr, ThisTy,
1680                                  /*OpLoc*/ SourceLocation(),
1681                                  /*IsArrow*/ true,
1682                                  SS, TemplateKWLoc,
1683                                  /*FirstQualifierInScope*/ 0,
1684                                  R, TemplateArgs);
1685}
1686