SemaLookup.cpp revision 1cdf4d0686667b7f80c37cdc87679d824819bb5a
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/LangOptions.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <list>
31#include <set>
32#include <vector>
33#include <iterator>
34#include <utility>
35#include <algorithm>
36
37using namespace clang;
38
39namespace {
40  class UnqualUsingEntry {
41    const DeclContext *Nominated;
42    const DeclContext *CommonAncestor;
43
44  public:
45    UnqualUsingEntry(const DeclContext *Nominated,
46                     const DeclContext *CommonAncestor)
47      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
48    }
49
50    const DeclContext *getCommonAncestor() const {
51      return CommonAncestor;
52    }
53
54    const DeclContext *getNominatedNamespace() const {
55      return Nominated;
56    }
57
58    // Sort by the pointer value of the common ancestor.
59    struct Comparator {
60      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
61        return L.getCommonAncestor() < R.getCommonAncestor();
62      }
63
64      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
65        return E.getCommonAncestor() < DC;
66      }
67
68      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
69        return DC < E.getCommonAncestor();
70      }
71    };
72  };
73
74  /// A collection of using directives, as used by C++ unqualified
75  /// lookup.
76  class UnqualUsingDirectiveSet {
77    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
78
79    ListTy list;
80    llvm::SmallPtrSet<DeclContext*, 8> visited;
81
82  public:
83    UnqualUsingDirectiveSet() {}
84
85    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
86      // C++ [namespace.udir]p1:
87      //   During unqualified name lookup, the names appear as if they
88      //   were declared in the nearest enclosing namespace which contains
89      //   both the using-directive and the nominated namespace.
90      DeclContext *InnermostFileDC
91        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
92      assert(InnermostFileDC && InnermostFileDC->isFileContext());
93
94      for (; S; S = S->getParent()) {
95        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
96          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
97          visit(Ctx, EffectiveDC);
98        } else {
99          Scope::udir_iterator I = S->using_directives_begin(),
100                             End = S->using_directives_end();
101
102          for (; I != End; ++I)
103            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
104        }
105      }
106    }
107
108    // Visits a context and collect all of its using directives
109    // recursively.  Treats all using directives as if they were
110    // declared in the context.
111    //
112    // A given context is only every visited once, so it is important
113    // that contexts be visited from the inside out in order to get
114    // the effective DCs right.
115    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
116      if (!visited.insert(DC))
117        return;
118
119      addUsingDirectives(DC, EffectiveDC);
120    }
121
122    // Visits a using directive and collects all of its using
123    // directives recursively.  Treats all using directives as if they
124    // were declared in the effective DC.
125    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
126      DeclContext *NS = UD->getNominatedNamespace();
127      if (!visited.insert(NS))
128        return;
129
130      addUsingDirective(UD, EffectiveDC);
131      addUsingDirectives(NS, EffectiveDC);
132    }
133
134    // Adds all the using directives in a context (and those nominated
135    // by its using directives, transitively) as if they appeared in
136    // the given effective context.
137    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
138      llvm::SmallVector<DeclContext*,4> queue;
139      while (true) {
140        DeclContext::udir_iterator I, End;
141        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
142          UsingDirectiveDecl *UD = *I;
143          DeclContext *NS = UD->getNominatedNamespace();
144          if (visited.insert(NS)) {
145            addUsingDirective(UD, EffectiveDC);
146            queue.push_back(NS);
147          }
148        }
149
150        if (queue.empty())
151          return;
152
153        DC = queue.back();
154        queue.pop_back();
155      }
156    }
157
158    // Add a using directive as if it had been declared in the given
159    // context.  This helps implement C++ [namespace.udir]p3:
160    //   The using-directive is transitive: if a scope contains a
161    //   using-directive that nominates a second namespace that itself
162    //   contains using-directives, the effect is as if the
163    //   using-directives from the second namespace also appeared in
164    //   the first.
165    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
166      // Find the common ancestor between the effective context and
167      // the nominated namespace.
168      DeclContext *Common = UD->getNominatedNamespace();
169      while (!Common->Encloses(EffectiveDC))
170        Common = Common->getParent();
171      Common = Common->getPrimaryContext();
172
173      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
174    }
175
176    void done() {
177      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
178    }
179
180    typedef ListTy::iterator iterator;
181    typedef ListTy::const_iterator const_iterator;
182
183    iterator begin() { return list.begin(); }
184    iterator end() { return list.end(); }
185    const_iterator begin() const { return list.begin(); }
186    const_iterator end() const { return list.end(); }
187
188    std::pair<const_iterator,const_iterator>
189    getNamespacesFor(DeclContext *DC) const {
190      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
191                              UnqualUsingEntry::Comparator());
192    }
193  };
194}
195
196// Retrieve the set of identifier namespaces that correspond to a
197// specific kind of name lookup.
198static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
199                               bool CPlusPlus,
200                               bool Redeclaration) {
201  unsigned IDNS = 0;
202  switch (NameKind) {
203  case Sema::LookupOrdinaryName:
204  case Sema::LookupRedeclarationWithLinkage:
205    IDNS = Decl::IDNS_Ordinary;
206    if (CPlusPlus) {
207      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
208      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
209    }
210    break;
211
212  case Sema::LookupOperatorName:
213    // Operator lookup is its own crazy thing;  it is not the same
214    // as (e.g.) looking up an operator name for redeclaration.
215    assert(!Redeclaration && "cannot do redeclaration operator lookup");
216    IDNS = Decl::IDNS_NonMemberOperator;
217    break;
218
219  case Sema::LookupTagName:
220    if (CPlusPlus) {
221      IDNS = Decl::IDNS_Type;
222
223      // When looking for a redeclaration of a tag name, we add:
224      // 1) TagFriend to find undeclared friend decls
225      // 2) Namespace because they can't "overload" with tag decls.
226      // 3) Tag because it includes class templates, which can't
227      //    "overload" with tag decls.
228      if (Redeclaration)
229        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
230    } else {
231      IDNS = Decl::IDNS_Tag;
232    }
233    break;
234
235  case Sema::LookupMemberName:
236    IDNS = Decl::IDNS_Member;
237    if (CPlusPlus)
238      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
239    break;
240
241  case Sema::LookupNestedNameSpecifierName:
242    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
243    break;
244
245  case Sema::LookupNamespaceName:
246    IDNS = Decl::IDNS_Namespace;
247    break;
248
249  case Sema::LookupUsingDeclName:
250    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
251         | Decl::IDNS_Member | Decl::IDNS_Using;
252    break;
253
254  case Sema::LookupObjCProtocolName:
255    IDNS = Decl::IDNS_ObjCProtocol;
256    break;
257  }
258  return IDNS;
259}
260
261void LookupResult::configure() {
262  IDNS = getIDNS(LookupKind,
263                 SemaRef.getLangOptions().CPlusPlus,
264                 isForRedeclaration());
265
266  // If we're looking for one of the allocation or deallocation
267  // operators, make sure that the implicitly-declared new and delete
268  // operators can be found.
269  if (!isForRedeclaration()) {
270    switch (Name.getCXXOverloadedOperator()) {
271    case OO_New:
272    case OO_Delete:
273    case OO_Array_New:
274    case OO_Array_Delete:
275      SemaRef.DeclareGlobalNewDelete();
276      break;
277
278    default:
279      break;
280    }
281  }
282}
283
284// Necessary because CXXBasePaths is not complete in Sema.h
285void LookupResult::deletePaths(CXXBasePaths *Paths) {
286  delete Paths;
287}
288
289/// Resolves the result kind of this lookup.
290void LookupResult::resolveKind() {
291  unsigned N = Decls.size();
292
293  // Fast case: no possible ambiguity.
294  if (N == 0) {
295    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
296    return;
297  }
298
299  // If there's a single decl, we need to examine it to decide what
300  // kind of lookup this is.
301  if (N == 1) {
302    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
303    if (isa<FunctionTemplateDecl>(D))
304      ResultKind = FoundOverloaded;
305    else if (isa<UnresolvedUsingValueDecl>(D))
306      ResultKind = FoundUnresolvedValue;
307    return;
308  }
309
310  // Don't do any extra resolution if we've already resolved as ambiguous.
311  if (ResultKind == Ambiguous) return;
312
313  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
314
315  bool Ambiguous = false;
316  bool HasTag = false, HasFunction = false, HasNonFunction = false;
317  bool HasFunctionTemplate = false, HasUnresolved = false;
318
319  unsigned UniqueTagIndex = 0;
320
321  unsigned I = 0;
322  while (I < N) {
323    NamedDecl *D = Decls[I]->getUnderlyingDecl();
324    D = cast<NamedDecl>(D->getCanonicalDecl());
325
326    if (!Unique.insert(D)) {
327      // If it's not unique, pull something off the back (and
328      // continue at this index).
329      Decls[I] = Decls[--N];
330    } else {
331      // Otherwise, do some decl type analysis and then continue.
332
333      if (isa<UnresolvedUsingValueDecl>(D)) {
334        HasUnresolved = true;
335      } else if (isa<TagDecl>(D)) {
336        if (HasTag)
337          Ambiguous = true;
338        UniqueTagIndex = I;
339        HasTag = true;
340      } else if (isa<FunctionTemplateDecl>(D)) {
341        HasFunction = true;
342        HasFunctionTemplate = true;
343      } else if (isa<FunctionDecl>(D)) {
344        HasFunction = true;
345      } else {
346        if (HasNonFunction)
347          Ambiguous = true;
348        HasNonFunction = true;
349      }
350      I++;
351    }
352  }
353
354  // C++ [basic.scope.hiding]p2:
355  //   A class name or enumeration name can be hidden by the name of
356  //   an object, function, or enumerator declared in the same
357  //   scope. If a class or enumeration name and an object, function,
358  //   or enumerator are declared in the same scope (in any order)
359  //   with the same name, the class or enumeration name is hidden
360  //   wherever the object, function, or enumerator name is visible.
361  // But it's still an error if there are distinct tag types found,
362  // even if they're not visible. (ref?)
363  if (HideTags && HasTag && !Ambiguous &&
364      (HasFunction || HasNonFunction || HasUnresolved))
365    Decls[UniqueTagIndex] = Decls[--N];
366
367  Decls.set_size(N);
368
369  if (HasNonFunction && (HasFunction || HasUnresolved))
370    Ambiguous = true;
371
372  if (Ambiguous)
373    setAmbiguous(LookupResult::AmbiguousReference);
374  else if (HasUnresolved)
375    ResultKind = LookupResult::FoundUnresolvedValue;
376  else if (N > 1 || HasFunctionTemplate)
377    ResultKind = LookupResult::FoundOverloaded;
378  else
379    ResultKind = LookupResult::Found;
380}
381
382void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
383  CXXBasePaths::const_paths_iterator I, E;
384  DeclContext::lookup_iterator DI, DE;
385  for (I = P.begin(), E = P.end(); I != E; ++I)
386    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
387      addDecl(*DI);
388}
389
390void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
391  Paths = new CXXBasePaths;
392  Paths->swap(P);
393  addDeclsFromBasePaths(*Paths);
394  resolveKind();
395  setAmbiguous(AmbiguousBaseSubobjects);
396}
397
398void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
399  Paths = new CXXBasePaths;
400  Paths->swap(P);
401  addDeclsFromBasePaths(*Paths);
402  resolveKind();
403  setAmbiguous(AmbiguousBaseSubobjectTypes);
404}
405
406void LookupResult::print(llvm::raw_ostream &Out) {
407  Out << Decls.size() << " result(s)";
408  if (isAmbiguous()) Out << ", ambiguous";
409  if (Paths) Out << ", base paths present";
410
411  for (iterator I = begin(), E = end(); I != E; ++I) {
412    Out << "\n";
413    (*I)->print(Out, 2);
414  }
415}
416
417/// \brief Lookup a builtin function, when name lookup would otherwise
418/// fail.
419static bool LookupBuiltin(Sema &S, LookupResult &R) {
420  Sema::LookupNameKind NameKind = R.getLookupKind();
421
422  // If we didn't find a use of this identifier, and if the identifier
423  // corresponds to a compiler builtin, create the decl object for the builtin
424  // now, injecting it into translation unit scope, and return it.
425  if (NameKind == Sema::LookupOrdinaryName ||
426      NameKind == Sema::LookupRedeclarationWithLinkage) {
427    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
428    if (II) {
429      // If this is a builtin on this (or all) targets, create the decl.
430      if (unsigned BuiltinID = II->getBuiltinID()) {
431        // In C++, we don't have any predefined library functions like
432        // 'malloc'. Instead, we'll just error.
433        if (S.getLangOptions().CPlusPlus &&
434            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
435          return false;
436
437        NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
438                                             S.TUScope, R.isForRedeclaration(),
439                                             R.getNameLoc());
440        if (D)
441          R.addDecl(D);
442        return (D != NULL);
443      }
444    }
445  }
446
447  return false;
448}
449
450/// \brief Determine whether we can declare a special member function within
451/// the class at this point.
452static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
453                                            const CXXRecordDecl *Class) {
454  // We need to have a definition for the class.
455  if (!Class->getDefinition() || Class->isDependentContext())
456    return false;
457
458  // We can't be in the middle of defining the class.
459  if (const RecordType *RecordTy
460                        = Context.getTypeDeclType(Class)->getAs<RecordType>())
461    return !RecordTy->isBeingDefined();
462
463  return false;
464}
465
466void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
467  if (!CanDeclareSpecialMemberFunction(Context, Class))
468    return;
469
470  // If the copy constructor has not yet been declared, do so now.
471  if (!Class->hasDeclaredCopyConstructor())
472    DeclareImplicitCopyConstructor(Class);
473
474  // If the copy assignment operator has not yet been declared, do so now.
475  if (!Class->hasDeclaredCopyAssignment())
476    DeclareImplicitCopyAssignment(Class);
477
478  // If the destructor has not yet been declared, do so now.
479  if (!Class->hasDeclaredDestructor())
480    DeclareImplicitDestructor(Class);
481}
482
483/// \brief Determine whether this is the name of an implicitly-declared
484/// special member function.
485static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
486  switch (Name.getNameKind()) {
487  case DeclarationName::CXXConstructorName:
488  case DeclarationName::CXXDestructorName:
489    return true;
490
491  case DeclarationName::CXXOperatorName:
492    return Name.getCXXOverloadedOperator() == OO_Equal;
493
494  default:
495    break;
496  }
497
498  return false;
499}
500
501/// \brief If there are any implicit member functions with the given name
502/// that need to be declared in the given declaration context, do so.
503static void DeclareImplicitMemberFunctionsWithName(Sema &S,
504                                                   DeclarationName Name,
505                                                   const DeclContext *DC) {
506  if (!DC)
507    return;
508
509  switch (Name.getNameKind()) {
510  case DeclarationName::CXXConstructorName:
511    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
512      if (Record->getDefinition() && !Record->hasDeclaredCopyConstructor() &&
513          CanDeclareSpecialMemberFunction(S.Context, Record))
514        S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record));
515    break;
516
517  case DeclarationName::CXXDestructorName:
518    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
519      if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
520          CanDeclareSpecialMemberFunction(S.Context, Record))
521        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
522    break;
523
524  case DeclarationName::CXXOperatorName:
525    if (Name.getCXXOverloadedOperator() != OO_Equal)
526      break;
527
528    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
529      if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() &&
530          CanDeclareSpecialMemberFunction(S.Context, Record))
531        S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record));
532    break;
533
534  default:
535    break;
536  }
537}
538
539// Adds all qualifying matches for a name within a decl context to the
540// given lookup result.  Returns true if any matches were found.
541static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
542  bool Found = false;
543
544  // Lazily declare C++ special member functions.
545  if (S.getLangOptions().CPlusPlus)
546    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
547
548  // Perform lookup into this declaration context.
549  DeclContext::lookup_const_iterator I, E;
550  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
551    NamedDecl *D = *I;
552    if (R.isAcceptableDecl(D)) {
553      R.addDecl(D);
554      Found = true;
555    }
556  }
557
558  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
559    return true;
560
561  if (R.getLookupName().getNameKind()
562        != DeclarationName::CXXConversionFunctionName ||
563      R.getLookupName().getCXXNameType()->isDependentType() ||
564      !isa<CXXRecordDecl>(DC))
565    return Found;
566
567  // C++ [temp.mem]p6:
568  //   A specialization of a conversion function template is not found by
569  //   name lookup. Instead, any conversion function templates visible in the
570  //   context of the use are considered. [...]
571  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
572  if (!Record->isDefinition())
573    return Found;
574
575  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
576  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
577         UEnd = Unresolved->end(); U != UEnd; ++U) {
578    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
579    if (!ConvTemplate)
580      continue;
581
582    // When we're performing lookup for the purposes of redeclaration, just
583    // add the conversion function template. When we deduce template
584    // arguments for specializations, we'll end up unifying the return
585    // type of the new declaration with the type of the function template.
586    if (R.isForRedeclaration()) {
587      R.addDecl(ConvTemplate);
588      Found = true;
589      continue;
590    }
591
592    // C++ [temp.mem]p6:
593    //   [...] For each such operator, if argument deduction succeeds
594    //   (14.9.2.3), the resulting specialization is used as if found by
595    //   name lookup.
596    //
597    // When referencing a conversion function for any purpose other than
598    // a redeclaration (such that we'll be building an expression with the
599    // result), perform template argument deduction and place the
600    // specialization into the result set. We do this to avoid forcing all
601    // callers to perform special deduction for conversion functions.
602    Sema::TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
603    FunctionDecl *Specialization = 0;
604
605    const FunctionProtoType *ConvProto
606      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
607    assert(ConvProto && "Nonsensical conversion function template type");
608
609    // Compute the type of the function that we would expect the conversion
610    // function to have, if it were to match the name given.
611    // FIXME: Calling convention!
612    FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
613    QualType ExpectedType
614      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
615                                            0, 0, ConvProto->isVariadic(),
616                                            ConvProto->getTypeQuals(),
617                                            false, false, 0, 0,
618                                    ConvProtoInfo.withCallingConv(CC_Default));
619
620    // Perform template argument deduction against the type that we would
621    // expect the function to have.
622    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
623                                            Specialization, Info)
624          == Sema::TDK_Success) {
625      R.addDecl(Specialization);
626      Found = true;
627    }
628  }
629
630  return Found;
631}
632
633// Performs C++ unqualified lookup into the given file context.
634static bool
635CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
636                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
637
638  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
639
640  // Perform direct name lookup into the LookupCtx.
641  bool Found = LookupDirect(S, R, NS);
642
643  // Perform direct name lookup into the namespaces nominated by the
644  // using directives whose common ancestor is this namespace.
645  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
646  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
647
648  for (; UI != UEnd; ++UI)
649    if (LookupDirect(S, R, UI->getNominatedNamespace()))
650      Found = true;
651
652  R.resolveKind();
653
654  return Found;
655}
656
657static bool isNamespaceOrTranslationUnitScope(Scope *S) {
658  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
659    return Ctx->isFileContext();
660  return false;
661}
662
663// Find the next outer declaration context from this scope. This
664// routine actually returns the semantic outer context, which may
665// differ from the lexical context (encoded directly in the Scope
666// stack) when we are parsing a member of a class template. In this
667// case, the second element of the pair will be true, to indicate that
668// name lookup should continue searching in this semantic context when
669// it leaves the current template parameter scope.
670static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
671  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
672  DeclContext *Lexical = 0;
673  for (Scope *OuterS = S->getParent(); OuterS;
674       OuterS = OuterS->getParent()) {
675    if (OuterS->getEntity()) {
676      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
677      break;
678    }
679  }
680
681  // C++ [temp.local]p8:
682  //   In the definition of a member of a class template that appears
683  //   outside of the namespace containing the class template
684  //   definition, the name of a template-parameter hides the name of
685  //   a member of this namespace.
686  //
687  // Example:
688  //
689  //   namespace N {
690  //     class C { };
691  //
692  //     template<class T> class B {
693  //       void f(T);
694  //     };
695  //   }
696  //
697  //   template<class C> void N::B<C>::f(C) {
698  //     C b;  // C is the template parameter, not N::C
699  //   }
700  //
701  // In this example, the lexical context we return is the
702  // TranslationUnit, while the semantic context is the namespace N.
703  if (!Lexical || !DC || !S->getParent() ||
704      !S->getParent()->isTemplateParamScope())
705    return std::make_pair(Lexical, false);
706
707  // Find the outermost template parameter scope.
708  // For the example, this is the scope for the template parameters of
709  // template<class C>.
710  Scope *OutermostTemplateScope = S->getParent();
711  while (OutermostTemplateScope->getParent() &&
712         OutermostTemplateScope->getParent()->isTemplateParamScope())
713    OutermostTemplateScope = OutermostTemplateScope->getParent();
714
715  // Find the namespace context in which the original scope occurs. In
716  // the example, this is namespace N.
717  DeclContext *Semantic = DC;
718  while (!Semantic->isFileContext())
719    Semantic = Semantic->getParent();
720
721  // Find the declaration context just outside of the template
722  // parameter scope. This is the context in which the template is
723  // being lexically declaration (a namespace context). In the
724  // example, this is the global scope.
725  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
726      Lexical->Encloses(Semantic))
727    return std::make_pair(Semantic, true);
728
729  return std::make_pair(Lexical, false);
730}
731
732bool Sema::CppLookupName(LookupResult &R, Scope *S) {
733  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
734
735  DeclarationName Name = R.getLookupName();
736
737  // If this is the name of an implicitly-declared special member function,
738  // go through the scope stack to implicitly declare
739  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
740    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
741      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
742        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
743  }
744
745  // Implicitly declare member functions with the name we're looking for, if in
746  // fact we are in a scope where it matters.
747
748  Scope *Initial = S;
749  IdentifierResolver::iterator
750    I = IdResolver.begin(Name),
751    IEnd = IdResolver.end();
752
753  // First we lookup local scope.
754  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
755  // ...During unqualified name lookup (3.4.1), the names appear as if
756  // they were declared in the nearest enclosing namespace which contains
757  // both the using-directive and the nominated namespace.
758  // [Note: in this context, "contains" means "contains directly or
759  // indirectly".
760  //
761  // For example:
762  // namespace A { int i; }
763  // void foo() {
764  //   int i;
765  //   {
766  //     using namespace A;
767  //     ++i; // finds local 'i', A::i appears at global scope
768  //   }
769  // }
770  //
771  DeclContext *OutsideOfTemplateParamDC = 0;
772  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
773    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
774
775    // Check whether the IdResolver has anything in this scope.
776    bool Found = false;
777    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
778      if (R.isAcceptableDecl(*I)) {
779        Found = true;
780        R.addDecl(*I);
781      }
782    }
783    if (Found) {
784      R.resolveKind();
785      if (S->isClassScope())
786        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
787          R.setNamingClass(Record);
788      return true;
789    }
790
791    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
792        S->getParent() && !S->getParent()->isTemplateParamScope()) {
793      // We've just searched the last template parameter scope and
794      // found nothing, so look into the the contexts between the
795      // lexical and semantic declaration contexts returned by
796      // findOuterContext(). This implements the name lookup behavior
797      // of C++ [temp.local]p8.
798      Ctx = OutsideOfTemplateParamDC;
799      OutsideOfTemplateParamDC = 0;
800    }
801
802    if (Ctx) {
803      DeclContext *OuterCtx;
804      bool SearchAfterTemplateScope;
805      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
806      if (SearchAfterTemplateScope)
807        OutsideOfTemplateParamDC = OuterCtx;
808
809      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
810        // We do not directly look into transparent contexts, since
811        // those entities will be found in the nearest enclosing
812        // non-transparent context.
813        if (Ctx->isTransparentContext())
814          continue;
815
816        // We do not look directly into function or method contexts,
817        // since all of the local variables and parameters of the
818        // function/method are present within the Scope.
819        if (Ctx->isFunctionOrMethod()) {
820          // If we have an Objective-C instance method, look for ivars
821          // in the corresponding interface.
822          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
823            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
824              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
825                ObjCInterfaceDecl *ClassDeclared;
826                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
827                                                 Name.getAsIdentifierInfo(),
828                                                             ClassDeclared)) {
829                  if (R.isAcceptableDecl(Ivar)) {
830                    R.addDecl(Ivar);
831                    R.resolveKind();
832                    return true;
833                  }
834                }
835              }
836          }
837
838          continue;
839        }
840
841        // Perform qualified name lookup into this context.
842        // FIXME: In some cases, we know that every name that could be found by
843        // this qualified name lookup will also be on the identifier chain. For
844        // example, inside a class without any base classes, we never need to
845        // perform qualified lookup because all of the members are on top of the
846        // identifier chain.
847        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
848          return true;
849      }
850    }
851  }
852
853  // Stop if we ran out of scopes.
854  // FIXME:  This really, really shouldn't be happening.
855  if (!S) return false;
856
857  // Collect UsingDirectiveDecls in all scopes, and recursively all
858  // nominated namespaces by those using-directives.
859  //
860  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
861  // don't build it for each lookup!
862
863  UnqualUsingDirectiveSet UDirs;
864  UDirs.visitScopeChain(Initial, S);
865  UDirs.done();
866
867  // Lookup namespace scope, and global scope.
868  // Unqualified name lookup in C++ requires looking into scopes
869  // that aren't strictly lexical, and therefore we walk through the
870  // context as well as walking through the scopes.
871
872  for (; S; S = S->getParent()) {
873    // Check whether the IdResolver has anything in this scope.
874    bool Found = false;
875    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
876      if (R.isAcceptableDecl(*I)) {
877        // We found something.  Look for anything else in our scope
878        // with this same name and in an acceptable identifier
879        // namespace, so that we can construct an overload set if we
880        // need to.
881        Found = true;
882        R.addDecl(*I);
883      }
884    }
885
886    if (Found && S->isTemplateParamScope()) {
887      R.resolveKind();
888      return true;
889    }
890
891    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
892    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
893        S->getParent() && !S->getParent()->isTemplateParamScope()) {
894      // We've just searched the last template parameter scope and
895      // found nothing, so look into the the contexts between the
896      // lexical and semantic declaration contexts returned by
897      // findOuterContext(). This implements the name lookup behavior
898      // of C++ [temp.local]p8.
899      Ctx = OutsideOfTemplateParamDC;
900      OutsideOfTemplateParamDC = 0;
901    }
902
903    if (Ctx) {
904      DeclContext *OuterCtx;
905      bool SearchAfterTemplateScope;
906      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
907      if (SearchAfterTemplateScope)
908        OutsideOfTemplateParamDC = OuterCtx;
909
910      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
911        // We do not directly look into transparent contexts, since
912        // those entities will be found in the nearest enclosing
913        // non-transparent context.
914        if (Ctx->isTransparentContext())
915          continue;
916
917        // If we have a context, and it's not a context stashed in the
918        // template parameter scope for an out-of-line definition, also
919        // look into that context.
920        if (!(Found && S && S->isTemplateParamScope())) {
921          assert(Ctx->isFileContext() &&
922              "We should have been looking only at file context here already.");
923
924          // Look into context considering using-directives.
925          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
926            Found = true;
927        }
928
929        if (Found) {
930          R.resolveKind();
931          return true;
932        }
933
934        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
935          return false;
936      }
937    }
938
939    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
940      return false;
941  }
942
943  return !R.empty();
944}
945
946/// @brief Perform unqualified name lookup starting from a given
947/// scope.
948///
949/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
950/// used to find names within the current scope. For example, 'x' in
951/// @code
952/// int x;
953/// int f() {
954///   return x; // unqualified name look finds 'x' in the global scope
955/// }
956/// @endcode
957///
958/// Different lookup criteria can find different names. For example, a
959/// particular scope can have both a struct and a function of the same
960/// name, and each can be found by certain lookup criteria. For more
961/// information about lookup criteria, see the documentation for the
962/// class LookupCriteria.
963///
964/// @param S        The scope from which unqualified name lookup will
965/// begin. If the lookup criteria permits, name lookup may also search
966/// in the parent scopes.
967///
968/// @param Name     The name of the entity that we are searching for.
969///
970/// @param Loc      If provided, the source location where we're performing
971/// name lookup. At present, this is only used to produce diagnostics when
972/// C library functions (like "malloc") are implicitly declared.
973///
974/// @returns The result of name lookup, which includes zero or more
975/// declarations and possibly additional information used to diagnose
976/// ambiguities.
977bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
978  DeclarationName Name = R.getLookupName();
979  if (!Name) return false;
980
981  LookupNameKind NameKind = R.getLookupKind();
982
983  if (!getLangOptions().CPlusPlus) {
984    // Unqualified name lookup in C/Objective-C is purely lexical, so
985    // search in the declarations attached to the name.
986
987    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
988      // Find the nearest non-transparent declaration scope.
989      while (!(S->getFlags() & Scope::DeclScope) ||
990             (S->getEntity() &&
991              static_cast<DeclContext *>(S->getEntity())
992                ->isTransparentContext()))
993        S = S->getParent();
994    }
995
996    unsigned IDNS = R.getIdentifierNamespace();
997
998    // Scan up the scope chain looking for a decl that matches this
999    // identifier that is in the appropriate namespace.  This search
1000    // should not take long, as shadowing of names is uncommon, and
1001    // deep shadowing is extremely uncommon.
1002    bool LeftStartingScope = false;
1003
1004    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1005                                   IEnd = IdResolver.end();
1006         I != IEnd; ++I)
1007      if ((*I)->isInIdentifierNamespace(IDNS)) {
1008        if (NameKind == LookupRedeclarationWithLinkage) {
1009          // Determine whether this (or a previous) declaration is
1010          // out-of-scope.
1011          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
1012            LeftStartingScope = true;
1013
1014          // If we found something outside of our starting scope that
1015          // does not have linkage, skip it.
1016          if (LeftStartingScope && !((*I)->hasLinkage()))
1017            continue;
1018        }
1019
1020        R.addDecl(*I);
1021
1022        if ((*I)->getAttr<OverloadableAttr>()) {
1023          // If this declaration has the "overloadable" attribute, we
1024          // might have a set of overloaded functions.
1025
1026          // Figure out what scope the identifier is in.
1027          while (!(S->getFlags() & Scope::DeclScope) ||
1028                 !S->isDeclScope(DeclPtrTy::make(*I)))
1029            S = S->getParent();
1030
1031          // Find the last declaration in this scope (with the same
1032          // name, naturally).
1033          IdentifierResolver::iterator LastI = I;
1034          for (++LastI; LastI != IEnd; ++LastI) {
1035            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
1036              break;
1037            R.addDecl(*LastI);
1038          }
1039        }
1040
1041        R.resolveKind();
1042
1043        return true;
1044      }
1045  } else {
1046    // Perform C++ unqualified name lookup.
1047    if (CppLookupName(R, S))
1048      return true;
1049  }
1050
1051  // If we didn't find a use of this identifier, and if the identifier
1052  // corresponds to a compiler builtin, create the decl object for the builtin
1053  // now, injecting it into translation unit scope, and return it.
1054  if (AllowBuiltinCreation)
1055    return LookupBuiltin(*this, R);
1056
1057  return false;
1058}
1059
1060/// @brief Perform qualified name lookup in the namespaces nominated by
1061/// using directives by the given context.
1062///
1063/// C++98 [namespace.qual]p2:
1064///   Given X::m (where X is a user-declared namespace), or given ::m
1065///   (where X is the global namespace), let S be the set of all
1066///   declarations of m in X and in the transitive closure of all
1067///   namespaces nominated by using-directives in X and its used
1068///   namespaces, except that using-directives are ignored in any
1069///   namespace, including X, directly containing one or more
1070///   declarations of m. No namespace is searched more than once in
1071///   the lookup of a name. If S is the empty set, the program is
1072///   ill-formed. Otherwise, if S has exactly one member, or if the
1073///   context of the reference is a using-declaration
1074///   (namespace.udecl), S is the required set of declarations of
1075///   m. Otherwise if the use of m is not one that allows a unique
1076///   declaration to be chosen from S, the program is ill-formed.
1077/// C++98 [namespace.qual]p5:
1078///   During the lookup of a qualified namespace member name, if the
1079///   lookup finds more than one declaration of the member, and if one
1080///   declaration introduces a class name or enumeration name and the
1081///   other declarations either introduce the same object, the same
1082///   enumerator or a set of functions, the non-type name hides the
1083///   class or enumeration name if and only if the declarations are
1084///   from the same namespace; otherwise (the declarations are from
1085///   different namespaces), the program is ill-formed.
1086static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1087                                                 DeclContext *StartDC) {
1088  assert(StartDC->isFileContext() && "start context is not a file context");
1089
1090  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1091  DeclContext::udir_iterator E = StartDC->using_directives_end();
1092
1093  if (I == E) return false;
1094
1095  // We have at least added all these contexts to the queue.
1096  llvm::DenseSet<DeclContext*> Visited;
1097  Visited.insert(StartDC);
1098
1099  // We have not yet looked into these namespaces, much less added
1100  // their "using-children" to the queue.
1101  llvm::SmallVector<NamespaceDecl*, 8> Queue;
1102
1103  // We have already looked into the initial namespace; seed the queue
1104  // with its using-children.
1105  for (; I != E; ++I) {
1106    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1107    if (Visited.insert(ND).second)
1108      Queue.push_back(ND);
1109  }
1110
1111  // The easiest way to implement the restriction in [namespace.qual]p5
1112  // is to check whether any of the individual results found a tag
1113  // and, if so, to declare an ambiguity if the final result is not
1114  // a tag.
1115  bool FoundTag = false;
1116  bool FoundNonTag = false;
1117
1118  LookupResult LocalR(LookupResult::Temporary, R);
1119
1120  bool Found = false;
1121  while (!Queue.empty()) {
1122    NamespaceDecl *ND = Queue.back();
1123    Queue.pop_back();
1124
1125    // We go through some convolutions here to avoid copying results
1126    // between LookupResults.
1127    bool UseLocal = !R.empty();
1128    LookupResult &DirectR = UseLocal ? LocalR : R;
1129    bool FoundDirect = LookupDirect(S, DirectR, ND);
1130
1131    if (FoundDirect) {
1132      // First do any local hiding.
1133      DirectR.resolveKind();
1134
1135      // If the local result is a tag, remember that.
1136      if (DirectR.isSingleTagDecl())
1137        FoundTag = true;
1138      else
1139        FoundNonTag = true;
1140
1141      // Append the local results to the total results if necessary.
1142      if (UseLocal) {
1143        R.addAllDecls(LocalR);
1144        LocalR.clear();
1145      }
1146    }
1147
1148    // If we find names in this namespace, ignore its using directives.
1149    if (FoundDirect) {
1150      Found = true;
1151      continue;
1152    }
1153
1154    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1155      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1156      if (Visited.insert(Nom).second)
1157        Queue.push_back(Nom);
1158    }
1159  }
1160
1161  if (Found) {
1162    if (FoundTag && FoundNonTag)
1163      R.setAmbiguousQualifiedTagHiding();
1164    else
1165      R.resolveKind();
1166  }
1167
1168  return Found;
1169}
1170
1171/// \brief Perform qualified name lookup into a given context.
1172///
1173/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1174/// names when the context of those names is explicit specified, e.g.,
1175/// "std::vector" or "x->member", or as part of unqualified name lookup.
1176///
1177/// Different lookup criteria can find different names. For example, a
1178/// particular scope can have both a struct and a function of the same
1179/// name, and each can be found by certain lookup criteria. For more
1180/// information about lookup criteria, see the documentation for the
1181/// class LookupCriteria.
1182///
1183/// \param R captures both the lookup criteria and any lookup results found.
1184///
1185/// \param LookupCtx The context in which qualified name lookup will
1186/// search. If the lookup criteria permits, name lookup may also search
1187/// in the parent contexts or (for C++ classes) base classes.
1188///
1189/// \param InUnqualifiedLookup true if this is qualified name lookup that
1190/// occurs as part of unqualified name lookup.
1191///
1192/// \returns true if lookup succeeded, false if it failed.
1193bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1194                               bool InUnqualifiedLookup) {
1195  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1196
1197  if (!R.getLookupName())
1198    return false;
1199
1200  // Make sure that the declaration context is complete.
1201  assert((!isa<TagDecl>(LookupCtx) ||
1202          LookupCtx->isDependentContext() ||
1203          cast<TagDecl>(LookupCtx)->isDefinition() ||
1204          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1205            ->isBeingDefined()) &&
1206         "Declaration context must already be complete!");
1207
1208  // Perform qualified name lookup into the LookupCtx.
1209  if (LookupDirect(*this, R, LookupCtx)) {
1210    R.resolveKind();
1211    if (isa<CXXRecordDecl>(LookupCtx))
1212      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1213    return true;
1214  }
1215
1216  // Don't descend into implied contexts for redeclarations.
1217  // C++98 [namespace.qual]p6:
1218  //   In a declaration for a namespace member in which the
1219  //   declarator-id is a qualified-id, given that the qualified-id
1220  //   for the namespace member has the form
1221  //     nested-name-specifier unqualified-id
1222  //   the unqualified-id shall name a member of the namespace
1223  //   designated by the nested-name-specifier.
1224  // See also [class.mfct]p5 and [class.static.data]p2.
1225  if (R.isForRedeclaration())
1226    return false;
1227
1228  // If this is a namespace, look it up in the implied namespaces.
1229  if (LookupCtx->isFileContext())
1230    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1231
1232  // If this isn't a C++ class, we aren't allowed to look into base
1233  // classes, we're done.
1234  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1235  if (!LookupRec || !LookupRec->getDefinition())
1236    return false;
1237
1238  // If we're performing qualified name lookup into a dependent class,
1239  // then we are actually looking into a current instantiation. If we have any
1240  // dependent base classes, then we either have to delay lookup until
1241  // template instantiation time (at which point all bases will be available)
1242  // or we have to fail.
1243  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1244      LookupRec->hasAnyDependentBases()) {
1245    R.setNotFoundInCurrentInstantiation();
1246    return false;
1247  }
1248
1249  // Perform lookup into our base classes.
1250  CXXBasePaths Paths;
1251  Paths.setOrigin(LookupRec);
1252
1253  // Look for this member in our base classes
1254  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1255  switch (R.getLookupKind()) {
1256    case LookupOrdinaryName:
1257    case LookupMemberName:
1258    case LookupRedeclarationWithLinkage:
1259      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1260      break;
1261
1262    case LookupTagName:
1263      BaseCallback = &CXXRecordDecl::FindTagMember;
1264      break;
1265
1266    case LookupUsingDeclName:
1267      // This lookup is for redeclarations only.
1268
1269    case LookupOperatorName:
1270    case LookupNamespaceName:
1271    case LookupObjCProtocolName:
1272      // These lookups will never find a member in a C++ class (or base class).
1273      return false;
1274
1275    case LookupNestedNameSpecifierName:
1276      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1277      break;
1278  }
1279
1280  if (!LookupRec->lookupInBases(BaseCallback,
1281                                R.getLookupName().getAsOpaquePtr(), Paths))
1282    return false;
1283
1284  R.setNamingClass(LookupRec);
1285
1286  // C++ [class.member.lookup]p2:
1287  //   [...] If the resulting set of declarations are not all from
1288  //   sub-objects of the same type, or the set has a nonstatic member
1289  //   and includes members from distinct sub-objects, there is an
1290  //   ambiguity and the program is ill-formed. Otherwise that set is
1291  //   the result of the lookup.
1292  // FIXME: support using declarations!
1293  QualType SubobjectType;
1294  int SubobjectNumber = 0;
1295  AccessSpecifier SubobjectAccess = AS_none;
1296  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1297       Path != PathEnd; ++Path) {
1298    const CXXBasePathElement &PathElement = Path->back();
1299
1300    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1301    // across all paths.
1302    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1303
1304    // Determine whether we're looking at a distinct sub-object or not.
1305    if (SubobjectType.isNull()) {
1306      // This is the first subobject we've looked at. Record its type.
1307      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1308      SubobjectNumber = PathElement.SubobjectNumber;
1309    } else if (SubobjectType
1310                 != Context.getCanonicalType(PathElement.Base->getType())) {
1311      // We found members of the given name in two subobjects of
1312      // different types. This lookup is ambiguous.
1313      R.setAmbiguousBaseSubobjectTypes(Paths);
1314      return true;
1315    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1316      // We have a different subobject of the same type.
1317
1318      // C++ [class.member.lookup]p5:
1319      //   A static member, a nested type or an enumerator defined in
1320      //   a base class T can unambiguously be found even if an object
1321      //   has more than one base class subobject of type T.
1322      Decl *FirstDecl = *Path->Decls.first;
1323      if (isa<VarDecl>(FirstDecl) ||
1324          isa<TypeDecl>(FirstDecl) ||
1325          isa<EnumConstantDecl>(FirstDecl))
1326        continue;
1327
1328      if (isa<CXXMethodDecl>(FirstDecl)) {
1329        // Determine whether all of the methods are static.
1330        bool AllMethodsAreStatic = true;
1331        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1332             Func != Path->Decls.second; ++Func) {
1333          if (!isa<CXXMethodDecl>(*Func)) {
1334            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1335            break;
1336          }
1337
1338          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1339            AllMethodsAreStatic = false;
1340            break;
1341          }
1342        }
1343
1344        if (AllMethodsAreStatic)
1345          continue;
1346      }
1347
1348      // We have found a nonstatic member name in multiple, distinct
1349      // subobjects. Name lookup is ambiguous.
1350      R.setAmbiguousBaseSubobjects(Paths);
1351      return true;
1352    }
1353  }
1354
1355  // Lookup in a base class succeeded; return these results.
1356
1357  DeclContext::lookup_iterator I, E;
1358  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1359    NamedDecl *D = *I;
1360    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1361                                                    D->getAccess());
1362    R.addDecl(D, AS);
1363  }
1364  R.resolveKind();
1365  return true;
1366}
1367
1368/// @brief Performs name lookup for a name that was parsed in the
1369/// source code, and may contain a C++ scope specifier.
1370///
1371/// This routine is a convenience routine meant to be called from
1372/// contexts that receive a name and an optional C++ scope specifier
1373/// (e.g., "N::M::x"). It will then perform either qualified or
1374/// unqualified name lookup (with LookupQualifiedName or LookupName,
1375/// respectively) on the given name and return those results.
1376///
1377/// @param S        The scope from which unqualified name lookup will
1378/// begin.
1379///
1380/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1381///
1382/// @param Name     The name of the entity that name lookup will
1383/// search for.
1384///
1385/// @param Loc      If provided, the source location where we're performing
1386/// name lookup. At present, this is only used to produce diagnostics when
1387/// C library functions (like "malloc") are implicitly declared.
1388///
1389/// @param EnteringContext Indicates whether we are going to enter the
1390/// context of the scope-specifier SS (if present).
1391///
1392/// @returns True if any decls were found (but possibly ambiguous)
1393bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1394                            bool AllowBuiltinCreation, bool EnteringContext) {
1395  if (SS && SS->isInvalid()) {
1396    // When the scope specifier is invalid, don't even look for
1397    // anything.
1398    return false;
1399  }
1400
1401  if (SS && SS->isSet()) {
1402    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1403      // We have resolved the scope specifier to a particular declaration
1404      // contex, and will perform name lookup in that context.
1405      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1406        return false;
1407
1408      R.setContextRange(SS->getRange());
1409
1410      return LookupQualifiedName(R, DC);
1411    }
1412
1413    // We could not resolve the scope specified to a specific declaration
1414    // context, which means that SS refers to an unknown specialization.
1415    // Name lookup can't find anything in this case.
1416    return false;
1417  }
1418
1419  // Perform unqualified name lookup starting in the given scope.
1420  return LookupName(R, S, AllowBuiltinCreation);
1421}
1422
1423
1424/// @brief Produce a diagnostic describing the ambiguity that resulted
1425/// from name lookup.
1426///
1427/// @param Result       The ambiguous name lookup result.
1428///
1429/// @param Name         The name of the entity that name lookup was
1430/// searching for.
1431///
1432/// @param NameLoc      The location of the name within the source code.
1433///
1434/// @param LookupRange  A source range that provides more
1435/// source-location information concerning the lookup itself. For
1436/// example, this range might highlight a nested-name-specifier that
1437/// precedes the name.
1438///
1439/// @returns true
1440bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1441  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1442
1443  DeclarationName Name = Result.getLookupName();
1444  SourceLocation NameLoc = Result.getNameLoc();
1445  SourceRange LookupRange = Result.getContextRange();
1446
1447  switch (Result.getAmbiguityKind()) {
1448  case LookupResult::AmbiguousBaseSubobjects: {
1449    CXXBasePaths *Paths = Result.getBasePaths();
1450    QualType SubobjectType = Paths->front().back().Base->getType();
1451    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1452      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1453      << LookupRange;
1454
1455    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1456    while (isa<CXXMethodDecl>(*Found) &&
1457           cast<CXXMethodDecl>(*Found)->isStatic())
1458      ++Found;
1459
1460    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1461
1462    return true;
1463  }
1464
1465  case LookupResult::AmbiguousBaseSubobjectTypes: {
1466    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1467      << Name << LookupRange;
1468
1469    CXXBasePaths *Paths = Result.getBasePaths();
1470    std::set<Decl *> DeclsPrinted;
1471    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1472                                      PathEnd = Paths->end();
1473         Path != PathEnd; ++Path) {
1474      Decl *D = *Path->Decls.first;
1475      if (DeclsPrinted.insert(D).second)
1476        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1477    }
1478
1479    return true;
1480  }
1481
1482  case LookupResult::AmbiguousTagHiding: {
1483    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1484
1485    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1486
1487    LookupResult::iterator DI, DE = Result.end();
1488    for (DI = Result.begin(); DI != DE; ++DI)
1489      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1490        TagDecls.insert(TD);
1491        Diag(TD->getLocation(), diag::note_hidden_tag);
1492      }
1493
1494    for (DI = Result.begin(); DI != DE; ++DI)
1495      if (!isa<TagDecl>(*DI))
1496        Diag((*DI)->getLocation(), diag::note_hiding_object);
1497
1498    // For recovery purposes, go ahead and implement the hiding.
1499    LookupResult::Filter F = Result.makeFilter();
1500    while (F.hasNext()) {
1501      if (TagDecls.count(F.next()))
1502        F.erase();
1503    }
1504    F.done();
1505
1506    return true;
1507  }
1508
1509  case LookupResult::AmbiguousReference: {
1510    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1511
1512    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1513    for (; DI != DE; ++DI)
1514      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1515
1516    return true;
1517  }
1518  }
1519
1520  llvm_unreachable("unknown ambiguity kind");
1521  return true;
1522}
1523
1524namespace {
1525  struct AssociatedLookup {
1526    AssociatedLookup(Sema &S,
1527                     Sema::AssociatedNamespaceSet &Namespaces,
1528                     Sema::AssociatedClassSet &Classes)
1529      : S(S), Namespaces(Namespaces), Classes(Classes) {
1530    }
1531
1532    Sema &S;
1533    Sema::AssociatedNamespaceSet &Namespaces;
1534    Sema::AssociatedClassSet &Classes;
1535  };
1536}
1537
1538static void
1539addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1540
1541static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1542                                      DeclContext *Ctx) {
1543  // Add the associated namespace for this class.
1544
1545  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1546  // be a locally scoped record.
1547
1548  while (Ctx->isRecord() || Ctx->isTransparentContext())
1549    Ctx = Ctx->getParent();
1550
1551  if (Ctx->isFileContext())
1552    Namespaces.insert(Ctx->getPrimaryContext());
1553}
1554
1555// \brief Add the associated classes and namespaces for argument-dependent
1556// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1557static void
1558addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1559                                  const TemplateArgument &Arg) {
1560  // C++ [basic.lookup.koenig]p2, last bullet:
1561  //   -- [...] ;
1562  switch (Arg.getKind()) {
1563    case TemplateArgument::Null:
1564      break;
1565
1566    case TemplateArgument::Type:
1567      // [...] the namespaces and classes associated with the types of the
1568      // template arguments provided for template type parameters (excluding
1569      // template template parameters)
1570      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1571      break;
1572
1573    case TemplateArgument::Template: {
1574      // [...] the namespaces in which any template template arguments are
1575      // defined; and the classes in which any member templates used as
1576      // template template arguments are defined.
1577      TemplateName Template = Arg.getAsTemplate();
1578      if (ClassTemplateDecl *ClassTemplate
1579                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1580        DeclContext *Ctx = ClassTemplate->getDeclContext();
1581        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1582          Result.Classes.insert(EnclosingClass);
1583        // Add the associated namespace for this class.
1584        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1585      }
1586      break;
1587    }
1588
1589    case TemplateArgument::Declaration:
1590    case TemplateArgument::Integral:
1591    case TemplateArgument::Expression:
1592      // [Note: non-type template arguments do not contribute to the set of
1593      //  associated namespaces. ]
1594      break;
1595
1596    case TemplateArgument::Pack:
1597      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1598                                        PEnd = Arg.pack_end();
1599           P != PEnd; ++P)
1600        addAssociatedClassesAndNamespaces(Result, *P);
1601      break;
1602  }
1603}
1604
1605// \brief Add the associated classes and namespaces for
1606// argument-dependent lookup with an argument of class type
1607// (C++ [basic.lookup.koenig]p2).
1608static void
1609addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1610                                  CXXRecordDecl *Class) {
1611
1612  // Just silently ignore anything whose name is __va_list_tag.
1613  if (Class->getDeclName() == Result.S.VAListTagName)
1614    return;
1615
1616  // C++ [basic.lookup.koenig]p2:
1617  //   [...]
1618  //     -- If T is a class type (including unions), its associated
1619  //        classes are: the class itself; the class of which it is a
1620  //        member, if any; and its direct and indirect base
1621  //        classes. Its associated namespaces are the namespaces in
1622  //        which its associated classes are defined.
1623
1624  // Add the class of which it is a member, if any.
1625  DeclContext *Ctx = Class->getDeclContext();
1626  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1627    Result.Classes.insert(EnclosingClass);
1628  // Add the associated namespace for this class.
1629  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1630
1631  // Add the class itself. If we've already seen this class, we don't
1632  // need to visit base classes.
1633  if (!Result.Classes.insert(Class))
1634    return;
1635
1636  // -- If T is a template-id, its associated namespaces and classes are
1637  //    the namespace in which the template is defined; for member
1638  //    templates, the member template’s class; the namespaces and classes
1639  //    associated with the types of the template arguments provided for
1640  //    template type parameters (excluding template template parameters); the
1641  //    namespaces in which any template template arguments are defined; and
1642  //    the classes in which any member templates used as template template
1643  //    arguments are defined. [Note: non-type template arguments do not
1644  //    contribute to the set of associated namespaces. ]
1645  if (ClassTemplateSpecializationDecl *Spec
1646        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1647    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1648    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1649      Result.Classes.insert(EnclosingClass);
1650    // Add the associated namespace for this class.
1651    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1652
1653    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1654    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1655      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1656  }
1657
1658  // Only recurse into base classes for complete types.
1659  if (!Class->hasDefinition()) {
1660    // FIXME: we might need to instantiate templates here
1661    return;
1662  }
1663
1664  // Add direct and indirect base classes along with their associated
1665  // namespaces.
1666  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1667  Bases.push_back(Class);
1668  while (!Bases.empty()) {
1669    // Pop this class off the stack.
1670    Class = Bases.back();
1671    Bases.pop_back();
1672
1673    // Visit the base classes.
1674    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1675                                         BaseEnd = Class->bases_end();
1676         Base != BaseEnd; ++Base) {
1677      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1678      // In dependent contexts, we do ADL twice, and the first time around,
1679      // the base type might be a dependent TemplateSpecializationType, or a
1680      // TemplateTypeParmType. If that happens, simply ignore it.
1681      // FIXME: If we want to support export, we probably need to add the
1682      // namespace of the template in a TemplateSpecializationType, or even
1683      // the classes and namespaces of known non-dependent arguments.
1684      if (!BaseType)
1685        continue;
1686      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1687      if (Result.Classes.insert(BaseDecl)) {
1688        // Find the associated namespace for this base class.
1689        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1690        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1691
1692        // Make sure we visit the bases of this base class.
1693        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1694          Bases.push_back(BaseDecl);
1695      }
1696    }
1697  }
1698}
1699
1700// \brief Add the associated classes and namespaces for
1701// argument-dependent lookup with an argument of type T
1702// (C++ [basic.lookup.koenig]p2).
1703static void
1704addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1705  // C++ [basic.lookup.koenig]p2:
1706  //
1707  //   For each argument type T in the function call, there is a set
1708  //   of zero or more associated namespaces and a set of zero or more
1709  //   associated classes to be considered. The sets of namespaces and
1710  //   classes is determined entirely by the types of the function
1711  //   arguments (and the namespace of any template template
1712  //   argument). Typedef names and using-declarations used to specify
1713  //   the types do not contribute to this set. The sets of namespaces
1714  //   and classes are determined in the following way:
1715
1716  llvm::SmallVector<const Type *, 16> Queue;
1717  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1718
1719  while (true) {
1720    switch (T->getTypeClass()) {
1721
1722#define TYPE(Class, Base)
1723#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1724#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1725#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1726#define ABSTRACT_TYPE(Class, Base)
1727#include "clang/AST/TypeNodes.def"
1728      // T is canonical.  We can also ignore dependent types because
1729      // we don't need to do ADL at the definition point, but if we
1730      // wanted to implement template export (or if we find some other
1731      // use for associated classes and namespaces...) this would be
1732      // wrong.
1733      break;
1734
1735    //    -- If T is a pointer to U or an array of U, its associated
1736    //       namespaces and classes are those associated with U.
1737    case Type::Pointer:
1738      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1739      continue;
1740    case Type::ConstantArray:
1741    case Type::IncompleteArray:
1742    case Type::VariableArray:
1743      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1744      continue;
1745
1746    //     -- If T is a fundamental type, its associated sets of
1747    //        namespaces and classes are both empty.
1748    case Type::Builtin:
1749      break;
1750
1751    //     -- If T is a class type (including unions), its associated
1752    //        classes are: the class itself; the class of which it is a
1753    //        member, if any; and its direct and indirect base
1754    //        classes. Its associated namespaces are the namespaces in
1755    //        which its associated classes are defined.
1756    case Type::Record: {
1757      CXXRecordDecl *Class
1758        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1759      addAssociatedClassesAndNamespaces(Result, Class);
1760      break;
1761    }
1762
1763    //     -- If T is an enumeration type, its associated namespace is
1764    //        the namespace in which it is defined. If it is class
1765    //        member, its associated class is the member’s class; else
1766    //        it has no associated class.
1767    case Type::Enum: {
1768      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1769
1770      DeclContext *Ctx = Enum->getDeclContext();
1771      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1772        Result.Classes.insert(EnclosingClass);
1773
1774      // Add the associated namespace for this class.
1775      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1776
1777      break;
1778    }
1779
1780    //     -- If T is a function type, its associated namespaces and
1781    //        classes are those associated with the function parameter
1782    //        types and those associated with the return type.
1783    case Type::FunctionProto: {
1784      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1785      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1786                                             ArgEnd = Proto->arg_type_end();
1787             Arg != ArgEnd; ++Arg)
1788        Queue.push_back(Arg->getTypePtr());
1789      // fallthrough
1790    }
1791    case Type::FunctionNoProto: {
1792      const FunctionType *FnType = cast<FunctionType>(T);
1793      T = FnType->getResultType().getTypePtr();
1794      continue;
1795    }
1796
1797    //     -- If T is a pointer to a member function of a class X, its
1798    //        associated namespaces and classes are those associated
1799    //        with the function parameter types and return type,
1800    //        together with those associated with X.
1801    //
1802    //     -- If T is a pointer to a data member of class X, its
1803    //        associated namespaces and classes are those associated
1804    //        with the member type together with those associated with
1805    //        X.
1806    case Type::MemberPointer: {
1807      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
1808
1809      // Queue up the class type into which this points.
1810      Queue.push_back(MemberPtr->getClass());
1811
1812      // And directly continue with the pointee type.
1813      T = MemberPtr->getPointeeType().getTypePtr();
1814      continue;
1815    }
1816
1817    // As an extension, treat this like a normal pointer.
1818    case Type::BlockPointer:
1819      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
1820      continue;
1821
1822    // References aren't covered by the standard, but that's such an
1823    // obvious defect that we cover them anyway.
1824    case Type::LValueReference:
1825    case Type::RValueReference:
1826      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
1827      continue;
1828
1829    // These are fundamental types.
1830    case Type::Vector:
1831    case Type::ExtVector:
1832    case Type::Complex:
1833      break;
1834
1835    // These are ignored by ADL.
1836    case Type::ObjCObject:
1837    case Type::ObjCInterface:
1838    case Type::ObjCObjectPointer:
1839      break;
1840    }
1841
1842    if (Queue.empty()) break;
1843    T = Queue.back();
1844    Queue.pop_back();
1845  }
1846}
1847
1848/// \brief Find the associated classes and namespaces for
1849/// argument-dependent lookup for a call with the given set of
1850/// arguments.
1851///
1852/// This routine computes the sets of associated classes and associated
1853/// namespaces searched by argument-dependent lookup
1854/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1855void
1856Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1857                                 AssociatedNamespaceSet &AssociatedNamespaces,
1858                                 AssociatedClassSet &AssociatedClasses) {
1859  AssociatedNamespaces.clear();
1860  AssociatedClasses.clear();
1861
1862  AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
1863
1864  // C++ [basic.lookup.koenig]p2:
1865  //   For each argument type T in the function call, there is a set
1866  //   of zero or more associated namespaces and a set of zero or more
1867  //   associated classes to be considered. The sets of namespaces and
1868  //   classes is determined entirely by the types of the function
1869  //   arguments (and the namespace of any template template
1870  //   argument).
1871  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1872    Expr *Arg = Args[ArgIdx];
1873
1874    if (Arg->getType() != Context.OverloadTy) {
1875      addAssociatedClassesAndNamespaces(Result, Arg->getType());
1876      continue;
1877    }
1878
1879    // [...] In addition, if the argument is the name or address of a
1880    // set of overloaded functions and/or function templates, its
1881    // associated classes and namespaces are the union of those
1882    // associated with each of the members of the set: the namespace
1883    // in which the function or function template is defined and the
1884    // classes and namespaces associated with its (non-dependent)
1885    // parameter types and return type.
1886    Arg = Arg->IgnoreParens();
1887    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
1888      if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
1889        Arg = unaryOp->getSubExpr();
1890
1891    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
1892    if (!ULE) continue;
1893
1894    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
1895           I != E; ++I) {
1896      // Look through any using declarations to find the underlying function.
1897      NamedDecl *Fn = (*I)->getUnderlyingDecl();
1898
1899      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
1900      if (!FDecl)
1901        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
1902
1903      // Add the classes and namespaces associated with the parameter
1904      // types and return type of this function.
1905      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
1906    }
1907  }
1908}
1909
1910/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1911/// an acceptable non-member overloaded operator for a call whose
1912/// arguments have types T1 (and, if non-empty, T2). This routine
1913/// implements the check in C++ [over.match.oper]p3b2 concerning
1914/// enumeration types.
1915static bool
1916IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1917                                       QualType T1, QualType T2,
1918                                       ASTContext &Context) {
1919  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1920    return true;
1921
1922  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1923    return true;
1924
1925  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1926  if (Proto->getNumArgs() < 1)
1927    return false;
1928
1929  if (T1->isEnumeralType()) {
1930    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1931    if (Context.hasSameUnqualifiedType(T1, ArgType))
1932      return true;
1933  }
1934
1935  if (Proto->getNumArgs() < 2)
1936    return false;
1937
1938  if (!T2.isNull() && T2->isEnumeralType()) {
1939    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1940    if (Context.hasSameUnqualifiedType(T2, ArgType))
1941      return true;
1942  }
1943
1944  return false;
1945}
1946
1947NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
1948                                  SourceLocation Loc,
1949                                  LookupNameKind NameKind,
1950                                  RedeclarationKind Redecl) {
1951  LookupResult R(*this, Name, Loc, NameKind, Redecl);
1952  LookupName(R, S);
1953  return R.getAsSingle<NamedDecl>();
1954}
1955
1956/// \brief Find the protocol with the given name, if any.
1957ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
1958                                       SourceLocation IdLoc) {
1959  Decl *D = LookupSingleName(TUScope, II, IdLoc,
1960                             LookupObjCProtocolName);
1961  return cast_or_null<ObjCProtocolDecl>(D);
1962}
1963
1964void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1965                                        QualType T1, QualType T2,
1966                                        UnresolvedSetImpl &Functions) {
1967  // C++ [over.match.oper]p3:
1968  //     -- The set of non-member candidates is the result of the
1969  //        unqualified lookup of operator@ in the context of the
1970  //        expression according to the usual rules for name lookup in
1971  //        unqualified function calls (3.4.2) except that all member
1972  //        functions are ignored. However, if no operand has a class
1973  //        type, only those non-member functions in the lookup set
1974  //        that have a first parameter of type T1 or "reference to
1975  //        (possibly cv-qualified) T1", when T1 is an enumeration
1976  //        type, or (if there is a right operand) a second parameter
1977  //        of type T2 or "reference to (possibly cv-qualified) T2",
1978  //        when T2 is an enumeration type, are candidate functions.
1979  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1980  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
1981  LookupName(Operators, S);
1982
1983  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1984
1985  if (Operators.empty())
1986    return;
1987
1988  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1989       Op != OpEnd; ++Op) {
1990    NamedDecl *Found = (*Op)->getUnderlyingDecl();
1991    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
1992      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1993        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
1994    } else if (FunctionTemplateDecl *FunTmpl
1995                 = dyn_cast<FunctionTemplateDecl>(Found)) {
1996      // FIXME: friend operators?
1997      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1998      // later?
1999      if (!FunTmpl->getDeclContext()->isRecord())
2000        Functions.addDecl(*Op, Op.getAccess());
2001    }
2002  }
2003}
2004
2005/// \brief Look up the constructors for the given class.
2006DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2007  // If the copy constructor has not yet been declared, do so now.
2008  if (CanDeclareSpecialMemberFunction(Context, Class) &&
2009      !Class->hasDeclaredCopyConstructor())
2010    DeclareImplicitCopyConstructor(Class);
2011
2012  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2013  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2014  return Class->lookup(Name);
2015}
2016
2017/// \brief Look for the destructor of the given class.
2018///
2019/// During semantic analysis, this routine should be used in lieu of
2020/// CXXRecordDecl::getDestructor().
2021///
2022/// \returns The destructor for this class.
2023CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2024  // If the destructor has not yet been declared, do so now.
2025  if (CanDeclareSpecialMemberFunction(Context, Class) &&
2026      !Class->hasDeclaredDestructor())
2027    DeclareImplicitDestructor(Class);
2028
2029  return Class->getDestructor();
2030}
2031
2032void ADLResult::insert(NamedDecl *New) {
2033  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2034
2035  // If we haven't yet seen a decl for this key, or the last decl
2036  // was exactly this one, we're done.
2037  if (Old == 0 || Old == New) {
2038    Old = New;
2039    return;
2040  }
2041
2042  // Otherwise, decide which is a more recent redeclaration.
2043  FunctionDecl *OldFD, *NewFD;
2044  if (isa<FunctionTemplateDecl>(New)) {
2045    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2046    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2047  } else {
2048    OldFD = cast<FunctionDecl>(Old);
2049    NewFD = cast<FunctionDecl>(New);
2050  }
2051
2052  FunctionDecl *Cursor = NewFD;
2053  while (true) {
2054    Cursor = Cursor->getPreviousDeclaration();
2055
2056    // If we got to the end without finding OldFD, OldFD is the newer
2057    // declaration;  leave things as they are.
2058    if (!Cursor) return;
2059
2060    // If we do find OldFD, then NewFD is newer.
2061    if (Cursor == OldFD) break;
2062
2063    // Otherwise, keep looking.
2064  }
2065
2066  Old = New;
2067}
2068
2069void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2070                                   Expr **Args, unsigned NumArgs,
2071                                   ADLResult &Result) {
2072  // Find all of the associated namespaces and classes based on the
2073  // arguments we have.
2074  AssociatedNamespaceSet AssociatedNamespaces;
2075  AssociatedClassSet AssociatedClasses;
2076  FindAssociatedClassesAndNamespaces(Args, NumArgs,
2077                                     AssociatedNamespaces,
2078                                     AssociatedClasses);
2079
2080  QualType T1, T2;
2081  if (Operator) {
2082    T1 = Args[0]->getType();
2083    if (NumArgs >= 2)
2084      T2 = Args[1]->getType();
2085  }
2086
2087  // C++ [basic.lookup.argdep]p3:
2088  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2089  //   and let Y be the lookup set produced by argument dependent
2090  //   lookup (defined as follows). If X contains [...] then Y is
2091  //   empty. Otherwise Y is the set of declarations found in the
2092  //   namespaces associated with the argument types as described
2093  //   below. The set of declarations found by the lookup of the name
2094  //   is the union of X and Y.
2095  //
2096  // Here, we compute Y and add its members to the overloaded
2097  // candidate set.
2098  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2099                                     NSEnd = AssociatedNamespaces.end();
2100       NS != NSEnd; ++NS) {
2101    //   When considering an associated namespace, the lookup is the
2102    //   same as the lookup performed when the associated namespace is
2103    //   used as a qualifier (3.4.3.2) except that:
2104    //
2105    //     -- Any using-directives in the associated namespace are
2106    //        ignored.
2107    //
2108    //     -- Any namespace-scope friend functions declared in
2109    //        associated classes are visible within their respective
2110    //        namespaces even if they are not visible during an ordinary
2111    //        lookup (11.4).
2112    DeclContext::lookup_iterator I, E;
2113    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2114      NamedDecl *D = *I;
2115      // If the only declaration here is an ordinary friend, consider
2116      // it only if it was declared in an associated classes.
2117      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2118        DeclContext *LexDC = D->getLexicalDeclContext();
2119        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2120          continue;
2121      }
2122
2123      if (isa<UsingShadowDecl>(D))
2124        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2125
2126      if (isa<FunctionDecl>(D)) {
2127        if (Operator &&
2128            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2129                                                    T1, T2, Context))
2130          continue;
2131      } else if (!isa<FunctionTemplateDecl>(D))
2132        continue;
2133
2134      Result.insert(D);
2135    }
2136  }
2137}
2138
2139//----------------------------------------------------------------------------
2140// Search for all visible declarations.
2141//----------------------------------------------------------------------------
2142VisibleDeclConsumer::~VisibleDeclConsumer() { }
2143
2144namespace {
2145
2146class ShadowContextRAII;
2147
2148class VisibleDeclsRecord {
2149public:
2150  /// \brief An entry in the shadow map, which is optimized to store a
2151  /// single declaration (the common case) but can also store a list
2152  /// of declarations.
2153  class ShadowMapEntry {
2154    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
2155
2156    /// \brief Contains either the solitary NamedDecl * or a vector
2157    /// of declarations.
2158    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2159
2160  public:
2161    ShadowMapEntry() : DeclOrVector() { }
2162
2163    void Add(NamedDecl *ND);
2164    void Destroy();
2165
2166    // Iteration.
2167    typedef NamedDecl **iterator;
2168    iterator begin();
2169    iterator end();
2170  };
2171
2172private:
2173  /// \brief A mapping from declaration names to the declarations that have
2174  /// this name within a particular scope.
2175  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2176
2177  /// \brief A list of shadow maps, which is used to model name hiding.
2178  std::list<ShadowMap> ShadowMaps;
2179
2180  /// \brief The declaration contexts we have already visited.
2181  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2182
2183  friend class ShadowContextRAII;
2184
2185public:
2186  /// \brief Determine whether we have already visited this context
2187  /// (and, if not, note that we are going to visit that context now).
2188  bool visitedContext(DeclContext *Ctx) {
2189    return !VisitedContexts.insert(Ctx);
2190  }
2191
2192  /// \brief Determine whether the given declaration is hidden in the
2193  /// current scope.
2194  ///
2195  /// \returns the declaration that hides the given declaration, or
2196  /// NULL if no such declaration exists.
2197  NamedDecl *checkHidden(NamedDecl *ND);
2198
2199  /// \brief Add a declaration to the current shadow map.
2200  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2201};
2202
2203/// \brief RAII object that records when we've entered a shadow context.
2204class ShadowContextRAII {
2205  VisibleDeclsRecord &Visible;
2206
2207  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2208
2209public:
2210  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2211    Visible.ShadowMaps.push_back(ShadowMap());
2212  }
2213
2214  ~ShadowContextRAII() {
2215    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2216                          EEnd = Visible.ShadowMaps.back().end();
2217         E != EEnd;
2218         ++E)
2219      E->second.Destroy();
2220
2221    Visible.ShadowMaps.pop_back();
2222  }
2223};
2224
2225} // end anonymous namespace
2226
2227void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2228  if (DeclOrVector.isNull()) {
2229    // 0 - > 1 elements: just set the single element information.
2230    DeclOrVector = ND;
2231    return;
2232  }
2233
2234  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2235    // 1 -> 2 elements: create the vector of results and push in the
2236    // existing declaration.
2237    DeclVector *Vec = new DeclVector;
2238    Vec->push_back(PrevND);
2239    DeclOrVector = Vec;
2240  }
2241
2242  // Add the new element to the end of the vector.
2243  DeclOrVector.get<DeclVector*>()->push_back(ND);
2244}
2245
2246void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2247  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2248    delete Vec;
2249    DeclOrVector = ((NamedDecl *)0);
2250  }
2251}
2252
2253VisibleDeclsRecord::ShadowMapEntry::iterator
2254VisibleDeclsRecord::ShadowMapEntry::begin() {
2255  if (DeclOrVector.isNull())
2256    return 0;
2257
2258  if (DeclOrVector.dyn_cast<NamedDecl *>())
2259    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2260
2261  return DeclOrVector.get<DeclVector *>()->begin();
2262}
2263
2264VisibleDeclsRecord::ShadowMapEntry::iterator
2265VisibleDeclsRecord::ShadowMapEntry::end() {
2266  if (DeclOrVector.isNull())
2267    return 0;
2268
2269  if (DeclOrVector.dyn_cast<NamedDecl *>())
2270    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2271
2272  return DeclOrVector.get<DeclVector *>()->end();
2273}
2274
2275NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2276  // Look through using declarations.
2277  ND = ND->getUnderlyingDecl();
2278
2279  unsigned IDNS = ND->getIdentifierNamespace();
2280  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2281  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2282       SM != SMEnd; ++SM) {
2283    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2284    if (Pos == SM->end())
2285      continue;
2286
2287    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2288                               IEnd = Pos->second.end();
2289         I != IEnd; ++I) {
2290      // A tag declaration does not hide a non-tag declaration.
2291      if ((*I)->hasTagIdentifierNamespace() &&
2292          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2293                   Decl::IDNS_ObjCProtocol)))
2294        continue;
2295
2296      // Protocols are in distinct namespaces from everything else.
2297      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2298           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2299          (*I)->getIdentifierNamespace() != IDNS)
2300        continue;
2301
2302      // Functions and function templates in the same scope overload
2303      // rather than hide.  FIXME: Look for hiding based on function
2304      // signatures!
2305      if ((*I)->isFunctionOrFunctionTemplate() &&
2306          ND->isFunctionOrFunctionTemplate() &&
2307          SM == ShadowMaps.rbegin())
2308        continue;
2309
2310      // We've found a declaration that hides this one.
2311      return *I;
2312    }
2313  }
2314
2315  return 0;
2316}
2317
2318static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2319                               bool QualifiedNameLookup,
2320                               bool InBaseClass,
2321                               VisibleDeclConsumer &Consumer,
2322                               VisibleDeclsRecord &Visited) {
2323  if (!Ctx)
2324    return;
2325
2326  // Make sure we don't visit the same context twice.
2327  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2328    return;
2329
2330  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2331    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2332
2333  // Enumerate all of the results in this context.
2334  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2335       CurCtx = CurCtx->getNextContext()) {
2336    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2337                                 DEnd = CurCtx->decls_end();
2338         D != DEnd; ++D) {
2339      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2340        if (Result.isAcceptableDecl(ND)) {
2341          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2342          Visited.add(ND);
2343        }
2344
2345      // Visit transparent contexts inside this context.
2346      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2347        if (InnerCtx->isTransparentContext())
2348          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2349                             Consumer, Visited);
2350      }
2351    }
2352  }
2353
2354  // Traverse using directives for qualified name lookup.
2355  if (QualifiedNameLookup) {
2356    ShadowContextRAII Shadow(Visited);
2357    DeclContext::udir_iterator I, E;
2358    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2359      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2360                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2361    }
2362  }
2363
2364  // Traverse the contexts of inherited C++ classes.
2365  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2366    if (!Record->hasDefinition())
2367      return;
2368
2369    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2370                                         BEnd = Record->bases_end();
2371         B != BEnd; ++B) {
2372      QualType BaseType = B->getType();
2373
2374      // Don't look into dependent bases, because name lookup can't look
2375      // there anyway.
2376      if (BaseType->isDependentType())
2377        continue;
2378
2379      const RecordType *Record = BaseType->getAs<RecordType>();
2380      if (!Record)
2381        continue;
2382
2383      // FIXME: It would be nice to be able to determine whether referencing
2384      // a particular member would be ambiguous. For example, given
2385      //
2386      //   struct A { int member; };
2387      //   struct B { int member; };
2388      //   struct C : A, B { };
2389      //
2390      //   void f(C *c) { c->### }
2391      //
2392      // accessing 'member' would result in an ambiguity. However, we
2393      // could be smart enough to qualify the member with the base
2394      // class, e.g.,
2395      //
2396      //   c->B::member
2397      //
2398      // or
2399      //
2400      //   c->A::member
2401
2402      // Find results in this base class (and its bases).
2403      ShadowContextRAII Shadow(Visited);
2404      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2405                         true, Consumer, Visited);
2406    }
2407  }
2408
2409  // Traverse the contexts of Objective-C classes.
2410  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2411    // Traverse categories.
2412    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2413         Category; Category = Category->getNextClassCategory()) {
2414      ShadowContextRAII Shadow(Visited);
2415      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2416                         Consumer, Visited);
2417    }
2418
2419    // Traverse protocols.
2420    for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
2421         E = IFace->protocol_end(); I != E; ++I) {
2422      ShadowContextRAII Shadow(Visited);
2423      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2424                         Visited);
2425    }
2426
2427    // Traverse the superclass.
2428    if (IFace->getSuperClass()) {
2429      ShadowContextRAII Shadow(Visited);
2430      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2431                         true, Consumer, Visited);
2432    }
2433
2434    // If there is an implementation, traverse it. We do this to find
2435    // synthesized ivars.
2436    if (IFace->getImplementation()) {
2437      ShadowContextRAII Shadow(Visited);
2438      LookupVisibleDecls(IFace->getImplementation(), Result,
2439                         QualifiedNameLookup, true, Consumer, Visited);
2440    }
2441  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2442    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2443           E = Protocol->protocol_end(); I != E; ++I) {
2444      ShadowContextRAII Shadow(Visited);
2445      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2446                         Visited);
2447    }
2448  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2449    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2450           E = Category->protocol_end(); I != E; ++I) {
2451      ShadowContextRAII Shadow(Visited);
2452      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2453                         Visited);
2454    }
2455
2456    // If there is an implementation, traverse it.
2457    if (Category->getImplementation()) {
2458      ShadowContextRAII Shadow(Visited);
2459      LookupVisibleDecls(Category->getImplementation(), Result,
2460                         QualifiedNameLookup, true, Consumer, Visited);
2461    }
2462  }
2463}
2464
2465static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2466                               UnqualUsingDirectiveSet &UDirs,
2467                               VisibleDeclConsumer &Consumer,
2468                               VisibleDeclsRecord &Visited) {
2469  if (!S)
2470    return;
2471
2472  if (!S->getEntity() || !S->getParent() ||
2473      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2474    // Walk through the declarations in this Scope.
2475    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2476         D != DEnd; ++D) {
2477      if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
2478        if (Result.isAcceptableDecl(ND)) {
2479          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2480          Visited.add(ND);
2481        }
2482    }
2483  }
2484
2485  // FIXME: C++ [temp.local]p8
2486  DeclContext *Entity = 0;
2487  if (S->getEntity()) {
2488    // Look into this scope's declaration context, along with any of its
2489    // parent lookup contexts (e.g., enclosing classes), up to the point
2490    // where we hit the context stored in the next outer scope.
2491    Entity = (DeclContext *)S->getEntity();
2492    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2493
2494    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2495         Ctx = Ctx->getLookupParent()) {
2496      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2497        if (Method->isInstanceMethod()) {
2498          // For instance methods, look for ivars in the method's interface.
2499          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2500                                  Result.getNameLoc(), Sema::LookupMemberName);
2501          if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
2502            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2503                               /*InBaseClass=*/false, Consumer, Visited);
2504        }
2505
2506        // We've already performed all of the name lookup that we need
2507        // to for Objective-C methods; the next context will be the
2508        // outer scope.
2509        break;
2510      }
2511
2512      if (Ctx->isFunctionOrMethod())
2513        continue;
2514
2515      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2516                         /*InBaseClass=*/false, Consumer, Visited);
2517    }
2518  } else if (!S->getParent()) {
2519    // Look into the translation unit scope. We walk through the translation
2520    // unit's declaration context, because the Scope itself won't have all of
2521    // the declarations if we loaded a precompiled header.
2522    // FIXME: We would like the translation unit's Scope object to point to the
2523    // translation unit, so we don't need this special "if" branch. However,
2524    // doing so would force the normal C++ name-lookup code to look into the
2525    // translation unit decl when the IdentifierInfo chains would suffice.
2526    // Once we fix that problem (which is part of a more general "don't look
2527    // in DeclContexts unless we have to" optimization), we can eliminate this.
2528    Entity = Result.getSema().Context.getTranslationUnitDecl();
2529    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2530                       /*InBaseClass=*/false, Consumer, Visited);
2531  }
2532
2533  if (Entity) {
2534    // Lookup visible declarations in any namespaces found by using
2535    // directives.
2536    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2537    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2538    for (; UI != UEnd; ++UI)
2539      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2540                         Result, /*QualifiedNameLookup=*/false,
2541                         /*InBaseClass=*/false, Consumer, Visited);
2542  }
2543
2544  // Lookup names in the parent scope.
2545  ShadowContextRAII Shadow(Visited);
2546  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2547}
2548
2549void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2550                              VisibleDeclConsumer &Consumer) {
2551  // Determine the set of using directives available during
2552  // unqualified name lookup.
2553  Scope *Initial = S;
2554  UnqualUsingDirectiveSet UDirs;
2555  if (getLangOptions().CPlusPlus) {
2556    // Find the first namespace or translation-unit scope.
2557    while (S && !isNamespaceOrTranslationUnitScope(S))
2558      S = S->getParent();
2559
2560    UDirs.visitScopeChain(Initial, S);
2561  }
2562  UDirs.done();
2563
2564  // Look for visible declarations.
2565  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2566  VisibleDeclsRecord Visited;
2567  ShadowContextRAII Shadow(Visited);
2568  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2569}
2570
2571void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2572                              VisibleDeclConsumer &Consumer) {
2573  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2574  VisibleDeclsRecord Visited;
2575  ShadowContextRAII Shadow(Visited);
2576  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2577                       /*InBaseClass=*/false, Consumer, Visited);
2578}
2579
2580//----------------------------------------------------------------------------
2581// Typo correction
2582//----------------------------------------------------------------------------
2583
2584namespace {
2585class TypoCorrectionConsumer : public VisibleDeclConsumer {
2586  /// \brief The name written that is a typo in the source.
2587  llvm::StringRef Typo;
2588
2589  /// \brief The results found that have the smallest edit distance
2590  /// found (so far) with the typo name.
2591  llvm::SmallVector<NamedDecl *, 4> BestResults;
2592
2593  /// \brief The keywords that have the smallest edit distance.
2594  llvm::SmallVector<IdentifierInfo *, 4> BestKeywords;
2595
2596  /// \brief The best edit distance found so far.
2597  unsigned BestEditDistance;
2598
2599public:
2600  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2601    : Typo(Typo->getName()) { }
2602
2603  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2604  void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
2605
2606  typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
2607  iterator begin() const { return BestResults.begin(); }
2608  iterator end() const { return BestResults.end(); }
2609  void clear_decls() { BestResults.clear(); }
2610
2611  bool empty() const { return BestResults.empty() && BestKeywords.empty(); }
2612
2613  typedef llvm::SmallVector<IdentifierInfo *, 4>::const_iterator
2614    keyword_iterator;
2615  keyword_iterator keyword_begin() const { return BestKeywords.begin(); }
2616  keyword_iterator keyword_end() const { return BestKeywords.end(); }
2617  bool keyword_empty() const { return BestKeywords.empty(); }
2618  unsigned keyword_size() const { return BestKeywords.size(); }
2619
2620  unsigned getBestEditDistance() const { return BestEditDistance; }
2621};
2622
2623}
2624
2625void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2626                                       bool InBaseClass) {
2627  // Don't consider hidden names for typo correction.
2628  if (Hiding)
2629    return;
2630
2631  // Only consider entities with identifiers for names, ignoring
2632  // special names (constructors, overloaded operators, selectors,
2633  // etc.).
2634  IdentifierInfo *Name = ND->getIdentifier();
2635  if (!Name)
2636    return;
2637
2638  // Compute the edit distance between the typo and the name of this
2639  // entity. If this edit distance is not worse than the best edit
2640  // distance we've seen so far, add it to the list of results.
2641  unsigned ED = Typo.edit_distance(Name->getName());
2642  if (!BestResults.empty() || !BestKeywords.empty()) {
2643    if (ED < BestEditDistance) {
2644      // This result is better than any we've seen before; clear out
2645      // the previous results.
2646      BestResults.clear();
2647      BestKeywords.clear();
2648      BestEditDistance = ED;
2649    } else if (ED > BestEditDistance) {
2650      // This result is worse than the best results we've seen so far;
2651      // ignore it.
2652      return;
2653    }
2654  } else
2655    BestEditDistance = ED;
2656
2657  BestResults.push_back(ND);
2658}
2659
2660void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
2661                                              llvm::StringRef Keyword) {
2662  // Compute the edit distance between the typo and this keyword.
2663  // If this edit distance is not worse than the best edit
2664  // distance we've seen so far, add it to the list of results.
2665  unsigned ED = Typo.edit_distance(Keyword);
2666  if (!BestResults.empty() || !BestKeywords.empty()) {
2667    if (ED < BestEditDistance) {
2668      BestResults.clear();
2669      BestKeywords.clear();
2670      BestEditDistance = ED;
2671    } else if (ED > BestEditDistance) {
2672      // This result is worse than the best results we've seen so far;
2673      // ignore it.
2674      return;
2675    }
2676  } else
2677    BestEditDistance = ED;
2678
2679  BestKeywords.push_back(&Context.Idents.get(Keyword));
2680}
2681
2682/// \brief Try to "correct" a typo in the source code by finding
2683/// visible declarations whose names are similar to the name that was
2684/// present in the source code.
2685///
2686/// \param Res the \c LookupResult structure that contains the name
2687/// that was present in the source code along with the name-lookup
2688/// criteria used to search for the name. On success, this structure
2689/// will contain the results of name lookup.
2690///
2691/// \param S the scope in which name lookup occurs.
2692///
2693/// \param SS the nested-name-specifier that precedes the name we're
2694/// looking for, if present.
2695///
2696/// \param MemberContext if non-NULL, the context in which to look for
2697/// a member access expression.
2698///
2699/// \param EnteringContext whether we're entering the context described by
2700/// the nested-name-specifier SS.
2701///
2702/// \param CTC The context in which typo correction occurs, which impacts the
2703/// set of keywords permitted.
2704///
2705/// \param OPT when non-NULL, the search for visible declarations will
2706/// also walk the protocols in the qualified interfaces of \p OPT.
2707///
2708/// \returns the corrected name if the typo was corrected, otherwise returns an
2709/// empty \c DeclarationName. When a typo was corrected, the result structure
2710/// may contain the results of name lookup for the correct name or it may be
2711/// empty.
2712DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
2713                                  DeclContext *MemberContext,
2714                                  bool EnteringContext,
2715                                  CorrectTypoContext CTC,
2716                                  const ObjCObjectPointerType *OPT) {
2717  if (Diags.hasFatalErrorOccurred())
2718    return DeclarationName();
2719
2720  // Provide a stop gap for files that are just seriously broken.  Trying
2721  // to correct all typos can turn into a HUGE performance penalty, causing
2722  // some files to take minutes to get rejected by the parser.
2723  // FIXME: Is this the right solution?
2724  if (TyposCorrected == 20)
2725    return DeclarationName();
2726  ++TyposCorrected;
2727
2728  // We only attempt to correct typos for identifiers.
2729  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2730  if (!Typo)
2731    return DeclarationName();
2732
2733  // If the scope specifier itself was invalid, don't try to correct
2734  // typos.
2735  if (SS && SS->isInvalid())
2736    return DeclarationName();
2737
2738  // Never try to correct typos during template deduction or
2739  // instantiation.
2740  if (!ActiveTemplateInstantiations.empty())
2741    return DeclarationName();
2742
2743  TypoCorrectionConsumer Consumer(Typo);
2744
2745  // Perform name lookup to find visible, similarly-named entities.
2746  if (MemberContext) {
2747    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2748
2749    // Look in qualified interfaces.
2750    if (OPT) {
2751      for (ObjCObjectPointerType::qual_iterator
2752             I = OPT->qual_begin(), E = OPT->qual_end();
2753           I != E; ++I)
2754        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2755    }
2756  } else if (SS && SS->isSet()) {
2757    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2758    if (!DC)
2759      return DeclarationName();
2760
2761    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2762  } else {
2763    LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
2764  }
2765
2766  // Add context-dependent keywords.
2767  bool WantTypeSpecifiers = false;
2768  bool WantExpressionKeywords = false;
2769  bool WantCXXNamedCasts = false;
2770  bool WantRemainingKeywords = false;
2771  switch (CTC) {
2772    case CTC_Unknown:
2773      WantTypeSpecifiers = true;
2774      WantExpressionKeywords = true;
2775      WantCXXNamedCasts = true;
2776      WantRemainingKeywords = true;
2777
2778      if (ObjCMethodDecl *Method = getCurMethodDecl())
2779        if (Method->getClassInterface() &&
2780            Method->getClassInterface()->getSuperClass())
2781          Consumer.addKeywordResult(Context, "super");
2782
2783      break;
2784
2785    case CTC_NoKeywords:
2786      break;
2787
2788    case CTC_Type:
2789      WantTypeSpecifiers = true;
2790      break;
2791
2792    case CTC_ObjCMessageReceiver:
2793      Consumer.addKeywordResult(Context, "super");
2794      // Fall through to handle message receivers like expressions.
2795
2796    case CTC_Expression:
2797      if (getLangOptions().CPlusPlus)
2798        WantTypeSpecifiers = true;
2799      WantExpressionKeywords = true;
2800      // Fall through to get C++ named casts.
2801
2802    case CTC_CXXCasts:
2803      WantCXXNamedCasts = true;
2804      break;
2805
2806    case CTC_MemberLookup:
2807      if (getLangOptions().CPlusPlus)
2808        Consumer.addKeywordResult(Context, "template");
2809      break;
2810  }
2811
2812  if (WantTypeSpecifiers) {
2813    // Add type-specifier keywords to the set of results.
2814    const char *CTypeSpecs[] = {
2815      "char", "const", "double", "enum", "float", "int", "long", "short",
2816      "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
2817      "_Complex", "_Imaginary",
2818      // storage-specifiers as well
2819      "extern", "inline", "static", "typedef"
2820    };
2821
2822    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
2823    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
2824      Consumer.addKeywordResult(Context, CTypeSpecs[I]);
2825
2826    if (getLangOptions().C99)
2827      Consumer.addKeywordResult(Context, "restrict");
2828    if (getLangOptions().Bool || getLangOptions().CPlusPlus)
2829      Consumer.addKeywordResult(Context, "bool");
2830
2831    if (getLangOptions().CPlusPlus) {
2832      Consumer.addKeywordResult(Context, "class");
2833      Consumer.addKeywordResult(Context, "typename");
2834      Consumer.addKeywordResult(Context, "wchar_t");
2835
2836      if (getLangOptions().CPlusPlus0x) {
2837        Consumer.addKeywordResult(Context, "char16_t");
2838        Consumer.addKeywordResult(Context, "char32_t");
2839        Consumer.addKeywordResult(Context, "constexpr");
2840        Consumer.addKeywordResult(Context, "decltype");
2841        Consumer.addKeywordResult(Context, "thread_local");
2842      }
2843    }
2844
2845    if (getLangOptions().GNUMode)
2846      Consumer.addKeywordResult(Context, "typeof");
2847  }
2848
2849  if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
2850    Consumer.addKeywordResult(Context, "const_cast");
2851    Consumer.addKeywordResult(Context, "dynamic_cast");
2852    Consumer.addKeywordResult(Context, "reinterpret_cast");
2853    Consumer.addKeywordResult(Context, "static_cast");
2854  }
2855
2856  if (WantExpressionKeywords) {
2857    Consumer.addKeywordResult(Context, "sizeof");
2858    if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
2859      Consumer.addKeywordResult(Context, "false");
2860      Consumer.addKeywordResult(Context, "true");
2861    }
2862
2863    if (getLangOptions().CPlusPlus) {
2864      const char *CXXExprs[] = {
2865        "delete", "new", "operator", "throw", "typeid"
2866      };
2867      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
2868      for (unsigned I = 0; I != NumCXXExprs; ++I)
2869        Consumer.addKeywordResult(Context, CXXExprs[I]);
2870
2871      if (isa<CXXMethodDecl>(CurContext) &&
2872          cast<CXXMethodDecl>(CurContext)->isInstance())
2873        Consumer.addKeywordResult(Context, "this");
2874
2875      if (getLangOptions().CPlusPlus0x) {
2876        Consumer.addKeywordResult(Context, "alignof");
2877        Consumer.addKeywordResult(Context, "nullptr");
2878      }
2879    }
2880  }
2881
2882  if (WantRemainingKeywords) {
2883    if (getCurFunctionOrMethodDecl() || getCurBlock()) {
2884      // Statements.
2885      const char *CStmts[] = {
2886        "do", "else", "for", "goto", "if", "return", "switch", "while" };
2887      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
2888      for (unsigned I = 0; I != NumCStmts; ++I)
2889        Consumer.addKeywordResult(Context, CStmts[I]);
2890
2891      if (getLangOptions().CPlusPlus) {
2892        Consumer.addKeywordResult(Context, "catch");
2893        Consumer.addKeywordResult(Context, "try");
2894      }
2895
2896      if (S && S->getBreakParent())
2897        Consumer.addKeywordResult(Context, "break");
2898
2899      if (S && S->getContinueParent())
2900        Consumer.addKeywordResult(Context, "continue");
2901
2902      if (!getSwitchStack().empty()) {
2903        Consumer.addKeywordResult(Context, "case");
2904        Consumer.addKeywordResult(Context, "default");
2905      }
2906    } else {
2907      if (getLangOptions().CPlusPlus) {
2908        Consumer.addKeywordResult(Context, "namespace");
2909        Consumer.addKeywordResult(Context, "template");
2910      }
2911
2912      if (S && S->isClassScope()) {
2913        Consumer.addKeywordResult(Context, "explicit");
2914        Consumer.addKeywordResult(Context, "friend");
2915        Consumer.addKeywordResult(Context, "mutable");
2916        Consumer.addKeywordResult(Context, "private");
2917        Consumer.addKeywordResult(Context, "protected");
2918        Consumer.addKeywordResult(Context, "public");
2919        Consumer.addKeywordResult(Context, "virtual");
2920      }
2921    }
2922
2923    if (getLangOptions().CPlusPlus) {
2924      Consumer.addKeywordResult(Context, "using");
2925
2926      if (getLangOptions().CPlusPlus0x)
2927        Consumer.addKeywordResult(Context, "static_assert");
2928    }
2929  }
2930
2931  // If we haven't found anything, we're done.
2932  if (Consumer.empty())
2933    return DeclarationName();
2934
2935  // Only allow a single, closest name in the result set (it's okay to
2936  // have overloads of that name, though).
2937  DeclarationName BestName;
2938  NamedDecl *BestIvarOrPropertyDecl = 0;
2939  bool FoundIvarOrPropertyDecl = false;
2940
2941  // Check all of the declaration results to find the best name so far.
2942  for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
2943                                     IEnd = Consumer.end();
2944       I != IEnd; ++I) {
2945    if (!BestName)
2946      BestName = (*I)->getDeclName();
2947    else if (BestName != (*I)->getDeclName())
2948      return DeclarationName();
2949
2950    // \brief Keep track of either an Objective-C ivar or a property, but not
2951    // both.
2952    if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I)) {
2953      if (FoundIvarOrPropertyDecl)
2954        BestIvarOrPropertyDecl = 0;
2955      else {
2956        BestIvarOrPropertyDecl = *I;
2957        FoundIvarOrPropertyDecl = true;
2958      }
2959    }
2960  }
2961
2962  // Now check all of the keyword results to find the best name.
2963  switch (Consumer.keyword_size()) {
2964    case 0:
2965      // No keywords matched.
2966      break;
2967
2968    case 1:
2969      // If we already have a name
2970      if (!BestName) {
2971        // We did not have anything previously,
2972        BestName = *Consumer.keyword_begin();
2973      } else if (BestName.getAsIdentifierInfo() == *Consumer.keyword_begin()) {
2974        // We have a declaration with the same name as a context-sensitive
2975        // keyword. The keyword takes precedence.
2976        BestIvarOrPropertyDecl = 0;
2977        FoundIvarOrPropertyDecl = false;
2978        Consumer.clear_decls();
2979      } else if (CTC == CTC_ObjCMessageReceiver &&
2980                 (*Consumer.keyword_begin())->isStr("super")) {
2981        // In an Objective-C message send, give the "super" keyword a slight
2982        // edge over entities not in function or method scope.
2983        for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
2984                                           IEnd = Consumer.end();
2985             I != IEnd; ++I) {
2986          if ((*I)->getDeclName() == BestName) {
2987            if ((*I)->getDeclContext()->isFunctionOrMethod())
2988              return DeclarationName();
2989          }
2990        }
2991
2992        // Everything found was outside a function or method; the 'super'
2993        // keyword takes precedence.
2994        BestIvarOrPropertyDecl = 0;
2995        FoundIvarOrPropertyDecl = false;
2996        Consumer.clear_decls();
2997        BestName = *Consumer.keyword_begin();
2998      } else {
2999        // Name collision; we will not correct typos.
3000        return DeclarationName();
3001      }
3002      break;
3003
3004    default:
3005      // Name collision; we will not correct typos.
3006      return DeclarationName();
3007  }
3008
3009  // BestName is the closest viable name to what the user
3010  // typed. However, to make sure that we don't pick something that's
3011  // way off, make sure that the user typed at least 3 characters for
3012  // each correction.
3013  unsigned ED = Consumer.getBestEditDistance();
3014  if (ED == 0 || !BestName.getAsIdentifierInfo() ||
3015      (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
3016    return DeclarationName();
3017
3018  // Perform name lookup again with the name we chose, and declare
3019  // success if we found something that was not ambiguous.
3020  Res.clear();
3021  Res.setLookupName(BestName);
3022
3023  // If we found an ivar or property, add that result; no further
3024  // lookup is required.
3025  if (BestIvarOrPropertyDecl)
3026    Res.addDecl(BestIvarOrPropertyDecl);
3027  // If we're looking into the context of a member, perform qualified
3028  // name lookup on the best name.
3029  else if (!Consumer.keyword_empty()) {
3030    // The best match was a keyword. Return it.
3031    return BestName;
3032  } else if (MemberContext)
3033    LookupQualifiedName(Res, MemberContext);
3034  // Perform lookup as if we had just parsed the best name.
3035  else
3036    LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
3037                     EnteringContext);
3038
3039  if (Res.isAmbiguous()) {
3040    Res.suppressDiagnostics();
3041    return DeclarationName();
3042  }
3043
3044  if (Res.getResultKind() != LookupResult::NotFound)
3045    return BestName;
3046
3047  return DeclarationName();
3048}
3049