SemaLookup.cpp revision 078c44e99a11522150708025c15678d2cafb3072
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/LangOptions.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/Support/ErrorHandling.h"
35#include <list>
36#include <set>
37#include <vector>
38#include <iterator>
39#include <utility>
40#include <algorithm>
41
42using namespace clang;
43using namespace sema;
44
45namespace {
46  class UnqualUsingEntry {
47    const DeclContext *Nominated;
48    const DeclContext *CommonAncestor;
49
50  public:
51    UnqualUsingEntry(const DeclContext *Nominated,
52                     const DeclContext *CommonAncestor)
53      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
54    }
55
56    const DeclContext *getCommonAncestor() const {
57      return CommonAncestor;
58    }
59
60    const DeclContext *getNominatedNamespace() const {
61      return Nominated;
62    }
63
64    // Sort by the pointer value of the common ancestor.
65    struct Comparator {
66      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
67        return L.getCommonAncestor() < R.getCommonAncestor();
68      }
69
70      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
71        return E.getCommonAncestor() < DC;
72      }
73
74      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
75        return DC < E.getCommonAncestor();
76      }
77    };
78  };
79
80  /// A collection of using directives, as used by C++ unqualified
81  /// lookup.
82  class UnqualUsingDirectiveSet {
83    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
84
85    ListTy list;
86    llvm::SmallPtrSet<DeclContext*, 8> visited;
87
88  public:
89    UnqualUsingDirectiveSet() {}
90
91    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
92      // C++ [namespace.udir]p1:
93      //   During unqualified name lookup, the names appear as if they
94      //   were declared in the nearest enclosing namespace which contains
95      //   both the using-directive and the nominated namespace.
96      DeclContext *InnermostFileDC
97        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
98      assert(InnermostFileDC && InnermostFileDC->isFileContext());
99
100      for (; S; S = S->getParent()) {
101        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
102          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
103          visit(Ctx, EffectiveDC);
104        } else {
105          Scope::udir_iterator I = S->using_directives_begin(),
106                             End = S->using_directives_end();
107
108          for (; I != End; ++I)
109            visit(*I, InnermostFileDC);
110        }
111      }
112    }
113
114    // Visits a context and collect all of its using directives
115    // recursively.  Treats all using directives as if they were
116    // declared in the context.
117    //
118    // A given context is only every visited once, so it is important
119    // that contexts be visited from the inside out in order to get
120    // the effective DCs right.
121    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
122      if (!visited.insert(DC))
123        return;
124
125      addUsingDirectives(DC, EffectiveDC);
126    }
127
128    // Visits a using directive and collects all of its using
129    // directives recursively.  Treats all using directives as if they
130    // were declared in the effective DC.
131    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
132      DeclContext *NS = UD->getNominatedNamespace();
133      if (!visited.insert(NS))
134        return;
135
136      addUsingDirective(UD, EffectiveDC);
137      addUsingDirectives(NS, EffectiveDC);
138    }
139
140    // Adds all the using directives in a context (and those nominated
141    // by its using directives, transitively) as if they appeared in
142    // the given effective context.
143    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
144      llvm::SmallVector<DeclContext*,4> queue;
145      while (true) {
146        DeclContext::udir_iterator I, End;
147        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
148          UsingDirectiveDecl *UD = *I;
149          DeclContext *NS = UD->getNominatedNamespace();
150          if (visited.insert(NS)) {
151            addUsingDirective(UD, EffectiveDC);
152            queue.push_back(NS);
153          }
154        }
155
156        if (queue.empty())
157          return;
158
159        DC = queue.back();
160        queue.pop_back();
161      }
162    }
163
164    // Add a using directive as if it had been declared in the given
165    // context.  This helps implement C++ [namespace.udir]p3:
166    //   The using-directive is transitive: if a scope contains a
167    //   using-directive that nominates a second namespace that itself
168    //   contains using-directives, the effect is as if the
169    //   using-directives from the second namespace also appeared in
170    //   the first.
171    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
172      // Find the common ancestor between the effective context and
173      // the nominated namespace.
174      DeclContext *Common = UD->getNominatedNamespace();
175      while (!Common->Encloses(EffectiveDC))
176        Common = Common->getParent();
177      Common = Common->getPrimaryContext();
178
179      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
180    }
181
182    void done() {
183      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
184    }
185
186    typedef ListTy::iterator iterator;
187    typedef ListTy::const_iterator const_iterator;
188
189    iterator begin() { return list.begin(); }
190    iterator end() { return list.end(); }
191    const_iterator begin() const { return list.begin(); }
192    const_iterator end() const { return list.end(); }
193
194    std::pair<const_iterator,const_iterator>
195    getNamespacesFor(DeclContext *DC) const {
196      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
197                              UnqualUsingEntry::Comparator());
198    }
199  };
200}
201
202// Retrieve the set of identifier namespaces that correspond to a
203// specific kind of name lookup.
204static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
205                               bool CPlusPlus,
206                               bool Redeclaration) {
207  unsigned IDNS = 0;
208  switch (NameKind) {
209  case Sema::LookupOrdinaryName:
210  case Sema::LookupRedeclarationWithLinkage:
211    IDNS = Decl::IDNS_Ordinary;
212    if (CPlusPlus) {
213      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
214      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
215    }
216    break;
217
218  case Sema::LookupOperatorName:
219    // Operator lookup is its own crazy thing;  it is not the same
220    // as (e.g.) looking up an operator name for redeclaration.
221    assert(!Redeclaration && "cannot do redeclaration operator lookup");
222    IDNS = Decl::IDNS_NonMemberOperator;
223    break;
224
225  case Sema::LookupTagName:
226    if (CPlusPlus) {
227      IDNS = Decl::IDNS_Type;
228
229      // When looking for a redeclaration of a tag name, we add:
230      // 1) TagFriend to find undeclared friend decls
231      // 2) Namespace because they can't "overload" with tag decls.
232      // 3) Tag because it includes class templates, which can't
233      //    "overload" with tag decls.
234      if (Redeclaration)
235        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
236    } else {
237      IDNS = Decl::IDNS_Tag;
238    }
239    break;
240
241  case Sema::LookupMemberName:
242    IDNS = Decl::IDNS_Member;
243    if (CPlusPlus)
244      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
245    break;
246
247  case Sema::LookupNestedNameSpecifierName:
248    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
249    break;
250
251  case Sema::LookupNamespaceName:
252    IDNS = Decl::IDNS_Namespace;
253    break;
254
255  case Sema::LookupUsingDeclName:
256    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
257         | Decl::IDNS_Member | Decl::IDNS_Using;
258    break;
259
260  case Sema::LookupObjCProtocolName:
261    IDNS = Decl::IDNS_ObjCProtocol;
262    break;
263
264  case Sema::LookupAnyName:
265    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
266      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
267      | Decl::IDNS_Type;
268    break;
269  }
270  return IDNS;
271}
272
273void LookupResult::configure() {
274  IDNS = getIDNS(LookupKind,
275                 SemaRef.getLangOptions().CPlusPlus,
276                 isForRedeclaration());
277
278  // If we're looking for one of the allocation or deallocation
279  // operators, make sure that the implicitly-declared new and delete
280  // operators can be found.
281  if (!isForRedeclaration()) {
282    switch (NameInfo.getName().getCXXOverloadedOperator()) {
283    case OO_New:
284    case OO_Delete:
285    case OO_Array_New:
286    case OO_Array_Delete:
287      SemaRef.DeclareGlobalNewDelete();
288      break;
289
290    default:
291      break;
292    }
293  }
294}
295
296#ifndef NDEBUG
297void LookupResult::sanity() const {
298  assert(ResultKind != NotFound || Decls.size() == 0);
299  assert(ResultKind != Found || Decls.size() == 1);
300  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
301         (Decls.size() == 1 &&
302          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
303  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
304  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
305         (Decls.size() == 1 && Ambiguity == AmbiguousBaseSubobjects));
306  assert((Paths != NULL) == (ResultKind == Ambiguous &&
307                             (Ambiguity == AmbiguousBaseSubobjectTypes ||
308                              Ambiguity == AmbiguousBaseSubobjects)));
309}
310#endif
311
312// Necessary because CXXBasePaths is not complete in Sema.h
313void LookupResult::deletePaths(CXXBasePaths *Paths) {
314  delete Paths;
315}
316
317/// Resolves the result kind of this lookup.
318void LookupResult::resolveKind() {
319  unsigned N = Decls.size();
320
321  // Fast case: no possible ambiguity.
322  if (N == 0) {
323    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
324    return;
325  }
326
327  // If there's a single decl, we need to examine it to decide what
328  // kind of lookup this is.
329  if (N == 1) {
330    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
331    if (isa<FunctionTemplateDecl>(D))
332      ResultKind = FoundOverloaded;
333    else if (isa<UnresolvedUsingValueDecl>(D))
334      ResultKind = FoundUnresolvedValue;
335    return;
336  }
337
338  // Don't do any extra resolution if we've already resolved as ambiguous.
339  if (ResultKind == Ambiguous) return;
340
341  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
342  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
343
344  bool Ambiguous = false;
345  bool HasTag = false, HasFunction = false, HasNonFunction = false;
346  bool HasFunctionTemplate = false, HasUnresolved = false;
347
348  unsigned UniqueTagIndex = 0;
349
350  unsigned I = 0;
351  while (I < N) {
352    NamedDecl *D = Decls[I]->getUnderlyingDecl();
353    D = cast<NamedDecl>(D->getCanonicalDecl());
354
355    // Redeclarations of types via typedef can occur both within a scope
356    // and, through using declarations and directives, across scopes. There is
357    // no ambiguity if they all refer to the same type, so unique based on the
358    // canonical type.
359    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
360      if (!TD->getDeclContext()->isRecord()) {
361        QualType T = SemaRef.Context.getTypeDeclType(TD);
362        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
363          // The type is not unique; pull something off the back and continue
364          // at this index.
365          Decls[I] = Decls[--N];
366          continue;
367        }
368      }
369    }
370
371    if (!Unique.insert(D)) {
372      // If it's not unique, pull something off the back (and
373      // continue at this index).
374      Decls[I] = Decls[--N];
375      continue;
376    }
377
378    // Otherwise, do some decl type analysis and then continue.
379
380    if (isa<UnresolvedUsingValueDecl>(D)) {
381      HasUnresolved = true;
382    } else if (isa<TagDecl>(D)) {
383      if (HasTag)
384        Ambiguous = true;
385      UniqueTagIndex = I;
386      HasTag = true;
387    } else if (isa<FunctionTemplateDecl>(D)) {
388      HasFunction = true;
389      HasFunctionTemplate = true;
390    } else if (isa<FunctionDecl>(D)) {
391      HasFunction = true;
392    } else {
393      if (HasNonFunction)
394        Ambiguous = true;
395      HasNonFunction = true;
396    }
397    I++;
398  }
399
400  // C++ [basic.scope.hiding]p2:
401  //   A class name or enumeration name can be hidden by the name of
402  //   an object, function, or enumerator declared in the same
403  //   scope. If a class or enumeration name and an object, function,
404  //   or enumerator are declared in the same scope (in any order)
405  //   with the same name, the class or enumeration name is hidden
406  //   wherever the object, function, or enumerator name is visible.
407  // But it's still an error if there are distinct tag types found,
408  // even if they're not visible. (ref?)
409  if (HideTags && HasTag && !Ambiguous &&
410      (HasFunction || HasNonFunction || HasUnresolved))
411    Decls[UniqueTagIndex] = Decls[--N];
412
413  Decls.set_size(N);
414
415  if (HasNonFunction && (HasFunction || HasUnresolved))
416    Ambiguous = true;
417
418  if (Ambiguous)
419    setAmbiguous(LookupResult::AmbiguousReference);
420  else if (HasUnresolved)
421    ResultKind = LookupResult::FoundUnresolvedValue;
422  else if (N > 1 || HasFunctionTemplate)
423    ResultKind = LookupResult::FoundOverloaded;
424  else
425    ResultKind = LookupResult::Found;
426}
427
428void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
429  CXXBasePaths::const_paths_iterator I, E;
430  DeclContext::lookup_iterator DI, DE;
431  for (I = P.begin(), E = P.end(); I != E; ++I)
432    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
433      addDecl(*DI);
434}
435
436void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
437  Paths = new CXXBasePaths;
438  Paths->swap(P);
439  addDeclsFromBasePaths(*Paths);
440  resolveKind();
441  setAmbiguous(AmbiguousBaseSubobjects);
442}
443
444void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
445  Paths = new CXXBasePaths;
446  Paths->swap(P);
447  addDeclsFromBasePaths(*Paths);
448  resolveKind();
449  setAmbiguous(AmbiguousBaseSubobjectTypes);
450}
451
452void LookupResult::print(llvm::raw_ostream &Out) {
453  Out << Decls.size() << " result(s)";
454  if (isAmbiguous()) Out << ", ambiguous";
455  if (Paths) Out << ", base paths present";
456
457  for (iterator I = begin(), E = end(); I != E; ++I) {
458    Out << "\n";
459    (*I)->print(Out, 2);
460  }
461}
462
463/// \brief Lookup a builtin function, when name lookup would otherwise
464/// fail.
465static bool LookupBuiltin(Sema &S, LookupResult &R) {
466  Sema::LookupNameKind NameKind = R.getLookupKind();
467
468  // If we didn't find a use of this identifier, and if the identifier
469  // corresponds to a compiler builtin, create the decl object for the builtin
470  // now, injecting it into translation unit scope, and return it.
471  if (NameKind == Sema::LookupOrdinaryName ||
472      NameKind == Sema::LookupRedeclarationWithLinkage) {
473    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
474    if (II) {
475      // If this is a builtin on this (or all) targets, create the decl.
476      if (unsigned BuiltinID = II->getBuiltinID()) {
477        // In C++, we don't have any predefined library functions like
478        // 'malloc'. Instead, we'll just error.
479        if (S.getLangOptions().CPlusPlus &&
480            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
481          return false;
482
483        NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
484                                             S.TUScope, R.isForRedeclaration(),
485                                             R.getNameLoc());
486        if (D)
487          R.addDecl(D);
488        return (D != NULL);
489      }
490    }
491  }
492
493  return false;
494}
495
496/// \brief Determine whether we can declare a special member function within
497/// the class at this point.
498static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
499                                            const CXXRecordDecl *Class) {
500  // Don't do it if the class is invalid.
501  if (Class->isInvalidDecl())
502    return false;
503
504  // We need to have a definition for the class.
505  if (!Class->getDefinition() || Class->isDependentContext())
506    return false;
507
508  // We can't be in the middle of defining the class.
509  if (const RecordType *RecordTy
510                        = Context.getTypeDeclType(Class)->getAs<RecordType>())
511    return !RecordTy->isBeingDefined();
512
513  return false;
514}
515
516void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
517  if (!CanDeclareSpecialMemberFunction(Context, Class))
518    return;
519
520  // If the default constructor has not yet been declared, do so now.
521  if (!Class->hasDeclaredDefaultConstructor())
522    DeclareImplicitDefaultConstructor(Class);
523
524  // If the copy constructor has not yet been declared, do so now.
525  if (!Class->hasDeclaredCopyConstructor())
526    DeclareImplicitCopyConstructor(Class);
527
528  // If the copy assignment operator has not yet been declared, do so now.
529  if (!Class->hasDeclaredCopyAssignment())
530    DeclareImplicitCopyAssignment(Class);
531
532  // If the destructor has not yet been declared, do so now.
533  if (!Class->hasDeclaredDestructor())
534    DeclareImplicitDestructor(Class);
535}
536
537/// \brief Determine whether this is the name of an implicitly-declared
538/// special member function.
539static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
540  switch (Name.getNameKind()) {
541  case DeclarationName::CXXConstructorName:
542  case DeclarationName::CXXDestructorName:
543    return true;
544
545  case DeclarationName::CXXOperatorName:
546    return Name.getCXXOverloadedOperator() == OO_Equal;
547
548  default:
549    break;
550  }
551
552  return false;
553}
554
555/// \brief If there are any implicit member functions with the given name
556/// that need to be declared in the given declaration context, do so.
557static void DeclareImplicitMemberFunctionsWithName(Sema &S,
558                                                   DeclarationName Name,
559                                                   const DeclContext *DC) {
560  if (!DC)
561    return;
562
563  switch (Name.getNameKind()) {
564  case DeclarationName::CXXConstructorName:
565    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
566      if (Record->getDefinition() &&
567          CanDeclareSpecialMemberFunction(S.Context, Record)) {
568        if (!Record->hasDeclaredDefaultConstructor())
569          S.DeclareImplicitDefaultConstructor(
570                                           const_cast<CXXRecordDecl *>(Record));
571        if (!Record->hasDeclaredCopyConstructor())
572          S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record));
573      }
574    break;
575
576  case DeclarationName::CXXDestructorName:
577    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
578      if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
579          CanDeclareSpecialMemberFunction(S.Context, Record))
580        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
581    break;
582
583  case DeclarationName::CXXOperatorName:
584    if (Name.getCXXOverloadedOperator() != OO_Equal)
585      break;
586
587    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
588      if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() &&
589          CanDeclareSpecialMemberFunction(S.Context, Record))
590        S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record));
591    break;
592
593  default:
594    break;
595  }
596}
597
598// Adds all qualifying matches for a name within a decl context to the
599// given lookup result.  Returns true if any matches were found.
600static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
601  bool Found = false;
602
603  // Lazily declare C++ special member functions.
604  if (S.getLangOptions().CPlusPlus)
605    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
606
607  // Perform lookup into this declaration context.
608  DeclContext::lookup_const_iterator I, E;
609  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
610    NamedDecl *D = *I;
611    if (R.isAcceptableDecl(D)) {
612      R.addDecl(D);
613      Found = true;
614    }
615  }
616
617  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
618    return true;
619
620  if (R.getLookupName().getNameKind()
621        != DeclarationName::CXXConversionFunctionName ||
622      R.getLookupName().getCXXNameType()->isDependentType() ||
623      !isa<CXXRecordDecl>(DC))
624    return Found;
625
626  // C++ [temp.mem]p6:
627  //   A specialization of a conversion function template is not found by
628  //   name lookup. Instead, any conversion function templates visible in the
629  //   context of the use are considered. [...]
630  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
631  if (!Record->isDefinition())
632    return Found;
633
634  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
635  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
636         UEnd = Unresolved->end(); U != UEnd; ++U) {
637    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
638    if (!ConvTemplate)
639      continue;
640
641    // When we're performing lookup for the purposes of redeclaration, just
642    // add the conversion function template. When we deduce template
643    // arguments for specializations, we'll end up unifying the return
644    // type of the new declaration with the type of the function template.
645    if (R.isForRedeclaration()) {
646      R.addDecl(ConvTemplate);
647      Found = true;
648      continue;
649    }
650
651    // C++ [temp.mem]p6:
652    //   [...] For each such operator, if argument deduction succeeds
653    //   (14.9.2.3), the resulting specialization is used as if found by
654    //   name lookup.
655    //
656    // When referencing a conversion function for any purpose other than
657    // a redeclaration (such that we'll be building an expression with the
658    // result), perform template argument deduction and place the
659    // specialization into the result set. We do this to avoid forcing all
660    // callers to perform special deduction for conversion functions.
661    TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
662    FunctionDecl *Specialization = 0;
663
664    const FunctionProtoType *ConvProto
665      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
666    assert(ConvProto && "Nonsensical conversion function template type");
667
668    // Compute the type of the function that we would expect the conversion
669    // function to have, if it were to match the name given.
670    // FIXME: Calling convention!
671    FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
672    QualType ExpectedType
673      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
674                                            0, 0, ConvProto->isVariadic(),
675                                            ConvProto->getTypeQuals(),
676                                            false, false, 0, 0,
677                                    ConvProtoInfo.withCallingConv(CC_Default));
678
679    // Perform template argument deduction against the type that we would
680    // expect the function to have.
681    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
682                                            Specialization, Info)
683          == Sema::TDK_Success) {
684      R.addDecl(Specialization);
685      Found = true;
686    }
687  }
688
689  return Found;
690}
691
692// Performs C++ unqualified lookup into the given file context.
693static bool
694CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
695                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
696
697  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
698
699  // Perform direct name lookup into the LookupCtx.
700  bool Found = LookupDirect(S, R, NS);
701
702  // Perform direct name lookup into the namespaces nominated by the
703  // using directives whose common ancestor is this namespace.
704  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
705  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
706
707  for (; UI != UEnd; ++UI)
708    if (LookupDirect(S, R, UI->getNominatedNamespace()))
709      Found = true;
710
711  R.resolveKind();
712
713  return Found;
714}
715
716static bool isNamespaceOrTranslationUnitScope(Scope *S) {
717  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
718    return Ctx->isFileContext();
719  return false;
720}
721
722// Find the next outer declaration context from this scope. This
723// routine actually returns the semantic outer context, which may
724// differ from the lexical context (encoded directly in the Scope
725// stack) when we are parsing a member of a class template. In this
726// case, the second element of the pair will be true, to indicate that
727// name lookup should continue searching in this semantic context when
728// it leaves the current template parameter scope.
729static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
730  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
731  DeclContext *Lexical = 0;
732  for (Scope *OuterS = S->getParent(); OuterS;
733       OuterS = OuterS->getParent()) {
734    if (OuterS->getEntity()) {
735      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
736      break;
737    }
738  }
739
740  // C++ [temp.local]p8:
741  //   In the definition of a member of a class template that appears
742  //   outside of the namespace containing the class template
743  //   definition, the name of a template-parameter hides the name of
744  //   a member of this namespace.
745  //
746  // Example:
747  //
748  //   namespace N {
749  //     class C { };
750  //
751  //     template<class T> class B {
752  //       void f(T);
753  //     };
754  //   }
755  //
756  //   template<class C> void N::B<C>::f(C) {
757  //     C b;  // C is the template parameter, not N::C
758  //   }
759  //
760  // In this example, the lexical context we return is the
761  // TranslationUnit, while the semantic context is the namespace N.
762  if (!Lexical || !DC || !S->getParent() ||
763      !S->getParent()->isTemplateParamScope())
764    return std::make_pair(Lexical, false);
765
766  // Find the outermost template parameter scope.
767  // For the example, this is the scope for the template parameters of
768  // template<class C>.
769  Scope *OutermostTemplateScope = S->getParent();
770  while (OutermostTemplateScope->getParent() &&
771         OutermostTemplateScope->getParent()->isTemplateParamScope())
772    OutermostTemplateScope = OutermostTemplateScope->getParent();
773
774  // Find the namespace context in which the original scope occurs. In
775  // the example, this is namespace N.
776  DeclContext *Semantic = DC;
777  while (!Semantic->isFileContext())
778    Semantic = Semantic->getParent();
779
780  // Find the declaration context just outside of the template
781  // parameter scope. This is the context in which the template is
782  // being lexically declaration (a namespace context). In the
783  // example, this is the global scope.
784  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
785      Lexical->Encloses(Semantic))
786    return std::make_pair(Semantic, true);
787
788  return std::make_pair(Lexical, false);
789}
790
791bool Sema::CppLookupName(LookupResult &R, Scope *S) {
792  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
793
794  DeclarationName Name = R.getLookupName();
795
796  // If this is the name of an implicitly-declared special member function,
797  // go through the scope stack to implicitly declare
798  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
799    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
800      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
801        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
802  }
803
804  // Implicitly declare member functions with the name we're looking for, if in
805  // fact we are in a scope where it matters.
806
807  Scope *Initial = S;
808  IdentifierResolver::iterator
809    I = IdResolver.begin(Name),
810    IEnd = IdResolver.end();
811
812  // First we lookup local scope.
813  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
814  // ...During unqualified name lookup (3.4.1), the names appear as if
815  // they were declared in the nearest enclosing namespace which contains
816  // both the using-directive and the nominated namespace.
817  // [Note: in this context, "contains" means "contains directly or
818  // indirectly".
819  //
820  // For example:
821  // namespace A { int i; }
822  // void foo() {
823  //   int i;
824  //   {
825  //     using namespace A;
826  //     ++i; // finds local 'i', A::i appears at global scope
827  //   }
828  // }
829  //
830  DeclContext *OutsideOfTemplateParamDC = 0;
831  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
832    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
833
834    // Check whether the IdResolver has anything in this scope.
835    bool Found = false;
836    for (; I != IEnd && S->isDeclScope(*I); ++I) {
837      if (R.isAcceptableDecl(*I)) {
838        Found = true;
839        R.addDecl(*I);
840      }
841    }
842    if (Found) {
843      R.resolveKind();
844      if (S->isClassScope())
845        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
846          R.setNamingClass(Record);
847      return true;
848    }
849
850    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
851        S->getParent() && !S->getParent()->isTemplateParamScope()) {
852      // We've just searched the last template parameter scope and
853      // found nothing, so look into the the contexts between the
854      // lexical and semantic declaration contexts returned by
855      // findOuterContext(). This implements the name lookup behavior
856      // of C++ [temp.local]p8.
857      Ctx = OutsideOfTemplateParamDC;
858      OutsideOfTemplateParamDC = 0;
859    }
860
861    if (Ctx) {
862      DeclContext *OuterCtx;
863      bool SearchAfterTemplateScope;
864      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
865      if (SearchAfterTemplateScope)
866        OutsideOfTemplateParamDC = OuterCtx;
867
868      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
869        // We do not directly look into transparent contexts, since
870        // those entities will be found in the nearest enclosing
871        // non-transparent context.
872        if (Ctx->isTransparentContext())
873          continue;
874
875        // We do not look directly into function or method contexts,
876        // since all of the local variables and parameters of the
877        // function/method are present within the Scope.
878        if (Ctx->isFunctionOrMethod()) {
879          // If we have an Objective-C instance method, look for ivars
880          // in the corresponding interface.
881          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
882            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
883              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
884                ObjCInterfaceDecl *ClassDeclared;
885                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
886                                                 Name.getAsIdentifierInfo(),
887                                                             ClassDeclared)) {
888                  if (R.isAcceptableDecl(Ivar)) {
889                    R.addDecl(Ivar);
890                    R.resolveKind();
891                    return true;
892                  }
893                }
894              }
895          }
896
897          continue;
898        }
899
900        // Perform qualified name lookup into this context.
901        // FIXME: In some cases, we know that every name that could be found by
902        // this qualified name lookup will also be on the identifier chain. For
903        // example, inside a class without any base classes, we never need to
904        // perform qualified lookup because all of the members are on top of the
905        // identifier chain.
906        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
907          return true;
908      }
909    }
910  }
911
912  // Stop if we ran out of scopes.
913  // FIXME:  This really, really shouldn't be happening.
914  if (!S) return false;
915
916  // Collect UsingDirectiveDecls in all scopes, and recursively all
917  // nominated namespaces by those using-directives.
918  //
919  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
920  // don't build it for each lookup!
921
922  UnqualUsingDirectiveSet UDirs;
923  UDirs.visitScopeChain(Initial, S);
924  UDirs.done();
925
926  // Lookup namespace scope, and global scope.
927  // Unqualified name lookup in C++ requires looking into scopes
928  // that aren't strictly lexical, and therefore we walk through the
929  // context as well as walking through the scopes.
930
931  for (; S; S = S->getParent()) {
932    // Check whether the IdResolver has anything in this scope.
933    bool Found = false;
934    for (; I != IEnd && S->isDeclScope(*I); ++I) {
935      if (R.isAcceptableDecl(*I)) {
936        // We found something.  Look for anything else in our scope
937        // with this same name and in an acceptable identifier
938        // namespace, so that we can construct an overload set if we
939        // need to.
940        Found = true;
941        R.addDecl(*I);
942      }
943    }
944
945    if (Found && S->isTemplateParamScope()) {
946      R.resolveKind();
947      return true;
948    }
949
950    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
951    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
952        S->getParent() && !S->getParent()->isTemplateParamScope()) {
953      // We've just searched the last template parameter scope and
954      // found nothing, so look into the the contexts between the
955      // lexical and semantic declaration contexts returned by
956      // findOuterContext(). This implements the name lookup behavior
957      // of C++ [temp.local]p8.
958      Ctx = OutsideOfTemplateParamDC;
959      OutsideOfTemplateParamDC = 0;
960    }
961
962    if (Ctx) {
963      DeclContext *OuterCtx;
964      bool SearchAfterTemplateScope;
965      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
966      if (SearchAfterTemplateScope)
967        OutsideOfTemplateParamDC = OuterCtx;
968
969      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
970        // We do not directly look into transparent contexts, since
971        // those entities will be found in the nearest enclosing
972        // non-transparent context.
973        if (Ctx->isTransparentContext())
974          continue;
975
976        // If we have a context, and it's not a context stashed in the
977        // template parameter scope for an out-of-line definition, also
978        // look into that context.
979        if (!(Found && S && S->isTemplateParamScope())) {
980          assert(Ctx->isFileContext() &&
981              "We should have been looking only at file context here already.");
982
983          // Look into context considering using-directives.
984          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
985            Found = true;
986        }
987
988        if (Found) {
989          R.resolveKind();
990          return true;
991        }
992
993        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
994          return false;
995      }
996    }
997
998    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
999      return false;
1000  }
1001
1002  return !R.empty();
1003}
1004
1005/// @brief Perform unqualified name lookup starting from a given
1006/// scope.
1007///
1008/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1009/// used to find names within the current scope. For example, 'x' in
1010/// @code
1011/// int x;
1012/// int f() {
1013///   return x; // unqualified name look finds 'x' in the global scope
1014/// }
1015/// @endcode
1016///
1017/// Different lookup criteria can find different names. For example, a
1018/// particular scope can have both a struct and a function of the same
1019/// name, and each can be found by certain lookup criteria. For more
1020/// information about lookup criteria, see the documentation for the
1021/// class LookupCriteria.
1022///
1023/// @param S        The scope from which unqualified name lookup will
1024/// begin. If the lookup criteria permits, name lookup may also search
1025/// in the parent scopes.
1026///
1027/// @param Name     The name of the entity that we are searching for.
1028///
1029/// @param Loc      If provided, the source location where we're performing
1030/// name lookup. At present, this is only used to produce diagnostics when
1031/// C library functions (like "malloc") are implicitly declared.
1032///
1033/// @returns The result of name lookup, which includes zero or more
1034/// declarations and possibly additional information used to diagnose
1035/// ambiguities.
1036bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1037  DeclarationName Name = R.getLookupName();
1038  if (!Name) return false;
1039
1040  LookupNameKind NameKind = R.getLookupKind();
1041
1042  if (!getLangOptions().CPlusPlus) {
1043    // Unqualified name lookup in C/Objective-C is purely lexical, so
1044    // search in the declarations attached to the name.
1045
1046    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1047      // Find the nearest non-transparent declaration scope.
1048      while (!(S->getFlags() & Scope::DeclScope) ||
1049             (S->getEntity() &&
1050              static_cast<DeclContext *>(S->getEntity())
1051                ->isTransparentContext()))
1052        S = S->getParent();
1053    }
1054
1055    unsigned IDNS = R.getIdentifierNamespace();
1056
1057    // Scan up the scope chain looking for a decl that matches this
1058    // identifier that is in the appropriate namespace.  This search
1059    // should not take long, as shadowing of names is uncommon, and
1060    // deep shadowing is extremely uncommon.
1061    bool LeftStartingScope = false;
1062
1063    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1064                                   IEnd = IdResolver.end();
1065         I != IEnd; ++I)
1066      if ((*I)->isInIdentifierNamespace(IDNS)) {
1067        if (NameKind == LookupRedeclarationWithLinkage) {
1068          // Determine whether this (or a previous) declaration is
1069          // out-of-scope.
1070          if (!LeftStartingScope && !S->isDeclScope(*I))
1071            LeftStartingScope = true;
1072
1073          // If we found something outside of our starting scope that
1074          // does not have linkage, skip it.
1075          if (LeftStartingScope && !((*I)->hasLinkage()))
1076            continue;
1077        }
1078
1079        R.addDecl(*I);
1080
1081        if ((*I)->getAttr<OverloadableAttr>()) {
1082          // If this declaration has the "overloadable" attribute, we
1083          // might have a set of overloaded functions.
1084
1085          // Figure out what scope the identifier is in.
1086          while (!(S->getFlags() & Scope::DeclScope) ||
1087                 !S->isDeclScope(*I))
1088            S = S->getParent();
1089
1090          // Find the last declaration in this scope (with the same
1091          // name, naturally).
1092          IdentifierResolver::iterator LastI = I;
1093          for (++LastI; LastI != IEnd; ++LastI) {
1094            if (!S->isDeclScope(*LastI))
1095              break;
1096            R.addDecl(*LastI);
1097          }
1098        }
1099
1100        R.resolveKind();
1101
1102        return true;
1103      }
1104  } else {
1105    // Perform C++ unqualified name lookup.
1106    if (CppLookupName(R, S))
1107      return true;
1108  }
1109
1110  // If we didn't find a use of this identifier, and if the identifier
1111  // corresponds to a compiler builtin, create the decl object for the builtin
1112  // now, injecting it into translation unit scope, and return it.
1113  if (AllowBuiltinCreation)
1114    return LookupBuiltin(*this, R);
1115
1116  return false;
1117}
1118
1119/// @brief Perform qualified name lookup in the namespaces nominated by
1120/// using directives by the given context.
1121///
1122/// C++98 [namespace.qual]p2:
1123///   Given X::m (where X is a user-declared namespace), or given ::m
1124///   (where X is the global namespace), let S be the set of all
1125///   declarations of m in X and in the transitive closure of all
1126///   namespaces nominated by using-directives in X and its used
1127///   namespaces, except that using-directives are ignored in any
1128///   namespace, including X, directly containing one or more
1129///   declarations of m. No namespace is searched more than once in
1130///   the lookup of a name. If S is the empty set, the program is
1131///   ill-formed. Otherwise, if S has exactly one member, or if the
1132///   context of the reference is a using-declaration
1133///   (namespace.udecl), S is the required set of declarations of
1134///   m. Otherwise if the use of m is not one that allows a unique
1135///   declaration to be chosen from S, the program is ill-formed.
1136/// C++98 [namespace.qual]p5:
1137///   During the lookup of a qualified namespace member name, if the
1138///   lookup finds more than one declaration of the member, and if one
1139///   declaration introduces a class name or enumeration name and the
1140///   other declarations either introduce the same object, the same
1141///   enumerator or a set of functions, the non-type name hides the
1142///   class or enumeration name if and only if the declarations are
1143///   from the same namespace; otherwise (the declarations are from
1144///   different namespaces), the program is ill-formed.
1145static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1146                                                 DeclContext *StartDC) {
1147  assert(StartDC->isFileContext() && "start context is not a file context");
1148
1149  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1150  DeclContext::udir_iterator E = StartDC->using_directives_end();
1151
1152  if (I == E) return false;
1153
1154  // We have at least added all these contexts to the queue.
1155  llvm::DenseSet<DeclContext*> Visited;
1156  Visited.insert(StartDC);
1157
1158  // We have not yet looked into these namespaces, much less added
1159  // their "using-children" to the queue.
1160  llvm::SmallVector<NamespaceDecl*, 8> Queue;
1161
1162  // We have already looked into the initial namespace; seed the queue
1163  // with its using-children.
1164  for (; I != E; ++I) {
1165    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1166    if (Visited.insert(ND).second)
1167      Queue.push_back(ND);
1168  }
1169
1170  // The easiest way to implement the restriction in [namespace.qual]p5
1171  // is to check whether any of the individual results found a tag
1172  // and, if so, to declare an ambiguity if the final result is not
1173  // a tag.
1174  bool FoundTag = false;
1175  bool FoundNonTag = false;
1176
1177  LookupResult LocalR(LookupResult::Temporary, R);
1178
1179  bool Found = false;
1180  while (!Queue.empty()) {
1181    NamespaceDecl *ND = Queue.back();
1182    Queue.pop_back();
1183
1184    // We go through some convolutions here to avoid copying results
1185    // between LookupResults.
1186    bool UseLocal = !R.empty();
1187    LookupResult &DirectR = UseLocal ? LocalR : R;
1188    bool FoundDirect = LookupDirect(S, DirectR, ND);
1189
1190    if (FoundDirect) {
1191      // First do any local hiding.
1192      DirectR.resolveKind();
1193
1194      // If the local result is a tag, remember that.
1195      if (DirectR.isSingleTagDecl())
1196        FoundTag = true;
1197      else
1198        FoundNonTag = true;
1199
1200      // Append the local results to the total results if necessary.
1201      if (UseLocal) {
1202        R.addAllDecls(LocalR);
1203        LocalR.clear();
1204      }
1205    }
1206
1207    // If we find names in this namespace, ignore its using directives.
1208    if (FoundDirect) {
1209      Found = true;
1210      continue;
1211    }
1212
1213    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1214      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1215      if (Visited.insert(Nom).second)
1216        Queue.push_back(Nom);
1217    }
1218  }
1219
1220  if (Found) {
1221    if (FoundTag && FoundNonTag)
1222      R.setAmbiguousQualifiedTagHiding();
1223    else
1224      R.resolveKind();
1225  }
1226
1227  return Found;
1228}
1229
1230/// \brief Callback that looks for any member of a class with the given name.
1231static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1232                            CXXBasePath &Path,
1233                            void *Name) {
1234  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1235
1236  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1237  Path.Decls = BaseRecord->lookup(N);
1238  return Path.Decls.first != Path.Decls.second;
1239}
1240
1241/// \brief Perform qualified name lookup into a given context.
1242///
1243/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1244/// names when the context of those names is explicit specified, e.g.,
1245/// "std::vector" or "x->member", or as part of unqualified name lookup.
1246///
1247/// Different lookup criteria can find different names. For example, a
1248/// particular scope can have both a struct and a function of the same
1249/// name, and each can be found by certain lookup criteria. For more
1250/// information about lookup criteria, see the documentation for the
1251/// class LookupCriteria.
1252///
1253/// \param R captures both the lookup criteria and any lookup results found.
1254///
1255/// \param LookupCtx The context in which qualified name lookup will
1256/// search. If the lookup criteria permits, name lookup may also search
1257/// in the parent contexts or (for C++ classes) base classes.
1258///
1259/// \param InUnqualifiedLookup true if this is qualified name lookup that
1260/// occurs as part of unqualified name lookup.
1261///
1262/// \returns true if lookup succeeded, false if it failed.
1263bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1264                               bool InUnqualifiedLookup) {
1265  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1266
1267  if (!R.getLookupName())
1268    return false;
1269
1270  // Make sure that the declaration context is complete.
1271  assert((!isa<TagDecl>(LookupCtx) ||
1272          LookupCtx->isDependentContext() ||
1273          cast<TagDecl>(LookupCtx)->isDefinition() ||
1274          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1275            ->isBeingDefined()) &&
1276         "Declaration context must already be complete!");
1277
1278  // Perform qualified name lookup into the LookupCtx.
1279  if (LookupDirect(*this, R, LookupCtx)) {
1280    R.resolveKind();
1281    if (isa<CXXRecordDecl>(LookupCtx))
1282      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1283    return true;
1284  }
1285
1286  // Don't descend into implied contexts for redeclarations.
1287  // C++98 [namespace.qual]p6:
1288  //   In a declaration for a namespace member in which the
1289  //   declarator-id is a qualified-id, given that the qualified-id
1290  //   for the namespace member has the form
1291  //     nested-name-specifier unqualified-id
1292  //   the unqualified-id shall name a member of the namespace
1293  //   designated by the nested-name-specifier.
1294  // See also [class.mfct]p5 and [class.static.data]p2.
1295  if (R.isForRedeclaration())
1296    return false;
1297
1298  // If this is a namespace, look it up in the implied namespaces.
1299  if (LookupCtx->isFileContext())
1300    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1301
1302  // If this isn't a C++ class, we aren't allowed to look into base
1303  // classes, we're done.
1304  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1305  if (!LookupRec || !LookupRec->getDefinition())
1306    return false;
1307
1308  // If we're performing qualified name lookup into a dependent class,
1309  // then we are actually looking into a current instantiation. If we have any
1310  // dependent base classes, then we either have to delay lookup until
1311  // template instantiation time (at which point all bases will be available)
1312  // or we have to fail.
1313  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1314      LookupRec->hasAnyDependentBases()) {
1315    R.setNotFoundInCurrentInstantiation();
1316    return false;
1317  }
1318
1319  // Perform lookup into our base classes.
1320  CXXBasePaths Paths;
1321  Paths.setOrigin(LookupRec);
1322
1323  // Look for this member in our base classes
1324  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1325  switch (R.getLookupKind()) {
1326    case LookupOrdinaryName:
1327    case LookupMemberName:
1328    case LookupRedeclarationWithLinkage:
1329      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1330      break;
1331
1332    case LookupTagName:
1333      BaseCallback = &CXXRecordDecl::FindTagMember;
1334      break;
1335
1336    case LookupAnyName:
1337      BaseCallback = &LookupAnyMember;
1338      break;
1339
1340    case LookupUsingDeclName:
1341      // This lookup is for redeclarations only.
1342
1343    case LookupOperatorName:
1344    case LookupNamespaceName:
1345    case LookupObjCProtocolName:
1346      // These lookups will never find a member in a C++ class (or base class).
1347      return false;
1348
1349    case LookupNestedNameSpecifierName:
1350      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1351      break;
1352  }
1353
1354  if (!LookupRec->lookupInBases(BaseCallback,
1355                                R.getLookupName().getAsOpaquePtr(), Paths))
1356    return false;
1357
1358  R.setNamingClass(LookupRec);
1359
1360  // C++ [class.member.lookup]p2:
1361  //   [...] If the resulting set of declarations are not all from
1362  //   sub-objects of the same type, or the set has a nonstatic member
1363  //   and includes members from distinct sub-objects, there is an
1364  //   ambiguity and the program is ill-formed. Otherwise that set is
1365  //   the result of the lookup.
1366  // FIXME: support using declarations!
1367  QualType SubobjectType;
1368  int SubobjectNumber = 0;
1369  AccessSpecifier SubobjectAccess = AS_none;
1370  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1371       Path != PathEnd; ++Path) {
1372    const CXXBasePathElement &PathElement = Path->back();
1373
1374    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1375    // across all paths.
1376    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1377
1378    // Determine whether we're looking at a distinct sub-object or not.
1379    if (SubobjectType.isNull()) {
1380      // This is the first subobject we've looked at. Record its type.
1381      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1382      SubobjectNumber = PathElement.SubobjectNumber;
1383    } else if (SubobjectType
1384                 != Context.getCanonicalType(PathElement.Base->getType())) {
1385      // We found members of the given name in two subobjects of
1386      // different types. This lookup is ambiguous.
1387      R.setAmbiguousBaseSubobjectTypes(Paths);
1388      return true;
1389    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1390      // We have a different subobject of the same type.
1391
1392      // C++ [class.member.lookup]p5:
1393      //   A static member, a nested type or an enumerator defined in
1394      //   a base class T can unambiguously be found even if an object
1395      //   has more than one base class subobject of type T.
1396      Decl *FirstDecl = *Path->Decls.first;
1397      if (isa<VarDecl>(FirstDecl) ||
1398          isa<TypeDecl>(FirstDecl) ||
1399          isa<EnumConstantDecl>(FirstDecl))
1400        continue;
1401
1402      if (isa<CXXMethodDecl>(FirstDecl)) {
1403        // Determine whether all of the methods are static.
1404        bool AllMethodsAreStatic = true;
1405        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1406             Func != Path->Decls.second; ++Func) {
1407          if (!isa<CXXMethodDecl>(*Func)) {
1408            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1409            break;
1410          }
1411
1412          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1413            AllMethodsAreStatic = false;
1414            break;
1415          }
1416        }
1417
1418        if (AllMethodsAreStatic)
1419          continue;
1420      }
1421
1422      // We have found a nonstatic member name in multiple, distinct
1423      // subobjects. Name lookup is ambiguous.
1424      R.setAmbiguousBaseSubobjects(Paths);
1425      return true;
1426    }
1427  }
1428
1429  // Lookup in a base class succeeded; return these results.
1430
1431  DeclContext::lookup_iterator I, E;
1432  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1433    NamedDecl *D = *I;
1434    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1435                                                    D->getAccess());
1436    R.addDecl(D, AS);
1437  }
1438  R.resolveKind();
1439  return true;
1440}
1441
1442/// @brief Performs name lookup for a name that was parsed in the
1443/// source code, and may contain a C++ scope specifier.
1444///
1445/// This routine is a convenience routine meant to be called from
1446/// contexts that receive a name and an optional C++ scope specifier
1447/// (e.g., "N::M::x"). It will then perform either qualified or
1448/// unqualified name lookup (with LookupQualifiedName or LookupName,
1449/// respectively) on the given name and return those results.
1450///
1451/// @param S        The scope from which unqualified name lookup will
1452/// begin.
1453///
1454/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1455///
1456/// @param Name     The name of the entity that name lookup will
1457/// search for.
1458///
1459/// @param Loc      If provided, the source location where we're performing
1460/// name lookup. At present, this is only used to produce diagnostics when
1461/// C library functions (like "malloc") are implicitly declared.
1462///
1463/// @param EnteringContext Indicates whether we are going to enter the
1464/// context of the scope-specifier SS (if present).
1465///
1466/// @returns True if any decls were found (but possibly ambiguous)
1467bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1468                            bool AllowBuiltinCreation, bool EnteringContext) {
1469  if (SS && SS->isInvalid()) {
1470    // When the scope specifier is invalid, don't even look for
1471    // anything.
1472    return false;
1473  }
1474
1475  if (SS && SS->isSet()) {
1476    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1477      // We have resolved the scope specifier to a particular declaration
1478      // contex, and will perform name lookup in that context.
1479      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1480        return false;
1481
1482      R.setContextRange(SS->getRange());
1483
1484      return LookupQualifiedName(R, DC);
1485    }
1486
1487    // We could not resolve the scope specified to a specific declaration
1488    // context, which means that SS refers to an unknown specialization.
1489    // Name lookup can't find anything in this case.
1490    return false;
1491  }
1492
1493  // Perform unqualified name lookup starting in the given scope.
1494  return LookupName(R, S, AllowBuiltinCreation);
1495}
1496
1497
1498/// @brief Produce a diagnostic describing the ambiguity that resulted
1499/// from name lookup.
1500///
1501/// @param Result       The ambiguous name lookup result.
1502///
1503/// @param Name         The name of the entity that name lookup was
1504/// searching for.
1505///
1506/// @param NameLoc      The location of the name within the source code.
1507///
1508/// @param LookupRange  A source range that provides more
1509/// source-location information concerning the lookup itself. For
1510/// example, this range might highlight a nested-name-specifier that
1511/// precedes the name.
1512///
1513/// @returns true
1514bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1515  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1516
1517  DeclarationName Name = Result.getLookupName();
1518  SourceLocation NameLoc = Result.getNameLoc();
1519  SourceRange LookupRange = Result.getContextRange();
1520
1521  switch (Result.getAmbiguityKind()) {
1522  case LookupResult::AmbiguousBaseSubobjects: {
1523    CXXBasePaths *Paths = Result.getBasePaths();
1524    QualType SubobjectType = Paths->front().back().Base->getType();
1525    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1526      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1527      << LookupRange;
1528
1529    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1530    while (isa<CXXMethodDecl>(*Found) &&
1531           cast<CXXMethodDecl>(*Found)->isStatic())
1532      ++Found;
1533
1534    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1535
1536    return true;
1537  }
1538
1539  case LookupResult::AmbiguousBaseSubobjectTypes: {
1540    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1541      << Name << LookupRange;
1542
1543    CXXBasePaths *Paths = Result.getBasePaths();
1544    std::set<Decl *> DeclsPrinted;
1545    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1546                                      PathEnd = Paths->end();
1547         Path != PathEnd; ++Path) {
1548      Decl *D = *Path->Decls.first;
1549      if (DeclsPrinted.insert(D).second)
1550        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1551    }
1552
1553    return true;
1554  }
1555
1556  case LookupResult::AmbiguousTagHiding: {
1557    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1558
1559    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1560
1561    LookupResult::iterator DI, DE = Result.end();
1562    for (DI = Result.begin(); DI != DE; ++DI)
1563      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1564        TagDecls.insert(TD);
1565        Diag(TD->getLocation(), diag::note_hidden_tag);
1566      }
1567
1568    for (DI = Result.begin(); DI != DE; ++DI)
1569      if (!isa<TagDecl>(*DI))
1570        Diag((*DI)->getLocation(), diag::note_hiding_object);
1571
1572    // For recovery purposes, go ahead and implement the hiding.
1573    LookupResult::Filter F = Result.makeFilter();
1574    while (F.hasNext()) {
1575      if (TagDecls.count(F.next()))
1576        F.erase();
1577    }
1578    F.done();
1579
1580    return true;
1581  }
1582
1583  case LookupResult::AmbiguousReference: {
1584    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1585
1586    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1587    for (; DI != DE; ++DI)
1588      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1589
1590    return true;
1591  }
1592  }
1593
1594  llvm_unreachable("unknown ambiguity kind");
1595  return true;
1596}
1597
1598namespace {
1599  struct AssociatedLookup {
1600    AssociatedLookup(Sema &S,
1601                     Sema::AssociatedNamespaceSet &Namespaces,
1602                     Sema::AssociatedClassSet &Classes)
1603      : S(S), Namespaces(Namespaces), Classes(Classes) {
1604    }
1605
1606    Sema &S;
1607    Sema::AssociatedNamespaceSet &Namespaces;
1608    Sema::AssociatedClassSet &Classes;
1609  };
1610}
1611
1612static void
1613addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1614
1615static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1616                                      DeclContext *Ctx) {
1617  // Add the associated namespace for this class.
1618
1619  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1620  // be a locally scoped record.
1621
1622  while (Ctx->isRecord() || Ctx->isTransparentContext())
1623    Ctx = Ctx->getParent();
1624
1625  if (Ctx->isFileContext())
1626    Namespaces.insert(Ctx->getPrimaryContext());
1627}
1628
1629// \brief Add the associated classes and namespaces for argument-dependent
1630// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1631static void
1632addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1633                                  const TemplateArgument &Arg) {
1634  // C++ [basic.lookup.koenig]p2, last bullet:
1635  //   -- [...] ;
1636  switch (Arg.getKind()) {
1637    case TemplateArgument::Null:
1638      break;
1639
1640    case TemplateArgument::Type:
1641      // [...] the namespaces and classes associated with the types of the
1642      // template arguments provided for template type parameters (excluding
1643      // template template parameters)
1644      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1645      break;
1646
1647    case TemplateArgument::Template: {
1648      // [...] the namespaces in which any template template arguments are
1649      // defined; and the classes in which any member templates used as
1650      // template template arguments are defined.
1651      TemplateName Template = Arg.getAsTemplate();
1652      if (ClassTemplateDecl *ClassTemplate
1653                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1654        DeclContext *Ctx = ClassTemplate->getDeclContext();
1655        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1656          Result.Classes.insert(EnclosingClass);
1657        // Add the associated namespace for this class.
1658        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1659      }
1660      break;
1661    }
1662
1663    case TemplateArgument::Declaration:
1664    case TemplateArgument::Integral:
1665    case TemplateArgument::Expression:
1666      // [Note: non-type template arguments do not contribute to the set of
1667      //  associated namespaces. ]
1668      break;
1669
1670    case TemplateArgument::Pack:
1671      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1672                                        PEnd = Arg.pack_end();
1673           P != PEnd; ++P)
1674        addAssociatedClassesAndNamespaces(Result, *P);
1675      break;
1676  }
1677}
1678
1679// \brief Add the associated classes and namespaces for
1680// argument-dependent lookup with an argument of class type
1681// (C++ [basic.lookup.koenig]p2).
1682static void
1683addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1684                                  CXXRecordDecl *Class) {
1685
1686  // Just silently ignore anything whose name is __va_list_tag.
1687  if (Class->getDeclName() == Result.S.VAListTagName)
1688    return;
1689
1690  // C++ [basic.lookup.koenig]p2:
1691  //   [...]
1692  //     -- If T is a class type (including unions), its associated
1693  //        classes are: the class itself; the class of which it is a
1694  //        member, if any; and its direct and indirect base
1695  //        classes. Its associated namespaces are the namespaces in
1696  //        which its associated classes are defined.
1697
1698  // Add the class of which it is a member, if any.
1699  DeclContext *Ctx = Class->getDeclContext();
1700  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1701    Result.Classes.insert(EnclosingClass);
1702  // Add the associated namespace for this class.
1703  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1704
1705  // Add the class itself. If we've already seen this class, we don't
1706  // need to visit base classes.
1707  if (!Result.Classes.insert(Class))
1708    return;
1709
1710  // -- If T is a template-id, its associated namespaces and classes are
1711  //    the namespace in which the template is defined; for member
1712  //    templates, the member template’s class; the namespaces and classes
1713  //    associated with the types of the template arguments provided for
1714  //    template type parameters (excluding template template parameters); the
1715  //    namespaces in which any template template arguments are defined; and
1716  //    the classes in which any member templates used as template template
1717  //    arguments are defined. [Note: non-type template arguments do not
1718  //    contribute to the set of associated namespaces. ]
1719  if (ClassTemplateSpecializationDecl *Spec
1720        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1721    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1722    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1723      Result.Classes.insert(EnclosingClass);
1724    // Add the associated namespace for this class.
1725    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1726
1727    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1728    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1729      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1730  }
1731
1732  // Only recurse into base classes for complete types.
1733  if (!Class->hasDefinition()) {
1734    // FIXME: we might need to instantiate templates here
1735    return;
1736  }
1737
1738  // Add direct and indirect base classes along with their associated
1739  // namespaces.
1740  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1741  Bases.push_back(Class);
1742  while (!Bases.empty()) {
1743    // Pop this class off the stack.
1744    Class = Bases.back();
1745    Bases.pop_back();
1746
1747    // Visit the base classes.
1748    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1749                                         BaseEnd = Class->bases_end();
1750         Base != BaseEnd; ++Base) {
1751      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1752      // In dependent contexts, we do ADL twice, and the first time around,
1753      // the base type might be a dependent TemplateSpecializationType, or a
1754      // TemplateTypeParmType. If that happens, simply ignore it.
1755      // FIXME: If we want to support export, we probably need to add the
1756      // namespace of the template in a TemplateSpecializationType, or even
1757      // the classes and namespaces of known non-dependent arguments.
1758      if (!BaseType)
1759        continue;
1760      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1761      if (Result.Classes.insert(BaseDecl)) {
1762        // Find the associated namespace for this base class.
1763        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1764        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1765
1766        // Make sure we visit the bases of this base class.
1767        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1768          Bases.push_back(BaseDecl);
1769      }
1770    }
1771  }
1772}
1773
1774// \brief Add the associated classes and namespaces for
1775// argument-dependent lookup with an argument of type T
1776// (C++ [basic.lookup.koenig]p2).
1777static void
1778addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1779  // C++ [basic.lookup.koenig]p2:
1780  //
1781  //   For each argument type T in the function call, there is a set
1782  //   of zero or more associated namespaces and a set of zero or more
1783  //   associated classes to be considered. The sets of namespaces and
1784  //   classes is determined entirely by the types of the function
1785  //   arguments (and the namespace of any template template
1786  //   argument). Typedef names and using-declarations used to specify
1787  //   the types do not contribute to this set. The sets of namespaces
1788  //   and classes are determined in the following way:
1789
1790  llvm::SmallVector<const Type *, 16> Queue;
1791  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1792
1793  while (true) {
1794    switch (T->getTypeClass()) {
1795
1796#define TYPE(Class, Base)
1797#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1798#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1799#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1800#define ABSTRACT_TYPE(Class, Base)
1801#include "clang/AST/TypeNodes.def"
1802      // T is canonical.  We can also ignore dependent types because
1803      // we don't need to do ADL at the definition point, but if we
1804      // wanted to implement template export (or if we find some other
1805      // use for associated classes and namespaces...) this would be
1806      // wrong.
1807      break;
1808
1809    //    -- If T is a pointer to U or an array of U, its associated
1810    //       namespaces and classes are those associated with U.
1811    case Type::Pointer:
1812      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1813      continue;
1814    case Type::ConstantArray:
1815    case Type::IncompleteArray:
1816    case Type::VariableArray:
1817      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1818      continue;
1819
1820    //     -- If T is a fundamental type, its associated sets of
1821    //        namespaces and classes are both empty.
1822    case Type::Builtin:
1823      break;
1824
1825    //     -- If T is a class type (including unions), its associated
1826    //        classes are: the class itself; the class of which it is a
1827    //        member, if any; and its direct and indirect base
1828    //        classes. Its associated namespaces are the namespaces in
1829    //        which its associated classes are defined.
1830    case Type::Record: {
1831      CXXRecordDecl *Class
1832        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1833      addAssociatedClassesAndNamespaces(Result, Class);
1834      break;
1835    }
1836
1837    //     -- If T is an enumeration type, its associated namespace is
1838    //        the namespace in which it is defined. If it is class
1839    //        member, its associated class is the member’s class; else
1840    //        it has no associated class.
1841    case Type::Enum: {
1842      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1843
1844      DeclContext *Ctx = Enum->getDeclContext();
1845      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1846        Result.Classes.insert(EnclosingClass);
1847
1848      // Add the associated namespace for this class.
1849      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1850
1851      break;
1852    }
1853
1854    //     -- If T is a function type, its associated namespaces and
1855    //        classes are those associated with the function parameter
1856    //        types and those associated with the return type.
1857    case Type::FunctionProto: {
1858      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1859      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1860                                             ArgEnd = Proto->arg_type_end();
1861             Arg != ArgEnd; ++Arg)
1862        Queue.push_back(Arg->getTypePtr());
1863      // fallthrough
1864    }
1865    case Type::FunctionNoProto: {
1866      const FunctionType *FnType = cast<FunctionType>(T);
1867      T = FnType->getResultType().getTypePtr();
1868      continue;
1869    }
1870
1871    //     -- If T is a pointer to a member function of a class X, its
1872    //        associated namespaces and classes are those associated
1873    //        with the function parameter types and return type,
1874    //        together with those associated with X.
1875    //
1876    //     -- If T is a pointer to a data member of class X, its
1877    //        associated namespaces and classes are those associated
1878    //        with the member type together with those associated with
1879    //        X.
1880    case Type::MemberPointer: {
1881      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
1882
1883      // Queue up the class type into which this points.
1884      Queue.push_back(MemberPtr->getClass());
1885
1886      // And directly continue with the pointee type.
1887      T = MemberPtr->getPointeeType().getTypePtr();
1888      continue;
1889    }
1890
1891    // As an extension, treat this like a normal pointer.
1892    case Type::BlockPointer:
1893      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
1894      continue;
1895
1896    // References aren't covered by the standard, but that's such an
1897    // obvious defect that we cover them anyway.
1898    case Type::LValueReference:
1899    case Type::RValueReference:
1900      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
1901      continue;
1902
1903    // These are fundamental types.
1904    case Type::Vector:
1905    case Type::ExtVector:
1906    case Type::Complex:
1907      break;
1908
1909    // These are ignored by ADL.
1910    case Type::ObjCObject:
1911    case Type::ObjCInterface:
1912    case Type::ObjCObjectPointer:
1913      break;
1914    }
1915
1916    if (Queue.empty()) break;
1917    T = Queue.back();
1918    Queue.pop_back();
1919  }
1920}
1921
1922/// \brief Find the associated classes and namespaces for
1923/// argument-dependent lookup for a call with the given set of
1924/// arguments.
1925///
1926/// This routine computes the sets of associated classes and associated
1927/// namespaces searched by argument-dependent lookup
1928/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1929void
1930Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1931                                 AssociatedNamespaceSet &AssociatedNamespaces,
1932                                 AssociatedClassSet &AssociatedClasses) {
1933  AssociatedNamespaces.clear();
1934  AssociatedClasses.clear();
1935
1936  AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
1937
1938  // C++ [basic.lookup.koenig]p2:
1939  //   For each argument type T in the function call, there is a set
1940  //   of zero or more associated namespaces and a set of zero or more
1941  //   associated classes to be considered. The sets of namespaces and
1942  //   classes is determined entirely by the types of the function
1943  //   arguments (and the namespace of any template template
1944  //   argument).
1945  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1946    Expr *Arg = Args[ArgIdx];
1947
1948    if (Arg->getType() != Context.OverloadTy) {
1949      addAssociatedClassesAndNamespaces(Result, Arg->getType());
1950      continue;
1951    }
1952
1953    // [...] In addition, if the argument is the name or address of a
1954    // set of overloaded functions and/or function templates, its
1955    // associated classes and namespaces are the union of those
1956    // associated with each of the members of the set: the namespace
1957    // in which the function or function template is defined and the
1958    // classes and namespaces associated with its (non-dependent)
1959    // parameter types and return type.
1960    Arg = Arg->IgnoreParens();
1961    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
1962      if (unaryOp->getOpcode() == UO_AddrOf)
1963        Arg = unaryOp->getSubExpr();
1964
1965    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
1966    if (!ULE) continue;
1967
1968    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
1969           I != E; ++I) {
1970      // Look through any using declarations to find the underlying function.
1971      NamedDecl *Fn = (*I)->getUnderlyingDecl();
1972
1973      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
1974      if (!FDecl)
1975        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
1976
1977      // Add the classes and namespaces associated with the parameter
1978      // types and return type of this function.
1979      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
1980    }
1981  }
1982}
1983
1984/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1985/// an acceptable non-member overloaded operator for a call whose
1986/// arguments have types T1 (and, if non-empty, T2). This routine
1987/// implements the check in C++ [over.match.oper]p3b2 concerning
1988/// enumeration types.
1989static bool
1990IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1991                                       QualType T1, QualType T2,
1992                                       ASTContext &Context) {
1993  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1994    return true;
1995
1996  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1997    return true;
1998
1999  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2000  if (Proto->getNumArgs() < 1)
2001    return false;
2002
2003  if (T1->isEnumeralType()) {
2004    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2005    if (Context.hasSameUnqualifiedType(T1, ArgType))
2006      return true;
2007  }
2008
2009  if (Proto->getNumArgs() < 2)
2010    return false;
2011
2012  if (!T2.isNull() && T2->isEnumeralType()) {
2013    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2014    if (Context.hasSameUnqualifiedType(T2, ArgType))
2015      return true;
2016  }
2017
2018  return false;
2019}
2020
2021NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2022                                  SourceLocation Loc,
2023                                  LookupNameKind NameKind,
2024                                  RedeclarationKind Redecl) {
2025  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2026  LookupName(R, S);
2027  return R.getAsSingle<NamedDecl>();
2028}
2029
2030/// \brief Find the protocol with the given name, if any.
2031ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2032                                       SourceLocation IdLoc) {
2033  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2034                             LookupObjCProtocolName);
2035  return cast_or_null<ObjCProtocolDecl>(D);
2036}
2037
2038void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2039                                        QualType T1, QualType T2,
2040                                        UnresolvedSetImpl &Functions) {
2041  // C++ [over.match.oper]p3:
2042  //     -- The set of non-member candidates is the result of the
2043  //        unqualified lookup of operator@ in the context of the
2044  //        expression according to the usual rules for name lookup in
2045  //        unqualified function calls (3.4.2) except that all member
2046  //        functions are ignored. However, if no operand has a class
2047  //        type, only those non-member functions in the lookup set
2048  //        that have a first parameter of type T1 or "reference to
2049  //        (possibly cv-qualified) T1", when T1 is an enumeration
2050  //        type, or (if there is a right operand) a second parameter
2051  //        of type T2 or "reference to (possibly cv-qualified) T2",
2052  //        when T2 is an enumeration type, are candidate functions.
2053  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2054  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2055  LookupName(Operators, S);
2056
2057  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2058
2059  if (Operators.empty())
2060    return;
2061
2062  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2063       Op != OpEnd; ++Op) {
2064    NamedDecl *Found = (*Op)->getUnderlyingDecl();
2065    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2066      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2067        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2068    } else if (FunctionTemplateDecl *FunTmpl
2069                 = dyn_cast<FunctionTemplateDecl>(Found)) {
2070      // FIXME: friend operators?
2071      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2072      // later?
2073      if (!FunTmpl->getDeclContext()->isRecord())
2074        Functions.addDecl(*Op, Op.getAccess());
2075    }
2076  }
2077}
2078
2079/// \brief Look up the constructors for the given class.
2080DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2081  // If the copy constructor has not yet been declared, do so now.
2082  if (CanDeclareSpecialMemberFunction(Context, Class)) {
2083    if (!Class->hasDeclaredDefaultConstructor())
2084      DeclareImplicitDefaultConstructor(Class);
2085    if (!Class->hasDeclaredCopyConstructor())
2086      DeclareImplicitCopyConstructor(Class);
2087  }
2088
2089  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2090  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2091  return Class->lookup(Name);
2092}
2093
2094/// \brief Look for the destructor of the given class.
2095///
2096/// During semantic analysis, this routine should be used in lieu of
2097/// CXXRecordDecl::getDestructor().
2098///
2099/// \returns The destructor for this class.
2100CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2101  // If the destructor has not yet been declared, do so now.
2102  if (CanDeclareSpecialMemberFunction(Context, Class) &&
2103      !Class->hasDeclaredDestructor())
2104    DeclareImplicitDestructor(Class);
2105
2106  return Class->getDestructor();
2107}
2108
2109void ADLResult::insert(NamedDecl *New) {
2110  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2111
2112  // If we haven't yet seen a decl for this key, or the last decl
2113  // was exactly this one, we're done.
2114  if (Old == 0 || Old == New) {
2115    Old = New;
2116    return;
2117  }
2118
2119  // Otherwise, decide which is a more recent redeclaration.
2120  FunctionDecl *OldFD, *NewFD;
2121  if (isa<FunctionTemplateDecl>(New)) {
2122    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2123    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2124  } else {
2125    OldFD = cast<FunctionDecl>(Old);
2126    NewFD = cast<FunctionDecl>(New);
2127  }
2128
2129  FunctionDecl *Cursor = NewFD;
2130  while (true) {
2131    Cursor = Cursor->getPreviousDeclaration();
2132
2133    // If we got to the end without finding OldFD, OldFD is the newer
2134    // declaration;  leave things as they are.
2135    if (!Cursor) return;
2136
2137    // If we do find OldFD, then NewFD is newer.
2138    if (Cursor == OldFD) break;
2139
2140    // Otherwise, keep looking.
2141  }
2142
2143  Old = New;
2144}
2145
2146void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2147                                   Expr **Args, unsigned NumArgs,
2148                                   ADLResult &Result) {
2149  // Find all of the associated namespaces and classes based on the
2150  // arguments we have.
2151  AssociatedNamespaceSet AssociatedNamespaces;
2152  AssociatedClassSet AssociatedClasses;
2153  FindAssociatedClassesAndNamespaces(Args, NumArgs,
2154                                     AssociatedNamespaces,
2155                                     AssociatedClasses);
2156
2157  QualType T1, T2;
2158  if (Operator) {
2159    T1 = Args[0]->getType();
2160    if (NumArgs >= 2)
2161      T2 = Args[1]->getType();
2162  }
2163
2164  // C++ [basic.lookup.argdep]p3:
2165  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2166  //   and let Y be the lookup set produced by argument dependent
2167  //   lookup (defined as follows). If X contains [...] then Y is
2168  //   empty. Otherwise Y is the set of declarations found in the
2169  //   namespaces associated with the argument types as described
2170  //   below. The set of declarations found by the lookup of the name
2171  //   is the union of X and Y.
2172  //
2173  // Here, we compute Y and add its members to the overloaded
2174  // candidate set.
2175  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2176                                     NSEnd = AssociatedNamespaces.end();
2177       NS != NSEnd; ++NS) {
2178    //   When considering an associated namespace, the lookup is the
2179    //   same as the lookup performed when the associated namespace is
2180    //   used as a qualifier (3.4.3.2) except that:
2181    //
2182    //     -- Any using-directives in the associated namespace are
2183    //        ignored.
2184    //
2185    //     -- Any namespace-scope friend functions declared in
2186    //        associated classes are visible within their respective
2187    //        namespaces even if they are not visible during an ordinary
2188    //        lookup (11.4).
2189    DeclContext::lookup_iterator I, E;
2190    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2191      NamedDecl *D = *I;
2192      // If the only declaration here is an ordinary friend, consider
2193      // it only if it was declared in an associated classes.
2194      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2195        DeclContext *LexDC = D->getLexicalDeclContext();
2196        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2197          continue;
2198      }
2199
2200      if (isa<UsingShadowDecl>(D))
2201        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2202
2203      if (isa<FunctionDecl>(D)) {
2204        if (Operator &&
2205            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2206                                                    T1, T2, Context))
2207          continue;
2208      } else if (!isa<FunctionTemplateDecl>(D))
2209        continue;
2210
2211      Result.insert(D);
2212    }
2213  }
2214}
2215
2216//----------------------------------------------------------------------------
2217// Search for all visible declarations.
2218//----------------------------------------------------------------------------
2219VisibleDeclConsumer::~VisibleDeclConsumer() { }
2220
2221namespace {
2222
2223class ShadowContextRAII;
2224
2225class VisibleDeclsRecord {
2226public:
2227  /// \brief An entry in the shadow map, which is optimized to store a
2228  /// single declaration (the common case) but can also store a list
2229  /// of declarations.
2230  class ShadowMapEntry {
2231    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
2232
2233    /// \brief Contains either the solitary NamedDecl * or a vector
2234    /// of declarations.
2235    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2236
2237  public:
2238    ShadowMapEntry() : DeclOrVector() { }
2239
2240    void Add(NamedDecl *ND);
2241    void Destroy();
2242
2243    // Iteration.
2244    typedef NamedDecl **iterator;
2245    iterator begin();
2246    iterator end();
2247  };
2248
2249private:
2250  /// \brief A mapping from declaration names to the declarations that have
2251  /// this name within a particular scope.
2252  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2253
2254  /// \brief A list of shadow maps, which is used to model name hiding.
2255  std::list<ShadowMap> ShadowMaps;
2256
2257  /// \brief The declaration contexts we have already visited.
2258  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2259
2260  friend class ShadowContextRAII;
2261
2262public:
2263  /// \brief Determine whether we have already visited this context
2264  /// (and, if not, note that we are going to visit that context now).
2265  bool visitedContext(DeclContext *Ctx) {
2266    return !VisitedContexts.insert(Ctx);
2267  }
2268
2269  bool alreadyVisitedContext(DeclContext *Ctx) {
2270    return VisitedContexts.count(Ctx);
2271  }
2272
2273  /// \brief Determine whether the given declaration is hidden in the
2274  /// current scope.
2275  ///
2276  /// \returns the declaration that hides the given declaration, or
2277  /// NULL if no such declaration exists.
2278  NamedDecl *checkHidden(NamedDecl *ND);
2279
2280  /// \brief Add a declaration to the current shadow map.
2281  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2282};
2283
2284/// \brief RAII object that records when we've entered a shadow context.
2285class ShadowContextRAII {
2286  VisibleDeclsRecord &Visible;
2287
2288  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2289
2290public:
2291  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2292    Visible.ShadowMaps.push_back(ShadowMap());
2293  }
2294
2295  ~ShadowContextRAII() {
2296    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2297                          EEnd = Visible.ShadowMaps.back().end();
2298         E != EEnd;
2299         ++E)
2300      E->second.Destroy();
2301
2302    Visible.ShadowMaps.pop_back();
2303  }
2304};
2305
2306} // end anonymous namespace
2307
2308void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2309  if (DeclOrVector.isNull()) {
2310    // 0 - > 1 elements: just set the single element information.
2311    DeclOrVector = ND;
2312    return;
2313  }
2314
2315  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2316    // 1 -> 2 elements: create the vector of results and push in the
2317    // existing declaration.
2318    DeclVector *Vec = new DeclVector;
2319    Vec->push_back(PrevND);
2320    DeclOrVector = Vec;
2321  }
2322
2323  // Add the new element to the end of the vector.
2324  DeclOrVector.get<DeclVector*>()->push_back(ND);
2325}
2326
2327void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2328  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2329    delete Vec;
2330    DeclOrVector = ((NamedDecl *)0);
2331  }
2332}
2333
2334VisibleDeclsRecord::ShadowMapEntry::iterator
2335VisibleDeclsRecord::ShadowMapEntry::begin() {
2336  if (DeclOrVector.isNull())
2337    return 0;
2338
2339  if (DeclOrVector.dyn_cast<NamedDecl *>())
2340    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2341
2342  return DeclOrVector.get<DeclVector *>()->begin();
2343}
2344
2345VisibleDeclsRecord::ShadowMapEntry::iterator
2346VisibleDeclsRecord::ShadowMapEntry::end() {
2347  if (DeclOrVector.isNull())
2348    return 0;
2349
2350  if (DeclOrVector.dyn_cast<NamedDecl *>())
2351    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2352
2353  return DeclOrVector.get<DeclVector *>()->end();
2354}
2355
2356NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2357  // Look through using declarations.
2358  ND = ND->getUnderlyingDecl();
2359
2360  unsigned IDNS = ND->getIdentifierNamespace();
2361  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2362  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2363       SM != SMEnd; ++SM) {
2364    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2365    if (Pos == SM->end())
2366      continue;
2367
2368    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2369                               IEnd = Pos->second.end();
2370         I != IEnd; ++I) {
2371      // A tag declaration does not hide a non-tag declaration.
2372      if ((*I)->hasTagIdentifierNamespace() &&
2373          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2374                   Decl::IDNS_ObjCProtocol)))
2375        continue;
2376
2377      // Protocols are in distinct namespaces from everything else.
2378      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2379           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2380          (*I)->getIdentifierNamespace() != IDNS)
2381        continue;
2382
2383      // Functions and function templates in the same scope overload
2384      // rather than hide.  FIXME: Look for hiding based on function
2385      // signatures!
2386      if ((*I)->isFunctionOrFunctionTemplate() &&
2387          ND->isFunctionOrFunctionTemplate() &&
2388          SM == ShadowMaps.rbegin())
2389        continue;
2390
2391      // We've found a declaration that hides this one.
2392      return *I;
2393    }
2394  }
2395
2396  return 0;
2397}
2398
2399static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2400                               bool QualifiedNameLookup,
2401                               bool InBaseClass,
2402                               VisibleDeclConsumer &Consumer,
2403                               VisibleDeclsRecord &Visited) {
2404  if (!Ctx)
2405    return;
2406
2407  // Make sure we don't visit the same context twice.
2408  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2409    return;
2410
2411  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2412    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2413
2414  // Enumerate all of the results in this context.
2415  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2416       CurCtx = CurCtx->getNextContext()) {
2417    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2418                                 DEnd = CurCtx->decls_end();
2419         D != DEnd; ++D) {
2420      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2421        if (Result.isAcceptableDecl(ND)) {
2422          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2423          Visited.add(ND);
2424        }
2425
2426      // Visit transparent contexts inside this context.
2427      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2428        if (InnerCtx->isTransparentContext())
2429          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2430                             Consumer, Visited);
2431      }
2432    }
2433  }
2434
2435  // Traverse using directives for qualified name lookup.
2436  if (QualifiedNameLookup) {
2437    ShadowContextRAII Shadow(Visited);
2438    DeclContext::udir_iterator I, E;
2439    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2440      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2441                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2442    }
2443  }
2444
2445  // Traverse the contexts of inherited C++ classes.
2446  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2447    if (!Record->hasDefinition())
2448      return;
2449
2450    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2451                                         BEnd = Record->bases_end();
2452         B != BEnd; ++B) {
2453      QualType BaseType = B->getType();
2454
2455      // Don't look into dependent bases, because name lookup can't look
2456      // there anyway.
2457      if (BaseType->isDependentType())
2458        continue;
2459
2460      const RecordType *Record = BaseType->getAs<RecordType>();
2461      if (!Record)
2462        continue;
2463
2464      // FIXME: It would be nice to be able to determine whether referencing
2465      // a particular member would be ambiguous. For example, given
2466      //
2467      //   struct A { int member; };
2468      //   struct B { int member; };
2469      //   struct C : A, B { };
2470      //
2471      //   void f(C *c) { c->### }
2472      //
2473      // accessing 'member' would result in an ambiguity. However, we
2474      // could be smart enough to qualify the member with the base
2475      // class, e.g.,
2476      //
2477      //   c->B::member
2478      //
2479      // or
2480      //
2481      //   c->A::member
2482
2483      // Find results in this base class (and its bases).
2484      ShadowContextRAII Shadow(Visited);
2485      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2486                         true, Consumer, Visited);
2487    }
2488  }
2489
2490  // Traverse the contexts of Objective-C classes.
2491  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2492    // Traverse categories.
2493    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2494         Category; Category = Category->getNextClassCategory()) {
2495      ShadowContextRAII Shadow(Visited);
2496      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2497                         Consumer, Visited);
2498    }
2499
2500    // Traverse protocols.
2501    for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
2502         E = IFace->protocol_end(); I != E; ++I) {
2503      ShadowContextRAII Shadow(Visited);
2504      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2505                         Visited);
2506    }
2507
2508    // Traverse the superclass.
2509    if (IFace->getSuperClass()) {
2510      ShadowContextRAII Shadow(Visited);
2511      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2512                         true, Consumer, Visited);
2513    }
2514
2515    // If there is an implementation, traverse it. We do this to find
2516    // synthesized ivars.
2517    if (IFace->getImplementation()) {
2518      ShadowContextRAII Shadow(Visited);
2519      LookupVisibleDecls(IFace->getImplementation(), Result,
2520                         QualifiedNameLookup, true, Consumer, Visited);
2521    }
2522  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2523    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2524           E = Protocol->protocol_end(); I != E; ++I) {
2525      ShadowContextRAII Shadow(Visited);
2526      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2527                         Visited);
2528    }
2529  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2530    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2531           E = Category->protocol_end(); I != E; ++I) {
2532      ShadowContextRAII Shadow(Visited);
2533      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2534                         Visited);
2535    }
2536
2537    // If there is an implementation, traverse it.
2538    if (Category->getImplementation()) {
2539      ShadowContextRAII Shadow(Visited);
2540      LookupVisibleDecls(Category->getImplementation(), Result,
2541                         QualifiedNameLookup, true, Consumer, Visited);
2542    }
2543  }
2544}
2545
2546static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2547                               UnqualUsingDirectiveSet &UDirs,
2548                               VisibleDeclConsumer &Consumer,
2549                               VisibleDeclsRecord &Visited) {
2550  if (!S)
2551    return;
2552
2553  if (!S->getEntity() ||
2554      (!S->getParent() &&
2555       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2556      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2557    // Walk through the declarations in this Scope.
2558    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2559         D != DEnd; ++D) {
2560      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2561        if (Result.isAcceptableDecl(ND)) {
2562          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2563          Visited.add(ND);
2564        }
2565    }
2566  }
2567
2568  // FIXME: C++ [temp.local]p8
2569  DeclContext *Entity = 0;
2570  if (S->getEntity()) {
2571    // Look into this scope's declaration context, along with any of its
2572    // parent lookup contexts (e.g., enclosing classes), up to the point
2573    // where we hit the context stored in the next outer scope.
2574    Entity = (DeclContext *)S->getEntity();
2575    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2576
2577    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2578         Ctx = Ctx->getLookupParent()) {
2579      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2580        if (Method->isInstanceMethod()) {
2581          // For instance methods, look for ivars in the method's interface.
2582          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2583                                  Result.getNameLoc(), Sema::LookupMemberName);
2584          if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
2585            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2586                               /*InBaseClass=*/false, Consumer, Visited);
2587        }
2588
2589        // We've already performed all of the name lookup that we need
2590        // to for Objective-C methods; the next context will be the
2591        // outer scope.
2592        break;
2593      }
2594
2595      if (Ctx->isFunctionOrMethod())
2596        continue;
2597
2598      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2599                         /*InBaseClass=*/false, Consumer, Visited);
2600    }
2601  } else if (!S->getParent()) {
2602    // Look into the translation unit scope. We walk through the translation
2603    // unit's declaration context, because the Scope itself won't have all of
2604    // the declarations if we loaded a precompiled header.
2605    // FIXME: We would like the translation unit's Scope object to point to the
2606    // translation unit, so we don't need this special "if" branch. However,
2607    // doing so would force the normal C++ name-lookup code to look into the
2608    // translation unit decl when the IdentifierInfo chains would suffice.
2609    // Once we fix that problem (which is part of a more general "don't look
2610    // in DeclContexts unless we have to" optimization), we can eliminate this.
2611    Entity = Result.getSema().Context.getTranslationUnitDecl();
2612    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2613                       /*InBaseClass=*/false, Consumer, Visited);
2614  }
2615
2616  if (Entity) {
2617    // Lookup visible declarations in any namespaces found by using
2618    // directives.
2619    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2620    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2621    for (; UI != UEnd; ++UI)
2622      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2623                         Result, /*QualifiedNameLookup=*/false,
2624                         /*InBaseClass=*/false, Consumer, Visited);
2625  }
2626
2627  // Lookup names in the parent scope.
2628  ShadowContextRAII Shadow(Visited);
2629  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2630}
2631
2632void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2633                              VisibleDeclConsumer &Consumer,
2634                              bool IncludeGlobalScope) {
2635  // Determine the set of using directives available during
2636  // unqualified name lookup.
2637  Scope *Initial = S;
2638  UnqualUsingDirectiveSet UDirs;
2639  if (getLangOptions().CPlusPlus) {
2640    // Find the first namespace or translation-unit scope.
2641    while (S && !isNamespaceOrTranslationUnitScope(S))
2642      S = S->getParent();
2643
2644    UDirs.visitScopeChain(Initial, S);
2645  }
2646  UDirs.done();
2647
2648  // Look for visible declarations.
2649  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2650  VisibleDeclsRecord Visited;
2651  if (!IncludeGlobalScope)
2652    Visited.visitedContext(Context.getTranslationUnitDecl());
2653  ShadowContextRAII Shadow(Visited);
2654  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2655}
2656
2657void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2658                              VisibleDeclConsumer &Consumer,
2659                              bool IncludeGlobalScope) {
2660  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2661  VisibleDeclsRecord Visited;
2662  if (!IncludeGlobalScope)
2663    Visited.visitedContext(Context.getTranslationUnitDecl());
2664  ShadowContextRAII Shadow(Visited);
2665  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2666                       /*InBaseClass=*/false, Consumer, Visited);
2667}
2668
2669//----------------------------------------------------------------------------
2670// Typo correction
2671//----------------------------------------------------------------------------
2672
2673namespace {
2674class TypoCorrectionConsumer : public VisibleDeclConsumer {
2675  /// \brief The name written that is a typo in the source.
2676  llvm::StringRef Typo;
2677
2678  /// \brief The results found that have the smallest edit distance
2679  /// found (so far) with the typo name.
2680  llvm::SmallVector<NamedDecl *, 4> BestResults;
2681
2682  /// \brief The keywords that have the smallest edit distance.
2683  llvm::SmallVector<IdentifierInfo *, 4> BestKeywords;
2684
2685  /// \brief The best edit distance found so far.
2686  unsigned BestEditDistance;
2687
2688public:
2689  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2690    : Typo(Typo->getName()) { }
2691
2692  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2693  void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
2694
2695  typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
2696  iterator begin() const { return BestResults.begin(); }
2697  iterator end() const { return BestResults.end(); }
2698  void clear_decls() { BestResults.clear(); }
2699
2700  bool empty() const { return BestResults.empty() && BestKeywords.empty(); }
2701
2702  typedef llvm::SmallVector<IdentifierInfo *, 4>::const_iterator
2703    keyword_iterator;
2704  keyword_iterator keyword_begin() const { return BestKeywords.begin(); }
2705  keyword_iterator keyword_end() const { return BestKeywords.end(); }
2706  bool keyword_empty() const { return BestKeywords.empty(); }
2707  unsigned keyword_size() const { return BestKeywords.size(); }
2708
2709  unsigned getBestEditDistance() const { return BestEditDistance; }
2710};
2711
2712}
2713
2714void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2715                                       bool InBaseClass) {
2716  // Don't consider hidden names for typo correction.
2717  if (Hiding)
2718    return;
2719
2720  // Only consider entities with identifiers for names, ignoring
2721  // special names (constructors, overloaded operators, selectors,
2722  // etc.).
2723  IdentifierInfo *Name = ND->getIdentifier();
2724  if (!Name)
2725    return;
2726
2727  // Compute the edit distance between the typo and the name of this
2728  // entity. If this edit distance is not worse than the best edit
2729  // distance we've seen so far, add it to the list of results.
2730  unsigned ED = Typo.edit_distance(Name->getName());
2731  if (!BestResults.empty() || !BestKeywords.empty()) {
2732    if (ED < BestEditDistance) {
2733      // This result is better than any we've seen before; clear out
2734      // the previous results.
2735      BestResults.clear();
2736      BestKeywords.clear();
2737      BestEditDistance = ED;
2738    } else if (ED > BestEditDistance) {
2739      // This result is worse than the best results we've seen so far;
2740      // ignore it.
2741      return;
2742    }
2743  } else
2744    BestEditDistance = ED;
2745
2746  BestResults.push_back(ND);
2747}
2748
2749void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
2750                                              llvm::StringRef Keyword) {
2751  // Compute the edit distance between the typo and this keyword.
2752  // If this edit distance is not worse than the best edit
2753  // distance we've seen so far, add it to the list of results.
2754  unsigned ED = Typo.edit_distance(Keyword);
2755  if (!BestResults.empty() || !BestKeywords.empty()) {
2756    if (ED < BestEditDistance) {
2757      BestResults.clear();
2758      BestKeywords.clear();
2759      BestEditDistance = ED;
2760    } else if (ED > BestEditDistance) {
2761      // This result is worse than the best results we've seen so far;
2762      // ignore it.
2763      return;
2764    }
2765  } else
2766    BestEditDistance = ED;
2767
2768  BestKeywords.push_back(&Context.Idents.get(Keyword));
2769}
2770
2771/// \brief Try to "correct" a typo in the source code by finding
2772/// visible declarations whose names are similar to the name that was
2773/// present in the source code.
2774///
2775/// \param Res the \c LookupResult structure that contains the name
2776/// that was present in the source code along with the name-lookup
2777/// criteria used to search for the name. On success, this structure
2778/// will contain the results of name lookup.
2779///
2780/// \param S the scope in which name lookup occurs.
2781///
2782/// \param SS the nested-name-specifier that precedes the name we're
2783/// looking for, if present.
2784///
2785/// \param MemberContext if non-NULL, the context in which to look for
2786/// a member access expression.
2787///
2788/// \param EnteringContext whether we're entering the context described by
2789/// the nested-name-specifier SS.
2790///
2791/// \param CTC The context in which typo correction occurs, which impacts the
2792/// set of keywords permitted.
2793///
2794/// \param OPT when non-NULL, the search for visible declarations will
2795/// also walk the protocols in the qualified interfaces of \p OPT.
2796///
2797/// \returns the corrected name if the typo was corrected, otherwise returns an
2798/// empty \c DeclarationName. When a typo was corrected, the result structure
2799/// may contain the results of name lookup for the correct name or it may be
2800/// empty.
2801DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
2802                                  DeclContext *MemberContext,
2803                                  bool EnteringContext,
2804                                  CorrectTypoContext CTC,
2805                                  const ObjCObjectPointerType *OPT) {
2806  if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking)
2807    return DeclarationName();
2808
2809  // Provide a stop gap for files that are just seriously broken.  Trying
2810  // to correct all typos can turn into a HUGE performance penalty, causing
2811  // some files to take minutes to get rejected by the parser.
2812  // FIXME: Is this the right solution?
2813  if (TyposCorrected == 20)
2814    return DeclarationName();
2815  ++TyposCorrected;
2816
2817  // We only attempt to correct typos for identifiers.
2818  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2819  if (!Typo)
2820    return DeclarationName();
2821
2822  // If the scope specifier itself was invalid, don't try to correct
2823  // typos.
2824  if (SS && SS->isInvalid())
2825    return DeclarationName();
2826
2827  // Never try to correct typos during template deduction or
2828  // instantiation.
2829  if (!ActiveTemplateInstantiations.empty())
2830    return DeclarationName();
2831
2832  TypoCorrectionConsumer Consumer(Typo);
2833
2834  // Perform name lookup to find visible, similarly-named entities.
2835  if (MemberContext) {
2836    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2837
2838    // Look in qualified interfaces.
2839    if (OPT) {
2840      for (ObjCObjectPointerType::qual_iterator
2841             I = OPT->qual_begin(), E = OPT->qual_end();
2842           I != E; ++I)
2843        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2844    }
2845  } else if (SS && SS->isSet()) {
2846    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2847    if (!DC)
2848      return DeclarationName();
2849
2850    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2851  } else {
2852    LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
2853  }
2854
2855  // Add context-dependent keywords.
2856  bool WantTypeSpecifiers = false;
2857  bool WantExpressionKeywords = false;
2858  bool WantCXXNamedCasts = false;
2859  bool WantRemainingKeywords = false;
2860  switch (CTC) {
2861    case CTC_Unknown:
2862      WantTypeSpecifiers = true;
2863      WantExpressionKeywords = true;
2864      WantCXXNamedCasts = true;
2865      WantRemainingKeywords = true;
2866
2867      if (ObjCMethodDecl *Method = getCurMethodDecl())
2868        if (Method->getClassInterface() &&
2869            Method->getClassInterface()->getSuperClass())
2870          Consumer.addKeywordResult(Context, "super");
2871
2872      break;
2873
2874    case CTC_NoKeywords:
2875      break;
2876
2877    case CTC_Type:
2878      WantTypeSpecifiers = true;
2879      break;
2880
2881    case CTC_ObjCMessageReceiver:
2882      Consumer.addKeywordResult(Context, "super");
2883      // Fall through to handle message receivers like expressions.
2884
2885    case CTC_Expression:
2886      if (getLangOptions().CPlusPlus)
2887        WantTypeSpecifiers = true;
2888      WantExpressionKeywords = true;
2889      // Fall through to get C++ named casts.
2890
2891    case CTC_CXXCasts:
2892      WantCXXNamedCasts = true;
2893      break;
2894
2895    case CTC_MemberLookup:
2896      if (getLangOptions().CPlusPlus)
2897        Consumer.addKeywordResult(Context, "template");
2898      break;
2899  }
2900
2901  if (WantTypeSpecifiers) {
2902    // Add type-specifier keywords to the set of results.
2903    const char *CTypeSpecs[] = {
2904      "char", "const", "double", "enum", "float", "int", "long", "short",
2905      "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
2906      "_Complex", "_Imaginary",
2907      // storage-specifiers as well
2908      "extern", "inline", "static", "typedef"
2909    };
2910
2911    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
2912    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
2913      Consumer.addKeywordResult(Context, CTypeSpecs[I]);
2914
2915    if (getLangOptions().C99)
2916      Consumer.addKeywordResult(Context, "restrict");
2917    if (getLangOptions().Bool || getLangOptions().CPlusPlus)
2918      Consumer.addKeywordResult(Context, "bool");
2919
2920    if (getLangOptions().CPlusPlus) {
2921      Consumer.addKeywordResult(Context, "class");
2922      Consumer.addKeywordResult(Context, "typename");
2923      Consumer.addKeywordResult(Context, "wchar_t");
2924
2925      if (getLangOptions().CPlusPlus0x) {
2926        Consumer.addKeywordResult(Context, "char16_t");
2927        Consumer.addKeywordResult(Context, "char32_t");
2928        Consumer.addKeywordResult(Context, "constexpr");
2929        Consumer.addKeywordResult(Context, "decltype");
2930        Consumer.addKeywordResult(Context, "thread_local");
2931      }
2932    }
2933
2934    if (getLangOptions().GNUMode)
2935      Consumer.addKeywordResult(Context, "typeof");
2936  }
2937
2938  if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
2939    Consumer.addKeywordResult(Context, "const_cast");
2940    Consumer.addKeywordResult(Context, "dynamic_cast");
2941    Consumer.addKeywordResult(Context, "reinterpret_cast");
2942    Consumer.addKeywordResult(Context, "static_cast");
2943  }
2944
2945  if (WantExpressionKeywords) {
2946    Consumer.addKeywordResult(Context, "sizeof");
2947    if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
2948      Consumer.addKeywordResult(Context, "false");
2949      Consumer.addKeywordResult(Context, "true");
2950    }
2951
2952    if (getLangOptions().CPlusPlus) {
2953      const char *CXXExprs[] = {
2954        "delete", "new", "operator", "throw", "typeid"
2955      };
2956      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
2957      for (unsigned I = 0; I != NumCXXExprs; ++I)
2958        Consumer.addKeywordResult(Context, CXXExprs[I]);
2959
2960      if (isa<CXXMethodDecl>(CurContext) &&
2961          cast<CXXMethodDecl>(CurContext)->isInstance())
2962        Consumer.addKeywordResult(Context, "this");
2963
2964      if (getLangOptions().CPlusPlus0x) {
2965        Consumer.addKeywordResult(Context, "alignof");
2966        Consumer.addKeywordResult(Context, "nullptr");
2967      }
2968    }
2969  }
2970
2971  if (WantRemainingKeywords) {
2972    if (getCurFunctionOrMethodDecl() || getCurBlock()) {
2973      // Statements.
2974      const char *CStmts[] = {
2975        "do", "else", "for", "goto", "if", "return", "switch", "while" };
2976      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
2977      for (unsigned I = 0; I != NumCStmts; ++I)
2978        Consumer.addKeywordResult(Context, CStmts[I]);
2979
2980      if (getLangOptions().CPlusPlus) {
2981        Consumer.addKeywordResult(Context, "catch");
2982        Consumer.addKeywordResult(Context, "try");
2983      }
2984
2985      if (S && S->getBreakParent())
2986        Consumer.addKeywordResult(Context, "break");
2987
2988      if (S && S->getContinueParent())
2989        Consumer.addKeywordResult(Context, "continue");
2990
2991      if (!getCurFunction()->SwitchStack.empty()) {
2992        Consumer.addKeywordResult(Context, "case");
2993        Consumer.addKeywordResult(Context, "default");
2994      }
2995    } else {
2996      if (getLangOptions().CPlusPlus) {
2997        Consumer.addKeywordResult(Context, "namespace");
2998        Consumer.addKeywordResult(Context, "template");
2999      }
3000
3001      if (S && S->isClassScope()) {
3002        Consumer.addKeywordResult(Context, "explicit");
3003        Consumer.addKeywordResult(Context, "friend");
3004        Consumer.addKeywordResult(Context, "mutable");
3005        Consumer.addKeywordResult(Context, "private");
3006        Consumer.addKeywordResult(Context, "protected");
3007        Consumer.addKeywordResult(Context, "public");
3008        Consumer.addKeywordResult(Context, "virtual");
3009      }
3010    }
3011
3012    if (getLangOptions().CPlusPlus) {
3013      Consumer.addKeywordResult(Context, "using");
3014
3015      if (getLangOptions().CPlusPlus0x)
3016        Consumer.addKeywordResult(Context, "static_assert");
3017    }
3018  }
3019
3020  // If we haven't found anything, we're done.
3021  if (Consumer.empty())
3022    return DeclarationName();
3023
3024  // Only allow a single, closest name in the result set (it's okay to
3025  // have overloads of that name, though).
3026  DeclarationName BestName;
3027  NamedDecl *BestIvarOrPropertyDecl = 0;
3028  bool FoundIvarOrPropertyDecl = false;
3029
3030  // Check all of the declaration results to find the best name so far.
3031  for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
3032                                     IEnd = Consumer.end();
3033       I != IEnd; ++I) {
3034    if (!BestName)
3035      BestName = (*I)->getDeclName();
3036    else if (BestName != (*I)->getDeclName())
3037      return DeclarationName();
3038
3039    // \brief Keep track of either an Objective-C ivar or a property, but not
3040    // both.
3041    if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I)) {
3042      if (FoundIvarOrPropertyDecl)
3043        BestIvarOrPropertyDecl = 0;
3044      else {
3045        BestIvarOrPropertyDecl = *I;
3046        FoundIvarOrPropertyDecl = true;
3047      }
3048    }
3049  }
3050
3051  // Now check all of the keyword results to find the best name.
3052  switch (Consumer.keyword_size()) {
3053    case 0:
3054      // No keywords matched.
3055      break;
3056
3057    case 1:
3058      // If we already have a name
3059      if (!BestName) {
3060        // We did not have anything previously,
3061        BestName = *Consumer.keyword_begin();
3062      } else if (BestName.getAsIdentifierInfo() == *Consumer.keyword_begin()) {
3063        // We have a declaration with the same name as a context-sensitive
3064        // keyword. The keyword takes precedence.
3065        BestIvarOrPropertyDecl = 0;
3066        FoundIvarOrPropertyDecl = false;
3067        Consumer.clear_decls();
3068      } else if (CTC == CTC_ObjCMessageReceiver &&
3069                 (*Consumer.keyword_begin())->isStr("super")) {
3070        // In an Objective-C message send, give the "super" keyword a slight
3071        // edge over entities not in function or method scope.
3072        for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
3073                                           IEnd = Consumer.end();
3074             I != IEnd; ++I) {
3075          if ((*I)->getDeclName() == BestName) {
3076            if ((*I)->getDeclContext()->isFunctionOrMethod())
3077              return DeclarationName();
3078          }
3079        }
3080
3081        // Everything found was outside a function or method; the 'super'
3082        // keyword takes precedence.
3083        BestIvarOrPropertyDecl = 0;
3084        FoundIvarOrPropertyDecl = false;
3085        Consumer.clear_decls();
3086        BestName = *Consumer.keyword_begin();
3087      } else {
3088        // Name collision; we will not correct typos.
3089        return DeclarationName();
3090      }
3091      break;
3092
3093    default:
3094      // Name collision; we will not correct typos.
3095      return DeclarationName();
3096  }
3097
3098  // BestName is the closest viable name to what the user
3099  // typed. However, to make sure that we don't pick something that's
3100  // way off, make sure that the user typed at least 3 characters for
3101  // each correction.
3102  unsigned ED = Consumer.getBestEditDistance();
3103  if (ED == 0 || !BestName.getAsIdentifierInfo() ||
3104      (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
3105    return DeclarationName();
3106
3107  // Perform name lookup again with the name we chose, and declare
3108  // success if we found something that was not ambiguous.
3109  Res.clear();
3110  Res.setLookupName(BestName);
3111
3112  // If we found an ivar or property, add that result; no further
3113  // lookup is required.
3114  if (BestIvarOrPropertyDecl)
3115    Res.addDecl(BestIvarOrPropertyDecl);
3116  // If we're looking into the context of a member, perform qualified
3117  // name lookup on the best name.
3118  else if (!Consumer.keyword_empty()) {
3119    // The best match was a keyword. Return it.
3120    return BestName;
3121  } else if (MemberContext)
3122    LookupQualifiedName(Res, MemberContext);
3123  // Perform lookup as if we had just parsed the best name.
3124  else
3125    LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3126                     EnteringContext);
3127
3128  if (Res.isAmbiguous()) {
3129    Res.suppressDiagnostics();
3130    return DeclarationName();
3131  }
3132
3133  if (Res.getResultKind() != LookupResult::NotFound)
3134    return BestName;
3135
3136  return DeclarationName();
3137}
3138