SemaLookup.cpp revision 41a998c514958e5efa81afbff5d3519fe983d671
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include <set>
29#include <vector>
30#include <iterator>
31#include <utility>
32#include <algorithm>
33
34using namespace clang;
35
36typedef llvm::SmallVector<UsingDirectiveDecl*, 4> UsingDirectivesTy;
37typedef llvm::DenseSet<NamespaceDecl*> NamespaceSet;
38typedef llvm::SmallVector<Sema::LookupResult, 3> LookupResultsTy;
39
40/// UsingDirAncestorCompare - Implements strict weak ordering of
41/// UsingDirectives. It orders them by address of its common ancestor.
42struct UsingDirAncestorCompare {
43
44  /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
45  bool operator () (UsingDirectiveDecl *U, const DeclContext *Ctx) const {
46    return U->getCommonAncestor() < Ctx;
47  }
48
49  /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
50  bool operator () (const DeclContext *Ctx, UsingDirectiveDecl *U) const {
51    return Ctx < U->getCommonAncestor();
52  }
53
54  /// @brief Compares UsingDirectiveDecl common ancestors.
55  bool operator () (UsingDirectiveDecl *U1, UsingDirectiveDecl *U2) const {
56    return U1->getCommonAncestor() < U2->getCommonAncestor();
57  }
58};
59
60/// AddNamespaceUsingDirectives - Adds all UsingDirectiveDecl's to heap UDirs
61/// (ordered by common ancestors), found in namespace NS,
62/// including all found (recursively) in their nominated namespaces.
63void AddNamespaceUsingDirectives(ASTContext &Context,
64                                 DeclContext *NS,
65                                 UsingDirectivesTy &UDirs,
66                                 NamespaceSet &Visited) {
67  DeclContext::udir_iterator I, End;
68
69  for (llvm::tie(I, End) = NS->getUsingDirectives(); I !=End; ++I) {
70    UDirs.push_back(*I);
71    std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
72    NamespaceDecl *Nominated = (*I)->getNominatedNamespace();
73    if (Visited.insert(Nominated).second)
74      AddNamespaceUsingDirectives(Context, Nominated, UDirs, /*ref*/ Visited);
75  }
76}
77
78/// AddScopeUsingDirectives - Adds all UsingDirectiveDecl's found in Scope S,
79/// including all found in the namespaces they nominate.
80static void AddScopeUsingDirectives(ASTContext &Context, Scope *S,
81                                    UsingDirectivesTy &UDirs) {
82  NamespaceSet VisitedNS;
83
84  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
85
86    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Ctx))
87      VisitedNS.insert(NS);
88
89    AddNamespaceUsingDirectives(Context, Ctx, UDirs, /*ref*/ VisitedNS);
90
91  } else {
92    Scope::udir_iterator I = S->using_directives_begin(),
93                         End = S->using_directives_end();
94
95    for (; I != End; ++I) {
96      UsingDirectiveDecl *UD = I->getAs<UsingDirectiveDecl>();
97      UDirs.push_back(UD);
98      std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
99
100      NamespaceDecl *Nominated = UD->getNominatedNamespace();
101      if (!VisitedNS.count(Nominated)) {
102        VisitedNS.insert(Nominated);
103        AddNamespaceUsingDirectives(Context, Nominated, UDirs,
104                                    /*ref*/ VisitedNS);
105      }
106    }
107  }
108}
109
110/// MaybeConstructOverloadSet - Name lookup has determined that the
111/// elements in [I, IEnd) have the name that we are looking for, and
112/// *I is a match for the namespace. This routine returns an
113/// appropriate Decl for name lookup, which may either be *I or an
114/// OverloadedFunctionDecl that represents the overloaded functions in
115/// [I, IEnd).
116///
117/// The existance of this routine is temporary; users of LookupResult
118/// should be able to handle multiple results, to deal with cases of
119/// ambiguity and overloaded functions without needing to create a
120/// Decl node.
121template<typename DeclIterator>
122static NamedDecl *
123MaybeConstructOverloadSet(ASTContext &Context,
124                          DeclIterator I, DeclIterator IEnd) {
125  assert(I != IEnd && "Iterator range cannot be empty");
126  assert(!isa<OverloadedFunctionDecl>(*I) &&
127         "Cannot have an overloaded function");
128
129  if ((*I)->isFunctionOrFunctionTemplate()) {
130    // If we found a function, there might be more functions. If
131    // so, collect them into an overload set.
132    DeclIterator Last = I;
133    OverloadedFunctionDecl *Ovl = 0;
134    for (++Last;
135         Last != IEnd && (*Last)->isFunctionOrFunctionTemplate();
136         ++Last) {
137      if (!Ovl) {
138        // FIXME: We leak this overload set. Eventually, we want to stop
139        // building the declarations for these overload sets, so there will be
140        // nothing to leak.
141        Ovl = OverloadedFunctionDecl::Create(Context, (*I)->getDeclContext(),
142                                             (*I)->getDeclName());
143        NamedDecl *ND = (*I)->getUnderlyingDecl();
144        if (isa<FunctionDecl>(ND))
145          Ovl->addOverload(cast<FunctionDecl>(ND));
146        else
147          Ovl->addOverload(cast<FunctionTemplateDecl>(ND));
148      }
149
150      NamedDecl *ND = (*Last)->getUnderlyingDecl();
151      if (isa<FunctionDecl>(ND))
152        Ovl->addOverload(cast<FunctionDecl>(ND));
153      else
154        Ovl->addOverload(cast<FunctionTemplateDecl>(ND));
155    }
156
157    // If we had more than one function, we built an overload
158    // set. Return it.
159    if (Ovl)
160      return Ovl;
161  }
162
163  return *I;
164}
165
166/// Merges together multiple LookupResults dealing with duplicated Decl's.
167static Sema::LookupResult
168MergeLookupResults(ASTContext &Context, LookupResultsTy &Results) {
169  typedef Sema::LookupResult LResult;
170  typedef llvm::SmallPtrSet<NamedDecl*, 4> DeclsSetTy;
171
172  // Remove duplicated Decl pointing at same Decl, by storing them in
173  // associative collection. This might be case for code like:
174  //
175  //    namespace A { int i; }
176  //    namespace B { using namespace A; }
177  //    namespace C { using namespace A; }
178  //
179  //    void foo() {
180  //      using namespace B;
181  //      using namespace C;
182  //      ++i; // finds A::i, from both namespace B and C at global scope
183  //    }
184  //
185  //  C++ [namespace.qual].p3:
186  //    The same declaration found more than once is not an ambiguity
187  //    (because it is still a unique declaration).
188  DeclsSetTy FoundDecls;
189
190  // Counter of tag names, and functions for resolving ambiguity
191  // and name hiding.
192  std::size_t TagNames = 0, Functions = 0, OrdinaryNonFunc = 0;
193
194  LookupResultsTy::iterator I = Results.begin(), End = Results.end();
195
196  // No name lookup results, return early.
197  if (I == End) return LResult::CreateLookupResult(Context, 0);
198
199  // Keep track of the tag declaration we found. We only use this if
200  // we find a single tag declaration.
201  TagDecl *TagFound = 0;
202
203  for (; I != End; ++I) {
204    switch (I->getKind()) {
205    case LResult::NotFound:
206      assert(false &&
207             "Should be always successful name lookup result here.");
208      break;
209
210    case LResult::AmbiguousReference:
211    case LResult::AmbiguousBaseSubobjectTypes:
212    case LResult::AmbiguousBaseSubobjects:
213      assert(false && "Shouldn't get ambiguous lookup here.");
214      break;
215
216    case LResult::Found: {
217      NamedDecl *ND = I->getAsDecl()->getUnderlyingDecl();
218
219      if (TagDecl *TD = dyn_cast<TagDecl>(ND)) {
220        TagFound = TD->getCanonicalDecl();
221        TagNames += FoundDecls.insert(TagFound)?  1 : 0;
222      } else if (ND->isFunctionOrFunctionTemplate())
223        Functions += FoundDecls.insert(ND)? 1 : 0;
224      else
225        FoundDecls.insert(ND);
226      break;
227    }
228
229    case LResult::FoundOverloaded:
230      for (LResult::iterator FI = I->begin(), FEnd = I->end(); FI != FEnd; ++FI)
231        Functions += FoundDecls.insert(*FI)? 1 : 0;
232      break;
233    }
234  }
235  OrdinaryNonFunc = FoundDecls.size() - TagNames - Functions;
236  bool Ambiguous = false, NameHidesTags = false;
237
238  if (FoundDecls.size() == 1) {
239    // 1) Exactly one result.
240  } else if (TagNames > 1) {
241    // 2) Multiple tag names (even though they may be hidden by an
242    // object name).
243    Ambiguous = true;
244  } else if (FoundDecls.size() - TagNames == 1) {
245    // 3) Ordinary name hides (optional) tag.
246    NameHidesTags = TagFound;
247  } else if (Functions) {
248    // C++ [basic.lookup].p1:
249    // ... Name lookup may associate more than one declaration with
250    // a name if it finds the name to be a function name; the declarations
251    // are said to form a set of overloaded functions (13.1).
252    // Overload resolution (13.3) takes place after name lookup has succeeded.
253    //
254    if (!OrdinaryNonFunc) {
255      // 4) Functions hide tag names.
256      NameHidesTags = TagFound;
257    } else {
258      // 5) Functions + ordinary names.
259      Ambiguous = true;
260    }
261  } else {
262    // 6) Multiple non-tag names
263    Ambiguous = true;
264  }
265
266  if (Ambiguous)
267    return LResult::CreateLookupResult(Context,
268                                       FoundDecls.begin(), FoundDecls.size());
269  if (NameHidesTags) {
270    // There's only one tag, TagFound. Remove it.
271    assert(TagFound && FoundDecls.count(TagFound) && "No tag name found?");
272    FoundDecls.erase(TagFound);
273  }
274
275  // Return successful name lookup result.
276  return LResult::CreateLookupResult(Context,
277                                MaybeConstructOverloadSet(Context,
278                                                          FoundDecls.begin(),
279                                                          FoundDecls.end()));
280}
281
282// Retrieve the set of identifier namespaces that correspond to a
283// specific kind of name lookup.
284inline unsigned
285getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
286                                          bool CPlusPlus) {
287  unsigned IDNS = 0;
288  switch (NameKind) {
289  case Sema::LookupOrdinaryName:
290  case Sema::LookupOperatorName:
291  case Sema::LookupRedeclarationWithLinkage:
292    IDNS = Decl::IDNS_Ordinary;
293    if (CPlusPlus)
294      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
295    break;
296
297  case Sema::LookupTagName:
298    IDNS = Decl::IDNS_Tag;
299    break;
300
301  case Sema::LookupMemberName:
302    IDNS = Decl::IDNS_Member;
303    if (CPlusPlus)
304      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
305    break;
306
307  case Sema::LookupNestedNameSpecifierName:
308  case Sema::LookupNamespaceName:
309    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
310    break;
311
312  case Sema::LookupObjCProtocolName:
313    IDNS = Decl::IDNS_ObjCProtocol;
314    break;
315
316  case Sema::LookupObjCImplementationName:
317    IDNS = Decl::IDNS_ObjCImplementation;
318    break;
319
320  case Sema::LookupObjCCategoryImplName:
321    IDNS = Decl::IDNS_ObjCCategoryImpl;
322    break;
323  }
324  return IDNS;
325}
326
327Sema::LookupResult
328Sema::LookupResult::CreateLookupResult(ASTContext &Context, NamedDecl *D) {
329  if (D)
330    D = D->getUnderlyingDecl();
331
332  LookupResult Result;
333  Result.StoredKind = (D && isa<OverloadedFunctionDecl>(D))?
334    OverloadedDeclSingleDecl : SingleDecl;
335  Result.First = reinterpret_cast<uintptr_t>(D);
336  Result.Last = 0;
337  Result.Context = &Context;
338  return Result;
339}
340
341/// @brief Moves the name-lookup results from Other to this LookupResult.
342Sema::LookupResult
343Sema::LookupResult::CreateLookupResult(ASTContext &Context,
344                                       IdentifierResolver::iterator F,
345                                       IdentifierResolver::iterator L) {
346  LookupResult Result;
347  Result.Context = &Context;
348
349  if (F != L && (*F)->isFunctionOrFunctionTemplate()) {
350    IdentifierResolver::iterator Next = F;
351    ++Next;
352    if (Next != L && (*Next)->isFunctionOrFunctionTemplate()) {
353      Result.StoredKind = OverloadedDeclFromIdResolver;
354      Result.First = F.getAsOpaqueValue();
355      Result.Last = L.getAsOpaqueValue();
356      return Result;
357    }
358  }
359
360  NamedDecl *D = *F;
361  if (D)
362    D = D->getUnderlyingDecl();
363
364  Result.StoredKind = SingleDecl;
365  Result.First = reinterpret_cast<uintptr_t>(D);
366  Result.Last = 0;
367  return Result;
368}
369
370Sema::LookupResult
371Sema::LookupResult::CreateLookupResult(ASTContext &Context,
372                                       DeclContext::lookup_iterator F,
373                                       DeclContext::lookup_iterator L) {
374  LookupResult Result;
375  Result.Context = &Context;
376
377  if (F != L && (*F)->isFunctionOrFunctionTemplate()) {
378    DeclContext::lookup_iterator Next = F;
379    ++Next;
380    if (Next != L && (*Next)->isFunctionOrFunctionTemplate()) {
381      Result.StoredKind = OverloadedDeclFromDeclContext;
382      Result.First = reinterpret_cast<uintptr_t>(F);
383      Result.Last = reinterpret_cast<uintptr_t>(L);
384      return Result;
385    }
386  }
387
388  NamedDecl *D = *F;
389  if (D)
390    D = D->getUnderlyingDecl();
391
392  Result.StoredKind = SingleDecl;
393  Result.First = reinterpret_cast<uintptr_t>(D);
394  Result.Last = 0;
395  return Result;
396}
397
398/// @brief Determine the result of name lookup.
399Sema::LookupResult::LookupKind Sema::LookupResult::getKind() const {
400  switch (StoredKind) {
401  case SingleDecl:
402    return (reinterpret_cast<Decl *>(First) != 0)? Found : NotFound;
403
404  case OverloadedDeclSingleDecl:
405  case OverloadedDeclFromIdResolver:
406  case OverloadedDeclFromDeclContext:
407    return FoundOverloaded;
408
409  case AmbiguousLookupStoresBasePaths:
410    return Last? AmbiguousBaseSubobjectTypes : AmbiguousBaseSubobjects;
411
412  case AmbiguousLookupStoresDecls:
413    return AmbiguousReference;
414  }
415
416  // We can't ever get here.
417  return NotFound;
418}
419
420/// @brief Converts the result of name lookup into a single (possible
421/// NULL) pointer to a declaration.
422///
423/// The resulting declaration will either be the declaration we found
424/// (if only a single declaration was found), an
425/// OverloadedFunctionDecl (if an overloaded function was found), or
426/// NULL (if no declaration was found). This conversion must not be
427/// used anywhere where name lookup could result in an ambiguity.
428///
429/// The OverloadedFunctionDecl conversion is meant as a stop-gap
430/// solution, since it causes the OverloadedFunctionDecl to be
431/// leaked. FIXME: Eventually, there will be a better way to iterate
432/// over the set of overloaded functions returned by name lookup.
433NamedDecl *Sema::LookupResult::getAsDecl() const {
434  switch (StoredKind) {
435  case SingleDecl:
436    return reinterpret_cast<NamedDecl *>(First);
437
438  case OverloadedDeclFromIdResolver:
439    return MaybeConstructOverloadSet(*Context,
440                         IdentifierResolver::iterator::getFromOpaqueValue(First),
441                         IdentifierResolver::iterator::getFromOpaqueValue(Last));
442
443  case OverloadedDeclFromDeclContext:
444    return MaybeConstructOverloadSet(*Context,
445                           reinterpret_cast<DeclContext::lookup_iterator>(First),
446                           reinterpret_cast<DeclContext::lookup_iterator>(Last));
447
448  case OverloadedDeclSingleDecl:
449    return reinterpret_cast<OverloadedFunctionDecl*>(First);
450
451  case AmbiguousLookupStoresDecls:
452  case AmbiguousLookupStoresBasePaths:
453    assert(false &&
454           "Name lookup returned an ambiguity that could not be handled");
455    break;
456  }
457
458  return 0;
459}
460
461/// @brief Retrieves the BasePaths structure describing an ambiguous
462/// name lookup, or null.
463BasePaths *Sema::LookupResult::getBasePaths() const {
464  if (StoredKind == AmbiguousLookupStoresBasePaths)
465      return reinterpret_cast<BasePaths *>(First);
466  return 0;
467}
468
469Sema::LookupResult::iterator::reference
470Sema::LookupResult::iterator::operator*() const {
471  switch (Result->StoredKind) {
472  case SingleDecl:
473    return reinterpret_cast<NamedDecl*>(Current);
474
475  case OverloadedDeclSingleDecl:
476    return *reinterpret_cast<NamedDecl**>(Current);
477
478  case OverloadedDeclFromIdResolver:
479    return *IdentifierResolver::iterator::getFromOpaqueValue(Current);
480
481  case AmbiguousLookupStoresBasePaths:
482    if (Result->Last)
483      return *reinterpret_cast<NamedDecl**>(Current);
484
485    // Fall through to handle the DeclContext::lookup_iterator we're
486    // storing.
487
488  case OverloadedDeclFromDeclContext:
489  case AmbiguousLookupStoresDecls:
490    return *reinterpret_cast<DeclContext::lookup_iterator>(Current);
491  }
492
493  return 0;
494}
495
496Sema::LookupResult::iterator& Sema::LookupResult::iterator::operator++() {
497  switch (Result->StoredKind) {
498  case SingleDecl:
499    Current = reinterpret_cast<uintptr_t>((NamedDecl*)0);
500    break;
501
502  case OverloadedDeclSingleDecl: {
503    NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current);
504    ++I;
505    Current = reinterpret_cast<uintptr_t>(I);
506    break;
507  }
508
509  case OverloadedDeclFromIdResolver: {
510    IdentifierResolver::iterator I
511      = IdentifierResolver::iterator::getFromOpaqueValue(Current);
512    ++I;
513    Current = I.getAsOpaqueValue();
514    break;
515  }
516
517  case AmbiguousLookupStoresBasePaths:
518    if (Result->Last) {
519      NamedDecl ** I = reinterpret_cast<NamedDecl**>(Current);
520      ++I;
521      Current = reinterpret_cast<uintptr_t>(I);
522      break;
523    }
524    // Fall through to handle the DeclContext::lookup_iterator we're
525    // storing.
526
527  case OverloadedDeclFromDeclContext:
528  case AmbiguousLookupStoresDecls: {
529    DeclContext::lookup_iterator I
530      = reinterpret_cast<DeclContext::lookup_iterator>(Current);
531    ++I;
532    Current = reinterpret_cast<uintptr_t>(I);
533    break;
534  }
535  }
536
537  return *this;
538}
539
540Sema::LookupResult::iterator Sema::LookupResult::begin() {
541  switch (StoredKind) {
542  case SingleDecl:
543  case OverloadedDeclFromIdResolver:
544  case OverloadedDeclFromDeclContext:
545  case AmbiguousLookupStoresDecls:
546    return iterator(this, First);
547
548  case OverloadedDeclSingleDecl: {
549    OverloadedFunctionDecl * Ovl =
550      reinterpret_cast<OverloadedFunctionDecl*>(First);
551    return iterator(this,
552                    reinterpret_cast<uintptr_t>(&(*Ovl->function_begin())));
553  }
554
555  case AmbiguousLookupStoresBasePaths:
556    if (Last)
557      return iterator(this,
558              reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_begin()));
559    else
560      return iterator(this,
561              reinterpret_cast<uintptr_t>(getBasePaths()->front().Decls.first));
562  }
563
564  // Required to suppress GCC warning.
565  return iterator();
566}
567
568Sema::LookupResult::iterator Sema::LookupResult::end() {
569  switch (StoredKind) {
570  case SingleDecl:
571  case OverloadedDeclFromIdResolver:
572  case OverloadedDeclFromDeclContext:
573  case AmbiguousLookupStoresDecls:
574    return iterator(this, Last);
575
576  case OverloadedDeclSingleDecl: {
577    OverloadedFunctionDecl * Ovl =
578      reinterpret_cast<OverloadedFunctionDecl*>(First);
579    return iterator(this,
580                    reinterpret_cast<uintptr_t>(&(*Ovl->function_end())));
581  }
582
583  case AmbiguousLookupStoresBasePaths:
584    if (Last)
585      return iterator(this,
586               reinterpret_cast<uintptr_t>(getBasePaths()->found_decls_end()));
587    else
588      return iterator(this, reinterpret_cast<uintptr_t>(
589                                     getBasePaths()->front().Decls.second));
590  }
591
592  // Required to suppress GCC warning.
593  return iterator();
594}
595
596void Sema::LookupResult::Destroy() {
597  if (BasePaths *Paths = getBasePaths())
598    delete Paths;
599  else if (getKind() == AmbiguousReference)
600    delete[] reinterpret_cast<NamedDecl **>(First);
601}
602
603static void
604CppNamespaceLookup(ASTContext &Context, DeclContext *NS,
605                   DeclarationName Name, Sema::LookupNameKind NameKind,
606                   unsigned IDNS, LookupResultsTy &Results,
607                   UsingDirectivesTy *UDirs = 0) {
608
609  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
610
611  // Perform qualified name lookup into the LookupCtx.
612  DeclContext::lookup_iterator I, E;
613  for (llvm::tie(I, E) = NS->lookup(Name); I != E; ++I)
614    if (Sema::isAcceptableLookupResult(*I, NameKind, IDNS)) {
615      Results.push_back(Sema::LookupResult::CreateLookupResult(Context, I, E));
616      break;
617    }
618
619  if (UDirs) {
620    // For each UsingDirectiveDecl, which common ancestor is equal
621    // to NS, we preform qualified name lookup into namespace nominated by it.
622    UsingDirectivesTy::const_iterator UI, UEnd;
623    llvm::tie(UI, UEnd) =
624      std::equal_range(UDirs->begin(), UDirs->end(), NS,
625                       UsingDirAncestorCompare());
626
627    for (; UI != UEnd; ++UI)
628      CppNamespaceLookup(Context, (*UI)->getNominatedNamespace(),
629                         Name, NameKind, IDNS, Results);
630  }
631}
632
633static bool isNamespaceOrTranslationUnitScope(Scope *S) {
634  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
635    return Ctx->isFileContext();
636  return false;
637}
638
639// Find the next outer declaration context corresponding to this scope.
640static DeclContext *findOuterContext(Scope *S) {
641  for (S = S->getParent(); S; S = S->getParent())
642    if (S->getEntity())
643      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
644
645  return 0;
646}
647
648std::pair<bool, Sema::LookupResult>
649Sema::CppLookupName(Scope *S, DeclarationName Name,
650                    LookupNameKind NameKind, bool RedeclarationOnly) {
651  assert(getLangOptions().CPlusPlus &&
652         "Can perform only C++ lookup");
653  unsigned IDNS
654    = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
655
656  // If we're testing for redeclarations, also look in the friend namespaces.
657  if (RedeclarationOnly) {
658    if (IDNS & Decl::IDNS_Tag) IDNS |= Decl::IDNS_TagFriend;
659    if (IDNS & Decl::IDNS_Ordinary) IDNS |= Decl::IDNS_OrdinaryFriend;
660  }
661
662  Scope *Initial = S;
663  DeclContext *OutOfLineCtx = 0;
664  IdentifierResolver::iterator
665    I = IdResolver.begin(Name),
666    IEnd = IdResolver.end();
667
668  // First we lookup local scope.
669  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
670  // ...During unqualified name lookup (3.4.1), the names appear as if
671  // they were declared in the nearest enclosing namespace which contains
672  // both the using-directive and the nominated namespace.
673  // [Note: in this context, "contains" means "contains directly or
674  // indirectly".
675  //
676  // For example:
677  // namespace A { int i; }
678  // void foo() {
679  //   int i;
680  //   {
681  //     using namespace A;
682  //     ++i; // finds local 'i', A::i appears at global scope
683  //   }
684  // }
685  //
686  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
687    // Check whether the IdResolver has anything in this scope.
688    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
689      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
690        // We found something.  Look for anything else in our scope
691        // with this same name and in an acceptable identifier
692        // namespace, so that we can construct an overload set if we
693        // need to.
694        IdentifierResolver::iterator LastI = I;
695        for (++LastI; LastI != IEnd; ++LastI) {
696          if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
697            break;
698        }
699        LookupResult Result =
700          LookupResult::CreateLookupResult(Context, I, LastI);
701        return std::make_pair(true, Result);
702      }
703    }
704    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
705      LookupResult R;
706
707      DeclContext *OuterCtx = findOuterContext(S);
708      for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
709           Ctx = Ctx->getLookupParent()) {
710        if (Ctx->isFunctionOrMethod())
711          continue;
712
713        // Perform qualified name lookup into this context.
714        // FIXME: In some cases, we know that every name that could be found by
715        // this qualified name lookup will also be on the identifier chain. For
716        // example, inside a class without any base classes, we never need to
717        // perform qualified lookup because all of the members are on top of the
718        // identifier chain.
719        R = LookupQualifiedName(Ctx, Name, NameKind, RedeclarationOnly);
720        if (R)
721          return std::make_pair(true, R);
722      }
723    }
724  }
725
726  // Collect UsingDirectiveDecls in all scopes, and recursively all
727  // nominated namespaces by those using-directives.
728  // UsingDirectives are pushed to heap, in common ancestor pointer value order.
729  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
730  // don't build it for each lookup!
731  UsingDirectivesTy UDirs;
732  for (Scope *SC = Initial; SC; SC = SC->getParent())
733    if (SC->getFlags() & Scope::DeclScope)
734      AddScopeUsingDirectives(Context, SC, UDirs);
735
736  // Sort heapified UsingDirectiveDecls.
737  std::sort_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
738
739  // Lookup namespace scope, and global scope.
740  // Unqualified name lookup in C++ requires looking into scopes
741  // that aren't strictly lexical, and therefore we walk through the
742  // context as well as walking through the scopes.
743
744  LookupResultsTy LookupResults;
745  assert((!OutOfLineCtx || OutOfLineCtx->isFileContext()) &&
746         "We should have been looking only at file context here already.");
747  bool LookedInCtx = false;
748  LookupResult Result;
749  while (OutOfLineCtx &&
750         OutOfLineCtx != S->getEntity() &&
751         OutOfLineCtx->isNamespace()) {
752    LookedInCtx = true;
753
754    // Look into context considering using-directives.
755    CppNamespaceLookup(Context, OutOfLineCtx, Name, NameKind, IDNS,
756                       LookupResults, &UDirs);
757
758    if ((Result = MergeLookupResults(Context, LookupResults)) ||
759        (RedeclarationOnly && !OutOfLineCtx->isTransparentContext()))
760      return std::make_pair(true, Result);
761
762    OutOfLineCtx = OutOfLineCtx->getParent();
763  }
764
765  for (; S; S = S->getParent()) {
766    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
767    if (Ctx->isTransparentContext())
768      continue;
769
770    assert(Ctx && Ctx->isFileContext() &&
771           "We should have been looking only at file context here already.");
772
773    // Check whether the IdResolver has anything in this scope.
774    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
775      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
776        // We found something.  Look for anything else in our scope
777        // with this same name and in an acceptable identifier
778        // namespace, so that we can construct an overload set if we
779        // need to.
780        IdentifierResolver::iterator LastI = I;
781        for (++LastI; LastI != IEnd; ++LastI) {
782          if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
783            break;
784        }
785
786        // We store name lookup result, and continue trying to look into
787        // associated context, and maybe namespaces nominated by
788        // using-directives.
789        LookupResults.push_back(
790          LookupResult::CreateLookupResult(Context, I, LastI));
791        break;
792      }
793    }
794
795    LookedInCtx = true;
796    // Look into context considering using-directives.
797    CppNamespaceLookup(Context, Ctx, Name, NameKind, IDNS,
798                       LookupResults, &UDirs);
799
800    if ((Result = MergeLookupResults(Context, LookupResults)) ||
801        (RedeclarationOnly && !Ctx->isTransparentContext()))
802      return std::make_pair(true, Result);
803  }
804
805  if (!(LookedInCtx || LookupResults.empty())) {
806    // We didn't Performed lookup in Scope entity, so we return
807    // result form IdentifierResolver.
808    assert((LookupResults.size() == 1) && "Wrong size!");
809    return std::make_pair(true, LookupResults.front());
810  }
811  return std::make_pair(false, LookupResult());
812}
813
814/// @brief Perform unqualified name lookup starting from a given
815/// scope.
816///
817/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
818/// used to find names within the current scope. For example, 'x' in
819/// @code
820/// int x;
821/// int f() {
822///   return x; // unqualified name look finds 'x' in the global scope
823/// }
824/// @endcode
825///
826/// Different lookup criteria can find different names. For example, a
827/// particular scope can have both a struct and a function of the same
828/// name, and each can be found by certain lookup criteria. For more
829/// information about lookup criteria, see the documentation for the
830/// class LookupCriteria.
831///
832/// @param S        The scope from which unqualified name lookup will
833/// begin. If the lookup criteria permits, name lookup may also search
834/// in the parent scopes.
835///
836/// @param Name     The name of the entity that we are searching for.
837///
838/// @param Loc      If provided, the source location where we're performing
839/// name lookup. At present, this is only used to produce diagnostics when
840/// C library functions (like "malloc") are implicitly declared.
841///
842/// @returns The result of name lookup, which includes zero or more
843/// declarations and possibly additional information used to diagnose
844/// ambiguities.
845Sema::LookupResult
846Sema::LookupName(Scope *S, DeclarationName Name, LookupNameKind NameKind,
847                 bool RedeclarationOnly, bool AllowBuiltinCreation,
848                 SourceLocation Loc) {
849  if (!Name) return LookupResult::CreateLookupResult(Context, 0);
850
851  if (!getLangOptions().CPlusPlus) {
852    // Unqualified name lookup in C/Objective-C is purely lexical, so
853    // search in the declarations attached to the name.
854    unsigned IDNS = 0;
855    switch (NameKind) {
856    case Sema::LookupOrdinaryName:
857      IDNS = Decl::IDNS_Ordinary;
858      break;
859
860    case Sema::LookupTagName:
861      IDNS = Decl::IDNS_Tag;
862      break;
863
864    case Sema::LookupMemberName:
865      IDNS = Decl::IDNS_Member;
866      break;
867
868    case Sema::LookupOperatorName:
869    case Sema::LookupNestedNameSpecifierName:
870    case Sema::LookupNamespaceName:
871      assert(false && "C does not perform these kinds of name lookup");
872      break;
873
874    case Sema::LookupRedeclarationWithLinkage:
875      // Find the nearest non-transparent declaration scope.
876      while (!(S->getFlags() & Scope::DeclScope) ||
877             (S->getEntity() &&
878              static_cast<DeclContext *>(S->getEntity())
879                ->isTransparentContext()))
880        S = S->getParent();
881      IDNS = Decl::IDNS_Ordinary;
882      break;
883
884    case Sema::LookupObjCProtocolName:
885      IDNS = Decl::IDNS_ObjCProtocol;
886      break;
887
888    case Sema::LookupObjCImplementationName:
889      IDNS = Decl::IDNS_ObjCImplementation;
890      break;
891
892    case Sema::LookupObjCCategoryImplName:
893      IDNS = Decl::IDNS_ObjCCategoryImpl;
894      break;
895    }
896
897    // Scan up the scope chain looking for a decl that matches this
898    // identifier that is in the appropriate namespace.  This search
899    // should not take long, as shadowing of names is uncommon, and
900    // deep shadowing is extremely uncommon.
901    bool LeftStartingScope = false;
902
903    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
904                                   IEnd = IdResolver.end();
905         I != IEnd; ++I)
906      if ((*I)->isInIdentifierNamespace(IDNS)) {
907        if (NameKind == LookupRedeclarationWithLinkage) {
908          // Determine whether this (or a previous) declaration is
909          // out-of-scope.
910          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
911            LeftStartingScope = true;
912
913          // If we found something outside of our starting scope that
914          // does not have linkage, skip it.
915          if (LeftStartingScope && !((*I)->hasLinkage()))
916            continue;
917        }
918
919        if ((*I)->getAttr<OverloadableAttr>()) {
920          // If this declaration has the "overloadable" attribute, we
921          // might have a set of overloaded functions.
922
923          // Figure out what scope the identifier is in.
924          while (!(S->getFlags() & Scope::DeclScope) ||
925                 !S->isDeclScope(DeclPtrTy::make(*I)))
926            S = S->getParent();
927
928          // Find the last declaration in this scope (with the same
929          // name, naturally).
930          IdentifierResolver::iterator LastI = I;
931          for (++LastI; LastI != IEnd; ++LastI) {
932            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
933              break;
934          }
935
936          return LookupResult::CreateLookupResult(Context, I, LastI);
937        }
938
939        // We have a single lookup result.
940        return LookupResult::CreateLookupResult(Context, *I);
941      }
942  } else {
943    // Perform C++ unqualified name lookup.
944    std::pair<bool, LookupResult> MaybeResult =
945      CppLookupName(S, Name, NameKind, RedeclarationOnly);
946    if (MaybeResult.first)
947      return MaybeResult.second;
948  }
949
950  // If we didn't find a use of this identifier, and if the identifier
951  // corresponds to a compiler builtin, create the decl object for the builtin
952  // now, injecting it into translation unit scope, and return it.
953  if (NameKind == LookupOrdinaryName ||
954      NameKind == LookupRedeclarationWithLinkage) {
955    IdentifierInfo *II = Name.getAsIdentifierInfo();
956    if (II && AllowBuiltinCreation) {
957      // If this is a builtin on this (or all) targets, create the decl.
958      if (unsigned BuiltinID = II->getBuiltinID()) {
959        // In C++, we don't have any predefined library functions like
960        // 'malloc'. Instead, we'll just error.
961        if (getLangOptions().CPlusPlus &&
962            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
963          return LookupResult::CreateLookupResult(Context, 0);
964
965        return LookupResult::CreateLookupResult(Context,
966                            LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
967                                                S, RedeclarationOnly, Loc));
968      }
969    }
970  }
971  return LookupResult::CreateLookupResult(Context, 0);
972}
973
974/// @brief Perform qualified name lookup into a given context.
975///
976/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
977/// names when the context of those names is explicit specified, e.g.,
978/// "std::vector" or "x->member".
979///
980/// Different lookup criteria can find different names. For example, a
981/// particular scope can have both a struct and a function of the same
982/// name, and each can be found by certain lookup criteria. For more
983/// information about lookup criteria, see the documentation for the
984/// class LookupCriteria.
985///
986/// @param LookupCtx The context in which qualified name lookup will
987/// search. If the lookup criteria permits, name lookup may also search
988/// in the parent contexts or (for C++ classes) base classes.
989///
990/// @param Name     The name of the entity that we are searching for.
991///
992/// @param Criteria The criteria that this routine will use to
993/// determine which names are visible and which names will be
994/// found. Note that name lookup will find a name that is visible by
995/// the given criteria, but the entity itself may not be semantically
996/// correct or even the kind of entity expected based on the
997/// lookup. For example, searching for a nested-name-specifier name
998/// might result in an EnumDecl, which is visible but is not permitted
999/// as a nested-name-specifier in C++03.
1000///
1001/// @returns The result of name lookup, which includes zero or more
1002/// declarations and possibly additional information used to diagnose
1003/// ambiguities.
1004Sema::LookupResult
1005Sema::LookupQualifiedName(DeclContext *LookupCtx, DeclarationName Name,
1006                          LookupNameKind NameKind, bool RedeclarationOnly) {
1007  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1008
1009  if (!Name)
1010    return LookupResult::CreateLookupResult(Context, 0);
1011
1012  // If we're performing qualified name lookup (e.g., lookup into a
1013  // struct), find fields as part of ordinary name lookup.
1014  unsigned IDNS
1015    = getIdentifierNamespacesFromLookupNameKind(NameKind,
1016                                                getLangOptions().CPlusPlus);
1017  if (NameKind == LookupOrdinaryName)
1018    IDNS |= Decl::IDNS_Member;
1019
1020  // Make sure that the declaration context is complete.
1021  assert((!isa<TagDecl>(LookupCtx) ||
1022          LookupCtx->isDependentContext() ||
1023          cast<TagDecl>(LookupCtx)->isDefinition() ||
1024          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1025            ->isBeingDefined()) &&
1026         "Declaration context must already be complete!");
1027
1028  // Perform qualified name lookup into the LookupCtx.
1029  DeclContext::lookup_iterator I, E;
1030  for (llvm::tie(I, E) = LookupCtx->lookup(Name); I != E; ++I)
1031    if (isAcceptableLookupResult(*I, NameKind, IDNS))
1032      return LookupResult::CreateLookupResult(Context, I, E);
1033
1034  // If this isn't a C++ class, we aren't allowed to look into base
1035  // classes, we're done.
1036  if (RedeclarationOnly || !isa<CXXRecordDecl>(LookupCtx))
1037    return LookupResult::CreateLookupResult(Context, 0);
1038
1039  // Perform lookup into our base classes.
1040  BasePaths Paths;
1041  Paths.setOrigin(Context.getTypeDeclType(cast<RecordDecl>(LookupCtx)));
1042
1043  // Look for this member in our base classes
1044  if (!LookupInBases(cast<CXXRecordDecl>(LookupCtx),
1045                     MemberLookupCriteria(Name, NameKind, IDNS), Paths))
1046    return LookupResult::CreateLookupResult(Context, 0);
1047
1048  // C++ [class.member.lookup]p2:
1049  //   [...] If the resulting set of declarations are not all from
1050  //   sub-objects of the same type, or the set has a nonstatic member
1051  //   and includes members from distinct sub-objects, there is an
1052  //   ambiguity and the program is ill-formed. Otherwise that set is
1053  //   the result of the lookup.
1054  // FIXME: support using declarations!
1055  QualType SubobjectType;
1056  int SubobjectNumber = 0;
1057  for (BasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1058       Path != PathEnd; ++Path) {
1059    const BasePathElement &PathElement = Path->back();
1060
1061    // Determine whether we're looking at a distinct sub-object or not.
1062    if (SubobjectType.isNull()) {
1063      // This is the first subobject we've looked at. Record it's type.
1064      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1065      SubobjectNumber = PathElement.SubobjectNumber;
1066    } else if (SubobjectType
1067                 != Context.getCanonicalType(PathElement.Base->getType())) {
1068      // We found members of the given name in two subobjects of
1069      // different types. This lookup is ambiguous.
1070      BasePaths *PathsOnHeap = new BasePaths;
1071      PathsOnHeap->swap(Paths);
1072      return LookupResult::CreateLookupResult(Context, PathsOnHeap, true);
1073    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1074      // We have a different subobject of the same type.
1075
1076      // C++ [class.member.lookup]p5:
1077      //   A static member, a nested type or an enumerator defined in
1078      //   a base class T can unambiguously be found even if an object
1079      //   has more than one base class subobject of type T.
1080      Decl *FirstDecl = *Path->Decls.first;
1081      if (isa<VarDecl>(FirstDecl) ||
1082          isa<TypeDecl>(FirstDecl) ||
1083          isa<EnumConstantDecl>(FirstDecl))
1084        continue;
1085
1086      if (isa<CXXMethodDecl>(FirstDecl)) {
1087        // Determine whether all of the methods are static.
1088        bool AllMethodsAreStatic = true;
1089        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1090             Func != Path->Decls.second; ++Func) {
1091          if (!isa<CXXMethodDecl>(*Func)) {
1092            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1093            break;
1094          }
1095
1096          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1097            AllMethodsAreStatic = false;
1098            break;
1099          }
1100        }
1101
1102        if (AllMethodsAreStatic)
1103          continue;
1104      }
1105
1106      // We have found a nonstatic member name in multiple, distinct
1107      // subobjects. Name lookup is ambiguous.
1108      BasePaths *PathsOnHeap = new BasePaths;
1109      PathsOnHeap->swap(Paths);
1110      return LookupResult::CreateLookupResult(Context, PathsOnHeap, false);
1111    }
1112  }
1113
1114  // Lookup in a base class succeeded; return these results.
1115
1116  // If we found a function declaration, return an overload set.
1117  if ((*Paths.front().Decls.first)->isFunctionOrFunctionTemplate())
1118    return LookupResult::CreateLookupResult(Context,
1119                        Paths.front().Decls.first, Paths.front().Decls.second);
1120
1121  // We found a non-function declaration; return a single declaration.
1122  return LookupResult::CreateLookupResult(Context, *Paths.front().Decls.first);
1123}
1124
1125/// @brief Performs name lookup for a name that was parsed in the
1126/// source code, and may contain a C++ scope specifier.
1127///
1128/// This routine is a convenience routine meant to be called from
1129/// contexts that receive a name and an optional C++ scope specifier
1130/// (e.g., "N::M::x"). It will then perform either qualified or
1131/// unqualified name lookup (with LookupQualifiedName or LookupName,
1132/// respectively) on the given name and return those results.
1133///
1134/// @param S        The scope from which unqualified name lookup will
1135/// begin.
1136///
1137/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1138///
1139/// @param Name     The name of the entity that name lookup will
1140/// search for.
1141///
1142/// @param Loc      If provided, the source location where we're performing
1143/// name lookup. At present, this is only used to produce diagnostics when
1144/// C library functions (like "malloc") are implicitly declared.
1145///
1146/// @param EnteringContext Indicates whether we are going to enter the
1147/// context of the scope-specifier SS (if present).
1148///
1149/// @returns The result of qualified or unqualified name lookup.
1150Sema::LookupResult
1151Sema::LookupParsedName(Scope *S, const CXXScopeSpec *SS,
1152                       DeclarationName Name, LookupNameKind NameKind,
1153                       bool RedeclarationOnly, bool AllowBuiltinCreation,
1154                       SourceLocation Loc,
1155                       bool EnteringContext) {
1156  if (SS && SS->isInvalid()) {
1157    // When the scope specifier is invalid, don't even look for
1158    // anything.
1159    return LookupResult::CreateLookupResult(Context, 0);
1160  }
1161
1162  if (SS && SS->isSet()) {
1163    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1164      // We have resolved the scope specifier to a particular declaration
1165      // contex, and will perform name lookup in that context.
1166      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
1167        return LookupResult::CreateLookupResult(Context, 0);
1168
1169      return LookupQualifiedName(DC, Name, NameKind, RedeclarationOnly);
1170    }
1171
1172    // We could not resolve the scope specified to a specific declaration
1173    // context, which means that SS refers to an unknown specialization.
1174    // Name lookup can't find anything in this case.
1175    return LookupResult::CreateLookupResult(Context, 0);
1176  }
1177
1178  // Perform unqualified name lookup starting in the given scope.
1179  return LookupName(S, Name, NameKind, RedeclarationOnly, AllowBuiltinCreation,
1180                    Loc);
1181}
1182
1183
1184/// @brief Produce a diagnostic describing the ambiguity that resulted
1185/// from name lookup.
1186///
1187/// @param Result       The ambiguous name lookup result.
1188///
1189/// @param Name         The name of the entity that name lookup was
1190/// searching for.
1191///
1192/// @param NameLoc      The location of the name within the source code.
1193///
1194/// @param LookupRange  A source range that provides more
1195/// source-location information concerning the lookup itself. For
1196/// example, this range might highlight a nested-name-specifier that
1197/// precedes the name.
1198///
1199/// @returns true
1200bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
1201                                   SourceLocation NameLoc,
1202                                   SourceRange LookupRange) {
1203  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1204
1205  if (BasePaths *Paths = Result.getBasePaths()) {
1206    if (Result.getKind() == LookupResult::AmbiguousBaseSubobjects) {
1207      QualType SubobjectType = Paths->front().back().Base->getType();
1208      Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1209        << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1210        << LookupRange;
1211
1212      DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1213      while (isa<CXXMethodDecl>(*Found) &&
1214             cast<CXXMethodDecl>(*Found)->isStatic())
1215        ++Found;
1216
1217      Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1218
1219      Result.Destroy();
1220      return true;
1221    }
1222
1223    assert(Result.getKind() == LookupResult::AmbiguousBaseSubobjectTypes &&
1224           "Unhandled form of name lookup ambiguity");
1225
1226    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1227      << Name << LookupRange;
1228
1229    std::set<Decl *> DeclsPrinted;
1230    for (BasePaths::paths_iterator Path = Paths->begin(), PathEnd = Paths->end();
1231         Path != PathEnd; ++Path) {
1232      Decl *D = *Path->Decls.first;
1233      if (DeclsPrinted.insert(D).second)
1234        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1235    }
1236
1237    Result.Destroy();
1238    return true;
1239  } else if (Result.getKind() == LookupResult::AmbiguousReference) {
1240    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1241
1242    NamedDecl **DI = reinterpret_cast<NamedDecl **>(Result.First),
1243            **DEnd = reinterpret_cast<NamedDecl **>(Result.Last);
1244
1245    for (; DI != DEnd; ++DI)
1246      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1247
1248    Result.Destroy();
1249    return true;
1250  }
1251
1252  assert(false && "Unhandled form of name lookup ambiguity");
1253
1254  // We can't reach here.
1255  return true;
1256}
1257
1258static void
1259addAssociatedClassesAndNamespaces(QualType T,
1260                                  ASTContext &Context,
1261                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1262                                  Sema::AssociatedClassSet &AssociatedClasses);
1263
1264static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1265                             DeclContext *Ctx) {
1266  if (Ctx->isFileContext())
1267    Namespaces.insert(Ctx);
1268}
1269
1270// \brief Add the associated classes and namespaces for argument-dependent
1271// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1272static void
1273addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1274                                  ASTContext &Context,
1275                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1276                                  Sema::AssociatedClassSet &AssociatedClasses) {
1277  // C++ [basic.lookup.koenig]p2, last bullet:
1278  //   -- [...] ;
1279  switch (Arg.getKind()) {
1280    case TemplateArgument::Null:
1281      break;
1282
1283    case TemplateArgument::Type:
1284      // [...] the namespaces and classes associated with the types of the
1285      // template arguments provided for template type parameters (excluding
1286      // template template parameters)
1287      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1288                                        AssociatedNamespaces,
1289                                        AssociatedClasses);
1290      break;
1291
1292    case TemplateArgument::Declaration:
1293      // [...] the namespaces in which any template template arguments are
1294      // defined; and the classes in which any member templates used as
1295      // template template arguments are defined.
1296      if (ClassTemplateDecl *ClassTemplate
1297            = dyn_cast<ClassTemplateDecl>(Arg.getAsDecl())) {
1298        DeclContext *Ctx = ClassTemplate->getDeclContext();
1299        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1300          AssociatedClasses.insert(EnclosingClass);
1301        // Add the associated namespace for this class.
1302        while (Ctx->isRecord())
1303          Ctx = Ctx->getParent();
1304        CollectNamespace(AssociatedNamespaces, Ctx);
1305      }
1306      break;
1307
1308    case TemplateArgument::Integral:
1309    case TemplateArgument::Expression:
1310      // [Note: non-type template arguments do not contribute to the set of
1311      //  associated namespaces. ]
1312      break;
1313
1314    case TemplateArgument::Pack:
1315      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1316                                        PEnd = Arg.pack_end();
1317           P != PEnd; ++P)
1318        addAssociatedClassesAndNamespaces(*P, Context,
1319                                          AssociatedNamespaces,
1320                                          AssociatedClasses);
1321      break;
1322  }
1323}
1324
1325// \brief Add the associated classes and namespaces for
1326// argument-dependent lookup with an argument of class type
1327// (C++ [basic.lookup.koenig]p2).
1328static void
1329addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1330                                  ASTContext &Context,
1331                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1332                            Sema::AssociatedClassSet &AssociatedClasses) {
1333  // C++ [basic.lookup.koenig]p2:
1334  //   [...]
1335  //     -- If T is a class type (including unions), its associated
1336  //        classes are: the class itself; the class of which it is a
1337  //        member, if any; and its direct and indirect base
1338  //        classes. Its associated namespaces are the namespaces in
1339  //        which its associated classes are defined.
1340
1341  // Add the class of which it is a member, if any.
1342  DeclContext *Ctx = Class->getDeclContext();
1343  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1344    AssociatedClasses.insert(EnclosingClass);
1345  // Add the associated namespace for this class.
1346  while (Ctx->isRecord())
1347    Ctx = Ctx->getParent();
1348  CollectNamespace(AssociatedNamespaces, Ctx);
1349
1350  // Add the class itself. If we've already seen this class, we don't
1351  // need to visit base classes.
1352  if (!AssociatedClasses.insert(Class))
1353    return;
1354
1355  // -- If T is a template-id, its associated namespaces and classes are
1356  //    the namespace in which the template is defined; for member
1357  //    templates, the member template’s class; the namespaces and classes
1358  //    associated with the types of the template arguments provided for
1359  //    template type parameters (excluding template template parameters); the
1360  //    namespaces in which any template template arguments are defined; and
1361  //    the classes in which any member templates used as template template
1362  //    arguments are defined. [Note: non-type template arguments do not
1363  //    contribute to the set of associated namespaces. ]
1364  if (ClassTemplateSpecializationDecl *Spec
1365        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1366    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1367    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1368      AssociatedClasses.insert(EnclosingClass);
1369    // Add the associated namespace for this class.
1370    while (Ctx->isRecord())
1371      Ctx = Ctx->getParent();
1372    CollectNamespace(AssociatedNamespaces, Ctx);
1373
1374    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1375    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1376      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1377                                        AssociatedNamespaces,
1378                                        AssociatedClasses);
1379  }
1380
1381  // Add direct and indirect base classes along with their associated
1382  // namespaces.
1383  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1384  Bases.push_back(Class);
1385  while (!Bases.empty()) {
1386    // Pop this class off the stack.
1387    Class = Bases.back();
1388    Bases.pop_back();
1389
1390    // Visit the base classes.
1391    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1392                                         BaseEnd = Class->bases_end();
1393         Base != BaseEnd; ++Base) {
1394      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1395      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1396      if (AssociatedClasses.insert(BaseDecl)) {
1397        // Find the associated namespace for this base class.
1398        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1399        while (BaseCtx->isRecord())
1400          BaseCtx = BaseCtx->getParent();
1401        CollectNamespace(AssociatedNamespaces, BaseCtx);
1402
1403        // Make sure we visit the bases of this base class.
1404        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1405          Bases.push_back(BaseDecl);
1406      }
1407    }
1408  }
1409}
1410
1411// \brief Add the associated classes and namespaces for
1412// argument-dependent lookup with an argument of type T
1413// (C++ [basic.lookup.koenig]p2).
1414static void
1415addAssociatedClassesAndNamespaces(QualType T,
1416                                  ASTContext &Context,
1417                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1418                                  Sema::AssociatedClassSet &AssociatedClasses) {
1419  // C++ [basic.lookup.koenig]p2:
1420  //
1421  //   For each argument type T in the function call, there is a set
1422  //   of zero or more associated namespaces and a set of zero or more
1423  //   associated classes to be considered. The sets of namespaces and
1424  //   classes is determined entirely by the types of the function
1425  //   arguments (and the namespace of any template template
1426  //   argument). Typedef names and using-declarations used to specify
1427  //   the types do not contribute to this set. The sets of namespaces
1428  //   and classes are determined in the following way:
1429  T = Context.getCanonicalType(T).getUnqualifiedType();
1430
1431  //    -- If T is a pointer to U or an array of U, its associated
1432  //       namespaces and classes are those associated with U.
1433  //
1434  // We handle this by unwrapping pointer and array types immediately,
1435  // to avoid unnecessary recursion.
1436  while (true) {
1437    if (const PointerType *Ptr = T->getAs<PointerType>())
1438      T = Ptr->getPointeeType();
1439    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1440      T = Ptr->getElementType();
1441    else
1442      break;
1443  }
1444
1445  //     -- If T is a fundamental type, its associated sets of
1446  //        namespaces and classes are both empty.
1447  if (T->getAsBuiltinType())
1448    return;
1449
1450  //     -- If T is a class type (including unions), its associated
1451  //        classes are: the class itself; the class of which it is a
1452  //        member, if any; and its direct and indirect base
1453  //        classes. Its associated namespaces are the namespaces in
1454  //        which its associated classes are defined.
1455  if (const RecordType *ClassType = T->getAs<RecordType>())
1456    if (CXXRecordDecl *ClassDecl
1457        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1458      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1459                                        AssociatedNamespaces,
1460                                        AssociatedClasses);
1461      return;
1462    }
1463
1464  //     -- If T is an enumeration type, its associated namespace is
1465  //        the namespace in which it is defined. If it is class
1466  //        member, its associated class is the member’s class; else
1467  //        it has no associated class.
1468  if (const EnumType *EnumT = T->getAsEnumType()) {
1469    EnumDecl *Enum = EnumT->getDecl();
1470
1471    DeclContext *Ctx = Enum->getDeclContext();
1472    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1473      AssociatedClasses.insert(EnclosingClass);
1474
1475    // Add the associated namespace for this class.
1476    while (Ctx->isRecord())
1477      Ctx = Ctx->getParent();
1478    CollectNamespace(AssociatedNamespaces, Ctx);
1479
1480    return;
1481  }
1482
1483  //     -- If T is a function type, its associated namespaces and
1484  //        classes are those associated with the function parameter
1485  //        types and those associated with the return type.
1486  if (const FunctionType *FunctionType = T->getAsFunctionType()) {
1487    // Return type
1488    addAssociatedClassesAndNamespaces(FunctionType->getResultType(),
1489                                      Context,
1490                                      AssociatedNamespaces, AssociatedClasses);
1491
1492    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FunctionType);
1493    if (!Proto)
1494      return;
1495
1496    // Argument types
1497    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1498                                           ArgEnd = Proto->arg_type_end();
1499         Arg != ArgEnd; ++Arg)
1500      addAssociatedClassesAndNamespaces(*Arg, Context,
1501                                        AssociatedNamespaces, AssociatedClasses);
1502
1503    return;
1504  }
1505
1506  //     -- If T is a pointer to a member function of a class X, its
1507  //        associated namespaces and classes are those associated
1508  //        with the function parameter types and return type,
1509  //        together with those associated with X.
1510  //
1511  //     -- If T is a pointer to a data member of class X, its
1512  //        associated namespaces and classes are those associated
1513  //        with the member type together with those associated with
1514  //        X.
1515  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1516    // Handle the type that the pointer to member points to.
1517    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1518                                      Context,
1519                                      AssociatedNamespaces,
1520                                      AssociatedClasses);
1521
1522    // Handle the class type into which this points.
1523    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1524      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1525                                        Context,
1526                                        AssociatedNamespaces,
1527                                        AssociatedClasses);
1528
1529    return;
1530  }
1531
1532  // FIXME: What about block pointers?
1533  // FIXME: What about Objective-C message sends?
1534}
1535
1536/// \brief Find the associated classes and namespaces for
1537/// argument-dependent lookup for a call with the given set of
1538/// arguments.
1539///
1540/// This routine computes the sets of associated classes and associated
1541/// namespaces searched by argument-dependent lookup
1542/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1543void
1544Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1545                                 AssociatedNamespaceSet &AssociatedNamespaces,
1546                                 AssociatedClassSet &AssociatedClasses) {
1547  AssociatedNamespaces.clear();
1548  AssociatedClasses.clear();
1549
1550  // C++ [basic.lookup.koenig]p2:
1551  //   For each argument type T in the function call, there is a set
1552  //   of zero or more associated namespaces and a set of zero or more
1553  //   associated classes to be considered. The sets of namespaces and
1554  //   classes is determined entirely by the types of the function
1555  //   arguments (and the namespace of any template template
1556  //   argument).
1557  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1558    Expr *Arg = Args[ArgIdx];
1559
1560    if (Arg->getType() != Context.OverloadTy) {
1561      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1562                                        AssociatedNamespaces,
1563                                        AssociatedClasses);
1564      continue;
1565    }
1566
1567    // [...] In addition, if the argument is the name or address of a
1568    // set of overloaded functions and/or function templates, its
1569    // associated classes and namespaces are the union of those
1570    // associated with each of the members of the set: the namespace
1571    // in which the function or function template is defined and the
1572    // classes and namespaces associated with its (non-dependent)
1573    // parameter types and return type.
1574    DeclRefExpr *DRE = 0;
1575    TemplateIdRefExpr *TIRE = 0;
1576    Arg = Arg->IgnoreParens();
1577    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) {
1578      if (unaryOp->getOpcode() == UnaryOperator::AddrOf) {
1579        DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr());
1580        TIRE = dyn_cast<TemplateIdRefExpr>(unaryOp->getSubExpr());
1581      }
1582    } else {
1583      DRE = dyn_cast<DeclRefExpr>(Arg);
1584      TIRE = dyn_cast<TemplateIdRefExpr>(Arg);
1585    }
1586
1587    OverloadedFunctionDecl *Ovl = 0;
1588    if (DRE)
1589      Ovl = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl());
1590    else if (TIRE)
1591      Ovl = TIRE->getTemplateName().getAsOverloadedFunctionDecl();
1592    if (!Ovl)
1593      continue;
1594
1595    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
1596                                                FuncEnd = Ovl->function_end();
1597         Func != FuncEnd; ++Func) {
1598      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(*Func);
1599      if (!FDecl)
1600        FDecl = cast<FunctionTemplateDecl>(*Func)->getTemplatedDecl();
1601
1602      // Add the namespace in which this function was defined. Note
1603      // that, if this is a member function, we do *not* consider the
1604      // enclosing namespace of its class.
1605      DeclContext *Ctx = FDecl->getDeclContext();
1606      CollectNamespace(AssociatedNamespaces, Ctx);
1607
1608      // Add the classes and namespaces associated with the parameter
1609      // types and return type of this function.
1610      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1611                                        AssociatedNamespaces,
1612                                        AssociatedClasses);
1613    }
1614  }
1615}
1616
1617/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1618/// an acceptable non-member overloaded operator for a call whose
1619/// arguments have types T1 (and, if non-empty, T2). This routine
1620/// implements the check in C++ [over.match.oper]p3b2 concerning
1621/// enumeration types.
1622static bool
1623IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1624                                       QualType T1, QualType T2,
1625                                       ASTContext &Context) {
1626  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1627    return true;
1628
1629  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1630    return true;
1631
1632  const FunctionProtoType *Proto = Fn->getType()->getAsFunctionProtoType();
1633  if (Proto->getNumArgs() < 1)
1634    return false;
1635
1636  if (T1->isEnumeralType()) {
1637    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1638    if (Context.getCanonicalType(T1).getUnqualifiedType()
1639          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1640      return true;
1641  }
1642
1643  if (Proto->getNumArgs() < 2)
1644    return false;
1645
1646  if (!T2.isNull() && T2->isEnumeralType()) {
1647    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1648    if (Context.getCanonicalType(T2).getUnqualifiedType()
1649          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1650      return true;
1651  }
1652
1653  return false;
1654}
1655
1656/// \brief Find the protocol with the given name, if any.
1657ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1658  Decl *D = LookupName(TUScope, II, LookupObjCProtocolName).getAsDecl();
1659  return cast_or_null<ObjCProtocolDecl>(D);
1660}
1661
1662/// \brief Find the Objective-C category implementation with the given
1663/// name, if any.
1664ObjCCategoryImplDecl *Sema::LookupObjCCategoryImpl(IdentifierInfo *II) {
1665  Decl *D = LookupName(TUScope, II, LookupObjCCategoryImplName).getAsDecl();
1666  return cast_or_null<ObjCCategoryImplDecl>(D);
1667}
1668
1669// Attempts to find a declaration in the given declaration context
1670// with exactly the given type.  Returns null if no such declaration
1671// was found.
1672Decl *Sema::LookupQualifiedNameWithType(DeclContext *DC,
1673                                        DeclarationName Name,
1674                                        QualType T) {
1675  LookupResult result =
1676    LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1677
1678  CanQualType CQT = Context.getCanonicalType(T);
1679
1680  for (LookupResult::iterator ir = result.begin(), ie = result.end();
1681       ir != ie; ++ir)
1682    if (FunctionDecl *CurFD = dyn_cast<FunctionDecl>(*ir))
1683      if (Context.getCanonicalType(CurFD->getType()) == CQT)
1684        return CurFD;
1685
1686  return NULL;
1687}
1688
1689void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1690                                        QualType T1, QualType T2,
1691                                        FunctionSet &Functions) {
1692  // C++ [over.match.oper]p3:
1693  //     -- The set of non-member candidates is the result of the
1694  //        unqualified lookup of operator@ in the context of the
1695  //        expression according to the usual rules for name lookup in
1696  //        unqualified function calls (3.4.2) except that all member
1697  //        functions are ignored. However, if no operand has a class
1698  //        type, only those non-member functions in the lookup set
1699  //        that have a first parameter of type T1 or "reference to
1700  //        (possibly cv-qualified) T1", when T1 is an enumeration
1701  //        type, or (if there is a right operand) a second parameter
1702  //        of type T2 or "reference to (possibly cv-qualified) T2",
1703  //        when T2 is an enumeration type, are candidate functions.
1704  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1705  LookupResult Operators = LookupName(S, OpName, LookupOperatorName);
1706
1707  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1708
1709  if (!Operators)
1710    return;
1711
1712  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1713       Op != OpEnd; ++Op) {
1714    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1715      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1716        Functions.insert(FD); // FIXME: canonical FD
1717    } else if (FunctionTemplateDecl *FunTmpl
1718                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1719      // FIXME: friend operators?
1720      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1721      // later?
1722      if (!FunTmpl->getDeclContext()->isRecord())
1723        Functions.insert(FunTmpl);
1724    }
1725  }
1726}
1727
1728static void CollectFunctionDecl(Sema::FunctionSet &Functions,
1729                                Decl *D) {
1730  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
1731    Functions.insert(Func);
1732  else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
1733    Functions.insert(FunTmpl);
1734}
1735
1736void Sema::ArgumentDependentLookup(DeclarationName Name,
1737                                   Expr **Args, unsigned NumArgs,
1738                                   FunctionSet &Functions) {
1739  // Find all of the associated namespaces and classes based on the
1740  // arguments we have.
1741  AssociatedNamespaceSet AssociatedNamespaces;
1742  AssociatedClassSet AssociatedClasses;
1743  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1744                                     AssociatedNamespaces,
1745                                     AssociatedClasses);
1746
1747  // C++ [basic.lookup.argdep]p3:
1748  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1749  //   and let Y be the lookup set produced by argument dependent
1750  //   lookup (defined as follows). If X contains [...] then Y is
1751  //   empty. Otherwise Y is the set of declarations found in the
1752  //   namespaces associated with the argument types as described
1753  //   below. The set of declarations found by the lookup of the name
1754  //   is the union of X and Y.
1755  //
1756  // Here, we compute Y and add its members to the overloaded
1757  // candidate set.
1758  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1759                                     NSEnd = AssociatedNamespaces.end();
1760       NS != NSEnd; ++NS) {
1761    //   When considering an associated namespace, the lookup is the
1762    //   same as the lookup performed when the associated namespace is
1763    //   used as a qualifier (3.4.3.2) except that:
1764    //
1765    //     -- Any using-directives in the associated namespace are
1766    //        ignored.
1767    //
1768    //     -- Any namespace-scope friend functions declared in
1769    //        associated classes are visible within their respective
1770    //        namespaces even if they are not visible during an ordinary
1771    //        lookup (11.4).
1772    DeclContext::lookup_iterator I, E;
1773    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1774      Decl *D = *I;
1775      // If the only declaration here is an ordinary friend, consider
1776      // it only if it was declared in an associated classes.
1777      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1778        DeclContext *LexDC = D->getLexicalDeclContext();
1779        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1780          continue;
1781      }
1782
1783      CollectFunctionDecl(Functions, D);
1784    }
1785  }
1786}
1787