SemaLookup.cpp revision 2bff3276d2c32ad78beaf85dd74ac48c9fb13174
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/LangOptions.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <list>
31#include <set>
32#include <vector>
33#include <iterator>
34#include <utility>
35#include <algorithm>
36
37using namespace clang;
38
39namespace {
40  class UnqualUsingEntry {
41    const DeclContext *Nominated;
42    const DeclContext *CommonAncestor;
43
44  public:
45    UnqualUsingEntry(const DeclContext *Nominated,
46                     const DeclContext *CommonAncestor)
47      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
48    }
49
50    const DeclContext *getCommonAncestor() const {
51      return CommonAncestor;
52    }
53
54    const DeclContext *getNominatedNamespace() const {
55      return Nominated;
56    }
57
58    // Sort by the pointer value of the common ancestor.
59    struct Comparator {
60      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
61        return L.getCommonAncestor() < R.getCommonAncestor();
62      }
63
64      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
65        return E.getCommonAncestor() < DC;
66      }
67
68      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
69        return DC < E.getCommonAncestor();
70      }
71    };
72  };
73
74  /// A collection of using directives, as used by C++ unqualified
75  /// lookup.
76  class UnqualUsingDirectiveSet {
77    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
78
79    ListTy list;
80    llvm::SmallPtrSet<DeclContext*, 8> visited;
81
82  public:
83    UnqualUsingDirectiveSet() {}
84
85    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
86      // C++ [namespace.udir]p1:
87      //   During unqualified name lookup, the names appear as if they
88      //   were declared in the nearest enclosing namespace which contains
89      //   both the using-directive and the nominated namespace.
90      DeclContext *InnermostFileDC
91        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
92      assert(InnermostFileDC && InnermostFileDC->isFileContext());
93
94      for (; S; S = S->getParent()) {
95        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
96          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
97          visit(Ctx, EffectiveDC);
98        } else {
99          Scope::udir_iterator I = S->using_directives_begin(),
100                             End = S->using_directives_end();
101
102          for (; I != End; ++I)
103            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
104        }
105      }
106    }
107
108    // Visits a context and collect all of its using directives
109    // recursively.  Treats all using directives as if they were
110    // declared in the context.
111    //
112    // A given context is only every visited once, so it is important
113    // that contexts be visited from the inside out in order to get
114    // the effective DCs right.
115    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
116      if (!visited.insert(DC))
117        return;
118
119      addUsingDirectives(DC, EffectiveDC);
120    }
121
122    // Visits a using directive and collects all of its using
123    // directives recursively.  Treats all using directives as if they
124    // were declared in the effective DC.
125    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
126      DeclContext *NS = UD->getNominatedNamespace();
127      if (!visited.insert(NS))
128        return;
129
130      addUsingDirective(UD, EffectiveDC);
131      addUsingDirectives(NS, EffectiveDC);
132    }
133
134    // Adds all the using directives in a context (and those nominated
135    // by its using directives, transitively) as if they appeared in
136    // the given effective context.
137    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
138      llvm::SmallVector<DeclContext*,4> queue;
139      while (true) {
140        DeclContext::udir_iterator I, End;
141        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
142          UsingDirectiveDecl *UD = *I;
143          DeclContext *NS = UD->getNominatedNamespace();
144          if (visited.insert(NS)) {
145            addUsingDirective(UD, EffectiveDC);
146            queue.push_back(NS);
147          }
148        }
149
150        if (queue.empty())
151          return;
152
153        DC = queue.back();
154        queue.pop_back();
155      }
156    }
157
158    // Add a using directive as if it had been declared in the given
159    // context.  This helps implement C++ [namespace.udir]p3:
160    //   The using-directive is transitive: if a scope contains a
161    //   using-directive that nominates a second namespace that itself
162    //   contains using-directives, the effect is as if the
163    //   using-directives from the second namespace also appeared in
164    //   the first.
165    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
166      // Find the common ancestor between the effective context and
167      // the nominated namespace.
168      DeclContext *Common = UD->getNominatedNamespace();
169      while (!Common->Encloses(EffectiveDC))
170        Common = Common->getParent();
171      Common = Common->getPrimaryContext();
172
173      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
174    }
175
176    void done() {
177      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
178    }
179
180    typedef ListTy::iterator iterator;
181    typedef ListTy::const_iterator const_iterator;
182
183    iterator begin() { return list.begin(); }
184    iterator end() { return list.end(); }
185    const_iterator begin() const { return list.begin(); }
186    const_iterator end() const { return list.end(); }
187
188    std::pair<const_iterator,const_iterator>
189    getNamespacesFor(DeclContext *DC) const {
190      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
191                              UnqualUsingEntry::Comparator());
192    }
193  };
194}
195
196// Retrieve the set of identifier namespaces that correspond to a
197// specific kind of name lookup.
198static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
199                               bool CPlusPlus,
200                               bool Redeclaration) {
201  unsigned IDNS = 0;
202  switch (NameKind) {
203  case Sema::LookupOrdinaryName:
204  case Sema::LookupRedeclarationWithLinkage:
205    IDNS = Decl::IDNS_Ordinary;
206    if (CPlusPlus) {
207      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
208      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
209    }
210    break;
211
212  case Sema::LookupOperatorName:
213    // Operator lookup is its own crazy thing;  it is not the same
214    // as (e.g.) looking up an operator name for redeclaration.
215    assert(!Redeclaration && "cannot do redeclaration operator lookup");
216    IDNS = Decl::IDNS_NonMemberOperator;
217    break;
218
219  case Sema::LookupTagName:
220    if (CPlusPlus) {
221      IDNS = Decl::IDNS_Type;
222
223      // When looking for a redeclaration of a tag name, we add:
224      // 1) TagFriend to find undeclared friend decls
225      // 2) Namespace because they can't "overload" with tag decls.
226      // 3) Tag because it includes class templates, which can't
227      //    "overload" with tag decls.
228      if (Redeclaration)
229        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
230    } else {
231      IDNS = Decl::IDNS_Tag;
232    }
233    break;
234
235  case Sema::LookupMemberName:
236    IDNS = Decl::IDNS_Member;
237    if (CPlusPlus)
238      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
239    break;
240
241  case Sema::LookupNestedNameSpecifierName:
242    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
243    break;
244
245  case Sema::LookupNamespaceName:
246    IDNS = Decl::IDNS_Namespace;
247    break;
248
249  case Sema::LookupUsingDeclName:
250    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
251         | Decl::IDNS_Member | Decl::IDNS_Using;
252    break;
253
254  case Sema::LookupObjCProtocolName:
255    IDNS = Decl::IDNS_ObjCProtocol;
256    break;
257  }
258  return IDNS;
259}
260
261void LookupResult::configure() {
262  IDNS = getIDNS(LookupKind,
263                 SemaRef.getLangOptions().CPlusPlus,
264                 isForRedeclaration());
265
266  // If we're looking for one of the allocation or deallocation
267  // operators, make sure that the implicitly-declared new and delete
268  // operators can be found.
269  if (!isForRedeclaration()) {
270    switch (Name.getCXXOverloadedOperator()) {
271    case OO_New:
272    case OO_Delete:
273    case OO_Array_New:
274    case OO_Array_Delete:
275      SemaRef.DeclareGlobalNewDelete();
276      break;
277
278    default:
279      break;
280    }
281  }
282}
283
284// Necessary because CXXBasePaths is not complete in Sema.h
285void LookupResult::deletePaths(CXXBasePaths *Paths) {
286  delete Paths;
287}
288
289/// Resolves the result kind of this lookup.
290void LookupResult::resolveKind() {
291  unsigned N = Decls.size();
292
293  // Fast case: no possible ambiguity.
294  if (N == 0) {
295    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
296    return;
297  }
298
299  // If there's a single decl, we need to examine it to decide what
300  // kind of lookup this is.
301  if (N == 1) {
302    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
303    if (isa<FunctionTemplateDecl>(D))
304      ResultKind = FoundOverloaded;
305    else if (isa<UnresolvedUsingValueDecl>(D))
306      ResultKind = FoundUnresolvedValue;
307    return;
308  }
309
310  // Don't do any extra resolution if we've already resolved as ambiguous.
311  if (ResultKind == Ambiguous) return;
312
313  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
314
315  bool Ambiguous = false;
316  bool HasTag = false, HasFunction = false, HasNonFunction = false;
317  bool HasFunctionTemplate = false, HasUnresolved = false;
318
319  unsigned UniqueTagIndex = 0;
320
321  unsigned I = 0;
322  while (I < N) {
323    NamedDecl *D = Decls[I]->getUnderlyingDecl();
324    D = cast<NamedDecl>(D->getCanonicalDecl());
325
326    if (!Unique.insert(D)) {
327      // If it's not unique, pull something off the back (and
328      // continue at this index).
329      Decls[I] = Decls[--N];
330    } else {
331      // Otherwise, do some decl type analysis and then continue.
332
333      if (isa<UnresolvedUsingValueDecl>(D)) {
334        HasUnresolved = true;
335      } else if (isa<TagDecl>(D)) {
336        if (HasTag)
337          Ambiguous = true;
338        UniqueTagIndex = I;
339        HasTag = true;
340      } else if (isa<FunctionTemplateDecl>(D)) {
341        HasFunction = true;
342        HasFunctionTemplate = true;
343      } else if (isa<FunctionDecl>(D)) {
344        HasFunction = true;
345      } else {
346        if (HasNonFunction)
347          Ambiguous = true;
348        HasNonFunction = true;
349      }
350      I++;
351    }
352  }
353
354  // C++ [basic.scope.hiding]p2:
355  //   A class name or enumeration name can be hidden by the name of
356  //   an object, function, or enumerator declared in the same
357  //   scope. If a class or enumeration name and an object, function,
358  //   or enumerator are declared in the same scope (in any order)
359  //   with the same name, the class or enumeration name is hidden
360  //   wherever the object, function, or enumerator name is visible.
361  // But it's still an error if there are distinct tag types found,
362  // even if they're not visible. (ref?)
363  if (HideTags && HasTag && !Ambiguous &&
364      (HasFunction || HasNonFunction || HasUnresolved))
365    Decls[UniqueTagIndex] = Decls[--N];
366
367  Decls.set_size(N);
368
369  if (HasNonFunction && (HasFunction || HasUnresolved))
370    Ambiguous = true;
371
372  if (Ambiguous)
373    setAmbiguous(LookupResult::AmbiguousReference);
374  else if (HasUnresolved)
375    ResultKind = LookupResult::FoundUnresolvedValue;
376  else if (N > 1 || HasFunctionTemplate)
377    ResultKind = LookupResult::FoundOverloaded;
378  else
379    ResultKind = LookupResult::Found;
380}
381
382void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
383  CXXBasePaths::const_paths_iterator I, E;
384  DeclContext::lookup_iterator DI, DE;
385  for (I = P.begin(), E = P.end(); I != E; ++I)
386    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
387      addDecl(*DI);
388}
389
390void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
391  Paths = new CXXBasePaths;
392  Paths->swap(P);
393  addDeclsFromBasePaths(*Paths);
394  resolveKind();
395  setAmbiguous(AmbiguousBaseSubobjects);
396}
397
398void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
399  Paths = new CXXBasePaths;
400  Paths->swap(P);
401  addDeclsFromBasePaths(*Paths);
402  resolveKind();
403  setAmbiguous(AmbiguousBaseSubobjectTypes);
404}
405
406void LookupResult::print(llvm::raw_ostream &Out) {
407  Out << Decls.size() << " result(s)";
408  if (isAmbiguous()) Out << ", ambiguous";
409  if (Paths) Out << ", base paths present";
410
411  for (iterator I = begin(), E = end(); I != E; ++I) {
412    Out << "\n";
413    (*I)->print(Out, 2);
414  }
415}
416
417/// \brief Lookup a builtin function, when name lookup would otherwise
418/// fail.
419static bool LookupBuiltin(Sema &S, LookupResult &R) {
420  Sema::LookupNameKind NameKind = R.getLookupKind();
421
422  // If we didn't find a use of this identifier, and if the identifier
423  // corresponds to a compiler builtin, create the decl object for the builtin
424  // now, injecting it into translation unit scope, and return it.
425  if (NameKind == Sema::LookupOrdinaryName ||
426      NameKind == Sema::LookupRedeclarationWithLinkage) {
427    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
428    if (II) {
429      // If this is a builtin on this (or all) targets, create the decl.
430      if (unsigned BuiltinID = II->getBuiltinID()) {
431        // In C++, we don't have any predefined library functions like
432        // 'malloc'. Instead, we'll just error.
433        if (S.getLangOptions().CPlusPlus &&
434            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
435          return false;
436
437        NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
438                                             S.TUScope, R.isForRedeclaration(),
439                                             R.getNameLoc());
440        if (D)
441          R.addDecl(D);
442        return (D != NULL);
443      }
444    }
445  }
446
447  return false;
448}
449
450// Adds all qualifying matches for a name within a decl context to the
451// given lookup result.  Returns true if any matches were found.
452static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
453  bool Found = false;
454
455  DeclContext::lookup_const_iterator I, E;
456  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
457    NamedDecl *D = *I;
458    if (R.isAcceptableDecl(D)) {
459      R.addDecl(D);
460      Found = true;
461    }
462  }
463
464  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
465    return true;
466
467  if (R.getLookupName().getNameKind()
468        != DeclarationName::CXXConversionFunctionName ||
469      R.getLookupName().getCXXNameType()->isDependentType() ||
470      !isa<CXXRecordDecl>(DC))
471    return Found;
472
473  // C++ [temp.mem]p6:
474  //   A specialization of a conversion function template is not found by
475  //   name lookup. Instead, any conversion function templates visible in the
476  //   context of the use are considered. [...]
477  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
478  if (!Record->isDefinition())
479    return Found;
480
481  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
482  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
483         UEnd = Unresolved->end(); U != UEnd; ++U) {
484    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
485    if (!ConvTemplate)
486      continue;
487
488    // When we're performing lookup for the purposes of redeclaration, just
489    // add the conversion function template. When we deduce template
490    // arguments for specializations, we'll end up unifying the return
491    // type of the new declaration with the type of the function template.
492    if (R.isForRedeclaration()) {
493      R.addDecl(ConvTemplate);
494      Found = true;
495      continue;
496    }
497
498    // C++ [temp.mem]p6:
499    //   [...] For each such operator, if argument deduction succeeds
500    //   (14.9.2.3), the resulting specialization is used as if found by
501    //   name lookup.
502    //
503    // When referencing a conversion function for any purpose other than
504    // a redeclaration (such that we'll be building an expression with the
505    // result), perform template argument deduction and place the
506    // specialization into the result set. We do this to avoid forcing all
507    // callers to perform special deduction for conversion functions.
508    Sema::TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
509    FunctionDecl *Specialization = 0;
510
511    const FunctionProtoType *ConvProto
512      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
513    assert(ConvProto && "Nonsensical conversion function template type");
514
515    // Compute the type of the function that we would expect the conversion
516    // function to have, if it were to match the name given.
517    // FIXME: Calling convention!
518    FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
519    QualType ExpectedType
520      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
521                                            0, 0, ConvProto->isVariadic(),
522                                            ConvProto->getTypeQuals(),
523                                            false, false, 0, 0,
524                                    ConvProtoInfo.withCallingConv(CC_Default));
525
526    // Perform template argument deduction against the type that we would
527    // expect the function to have.
528    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
529                                            Specialization, Info)
530          == Sema::TDK_Success) {
531      R.addDecl(Specialization);
532      Found = true;
533    }
534  }
535
536  return Found;
537}
538
539// Performs C++ unqualified lookup into the given file context.
540static bool
541CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
542                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
543
544  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
545
546  // Perform direct name lookup into the LookupCtx.
547  bool Found = LookupDirect(S, R, NS);
548
549  // Perform direct name lookup into the namespaces nominated by the
550  // using directives whose common ancestor is this namespace.
551  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
552  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
553
554  for (; UI != UEnd; ++UI)
555    if (LookupDirect(S, R, UI->getNominatedNamespace()))
556      Found = true;
557
558  R.resolveKind();
559
560  return Found;
561}
562
563static bool isNamespaceOrTranslationUnitScope(Scope *S) {
564  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
565    return Ctx->isFileContext();
566  return false;
567}
568
569// Find the next outer declaration context from this scope. This
570// routine actually returns the semantic outer context, which may
571// differ from the lexical context (encoded directly in the Scope
572// stack) when we are parsing a member of a class template. In this
573// case, the second element of the pair will be true, to indicate that
574// name lookup should continue searching in this semantic context when
575// it leaves the current template parameter scope.
576static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
577  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
578  DeclContext *Lexical = 0;
579  for (Scope *OuterS = S->getParent(); OuterS;
580       OuterS = OuterS->getParent()) {
581    if (OuterS->getEntity()) {
582      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
583      break;
584    }
585  }
586
587  // C++ [temp.local]p8:
588  //   In the definition of a member of a class template that appears
589  //   outside of the namespace containing the class template
590  //   definition, the name of a template-parameter hides the name of
591  //   a member of this namespace.
592  //
593  // Example:
594  //
595  //   namespace N {
596  //     class C { };
597  //
598  //     template<class T> class B {
599  //       void f(T);
600  //     };
601  //   }
602  //
603  //   template<class C> void N::B<C>::f(C) {
604  //     C b;  // C is the template parameter, not N::C
605  //   }
606  //
607  // In this example, the lexical context we return is the
608  // TranslationUnit, while the semantic context is the namespace N.
609  if (!Lexical || !DC || !S->getParent() ||
610      !S->getParent()->isTemplateParamScope())
611    return std::make_pair(Lexical, false);
612
613  // Find the outermost template parameter scope.
614  // For the example, this is the scope for the template parameters of
615  // template<class C>.
616  Scope *OutermostTemplateScope = S->getParent();
617  while (OutermostTemplateScope->getParent() &&
618         OutermostTemplateScope->getParent()->isTemplateParamScope())
619    OutermostTemplateScope = OutermostTemplateScope->getParent();
620
621  // Find the namespace context in which the original scope occurs. In
622  // the example, this is namespace N.
623  DeclContext *Semantic = DC;
624  while (!Semantic->isFileContext())
625    Semantic = Semantic->getParent();
626
627  // Find the declaration context just outside of the template
628  // parameter scope. This is the context in which the template is
629  // being lexically declaration (a namespace context). In the
630  // example, this is the global scope.
631  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
632      Lexical->Encloses(Semantic))
633    return std::make_pair(Semantic, true);
634
635  return std::make_pair(Lexical, false);
636}
637
638bool Sema::CppLookupName(LookupResult &R, Scope *S) {
639  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
640
641  DeclarationName Name = R.getLookupName();
642
643  Scope *Initial = S;
644  IdentifierResolver::iterator
645    I = IdResolver.begin(Name),
646    IEnd = IdResolver.end();
647
648  // First we lookup local scope.
649  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
650  // ...During unqualified name lookup (3.4.1), the names appear as if
651  // they were declared in the nearest enclosing namespace which contains
652  // both the using-directive and the nominated namespace.
653  // [Note: in this context, "contains" means "contains directly or
654  // indirectly".
655  //
656  // For example:
657  // namespace A { int i; }
658  // void foo() {
659  //   int i;
660  //   {
661  //     using namespace A;
662  //     ++i; // finds local 'i', A::i appears at global scope
663  //   }
664  // }
665  //
666  DeclContext *OutsideOfTemplateParamDC = 0;
667  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
668    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
669
670    // Check whether the IdResolver has anything in this scope.
671    bool Found = false;
672    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
673      if (R.isAcceptableDecl(*I)) {
674        Found = true;
675        R.addDecl(*I);
676      }
677    }
678    if (Found) {
679      R.resolveKind();
680      if (S->isClassScope())
681        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
682          R.setNamingClass(Record);
683      return true;
684    }
685
686    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
687        S->getParent() && !S->getParent()->isTemplateParamScope()) {
688      // We've just searched the last template parameter scope and
689      // found nothing, so look into the the contexts between the
690      // lexical and semantic declaration contexts returned by
691      // findOuterContext(). This implements the name lookup behavior
692      // of C++ [temp.local]p8.
693      Ctx = OutsideOfTemplateParamDC;
694      OutsideOfTemplateParamDC = 0;
695    }
696
697    if (Ctx) {
698      DeclContext *OuterCtx;
699      bool SearchAfterTemplateScope;
700      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
701      if (SearchAfterTemplateScope)
702        OutsideOfTemplateParamDC = OuterCtx;
703
704      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
705        // We do not directly look into transparent contexts, since
706        // those entities will be found in the nearest enclosing
707        // non-transparent context.
708        if (Ctx->isTransparentContext())
709          continue;
710
711        // We do not look directly into function or method contexts,
712        // since all of the local variables and parameters of the
713        // function/method are present within the Scope.
714        if (Ctx->isFunctionOrMethod()) {
715          // If we have an Objective-C instance method, look for ivars
716          // in the corresponding interface.
717          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
718            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
719              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
720                ObjCInterfaceDecl *ClassDeclared;
721                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
722                                                 Name.getAsIdentifierInfo(),
723                                                             ClassDeclared)) {
724                  if (R.isAcceptableDecl(Ivar)) {
725                    R.addDecl(Ivar);
726                    R.resolveKind();
727                    return true;
728                  }
729                }
730              }
731          }
732
733          continue;
734        }
735
736        // Perform qualified name lookup into this context.
737        // FIXME: In some cases, we know that every name that could be found by
738        // this qualified name lookup will also be on the identifier chain. For
739        // example, inside a class without any base classes, we never need to
740        // perform qualified lookup because all of the members are on top of the
741        // identifier chain.
742        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
743          return true;
744      }
745    }
746  }
747
748  // Stop if we ran out of scopes.
749  // FIXME:  This really, really shouldn't be happening.
750  if (!S) return false;
751
752  // Collect UsingDirectiveDecls in all scopes, and recursively all
753  // nominated namespaces by those using-directives.
754  //
755  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
756  // don't build it for each lookup!
757
758  UnqualUsingDirectiveSet UDirs;
759  UDirs.visitScopeChain(Initial, S);
760  UDirs.done();
761
762  // Lookup namespace scope, and global scope.
763  // Unqualified name lookup in C++ requires looking into scopes
764  // that aren't strictly lexical, and therefore we walk through the
765  // context as well as walking through the scopes.
766
767  for (; S; S = S->getParent()) {
768    // Check whether the IdResolver has anything in this scope.
769    bool Found = false;
770    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
771      if (R.isAcceptableDecl(*I)) {
772        // We found something.  Look for anything else in our scope
773        // with this same name and in an acceptable identifier
774        // namespace, so that we can construct an overload set if we
775        // need to.
776        Found = true;
777        R.addDecl(*I);
778      }
779    }
780
781    if (Found && S->isTemplateParamScope()) {
782      R.resolveKind();
783      return true;
784    }
785
786    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
787    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
788        S->getParent() && !S->getParent()->isTemplateParamScope()) {
789      // We've just searched the last template parameter scope and
790      // found nothing, so look into the the contexts between the
791      // lexical and semantic declaration contexts returned by
792      // findOuterContext(). This implements the name lookup behavior
793      // of C++ [temp.local]p8.
794      Ctx = OutsideOfTemplateParamDC;
795      OutsideOfTemplateParamDC = 0;
796    }
797
798    if (Ctx) {
799      DeclContext *OuterCtx;
800      bool SearchAfterTemplateScope;
801      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
802      if (SearchAfterTemplateScope)
803        OutsideOfTemplateParamDC = OuterCtx;
804
805      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
806        // We do not directly look into transparent contexts, since
807        // those entities will be found in the nearest enclosing
808        // non-transparent context.
809        if (Ctx->isTransparentContext())
810          continue;
811
812        // If we have a context, and it's not a context stashed in the
813        // template parameter scope for an out-of-line definition, also
814        // look into that context.
815        if (!(Found && S && S->isTemplateParamScope())) {
816          assert(Ctx->isFileContext() &&
817              "We should have been looking only at file context here already.");
818
819          // Look into context considering using-directives.
820          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
821            Found = true;
822        }
823
824        if (Found) {
825          R.resolveKind();
826          return true;
827        }
828
829        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
830          return false;
831      }
832    }
833
834    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
835      return false;
836  }
837
838  return !R.empty();
839}
840
841/// @brief Perform unqualified name lookup starting from a given
842/// scope.
843///
844/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
845/// used to find names within the current scope. For example, 'x' in
846/// @code
847/// int x;
848/// int f() {
849///   return x; // unqualified name look finds 'x' in the global scope
850/// }
851/// @endcode
852///
853/// Different lookup criteria can find different names. For example, a
854/// particular scope can have both a struct and a function of the same
855/// name, and each can be found by certain lookup criteria. For more
856/// information about lookup criteria, see the documentation for the
857/// class LookupCriteria.
858///
859/// @param S        The scope from which unqualified name lookup will
860/// begin. If the lookup criteria permits, name lookup may also search
861/// in the parent scopes.
862///
863/// @param Name     The name of the entity that we are searching for.
864///
865/// @param Loc      If provided, the source location where we're performing
866/// name lookup. At present, this is only used to produce diagnostics when
867/// C library functions (like "malloc") are implicitly declared.
868///
869/// @returns The result of name lookup, which includes zero or more
870/// declarations and possibly additional information used to diagnose
871/// ambiguities.
872bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
873  DeclarationName Name = R.getLookupName();
874  if (!Name) return false;
875
876  LookupNameKind NameKind = R.getLookupKind();
877
878  if (!getLangOptions().CPlusPlus) {
879    // Unqualified name lookup in C/Objective-C is purely lexical, so
880    // search in the declarations attached to the name.
881
882    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
883      // Find the nearest non-transparent declaration scope.
884      while (!(S->getFlags() & Scope::DeclScope) ||
885             (S->getEntity() &&
886              static_cast<DeclContext *>(S->getEntity())
887                ->isTransparentContext()))
888        S = S->getParent();
889    }
890
891    unsigned IDNS = R.getIdentifierNamespace();
892
893    // Scan up the scope chain looking for a decl that matches this
894    // identifier that is in the appropriate namespace.  This search
895    // should not take long, as shadowing of names is uncommon, and
896    // deep shadowing is extremely uncommon.
897    bool LeftStartingScope = false;
898
899    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
900                                   IEnd = IdResolver.end();
901         I != IEnd; ++I)
902      if ((*I)->isInIdentifierNamespace(IDNS)) {
903        if (NameKind == LookupRedeclarationWithLinkage) {
904          // Determine whether this (or a previous) declaration is
905          // out-of-scope.
906          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
907            LeftStartingScope = true;
908
909          // If we found something outside of our starting scope that
910          // does not have linkage, skip it.
911          if (LeftStartingScope && !((*I)->hasLinkage()))
912            continue;
913        }
914
915        R.addDecl(*I);
916
917        if ((*I)->getAttr<OverloadableAttr>()) {
918          // If this declaration has the "overloadable" attribute, we
919          // might have a set of overloaded functions.
920
921          // Figure out what scope the identifier is in.
922          while (!(S->getFlags() & Scope::DeclScope) ||
923                 !S->isDeclScope(DeclPtrTy::make(*I)))
924            S = S->getParent();
925
926          // Find the last declaration in this scope (with the same
927          // name, naturally).
928          IdentifierResolver::iterator LastI = I;
929          for (++LastI; LastI != IEnd; ++LastI) {
930            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
931              break;
932            R.addDecl(*LastI);
933          }
934        }
935
936        R.resolveKind();
937
938        return true;
939      }
940  } else {
941    // Perform C++ unqualified name lookup.
942    if (CppLookupName(R, S))
943      return true;
944  }
945
946  // If we didn't find a use of this identifier, and if the identifier
947  // corresponds to a compiler builtin, create the decl object for the builtin
948  // now, injecting it into translation unit scope, and return it.
949  if (AllowBuiltinCreation)
950    return LookupBuiltin(*this, R);
951
952  return false;
953}
954
955/// @brief Perform qualified name lookup in the namespaces nominated by
956/// using directives by the given context.
957///
958/// C++98 [namespace.qual]p2:
959///   Given X::m (where X is a user-declared namespace), or given ::m
960///   (where X is the global namespace), let S be the set of all
961///   declarations of m in X and in the transitive closure of all
962///   namespaces nominated by using-directives in X and its used
963///   namespaces, except that using-directives are ignored in any
964///   namespace, including X, directly containing one or more
965///   declarations of m. No namespace is searched more than once in
966///   the lookup of a name. If S is the empty set, the program is
967///   ill-formed. Otherwise, if S has exactly one member, or if the
968///   context of the reference is a using-declaration
969///   (namespace.udecl), S is the required set of declarations of
970///   m. Otherwise if the use of m is not one that allows a unique
971///   declaration to be chosen from S, the program is ill-formed.
972/// C++98 [namespace.qual]p5:
973///   During the lookup of a qualified namespace member name, if the
974///   lookup finds more than one declaration of the member, and if one
975///   declaration introduces a class name or enumeration name and the
976///   other declarations either introduce the same object, the same
977///   enumerator or a set of functions, the non-type name hides the
978///   class or enumeration name if and only if the declarations are
979///   from the same namespace; otherwise (the declarations are from
980///   different namespaces), the program is ill-formed.
981static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
982                                                 DeclContext *StartDC) {
983  assert(StartDC->isFileContext() && "start context is not a file context");
984
985  DeclContext::udir_iterator I = StartDC->using_directives_begin();
986  DeclContext::udir_iterator E = StartDC->using_directives_end();
987
988  if (I == E) return false;
989
990  // We have at least added all these contexts to the queue.
991  llvm::DenseSet<DeclContext*> Visited;
992  Visited.insert(StartDC);
993
994  // We have not yet looked into these namespaces, much less added
995  // their "using-children" to the queue.
996  llvm::SmallVector<NamespaceDecl*, 8> Queue;
997
998  // We have already looked into the initial namespace; seed the queue
999  // with its using-children.
1000  for (; I != E; ++I) {
1001    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1002    if (Visited.insert(ND).second)
1003      Queue.push_back(ND);
1004  }
1005
1006  // The easiest way to implement the restriction in [namespace.qual]p5
1007  // is to check whether any of the individual results found a tag
1008  // and, if so, to declare an ambiguity if the final result is not
1009  // a tag.
1010  bool FoundTag = false;
1011  bool FoundNonTag = false;
1012
1013  LookupResult LocalR(LookupResult::Temporary, R);
1014
1015  bool Found = false;
1016  while (!Queue.empty()) {
1017    NamespaceDecl *ND = Queue.back();
1018    Queue.pop_back();
1019
1020    // We go through some convolutions here to avoid copying results
1021    // between LookupResults.
1022    bool UseLocal = !R.empty();
1023    LookupResult &DirectR = UseLocal ? LocalR : R;
1024    bool FoundDirect = LookupDirect(S, DirectR, ND);
1025
1026    if (FoundDirect) {
1027      // First do any local hiding.
1028      DirectR.resolveKind();
1029
1030      // If the local result is a tag, remember that.
1031      if (DirectR.isSingleTagDecl())
1032        FoundTag = true;
1033      else
1034        FoundNonTag = true;
1035
1036      // Append the local results to the total results if necessary.
1037      if (UseLocal) {
1038        R.addAllDecls(LocalR);
1039        LocalR.clear();
1040      }
1041    }
1042
1043    // If we find names in this namespace, ignore its using directives.
1044    if (FoundDirect) {
1045      Found = true;
1046      continue;
1047    }
1048
1049    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1050      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1051      if (Visited.insert(Nom).second)
1052        Queue.push_back(Nom);
1053    }
1054  }
1055
1056  if (Found) {
1057    if (FoundTag && FoundNonTag)
1058      R.setAmbiguousQualifiedTagHiding();
1059    else
1060      R.resolveKind();
1061  }
1062
1063  return Found;
1064}
1065
1066/// \brief Perform qualified name lookup into a given context.
1067///
1068/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1069/// names when the context of those names is explicit specified, e.g.,
1070/// "std::vector" or "x->member", or as part of unqualified name lookup.
1071///
1072/// Different lookup criteria can find different names. For example, a
1073/// particular scope can have both a struct and a function of the same
1074/// name, and each can be found by certain lookup criteria. For more
1075/// information about lookup criteria, see the documentation for the
1076/// class LookupCriteria.
1077///
1078/// \param R captures both the lookup criteria and any lookup results found.
1079///
1080/// \param LookupCtx The context in which qualified name lookup will
1081/// search. If the lookup criteria permits, name lookup may also search
1082/// in the parent contexts or (for C++ classes) base classes.
1083///
1084/// \param InUnqualifiedLookup true if this is qualified name lookup that
1085/// occurs as part of unqualified name lookup.
1086///
1087/// \returns true if lookup succeeded, false if it failed.
1088bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1089                               bool InUnqualifiedLookup) {
1090  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1091
1092  if (!R.getLookupName())
1093    return false;
1094
1095  // Make sure that the declaration context is complete.
1096  assert((!isa<TagDecl>(LookupCtx) ||
1097          LookupCtx->isDependentContext() ||
1098          cast<TagDecl>(LookupCtx)->isDefinition() ||
1099          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1100            ->isBeingDefined()) &&
1101         "Declaration context must already be complete!");
1102
1103  // Perform qualified name lookup into the LookupCtx.
1104  if (LookupDirect(*this, R, LookupCtx)) {
1105    R.resolveKind();
1106    if (isa<CXXRecordDecl>(LookupCtx))
1107      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1108    return true;
1109  }
1110
1111  // Don't descend into implied contexts for redeclarations.
1112  // C++98 [namespace.qual]p6:
1113  //   In a declaration for a namespace member in which the
1114  //   declarator-id is a qualified-id, given that the qualified-id
1115  //   for the namespace member has the form
1116  //     nested-name-specifier unqualified-id
1117  //   the unqualified-id shall name a member of the namespace
1118  //   designated by the nested-name-specifier.
1119  // See also [class.mfct]p5 and [class.static.data]p2.
1120  if (R.isForRedeclaration())
1121    return false;
1122
1123  // If this is a namespace, look it up in the implied namespaces.
1124  if (LookupCtx->isFileContext())
1125    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1126
1127  // If this isn't a C++ class, we aren't allowed to look into base
1128  // classes, we're done.
1129  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1130  if (!LookupRec || !LookupRec->getDefinition())
1131    return false;
1132
1133  // If we're performing qualified name lookup into a dependent class,
1134  // then we are actually looking into a current instantiation. If we have any
1135  // dependent base classes, then we either have to delay lookup until
1136  // template instantiation time (at which point all bases will be available)
1137  // or we have to fail.
1138  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1139      LookupRec->hasAnyDependentBases()) {
1140    R.setNotFoundInCurrentInstantiation();
1141    return false;
1142  }
1143
1144  // Perform lookup into our base classes.
1145  CXXBasePaths Paths;
1146  Paths.setOrigin(LookupRec);
1147
1148  // Look for this member in our base classes
1149  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1150  switch (R.getLookupKind()) {
1151    case LookupOrdinaryName:
1152    case LookupMemberName:
1153    case LookupRedeclarationWithLinkage:
1154      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1155      break;
1156
1157    case LookupTagName:
1158      BaseCallback = &CXXRecordDecl::FindTagMember;
1159      break;
1160
1161    case LookupUsingDeclName:
1162      // This lookup is for redeclarations only.
1163
1164    case LookupOperatorName:
1165    case LookupNamespaceName:
1166    case LookupObjCProtocolName:
1167      // These lookups will never find a member in a C++ class (or base class).
1168      return false;
1169
1170    case LookupNestedNameSpecifierName:
1171      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1172      break;
1173  }
1174
1175  if (!LookupRec->lookupInBases(BaseCallback,
1176                                R.getLookupName().getAsOpaquePtr(), Paths))
1177    return false;
1178
1179  R.setNamingClass(LookupRec);
1180
1181  // C++ [class.member.lookup]p2:
1182  //   [...] If the resulting set of declarations are not all from
1183  //   sub-objects of the same type, or the set has a nonstatic member
1184  //   and includes members from distinct sub-objects, there is an
1185  //   ambiguity and the program is ill-formed. Otherwise that set is
1186  //   the result of the lookup.
1187  // FIXME: support using declarations!
1188  QualType SubobjectType;
1189  int SubobjectNumber = 0;
1190  AccessSpecifier SubobjectAccess = AS_none;
1191  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1192       Path != PathEnd; ++Path) {
1193    const CXXBasePathElement &PathElement = Path->back();
1194
1195    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1196    // across all paths.
1197    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1198
1199    // Determine whether we're looking at a distinct sub-object or not.
1200    if (SubobjectType.isNull()) {
1201      // This is the first subobject we've looked at. Record its type.
1202      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1203      SubobjectNumber = PathElement.SubobjectNumber;
1204    } else if (SubobjectType
1205                 != Context.getCanonicalType(PathElement.Base->getType())) {
1206      // We found members of the given name in two subobjects of
1207      // different types. This lookup is ambiguous.
1208      R.setAmbiguousBaseSubobjectTypes(Paths);
1209      return true;
1210    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1211      // We have a different subobject of the same type.
1212
1213      // C++ [class.member.lookup]p5:
1214      //   A static member, a nested type or an enumerator defined in
1215      //   a base class T can unambiguously be found even if an object
1216      //   has more than one base class subobject of type T.
1217      Decl *FirstDecl = *Path->Decls.first;
1218      if (isa<VarDecl>(FirstDecl) ||
1219          isa<TypeDecl>(FirstDecl) ||
1220          isa<EnumConstantDecl>(FirstDecl))
1221        continue;
1222
1223      if (isa<CXXMethodDecl>(FirstDecl)) {
1224        // Determine whether all of the methods are static.
1225        bool AllMethodsAreStatic = true;
1226        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1227             Func != Path->Decls.second; ++Func) {
1228          if (!isa<CXXMethodDecl>(*Func)) {
1229            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1230            break;
1231          }
1232
1233          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1234            AllMethodsAreStatic = false;
1235            break;
1236          }
1237        }
1238
1239        if (AllMethodsAreStatic)
1240          continue;
1241      }
1242
1243      // We have found a nonstatic member name in multiple, distinct
1244      // subobjects. Name lookup is ambiguous.
1245      R.setAmbiguousBaseSubobjects(Paths);
1246      return true;
1247    }
1248  }
1249
1250  // Lookup in a base class succeeded; return these results.
1251
1252  DeclContext::lookup_iterator I, E;
1253  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1254    NamedDecl *D = *I;
1255    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1256                                                    D->getAccess());
1257    R.addDecl(D, AS);
1258  }
1259  R.resolveKind();
1260  return true;
1261}
1262
1263/// @brief Performs name lookup for a name that was parsed in the
1264/// source code, and may contain a C++ scope specifier.
1265///
1266/// This routine is a convenience routine meant to be called from
1267/// contexts that receive a name and an optional C++ scope specifier
1268/// (e.g., "N::M::x"). It will then perform either qualified or
1269/// unqualified name lookup (with LookupQualifiedName or LookupName,
1270/// respectively) on the given name and return those results.
1271///
1272/// @param S        The scope from which unqualified name lookup will
1273/// begin.
1274///
1275/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1276///
1277/// @param Name     The name of the entity that name lookup will
1278/// search for.
1279///
1280/// @param Loc      If provided, the source location where we're performing
1281/// name lookup. At present, this is only used to produce diagnostics when
1282/// C library functions (like "malloc") are implicitly declared.
1283///
1284/// @param EnteringContext Indicates whether we are going to enter the
1285/// context of the scope-specifier SS (if present).
1286///
1287/// @returns True if any decls were found (but possibly ambiguous)
1288bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1289                            bool AllowBuiltinCreation, bool EnteringContext) {
1290  if (SS && SS->isInvalid()) {
1291    // When the scope specifier is invalid, don't even look for
1292    // anything.
1293    return false;
1294  }
1295
1296  if (SS && SS->isSet()) {
1297    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1298      // We have resolved the scope specifier to a particular declaration
1299      // contex, and will perform name lookup in that context.
1300      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1301        return false;
1302
1303      R.setContextRange(SS->getRange());
1304
1305      return LookupQualifiedName(R, DC);
1306    }
1307
1308    // We could not resolve the scope specified to a specific declaration
1309    // context, which means that SS refers to an unknown specialization.
1310    // Name lookup can't find anything in this case.
1311    return false;
1312  }
1313
1314  // Perform unqualified name lookup starting in the given scope.
1315  return LookupName(R, S, AllowBuiltinCreation);
1316}
1317
1318
1319/// @brief Produce a diagnostic describing the ambiguity that resulted
1320/// from name lookup.
1321///
1322/// @param Result       The ambiguous name lookup result.
1323///
1324/// @param Name         The name of the entity that name lookup was
1325/// searching for.
1326///
1327/// @param NameLoc      The location of the name within the source code.
1328///
1329/// @param LookupRange  A source range that provides more
1330/// source-location information concerning the lookup itself. For
1331/// example, this range might highlight a nested-name-specifier that
1332/// precedes the name.
1333///
1334/// @returns true
1335bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1336  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1337
1338  DeclarationName Name = Result.getLookupName();
1339  SourceLocation NameLoc = Result.getNameLoc();
1340  SourceRange LookupRange = Result.getContextRange();
1341
1342  switch (Result.getAmbiguityKind()) {
1343  case LookupResult::AmbiguousBaseSubobjects: {
1344    CXXBasePaths *Paths = Result.getBasePaths();
1345    QualType SubobjectType = Paths->front().back().Base->getType();
1346    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1347      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1348      << LookupRange;
1349
1350    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1351    while (isa<CXXMethodDecl>(*Found) &&
1352           cast<CXXMethodDecl>(*Found)->isStatic())
1353      ++Found;
1354
1355    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1356
1357    return true;
1358  }
1359
1360  case LookupResult::AmbiguousBaseSubobjectTypes: {
1361    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1362      << Name << LookupRange;
1363
1364    CXXBasePaths *Paths = Result.getBasePaths();
1365    std::set<Decl *> DeclsPrinted;
1366    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1367                                      PathEnd = Paths->end();
1368         Path != PathEnd; ++Path) {
1369      Decl *D = *Path->Decls.first;
1370      if (DeclsPrinted.insert(D).second)
1371        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1372    }
1373
1374    return true;
1375  }
1376
1377  case LookupResult::AmbiguousTagHiding: {
1378    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1379
1380    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1381
1382    LookupResult::iterator DI, DE = Result.end();
1383    for (DI = Result.begin(); DI != DE; ++DI)
1384      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1385        TagDecls.insert(TD);
1386        Diag(TD->getLocation(), diag::note_hidden_tag);
1387      }
1388
1389    for (DI = Result.begin(); DI != DE; ++DI)
1390      if (!isa<TagDecl>(*DI))
1391        Diag((*DI)->getLocation(), diag::note_hiding_object);
1392
1393    // For recovery purposes, go ahead and implement the hiding.
1394    LookupResult::Filter F = Result.makeFilter();
1395    while (F.hasNext()) {
1396      if (TagDecls.count(F.next()))
1397        F.erase();
1398    }
1399    F.done();
1400
1401    return true;
1402  }
1403
1404  case LookupResult::AmbiguousReference: {
1405    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1406
1407    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1408    for (; DI != DE; ++DI)
1409      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1410
1411    return true;
1412  }
1413  }
1414
1415  llvm_unreachable("unknown ambiguity kind");
1416  return true;
1417}
1418
1419namespace {
1420  struct AssociatedLookup {
1421    AssociatedLookup(Sema &S,
1422                     Sema::AssociatedNamespaceSet &Namespaces,
1423                     Sema::AssociatedClassSet &Classes)
1424      : S(S), Namespaces(Namespaces), Classes(Classes) {
1425    }
1426
1427    Sema &S;
1428    Sema::AssociatedNamespaceSet &Namespaces;
1429    Sema::AssociatedClassSet &Classes;
1430  };
1431}
1432
1433static void
1434addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1435
1436static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1437                                      DeclContext *Ctx) {
1438  // Add the associated namespace for this class.
1439
1440  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1441  // be a locally scoped record.
1442
1443  while (Ctx->isRecord() || Ctx->isTransparentContext())
1444    Ctx = Ctx->getParent();
1445
1446  if (Ctx->isFileContext())
1447    Namespaces.insert(Ctx->getPrimaryContext());
1448}
1449
1450// \brief Add the associated classes and namespaces for argument-dependent
1451// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1452static void
1453addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1454                                  const TemplateArgument &Arg) {
1455  // C++ [basic.lookup.koenig]p2, last bullet:
1456  //   -- [...] ;
1457  switch (Arg.getKind()) {
1458    case TemplateArgument::Null:
1459      break;
1460
1461    case TemplateArgument::Type:
1462      // [...] the namespaces and classes associated with the types of the
1463      // template arguments provided for template type parameters (excluding
1464      // template template parameters)
1465      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1466      break;
1467
1468    case TemplateArgument::Template: {
1469      // [...] the namespaces in which any template template arguments are
1470      // defined; and the classes in which any member templates used as
1471      // template template arguments are defined.
1472      TemplateName Template = Arg.getAsTemplate();
1473      if (ClassTemplateDecl *ClassTemplate
1474                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1475        DeclContext *Ctx = ClassTemplate->getDeclContext();
1476        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1477          Result.Classes.insert(EnclosingClass);
1478        // Add the associated namespace for this class.
1479        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1480      }
1481      break;
1482    }
1483
1484    case TemplateArgument::Declaration:
1485    case TemplateArgument::Integral:
1486    case TemplateArgument::Expression:
1487      // [Note: non-type template arguments do not contribute to the set of
1488      //  associated namespaces. ]
1489      break;
1490
1491    case TemplateArgument::Pack:
1492      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1493                                        PEnd = Arg.pack_end();
1494           P != PEnd; ++P)
1495        addAssociatedClassesAndNamespaces(Result, *P);
1496      break;
1497  }
1498}
1499
1500// \brief Add the associated classes and namespaces for
1501// argument-dependent lookup with an argument of class type
1502// (C++ [basic.lookup.koenig]p2).
1503static void
1504addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1505                                  CXXRecordDecl *Class) {
1506
1507  // Just silently ignore anything whose name is __va_list_tag.
1508  if (Class->getDeclName() == Result.S.VAListTagName)
1509    return;
1510
1511  // C++ [basic.lookup.koenig]p2:
1512  //   [...]
1513  //     -- If T is a class type (including unions), its associated
1514  //        classes are: the class itself; the class of which it is a
1515  //        member, if any; and its direct and indirect base
1516  //        classes. Its associated namespaces are the namespaces in
1517  //        which its associated classes are defined.
1518
1519  // Add the class of which it is a member, if any.
1520  DeclContext *Ctx = Class->getDeclContext();
1521  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1522    Result.Classes.insert(EnclosingClass);
1523  // Add the associated namespace for this class.
1524  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1525
1526  // Add the class itself. If we've already seen this class, we don't
1527  // need to visit base classes.
1528  if (!Result.Classes.insert(Class))
1529    return;
1530
1531  // -- If T is a template-id, its associated namespaces and classes are
1532  //    the namespace in which the template is defined; for member
1533  //    templates, the member template’s class; the namespaces and classes
1534  //    associated with the types of the template arguments provided for
1535  //    template type parameters (excluding template template parameters); the
1536  //    namespaces in which any template template arguments are defined; and
1537  //    the classes in which any member templates used as template template
1538  //    arguments are defined. [Note: non-type template arguments do not
1539  //    contribute to the set of associated namespaces. ]
1540  if (ClassTemplateSpecializationDecl *Spec
1541        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1542    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1543    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1544      Result.Classes.insert(EnclosingClass);
1545    // Add the associated namespace for this class.
1546    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1547
1548    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1549    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1550      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1551  }
1552
1553  // Only recurse into base classes for complete types.
1554  if (!Class->hasDefinition()) {
1555    // FIXME: we might need to instantiate templates here
1556    return;
1557  }
1558
1559  // Add direct and indirect base classes along with their associated
1560  // namespaces.
1561  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1562  Bases.push_back(Class);
1563  while (!Bases.empty()) {
1564    // Pop this class off the stack.
1565    Class = Bases.back();
1566    Bases.pop_back();
1567
1568    // Visit the base classes.
1569    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1570                                         BaseEnd = Class->bases_end();
1571         Base != BaseEnd; ++Base) {
1572      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1573      // In dependent contexts, we do ADL twice, and the first time around,
1574      // the base type might be a dependent TemplateSpecializationType, or a
1575      // TemplateTypeParmType. If that happens, simply ignore it.
1576      // FIXME: If we want to support export, we probably need to add the
1577      // namespace of the template in a TemplateSpecializationType, or even
1578      // the classes and namespaces of known non-dependent arguments.
1579      if (!BaseType)
1580        continue;
1581      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1582      if (Result.Classes.insert(BaseDecl)) {
1583        // Find the associated namespace for this base class.
1584        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1585        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1586
1587        // Make sure we visit the bases of this base class.
1588        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1589          Bases.push_back(BaseDecl);
1590      }
1591    }
1592  }
1593}
1594
1595// \brief Add the associated classes and namespaces for
1596// argument-dependent lookup with an argument of type T
1597// (C++ [basic.lookup.koenig]p2).
1598static void
1599addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1600  // C++ [basic.lookup.koenig]p2:
1601  //
1602  //   For each argument type T in the function call, there is a set
1603  //   of zero or more associated namespaces and a set of zero or more
1604  //   associated classes to be considered. The sets of namespaces and
1605  //   classes is determined entirely by the types of the function
1606  //   arguments (and the namespace of any template template
1607  //   argument). Typedef names and using-declarations used to specify
1608  //   the types do not contribute to this set. The sets of namespaces
1609  //   and classes are determined in the following way:
1610
1611  llvm::SmallVector<const Type *, 16> Queue;
1612  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1613
1614  while (true) {
1615    switch (T->getTypeClass()) {
1616
1617#define TYPE(Class, Base)
1618#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1619#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1620#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1621#define ABSTRACT_TYPE(Class, Base)
1622#include "clang/AST/TypeNodes.def"
1623      // T is canonical.  We can also ignore dependent types because
1624      // we don't need to do ADL at the definition point, but if we
1625      // wanted to implement template export (or if we find some other
1626      // use for associated classes and namespaces...) this would be
1627      // wrong.
1628      break;
1629
1630    //    -- If T is a pointer to U or an array of U, its associated
1631    //       namespaces and classes are those associated with U.
1632    case Type::Pointer:
1633      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1634      continue;
1635    case Type::ConstantArray:
1636    case Type::IncompleteArray:
1637    case Type::VariableArray:
1638      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1639      continue;
1640
1641    //     -- If T is a fundamental type, its associated sets of
1642    //        namespaces and classes are both empty.
1643    case Type::Builtin:
1644      break;
1645
1646    //     -- If T is a class type (including unions), its associated
1647    //        classes are: the class itself; the class of which it is a
1648    //        member, if any; and its direct and indirect base
1649    //        classes. Its associated namespaces are the namespaces in
1650    //        which its associated classes are defined.
1651    case Type::Record: {
1652      CXXRecordDecl *Class
1653        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1654      addAssociatedClassesAndNamespaces(Result, Class);
1655      break;
1656    }
1657
1658    //     -- If T is an enumeration type, its associated namespace is
1659    //        the namespace in which it is defined. If it is class
1660    //        member, its associated class is the member’s class; else
1661    //        it has no associated class.
1662    case Type::Enum: {
1663      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1664
1665      DeclContext *Ctx = Enum->getDeclContext();
1666      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1667        Result.Classes.insert(EnclosingClass);
1668
1669      // Add the associated namespace for this class.
1670      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1671
1672      break;
1673    }
1674
1675    //     -- If T is a function type, its associated namespaces and
1676    //        classes are those associated with the function parameter
1677    //        types and those associated with the return type.
1678    case Type::FunctionProto: {
1679      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1680      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1681                                             ArgEnd = Proto->arg_type_end();
1682             Arg != ArgEnd; ++Arg)
1683        Queue.push_back(Arg->getTypePtr());
1684      // fallthrough
1685    }
1686    case Type::FunctionNoProto: {
1687      const FunctionType *FnType = cast<FunctionType>(T);
1688      T = FnType->getResultType().getTypePtr();
1689      continue;
1690    }
1691
1692    //     -- If T is a pointer to a member function of a class X, its
1693    //        associated namespaces and classes are those associated
1694    //        with the function parameter types and return type,
1695    //        together with those associated with X.
1696    //
1697    //     -- If T is a pointer to a data member of class X, its
1698    //        associated namespaces and classes are those associated
1699    //        with the member type together with those associated with
1700    //        X.
1701    case Type::MemberPointer: {
1702      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
1703
1704      // Queue up the class type into which this points.
1705      Queue.push_back(MemberPtr->getClass());
1706
1707      // And directly continue with the pointee type.
1708      T = MemberPtr->getPointeeType().getTypePtr();
1709      continue;
1710    }
1711
1712    // As an extension, treat this like a normal pointer.
1713    case Type::BlockPointer:
1714      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
1715      continue;
1716
1717    // References aren't covered by the standard, but that's such an
1718    // obvious defect that we cover them anyway.
1719    case Type::LValueReference:
1720    case Type::RValueReference:
1721      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
1722      continue;
1723
1724    // These are fundamental types.
1725    case Type::Vector:
1726    case Type::ExtVector:
1727    case Type::Complex:
1728      break;
1729
1730    // These are ignored by ADL.
1731    case Type::ObjCObject:
1732    case Type::ObjCInterface:
1733    case Type::ObjCObjectPointer:
1734      break;
1735    }
1736
1737    if (Queue.empty()) break;
1738    T = Queue.back();
1739    Queue.pop_back();
1740  }
1741}
1742
1743/// \brief Find the associated classes and namespaces for
1744/// argument-dependent lookup for a call with the given set of
1745/// arguments.
1746///
1747/// This routine computes the sets of associated classes and associated
1748/// namespaces searched by argument-dependent lookup
1749/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1750void
1751Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1752                                 AssociatedNamespaceSet &AssociatedNamespaces,
1753                                 AssociatedClassSet &AssociatedClasses) {
1754  AssociatedNamespaces.clear();
1755  AssociatedClasses.clear();
1756
1757  AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
1758
1759  // C++ [basic.lookup.koenig]p2:
1760  //   For each argument type T in the function call, there is a set
1761  //   of zero or more associated namespaces and a set of zero or more
1762  //   associated classes to be considered. The sets of namespaces and
1763  //   classes is determined entirely by the types of the function
1764  //   arguments (and the namespace of any template template
1765  //   argument).
1766  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1767    Expr *Arg = Args[ArgIdx];
1768
1769    if (Arg->getType() != Context.OverloadTy) {
1770      addAssociatedClassesAndNamespaces(Result, Arg->getType());
1771      continue;
1772    }
1773
1774    // [...] In addition, if the argument is the name or address of a
1775    // set of overloaded functions and/or function templates, its
1776    // associated classes and namespaces are the union of those
1777    // associated with each of the members of the set: the namespace
1778    // in which the function or function template is defined and the
1779    // classes and namespaces associated with its (non-dependent)
1780    // parameter types and return type.
1781    Arg = Arg->IgnoreParens();
1782    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
1783      if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
1784        Arg = unaryOp->getSubExpr();
1785
1786    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
1787    if (!ULE) continue;
1788
1789    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
1790           I != E; ++I) {
1791      // Look through any using declarations to find the underlying function.
1792      NamedDecl *Fn = (*I)->getUnderlyingDecl();
1793
1794      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
1795      if (!FDecl)
1796        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
1797
1798      // Add the classes and namespaces associated with the parameter
1799      // types and return type of this function.
1800      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
1801    }
1802  }
1803}
1804
1805/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1806/// an acceptable non-member overloaded operator for a call whose
1807/// arguments have types T1 (and, if non-empty, T2). This routine
1808/// implements the check in C++ [over.match.oper]p3b2 concerning
1809/// enumeration types.
1810static bool
1811IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1812                                       QualType T1, QualType T2,
1813                                       ASTContext &Context) {
1814  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1815    return true;
1816
1817  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1818    return true;
1819
1820  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1821  if (Proto->getNumArgs() < 1)
1822    return false;
1823
1824  if (T1->isEnumeralType()) {
1825    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1826    if (Context.hasSameUnqualifiedType(T1, ArgType))
1827      return true;
1828  }
1829
1830  if (Proto->getNumArgs() < 2)
1831    return false;
1832
1833  if (!T2.isNull() && T2->isEnumeralType()) {
1834    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1835    if (Context.hasSameUnqualifiedType(T2, ArgType))
1836      return true;
1837  }
1838
1839  return false;
1840}
1841
1842NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
1843                                  SourceLocation Loc,
1844                                  LookupNameKind NameKind,
1845                                  RedeclarationKind Redecl) {
1846  LookupResult R(*this, Name, Loc, NameKind, Redecl);
1847  LookupName(R, S);
1848  return R.getAsSingle<NamedDecl>();
1849}
1850
1851/// \brief Find the protocol with the given name, if any.
1852ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
1853                                       SourceLocation IdLoc) {
1854  Decl *D = LookupSingleName(TUScope, II, IdLoc,
1855                             LookupObjCProtocolName);
1856  return cast_or_null<ObjCProtocolDecl>(D);
1857}
1858
1859void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1860                                        QualType T1, QualType T2,
1861                                        UnresolvedSetImpl &Functions) {
1862  // C++ [over.match.oper]p3:
1863  //     -- The set of non-member candidates is the result of the
1864  //        unqualified lookup of operator@ in the context of the
1865  //        expression according to the usual rules for name lookup in
1866  //        unqualified function calls (3.4.2) except that all member
1867  //        functions are ignored. However, if no operand has a class
1868  //        type, only those non-member functions in the lookup set
1869  //        that have a first parameter of type T1 or "reference to
1870  //        (possibly cv-qualified) T1", when T1 is an enumeration
1871  //        type, or (if there is a right operand) a second parameter
1872  //        of type T2 or "reference to (possibly cv-qualified) T2",
1873  //        when T2 is an enumeration type, are candidate functions.
1874  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1875  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
1876  LookupName(Operators, S);
1877
1878  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1879
1880  if (Operators.empty())
1881    return;
1882
1883  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1884       Op != OpEnd; ++Op) {
1885    NamedDecl *Found = (*Op)->getUnderlyingDecl();
1886    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
1887      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1888        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
1889    } else if (FunctionTemplateDecl *FunTmpl
1890                 = dyn_cast<FunctionTemplateDecl>(Found)) {
1891      // FIXME: friend operators?
1892      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1893      // later?
1894      if (!FunTmpl->getDeclContext()->isRecord())
1895        Functions.addDecl(*Op, Op.getAccess());
1896    }
1897  }
1898}
1899
1900void ADLResult::insert(NamedDecl *New) {
1901  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
1902
1903  // If we haven't yet seen a decl for this key, or the last decl
1904  // was exactly this one, we're done.
1905  if (Old == 0 || Old == New) {
1906    Old = New;
1907    return;
1908  }
1909
1910  // Otherwise, decide which is a more recent redeclaration.
1911  FunctionDecl *OldFD, *NewFD;
1912  if (isa<FunctionTemplateDecl>(New)) {
1913    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
1914    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
1915  } else {
1916    OldFD = cast<FunctionDecl>(Old);
1917    NewFD = cast<FunctionDecl>(New);
1918  }
1919
1920  FunctionDecl *Cursor = NewFD;
1921  while (true) {
1922    Cursor = Cursor->getPreviousDeclaration();
1923
1924    // If we got to the end without finding OldFD, OldFD is the newer
1925    // declaration;  leave things as they are.
1926    if (!Cursor) return;
1927
1928    // If we do find OldFD, then NewFD is newer.
1929    if (Cursor == OldFD) break;
1930
1931    // Otherwise, keep looking.
1932  }
1933
1934  Old = New;
1935}
1936
1937void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1938                                   Expr **Args, unsigned NumArgs,
1939                                   ADLResult &Result) {
1940  // Find all of the associated namespaces and classes based on the
1941  // arguments we have.
1942  AssociatedNamespaceSet AssociatedNamespaces;
1943  AssociatedClassSet AssociatedClasses;
1944  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1945                                     AssociatedNamespaces,
1946                                     AssociatedClasses);
1947
1948  QualType T1, T2;
1949  if (Operator) {
1950    T1 = Args[0]->getType();
1951    if (NumArgs >= 2)
1952      T2 = Args[1]->getType();
1953  }
1954
1955  // C++ [basic.lookup.argdep]p3:
1956  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1957  //   and let Y be the lookup set produced by argument dependent
1958  //   lookup (defined as follows). If X contains [...] then Y is
1959  //   empty. Otherwise Y is the set of declarations found in the
1960  //   namespaces associated with the argument types as described
1961  //   below. The set of declarations found by the lookup of the name
1962  //   is the union of X and Y.
1963  //
1964  // Here, we compute Y and add its members to the overloaded
1965  // candidate set.
1966  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1967                                     NSEnd = AssociatedNamespaces.end();
1968       NS != NSEnd; ++NS) {
1969    //   When considering an associated namespace, the lookup is the
1970    //   same as the lookup performed when the associated namespace is
1971    //   used as a qualifier (3.4.3.2) except that:
1972    //
1973    //     -- Any using-directives in the associated namespace are
1974    //        ignored.
1975    //
1976    //     -- Any namespace-scope friend functions declared in
1977    //        associated classes are visible within their respective
1978    //        namespaces even if they are not visible during an ordinary
1979    //        lookup (11.4).
1980    DeclContext::lookup_iterator I, E;
1981    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1982      NamedDecl *D = *I;
1983      // If the only declaration here is an ordinary friend, consider
1984      // it only if it was declared in an associated classes.
1985      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1986        DeclContext *LexDC = D->getLexicalDeclContext();
1987        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1988          continue;
1989      }
1990
1991      if (isa<UsingShadowDecl>(D))
1992        D = cast<UsingShadowDecl>(D)->getTargetDecl();
1993
1994      if (isa<FunctionDecl>(D)) {
1995        if (Operator &&
1996            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
1997                                                    T1, T2, Context))
1998          continue;
1999      } else if (!isa<FunctionTemplateDecl>(D))
2000        continue;
2001
2002      Result.insert(D);
2003    }
2004  }
2005}
2006
2007//----------------------------------------------------------------------------
2008// Search for all visible declarations.
2009//----------------------------------------------------------------------------
2010VisibleDeclConsumer::~VisibleDeclConsumer() { }
2011
2012namespace {
2013
2014class ShadowContextRAII;
2015
2016class VisibleDeclsRecord {
2017public:
2018  /// \brief An entry in the shadow map, which is optimized to store a
2019  /// single declaration (the common case) but can also store a list
2020  /// of declarations.
2021  class ShadowMapEntry {
2022    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
2023
2024    /// \brief Contains either the solitary NamedDecl * or a vector
2025    /// of declarations.
2026    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2027
2028  public:
2029    ShadowMapEntry() : DeclOrVector() { }
2030
2031    void Add(NamedDecl *ND);
2032    void Destroy();
2033
2034    // Iteration.
2035    typedef NamedDecl **iterator;
2036    iterator begin();
2037    iterator end();
2038  };
2039
2040private:
2041  /// \brief A mapping from declaration names to the declarations that have
2042  /// this name within a particular scope.
2043  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2044
2045  /// \brief A list of shadow maps, which is used to model name hiding.
2046  std::list<ShadowMap> ShadowMaps;
2047
2048  /// \brief The declaration contexts we have already visited.
2049  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2050
2051  friend class ShadowContextRAII;
2052
2053public:
2054  /// \brief Determine whether we have already visited this context
2055  /// (and, if not, note that we are going to visit that context now).
2056  bool visitedContext(DeclContext *Ctx) {
2057    return !VisitedContexts.insert(Ctx);
2058  }
2059
2060  /// \brief Determine whether the given declaration is hidden in the
2061  /// current scope.
2062  ///
2063  /// \returns the declaration that hides the given declaration, or
2064  /// NULL if no such declaration exists.
2065  NamedDecl *checkHidden(NamedDecl *ND);
2066
2067  /// \brief Add a declaration to the current shadow map.
2068  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2069};
2070
2071/// \brief RAII object that records when we've entered a shadow context.
2072class ShadowContextRAII {
2073  VisibleDeclsRecord &Visible;
2074
2075  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2076
2077public:
2078  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2079    Visible.ShadowMaps.push_back(ShadowMap());
2080  }
2081
2082  ~ShadowContextRAII() {
2083    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2084                          EEnd = Visible.ShadowMaps.back().end();
2085         E != EEnd;
2086         ++E)
2087      E->second.Destroy();
2088
2089    Visible.ShadowMaps.pop_back();
2090  }
2091};
2092
2093} // end anonymous namespace
2094
2095void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2096  if (DeclOrVector.isNull()) {
2097    // 0 - > 1 elements: just set the single element information.
2098    DeclOrVector = ND;
2099    return;
2100  }
2101
2102  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2103    // 1 -> 2 elements: create the vector of results and push in the
2104    // existing declaration.
2105    DeclVector *Vec = new DeclVector;
2106    Vec->push_back(PrevND);
2107    DeclOrVector = Vec;
2108  }
2109
2110  // Add the new element to the end of the vector.
2111  DeclOrVector.get<DeclVector*>()->push_back(ND);
2112}
2113
2114void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2115  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2116    delete Vec;
2117    DeclOrVector = ((NamedDecl *)0);
2118  }
2119}
2120
2121VisibleDeclsRecord::ShadowMapEntry::iterator
2122VisibleDeclsRecord::ShadowMapEntry::begin() {
2123  if (DeclOrVector.isNull())
2124    return 0;
2125
2126  if (DeclOrVector.dyn_cast<NamedDecl *>())
2127    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2128
2129  return DeclOrVector.get<DeclVector *>()->begin();
2130}
2131
2132VisibleDeclsRecord::ShadowMapEntry::iterator
2133VisibleDeclsRecord::ShadowMapEntry::end() {
2134  if (DeclOrVector.isNull())
2135    return 0;
2136
2137  if (DeclOrVector.dyn_cast<NamedDecl *>())
2138    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2139
2140  return DeclOrVector.get<DeclVector *>()->end();
2141}
2142
2143NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2144  // Look through using declarations.
2145  ND = ND->getUnderlyingDecl();
2146
2147  unsigned IDNS = ND->getIdentifierNamespace();
2148  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2149  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2150       SM != SMEnd; ++SM) {
2151    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2152    if (Pos == SM->end())
2153      continue;
2154
2155    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2156                               IEnd = Pos->second.end();
2157         I != IEnd; ++I) {
2158      // A tag declaration does not hide a non-tag declaration.
2159      if ((*I)->hasTagIdentifierNamespace() &&
2160          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2161                   Decl::IDNS_ObjCProtocol)))
2162        continue;
2163
2164      // Protocols are in distinct namespaces from everything else.
2165      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2166           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2167          (*I)->getIdentifierNamespace() != IDNS)
2168        continue;
2169
2170      // Functions and function templates in the same scope overload
2171      // rather than hide.  FIXME: Look for hiding based on function
2172      // signatures!
2173      if ((*I)->isFunctionOrFunctionTemplate() &&
2174          ND->isFunctionOrFunctionTemplate() &&
2175          SM == ShadowMaps.rbegin())
2176        continue;
2177
2178      // We've found a declaration that hides this one.
2179      return *I;
2180    }
2181  }
2182
2183  return 0;
2184}
2185
2186static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2187                               bool QualifiedNameLookup,
2188                               bool InBaseClass,
2189                               VisibleDeclConsumer &Consumer,
2190                               VisibleDeclsRecord &Visited) {
2191  if (!Ctx)
2192    return;
2193
2194  // Make sure we don't visit the same context twice.
2195  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2196    return;
2197
2198  // Enumerate all of the results in this context.
2199  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2200       CurCtx = CurCtx->getNextContext()) {
2201    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2202                                 DEnd = CurCtx->decls_end();
2203         D != DEnd; ++D) {
2204      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2205        if (Result.isAcceptableDecl(ND)) {
2206          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2207          Visited.add(ND);
2208        }
2209
2210      // Visit transparent contexts inside this context.
2211      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2212        if (InnerCtx->isTransparentContext())
2213          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2214                             Consumer, Visited);
2215      }
2216    }
2217  }
2218
2219  // Traverse using directives for qualified name lookup.
2220  if (QualifiedNameLookup) {
2221    ShadowContextRAII Shadow(Visited);
2222    DeclContext::udir_iterator I, E;
2223    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2224      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2225                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2226    }
2227  }
2228
2229  // Traverse the contexts of inherited C++ classes.
2230  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2231    if (!Record->hasDefinition())
2232      return;
2233
2234    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2235                                         BEnd = Record->bases_end();
2236         B != BEnd; ++B) {
2237      QualType BaseType = B->getType();
2238
2239      // Don't look into dependent bases, because name lookup can't look
2240      // there anyway.
2241      if (BaseType->isDependentType())
2242        continue;
2243
2244      const RecordType *Record = BaseType->getAs<RecordType>();
2245      if (!Record)
2246        continue;
2247
2248      // FIXME: It would be nice to be able to determine whether referencing
2249      // a particular member would be ambiguous. For example, given
2250      //
2251      //   struct A { int member; };
2252      //   struct B { int member; };
2253      //   struct C : A, B { };
2254      //
2255      //   void f(C *c) { c->### }
2256      //
2257      // accessing 'member' would result in an ambiguity. However, we
2258      // could be smart enough to qualify the member with the base
2259      // class, e.g.,
2260      //
2261      //   c->B::member
2262      //
2263      // or
2264      //
2265      //   c->A::member
2266
2267      // Find results in this base class (and its bases).
2268      ShadowContextRAII Shadow(Visited);
2269      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2270                         true, Consumer, Visited);
2271    }
2272  }
2273
2274  // Traverse the contexts of Objective-C classes.
2275  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2276    // Traverse categories.
2277    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2278         Category; Category = Category->getNextClassCategory()) {
2279      ShadowContextRAII Shadow(Visited);
2280      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2281                         Consumer, Visited);
2282    }
2283
2284    // Traverse protocols.
2285    for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
2286         E = IFace->protocol_end(); I != E; ++I) {
2287      ShadowContextRAII Shadow(Visited);
2288      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2289                         Visited);
2290    }
2291
2292    // Traverse the superclass.
2293    if (IFace->getSuperClass()) {
2294      ShadowContextRAII Shadow(Visited);
2295      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2296                         true, Consumer, Visited);
2297    }
2298
2299    // If there is an implementation, traverse it. We do this to find
2300    // synthesized ivars.
2301    if (IFace->getImplementation()) {
2302      ShadowContextRAII Shadow(Visited);
2303      LookupVisibleDecls(IFace->getImplementation(), Result,
2304                         QualifiedNameLookup, true, Consumer, Visited);
2305    }
2306  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2307    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2308           E = Protocol->protocol_end(); I != E; ++I) {
2309      ShadowContextRAII Shadow(Visited);
2310      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2311                         Visited);
2312    }
2313  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2314    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2315           E = Category->protocol_end(); I != E; ++I) {
2316      ShadowContextRAII Shadow(Visited);
2317      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2318                         Visited);
2319    }
2320
2321    // If there is an implementation, traverse it.
2322    if (Category->getImplementation()) {
2323      ShadowContextRAII Shadow(Visited);
2324      LookupVisibleDecls(Category->getImplementation(), Result,
2325                         QualifiedNameLookup, true, Consumer, Visited);
2326    }
2327  }
2328}
2329
2330static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2331                               UnqualUsingDirectiveSet &UDirs,
2332                               VisibleDeclConsumer &Consumer,
2333                               VisibleDeclsRecord &Visited) {
2334  if (!S)
2335    return;
2336
2337  if (!S->getEntity() || !S->getParent() ||
2338      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2339    // Walk through the declarations in this Scope.
2340    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2341         D != DEnd; ++D) {
2342      if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
2343        if (Result.isAcceptableDecl(ND)) {
2344          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2345          Visited.add(ND);
2346        }
2347    }
2348  }
2349
2350  // FIXME: C++ [temp.local]p8
2351  DeclContext *Entity = 0;
2352  if (S->getEntity()) {
2353    // Look into this scope's declaration context, along with any of its
2354    // parent lookup contexts (e.g., enclosing classes), up to the point
2355    // where we hit the context stored in the next outer scope.
2356    Entity = (DeclContext *)S->getEntity();
2357    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2358
2359    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2360         Ctx = Ctx->getLookupParent()) {
2361      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2362        if (Method->isInstanceMethod()) {
2363          // For instance methods, look for ivars in the method's interface.
2364          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2365                                  Result.getNameLoc(), Sema::LookupMemberName);
2366          if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
2367            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2368                               /*InBaseClass=*/false, Consumer, Visited);
2369        }
2370
2371        // We've already performed all of the name lookup that we need
2372        // to for Objective-C methods; the next context will be the
2373        // outer scope.
2374        break;
2375      }
2376
2377      if (Ctx->isFunctionOrMethod())
2378        continue;
2379
2380      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2381                         /*InBaseClass=*/false, Consumer, Visited);
2382    }
2383  } else if (!S->getParent()) {
2384    // Look into the translation unit scope. We walk through the translation
2385    // unit's declaration context, because the Scope itself won't have all of
2386    // the declarations if we loaded a precompiled header.
2387    // FIXME: We would like the translation unit's Scope object to point to the
2388    // translation unit, so we don't need this special "if" branch. However,
2389    // doing so would force the normal C++ name-lookup code to look into the
2390    // translation unit decl when the IdentifierInfo chains would suffice.
2391    // Once we fix that problem (which is part of a more general "don't look
2392    // in DeclContexts unless we have to" optimization), we can eliminate this.
2393    Entity = Result.getSema().Context.getTranslationUnitDecl();
2394    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2395                       /*InBaseClass=*/false, Consumer, Visited);
2396  }
2397
2398  if (Entity) {
2399    // Lookup visible declarations in any namespaces found by using
2400    // directives.
2401    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2402    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2403    for (; UI != UEnd; ++UI)
2404      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2405                         Result, /*QualifiedNameLookup=*/false,
2406                         /*InBaseClass=*/false, Consumer, Visited);
2407  }
2408
2409  // Lookup names in the parent scope.
2410  ShadowContextRAII Shadow(Visited);
2411  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2412}
2413
2414void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2415                              VisibleDeclConsumer &Consumer) {
2416  // Determine the set of using directives available during
2417  // unqualified name lookup.
2418  Scope *Initial = S;
2419  UnqualUsingDirectiveSet UDirs;
2420  if (getLangOptions().CPlusPlus) {
2421    // Find the first namespace or translation-unit scope.
2422    while (S && !isNamespaceOrTranslationUnitScope(S))
2423      S = S->getParent();
2424
2425    UDirs.visitScopeChain(Initial, S);
2426  }
2427  UDirs.done();
2428
2429  // Look for visible declarations.
2430  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2431  VisibleDeclsRecord Visited;
2432  ShadowContextRAII Shadow(Visited);
2433  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2434}
2435
2436void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2437                              VisibleDeclConsumer &Consumer) {
2438  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2439  VisibleDeclsRecord Visited;
2440  ShadowContextRAII Shadow(Visited);
2441  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2442                       /*InBaseClass=*/false, Consumer, Visited);
2443}
2444
2445//----------------------------------------------------------------------------
2446// Typo correction
2447//----------------------------------------------------------------------------
2448
2449namespace {
2450class TypoCorrectionConsumer : public VisibleDeclConsumer {
2451  /// \brief The name written that is a typo in the source.
2452  llvm::StringRef Typo;
2453
2454  /// \brief The results found that have the smallest edit distance
2455  /// found (so far) with the typo name.
2456  llvm::SmallVector<NamedDecl *, 4> BestResults;
2457
2458  /// \brief The keywords that have the smallest edit distance.
2459  llvm::SmallVector<IdentifierInfo *, 4> BestKeywords;
2460
2461  /// \brief The best edit distance found so far.
2462  unsigned BestEditDistance;
2463
2464public:
2465  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2466    : Typo(Typo->getName()) { }
2467
2468  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2469  void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
2470
2471  typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
2472  iterator begin() const { return BestResults.begin(); }
2473  iterator end() const { return BestResults.end(); }
2474  void clear_decls() { BestResults.clear(); }
2475
2476  bool empty() const { return BestResults.empty() && BestKeywords.empty(); }
2477
2478  typedef llvm::SmallVector<IdentifierInfo *, 4>::const_iterator
2479    keyword_iterator;
2480  keyword_iterator keyword_begin() const { return BestKeywords.begin(); }
2481  keyword_iterator keyword_end() const { return BestKeywords.end(); }
2482  bool keyword_empty() const { return BestKeywords.empty(); }
2483  unsigned keyword_size() const { return BestKeywords.size(); }
2484
2485  unsigned getBestEditDistance() const { return BestEditDistance; }
2486};
2487
2488}
2489
2490void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2491                                       bool InBaseClass) {
2492  // Don't consider hidden names for typo correction.
2493  if (Hiding)
2494    return;
2495
2496  // Only consider entities with identifiers for names, ignoring
2497  // special names (constructors, overloaded operators, selectors,
2498  // etc.).
2499  IdentifierInfo *Name = ND->getIdentifier();
2500  if (!Name)
2501    return;
2502
2503  // Compute the edit distance between the typo and the name of this
2504  // entity. If this edit distance is not worse than the best edit
2505  // distance we've seen so far, add it to the list of results.
2506  unsigned ED = Typo.edit_distance(Name->getName());
2507  if (!BestResults.empty() || !BestKeywords.empty()) {
2508    if (ED < BestEditDistance) {
2509      // This result is better than any we've seen before; clear out
2510      // the previous results.
2511      BestResults.clear();
2512      BestKeywords.clear();
2513      BestEditDistance = ED;
2514    } else if (ED > BestEditDistance) {
2515      // This result is worse than the best results we've seen so far;
2516      // ignore it.
2517      return;
2518    }
2519  } else
2520    BestEditDistance = ED;
2521
2522  BestResults.push_back(ND);
2523}
2524
2525void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
2526                                              llvm::StringRef Keyword) {
2527  // Compute the edit distance between the typo and this keyword.
2528  // If this edit distance is not worse than the best edit
2529  // distance we've seen so far, add it to the list of results.
2530  unsigned ED = Typo.edit_distance(Keyword);
2531  if (!BestResults.empty() || !BestKeywords.empty()) {
2532    if (ED < BestEditDistance) {
2533      BestResults.clear();
2534      BestKeywords.clear();
2535      BestEditDistance = ED;
2536    } else if (ED > BestEditDistance) {
2537      // This result is worse than the best results we've seen so far;
2538      // ignore it.
2539      return;
2540    }
2541  } else
2542    BestEditDistance = ED;
2543
2544  BestKeywords.push_back(&Context.Idents.get(Keyword));
2545}
2546
2547/// \brief Try to "correct" a typo in the source code by finding
2548/// visible declarations whose names are similar to the name that was
2549/// present in the source code.
2550///
2551/// \param Res the \c LookupResult structure that contains the name
2552/// that was present in the source code along with the name-lookup
2553/// criteria used to search for the name. On success, this structure
2554/// will contain the results of name lookup.
2555///
2556/// \param S the scope in which name lookup occurs.
2557///
2558/// \param SS the nested-name-specifier that precedes the name we're
2559/// looking for, if present.
2560///
2561/// \param MemberContext if non-NULL, the context in which to look for
2562/// a member access expression.
2563///
2564/// \param EnteringContext whether we're entering the context described by
2565/// the nested-name-specifier SS.
2566///
2567/// \param CTC The context in which typo correction occurs, which impacts the
2568/// set of keywords permitted.
2569///
2570/// \param OPT when non-NULL, the search for visible declarations will
2571/// also walk the protocols in the qualified interfaces of \p OPT.
2572///
2573/// \returns the corrected name if the typo was corrected, otherwise returns an
2574/// empty \c DeclarationName. When a typo was corrected, the result structure
2575/// may contain the results of name lookup for the correct name or it may be
2576/// empty.
2577DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
2578                                  DeclContext *MemberContext,
2579                                  bool EnteringContext,
2580                                  CorrectTypoContext CTC,
2581                                  const ObjCObjectPointerType *OPT) {
2582  if (Diags.hasFatalErrorOccurred())
2583    return DeclarationName();
2584
2585  // Provide a stop gap for files that are just seriously broken.  Trying
2586  // to correct all typos can turn into a HUGE performance penalty, causing
2587  // some files to take minutes to get rejected by the parser.
2588  // FIXME: Is this the right solution?
2589  if (TyposCorrected == 20)
2590    return DeclarationName();
2591  ++TyposCorrected;
2592
2593  // We only attempt to correct typos for identifiers.
2594  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2595  if (!Typo)
2596    return DeclarationName();
2597
2598  // If the scope specifier itself was invalid, don't try to correct
2599  // typos.
2600  if (SS && SS->isInvalid())
2601    return DeclarationName();
2602
2603  // Never try to correct typos during template deduction or
2604  // instantiation.
2605  if (!ActiveTemplateInstantiations.empty())
2606    return DeclarationName();
2607
2608  TypoCorrectionConsumer Consumer(Typo);
2609
2610  // Perform name lookup to find visible, similarly-named entities.
2611  if (MemberContext) {
2612    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2613
2614    // Look in qualified interfaces.
2615    if (OPT) {
2616      for (ObjCObjectPointerType::qual_iterator
2617             I = OPT->qual_begin(), E = OPT->qual_end();
2618           I != E; ++I)
2619        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2620    }
2621  } else if (SS && SS->isSet()) {
2622    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2623    if (!DC)
2624      return DeclarationName();
2625
2626    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2627  } else {
2628    LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
2629  }
2630
2631  // Add context-dependent keywords.
2632  bool WantTypeSpecifiers = false;
2633  bool WantExpressionKeywords = false;
2634  bool WantCXXNamedCasts = false;
2635  bool WantRemainingKeywords = false;
2636  switch (CTC) {
2637    case CTC_Unknown:
2638      WantTypeSpecifiers = true;
2639      WantExpressionKeywords = true;
2640      WantCXXNamedCasts = true;
2641      WantRemainingKeywords = true;
2642
2643      if (ObjCMethodDecl *Method = getCurMethodDecl())
2644        if (Method->getClassInterface() &&
2645            Method->getClassInterface()->getSuperClass())
2646          Consumer.addKeywordResult(Context, "super");
2647
2648      break;
2649
2650    case CTC_NoKeywords:
2651      break;
2652
2653    case CTC_Type:
2654      WantTypeSpecifiers = true;
2655      break;
2656
2657    case CTC_ObjCMessageReceiver:
2658      Consumer.addKeywordResult(Context, "super");
2659      // Fall through to handle message receivers like expressions.
2660
2661    case CTC_Expression:
2662      if (getLangOptions().CPlusPlus)
2663        WantTypeSpecifiers = true;
2664      WantExpressionKeywords = true;
2665      // Fall through to get C++ named casts.
2666
2667    case CTC_CXXCasts:
2668      WantCXXNamedCasts = true;
2669      break;
2670
2671    case CTC_MemberLookup:
2672      if (getLangOptions().CPlusPlus)
2673        Consumer.addKeywordResult(Context, "template");
2674      break;
2675  }
2676
2677  if (WantTypeSpecifiers) {
2678    // Add type-specifier keywords to the set of results.
2679    const char *CTypeSpecs[] = {
2680      "char", "const", "double", "enum", "float", "int", "long", "short",
2681      "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
2682      "_Complex", "_Imaginary",
2683      // storage-specifiers as well
2684      "extern", "inline", "static", "typedef"
2685    };
2686
2687    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
2688    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
2689      Consumer.addKeywordResult(Context, CTypeSpecs[I]);
2690
2691    if (getLangOptions().C99)
2692      Consumer.addKeywordResult(Context, "restrict");
2693    if (getLangOptions().Bool || getLangOptions().CPlusPlus)
2694      Consumer.addKeywordResult(Context, "bool");
2695
2696    if (getLangOptions().CPlusPlus) {
2697      Consumer.addKeywordResult(Context, "class");
2698      Consumer.addKeywordResult(Context, "typename");
2699      Consumer.addKeywordResult(Context, "wchar_t");
2700
2701      if (getLangOptions().CPlusPlus0x) {
2702        Consumer.addKeywordResult(Context, "char16_t");
2703        Consumer.addKeywordResult(Context, "char32_t");
2704        Consumer.addKeywordResult(Context, "constexpr");
2705        Consumer.addKeywordResult(Context, "decltype");
2706        Consumer.addKeywordResult(Context, "thread_local");
2707      }
2708    }
2709
2710    if (getLangOptions().GNUMode)
2711      Consumer.addKeywordResult(Context, "typeof");
2712  }
2713
2714  if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
2715    Consumer.addKeywordResult(Context, "const_cast");
2716    Consumer.addKeywordResult(Context, "dynamic_cast");
2717    Consumer.addKeywordResult(Context, "reinterpret_cast");
2718    Consumer.addKeywordResult(Context, "static_cast");
2719  }
2720
2721  if (WantExpressionKeywords) {
2722    Consumer.addKeywordResult(Context, "sizeof");
2723    if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
2724      Consumer.addKeywordResult(Context, "false");
2725      Consumer.addKeywordResult(Context, "true");
2726    }
2727
2728    if (getLangOptions().CPlusPlus) {
2729      const char *CXXExprs[] = {
2730        "delete", "new", "operator", "throw", "typeid"
2731      };
2732      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
2733      for (unsigned I = 0; I != NumCXXExprs; ++I)
2734        Consumer.addKeywordResult(Context, CXXExprs[I]);
2735
2736      if (isa<CXXMethodDecl>(CurContext) &&
2737          cast<CXXMethodDecl>(CurContext)->isInstance())
2738        Consumer.addKeywordResult(Context, "this");
2739
2740      if (getLangOptions().CPlusPlus0x) {
2741        Consumer.addKeywordResult(Context, "alignof");
2742        Consumer.addKeywordResult(Context, "nullptr");
2743      }
2744    }
2745  }
2746
2747  if (WantRemainingKeywords) {
2748    if (getCurFunctionOrMethodDecl() || getCurBlock()) {
2749      // Statements.
2750      const char *CStmts[] = {
2751        "do", "else", "for", "goto", "if", "return", "switch", "while" };
2752      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
2753      for (unsigned I = 0; I != NumCStmts; ++I)
2754        Consumer.addKeywordResult(Context, CStmts[I]);
2755
2756      if (getLangOptions().CPlusPlus) {
2757        Consumer.addKeywordResult(Context, "catch");
2758        Consumer.addKeywordResult(Context, "try");
2759      }
2760
2761      if (S && S->getBreakParent())
2762        Consumer.addKeywordResult(Context, "break");
2763
2764      if (S && S->getContinueParent())
2765        Consumer.addKeywordResult(Context, "continue");
2766
2767      if (!getSwitchStack().empty()) {
2768        Consumer.addKeywordResult(Context, "case");
2769        Consumer.addKeywordResult(Context, "default");
2770      }
2771    } else {
2772      if (getLangOptions().CPlusPlus) {
2773        Consumer.addKeywordResult(Context, "namespace");
2774        Consumer.addKeywordResult(Context, "template");
2775      }
2776
2777      if (S && S->isClassScope()) {
2778        Consumer.addKeywordResult(Context, "explicit");
2779        Consumer.addKeywordResult(Context, "friend");
2780        Consumer.addKeywordResult(Context, "mutable");
2781        Consumer.addKeywordResult(Context, "private");
2782        Consumer.addKeywordResult(Context, "protected");
2783        Consumer.addKeywordResult(Context, "public");
2784        Consumer.addKeywordResult(Context, "virtual");
2785      }
2786    }
2787
2788    if (getLangOptions().CPlusPlus) {
2789      Consumer.addKeywordResult(Context, "using");
2790
2791      if (getLangOptions().CPlusPlus0x)
2792        Consumer.addKeywordResult(Context, "static_assert");
2793    }
2794  }
2795
2796  // If we haven't found anything, we're done.
2797  if (Consumer.empty())
2798    return DeclarationName();
2799
2800  // Only allow a single, closest name in the result set (it's okay to
2801  // have overloads of that name, though).
2802  DeclarationName BestName;
2803  NamedDecl *BestIvarOrPropertyDecl = 0;
2804  bool FoundIvarOrPropertyDecl = false;
2805
2806  // Check all of the declaration results to find the best name so far.
2807  for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
2808                                     IEnd = Consumer.end();
2809       I != IEnd; ++I) {
2810    if (!BestName)
2811      BestName = (*I)->getDeclName();
2812    else if (BestName != (*I)->getDeclName())
2813      return DeclarationName();
2814
2815    // \brief Keep track of either an Objective-C ivar or a property, but not
2816    // both.
2817    if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I)) {
2818      if (FoundIvarOrPropertyDecl)
2819        BestIvarOrPropertyDecl = 0;
2820      else {
2821        BestIvarOrPropertyDecl = *I;
2822        FoundIvarOrPropertyDecl = true;
2823      }
2824    }
2825  }
2826
2827  // Now check all of the keyword results to find the best name.
2828  switch (Consumer.keyword_size()) {
2829    case 0:
2830      // No keywords matched.
2831      break;
2832
2833    case 1:
2834      // If we already have a name
2835      if (!BestName) {
2836        // We did not have anything previously,
2837        BestName = *Consumer.keyword_begin();
2838      } else if (BestName.getAsIdentifierInfo() == *Consumer.keyword_begin()) {
2839        // We have a declaration with the same name as a context-sensitive
2840        // keyword. The keyword takes precedence.
2841        BestIvarOrPropertyDecl = 0;
2842        FoundIvarOrPropertyDecl = false;
2843        Consumer.clear_decls();
2844      } else if (CTC == CTC_ObjCMessageReceiver &&
2845                 (*Consumer.keyword_begin())->isStr("super")) {
2846        // In an Objective-C message send, give the "super" keyword a slight
2847        // edge over entities not in function or method scope.
2848        for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
2849                                           IEnd = Consumer.end();
2850             I != IEnd; ++I) {
2851          if ((*I)->getDeclName() == BestName) {
2852            if ((*I)->getDeclContext()->isFunctionOrMethod())
2853              return DeclarationName();
2854          }
2855        }
2856
2857        // Everything found was outside a function or method; the 'super'
2858        // keyword takes precedence.
2859        BestIvarOrPropertyDecl = 0;
2860        FoundIvarOrPropertyDecl = false;
2861        Consumer.clear_decls();
2862        BestName = *Consumer.keyword_begin();
2863      } else {
2864        // Name collision; we will not correct typos.
2865        return DeclarationName();
2866      }
2867      break;
2868
2869    default:
2870      // Name collision; we will not correct typos.
2871      return DeclarationName();
2872  }
2873
2874  // BestName is the closest viable name to what the user
2875  // typed. However, to make sure that we don't pick something that's
2876  // way off, make sure that the user typed at least 3 characters for
2877  // each correction.
2878  unsigned ED = Consumer.getBestEditDistance();
2879  if (ED == 0 || !BestName.getAsIdentifierInfo() ||
2880      (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
2881    return DeclarationName();
2882
2883  // Perform name lookup again with the name we chose, and declare
2884  // success if we found something that was not ambiguous.
2885  Res.clear();
2886  Res.setLookupName(BestName);
2887
2888  // If we found an ivar or property, add that result; no further
2889  // lookup is required.
2890  if (BestIvarOrPropertyDecl)
2891    Res.addDecl(BestIvarOrPropertyDecl);
2892  // If we're looking into the context of a member, perform qualified
2893  // name lookup on the best name.
2894  else if (!Consumer.keyword_empty()) {
2895    // The best match was a keyword. Return it.
2896    return BestName;
2897  } else if (MemberContext)
2898    LookupQualifiedName(Res, MemberContext);
2899  // Perform lookup as if we had just parsed the best name.
2900  else
2901    LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2902                     EnteringContext);
2903
2904  if (Res.isAmbiguous()) {
2905    Res.suppressDiagnostics();
2906    return DeclarationName();
2907  }
2908
2909  if (Res.getResultKind() != LookupResult::NotFound)
2910    return BestName;
2911
2912  return DeclarationName();
2913}
2914