SemaLookup.cpp revision 2bcda8c1cf367dcc5d4fb4b244be48bdee191d8f
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/LangOptions.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <list>
31#include <set>
32#include <vector>
33#include <iterator>
34#include <utility>
35#include <algorithm>
36
37using namespace clang;
38
39namespace {
40  class UnqualUsingEntry {
41    const DeclContext *Nominated;
42    const DeclContext *CommonAncestor;
43
44  public:
45    UnqualUsingEntry(const DeclContext *Nominated,
46                     const DeclContext *CommonAncestor)
47      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
48    }
49
50    const DeclContext *getCommonAncestor() const {
51      return CommonAncestor;
52    }
53
54    const DeclContext *getNominatedNamespace() const {
55      return Nominated;
56    }
57
58    // Sort by the pointer value of the common ancestor.
59    struct Comparator {
60      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
61        return L.getCommonAncestor() < R.getCommonAncestor();
62      }
63
64      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
65        return E.getCommonAncestor() < DC;
66      }
67
68      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
69        return DC < E.getCommonAncestor();
70      }
71    };
72  };
73
74  /// A collection of using directives, as used by C++ unqualified
75  /// lookup.
76  class UnqualUsingDirectiveSet {
77    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
78
79    ListTy list;
80    llvm::SmallPtrSet<DeclContext*, 8> visited;
81
82  public:
83    UnqualUsingDirectiveSet() {}
84
85    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
86      // C++ [namespace.udir]p1:
87      //   During unqualified name lookup, the names appear as if they
88      //   were declared in the nearest enclosing namespace which contains
89      //   both the using-directive and the nominated namespace.
90      DeclContext *InnermostFileDC
91        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
92      assert(InnermostFileDC && InnermostFileDC->isFileContext());
93
94      for (; S; S = S->getParent()) {
95        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
96          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
97          visit(Ctx, EffectiveDC);
98        } else {
99          Scope::udir_iterator I = S->using_directives_begin(),
100                             End = S->using_directives_end();
101
102          for (; I != End; ++I)
103            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
104        }
105      }
106    }
107
108    // Visits a context and collect all of its using directives
109    // recursively.  Treats all using directives as if they were
110    // declared in the context.
111    //
112    // A given context is only every visited once, so it is important
113    // that contexts be visited from the inside out in order to get
114    // the effective DCs right.
115    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
116      if (!visited.insert(DC))
117        return;
118
119      addUsingDirectives(DC, EffectiveDC);
120    }
121
122    // Visits a using directive and collects all of its using
123    // directives recursively.  Treats all using directives as if they
124    // were declared in the effective DC.
125    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
126      DeclContext *NS = UD->getNominatedNamespace();
127      if (!visited.insert(NS))
128        return;
129
130      addUsingDirective(UD, EffectiveDC);
131      addUsingDirectives(NS, EffectiveDC);
132    }
133
134    // Adds all the using directives in a context (and those nominated
135    // by its using directives, transitively) as if they appeared in
136    // the given effective context.
137    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
138      llvm::SmallVector<DeclContext*,4> queue;
139      while (true) {
140        DeclContext::udir_iterator I, End;
141        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
142          UsingDirectiveDecl *UD = *I;
143          DeclContext *NS = UD->getNominatedNamespace();
144          if (visited.insert(NS)) {
145            addUsingDirective(UD, EffectiveDC);
146            queue.push_back(NS);
147          }
148        }
149
150        if (queue.empty())
151          return;
152
153        DC = queue.back();
154        queue.pop_back();
155      }
156    }
157
158    // Add a using directive as if it had been declared in the given
159    // context.  This helps implement C++ [namespace.udir]p3:
160    //   The using-directive is transitive: if a scope contains a
161    //   using-directive that nominates a second namespace that itself
162    //   contains using-directives, the effect is as if the
163    //   using-directives from the second namespace also appeared in
164    //   the first.
165    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
166      // Find the common ancestor between the effective context and
167      // the nominated namespace.
168      DeclContext *Common = UD->getNominatedNamespace();
169      while (!Common->Encloses(EffectiveDC))
170        Common = Common->getParent();
171      Common = Common->getPrimaryContext();
172
173      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
174    }
175
176    void done() {
177      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
178    }
179
180    typedef ListTy::iterator iterator;
181    typedef ListTy::const_iterator const_iterator;
182
183    iterator begin() { return list.begin(); }
184    iterator end() { return list.end(); }
185    const_iterator begin() const { return list.begin(); }
186    const_iterator end() const { return list.end(); }
187
188    std::pair<const_iterator,const_iterator>
189    getNamespacesFor(DeclContext *DC) const {
190      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
191                              UnqualUsingEntry::Comparator());
192    }
193  };
194}
195
196// Retrieve the set of identifier namespaces that correspond to a
197// specific kind of name lookup.
198static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
199                               bool CPlusPlus,
200                               bool Redeclaration) {
201  unsigned IDNS = 0;
202  switch (NameKind) {
203  case Sema::LookupOrdinaryName:
204  case Sema::LookupRedeclarationWithLinkage:
205    IDNS = Decl::IDNS_Ordinary;
206    if (CPlusPlus) {
207      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
208      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
209    }
210    break;
211
212  case Sema::LookupOperatorName:
213    // Operator lookup is its own crazy thing;  it is not the same
214    // as (e.g.) looking up an operator name for redeclaration.
215    assert(!Redeclaration && "cannot do redeclaration operator lookup");
216    IDNS = Decl::IDNS_NonMemberOperator;
217    break;
218
219  case Sema::LookupTagName:
220    if (CPlusPlus) {
221      IDNS = Decl::IDNS_Type;
222
223      // When looking for a redeclaration of a tag name, we add:
224      // 1) TagFriend to find undeclared friend decls
225      // 2) Namespace because they can't "overload" with tag decls.
226      // 3) Tag because it includes class templates, which can't
227      //    "overload" with tag decls.
228      if (Redeclaration)
229        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
230    } else {
231      IDNS = Decl::IDNS_Tag;
232    }
233    break;
234
235  case Sema::LookupMemberName:
236    IDNS = Decl::IDNS_Member;
237    if (CPlusPlus)
238      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
239    break;
240
241  case Sema::LookupNestedNameSpecifierName:
242    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
243    break;
244
245  case Sema::LookupNamespaceName:
246    IDNS = Decl::IDNS_Namespace;
247    break;
248
249  case Sema::LookupUsingDeclName:
250    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
251         | Decl::IDNS_Member | Decl::IDNS_Using;
252    break;
253
254  case Sema::LookupObjCProtocolName:
255    IDNS = Decl::IDNS_ObjCProtocol;
256    break;
257  }
258  return IDNS;
259}
260
261void LookupResult::configure() {
262  IDNS = getIDNS(LookupKind,
263                 SemaRef.getLangOptions().CPlusPlus,
264                 isForRedeclaration());
265
266  // If we're looking for one of the allocation or deallocation
267  // operators, make sure that the implicitly-declared new and delete
268  // operators can be found.
269  if (!isForRedeclaration()) {
270    switch (Name.getCXXOverloadedOperator()) {
271    case OO_New:
272    case OO_Delete:
273    case OO_Array_New:
274    case OO_Array_Delete:
275      SemaRef.DeclareGlobalNewDelete();
276      break;
277
278    default:
279      break;
280    }
281  }
282}
283
284// Necessary because CXXBasePaths is not complete in Sema.h
285void LookupResult::deletePaths(CXXBasePaths *Paths) {
286  delete Paths;
287}
288
289/// Resolves the result kind of this lookup.
290void LookupResult::resolveKind() {
291  unsigned N = Decls.size();
292
293  // Fast case: no possible ambiguity.
294  if (N == 0) {
295    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
296    return;
297  }
298
299  // If there's a single decl, we need to examine it to decide what
300  // kind of lookup this is.
301  if (N == 1) {
302    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
303    if (isa<FunctionTemplateDecl>(D))
304      ResultKind = FoundOverloaded;
305    else if (isa<UnresolvedUsingValueDecl>(D))
306      ResultKind = FoundUnresolvedValue;
307    return;
308  }
309
310  // Don't do any extra resolution if we've already resolved as ambiguous.
311  if (ResultKind == Ambiguous) return;
312
313  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
314
315  bool Ambiguous = false;
316  bool HasTag = false, HasFunction = false, HasNonFunction = false;
317  bool HasFunctionTemplate = false, HasUnresolved = false;
318
319  unsigned UniqueTagIndex = 0;
320
321  unsigned I = 0;
322  while (I < N) {
323    NamedDecl *D = Decls[I]->getUnderlyingDecl();
324    D = cast<NamedDecl>(D->getCanonicalDecl());
325
326    if (!Unique.insert(D)) {
327      // If it's not unique, pull something off the back (and
328      // continue at this index).
329      Decls[I] = Decls[--N];
330    } else {
331      // Otherwise, do some decl type analysis and then continue.
332
333      if (isa<UnresolvedUsingValueDecl>(D)) {
334        HasUnresolved = true;
335      } else if (isa<TagDecl>(D)) {
336        if (HasTag)
337          Ambiguous = true;
338        UniqueTagIndex = I;
339        HasTag = true;
340      } else if (isa<FunctionTemplateDecl>(D)) {
341        HasFunction = true;
342        HasFunctionTemplate = true;
343      } else if (isa<FunctionDecl>(D)) {
344        HasFunction = true;
345      } else {
346        if (HasNonFunction)
347          Ambiguous = true;
348        HasNonFunction = true;
349      }
350      I++;
351    }
352  }
353
354  // C++ [basic.scope.hiding]p2:
355  //   A class name or enumeration name can be hidden by the name of
356  //   an object, function, or enumerator declared in the same
357  //   scope. If a class or enumeration name and an object, function,
358  //   or enumerator are declared in the same scope (in any order)
359  //   with the same name, the class or enumeration name is hidden
360  //   wherever the object, function, or enumerator name is visible.
361  // But it's still an error if there are distinct tag types found,
362  // even if they're not visible. (ref?)
363  if (HideTags && HasTag && !Ambiguous &&
364      (HasFunction || HasNonFunction || HasUnresolved))
365    Decls[UniqueTagIndex] = Decls[--N];
366
367  Decls.set_size(N);
368
369  if (HasNonFunction && (HasFunction || HasUnresolved))
370    Ambiguous = true;
371
372  if (Ambiguous)
373    setAmbiguous(LookupResult::AmbiguousReference);
374  else if (HasUnresolved)
375    ResultKind = LookupResult::FoundUnresolvedValue;
376  else if (N > 1 || HasFunctionTemplate)
377    ResultKind = LookupResult::FoundOverloaded;
378  else
379    ResultKind = LookupResult::Found;
380}
381
382void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
383  CXXBasePaths::const_paths_iterator I, E;
384  DeclContext::lookup_iterator DI, DE;
385  for (I = P.begin(), E = P.end(); I != E; ++I)
386    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
387      addDecl(*DI);
388}
389
390void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
391  Paths = new CXXBasePaths;
392  Paths->swap(P);
393  addDeclsFromBasePaths(*Paths);
394  resolveKind();
395  setAmbiguous(AmbiguousBaseSubobjects);
396}
397
398void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
399  Paths = new CXXBasePaths;
400  Paths->swap(P);
401  addDeclsFromBasePaths(*Paths);
402  resolveKind();
403  setAmbiguous(AmbiguousBaseSubobjectTypes);
404}
405
406void LookupResult::print(llvm::raw_ostream &Out) {
407  Out << Decls.size() << " result(s)";
408  if (isAmbiguous()) Out << ", ambiguous";
409  if (Paths) Out << ", base paths present";
410
411  for (iterator I = begin(), E = end(); I != E; ++I) {
412    Out << "\n";
413    (*I)->print(Out, 2);
414  }
415}
416
417/// \brief Lookup a builtin function, when name lookup would otherwise
418/// fail.
419static bool LookupBuiltin(Sema &S, LookupResult &R) {
420  Sema::LookupNameKind NameKind = R.getLookupKind();
421
422  // If we didn't find a use of this identifier, and if the identifier
423  // corresponds to a compiler builtin, create the decl object for the builtin
424  // now, injecting it into translation unit scope, and return it.
425  if (NameKind == Sema::LookupOrdinaryName ||
426      NameKind == Sema::LookupRedeclarationWithLinkage) {
427    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
428    if (II) {
429      // If this is a builtin on this (or all) targets, create the decl.
430      if (unsigned BuiltinID = II->getBuiltinID()) {
431        // In C++, we don't have any predefined library functions like
432        // 'malloc'. Instead, we'll just error.
433        if (S.getLangOptions().CPlusPlus &&
434            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
435          return false;
436
437        NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
438                                             S.TUScope, R.isForRedeclaration(),
439                                             R.getNameLoc());
440        if (D)
441          R.addDecl(D);
442        return (D != NULL);
443      }
444    }
445  }
446
447  return false;
448}
449
450// Adds all qualifying matches for a name within a decl context to the
451// given lookup result.  Returns true if any matches were found.
452static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
453  bool Found = false;
454
455  DeclContext::lookup_const_iterator I, E;
456  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
457    NamedDecl *D = *I;
458    if (R.isAcceptableDecl(D)) {
459      R.addDecl(D);
460      Found = true;
461    }
462  }
463
464  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
465    return true;
466
467  if (R.getLookupName().getNameKind()
468        != DeclarationName::CXXConversionFunctionName ||
469      R.getLookupName().getCXXNameType()->isDependentType() ||
470      !isa<CXXRecordDecl>(DC))
471    return Found;
472
473  // C++ [temp.mem]p6:
474  //   A specialization of a conversion function template is not found by
475  //   name lookup. Instead, any conversion function templates visible in the
476  //   context of the use are considered. [...]
477  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
478  if (!Record->isDefinition())
479    return Found;
480
481  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
482  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
483         UEnd = Unresolved->end(); U != UEnd; ++U) {
484    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
485    if (!ConvTemplate)
486      continue;
487
488    // When we're performing lookup for the purposes of redeclaration, just
489    // add the conversion function template. When we deduce template
490    // arguments for specializations, we'll end up unifying the return
491    // type of the new declaration with the type of the function template.
492    if (R.isForRedeclaration()) {
493      R.addDecl(ConvTemplate);
494      Found = true;
495      continue;
496    }
497
498    // C++ [temp.mem]p6:
499    //   [...] For each such operator, if argument deduction succeeds
500    //   (14.9.2.3), the resulting specialization is used as if found by
501    //   name lookup.
502    //
503    // When referencing a conversion function for any purpose other than
504    // a redeclaration (such that we'll be building an expression with the
505    // result), perform template argument deduction and place the
506    // specialization into the result set. We do this to avoid forcing all
507    // callers to perform special deduction for conversion functions.
508    Sema::TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
509    FunctionDecl *Specialization = 0;
510
511    const FunctionProtoType *ConvProto
512      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
513    assert(ConvProto && "Nonsensical conversion function template type");
514
515    // Compute the type of the function that we would expect the conversion
516    // function to have, if it were to match the name given.
517    // FIXME: Calling convention!
518    FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
519    QualType ExpectedType
520      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
521                                            0, 0, ConvProto->isVariadic(),
522                                            ConvProto->getTypeQuals(),
523                                            false, false, 0, 0,
524                                    ConvProtoInfo.withCallingConv(CC_Default));
525
526    // Perform template argument deduction against the type that we would
527    // expect the function to have.
528    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
529                                            Specialization, Info)
530          == Sema::TDK_Success) {
531      R.addDecl(Specialization);
532      Found = true;
533    }
534  }
535
536  return Found;
537}
538
539// Performs C++ unqualified lookup into the given file context.
540static bool
541CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
542                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
543
544  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
545
546  // Perform direct name lookup into the LookupCtx.
547  bool Found = LookupDirect(S, R, NS);
548
549  // Perform direct name lookup into the namespaces nominated by the
550  // using directives whose common ancestor is this namespace.
551  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
552  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
553
554  for (; UI != UEnd; ++UI)
555    if (LookupDirect(S, R, UI->getNominatedNamespace()))
556      Found = true;
557
558  R.resolveKind();
559
560  return Found;
561}
562
563static bool isNamespaceOrTranslationUnitScope(Scope *S) {
564  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
565    return Ctx->isFileContext();
566  return false;
567}
568
569// Find the next outer declaration context from this scope. This
570// routine actually returns the semantic outer context, which may
571// differ from the lexical context (encoded directly in the Scope
572// stack) when we are parsing a member of a class template. In this
573// case, the second element of the pair will be true, to indicate that
574// name lookup should continue searching in this semantic context when
575// it leaves the current template parameter scope.
576static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
577  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
578  DeclContext *Lexical = 0;
579  for (Scope *OuterS = S->getParent(); OuterS;
580       OuterS = OuterS->getParent()) {
581    if (OuterS->getEntity()) {
582      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
583      break;
584    }
585  }
586
587  // C++ [temp.local]p8:
588  //   In the definition of a member of a class template that appears
589  //   outside of the namespace containing the class template
590  //   definition, the name of a template-parameter hides the name of
591  //   a member of this namespace.
592  //
593  // Example:
594  //
595  //   namespace N {
596  //     class C { };
597  //
598  //     template<class T> class B {
599  //       void f(T);
600  //     };
601  //   }
602  //
603  //   template<class C> void N::B<C>::f(C) {
604  //     C b;  // C is the template parameter, not N::C
605  //   }
606  //
607  // In this example, the lexical context we return is the
608  // TranslationUnit, while the semantic context is the namespace N.
609  if (!Lexical || !DC || !S->getParent() ||
610      !S->getParent()->isTemplateParamScope())
611    return std::make_pair(Lexical, false);
612
613  // Find the outermost template parameter scope.
614  // For the example, this is the scope for the template parameters of
615  // template<class C>.
616  Scope *OutermostTemplateScope = S->getParent();
617  while (OutermostTemplateScope->getParent() &&
618         OutermostTemplateScope->getParent()->isTemplateParamScope())
619    OutermostTemplateScope = OutermostTemplateScope->getParent();
620
621  // Find the namespace context in which the original scope occurs. In
622  // the example, this is namespace N.
623  DeclContext *Semantic = DC;
624  while (!Semantic->isFileContext())
625    Semantic = Semantic->getParent();
626
627  // Find the declaration context just outside of the template
628  // parameter scope. This is the context in which the template is
629  // being lexically declaration (a namespace context). In the
630  // example, this is the global scope.
631  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
632      Lexical->Encloses(Semantic))
633    return std::make_pair(Semantic, true);
634
635  return std::make_pair(Lexical, false);
636}
637
638bool Sema::CppLookupName(LookupResult &R, Scope *S) {
639  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
640
641  DeclarationName Name = R.getLookupName();
642
643  Scope *Initial = S;
644  IdentifierResolver::iterator
645    I = IdResolver.begin(Name),
646    IEnd = IdResolver.end();
647
648  // First we lookup local scope.
649  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
650  // ...During unqualified name lookup (3.4.1), the names appear as if
651  // they were declared in the nearest enclosing namespace which contains
652  // both the using-directive and the nominated namespace.
653  // [Note: in this context, "contains" means "contains directly or
654  // indirectly".
655  //
656  // For example:
657  // namespace A { int i; }
658  // void foo() {
659  //   int i;
660  //   {
661  //     using namespace A;
662  //     ++i; // finds local 'i', A::i appears at global scope
663  //   }
664  // }
665  //
666  DeclContext *OutsideOfTemplateParamDC = 0;
667  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
668    // Check whether the IdResolver has anything in this scope.
669    bool Found = false;
670    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
671      if (R.isAcceptableDecl(*I)) {
672        Found = true;
673        R.addDecl(*I);
674      }
675    }
676    if (Found) {
677      R.resolveKind();
678      return true;
679    }
680
681    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
682    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
683        S->getParent() && !S->getParent()->isTemplateParamScope()) {
684      // We've just searched the last template parameter scope and
685      // found nothing, so look into the the contexts between the
686      // lexical and semantic declaration contexts returned by
687      // findOuterContext(). This implements the name lookup behavior
688      // of C++ [temp.local]p8.
689      Ctx = OutsideOfTemplateParamDC;
690      OutsideOfTemplateParamDC = 0;
691    }
692
693    if (Ctx) {
694      DeclContext *OuterCtx;
695      bool SearchAfterTemplateScope;
696      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
697      if (SearchAfterTemplateScope)
698        OutsideOfTemplateParamDC = OuterCtx;
699
700      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
701        // We do not directly look into transparent contexts, since
702        // those entities will be found in the nearest enclosing
703        // non-transparent context.
704        if (Ctx->isTransparentContext())
705          continue;
706
707        // We do not look directly into function or method contexts,
708        // since all of the local variables and parameters of the
709        // function/method are present within the Scope.
710        if (Ctx->isFunctionOrMethod()) {
711          // If we have an Objective-C instance method, look for ivars
712          // in the corresponding interface.
713          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
714            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
715              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
716                ObjCInterfaceDecl *ClassDeclared;
717                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
718                                                 Name.getAsIdentifierInfo(),
719                                                             ClassDeclared)) {
720                  if (R.isAcceptableDecl(Ivar)) {
721                    R.addDecl(Ivar);
722                    R.resolveKind();
723                    return true;
724                  }
725                }
726              }
727          }
728
729          continue;
730        }
731
732        // Perform qualified name lookup into this context.
733        // FIXME: In some cases, we know that every name that could be found by
734        // this qualified name lookup will also be on the identifier chain. For
735        // example, inside a class without any base classes, we never need to
736        // perform qualified lookup because all of the members are on top of the
737        // identifier chain.
738        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
739          return true;
740      }
741    }
742  }
743
744  // Stop if we ran out of scopes.
745  // FIXME:  This really, really shouldn't be happening.
746  if (!S) return false;
747
748  // Collect UsingDirectiveDecls in all scopes, and recursively all
749  // nominated namespaces by those using-directives.
750  //
751  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
752  // don't build it for each lookup!
753
754  UnqualUsingDirectiveSet UDirs;
755  UDirs.visitScopeChain(Initial, S);
756  UDirs.done();
757
758  // Lookup namespace scope, and global scope.
759  // Unqualified name lookup in C++ requires looking into scopes
760  // that aren't strictly lexical, and therefore we walk through the
761  // context as well as walking through the scopes.
762
763  for (; S; S = S->getParent()) {
764    // Check whether the IdResolver has anything in this scope.
765    bool Found = false;
766    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
767      if (R.isAcceptableDecl(*I)) {
768        // We found something.  Look for anything else in our scope
769        // with this same name and in an acceptable identifier
770        // namespace, so that we can construct an overload set if we
771        // need to.
772        Found = true;
773        R.addDecl(*I);
774      }
775    }
776
777    if (Found && S->isTemplateParamScope()) {
778      R.resolveKind();
779      return true;
780    }
781
782    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
783    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
784        S->getParent() && !S->getParent()->isTemplateParamScope()) {
785      // We've just searched the last template parameter scope and
786      // found nothing, so look into the the contexts between the
787      // lexical and semantic declaration contexts returned by
788      // findOuterContext(). This implements the name lookup behavior
789      // of C++ [temp.local]p8.
790      Ctx = OutsideOfTemplateParamDC;
791      OutsideOfTemplateParamDC = 0;
792    }
793
794    if (Ctx) {
795      DeclContext *OuterCtx;
796      bool SearchAfterTemplateScope;
797      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
798      if (SearchAfterTemplateScope)
799        OutsideOfTemplateParamDC = OuterCtx;
800
801      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
802        // We do not directly look into transparent contexts, since
803        // those entities will be found in the nearest enclosing
804        // non-transparent context.
805        if (Ctx->isTransparentContext())
806          continue;
807
808        // If we have a context, and it's not a context stashed in the
809        // template parameter scope for an out-of-line definition, also
810        // look into that context.
811        if (!(Found && S && S->isTemplateParamScope())) {
812          assert(Ctx->isFileContext() &&
813              "We should have been looking only at file context here already.");
814
815          // Look into context considering using-directives.
816          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
817            Found = true;
818        }
819
820        if (Found) {
821          R.resolveKind();
822          return true;
823        }
824
825        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
826          return false;
827      }
828    }
829
830    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
831      return false;
832  }
833
834  return !R.empty();
835}
836
837/// @brief Perform unqualified name lookup starting from a given
838/// scope.
839///
840/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
841/// used to find names within the current scope. For example, 'x' in
842/// @code
843/// int x;
844/// int f() {
845///   return x; // unqualified name look finds 'x' in the global scope
846/// }
847/// @endcode
848///
849/// Different lookup criteria can find different names. For example, a
850/// particular scope can have both a struct and a function of the same
851/// name, and each can be found by certain lookup criteria. For more
852/// information about lookup criteria, see the documentation for the
853/// class LookupCriteria.
854///
855/// @param S        The scope from which unqualified name lookup will
856/// begin. If the lookup criteria permits, name lookup may also search
857/// in the parent scopes.
858///
859/// @param Name     The name of the entity that we are searching for.
860///
861/// @param Loc      If provided, the source location where we're performing
862/// name lookup. At present, this is only used to produce diagnostics when
863/// C library functions (like "malloc") are implicitly declared.
864///
865/// @returns The result of name lookup, which includes zero or more
866/// declarations and possibly additional information used to diagnose
867/// ambiguities.
868bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
869  DeclarationName Name = R.getLookupName();
870  if (!Name) return false;
871
872  LookupNameKind NameKind = R.getLookupKind();
873
874  if (!getLangOptions().CPlusPlus) {
875    // Unqualified name lookup in C/Objective-C is purely lexical, so
876    // search in the declarations attached to the name.
877
878    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
879      // Find the nearest non-transparent declaration scope.
880      while (!(S->getFlags() & Scope::DeclScope) ||
881             (S->getEntity() &&
882              static_cast<DeclContext *>(S->getEntity())
883                ->isTransparentContext()))
884        S = S->getParent();
885    }
886
887    unsigned IDNS = R.getIdentifierNamespace();
888
889    // Scan up the scope chain looking for a decl that matches this
890    // identifier that is in the appropriate namespace.  This search
891    // should not take long, as shadowing of names is uncommon, and
892    // deep shadowing is extremely uncommon.
893    bool LeftStartingScope = false;
894
895    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
896                                   IEnd = IdResolver.end();
897         I != IEnd; ++I)
898      if ((*I)->isInIdentifierNamespace(IDNS)) {
899        if (NameKind == LookupRedeclarationWithLinkage) {
900          // Determine whether this (or a previous) declaration is
901          // out-of-scope.
902          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
903            LeftStartingScope = true;
904
905          // If we found something outside of our starting scope that
906          // does not have linkage, skip it.
907          if (LeftStartingScope && !((*I)->hasLinkage()))
908            continue;
909        }
910
911        R.addDecl(*I);
912
913        if ((*I)->getAttr<OverloadableAttr>()) {
914          // If this declaration has the "overloadable" attribute, we
915          // might have a set of overloaded functions.
916
917          // Figure out what scope the identifier is in.
918          while (!(S->getFlags() & Scope::DeclScope) ||
919                 !S->isDeclScope(DeclPtrTy::make(*I)))
920            S = S->getParent();
921
922          // Find the last declaration in this scope (with the same
923          // name, naturally).
924          IdentifierResolver::iterator LastI = I;
925          for (++LastI; LastI != IEnd; ++LastI) {
926            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
927              break;
928            R.addDecl(*LastI);
929          }
930        }
931
932        R.resolveKind();
933
934        return true;
935      }
936  } else {
937    // Perform C++ unqualified name lookup.
938    if (CppLookupName(R, S))
939      return true;
940  }
941
942  // If we didn't find a use of this identifier, and if the identifier
943  // corresponds to a compiler builtin, create the decl object for the builtin
944  // now, injecting it into translation unit scope, and return it.
945  if (AllowBuiltinCreation)
946    return LookupBuiltin(*this, R);
947
948  return false;
949}
950
951/// @brief Perform qualified name lookup in the namespaces nominated by
952/// using directives by the given context.
953///
954/// C++98 [namespace.qual]p2:
955///   Given X::m (where X is a user-declared namespace), or given ::m
956///   (where X is the global namespace), let S be the set of all
957///   declarations of m in X and in the transitive closure of all
958///   namespaces nominated by using-directives in X and its used
959///   namespaces, except that using-directives are ignored in any
960///   namespace, including X, directly containing one or more
961///   declarations of m. No namespace is searched more than once in
962///   the lookup of a name. If S is the empty set, the program is
963///   ill-formed. Otherwise, if S has exactly one member, or if the
964///   context of the reference is a using-declaration
965///   (namespace.udecl), S is the required set of declarations of
966///   m. Otherwise if the use of m is not one that allows a unique
967///   declaration to be chosen from S, the program is ill-formed.
968/// C++98 [namespace.qual]p5:
969///   During the lookup of a qualified namespace member name, if the
970///   lookup finds more than one declaration of the member, and if one
971///   declaration introduces a class name or enumeration name and the
972///   other declarations either introduce the same object, the same
973///   enumerator or a set of functions, the non-type name hides the
974///   class or enumeration name if and only if the declarations are
975///   from the same namespace; otherwise (the declarations are from
976///   different namespaces), the program is ill-formed.
977static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
978                                                 DeclContext *StartDC) {
979  assert(StartDC->isFileContext() && "start context is not a file context");
980
981  DeclContext::udir_iterator I = StartDC->using_directives_begin();
982  DeclContext::udir_iterator E = StartDC->using_directives_end();
983
984  if (I == E) return false;
985
986  // We have at least added all these contexts to the queue.
987  llvm::DenseSet<DeclContext*> Visited;
988  Visited.insert(StartDC);
989
990  // We have not yet looked into these namespaces, much less added
991  // their "using-children" to the queue.
992  llvm::SmallVector<NamespaceDecl*, 8> Queue;
993
994  // We have already looked into the initial namespace; seed the queue
995  // with its using-children.
996  for (; I != E; ++I) {
997    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
998    if (Visited.insert(ND).second)
999      Queue.push_back(ND);
1000  }
1001
1002  // The easiest way to implement the restriction in [namespace.qual]p5
1003  // is to check whether any of the individual results found a tag
1004  // and, if so, to declare an ambiguity if the final result is not
1005  // a tag.
1006  bool FoundTag = false;
1007  bool FoundNonTag = false;
1008
1009  LookupResult LocalR(LookupResult::Temporary, R);
1010
1011  bool Found = false;
1012  while (!Queue.empty()) {
1013    NamespaceDecl *ND = Queue.back();
1014    Queue.pop_back();
1015
1016    // We go through some convolutions here to avoid copying results
1017    // between LookupResults.
1018    bool UseLocal = !R.empty();
1019    LookupResult &DirectR = UseLocal ? LocalR : R;
1020    bool FoundDirect = LookupDirect(S, DirectR, ND);
1021
1022    if (FoundDirect) {
1023      // First do any local hiding.
1024      DirectR.resolveKind();
1025
1026      // If the local result is a tag, remember that.
1027      if (DirectR.isSingleTagDecl())
1028        FoundTag = true;
1029      else
1030        FoundNonTag = true;
1031
1032      // Append the local results to the total results if necessary.
1033      if (UseLocal) {
1034        R.addAllDecls(LocalR);
1035        LocalR.clear();
1036      }
1037    }
1038
1039    // If we find names in this namespace, ignore its using directives.
1040    if (FoundDirect) {
1041      Found = true;
1042      continue;
1043    }
1044
1045    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1046      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1047      if (Visited.insert(Nom).second)
1048        Queue.push_back(Nom);
1049    }
1050  }
1051
1052  if (Found) {
1053    if (FoundTag && FoundNonTag)
1054      R.setAmbiguousQualifiedTagHiding();
1055    else
1056      R.resolveKind();
1057  }
1058
1059  return Found;
1060}
1061
1062/// \brief Perform qualified name lookup into a given context.
1063///
1064/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1065/// names when the context of those names is explicit specified, e.g.,
1066/// "std::vector" or "x->member", or as part of unqualified name lookup.
1067///
1068/// Different lookup criteria can find different names. For example, a
1069/// particular scope can have both a struct and a function of the same
1070/// name, and each can be found by certain lookup criteria. For more
1071/// information about lookup criteria, see the documentation for the
1072/// class LookupCriteria.
1073///
1074/// \param R captures both the lookup criteria and any lookup results found.
1075///
1076/// \param LookupCtx The context in which qualified name lookup will
1077/// search. If the lookup criteria permits, name lookup may also search
1078/// in the parent contexts or (for C++ classes) base classes.
1079///
1080/// \param InUnqualifiedLookup true if this is qualified name lookup that
1081/// occurs as part of unqualified name lookup.
1082///
1083/// \returns true if lookup succeeded, false if it failed.
1084bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1085                               bool InUnqualifiedLookup) {
1086  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1087
1088  if (!R.getLookupName())
1089    return false;
1090
1091  // Make sure that the declaration context is complete.
1092  assert((!isa<TagDecl>(LookupCtx) ||
1093          LookupCtx->isDependentContext() ||
1094          cast<TagDecl>(LookupCtx)->isDefinition() ||
1095          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1096            ->isBeingDefined()) &&
1097         "Declaration context must already be complete!");
1098
1099  // Perform qualified name lookup into the LookupCtx.
1100  if (LookupDirect(*this, R, LookupCtx)) {
1101    R.resolveKind();
1102    if (isa<CXXRecordDecl>(LookupCtx))
1103      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1104    return true;
1105  }
1106
1107  // Don't descend into implied contexts for redeclarations.
1108  // C++98 [namespace.qual]p6:
1109  //   In a declaration for a namespace member in which the
1110  //   declarator-id is a qualified-id, given that the qualified-id
1111  //   for the namespace member has the form
1112  //     nested-name-specifier unqualified-id
1113  //   the unqualified-id shall name a member of the namespace
1114  //   designated by the nested-name-specifier.
1115  // See also [class.mfct]p5 and [class.static.data]p2.
1116  if (R.isForRedeclaration())
1117    return false;
1118
1119  // If this is a namespace, look it up in the implied namespaces.
1120  if (LookupCtx->isFileContext())
1121    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1122
1123  // If this isn't a C++ class, we aren't allowed to look into base
1124  // classes, we're done.
1125  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1126  if (!LookupRec)
1127    return false;
1128
1129  // If we're performing qualified name lookup into a dependent class,
1130  // then we are actually looking into a current instantiation. If we have any
1131  // dependent base classes, then we either have to delay lookup until
1132  // template instantiation time (at which point all bases will be available)
1133  // or we have to fail.
1134  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1135      LookupRec->hasAnyDependentBases()) {
1136    R.setNotFoundInCurrentInstantiation();
1137    return false;
1138  }
1139
1140  // Perform lookup into our base classes.
1141  CXXBasePaths Paths;
1142  Paths.setOrigin(LookupRec);
1143
1144  // Look for this member in our base classes
1145  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1146  switch (R.getLookupKind()) {
1147    case LookupOrdinaryName:
1148    case LookupMemberName:
1149    case LookupRedeclarationWithLinkage:
1150      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1151      break;
1152
1153    case LookupTagName:
1154      BaseCallback = &CXXRecordDecl::FindTagMember;
1155      break;
1156
1157    case LookupUsingDeclName:
1158      // This lookup is for redeclarations only.
1159
1160    case LookupOperatorName:
1161    case LookupNamespaceName:
1162    case LookupObjCProtocolName:
1163      // These lookups will never find a member in a C++ class (or base class).
1164      return false;
1165
1166    case LookupNestedNameSpecifierName:
1167      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1168      break;
1169  }
1170
1171  if (!LookupRec->lookupInBases(BaseCallback,
1172                                R.getLookupName().getAsOpaquePtr(), Paths))
1173    return false;
1174
1175  R.setNamingClass(LookupRec);
1176
1177  // C++ [class.member.lookup]p2:
1178  //   [...] If the resulting set of declarations are not all from
1179  //   sub-objects of the same type, or the set has a nonstatic member
1180  //   and includes members from distinct sub-objects, there is an
1181  //   ambiguity and the program is ill-formed. Otherwise that set is
1182  //   the result of the lookup.
1183  // FIXME: support using declarations!
1184  QualType SubobjectType;
1185  int SubobjectNumber = 0;
1186  AccessSpecifier SubobjectAccess = AS_none;
1187  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1188       Path != PathEnd; ++Path) {
1189    const CXXBasePathElement &PathElement = Path->back();
1190
1191    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1192    // across all paths.
1193    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1194
1195    // Determine whether we're looking at a distinct sub-object or not.
1196    if (SubobjectType.isNull()) {
1197      // This is the first subobject we've looked at. Record its type.
1198      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1199      SubobjectNumber = PathElement.SubobjectNumber;
1200    } else if (SubobjectType
1201                 != Context.getCanonicalType(PathElement.Base->getType())) {
1202      // We found members of the given name in two subobjects of
1203      // different types. This lookup is ambiguous.
1204      R.setAmbiguousBaseSubobjectTypes(Paths);
1205      return true;
1206    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1207      // We have a different subobject of the same type.
1208
1209      // C++ [class.member.lookup]p5:
1210      //   A static member, a nested type or an enumerator defined in
1211      //   a base class T can unambiguously be found even if an object
1212      //   has more than one base class subobject of type T.
1213      Decl *FirstDecl = *Path->Decls.first;
1214      if (isa<VarDecl>(FirstDecl) ||
1215          isa<TypeDecl>(FirstDecl) ||
1216          isa<EnumConstantDecl>(FirstDecl))
1217        continue;
1218
1219      if (isa<CXXMethodDecl>(FirstDecl)) {
1220        // Determine whether all of the methods are static.
1221        bool AllMethodsAreStatic = true;
1222        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1223             Func != Path->Decls.second; ++Func) {
1224          if (!isa<CXXMethodDecl>(*Func)) {
1225            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1226            break;
1227          }
1228
1229          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1230            AllMethodsAreStatic = false;
1231            break;
1232          }
1233        }
1234
1235        if (AllMethodsAreStatic)
1236          continue;
1237      }
1238
1239      // We have found a nonstatic member name in multiple, distinct
1240      // subobjects. Name lookup is ambiguous.
1241      R.setAmbiguousBaseSubobjects(Paths);
1242      return true;
1243    }
1244  }
1245
1246  // Lookup in a base class succeeded; return these results.
1247
1248  DeclContext::lookup_iterator I, E;
1249  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1250    NamedDecl *D = *I;
1251    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1252                                                    D->getAccess());
1253    R.addDecl(D, AS);
1254  }
1255  R.resolveKind();
1256  return true;
1257}
1258
1259/// @brief Performs name lookup for a name that was parsed in the
1260/// source code, and may contain a C++ scope specifier.
1261///
1262/// This routine is a convenience routine meant to be called from
1263/// contexts that receive a name and an optional C++ scope specifier
1264/// (e.g., "N::M::x"). It will then perform either qualified or
1265/// unqualified name lookup (with LookupQualifiedName or LookupName,
1266/// respectively) on the given name and return those results.
1267///
1268/// @param S        The scope from which unqualified name lookup will
1269/// begin.
1270///
1271/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1272///
1273/// @param Name     The name of the entity that name lookup will
1274/// search for.
1275///
1276/// @param Loc      If provided, the source location where we're performing
1277/// name lookup. At present, this is only used to produce diagnostics when
1278/// C library functions (like "malloc") are implicitly declared.
1279///
1280/// @param EnteringContext Indicates whether we are going to enter the
1281/// context of the scope-specifier SS (if present).
1282///
1283/// @returns True if any decls were found (but possibly ambiguous)
1284bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1285                            bool AllowBuiltinCreation, bool EnteringContext) {
1286  if (SS && SS->isInvalid()) {
1287    // When the scope specifier is invalid, don't even look for
1288    // anything.
1289    return false;
1290  }
1291
1292  if (SS && SS->isSet()) {
1293    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1294      // We have resolved the scope specifier to a particular declaration
1295      // contex, and will perform name lookup in that context.
1296      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1297        return false;
1298
1299      R.setContextRange(SS->getRange());
1300
1301      return LookupQualifiedName(R, DC);
1302    }
1303
1304    // We could not resolve the scope specified to a specific declaration
1305    // context, which means that SS refers to an unknown specialization.
1306    // Name lookup can't find anything in this case.
1307    return false;
1308  }
1309
1310  // Perform unqualified name lookup starting in the given scope.
1311  return LookupName(R, S, AllowBuiltinCreation);
1312}
1313
1314
1315/// @brief Produce a diagnostic describing the ambiguity that resulted
1316/// from name lookup.
1317///
1318/// @param Result       The ambiguous name lookup result.
1319///
1320/// @param Name         The name of the entity that name lookup was
1321/// searching for.
1322///
1323/// @param NameLoc      The location of the name within the source code.
1324///
1325/// @param LookupRange  A source range that provides more
1326/// source-location information concerning the lookup itself. For
1327/// example, this range might highlight a nested-name-specifier that
1328/// precedes the name.
1329///
1330/// @returns true
1331bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1332  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1333
1334  DeclarationName Name = Result.getLookupName();
1335  SourceLocation NameLoc = Result.getNameLoc();
1336  SourceRange LookupRange = Result.getContextRange();
1337
1338  switch (Result.getAmbiguityKind()) {
1339  case LookupResult::AmbiguousBaseSubobjects: {
1340    CXXBasePaths *Paths = Result.getBasePaths();
1341    QualType SubobjectType = Paths->front().back().Base->getType();
1342    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1343      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1344      << LookupRange;
1345
1346    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1347    while (isa<CXXMethodDecl>(*Found) &&
1348           cast<CXXMethodDecl>(*Found)->isStatic())
1349      ++Found;
1350
1351    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1352
1353    return true;
1354  }
1355
1356  case LookupResult::AmbiguousBaseSubobjectTypes: {
1357    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1358      << Name << LookupRange;
1359
1360    CXXBasePaths *Paths = Result.getBasePaths();
1361    std::set<Decl *> DeclsPrinted;
1362    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1363                                      PathEnd = Paths->end();
1364         Path != PathEnd; ++Path) {
1365      Decl *D = *Path->Decls.first;
1366      if (DeclsPrinted.insert(D).second)
1367        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1368    }
1369
1370    return true;
1371  }
1372
1373  case LookupResult::AmbiguousTagHiding: {
1374    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1375
1376    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1377
1378    LookupResult::iterator DI, DE = Result.end();
1379    for (DI = Result.begin(); DI != DE; ++DI)
1380      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1381        TagDecls.insert(TD);
1382        Diag(TD->getLocation(), diag::note_hidden_tag);
1383      }
1384
1385    for (DI = Result.begin(); DI != DE; ++DI)
1386      if (!isa<TagDecl>(*DI))
1387        Diag((*DI)->getLocation(), diag::note_hiding_object);
1388
1389    // For recovery purposes, go ahead and implement the hiding.
1390    LookupResult::Filter F = Result.makeFilter();
1391    while (F.hasNext()) {
1392      if (TagDecls.count(F.next()))
1393        F.erase();
1394    }
1395    F.done();
1396
1397    return true;
1398  }
1399
1400  case LookupResult::AmbiguousReference: {
1401    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1402
1403    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1404    for (; DI != DE; ++DI)
1405      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1406
1407    return true;
1408  }
1409  }
1410
1411  llvm_unreachable("unknown ambiguity kind");
1412  return true;
1413}
1414
1415static void
1416addAssociatedClassesAndNamespaces(QualType T,
1417                                  ASTContext &Context,
1418                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1419                                  Sema::AssociatedClassSet &AssociatedClasses);
1420
1421static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1422                                      DeclContext *Ctx) {
1423  // Add the associated namespace for this class.
1424
1425  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1426  // be a locally scoped record.
1427
1428  while (Ctx->isRecord() || Ctx->isTransparentContext())
1429    Ctx = Ctx->getParent();
1430
1431  if (Ctx->isFileContext())
1432    Namespaces.insert(Ctx->getPrimaryContext());
1433}
1434
1435// \brief Add the associated classes and namespaces for argument-dependent
1436// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1437static void
1438addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1439                                  ASTContext &Context,
1440                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1441                                  Sema::AssociatedClassSet &AssociatedClasses) {
1442  // C++ [basic.lookup.koenig]p2, last bullet:
1443  //   -- [...] ;
1444  switch (Arg.getKind()) {
1445    case TemplateArgument::Null:
1446      break;
1447
1448    case TemplateArgument::Type:
1449      // [...] the namespaces and classes associated with the types of the
1450      // template arguments provided for template type parameters (excluding
1451      // template template parameters)
1452      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1453                                        AssociatedNamespaces,
1454                                        AssociatedClasses);
1455      break;
1456
1457    case TemplateArgument::Template: {
1458      // [...] the namespaces in which any template template arguments are
1459      // defined; and the classes in which any member templates used as
1460      // template template arguments are defined.
1461      TemplateName Template = Arg.getAsTemplate();
1462      if (ClassTemplateDecl *ClassTemplate
1463                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1464        DeclContext *Ctx = ClassTemplate->getDeclContext();
1465        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1466          AssociatedClasses.insert(EnclosingClass);
1467        // Add the associated namespace for this class.
1468        CollectEnclosingNamespace(AssociatedNamespaces, Ctx);
1469      }
1470      break;
1471    }
1472
1473    case TemplateArgument::Declaration:
1474    case TemplateArgument::Integral:
1475    case TemplateArgument::Expression:
1476      // [Note: non-type template arguments do not contribute to the set of
1477      //  associated namespaces. ]
1478      break;
1479
1480    case TemplateArgument::Pack:
1481      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1482                                        PEnd = Arg.pack_end();
1483           P != PEnd; ++P)
1484        addAssociatedClassesAndNamespaces(*P, Context,
1485                                          AssociatedNamespaces,
1486                                          AssociatedClasses);
1487      break;
1488  }
1489}
1490
1491// \brief Add the associated classes and namespaces for
1492// argument-dependent lookup with an argument of class type
1493// (C++ [basic.lookup.koenig]p2).
1494static void
1495addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1496                                  ASTContext &Context,
1497                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1498                            Sema::AssociatedClassSet &AssociatedClasses) {
1499  // C++ [basic.lookup.koenig]p2:
1500  //   [...]
1501  //     -- If T is a class type (including unions), its associated
1502  //        classes are: the class itself; the class of which it is a
1503  //        member, if any; and its direct and indirect base
1504  //        classes. Its associated namespaces are the namespaces in
1505  //        which its associated classes are defined.
1506
1507  // Add the class of which it is a member, if any.
1508  DeclContext *Ctx = Class->getDeclContext();
1509  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1510    AssociatedClasses.insert(EnclosingClass);
1511  // Add the associated namespace for this class.
1512  CollectEnclosingNamespace(AssociatedNamespaces, Ctx);
1513
1514  // Add the class itself. If we've already seen this class, we don't
1515  // need to visit base classes.
1516  if (!AssociatedClasses.insert(Class))
1517    return;
1518
1519  // -- If T is a template-id, its associated namespaces and classes are
1520  //    the namespace in which the template is defined; for member
1521  //    templates, the member template’s class; the namespaces and classes
1522  //    associated with the types of the template arguments provided for
1523  //    template type parameters (excluding template template parameters); the
1524  //    namespaces in which any template template arguments are defined; and
1525  //    the classes in which any member templates used as template template
1526  //    arguments are defined. [Note: non-type template arguments do not
1527  //    contribute to the set of associated namespaces. ]
1528  if (ClassTemplateSpecializationDecl *Spec
1529        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1530    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1531    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1532      AssociatedClasses.insert(EnclosingClass);
1533    // Add the associated namespace for this class.
1534    CollectEnclosingNamespace(AssociatedNamespaces, Ctx);
1535
1536    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1537    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1538      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1539                                        AssociatedNamespaces,
1540                                        AssociatedClasses);
1541  }
1542
1543  // Only recurse into base classes for complete types.
1544  if (!Class->hasDefinition()) {
1545    // FIXME: we might need to instantiate templates here
1546    return;
1547  }
1548
1549  // Add direct and indirect base classes along with their associated
1550  // namespaces.
1551  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1552  Bases.push_back(Class);
1553  while (!Bases.empty()) {
1554    // Pop this class off the stack.
1555    Class = Bases.back();
1556    Bases.pop_back();
1557
1558    // Visit the base classes.
1559    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1560                                         BaseEnd = Class->bases_end();
1561         Base != BaseEnd; ++Base) {
1562      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1563      // In dependent contexts, we do ADL twice, and the first time around,
1564      // the base type might be a dependent TemplateSpecializationType, or a
1565      // TemplateTypeParmType. If that happens, simply ignore it.
1566      // FIXME: If we want to support export, we probably need to add the
1567      // namespace of the template in a TemplateSpecializationType, or even
1568      // the classes and namespaces of known non-dependent arguments.
1569      if (!BaseType)
1570        continue;
1571      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1572      if (AssociatedClasses.insert(BaseDecl)) {
1573        // Find the associated namespace for this base class.
1574        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1575        CollectEnclosingNamespace(AssociatedNamespaces, BaseCtx);
1576
1577        // Make sure we visit the bases of this base class.
1578        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1579          Bases.push_back(BaseDecl);
1580      }
1581    }
1582  }
1583}
1584
1585// \brief Add the associated classes and namespaces for
1586// argument-dependent lookup with an argument of type T
1587// (C++ [basic.lookup.koenig]p2).
1588static void
1589addAssociatedClassesAndNamespaces(QualType T,
1590                                  ASTContext &Context,
1591                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1592                                  Sema::AssociatedClassSet &AssociatedClasses) {
1593  // C++ [basic.lookup.koenig]p2:
1594  //
1595  //   For each argument type T in the function call, there is a set
1596  //   of zero or more associated namespaces and a set of zero or more
1597  //   associated classes to be considered. The sets of namespaces and
1598  //   classes is determined entirely by the types of the function
1599  //   arguments (and the namespace of any template template
1600  //   argument). Typedef names and using-declarations used to specify
1601  //   the types do not contribute to this set. The sets of namespaces
1602  //   and classes are determined in the following way:
1603  T = Context.getCanonicalType(T).getUnqualifiedType();
1604
1605  //    -- If T is a pointer to U or an array of U, its associated
1606  //       namespaces and classes are those associated with U.
1607  //
1608  // We handle this by unwrapping pointer and array types immediately,
1609  // to avoid unnecessary recursion.
1610  while (true) {
1611    if (const PointerType *Ptr = T->getAs<PointerType>())
1612      T = Ptr->getPointeeType();
1613    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1614      T = Ptr->getElementType();
1615    else
1616      break;
1617  }
1618
1619  //     -- If T is a fundamental type, its associated sets of
1620  //        namespaces and classes are both empty.
1621  if (T->getAs<BuiltinType>())
1622    return;
1623
1624  //     -- If T is a class type (including unions), its associated
1625  //        classes are: the class itself; the class of which it is a
1626  //        member, if any; and its direct and indirect base
1627  //        classes. Its associated namespaces are the namespaces in
1628  //        which its associated classes are defined.
1629  if (const RecordType *ClassType = T->getAs<RecordType>())
1630    if (CXXRecordDecl *ClassDecl
1631        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1632      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1633                                        AssociatedNamespaces,
1634                                        AssociatedClasses);
1635      return;
1636    }
1637
1638  //     -- If T is an enumeration type, its associated namespace is
1639  //        the namespace in which it is defined. If it is class
1640  //        member, its associated class is the member’s class; else
1641  //        it has no associated class.
1642  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1643    EnumDecl *Enum = EnumT->getDecl();
1644
1645    DeclContext *Ctx = Enum->getDeclContext();
1646    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1647      AssociatedClasses.insert(EnclosingClass);
1648
1649    // Add the associated namespace for this class.
1650    CollectEnclosingNamespace(AssociatedNamespaces, Ctx);
1651
1652    return;
1653  }
1654
1655  //     -- If T is a function type, its associated namespaces and
1656  //        classes are those associated with the function parameter
1657  //        types and those associated with the return type.
1658  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1659    // Return type
1660    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1661                                      Context,
1662                                      AssociatedNamespaces, AssociatedClasses);
1663
1664    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1665    if (!Proto)
1666      return;
1667
1668    // Argument types
1669    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1670                                           ArgEnd = Proto->arg_type_end();
1671         Arg != ArgEnd; ++Arg)
1672      addAssociatedClassesAndNamespaces(*Arg, Context,
1673                                        AssociatedNamespaces, AssociatedClasses);
1674
1675    return;
1676  }
1677
1678  //     -- If T is a pointer to a member function of a class X, its
1679  //        associated namespaces and classes are those associated
1680  //        with the function parameter types and return type,
1681  //        together with those associated with X.
1682  //
1683  //     -- If T is a pointer to a data member of class X, its
1684  //        associated namespaces and classes are those associated
1685  //        with the member type together with those associated with
1686  //        X.
1687  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1688    // Handle the type that the pointer to member points to.
1689    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1690                                      Context,
1691                                      AssociatedNamespaces,
1692                                      AssociatedClasses);
1693
1694    // Handle the class type into which this points.
1695    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1696      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1697                                        Context,
1698                                        AssociatedNamespaces,
1699                                        AssociatedClasses);
1700
1701    return;
1702  }
1703
1704  // FIXME: What about block pointers?
1705  // FIXME: What about Objective-C message sends?
1706}
1707
1708/// \brief Find the associated classes and namespaces for
1709/// argument-dependent lookup for a call with the given set of
1710/// arguments.
1711///
1712/// This routine computes the sets of associated classes and associated
1713/// namespaces searched by argument-dependent lookup
1714/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1715void
1716Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1717                                 AssociatedNamespaceSet &AssociatedNamespaces,
1718                                 AssociatedClassSet &AssociatedClasses) {
1719  AssociatedNamespaces.clear();
1720  AssociatedClasses.clear();
1721
1722  // C++ [basic.lookup.koenig]p2:
1723  //   For each argument type T in the function call, there is a set
1724  //   of zero or more associated namespaces and a set of zero or more
1725  //   associated classes to be considered. The sets of namespaces and
1726  //   classes is determined entirely by the types of the function
1727  //   arguments (and the namespace of any template template
1728  //   argument).
1729  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1730    Expr *Arg = Args[ArgIdx];
1731
1732    if (Arg->getType() != Context.OverloadTy) {
1733      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1734                                        AssociatedNamespaces,
1735                                        AssociatedClasses);
1736      continue;
1737    }
1738
1739    // [...] In addition, if the argument is the name or address of a
1740    // set of overloaded functions and/or function templates, its
1741    // associated classes and namespaces are the union of those
1742    // associated with each of the members of the set: the namespace
1743    // in which the function or function template is defined and the
1744    // classes and namespaces associated with its (non-dependent)
1745    // parameter types and return type.
1746    Arg = Arg->IgnoreParens();
1747    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
1748      if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
1749        Arg = unaryOp->getSubExpr();
1750
1751    // TODO: avoid the copies.  This should be easy when the cases
1752    // share a storage implementation.
1753    llvm::SmallVector<NamedDecl*, 8> Functions;
1754
1755    if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg))
1756      Functions.append(ULE->decls_begin(), ULE->decls_end());
1757    else
1758      continue;
1759
1760    for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(),
1761           E = Functions.end(); I != E; ++I) {
1762      // Look through any using declarations to find the underlying function.
1763      NamedDecl *Fn = (*I)->getUnderlyingDecl();
1764
1765      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
1766      if (!FDecl)
1767        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
1768
1769      // Add the classes and namespaces associated with the parameter
1770      // types and return type of this function.
1771      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1772                                        AssociatedNamespaces,
1773                                        AssociatedClasses);
1774    }
1775  }
1776}
1777
1778/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1779/// an acceptable non-member overloaded operator for a call whose
1780/// arguments have types T1 (and, if non-empty, T2). This routine
1781/// implements the check in C++ [over.match.oper]p3b2 concerning
1782/// enumeration types.
1783static bool
1784IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1785                                       QualType T1, QualType T2,
1786                                       ASTContext &Context) {
1787  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1788    return true;
1789
1790  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1791    return true;
1792
1793  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1794  if (Proto->getNumArgs() < 1)
1795    return false;
1796
1797  if (T1->isEnumeralType()) {
1798    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1799    if (Context.hasSameUnqualifiedType(T1, ArgType))
1800      return true;
1801  }
1802
1803  if (Proto->getNumArgs() < 2)
1804    return false;
1805
1806  if (!T2.isNull() && T2->isEnumeralType()) {
1807    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1808    if (Context.hasSameUnqualifiedType(T2, ArgType))
1809      return true;
1810  }
1811
1812  return false;
1813}
1814
1815NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
1816                                  SourceLocation Loc,
1817                                  LookupNameKind NameKind,
1818                                  RedeclarationKind Redecl) {
1819  LookupResult R(*this, Name, Loc, NameKind, Redecl);
1820  LookupName(R, S);
1821  return R.getAsSingle<NamedDecl>();
1822}
1823
1824/// \brief Find the protocol with the given name, if any.
1825ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
1826                                       SourceLocation IdLoc) {
1827  Decl *D = LookupSingleName(TUScope, II, IdLoc,
1828                             LookupObjCProtocolName);
1829  return cast_or_null<ObjCProtocolDecl>(D);
1830}
1831
1832void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1833                                        QualType T1, QualType T2,
1834                                        UnresolvedSetImpl &Functions) {
1835  // C++ [over.match.oper]p3:
1836  //     -- The set of non-member candidates is the result of the
1837  //        unqualified lookup of operator@ in the context of the
1838  //        expression according to the usual rules for name lookup in
1839  //        unqualified function calls (3.4.2) except that all member
1840  //        functions are ignored. However, if no operand has a class
1841  //        type, only those non-member functions in the lookup set
1842  //        that have a first parameter of type T1 or "reference to
1843  //        (possibly cv-qualified) T1", when T1 is an enumeration
1844  //        type, or (if there is a right operand) a second parameter
1845  //        of type T2 or "reference to (possibly cv-qualified) T2",
1846  //        when T2 is an enumeration type, are candidate functions.
1847  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1848  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
1849  LookupName(Operators, S);
1850
1851  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1852
1853  if (Operators.empty())
1854    return;
1855
1856  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1857       Op != OpEnd; ++Op) {
1858    NamedDecl *Found = (*Op)->getUnderlyingDecl();
1859    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
1860      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1861        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
1862    } else if (FunctionTemplateDecl *FunTmpl
1863                 = dyn_cast<FunctionTemplateDecl>(Found)) {
1864      // FIXME: friend operators?
1865      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1866      // later?
1867      if (!FunTmpl->getDeclContext()->isRecord())
1868        Functions.addDecl(*Op, Op.getAccess());
1869    }
1870  }
1871}
1872
1873void ADLResult::insert(NamedDecl *New) {
1874  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
1875
1876  // If we haven't yet seen a decl for this key, or the last decl
1877  // was exactly this one, we're done.
1878  if (Old == 0 || Old == New) {
1879    Old = New;
1880    return;
1881  }
1882
1883  // Otherwise, decide which is a more recent redeclaration.
1884  FunctionDecl *OldFD, *NewFD;
1885  if (isa<FunctionTemplateDecl>(New)) {
1886    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
1887    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
1888  } else {
1889    OldFD = cast<FunctionDecl>(Old);
1890    NewFD = cast<FunctionDecl>(New);
1891  }
1892
1893  FunctionDecl *Cursor = NewFD;
1894  while (true) {
1895    Cursor = Cursor->getPreviousDeclaration();
1896
1897    // If we got to the end without finding OldFD, OldFD is the newer
1898    // declaration;  leave things as they are.
1899    if (!Cursor) return;
1900
1901    // If we do find OldFD, then NewFD is newer.
1902    if (Cursor == OldFD) break;
1903
1904    // Otherwise, keep looking.
1905  }
1906
1907  Old = New;
1908}
1909
1910void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1911                                   Expr **Args, unsigned NumArgs,
1912                                   ADLResult &Result) {
1913  // Find all of the associated namespaces and classes based on the
1914  // arguments we have.
1915  AssociatedNamespaceSet AssociatedNamespaces;
1916  AssociatedClassSet AssociatedClasses;
1917  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1918                                     AssociatedNamespaces,
1919                                     AssociatedClasses);
1920
1921  QualType T1, T2;
1922  if (Operator) {
1923    T1 = Args[0]->getType();
1924    if (NumArgs >= 2)
1925      T2 = Args[1]->getType();
1926  }
1927
1928  // C++ [basic.lookup.argdep]p3:
1929  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1930  //   and let Y be the lookup set produced by argument dependent
1931  //   lookup (defined as follows). If X contains [...] then Y is
1932  //   empty. Otherwise Y is the set of declarations found in the
1933  //   namespaces associated with the argument types as described
1934  //   below. The set of declarations found by the lookup of the name
1935  //   is the union of X and Y.
1936  //
1937  // Here, we compute Y and add its members to the overloaded
1938  // candidate set.
1939  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1940                                     NSEnd = AssociatedNamespaces.end();
1941       NS != NSEnd; ++NS) {
1942    //   When considering an associated namespace, the lookup is the
1943    //   same as the lookup performed when the associated namespace is
1944    //   used as a qualifier (3.4.3.2) except that:
1945    //
1946    //     -- Any using-directives in the associated namespace are
1947    //        ignored.
1948    //
1949    //     -- Any namespace-scope friend functions declared in
1950    //        associated classes are visible within their respective
1951    //        namespaces even if they are not visible during an ordinary
1952    //        lookup (11.4).
1953    DeclContext::lookup_iterator I, E;
1954    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1955      NamedDecl *D = *I;
1956      // If the only declaration here is an ordinary friend, consider
1957      // it only if it was declared in an associated classes.
1958      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1959        DeclContext *LexDC = D->getLexicalDeclContext();
1960        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1961          continue;
1962      }
1963
1964      if (isa<UsingShadowDecl>(D))
1965        D = cast<UsingShadowDecl>(D)->getTargetDecl();
1966
1967      if (isa<FunctionDecl>(D)) {
1968        if (Operator &&
1969            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
1970                                                    T1, T2, Context))
1971          continue;
1972      } else if (!isa<FunctionTemplateDecl>(D))
1973        continue;
1974
1975      Result.insert(D);
1976    }
1977  }
1978}
1979
1980//----------------------------------------------------------------------------
1981// Search for all visible declarations.
1982//----------------------------------------------------------------------------
1983VisibleDeclConsumer::~VisibleDeclConsumer() { }
1984
1985namespace {
1986
1987class ShadowContextRAII;
1988
1989class VisibleDeclsRecord {
1990public:
1991  /// \brief An entry in the shadow map, which is optimized to store a
1992  /// single declaration (the common case) but can also store a list
1993  /// of declarations.
1994  class ShadowMapEntry {
1995    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
1996
1997    /// \brief Contains either the solitary NamedDecl * or a vector
1998    /// of declarations.
1999    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2000
2001  public:
2002    ShadowMapEntry() : DeclOrVector() { }
2003
2004    void Add(NamedDecl *ND);
2005    void Destroy();
2006
2007    // Iteration.
2008    typedef NamedDecl **iterator;
2009    iterator begin();
2010    iterator end();
2011  };
2012
2013private:
2014  /// \brief A mapping from declaration names to the declarations that have
2015  /// this name within a particular scope.
2016  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2017
2018  /// \brief A list of shadow maps, which is used to model name hiding.
2019  std::list<ShadowMap> ShadowMaps;
2020
2021  /// \brief The declaration contexts we have already visited.
2022  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2023
2024  friend class ShadowContextRAII;
2025
2026public:
2027  /// \brief Determine whether we have already visited this context
2028  /// (and, if not, note that we are going to visit that context now).
2029  bool visitedContext(DeclContext *Ctx) {
2030    return !VisitedContexts.insert(Ctx);
2031  }
2032
2033  /// \brief Determine whether the given declaration is hidden in the
2034  /// current scope.
2035  ///
2036  /// \returns the declaration that hides the given declaration, or
2037  /// NULL if no such declaration exists.
2038  NamedDecl *checkHidden(NamedDecl *ND);
2039
2040  /// \brief Add a declaration to the current shadow map.
2041  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2042};
2043
2044/// \brief RAII object that records when we've entered a shadow context.
2045class ShadowContextRAII {
2046  VisibleDeclsRecord &Visible;
2047
2048  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2049
2050public:
2051  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2052    Visible.ShadowMaps.push_back(ShadowMap());
2053  }
2054
2055  ~ShadowContextRAII() {
2056    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2057                          EEnd = Visible.ShadowMaps.back().end();
2058         E != EEnd;
2059         ++E)
2060      E->second.Destroy();
2061
2062    Visible.ShadowMaps.pop_back();
2063  }
2064};
2065
2066} // end anonymous namespace
2067
2068void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2069  if (DeclOrVector.isNull()) {
2070    // 0 - > 1 elements: just set the single element information.
2071    DeclOrVector = ND;
2072    return;
2073  }
2074
2075  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2076    // 1 -> 2 elements: create the vector of results and push in the
2077    // existing declaration.
2078    DeclVector *Vec = new DeclVector;
2079    Vec->push_back(PrevND);
2080    DeclOrVector = Vec;
2081  }
2082
2083  // Add the new element to the end of the vector.
2084  DeclOrVector.get<DeclVector*>()->push_back(ND);
2085}
2086
2087void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2088  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2089    delete Vec;
2090    DeclOrVector = ((NamedDecl *)0);
2091  }
2092}
2093
2094VisibleDeclsRecord::ShadowMapEntry::iterator
2095VisibleDeclsRecord::ShadowMapEntry::begin() {
2096  if (DeclOrVector.isNull())
2097    return 0;
2098
2099  if (DeclOrVector.dyn_cast<NamedDecl *>())
2100    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2101
2102  return DeclOrVector.get<DeclVector *>()->begin();
2103}
2104
2105VisibleDeclsRecord::ShadowMapEntry::iterator
2106VisibleDeclsRecord::ShadowMapEntry::end() {
2107  if (DeclOrVector.isNull())
2108    return 0;
2109
2110  if (DeclOrVector.dyn_cast<NamedDecl *>())
2111    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2112
2113  return DeclOrVector.get<DeclVector *>()->end();
2114}
2115
2116NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2117  // Look through using declarations.
2118  ND = ND->getUnderlyingDecl();
2119
2120  unsigned IDNS = ND->getIdentifierNamespace();
2121  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2122  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2123       SM != SMEnd; ++SM) {
2124    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2125    if (Pos == SM->end())
2126      continue;
2127
2128    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2129                               IEnd = Pos->second.end();
2130         I != IEnd; ++I) {
2131      // A tag declaration does not hide a non-tag declaration.
2132      if ((*I)->hasTagIdentifierNamespace() &&
2133          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2134                   Decl::IDNS_ObjCProtocol)))
2135        continue;
2136
2137      // Protocols are in distinct namespaces from everything else.
2138      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2139           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2140          (*I)->getIdentifierNamespace() != IDNS)
2141        continue;
2142
2143      // Functions and function templates in the same scope overload
2144      // rather than hide.  FIXME: Look for hiding based on function
2145      // signatures!
2146      if ((*I)->isFunctionOrFunctionTemplate() &&
2147          ND->isFunctionOrFunctionTemplate() &&
2148          SM == ShadowMaps.rbegin())
2149        continue;
2150
2151      // We've found a declaration that hides this one.
2152      return *I;
2153    }
2154  }
2155
2156  return 0;
2157}
2158
2159static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2160                               bool QualifiedNameLookup,
2161                               bool InBaseClass,
2162                               VisibleDeclConsumer &Consumer,
2163                               VisibleDeclsRecord &Visited) {
2164  if (!Ctx)
2165    return;
2166
2167  // Make sure we don't visit the same context twice.
2168  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2169    return;
2170
2171  // Enumerate all of the results in this context.
2172  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2173       CurCtx = CurCtx->getNextContext()) {
2174    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2175                                 DEnd = CurCtx->decls_end();
2176         D != DEnd; ++D) {
2177      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2178        if (Result.isAcceptableDecl(ND)) {
2179          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2180          Visited.add(ND);
2181        }
2182
2183      // Visit transparent contexts inside this context.
2184      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2185        if (InnerCtx->isTransparentContext())
2186          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2187                             Consumer, Visited);
2188      }
2189    }
2190  }
2191
2192  // Traverse using directives for qualified name lookup.
2193  if (QualifiedNameLookup) {
2194    ShadowContextRAII Shadow(Visited);
2195    DeclContext::udir_iterator I, E;
2196    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2197      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2198                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2199    }
2200  }
2201
2202  // Traverse the contexts of inherited C++ classes.
2203  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2204    if (!Record->hasDefinition())
2205      return;
2206
2207    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2208                                         BEnd = Record->bases_end();
2209         B != BEnd; ++B) {
2210      QualType BaseType = B->getType();
2211
2212      // Don't look into dependent bases, because name lookup can't look
2213      // there anyway.
2214      if (BaseType->isDependentType())
2215        continue;
2216
2217      const RecordType *Record = BaseType->getAs<RecordType>();
2218      if (!Record)
2219        continue;
2220
2221      // FIXME: It would be nice to be able to determine whether referencing
2222      // a particular member would be ambiguous. For example, given
2223      //
2224      //   struct A { int member; };
2225      //   struct B { int member; };
2226      //   struct C : A, B { };
2227      //
2228      //   void f(C *c) { c->### }
2229      //
2230      // accessing 'member' would result in an ambiguity. However, we
2231      // could be smart enough to qualify the member with the base
2232      // class, e.g.,
2233      //
2234      //   c->B::member
2235      //
2236      // or
2237      //
2238      //   c->A::member
2239
2240      // Find results in this base class (and its bases).
2241      ShadowContextRAII Shadow(Visited);
2242      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2243                         true, Consumer, Visited);
2244    }
2245  }
2246
2247  // Traverse the contexts of Objective-C classes.
2248  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2249    // Traverse categories.
2250    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2251         Category; Category = Category->getNextClassCategory()) {
2252      ShadowContextRAII Shadow(Visited);
2253      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2254                         Consumer, Visited);
2255    }
2256
2257    // Traverse protocols.
2258    for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
2259         E = IFace->protocol_end(); I != E; ++I) {
2260      ShadowContextRAII Shadow(Visited);
2261      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2262                         Visited);
2263    }
2264
2265    // Traverse the superclass.
2266    if (IFace->getSuperClass()) {
2267      ShadowContextRAII Shadow(Visited);
2268      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2269                         true, Consumer, Visited);
2270    }
2271
2272    // If there is an implementation, traverse it. We do this to find
2273    // synthesized ivars.
2274    if (IFace->getImplementation()) {
2275      ShadowContextRAII Shadow(Visited);
2276      LookupVisibleDecls(IFace->getImplementation(), Result,
2277                         QualifiedNameLookup, true, Consumer, Visited);
2278    }
2279  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2280    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2281           E = Protocol->protocol_end(); I != E; ++I) {
2282      ShadowContextRAII Shadow(Visited);
2283      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2284                         Visited);
2285    }
2286  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2287    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2288           E = Category->protocol_end(); I != E; ++I) {
2289      ShadowContextRAII Shadow(Visited);
2290      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2291                         Visited);
2292    }
2293
2294    // If there is an implementation, traverse it.
2295    if (Category->getImplementation()) {
2296      ShadowContextRAII Shadow(Visited);
2297      LookupVisibleDecls(Category->getImplementation(), Result,
2298                         QualifiedNameLookup, true, Consumer, Visited);
2299    }
2300  }
2301}
2302
2303static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2304                               UnqualUsingDirectiveSet &UDirs,
2305                               VisibleDeclConsumer &Consumer,
2306                               VisibleDeclsRecord &Visited) {
2307  if (!S)
2308    return;
2309
2310  if (!S->getEntity() || !S->getParent() ||
2311      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2312    // Walk through the declarations in this Scope.
2313    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2314         D != DEnd; ++D) {
2315      if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
2316        if (Result.isAcceptableDecl(ND)) {
2317          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2318          Visited.add(ND);
2319        }
2320    }
2321  }
2322
2323  // FIXME: C++ [temp.local]p8
2324  DeclContext *Entity = 0;
2325  if (S->getEntity()) {
2326    // Look into this scope's declaration context, along with any of its
2327    // parent lookup contexts (e.g., enclosing classes), up to the point
2328    // where we hit the context stored in the next outer scope.
2329    Entity = (DeclContext *)S->getEntity();
2330    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2331
2332    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2333         Ctx = Ctx->getLookupParent()) {
2334      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2335        if (Method->isInstanceMethod()) {
2336          // For instance methods, look for ivars in the method's interface.
2337          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2338                                  Result.getNameLoc(), Sema::LookupMemberName);
2339          if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
2340            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2341                               /*InBaseClass=*/false, Consumer, Visited);
2342        }
2343
2344        // We've already performed all of the name lookup that we need
2345        // to for Objective-C methods; the next context will be the
2346        // outer scope.
2347        break;
2348      }
2349
2350      if (Ctx->isFunctionOrMethod())
2351        continue;
2352
2353      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2354                         /*InBaseClass=*/false, Consumer, Visited);
2355    }
2356  } else if (!S->getParent()) {
2357    // Look into the translation unit scope. We walk through the translation
2358    // unit's declaration context, because the Scope itself won't have all of
2359    // the declarations if we loaded a precompiled header.
2360    // FIXME: We would like the translation unit's Scope object to point to the
2361    // translation unit, so we don't need this special "if" branch. However,
2362    // doing so would force the normal C++ name-lookup code to look into the
2363    // translation unit decl when the IdentifierInfo chains would suffice.
2364    // Once we fix that problem (which is part of a more general "don't look
2365    // in DeclContexts unless we have to" optimization), we can eliminate this.
2366    Entity = Result.getSema().Context.getTranslationUnitDecl();
2367    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2368                       /*InBaseClass=*/false, Consumer, Visited);
2369  }
2370
2371  if (Entity) {
2372    // Lookup visible declarations in any namespaces found by using
2373    // directives.
2374    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2375    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2376    for (; UI != UEnd; ++UI)
2377      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2378                         Result, /*QualifiedNameLookup=*/false,
2379                         /*InBaseClass=*/false, Consumer, Visited);
2380  }
2381
2382  // Lookup names in the parent scope.
2383  ShadowContextRAII Shadow(Visited);
2384  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2385}
2386
2387void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2388                              VisibleDeclConsumer &Consumer) {
2389  // Determine the set of using directives available during
2390  // unqualified name lookup.
2391  Scope *Initial = S;
2392  UnqualUsingDirectiveSet UDirs;
2393  if (getLangOptions().CPlusPlus) {
2394    // Find the first namespace or translation-unit scope.
2395    while (S && !isNamespaceOrTranslationUnitScope(S))
2396      S = S->getParent();
2397
2398    UDirs.visitScopeChain(Initial, S);
2399  }
2400  UDirs.done();
2401
2402  // Look for visible declarations.
2403  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2404  VisibleDeclsRecord Visited;
2405  ShadowContextRAII Shadow(Visited);
2406  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2407}
2408
2409void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2410                              VisibleDeclConsumer &Consumer) {
2411  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2412  VisibleDeclsRecord Visited;
2413  ShadowContextRAII Shadow(Visited);
2414  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2415                       /*InBaseClass=*/false, Consumer, Visited);
2416}
2417
2418//----------------------------------------------------------------------------
2419// Typo correction
2420//----------------------------------------------------------------------------
2421
2422namespace {
2423class TypoCorrectionConsumer : public VisibleDeclConsumer {
2424  /// \brief The name written that is a typo in the source.
2425  llvm::StringRef Typo;
2426
2427  /// \brief The results found that have the smallest edit distance
2428  /// found (so far) with the typo name.
2429  llvm::SmallVector<NamedDecl *, 4> BestResults;
2430
2431  /// \brief The keywords that have the smallest edit distance.
2432  llvm::SmallVector<IdentifierInfo *, 4> BestKeywords;
2433
2434  /// \brief The best edit distance found so far.
2435  unsigned BestEditDistance;
2436
2437public:
2438  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2439    : Typo(Typo->getName()) { }
2440
2441  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2442  void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
2443
2444  typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
2445  iterator begin() const { return BestResults.begin(); }
2446  iterator end() const { return BestResults.end(); }
2447  void clear_decls() { BestResults.clear(); }
2448
2449  bool empty() const { return BestResults.empty() && BestKeywords.empty(); }
2450
2451  typedef llvm::SmallVector<IdentifierInfo *, 4>::const_iterator
2452    keyword_iterator;
2453  keyword_iterator keyword_begin() const { return BestKeywords.begin(); }
2454  keyword_iterator keyword_end() const { return BestKeywords.end(); }
2455  bool keyword_empty() const { return BestKeywords.empty(); }
2456  unsigned keyword_size() const { return BestKeywords.size(); }
2457
2458  unsigned getBestEditDistance() const { return BestEditDistance; }
2459};
2460
2461}
2462
2463void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2464                                       bool InBaseClass) {
2465  // Don't consider hidden names for typo correction.
2466  if (Hiding)
2467    return;
2468
2469  // Only consider entities with identifiers for names, ignoring
2470  // special names (constructors, overloaded operators, selectors,
2471  // etc.).
2472  IdentifierInfo *Name = ND->getIdentifier();
2473  if (!Name)
2474    return;
2475
2476  // Compute the edit distance between the typo and the name of this
2477  // entity. If this edit distance is not worse than the best edit
2478  // distance we've seen so far, add it to the list of results.
2479  unsigned ED = Typo.edit_distance(Name->getName());
2480  if (!BestResults.empty() || !BestKeywords.empty()) {
2481    if (ED < BestEditDistance) {
2482      // This result is better than any we've seen before; clear out
2483      // the previous results.
2484      BestResults.clear();
2485      BestKeywords.clear();
2486      BestEditDistance = ED;
2487    } else if (ED > BestEditDistance) {
2488      // This result is worse than the best results we've seen so far;
2489      // ignore it.
2490      return;
2491    }
2492  } else
2493    BestEditDistance = ED;
2494
2495  BestResults.push_back(ND);
2496}
2497
2498void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
2499                                              llvm::StringRef Keyword) {
2500  // Compute the edit distance between the typo and this keyword.
2501  // If this edit distance is not worse than the best edit
2502  // distance we've seen so far, add it to the list of results.
2503  unsigned ED = Typo.edit_distance(Keyword);
2504  if (!BestResults.empty() || !BestKeywords.empty()) {
2505    if (ED < BestEditDistance) {
2506      BestResults.clear();
2507      BestKeywords.clear();
2508      BestEditDistance = ED;
2509    } else if (ED > BestEditDistance) {
2510      // This result is worse than the best results we've seen so far;
2511      // ignore it.
2512      return;
2513    }
2514  } else
2515    BestEditDistance = ED;
2516
2517  BestKeywords.push_back(&Context.Idents.get(Keyword));
2518}
2519
2520/// \brief Try to "correct" a typo in the source code by finding
2521/// visible declarations whose names are similar to the name that was
2522/// present in the source code.
2523///
2524/// \param Res the \c LookupResult structure that contains the name
2525/// that was present in the source code along with the name-lookup
2526/// criteria used to search for the name. On success, this structure
2527/// will contain the results of name lookup.
2528///
2529/// \param S the scope in which name lookup occurs.
2530///
2531/// \param SS the nested-name-specifier that precedes the name we're
2532/// looking for, if present.
2533///
2534/// \param MemberContext if non-NULL, the context in which to look for
2535/// a member access expression.
2536///
2537/// \param EnteringContext whether we're entering the context described by
2538/// the nested-name-specifier SS.
2539///
2540/// \param CTC The context in which typo correction occurs, which impacts the
2541/// set of keywords permitted.
2542///
2543/// \param OPT when non-NULL, the search for visible declarations will
2544/// also walk the protocols in the qualified interfaces of \p OPT.
2545///
2546/// \returns the corrected name if the typo was corrected, otherwise returns an
2547/// empty \c DeclarationName. When a typo was corrected, the result structure
2548/// may contain the results of name lookup for the correct name or it may be
2549/// empty.
2550DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
2551                                  DeclContext *MemberContext,
2552                                  bool EnteringContext,
2553                                  CorrectTypoContext CTC,
2554                                  const ObjCObjectPointerType *OPT) {
2555  if (Diags.hasFatalErrorOccurred())
2556    return DeclarationName();
2557
2558  // Provide a stop gap for files that are just seriously broken.  Trying
2559  // to correct all typos can turn into a HUGE performance penalty, causing
2560  // some files to take minutes to get rejected by the parser.
2561  // FIXME: Is this the right solution?
2562  if (TyposCorrected == 20)
2563    return DeclarationName();
2564  ++TyposCorrected;
2565
2566  // We only attempt to correct typos for identifiers.
2567  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2568  if (!Typo)
2569    return DeclarationName();
2570
2571  // If the scope specifier itself was invalid, don't try to correct
2572  // typos.
2573  if (SS && SS->isInvalid())
2574    return DeclarationName();
2575
2576  // Never try to correct typos during template deduction or
2577  // instantiation.
2578  if (!ActiveTemplateInstantiations.empty())
2579    return DeclarationName();
2580
2581  TypoCorrectionConsumer Consumer(Typo);
2582
2583  // Perform name lookup to find visible, similarly-named entities.
2584  if (MemberContext) {
2585    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2586
2587    // Look in qualified interfaces.
2588    if (OPT) {
2589      for (ObjCObjectPointerType::qual_iterator
2590             I = OPT->qual_begin(), E = OPT->qual_end();
2591           I != E; ++I)
2592        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2593    }
2594  } else if (SS && SS->isSet()) {
2595    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2596    if (!DC)
2597      return DeclarationName();
2598
2599    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2600  } else {
2601    LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
2602  }
2603
2604  // Add context-dependent keywords.
2605  bool WantTypeSpecifiers = false;
2606  bool WantExpressionKeywords = false;
2607  bool WantCXXNamedCasts = false;
2608  bool WantRemainingKeywords = false;
2609  switch (CTC) {
2610    case CTC_Unknown:
2611      WantTypeSpecifiers = true;
2612      WantExpressionKeywords = true;
2613      WantCXXNamedCasts = true;
2614      WantRemainingKeywords = true;
2615      break;
2616
2617    case CTC_NoKeywords:
2618      break;
2619
2620    case CTC_Type:
2621      WantTypeSpecifiers = true;
2622      break;
2623
2624    case CTC_ObjCMessageReceiver:
2625      Consumer.addKeywordResult(Context, "super");
2626      // Fall through to handle message receivers like expressions.
2627
2628    case CTC_Expression:
2629      if (getLangOptions().CPlusPlus)
2630        WantTypeSpecifiers = true;
2631      WantExpressionKeywords = true;
2632      // Fall through to get C++ named casts.
2633
2634    case CTC_CXXCasts:
2635      WantCXXNamedCasts = true;
2636      break;
2637
2638    case CTC_MemberLookup:
2639      if (getLangOptions().CPlusPlus)
2640        Consumer.addKeywordResult(Context, "template");
2641      break;
2642  }
2643
2644  if (WantTypeSpecifiers) {
2645    // Add type-specifier keywords to the set of results.
2646    const char *CTypeSpecs[] = {
2647      "char", "const", "double", "enum", "float", "int", "long", "short",
2648      "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
2649      "_Complex", "_Imaginary",
2650      // storage-specifiers as well
2651      "extern", "inline", "static", "typedef"
2652    };
2653
2654    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
2655    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
2656      Consumer.addKeywordResult(Context, CTypeSpecs[I]);
2657
2658    if (getLangOptions().C99)
2659      Consumer.addKeywordResult(Context, "restrict");
2660    if (getLangOptions().Bool || getLangOptions().CPlusPlus)
2661      Consumer.addKeywordResult(Context, "bool");
2662
2663    if (getLangOptions().CPlusPlus) {
2664      Consumer.addKeywordResult(Context, "class");
2665      Consumer.addKeywordResult(Context, "typename");
2666      Consumer.addKeywordResult(Context, "wchar_t");
2667
2668      if (getLangOptions().CPlusPlus0x) {
2669        Consumer.addKeywordResult(Context, "char16_t");
2670        Consumer.addKeywordResult(Context, "char32_t");
2671        Consumer.addKeywordResult(Context, "constexpr");
2672        Consumer.addKeywordResult(Context, "decltype");
2673        Consumer.addKeywordResult(Context, "thread_local");
2674      }
2675    }
2676
2677    if (getLangOptions().GNUMode)
2678      Consumer.addKeywordResult(Context, "typeof");
2679  }
2680
2681  if (WantCXXNamedCasts) {
2682    Consumer.addKeywordResult(Context, "const_cast");
2683    Consumer.addKeywordResult(Context, "dynamic_cast");
2684    Consumer.addKeywordResult(Context, "reinterpret_cast");
2685    Consumer.addKeywordResult(Context, "static_cast");
2686  }
2687
2688  if (WantExpressionKeywords) {
2689    Consumer.addKeywordResult(Context, "sizeof");
2690    if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
2691      Consumer.addKeywordResult(Context, "false");
2692      Consumer.addKeywordResult(Context, "true");
2693    }
2694
2695    if (getLangOptions().CPlusPlus) {
2696      const char *CXXExprs[] = {
2697        "delete", "new", "operator", "throw", "typeid"
2698      };
2699      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
2700      for (unsigned I = 0; I != NumCXXExprs; ++I)
2701        Consumer.addKeywordResult(Context, CXXExprs[I]);
2702
2703      if (isa<CXXMethodDecl>(CurContext) &&
2704          cast<CXXMethodDecl>(CurContext)->isInstance())
2705        Consumer.addKeywordResult(Context, "this");
2706
2707      if (getLangOptions().CPlusPlus0x) {
2708        Consumer.addKeywordResult(Context, "alignof");
2709        Consumer.addKeywordResult(Context, "nullptr");
2710      }
2711    }
2712  }
2713
2714  if (WantRemainingKeywords) {
2715    if (getCurFunctionOrMethodDecl() || getCurBlock()) {
2716      // Statements.
2717      const char *CStmts[] = {
2718        "do", "else", "for", "goto", "if", "return", "switch", "while" };
2719      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
2720      for (unsigned I = 0; I != NumCStmts; ++I)
2721        Consumer.addKeywordResult(Context, CStmts[I]);
2722
2723      if (getLangOptions().CPlusPlus) {
2724        Consumer.addKeywordResult(Context, "catch");
2725        Consumer.addKeywordResult(Context, "try");
2726      }
2727
2728      if (S && S->getBreakParent())
2729        Consumer.addKeywordResult(Context, "break");
2730
2731      if (S && S->getContinueParent())
2732        Consumer.addKeywordResult(Context, "continue");
2733
2734      if (!getSwitchStack().empty()) {
2735        Consumer.addKeywordResult(Context, "case");
2736        Consumer.addKeywordResult(Context, "default");
2737      }
2738    } else {
2739      if (getLangOptions().CPlusPlus) {
2740        Consumer.addKeywordResult(Context, "namespace");
2741        Consumer.addKeywordResult(Context, "template");
2742      }
2743
2744      if (S && S->isClassScope()) {
2745        Consumer.addKeywordResult(Context, "explicit");
2746        Consumer.addKeywordResult(Context, "friend");
2747        Consumer.addKeywordResult(Context, "mutable");
2748        Consumer.addKeywordResult(Context, "private");
2749        Consumer.addKeywordResult(Context, "protected");
2750        Consumer.addKeywordResult(Context, "public");
2751        Consumer.addKeywordResult(Context, "virtual");
2752      }
2753    }
2754
2755    if (getLangOptions().CPlusPlus) {
2756      Consumer.addKeywordResult(Context, "using");
2757
2758      if (getLangOptions().CPlusPlus0x)
2759        Consumer.addKeywordResult(Context, "static_assert");
2760    }
2761  }
2762
2763  // If we haven't found anything, we're done.
2764  if (Consumer.empty())
2765    return DeclarationName();
2766
2767  // Only allow a single, closest name in the result set (it's okay to
2768  // have overloads of that name, though).
2769  DeclarationName BestName;
2770  NamedDecl *BestIvarOrPropertyDecl = 0;
2771  bool FoundIvarOrPropertyDecl = false;
2772
2773  // Check all of the declaration results to find the best name so far.
2774  for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
2775                                     IEnd = Consumer.end();
2776       I != IEnd; ++I) {
2777    if (!BestName)
2778      BestName = (*I)->getDeclName();
2779    else if (BestName != (*I)->getDeclName())
2780      return DeclarationName();
2781
2782    // \brief Keep track of either an Objective-C ivar or a property, but not
2783    // both.
2784    if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I)) {
2785      if (FoundIvarOrPropertyDecl)
2786        BestIvarOrPropertyDecl = 0;
2787      else {
2788        BestIvarOrPropertyDecl = *I;
2789        FoundIvarOrPropertyDecl = true;
2790      }
2791    }
2792  }
2793
2794  // Now check all of the keyword results to find the best name.
2795  switch (Consumer.keyword_size()) {
2796    case 0:
2797      // No keywords matched.
2798      break;
2799
2800    case 1:
2801      // If we already have a name
2802      if (!BestName) {
2803        // We did not have anything previously,
2804        BestName = *Consumer.keyword_begin();
2805      } else if (BestName.getAsIdentifierInfo() == *Consumer.keyword_begin()) {
2806        // We have a declaration with the same name as a context-sensitive
2807        // keyword. The keyword takes precedence.
2808        BestIvarOrPropertyDecl = 0;
2809        FoundIvarOrPropertyDecl = false;
2810        Consumer.clear_decls();
2811      } else {
2812        // Name collision; we will not correct typos.
2813        return DeclarationName();
2814      }
2815      break;
2816
2817    default:
2818      // Name collision; we will not correct typos.
2819      return DeclarationName();
2820  }
2821
2822  // BestName is the closest viable name to what the user
2823  // typed. However, to make sure that we don't pick something that's
2824  // way off, make sure that the user typed at least 3 characters for
2825  // each correction.
2826  unsigned ED = Consumer.getBestEditDistance();
2827  if (ED == 0 || !BestName.getAsIdentifierInfo() ||
2828      (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
2829    return DeclarationName();
2830
2831  // Perform name lookup again with the name we chose, and declare
2832  // success if we found something that was not ambiguous.
2833  Res.clear();
2834  Res.setLookupName(BestName);
2835
2836  // If we found an ivar or property, add that result; no further
2837  // lookup is required.
2838  if (BestIvarOrPropertyDecl)
2839    Res.addDecl(BestIvarOrPropertyDecl);
2840  // If we're looking into the context of a member, perform qualified
2841  // name lookup on the best name.
2842  else if (!Consumer.keyword_empty()) {
2843    // The best match was a keyword. Return it.
2844    return BestName;
2845  } else if (MemberContext)
2846    LookupQualifiedName(Res, MemberContext);
2847  // Perform lookup as if we had just parsed the best name.
2848  else
2849    LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2850                     EnteringContext);
2851
2852  if (Res.isAmbiguous()) {
2853    Res.suppressDiagnostics();
2854    return DeclarationName();
2855  }
2856
2857  if (Res.getResultKind() != LookupResult::NotFound)
2858    return BestName;
2859
2860  return DeclarationName();
2861}
2862