SemaLookup.cpp revision 42d2b2fd1ce4d109872b86213dbe45192f62c1bc
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "clang/Sema/Sema.h"
15#include "clang/Sema/SemaInternal.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/Sema/TemplateDeduction.h"
21#include "clang/AST/ASTContext.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/Decl.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/Expr.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/Basic/Builtins.h"
30#include "clang/Basic/LangOptions.h"
31#include "llvm/ADT/DenseSet.h"
32#include "llvm/ADT/STLExtras.h"
33#include "llvm/ADT/SmallPtrSet.h"
34#include "llvm/ADT/StringMap.h"
35#include "llvm/Support/ErrorHandling.h"
36#include <limits>
37#include <list>
38#include <set>
39#include <vector>
40#include <iterator>
41#include <utility>
42#include <algorithm>
43
44using namespace clang;
45using namespace sema;
46
47namespace {
48  class UnqualUsingEntry {
49    const DeclContext *Nominated;
50    const DeclContext *CommonAncestor;
51
52  public:
53    UnqualUsingEntry(const DeclContext *Nominated,
54                     const DeclContext *CommonAncestor)
55      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
56    }
57
58    const DeclContext *getCommonAncestor() const {
59      return CommonAncestor;
60    }
61
62    const DeclContext *getNominatedNamespace() const {
63      return Nominated;
64    }
65
66    // Sort by the pointer value of the common ancestor.
67    struct Comparator {
68      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
69        return L.getCommonAncestor() < R.getCommonAncestor();
70      }
71
72      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
73        return E.getCommonAncestor() < DC;
74      }
75
76      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
77        return DC < E.getCommonAncestor();
78      }
79    };
80  };
81
82  /// A collection of using directives, as used by C++ unqualified
83  /// lookup.
84  class UnqualUsingDirectiveSet {
85    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
86
87    ListTy list;
88    llvm::SmallPtrSet<DeclContext*, 8> visited;
89
90  public:
91    UnqualUsingDirectiveSet() {}
92
93    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
94      // C++ [namespace.udir]p1:
95      //   During unqualified name lookup, the names appear as if they
96      //   were declared in the nearest enclosing namespace which contains
97      //   both the using-directive and the nominated namespace.
98      DeclContext *InnermostFileDC
99        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
100      assert(InnermostFileDC && InnermostFileDC->isFileContext());
101
102      for (; S; S = S->getParent()) {
103        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
104          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
105          visit(Ctx, EffectiveDC);
106        } else {
107          Scope::udir_iterator I = S->using_directives_begin(),
108                             End = S->using_directives_end();
109
110          for (; I != End; ++I)
111            visit(*I, InnermostFileDC);
112        }
113      }
114    }
115
116    // Visits a context and collect all of its using directives
117    // recursively.  Treats all using directives as if they were
118    // declared in the context.
119    //
120    // A given context is only every visited once, so it is important
121    // that contexts be visited from the inside out in order to get
122    // the effective DCs right.
123    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
124      if (!visited.insert(DC))
125        return;
126
127      addUsingDirectives(DC, EffectiveDC);
128    }
129
130    // Visits a using directive and collects all of its using
131    // directives recursively.  Treats all using directives as if they
132    // were declared in the effective DC.
133    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
134      DeclContext *NS = UD->getNominatedNamespace();
135      if (!visited.insert(NS))
136        return;
137
138      addUsingDirective(UD, EffectiveDC);
139      addUsingDirectives(NS, EffectiveDC);
140    }
141
142    // Adds all the using directives in a context (and those nominated
143    // by its using directives, transitively) as if they appeared in
144    // the given effective context.
145    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
146      llvm::SmallVector<DeclContext*,4> queue;
147      while (true) {
148        DeclContext::udir_iterator I, End;
149        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
150          UsingDirectiveDecl *UD = *I;
151          DeclContext *NS = UD->getNominatedNamespace();
152          if (visited.insert(NS)) {
153            addUsingDirective(UD, EffectiveDC);
154            queue.push_back(NS);
155          }
156        }
157
158        if (queue.empty())
159          return;
160
161        DC = queue.back();
162        queue.pop_back();
163      }
164    }
165
166    // Add a using directive as if it had been declared in the given
167    // context.  This helps implement C++ [namespace.udir]p3:
168    //   The using-directive is transitive: if a scope contains a
169    //   using-directive that nominates a second namespace that itself
170    //   contains using-directives, the effect is as if the
171    //   using-directives from the second namespace also appeared in
172    //   the first.
173    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
174      // Find the common ancestor between the effective context and
175      // the nominated namespace.
176      DeclContext *Common = UD->getNominatedNamespace();
177      while (!Common->Encloses(EffectiveDC))
178        Common = Common->getParent();
179      Common = Common->getPrimaryContext();
180
181      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
182    }
183
184    void done() {
185      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
186    }
187
188    typedef ListTy::const_iterator const_iterator;
189
190    const_iterator begin() const { return list.begin(); }
191    const_iterator end() const { return list.end(); }
192
193    std::pair<const_iterator,const_iterator>
194    getNamespacesFor(DeclContext *DC) const {
195      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
196                              UnqualUsingEntry::Comparator());
197    }
198  };
199}
200
201// Retrieve the set of identifier namespaces that correspond to a
202// specific kind of name lookup.
203static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
204                               bool CPlusPlus,
205                               bool Redeclaration) {
206  unsigned IDNS = 0;
207  switch (NameKind) {
208  case Sema::LookupOrdinaryName:
209  case Sema::LookupRedeclarationWithLinkage:
210    IDNS = Decl::IDNS_Ordinary;
211    if (CPlusPlus) {
212      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace;
213      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
214    }
215    break;
216
217  case Sema::LookupOperatorName:
218    // Operator lookup is its own crazy thing;  it is not the same
219    // as (e.g.) looking up an operator name for redeclaration.
220    assert(!Redeclaration && "cannot do redeclaration operator lookup");
221    IDNS = Decl::IDNS_NonMemberOperator;
222    break;
223
224  case Sema::LookupTagName:
225    if (CPlusPlus) {
226      IDNS = Decl::IDNS_Type;
227
228      // When looking for a redeclaration of a tag name, we add:
229      // 1) TagFriend to find undeclared friend decls
230      // 2) Namespace because they can't "overload" with tag decls.
231      // 3) Tag because it includes class templates, which can't
232      //    "overload" with tag decls.
233      if (Redeclaration)
234        IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace;
235    } else {
236      IDNS = Decl::IDNS_Tag;
237    }
238    break;
239
240  case Sema::LookupMemberName:
241    IDNS = Decl::IDNS_Member;
242    if (CPlusPlus)
243      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
244    break;
245
246  case Sema::LookupNestedNameSpecifierName:
247    IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace;
248    break;
249
250  case Sema::LookupNamespaceName:
251    IDNS = Decl::IDNS_Namespace;
252    break;
253
254  case Sema::LookupUsingDeclName:
255    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
256         | Decl::IDNS_Member | Decl::IDNS_Using;
257    break;
258
259  case Sema::LookupObjCProtocolName:
260    IDNS = Decl::IDNS_ObjCProtocol;
261    break;
262
263  case Sema::LookupAnyName:
264    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member
265      | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol
266      | Decl::IDNS_Type;
267    break;
268  }
269  return IDNS;
270}
271
272void LookupResult::configure() {
273  IDNS = getIDNS(LookupKind,
274                 SemaRef.getLangOptions().CPlusPlus,
275                 isForRedeclaration());
276
277  // If we're looking for one of the allocation or deallocation
278  // operators, make sure that the implicitly-declared new and delete
279  // operators can be found.
280  if (!isForRedeclaration()) {
281    switch (NameInfo.getName().getCXXOverloadedOperator()) {
282    case OO_New:
283    case OO_Delete:
284    case OO_Array_New:
285    case OO_Array_Delete:
286      SemaRef.DeclareGlobalNewDelete();
287      break;
288
289    default:
290      break;
291    }
292  }
293}
294
295#ifndef NDEBUG
296void LookupResult::sanity() const {
297  assert(ResultKind != NotFound || Decls.size() == 0);
298  assert(ResultKind != Found || Decls.size() == 1);
299  assert(ResultKind != FoundOverloaded || Decls.size() > 1 ||
300         (Decls.size() == 1 &&
301          isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl())));
302  assert(ResultKind != FoundUnresolvedValue || sanityCheckUnresolved());
303  assert(ResultKind != Ambiguous || Decls.size() > 1 ||
304         (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects ||
305                                Ambiguity == AmbiguousBaseSubobjectTypes)));
306  assert((Paths != NULL) == (ResultKind == Ambiguous &&
307                             (Ambiguity == AmbiguousBaseSubobjectTypes ||
308                              Ambiguity == AmbiguousBaseSubobjects)));
309}
310#endif
311
312// Necessary because CXXBasePaths is not complete in Sema.h
313void LookupResult::deletePaths(CXXBasePaths *Paths) {
314  delete Paths;
315}
316
317/// Resolves the result kind of this lookup.
318void LookupResult::resolveKind() {
319  unsigned N = Decls.size();
320
321  // Fast case: no possible ambiguity.
322  if (N == 0) {
323    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
324    return;
325  }
326
327  // If there's a single decl, we need to examine it to decide what
328  // kind of lookup this is.
329  if (N == 1) {
330    NamedDecl *D = (*Decls.begin())->getUnderlyingDecl();
331    if (isa<FunctionTemplateDecl>(D))
332      ResultKind = FoundOverloaded;
333    else if (isa<UnresolvedUsingValueDecl>(D))
334      ResultKind = FoundUnresolvedValue;
335    return;
336  }
337
338  // Don't do any extra resolution if we've already resolved as ambiguous.
339  if (ResultKind == Ambiguous) return;
340
341  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
342  llvm::SmallPtrSet<QualType, 16> UniqueTypes;
343
344  bool Ambiguous = false;
345  bool HasTag = false, HasFunction = false, HasNonFunction = false;
346  bool HasFunctionTemplate = false, HasUnresolved = false;
347
348  unsigned UniqueTagIndex = 0;
349
350  unsigned I = 0;
351  while (I < N) {
352    NamedDecl *D = Decls[I]->getUnderlyingDecl();
353    D = cast<NamedDecl>(D->getCanonicalDecl());
354
355    // Redeclarations of types via typedef can occur both within a scope
356    // and, through using declarations and directives, across scopes. There is
357    // no ambiguity if they all refer to the same type, so unique based on the
358    // canonical type.
359    if (TypeDecl *TD = dyn_cast<TypeDecl>(D)) {
360      if (!TD->getDeclContext()->isRecord()) {
361        QualType T = SemaRef.Context.getTypeDeclType(TD);
362        if (!UniqueTypes.insert(SemaRef.Context.getCanonicalType(T))) {
363          // The type is not unique; pull something off the back and continue
364          // at this index.
365          Decls[I] = Decls[--N];
366          continue;
367        }
368      }
369    }
370
371    if (!Unique.insert(D)) {
372      // If it's not unique, pull something off the back (and
373      // continue at this index).
374      Decls[I] = Decls[--N];
375      continue;
376    }
377
378    // Otherwise, do some decl type analysis and then continue.
379
380    if (isa<UnresolvedUsingValueDecl>(D)) {
381      HasUnresolved = true;
382    } else if (isa<TagDecl>(D)) {
383      if (HasTag)
384        Ambiguous = true;
385      UniqueTagIndex = I;
386      HasTag = true;
387    } else if (isa<FunctionTemplateDecl>(D)) {
388      HasFunction = true;
389      HasFunctionTemplate = true;
390    } else if (isa<FunctionDecl>(D)) {
391      HasFunction = true;
392    } else {
393      if (HasNonFunction)
394        Ambiguous = true;
395      HasNonFunction = true;
396    }
397    I++;
398  }
399
400  // C++ [basic.scope.hiding]p2:
401  //   A class name or enumeration name can be hidden by the name of
402  //   an object, function, or enumerator declared in the same
403  //   scope. If a class or enumeration name and an object, function,
404  //   or enumerator are declared in the same scope (in any order)
405  //   with the same name, the class or enumeration name is hidden
406  //   wherever the object, function, or enumerator name is visible.
407  // But it's still an error if there are distinct tag types found,
408  // even if they're not visible. (ref?)
409  if (HideTags && HasTag && !Ambiguous &&
410      (HasFunction || HasNonFunction || HasUnresolved)) {
411    if (Decls[UniqueTagIndex]->getDeclContext()->getRedeclContext()->Equals(
412         Decls[UniqueTagIndex? 0 : N-1]->getDeclContext()->getRedeclContext()))
413      Decls[UniqueTagIndex] = Decls[--N];
414    else
415      Ambiguous = true;
416  }
417
418  Decls.set_size(N);
419
420  if (HasNonFunction && (HasFunction || HasUnresolved))
421    Ambiguous = true;
422
423  if (Ambiguous)
424    setAmbiguous(LookupResult::AmbiguousReference);
425  else if (HasUnresolved)
426    ResultKind = LookupResult::FoundUnresolvedValue;
427  else if (N > 1 || HasFunctionTemplate)
428    ResultKind = LookupResult::FoundOverloaded;
429  else
430    ResultKind = LookupResult::Found;
431}
432
433void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
434  CXXBasePaths::const_paths_iterator I, E;
435  DeclContext::lookup_iterator DI, DE;
436  for (I = P.begin(), E = P.end(); I != E; ++I)
437    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
438      addDecl(*DI);
439}
440
441void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
442  Paths = new CXXBasePaths;
443  Paths->swap(P);
444  addDeclsFromBasePaths(*Paths);
445  resolveKind();
446  setAmbiguous(AmbiguousBaseSubobjects);
447}
448
449void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
450  Paths = new CXXBasePaths;
451  Paths->swap(P);
452  addDeclsFromBasePaths(*Paths);
453  resolveKind();
454  setAmbiguous(AmbiguousBaseSubobjectTypes);
455}
456
457void LookupResult::print(llvm::raw_ostream &Out) {
458  Out << Decls.size() << " result(s)";
459  if (isAmbiguous()) Out << ", ambiguous";
460  if (Paths) Out << ", base paths present";
461
462  for (iterator I = begin(), E = end(); I != E; ++I) {
463    Out << "\n";
464    (*I)->print(Out, 2);
465  }
466}
467
468/// \brief Lookup a builtin function, when name lookup would otherwise
469/// fail.
470static bool LookupBuiltin(Sema &S, LookupResult &R) {
471  Sema::LookupNameKind NameKind = R.getLookupKind();
472
473  // If we didn't find a use of this identifier, and if the identifier
474  // corresponds to a compiler builtin, create the decl object for the builtin
475  // now, injecting it into translation unit scope, and return it.
476  if (NameKind == Sema::LookupOrdinaryName ||
477      NameKind == Sema::LookupRedeclarationWithLinkage) {
478    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
479    if (II) {
480      // If this is a builtin on this (or all) targets, create the decl.
481      if (unsigned BuiltinID = II->getBuiltinID()) {
482        // In C++, we don't have any predefined library functions like
483        // 'malloc'. Instead, we'll just error.
484        if (S.getLangOptions().CPlusPlus &&
485            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
486          return false;
487
488        NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
489                                             S.TUScope, R.isForRedeclaration(),
490                                             R.getNameLoc());
491        if (D)
492          R.addDecl(D);
493        return (D != NULL);
494      }
495    }
496  }
497
498  return false;
499}
500
501/// \brief Determine whether we can declare a special member function within
502/// the class at this point.
503static bool CanDeclareSpecialMemberFunction(ASTContext &Context,
504                                            const CXXRecordDecl *Class) {
505  // Don't do it if the class is invalid.
506  if (Class->isInvalidDecl())
507    return false;
508
509  // We need to have a definition for the class.
510  if (!Class->getDefinition() || Class->isDependentContext())
511    return false;
512
513  // We can't be in the middle of defining the class.
514  if (const RecordType *RecordTy
515                        = Context.getTypeDeclType(Class)->getAs<RecordType>())
516    return !RecordTy->isBeingDefined();
517
518  return false;
519}
520
521void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) {
522  if (!CanDeclareSpecialMemberFunction(Context, Class))
523    return;
524
525  // If the default constructor has not yet been declared, do so now.
526  if (!Class->hasDeclaredDefaultConstructor())
527    DeclareImplicitDefaultConstructor(Class);
528
529  // If the copy constructor has not yet been declared, do so now.
530  if (!Class->hasDeclaredCopyConstructor())
531    DeclareImplicitCopyConstructor(Class);
532
533  // If the copy assignment operator has not yet been declared, do so now.
534  if (!Class->hasDeclaredCopyAssignment())
535    DeclareImplicitCopyAssignment(Class);
536
537  // If the destructor has not yet been declared, do so now.
538  if (!Class->hasDeclaredDestructor())
539    DeclareImplicitDestructor(Class);
540}
541
542/// \brief Determine whether this is the name of an implicitly-declared
543/// special member function.
544static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) {
545  switch (Name.getNameKind()) {
546  case DeclarationName::CXXConstructorName:
547  case DeclarationName::CXXDestructorName:
548    return true;
549
550  case DeclarationName::CXXOperatorName:
551    return Name.getCXXOverloadedOperator() == OO_Equal;
552
553  default:
554    break;
555  }
556
557  return false;
558}
559
560/// \brief If there are any implicit member functions with the given name
561/// that need to be declared in the given declaration context, do so.
562static void DeclareImplicitMemberFunctionsWithName(Sema &S,
563                                                   DeclarationName Name,
564                                                   const DeclContext *DC) {
565  if (!DC)
566    return;
567
568  switch (Name.getNameKind()) {
569  case DeclarationName::CXXConstructorName:
570    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
571      if (Record->getDefinition() &&
572          CanDeclareSpecialMemberFunction(S.Context, Record)) {
573        if (!Record->hasDeclaredDefaultConstructor())
574          S.DeclareImplicitDefaultConstructor(
575                                           const_cast<CXXRecordDecl *>(Record));
576        if (!Record->hasDeclaredCopyConstructor())
577          S.DeclareImplicitCopyConstructor(const_cast<CXXRecordDecl *>(Record));
578      }
579    break;
580
581  case DeclarationName::CXXDestructorName:
582    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
583      if (Record->getDefinition() && !Record->hasDeclaredDestructor() &&
584          CanDeclareSpecialMemberFunction(S.Context, Record))
585        S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record));
586    break;
587
588  case DeclarationName::CXXOperatorName:
589    if (Name.getCXXOverloadedOperator() != OO_Equal)
590      break;
591
592    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
593      if (Record->getDefinition() && !Record->hasDeclaredCopyAssignment() &&
594          CanDeclareSpecialMemberFunction(S.Context, Record))
595        S.DeclareImplicitCopyAssignment(const_cast<CXXRecordDecl *>(Record));
596    break;
597
598  default:
599    break;
600  }
601}
602
603// Adds all qualifying matches for a name within a decl context to the
604// given lookup result.  Returns true if any matches were found.
605static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
606  bool Found = false;
607
608  // Lazily declare C++ special member functions.
609  if (S.getLangOptions().CPlusPlus)
610    DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), DC);
611
612  // Perform lookup into this declaration context.
613  DeclContext::lookup_const_iterator I, E;
614  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
615    NamedDecl *D = *I;
616    if (R.isAcceptableDecl(D)) {
617      R.addDecl(D);
618      Found = true;
619    }
620  }
621
622  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
623    return true;
624
625  if (R.getLookupName().getNameKind()
626        != DeclarationName::CXXConversionFunctionName ||
627      R.getLookupName().getCXXNameType()->isDependentType() ||
628      !isa<CXXRecordDecl>(DC))
629    return Found;
630
631  // C++ [temp.mem]p6:
632  //   A specialization of a conversion function template is not found by
633  //   name lookup. Instead, any conversion function templates visible in the
634  //   context of the use are considered. [...]
635  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
636  if (!Record->isDefinition())
637    return Found;
638
639  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
640  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
641         UEnd = Unresolved->end(); U != UEnd; ++U) {
642    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
643    if (!ConvTemplate)
644      continue;
645
646    // When we're performing lookup for the purposes of redeclaration, just
647    // add the conversion function template. When we deduce template
648    // arguments for specializations, we'll end up unifying the return
649    // type of the new declaration with the type of the function template.
650    if (R.isForRedeclaration()) {
651      R.addDecl(ConvTemplate);
652      Found = true;
653      continue;
654    }
655
656    // C++ [temp.mem]p6:
657    //   [...] For each such operator, if argument deduction succeeds
658    //   (14.9.2.3), the resulting specialization is used as if found by
659    //   name lookup.
660    //
661    // When referencing a conversion function for any purpose other than
662    // a redeclaration (such that we'll be building an expression with the
663    // result), perform template argument deduction and place the
664    // specialization into the result set. We do this to avoid forcing all
665    // callers to perform special deduction for conversion functions.
666    TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
667    FunctionDecl *Specialization = 0;
668
669    const FunctionProtoType *ConvProto
670      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
671    assert(ConvProto && "Nonsensical conversion function template type");
672
673    // Compute the type of the function that we would expect the conversion
674    // function to have, if it were to match the name given.
675    // FIXME: Calling convention!
676    FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
677    QualType ExpectedType
678      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
679                                            0, 0, ConvProto->isVariadic(),
680                                            ConvProto->getTypeQuals(),
681                                            false, false, 0, 0,
682                                    ConvProtoInfo.withCallingConv(CC_Default));
683
684    // Perform template argument deduction against the type that we would
685    // expect the function to have.
686    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
687                                            Specialization, Info)
688          == Sema::TDK_Success) {
689      R.addDecl(Specialization);
690      Found = true;
691    }
692  }
693
694  return Found;
695}
696
697// Performs C++ unqualified lookup into the given file context.
698static bool
699CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
700                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
701
702  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
703
704  // Perform direct name lookup into the LookupCtx.
705  bool Found = LookupDirect(S, R, NS);
706
707  // Perform direct name lookup into the namespaces nominated by the
708  // using directives whose common ancestor is this namespace.
709  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
710  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
711
712  for (; UI != UEnd; ++UI)
713    if (LookupDirect(S, R, UI->getNominatedNamespace()))
714      Found = true;
715
716  R.resolveKind();
717
718  return Found;
719}
720
721static bool isNamespaceOrTranslationUnitScope(Scope *S) {
722  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
723    return Ctx->isFileContext();
724  return false;
725}
726
727// Find the next outer declaration context from this scope. This
728// routine actually returns the semantic outer context, which may
729// differ from the lexical context (encoded directly in the Scope
730// stack) when we are parsing a member of a class template. In this
731// case, the second element of the pair will be true, to indicate that
732// name lookup should continue searching in this semantic context when
733// it leaves the current template parameter scope.
734static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
735  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
736  DeclContext *Lexical = 0;
737  for (Scope *OuterS = S->getParent(); OuterS;
738       OuterS = OuterS->getParent()) {
739    if (OuterS->getEntity()) {
740      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
741      break;
742    }
743  }
744
745  // C++ [temp.local]p8:
746  //   In the definition of a member of a class template that appears
747  //   outside of the namespace containing the class template
748  //   definition, the name of a template-parameter hides the name of
749  //   a member of this namespace.
750  //
751  // Example:
752  //
753  //   namespace N {
754  //     class C { };
755  //
756  //     template<class T> class B {
757  //       void f(T);
758  //     };
759  //   }
760  //
761  //   template<class C> void N::B<C>::f(C) {
762  //     C b;  // C is the template parameter, not N::C
763  //   }
764  //
765  // In this example, the lexical context we return is the
766  // TranslationUnit, while the semantic context is the namespace N.
767  if (!Lexical || !DC || !S->getParent() ||
768      !S->getParent()->isTemplateParamScope())
769    return std::make_pair(Lexical, false);
770
771  // Find the outermost template parameter scope.
772  // For the example, this is the scope for the template parameters of
773  // template<class C>.
774  Scope *OutermostTemplateScope = S->getParent();
775  while (OutermostTemplateScope->getParent() &&
776         OutermostTemplateScope->getParent()->isTemplateParamScope())
777    OutermostTemplateScope = OutermostTemplateScope->getParent();
778
779  // Find the namespace context in which the original scope occurs. In
780  // the example, this is namespace N.
781  DeclContext *Semantic = DC;
782  while (!Semantic->isFileContext())
783    Semantic = Semantic->getParent();
784
785  // Find the declaration context just outside of the template
786  // parameter scope. This is the context in which the template is
787  // being lexically declaration (a namespace context). In the
788  // example, this is the global scope.
789  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
790      Lexical->Encloses(Semantic))
791    return std::make_pair(Semantic, true);
792
793  return std::make_pair(Lexical, false);
794}
795
796bool Sema::CppLookupName(LookupResult &R, Scope *S) {
797  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
798
799  DeclarationName Name = R.getLookupName();
800
801  // If this is the name of an implicitly-declared special member function,
802  // go through the scope stack to implicitly declare
803  if (isImplicitlyDeclaredMemberFunctionName(Name)) {
804    for (Scope *PreS = S; PreS; PreS = PreS->getParent())
805      if (DeclContext *DC = static_cast<DeclContext *>(PreS->getEntity()))
806        DeclareImplicitMemberFunctionsWithName(*this, Name, DC);
807  }
808
809  // Implicitly declare member functions with the name we're looking for, if in
810  // fact we are in a scope where it matters.
811
812  Scope *Initial = S;
813  IdentifierResolver::iterator
814    I = IdResolver.begin(Name),
815    IEnd = IdResolver.end();
816
817  // First we lookup local scope.
818  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
819  // ...During unqualified name lookup (3.4.1), the names appear as if
820  // they were declared in the nearest enclosing namespace which contains
821  // both the using-directive and the nominated namespace.
822  // [Note: in this context, "contains" means "contains directly or
823  // indirectly".
824  //
825  // For example:
826  // namespace A { int i; }
827  // void foo() {
828  //   int i;
829  //   {
830  //     using namespace A;
831  //     ++i; // finds local 'i', A::i appears at global scope
832  //   }
833  // }
834  //
835  DeclContext *OutsideOfTemplateParamDC = 0;
836  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
837    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
838
839    // Check whether the IdResolver has anything in this scope.
840    bool Found = false;
841    for (; I != IEnd && S->isDeclScope(*I); ++I) {
842      if (R.isAcceptableDecl(*I)) {
843        Found = true;
844        R.addDecl(*I);
845      }
846    }
847    if (Found) {
848      R.resolveKind();
849      if (S->isClassScope())
850        if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(Ctx))
851          R.setNamingClass(Record);
852      return true;
853    }
854
855    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
856        S->getParent() && !S->getParent()->isTemplateParamScope()) {
857      // We've just searched the last template parameter scope and
858      // found nothing, so look into the the contexts between the
859      // lexical and semantic declaration contexts returned by
860      // findOuterContext(). This implements the name lookup behavior
861      // of C++ [temp.local]p8.
862      Ctx = OutsideOfTemplateParamDC;
863      OutsideOfTemplateParamDC = 0;
864    }
865
866    if (Ctx) {
867      DeclContext *OuterCtx;
868      bool SearchAfterTemplateScope;
869      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
870      if (SearchAfterTemplateScope)
871        OutsideOfTemplateParamDC = OuterCtx;
872
873      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
874        // We do not directly look into transparent contexts, since
875        // those entities will be found in the nearest enclosing
876        // non-transparent context.
877        if (Ctx->isTransparentContext())
878          continue;
879
880        // We do not look directly into function or method contexts,
881        // since all of the local variables and parameters of the
882        // function/method are present within the Scope.
883        if (Ctx->isFunctionOrMethod()) {
884          // If we have an Objective-C instance method, look for ivars
885          // in the corresponding interface.
886          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
887            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
888              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
889                ObjCInterfaceDecl *ClassDeclared;
890                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
891                                                 Name.getAsIdentifierInfo(),
892                                                             ClassDeclared)) {
893                  if (R.isAcceptableDecl(Ivar)) {
894                    R.addDecl(Ivar);
895                    R.resolveKind();
896                    return true;
897                  }
898                }
899              }
900          }
901
902          continue;
903        }
904
905        // Perform qualified name lookup into this context.
906        // FIXME: In some cases, we know that every name that could be found by
907        // this qualified name lookup will also be on the identifier chain. For
908        // example, inside a class without any base classes, we never need to
909        // perform qualified lookup because all of the members are on top of the
910        // identifier chain.
911        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
912          return true;
913      }
914    }
915  }
916
917  // Stop if we ran out of scopes.
918  // FIXME:  This really, really shouldn't be happening.
919  if (!S) return false;
920
921  // If we are looking for members, no need to look into global/namespace scope.
922  if (R.getLookupKind() == LookupMemberName)
923    return false;
924
925  // Collect UsingDirectiveDecls in all scopes, and recursively all
926  // nominated namespaces by those using-directives.
927  //
928  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
929  // don't build it for each lookup!
930
931  UnqualUsingDirectiveSet UDirs;
932  UDirs.visitScopeChain(Initial, S);
933  UDirs.done();
934
935  // Lookup namespace scope, and global scope.
936  // Unqualified name lookup in C++ requires looking into scopes
937  // that aren't strictly lexical, and therefore we walk through the
938  // context as well as walking through the scopes.
939
940  for (; S; S = S->getParent()) {
941    // Check whether the IdResolver has anything in this scope.
942    bool Found = false;
943    for (; I != IEnd && S->isDeclScope(*I); ++I) {
944      if (R.isAcceptableDecl(*I)) {
945        // We found something.  Look for anything else in our scope
946        // with this same name and in an acceptable identifier
947        // namespace, so that we can construct an overload set if we
948        // need to.
949        Found = true;
950        R.addDecl(*I);
951      }
952    }
953
954    if (Found && S->isTemplateParamScope()) {
955      R.resolveKind();
956      return true;
957    }
958
959    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
960    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
961        S->getParent() && !S->getParent()->isTemplateParamScope()) {
962      // We've just searched the last template parameter scope and
963      // found nothing, so look into the the contexts between the
964      // lexical and semantic declaration contexts returned by
965      // findOuterContext(). This implements the name lookup behavior
966      // of C++ [temp.local]p8.
967      Ctx = OutsideOfTemplateParamDC;
968      OutsideOfTemplateParamDC = 0;
969    }
970
971    if (Ctx) {
972      DeclContext *OuterCtx;
973      bool SearchAfterTemplateScope;
974      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
975      if (SearchAfterTemplateScope)
976        OutsideOfTemplateParamDC = OuterCtx;
977
978      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
979        // We do not directly look into transparent contexts, since
980        // those entities will be found in the nearest enclosing
981        // non-transparent context.
982        if (Ctx->isTransparentContext())
983          continue;
984
985        // If we have a context, and it's not a context stashed in the
986        // template parameter scope for an out-of-line definition, also
987        // look into that context.
988        if (!(Found && S && S->isTemplateParamScope())) {
989          assert(Ctx->isFileContext() &&
990              "We should have been looking only at file context here already.");
991
992          // Look into context considering using-directives.
993          if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
994            Found = true;
995        }
996
997        if (Found) {
998          R.resolveKind();
999          return true;
1000        }
1001
1002        if (R.isForRedeclaration() && !Ctx->isTransparentContext())
1003          return false;
1004      }
1005    }
1006
1007    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
1008      return false;
1009  }
1010
1011  return !R.empty();
1012}
1013
1014/// @brief Perform unqualified name lookup starting from a given
1015/// scope.
1016///
1017/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
1018/// used to find names within the current scope. For example, 'x' in
1019/// @code
1020/// int x;
1021/// int f() {
1022///   return x; // unqualified name look finds 'x' in the global scope
1023/// }
1024/// @endcode
1025///
1026/// Different lookup criteria can find different names. For example, a
1027/// particular scope can have both a struct and a function of the same
1028/// name, and each can be found by certain lookup criteria. For more
1029/// information about lookup criteria, see the documentation for the
1030/// class LookupCriteria.
1031///
1032/// @param S        The scope from which unqualified name lookup will
1033/// begin. If the lookup criteria permits, name lookup may also search
1034/// in the parent scopes.
1035///
1036/// @param Name     The name of the entity that we are searching for.
1037///
1038/// @param Loc      If provided, the source location where we're performing
1039/// name lookup. At present, this is only used to produce diagnostics when
1040/// C library functions (like "malloc") are implicitly declared.
1041///
1042/// @returns The result of name lookup, which includes zero or more
1043/// declarations and possibly additional information used to diagnose
1044/// ambiguities.
1045bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
1046  DeclarationName Name = R.getLookupName();
1047  if (!Name) return false;
1048
1049  LookupNameKind NameKind = R.getLookupKind();
1050
1051  if (!getLangOptions().CPlusPlus) {
1052    // Unqualified name lookup in C/Objective-C is purely lexical, so
1053    // search in the declarations attached to the name.
1054
1055    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
1056      // Find the nearest non-transparent declaration scope.
1057      while (!(S->getFlags() & Scope::DeclScope) ||
1058             (S->getEntity() &&
1059              static_cast<DeclContext *>(S->getEntity())
1060                ->isTransparentContext()))
1061        S = S->getParent();
1062    }
1063
1064    unsigned IDNS = R.getIdentifierNamespace();
1065
1066    // Scan up the scope chain looking for a decl that matches this
1067    // identifier that is in the appropriate namespace.  This search
1068    // should not take long, as shadowing of names is uncommon, and
1069    // deep shadowing is extremely uncommon.
1070    bool LeftStartingScope = false;
1071
1072    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
1073                                   IEnd = IdResolver.end();
1074         I != IEnd; ++I)
1075      if ((*I)->isInIdentifierNamespace(IDNS)) {
1076        if (NameKind == LookupRedeclarationWithLinkage) {
1077          // Determine whether this (or a previous) declaration is
1078          // out-of-scope.
1079          if (!LeftStartingScope && !S->isDeclScope(*I))
1080            LeftStartingScope = true;
1081
1082          // If we found something outside of our starting scope that
1083          // does not have linkage, skip it.
1084          if (LeftStartingScope && !((*I)->hasLinkage()))
1085            continue;
1086        }
1087
1088        R.addDecl(*I);
1089
1090        if ((*I)->getAttr<OverloadableAttr>()) {
1091          // If this declaration has the "overloadable" attribute, we
1092          // might have a set of overloaded functions.
1093
1094          // Figure out what scope the identifier is in.
1095          while (!(S->getFlags() & Scope::DeclScope) ||
1096                 !S->isDeclScope(*I))
1097            S = S->getParent();
1098
1099          // Find the last declaration in this scope (with the same
1100          // name, naturally).
1101          IdentifierResolver::iterator LastI = I;
1102          for (++LastI; LastI != IEnd; ++LastI) {
1103            if (!S->isDeclScope(*LastI))
1104              break;
1105            R.addDecl(*LastI);
1106          }
1107        }
1108
1109        R.resolveKind();
1110
1111        return true;
1112      }
1113  } else {
1114    // Perform C++ unqualified name lookup.
1115    if (CppLookupName(R, S))
1116      return true;
1117  }
1118
1119  // If we didn't find a use of this identifier, and if the identifier
1120  // corresponds to a compiler builtin, create the decl object for the builtin
1121  // now, injecting it into translation unit scope, and return it.
1122  if (AllowBuiltinCreation)
1123    return LookupBuiltin(*this, R);
1124
1125  return false;
1126}
1127
1128/// @brief Perform qualified name lookup in the namespaces nominated by
1129/// using directives by the given context.
1130///
1131/// C++98 [namespace.qual]p2:
1132///   Given X::m (where X is a user-declared namespace), or given ::m
1133///   (where X is the global namespace), let S be the set of all
1134///   declarations of m in X and in the transitive closure of all
1135///   namespaces nominated by using-directives in X and its used
1136///   namespaces, except that using-directives are ignored in any
1137///   namespace, including X, directly containing one or more
1138///   declarations of m. No namespace is searched more than once in
1139///   the lookup of a name. If S is the empty set, the program is
1140///   ill-formed. Otherwise, if S has exactly one member, or if the
1141///   context of the reference is a using-declaration
1142///   (namespace.udecl), S is the required set of declarations of
1143///   m. Otherwise if the use of m is not one that allows a unique
1144///   declaration to be chosen from S, the program is ill-formed.
1145/// C++98 [namespace.qual]p5:
1146///   During the lookup of a qualified namespace member name, if the
1147///   lookup finds more than one declaration of the member, and if one
1148///   declaration introduces a class name or enumeration name and the
1149///   other declarations either introduce the same object, the same
1150///   enumerator or a set of functions, the non-type name hides the
1151///   class or enumeration name if and only if the declarations are
1152///   from the same namespace; otherwise (the declarations are from
1153///   different namespaces), the program is ill-formed.
1154static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
1155                                                 DeclContext *StartDC) {
1156  assert(StartDC->isFileContext() && "start context is not a file context");
1157
1158  DeclContext::udir_iterator I = StartDC->using_directives_begin();
1159  DeclContext::udir_iterator E = StartDC->using_directives_end();
1160
1161  if (I == E) return false;
1162
1163  // We have at least added all these contexts to the queue.
1164  llvm::DenseSet<DeclContext*> Visited;
1165  Visited.insert(StartDC);
1166
1167  // We have not yet looked into these namespaces, much less added
1168  // their "using-children" to the queue.
1169  llvm::SmallVector<NamespaceDecl*, 8> Queue;
1170
1171  // We have already looked into the initial namespace; seed the queue
1172  // with its using-children.
1173  for (; I != E; ++I) {
1174    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1175    if (Visited.insert(ND).second)
1176      Queue.push_back(ND);
1177  }
1178
1179  // The easiest way to implement the restriction in [namespace.qual]p5
1180  // is to check whether any of the individual results found a tag
1181  // and, if so, to declare an ambiguity if the final result is not
1182  // a tag.
1183  bool FoundTag = false;
1184  bool FoundNonTag = false;
1185
1186  LookupResult LocalR(LookupResult::Temporary, R);
1187
1188  bool Found = false;
1189  while (!Queue.empty()) {
1190    NamespaceDecl *ND = Queue.back();
1191    Queue.pop_back();
1192
1193    // We go through some convolutions here to avoid copying results
1194    // between LookupResults.
1195    bool UseLocal = !R.empty();
1196    LookupResult &DirectR = UseLocal ? LocalR : R;
1197    bool FoundDirect = LookupDirect(S, DirectR, ND);
1198
1199    if (FoundDirect) {
1200      // First do any local hiding.
1201      DirectR.resolveKind();
1202
1203      // If the local result is a tag, remember that.
1204      if (DirectR.isSingleTagDecl())
1205        FoundTag = true;
1206      else
1207        FoundNonTag = true;
1208
1209      // Append the local results to the total results if necessary.
1210      if (UseLocal) {
1211        R.addAllDecls(LocalR);
1212        LocalR.clear();
1213      }
1214    }
1215
1216    // If we find names in this namespace, ignore its using directives.
1217    if (FoundDirect) {
1218      Found = true;
1219      continue;
1220    }
1221
1222    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1223      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1224      if (Visited.insert(Nom).second)
1225        Queue.push_back(Nom);
1226    }
1227  }
1228
1229  if (Found) {
1230    if (FoundTag && FoundNonTag)
1231      R.setAmbiguousQualifiedTagHiding();
1232    else
1233      R.resolveKind();
1234  }
1235
1236  return Found;
1237}
1238
1239/// \brief Callback that looks for any member of a class with the given name.
1240static bool LookupAnyMember(const CXXBaseSpecifier *Specifier,
1241                            CXXBasePath &Path,
1242                            void *Name) {
1243  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
1244
1245  DeclarationName N = DeclarationName::getFromOpaquePtr(Name);
1246  Path.Decls = BaseRecord->lookup(N);
1247  return Path.Decls.first != Path.Decls.second;
1248}
1249
1250/// \brief Determine whether the given set of member declarations contains only
1251/// static members, nested types, and enumerators.
1252template<typename InputIterator>
1253static bool HasOnlyStaticMembers(InputIterator First, InputIterator Last) {
1254  Decl *D = (*First)->getUnderlyingDecl();
1255  if (isa<VarDecl>(D) || isa<TypeDecl>(D) || isa<EnumConstantDecl>(D))
1256    return true;
1257
1258  if (isa<CXXMethodDecl>(D)) {
1259    // Determine whether all of the methods are static.
1260    bool AllMethodsAreStatic = true;
1261    for(; First != Last; ++First) {
1262      D = (*First)->getUnderlyingDecl();
1263
1264      if (!isa<CXXMethodDecl>(D)) {
1265        assert(isa<TagDecl>(D) && "Non-function must be a tag decl");
1266        break;
1267      }
1268
1269      if (!cast<CXXMethodDecl>(D)->isStatic()) {
1270        AllMethodsAreStatic = false;
1271        break;
1272      }
1273    }
1274
1275    if (AllMethodsAreStatic)
1276      return true;
1277  }
1278
1279  return false;
1280}
1281
1282/// \brief Perform qualified name lookup into a given context.
1283///
1284/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1285/// names when the context of those names is explicit specified, e.g.,
1286/// "std::vector" or "x->member", or as part of unqualified name lookup.
1287///
1288/// Different lookup criteria can find different names. For example, a
1289/// particular scope can have both a struct and a function of the same
1290/// name, and each can be found by certain lookup criteria. For more
1291/// information about lookup criteria, see the documentation for the
1292/// class LookupCriteria.
1293///
1294/// \param R captures both the lookup criteria and any lookup results found.
1295///
1296/// \param LookupCtx The context in which qualified name lookup will
1297/// search. If the lookup criteria permits, name lookup may also search
1298/// in the parent contexts or (for C++ classes) base classes.
1299///
1300/// \param InUnqualifiedLookup true if this is qualified name lookup that
1301/// occurs as part of unqualified name lookup.
1302///
1303/// \returns true if lookup succeeded, false if it failed.
1304bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1305                               bool InUnqualifiedLookup) {
1306  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1307
1308  if (!R.getLookupName())
1309    return false;
1310
1311  // Make sure that the declaration context is complete.
1312  assert((!isa<TagDecl>(LookupCtx) ||
1313          LookupCtx->isDependentContext() ||
1314          cast<TagDecl>(LookupCtx)->isDefinition() ||
1315          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1316            ->isBeingDefined()) &&
1317         "Declaration context must already be complete!");
1318
1319  // Perform qualified name lookup into the LookupCtx.
1320  if (LookupDirect(*this, R, LookupCtx)) {
1321    R.resolveKind();
1322    if (isa<CXXRecordDecl>(LookupCtx))
1323      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1324    return true;
1325  }
1326
1327  // Don't descend into implied contexts for redeclarations.
1328  // C++98 [namespace.qual]p6:
1329  //   In a declaration for a namespace member in which the
1330  //   declarator-id is a qualified-id, given that the qualified-id
1331  //   for the namespace member has the form
1332  //     nested-name-specifier unqualified-id
1333  //   the unqualified-id shall name a member of the namespace
1334  //   designated by the nested-name-specifier.
1335  // See also [class.mfct]p5 and [class.static.data]p2.
1336  if (R.isForRedeclaration())
1337    return false;
1338
1339  // If this is a namespace, look it up in the implied namespaces.
1340  if (LookupCtx->isFileContext())
1341    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1342
1343  // If this isn't a C++ class, we aren't allowed to look into base
1344  // classes, we're done.
1345  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1346  if (!LookupRec || !LookupRec->getDefinition())
1347    return false;
1348
1349  // If we're performing qualified name lookup into a dependent class,
1350  // then we are actually looking into a current instantiation. If we have any
1351  // dependent base classes, then we either have to delay lookup until
1352  // template instantiation time (at which point all bases will be available)
1353  // or we have to fail.
1354  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1355      LookupRec->hasAnyDependentBases()) {
1356    R.setNotFoundInCurrentInstantiation();
1357    return false;
1358  }
1359
1360  // Perform lookup into our base classes.
1361  CXXBasePaths Paths;
1362  Paths.setOrigin(LookupRec);
1363
1364  // Look for this member in our base classes
1365  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1366  switch (R.getLookupKind()) {
1367    case LookupOrdinaryName:
1368    case LookupMemberName:
1369    case LookupRedeclarationWithLinkage:
1370      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1371      break;
1372
1373    case LookupTagName:
1374      BaseCallback = &CXXRecordDecl::FindTagMember;
1375      break;
1376
1377    case LookupAnyName:
1378      BaseCallback = &LookupAnyMember;
1379      break;
1380
1381    case LookupUsingDeclName:
1382      // This lookup is for redeclarations only.
1383
1384    case LookupOperatorName:
1385    case LookupNamespaceName:
1386    case LookupObjCProtocolName:
1387      // These lookups will never find a member in a C++ class (or base class).
1388      return false;
1389
1390    case LookupNestedNameSpecifierName:
1391      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1392      break;
1393  }
1394
1395  if (!LookupRec->lookupInBases(BaseCallback,
1396                                R.getLookupName().getAsOpaquePtr(), Paths))
1397    return false;
1398
1399  R.setNamingClass(LookupRec);
1400
1401  // C++ [class.member.lookup]p2:
1402  //   [...] If the resulting set of declarations are not all from
1403  //   sub-objects of the same type, or the set has a nonstatic member
1404  //   and includes members from distinct sub-objects, there is an
1405  //   ambiguity and the program is ill-formed. Otherwise that set is
1406  //   the result of the lookup.
1407  QualType SubobjectType;
1408  int SubobjectNumber = 0;
1409  AccessSpecifier SubobjectAccess = AS_none;
1410
1411  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1412       Path != PathEnd; ++Path) {
1413    const CXXBasePathElement &PathElement = Path->back();
1414
1415    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1416    // across all paths.
1417    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1418
1419    // Determine whether we're looking at a distinct sub-object or not.
1420    if (SubobjectType.isNull()) {
1421      // This is the first subobject we've looked at. Record its type.
1422      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1423      SubobjectNumber = PathElement.SubobjectNumber;
1424      continue;
1425    }
1426
1427    if (SubobjectType
1428                 != Context.getCanonicalType(PathElement.Base->getType())) {
1429      // We found members of the given name in two subobjects of
1430      // different types. If the declaration sets aren't the same, this
1431      // this lookup is ambiguous.
1432      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second)) {
1433        CXXBasePaths::paths_iterator FirstPath = Paths.begin();
1434        DeclContext::lookup_iterator FirstD = FirstPath->Decls.first;
1435        DeclContext::lookup_iterator CurrentD = Path->Decls.first;
1436
1437        while (FirstD != FirstPath->Decls.second &&
1438               CurrentD != Path->Decls.second) {
1439         if ((*FirstD)->getUnderlyingDecl()->getCanonicalDecl() !=
1440             (*CurrentD)->getUnderlyingDecl()->getCanonicalDecl())
1441           break;
1442
1443          ++FirstD;
1444          ++CurrentD;
1445        }
1446
1447        if (FirstD == FirstPath->Decls.second &&
1448            CurrentD == Path->Decls.second)
1449          continue;
1450      }
1451
1452      R.setAmbiguousBaseSubobjectTypes(Paths);
1453      return true;
1454    }
1455
1456    if (SubobjectNumber != PathElement.SubobjectNumber) {
1457      // We have a different subobject of the same type.
1458
1459      // C++ [class.member.lookup]p5:
1460      //   A static member, a nested type or an enumerator defined in
1461      //   a base class T can unambiguously be found even if an object
1462      //   has more than one base class subobject of type T.
1463      if (HasOnlyStaticMembers(Path->Decls.first, Path->Decls.second))
1464        continue;
1465
1466      // We have found a nonstatic member name in multiple, distinct
1467      // subobjects. Name lookup is ambiguous.
1468      R.setAmbiguousBaseSubobjects(Paths);
1469      return true;
1470    }
1471  }
1472
1473  // Lookup in a base class succeeded; return these results.
1474
1475  DeclContext::lookup_iterator I, E;
1476  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1477    NamedDecl *D = *I;
1478    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1479                                                    D->getAccess());
1480    R.addDecl(D, AS);
1481  }
1482  R.resolveKind();
1483  return true;
1484}
1485
1486/// @brief Performs name lookup for a name that was parsed in the
1487/// source code, and may contain a C++ scope specifier.
1488///
1489/// This routine is a convenience routine meant to be called from
1490/// contexts that receive a name and an optional C++ scope specifier
1491/// (e.g., "N::M::x"). It will then perform either qualified or
1492/// unqualified name lookup (with LookupQualifiedName or LookupName,
1493/// respectively) on the given name and return those results.
1494///
1495/// @param S        The scope from which unqualified name lookup will
1496/// begin.
1497///
1498/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1499///
1500/// @param Name     The name of the entity that name lookup will
1501/// search for.
1502///
1503/// @param Loc      If provided, the source location where we're performing
1504/// name lookup. At present, this is only used to produce diagnostics when
1505/// C library functions (like "malloc") are implicitly declared.
1506///
1507/// @param EnteringContext Indicates whether we are going to enter the
1508/// context of the scope-specifier SS (if present).
1509///
1510/// @returns True if any decls were found (but possibly ambiguous)
1511bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS,
1512                            bool AllowBuiltinCreation, bool EnteringContext) {
1513  if (SS && SS->isInvalid()) {
1514    // When the scope specifier is invalid, don't even look for
1515    // anything.
1516    return false;
1517  }
1518
1519  if (SS && SS->isSet()) {
1520    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1521      // We have resolved the scope specifier to a particular declaration
1522      // contex, and will perform name lookup in that context.
1523      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC))
1524        return false;
1525
1526      R.setContextRange(SS->getRange());
1527
1528      return LookupQualifiedName(R, DC);
1529    }
1530
1531    // We could not resolve the scope specified to a specific declaration
1532    // context, which means that SS refers to an unknown specialization.
1533    // Name lookup can't find anything in this case.
1534    return false;
1535  }
1536
1537  // Perform unqualified name lookup starting in the given scope.
1538  return LookupName(R, S, AllowBuiltinCreation);
1539}
1540
1541
1542/// @brief Produce a diagnostic describing the ambiguity that resulted
1543/// from name lookup.
1544///
1545/// @param Result       The ambiguous name lookup result.
1546///
1547/// @param Name         The name of the entity that name lookup was
1548/// searching for.
1549///
1550/// @param NameLoc      The location of the name within the source code.
1551///
1552/// @param LookupRange  A source range that provides more
1553/// source-location information concerning the lookup itself. For
1554/// example, this range might highlight a nested-name-specifier that
1555/// precedes the name.
1556///
1557/// @returns true
1558bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1559  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1560
1561  DeclarationName Name = Result.getLookupName();
1562  SourceLocation NameLoc = Result.getNameLoc();
1563  SourceRange LookupRange = Result.getContextRange();
1564
1565  switch (Result.getAmbiguityKind()) {
1566  case LookupResult::AmbiguousBaseSubobjects: {
1567    CXXBasePaths *Paths = Result.getBasePaths();
1568    QualType SubobjectType = Paths->front().back().Base->getType();
1569    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1570      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1571      << LookupRange;
1572
1573    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1574    while (isa<CXXMethodDecl>(*Found) &&
1575           cast<CXXMethodDecl>(*Found)->isStatic())
1576      ++Found;
1577
1578    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1579
1580    return true;
1581  }
1582
1583  case LookupResult::AmbiguousBaseSubobjectTypes: {
1584    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1585      << Name << LookupRange;
1586
1587    CXXBasePaths *Paths = Result.getBasePaths();
1588    std::set<Decl *> DeclsPrinted;
1589    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1590                                      PathEnd = Paths->end();
1591         Path != PathEnd; ++Path) {
1592      Decl *D = *Path->Decls.first;
1593      if (DeclsPrinted.insert(D).second)
1594        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1595    }
1596
1597    return true;
1598  }
1599
1600  case LookupResult::AmbiguousTagHiding: {
1601    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1602
1603    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1604
1605    LookupResult::iterator DI, DE = Result.end();
1606    for (DI = Result.begin(); DI != DE; ++DI)
1607      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1608        TagDecls.insert(TD);
1609        Diag(TD->getLocation(), diag::note_hidden_tag);
1610      }
1611
1612    for (DI = Result.begin(); DI != DE; ++DI)
1613      if (!isa<TagDecl>(*DI))
1614        Diag((*DI)->getLocation(), diag::note_hiding_object);
1615
1616    // For recovery purposes, go ahead and implement the hiding.
1617    LookupResult::Filter F = Result.makeFilter();
1618    while (F.hasNext()) {
1619      if (TagDecls.count(F.next()))
1620        F.erase();
1621    }
1622    F.done();
1623
1624    return true;
1625  }
1626
1627  case LookupResult::AmbiguousReference: {
1628    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1629
1630    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1631    for (; DI != DE; ++DI)
1632      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1633
1634    return true;
1635  }
1636  }
1637
1638  llvm_unreachable("unknown ambiguity kind");
1639  return true;
1640}
1641
1642namespace {
1643  struct AssociatedLookup {
1644    AssociatedLookup(Sema &S,
1645                     Sema::AssociatedNamespaceSet &Namespaces,
1646                     Sema::AssociatedClassSet &Classes)
1647      : S(S), Namespaces(Namespaces), Classes(Classes) {
1648    }
1649
1650    Sema &S;
1651    Sema::AssociatedNamespaceSet &Namespaces;
1652    Sema::AssociatedClassSet &Classes;
1653  };
1654}
1655
1656static void
1657addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T);
1658
1659static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1660                                      DeclContext *Ctx) {
1661  // Add the associated namespace for this class.
1662
1663  // We don't use DeclContext::getEnclosingNamespaceContext() as this may
1664  // be a locally scoped record.
1665
1666  // We skip out of inline namespaces. The innermost non-inline namespace
1667  // contains all names of all its nested inline namespaces anyway, so we can
1668  // replace the entire inline namespace tree with its root.
1669  while (Ctx->isRecord() || Ctx->isTransparentContext() ||
1670         Ctx->isInlineNamespace())
1671    Ctx = Ctx->getParent();
1672
1673  if (Ctx->isFileContext())
1674    Namespaces.insert(Ctx->getPrimaryContext());
1675}
1676
1677// \brief Add the associated classes and namespaces for argument-dependent
1678// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1679static void
1680addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1681                                  const TemplateArgument &Arg) {
1682  // C++ [basic.lookup.koenig]p2, last bullet:
1683  //   -- [...] ;
1684  switch (Arg.getKind()) {
1685    case TemplateArgument::Null:
1686      break;
1687
1688    case TemplateArgument::Type:
1689      // [...] the namespaces and classes associated with the types of the
1690      // template arguments provided for template type parameters (excluding
1691      // template template parameters)
1692      addAssociatedClassesAndNamespaces(Result, Arg.getAsType());
1693      break;
1694
1695    case TemplateArgument::Template: {
1696      // [...] the namespaces in which any template template arguments are
1697      // defined; and the classes in which any member templates used as
1698      // template template arguments are defined.
1699      TemplateName Template = Arg.getAsTemplate();
1700      if (ClassTemplateDecl *ClassTemplate
1701                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1702        DeclContext *Ctx = ClassTemplate->getDeclContext();
1703        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1704          Result.Classes.insert(EnclosingClass);
1705        // Add the associated namespace for this class.
1706        CollectEnclosingNamespace(Result.Namespaces, Ctx);
1707      }
1708      break;
1709    }
1710
1711    case TemplateArgument::Declaration:
1712    case TemplateArgument::Integral:
1713    case TemplateArgument::Expression:
1714      // [Note: non-type template arguments do not contribute to the set of
1715      //  associated namespaces. ]
1716      break;
1717
1718    case TemplateArgument::Pack:
1719      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1720                                        PEnd = Arg.pack_end();
1721           P != PEnd; ++P)
1722        addAssociatedClassesAndNamespaces(Result, *P);
1723      break;
1724  }
1725}
1726
1727// \brief Add the associated classes and namespaces for
1728// argument-dependent lookup with an argument of class type
1729// (C++ [basic.lookup.koenig]p2).
1730static void
1731addAssociatedClassesAndNamespaces(AssociatedLookup &Result,
1732                                  CXXRecordDecl *Class) {
1733
1734  // Just silently ignore anything whose name is __va_list_tag.
1735  if (Class->getDeclName() == Result.S.VAListTagName)
1736    return;
1737
1738  // C++ [basic.lookup.koenig]p2:
1739  //   [...]
1740  //     -- If T is a class type (including unions), its associated
1741  //        classes are: the class itself; the class of which it is a
1742  //        member, if any; and its direct and indirect base
1743  //        classes. Its associated namespaces are the namespaces in
1744  //        which its associated classes are defined.
1745
1746  // Add the class of which it is a member, if any.
1747  DeclContext *Ctx = Class->getDeclContext();
1748  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1749    Result.Classes.insert(EnclosingClass);
1750  // Add the associated namespace for this class.
1751  CollectEnclosingNamespace(Result.Namespaces, Ctx);
1752
1753  // Add the class itself. If we've already seen this class, we don't
1754  // need to visit base classes.
1755  if (!Result.Classes.insert(Class))
1756    return;
1757
1758  // -- If T is a template-id, its associated namespaces and classes are
1759  //    the namespace in which the template is defined; for member
1760  //    templates, the member template’s class; the namespaces and classes
1761  //    associated with the types of the template arguments provided for
1762  //    template type parameters (excluding template template parameters); the
1763  //    namespaces in which any template template arguments are defined; and
1764  //    the classes in which any member templates used as template template
1765  //    arguments are defined. [Note: non-type template arguments do not
1766  //    contribute to the set of associated namespaces. ]
1767  if (ClassTemplateSpecializationDecl *Spec
1768        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1769    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1770    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1771      Result.Classes.insert(EnclosingClass);
1772    // Add the associated namespace for this class.
1773    CollectEnclosingNamespace(Result.Namespaces, Ctx);
1774
1775    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1776    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1777      addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]);
1778  }
1779
1780  // Only recurse into base classes for complete types.
1781  if (!Class->hasDefinition()) {
1782    // FIXME: we might need to instantiate templates here
1783    return;
1784  }
1785
1786  // Add direct and indirect base classes along with their associated
1787  // namespaces.
1788  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1789  Bases.push_back(Class);
1790  while (!Bases.empty()) {
1791    // Pop this class off the stack.
1792    Class = Bases.back();
1793    Bases.pop_back();
1794
1795    // Visit the base classes.
1796    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1797                                         BaseEnd = Class->bases_end();
1798         Base != BaseEnd; ++Base) {
1799      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1800      // In dependent contexts, we do ADL twice, and the first time around,
1801      // the base type might be a dependent TemplateSpecializationType, or a
1802      // TemplateTypeParmType. If that happens, simply ignore it.
1803      // FIXME: If we want to support export, we probably need to add the
1804      // namespace of the template in a TemplateSpecializationType, or even
1805      // the classes and namespaces of known non-dependent arguments.
1806      if (!BaseType)
1807        continue;
1808      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1809      if (Result.Classes.insert(BaseDecl)) {
1810        // Find the associated namespace for this base class.
1811        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1812        CollectEnclosingNamespace(Result.Namespaces, BaseCtx);
1813
1814        // Make sure we visit the bases of this base class.
1815        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1816          Bases.push_back(BaseDecl);
1817      }
1818    }
1819  }
1820}
1821
1822// \brief Add the associated classes and namespaces for
1823// argument-dependent lookup with an argument of type T
1824// (C++ [basic.lookup.koenig]p2).
1825static void
1826addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) {
1827  // C++ [basic.lookup.koenig]p2:
1828  //
1829  //   For each argument type T in the function call, there is a set
1830  //   of zero or more associated namespaces and a set of zero or more
1831  //   associated classes to be considered. The sets of namespaces and
1832  //   classes is determined entirely by the types of the function
1833  //   arguments (and the namespace of any template template
1834  //   argument). Typedef names and using-declarations used to specify
1835  //   the types do not contribute to this set. The sets of namespaces
1836  //   and classes are determined in the following way:
1837
1838  llvm::SmallVector<const Type *, 16> Queue;
1839  const Type *T = Ty->getCanonicalTypeInternal().getTypePtr();
1840
1841  while (true) {
1842    switch (T->getTypeClass()) {
1843
1844#define TYPE(Class, Base)
1845#define DEPENDENT_TYPE(Class, Base) case Type::Class:
1846#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
1847#define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class:
1848#define ABSTRACT_TYPE(Class, Base)
1849#include "clang/AST/TypeNodes.def"
1850      // T is canonical.  We can also ignore dependent types because
1851      // we don't need to do ADL at the definition point, but if we
1852      // wanted to implement template export (or if we find some other
1853      // use for associated classes and namespaces...) this would be
1854      // wrong.
1855      break;
1856
1857    //    -- If T is a pointer to U or an array of U, its associated
1858    //       namespaces and classes are those associated with U.
1859    case Type::Pointer:
1860      T = cast<PointerType>(T)->getPointeeType().getTypePtr();
1861      continue;
1862    case Type::ConstantArray:
1863    case Type::IncompleteArray:
1864    case Type::VariableArray:
1865      T = cast<ArrayType>(T)->getElementType().getTypePtr();
1866      continue;
1867
1868    //     -- If T is a fundamental type, its associated sets of
1869    //        namespaces and classes are both empty.
1870    case Type::Builtin:
1871      break;
1872
1873    //     -- If T is a class type (including unions), its associated
1874    //        classes are: the class itself; the class of which it is a
1875    //        member, if any; and its direct and indirect base
1876    //        classes. Its associated namespaces are the namespaces in
1877    //        which its associated classes are defined.
1878    case Type::Record: {
1879      CXXRecordDecl *Class
1880        = cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl());
1881      addAssociatedClassesAndNamespaces(Result, Class);
1882      break;
1883    }
1884
1885    //     -- If T is an enumeration type, its associated namespace is
1886    //        the namespace in which it is defined. If it is class
1887    //        member, its associated class is the member’s class; else
1888    //        it has no associated class.
1889    case Type::Enum: {
1890      EnumDecl *Enum = cast<EnumType>(T)->getDecl();
1891
1892      DeclContext *Ctx = Enum->getDeclContext();
1893      if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1894        Result.Classes.insert(EnclosingClass);
1895
1896      // Add the associated namespace for this class.
1897      CollectEnclosingNamespace(Result.Namespaces, Ctx);
1898
1899      break;
1900    }
1901
1902    //     -- If T is a function type, its associated namespaces and
1903    //        classes are those associated with the function parameter
1904    //        types and those associated with the return type.
1905    case Type::FunctionProto: {
1906      const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1907      for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1908                                             ArgEnd = Proto->arg_type_end();
1909             Arg != ArgEnd; ++Arg)
1910        Queue.push_back(Arg->getTypePtr());
1911      // fallthrough
1912    }
1913    case Type::FunctionNoProto: {
1914      const FunctionType *FnType = cast<FunctionType>(T);
1915      T = FnType->getResultType().getTypePtr();
1916      continue;
1917    }
1918
1919    //     -- If T is a pointer to a member function of a class X, its
1920    //        associated namespaces and classes are those associated
1921    //        with the function parameter types and return type,
1922    //        together with those associated with X.
1923    //
1924    //     -- If T is a pointer to a data member of class X, its
1925    //        associated namespaces and classes are those associated
1926    //        with the member type together with those associated with
1927    //        X.
1928    case Type::MemberPointer: {
1929      const MemberPointerType *MemberPtr = cast<MemberPointerType>(T);
1930
1931      // Queue up the class type into which this points.
1932      Queue.push_back(MemberPtr->getClass());
1933
1934      // And directly continue with the pointee type.
1935      T = MemberPtr->getPointeeType().getTypePtr();
1936      continue;
1937    }
1938
1939    // As an extension, treat this like a normal pointer.
1940    case Type::BlockPointer:
1941      T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr();
1942      continue;
1943
1944    // References aren't covered by the standard, but that's such an
1945    // obvious defect that we cover them anyway.
1946    case Type::LValueReference:
1947    case Type::RValueReference:
1948      T = cast<ReferenceType>(T)->getPointeeType().getTypePtr();
1949      continue;
1950
1951    // These are fundamental types.
1952    case Type::Vector:
1953    case Type::ExtVector:
1954    case Type::Complex:
1955      break;
1956
1957    // These are ignored by ADL.
1958    case Type::ObjCObject:
1959    case Type::ObjCInterface:
1960    case Type::ObjCObjectPointer:
1961      break;
1962    }
1963
1964    if (Queue.empty()) break;
1965    T = Queue.back();
1966    Queue.pop_back();
1967  }
1968}
1969
1970/// \brief Find the associated classes and namespaces for
1971/// argument-dependent lookup for a call with the given set of
1972/// arguments.
1973///
1974/// This routine computes the sets of associated classes and associated
1975/// namespaces searched by argument-dependent lookup
1976/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1977void
1978Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1979                                 AssociatedNamespaceSet &AssociatedNamespaces,
1980                                 AssociatedClassSet &AssociatedClasses) {
1981  AssociatedNamespaces.clear();
1982  AssociatedClasses.clear();
1983
1984  AssociatedLookup Result(*this, AssociatedNamespaces, AssociatedClasses);
1985
1986  // C++ [basic.lookup.koenig]p2:
1987  //   For each argument type T in the function call, there is a set
1988  //   of zero or more associated namespaces and a set of zero or more
1989  //   associated classes to be considered. The sets of namespaces and
1990  //   classes is determined entirely by the types of the function
1991  //   arguments (and the namespace of any template template
1992  //   argument).
1993  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1994    Expr *Arg = Args[ArgIdx];
1995
1996    if (Arg->getType() != Context.OverloadTy) {
1997      addAssociatedClassesAndNamespaces(Result, Arg->getType());
1998      continue;
1999    }
2000
2001    // [...] In addition, if the argument is the name or address of a
2002    // set of overloaded functions and/or function templates, its
2003    // associated classes and namespaces are the union of those
2004    // associated with each of the members of the set: the namespace
2005    // in which the function or function template is defined and the
2006    // classes and namespaces associated with its (non-dependent)
2007    // parameter types and return type.
2008    Arg = Arg->IgnoreParens();
2009    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
2010      if (unaryOp->getOpcode() == UO_AddrOf)
2011        Arg = unaryOp->getSubExpr();
2012
2013    UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg);
2014    if (!ULE) continue;
2015
2016    for (UnresolvedSetIterator I = ULE->decls_begin(), E = ULE->decls_end();
2017           I != E; ++I) {
2018      // Look through any using declarations to find the underlying function.
2019      NamedDecl *Fn = (*I)->getUnderlyingDecl();
2020
2021      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
2022      if (!FDecl)
2023        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
2024
2025      // Add the classes and namespaces associated with the parameter
2026      // types and return type of this function.
2027      addAssociatedClassesAndNamespaces(Result, FDecl->getType());
2028    }
2029  }
2030}
2031
2032/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
2033/// an acceptable non-member overloaded operator for a call whose
2034/// arguments have types T1 (and, if non-empty, T2). This routine
2035/// implements the check in C++ [over.match.oper]p3b2 concerning
2036/// enumeration types.
2037static bool
2038IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
2039                                       QualType T1, QualType T2,
2040                                       ASTContext &Context) {
2041  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
2042    return true;
2043
2044  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
2045    return true;
2046
2047  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
2048  if (Proto->getNumArgs() < 1)
2049    return false;
2050
2051  if (T1->isEnumeralType()) {
2052    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
2053    if (Context.hasSameUnqualifiedType(T1, ArgType))
2054      return true;
2055  }
2056
2057  if (Proto->getNumArgs() < 2)
2058    return false;
2059
2060  if (!T2.isNull() && T2->isEnumeralType()) {
2061    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
2062    if (Context.hasSameUnqualifiedType(T2, ArgType))
2063      return true;
2064  }
2065
2066  return false;
2067}
2068
2069NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
2070                                  SourceLocation Loc,
2071                                  LookupNameKind NameKind,
2072                                  RedeclarationKind Redecl) {
2073  LookupResult R(*this, Name, Loc, NameKind, Redecl);
2074  LookupName(R, S);
2075  return R.getAsSingle<NamedDecl>();
2076}
2077
2078/// \brief Find the protocol with the given name, if any.
2079ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II,
2080                                       SourceLocation IdLoc) {
2081  Decl *D = LookupSingleName(TUScope, II, IdLoc,
2082                             LookupObjCProtocolName);
2083  return cast_or_null<ObjCProtocolDecl>(D);
2084}
2085
2086void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
2087                                        QualType T1, QualType T2,
2088                                        UnresolvedSetImpl &Functions) {
2089  // C++ [over.match.oper]p3:
2090  //     -- The set of non-member candidates is the result of the
2091  //        unqualified lookup of operator@ in the context of the
2092  //        expression according to the usual rules for name lookup in
2093  //        unqualified function calls (3.4.2) except that all member
2094  //        functions are ignored. However, if no operand has a class
2095  //        type, only those non-member functions in the lookup set
2096  //        that have a first parameter of type T1 or "reference to
2097  //        (possibly cv-qualified) T1", when T1 is an enumeration
2098  //        type, or (if there is a right operand) a second parameter
2099  //        of type T2 or "reference to (possibly cv-qualified) T2",
2100  //        when T2 is an enumeration type, are candidate functions.
2101  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
2102  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
2103  LookupName(Operators, S);
2104
2105  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
2106
2107  if (Operators.empty())
2108    return;
2109
2110  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
2111       Op != OpEnd; ++Op) {
2112    NamedDecl *Found = (*Op)->getUnderlyingDecl();
2113    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Found)) {
2114      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
2115        Functions.addDecl(*Op, Op.getAccess()); // FIXME: canonical FD
2116    } else if (FunctionTemplateDecl *FunTmpl
2117                 = dyn_cast<FunctionTemplateDecl>(Found)) {
2118      // FIXME: friend operators?
2119      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
2120      // later?
2121      if (!FunTmpl->getDeclContext()->isRecord())
2122        Functions.addDecl(*Op, Op.getAccess());
2123    }
2124  }
2125}
2126
2127/// \brief Look up the constructors for the given class.
2128DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) {
2129  // If the copy constructor has not yet been declared, do so now.
2130  if (CanDeclareSpecialMemberFunction(Context, Class)) {
2131    if (!Class->hasDeclaredDefaultConstructor())
2132      DeclareImplicitDefaultConstructor(Class);
2133    if (!Class->hasDeclaredCopyConstructor())
2134      DeclareImplicitCopyConstructor(Class);
2135  }
2136
2137  CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class));
2138  DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T);
2139  return Class->lookup(Name);
2140}
2141
2142/// \brief Look for the destructor of the given class.
2143///
2144/// During semantic analysis, this routine should be used in lieu of
2145/// CXXRecordDecl::getDestructor().
2146///
2147/// \returns The destructor for this class.
2148CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) {
2149  // If the destructor has not yet been declared, do so now.
2150  if (CanDeclareSpecialMemberFunction(Context, Class) &&
2151      !Class->hasDeclaredDestructor())
2152    DeclareImplicitDestructor(Class);
2153
2154  return Class->getDestructor();
2155}
2156
2157void ADLResult::insert(NamedDecl *New) {
2158  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
2159
2160  // If we haven't yet seen a decl for this key, or the last decl
2161  // was exactly this one, we're done.
2162  if (Old == 0 || Old == New) {
2163    Old = New;
2164    return;
2165  }
2166
2167  // Otherwise, decide which is a more recent redeclaration.
2168  FunctionDecl *OldFD, *NewFD;
2169  if (isa<FunctionTemplateDecl>(New)) {
2170    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
2171    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
2172  } else {
2173    OldFD = cast<FunctionDecl>(Old);
2174    NewFD = cast<FunctionDecl>(New);
2175  }
2176
2177  FunctionDecl *Cursor = NewFD;
2178  while (true) {
2179    Cursor = Cursor->getPreviousDeclaration();
2180
2181    // If we got to the end without finding OldFD, OldFD is the newer
2182    // declaration;  leave things as they are.
2183    if (!Cursor) return;
2184
2185    // If we do find OldFD, then NewFD is newer.
2186    if (Cursor == OldFD) break;
2187
2188    // Otherwise, keep looking.
2189  }
2190
2191  Old = New;
2192}
2193
2194void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
2195                                   Expr **Args, unsigned NumArgs,
2196                                   ADLResult &Result) {
2197  // Find all of the associated namespaces and classes based on the
2198  // arguments we have.
2199  AssociatedNamespaceSet AssociatedNamespaces;
2200  AssociatedClassSet AssociatedClasses;
2201  FindAssociatedClassesAndNamespaces(Args, NumArgs,
2202                                     AssociatedNamespaces,
2203                                     AssociatedClasses);
2204
2205  QualType T1, T2;
2206  if (Operator) {
2207    T1 = Args[0]->getType();
2208    if (NumArgs >= 2)
2209      T2 = Args[1]->getType();
2210  }
2211
2212  // C++ [basic.lookup.argdep]p3:
2213  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
2214  //   and let Y be the lookup set produced by argument dependent
2215  //   lookup (defined as follows). If X contains [...] then Y is
2216  //   empty. Otherwise Y is the set of declarations found in the
2217  //   namespaces associated with the argument types as described
2218  //   below. The set of declarations found by the lookup of the name
2219  //   is the union of X and Y.
2220  //
2221  // Here, we compute Y and add its members to the overloaded
2222  // candidate set.
2223  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
2224                                     NSEnd = AssociatedNamespaces.end();
2225       NS != NSEnd; ++NS) {
2226    //   When considering an associated namespace, the lookup is the
2227    //   same as the lookup performed when the associated namespace is
2228    //   used as a qualifier (3.4.3.2) except that:
2229    //
2230    //     -- Any using-directives in the associated namespace are
2231    //        ignored.
2232    //
2233    //     -- Any namespace-scope friend functions declared in
2234    //        associated classes are visible within their respective
2235    //        namespaces even if they are not visible during an ordinary
2236    //        lookup (11.4).
2237    DeclContext::lookup_iterator I, E;
2238    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
2239      NamedDecl *D = *I;
2240      // If the only declaration here is an ordinary friend, consider
2241      // it only if it was declared in an associated classes.
2242      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
2243        DeclContext *LexDC = D->getLexicalDeclContext();
2244        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
2245          continue;
2246      }
2247
2248      if (isa<UsingShadowDecl>(D))
2249        D = cast<UsingShadowDecl>(D)->getTargetDecl();
2250
2251      if (isa<FunctionDecl>(D)) {
2252        if (Operator &&
2253            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
2254                                                    T1, T2, Context))
2255          continue;
2256      } else if (!isa<FunctionTemplateDecl>(D))
2257        continue;
2258
2259      Result.insert(D);
2260    }
2261  }
2262}
2263
2264//----------------------------------------------------------------------------
2265// Search for all visible declarations.
2266//----------------------------------------------------------------------------
2267VisibleDeclConsumer::~VisibleDeclConsumer() { }
2268
2269namespace {
2270
2271class ShadowContextRAII;
2272
2273class VisibleDeclsRecord {
2274public:
2275  /// \brief An entry in the shadow map, which is optimized to store a
2276  /// single declaration (the common case) but can also store a list
2277  /// of declarations.
2278  class ShadowMapEntry {
2279    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
2280
2281    /// \brief Contains either the solitary NamedDecl * or a vector
2282    /// of declarations.
2283    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2284
2285  public:
2286    ShadowMapEntry() : DeclOrVector() { }
2287
2288    void Add(NamedDecl *ND);
2289    void Destroy();
2290
2291    // Iteration.
2292    typedef NamedDecl **iterator;
2293    iterator begin();
2294    iterator end();
2295  };
2296
2297private:
2298  /// \brief A mapping from declaration names to the declarations that have
2299  /// this name within a particular scope.
2300  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2301
2302  /// \brief A list of shadow maps, which is used to model name hiding.
2303  std::list<ShadowMap> ShadowMaps;
2304
2305  /// \brief The declaration contexts we have already visited.
2306  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2307
2308  friend class ShadowContextRAII;
2309
2310public:
2311  /// \brief Determine whether we have already visited this context
2312  /// (and, if not, note that we are going to visit that context now).
2313  bool visitedContext(DeclContext *Ctx) {
2314    return !VisitedContexts.insert(Ctx);
2315  }
2316
2317  bool alreadyVisitedContext(DeclContext *Ctx) {
2318    return VisitedContexts.count(Ctx);
2319  }
2320
2321  /// \brief Determine whether the given declaration is hidden in the
2322  /// current scope.
2323  ///
2324  /// \returns the declaration that hides the given declaration, or
2325  /// NULL if no such declaration exists.
2326  NamedDecl *checkHidden(NamedDecl *ND);
2327
2328  /// \brief Add a declaration to the current shadow map.
2329  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2330};
2331
2332/// \brief RAII object that records when we've entered a shadow context.
2333class ShadowContextRAII {
2334  VisibleDeclsRecord &Visible;
2335
2336  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2337
2338public:
2339  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2340    Visible.ShadowMaps.push_back(ShadowMap());
2341  }
2342
2343  ~ShadowContextRAII() {
2344    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2345                          EEnd = Visible.ShadowMaps.back().end();
2346         E != EEnd;
2347         ++E)
2348      E->second.Destroy();
2349
2350    Visible.ShadowMaps.pop_back();
2351  }
2352};
2353
2354} // end anonymous namespace
2355
2356void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2357  if (DeclOrVector.isNull()) {
2358    // 0 - > 1 elements: just set the single element information.
2359    DeclOrVector = ND;
2360    return;
2361  }
2362
2363  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2364    // 1 -> 2 elements: create the vector of results and push in the
2365    // existing declaration.
2366    DeclVector *Vec = new DeclVector;
2367    Vec->push_back(PrevND);
2368    DeclOrVector = Vec;
2369  }
2370
2371  // Add the new element to the end of the vector.
2372  DeclOrVector.get<DeclVector*>()->push_back(ND);
2373}
2374
2375void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2376  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2377    delete Vec;
2378    DeclOrVector = ((NamedDecl *)0);
2379  }
2380}
2381
2382VisibleDeclsRecord::ShadowMapEntry::iterator
2383VisibleDeclsRecord::ShadowMapEntry::begin() {
2384  if (DeclOrVector.isNull())
2385    return 0;
2386
2387  if (DeclOrVector.dyn_cast<NamedDecl *>())
2388    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2389
2390  return DeclOrVector.get<DeclVector *>()->begin();
2391}
2392
2393VisibleDeclsRecord::ShadowMapEntry::iterator
2394VisibleDeclsRecord::ShadowMapEntry::end() {
2395  if (DeclOrVector.isNull())
2396    return 0;
2397
2398  if (DeclOrVector.dyn_cast<NamedDecl *>())
2399    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2400
2401  return DeclOrVector.get<DeclVector *>()->end();
2402}
2403
2404NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2405  // Look through using declarations.
2406  ND = ND->getUnderlyingDecl();
2407
2408  unsigned IDNS = ND->getIdentifierNamespace();
2409  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2410  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2411       SM != SMEnd; ++SM) {
2412    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2413    if (Pos == SM->end())
2414      continue;
2415
2416    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2417                               IEnd = Pos->second.end();
2418         I != IEnd; ++I) {
2419      // A tag declaration does not hide a non-tag declaration.
2420      if ((*I)->hasTagIdentifierNamespace() &&
2421          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2422                   Decl::IDNS_ObjCProtocol)))
2423        continue;
2424
2425      // Protocols are in distinct namespaces from everything else.
2426      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2427           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2428          (*I)->getIdentifierNamespace() != IDNS)
2429        continue;
2430
2431      // Functions and function templates in the same scope overload
2432      // rather than hide.  FIXME: Look for hiding based on function
2433      // signatures!
2434      if ((*I)->isFunctionOrFunctionTemplate() &&
2435          ND->isFunctionOrFunctionTemplate() &&
2436          SM == ShadowMaps.rbegin())
2437        continue;
2438
2439      // We've found a declaration that hides this one.
2440      return *I;
2441    }
2442  }
2443
2444  return 0;
2445}
2446
2447static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2448                               bool QualifiedNameLookup,
2449                               bool InBaseClass,
2450                               VisibleDeclConsumer &Consumer,
2451                               VisibleDeclsRecord &Visited) {
2452  if (!Ctx)
2453    return;
2454
2455  // Make sure we don't visit the same context twice.
2456  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2457    return;
2458
2459  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx))
2460    Result.getSema().ForceDeclarationOfImplicitMembers(Class);
2461
2462  // Enumerate all of the results in this context.
2463  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2464       CurCtx = CurCtx->getNextContext()) {
2465    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2466                                 DEnd = CurCtx->decls_end();
2467         D != DEnd; ++D) {
2468      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2469        if (Result.isAcceptableDecl(ND)) {
2470          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2471          Visited.add(ND);
2472        }
2473
2474      // Visit transparent contexts and inline namespaces inside this context.
2475      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2476        if (InnerCtx->isTransparentContext() || InnerCtx->isInlineNamespace())
2477          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2478                             Consumer, Visited);
2479      }
2480    }
2481  }
2482
2483  // Traverse using directives for qualified name lookup.
2484  if (QualifiedNameLookup) {
2485    ShadowContextRAII Shadow(Visited);
2486    DeclContext::udir_iterator I, E;
2487    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2488      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2489                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2490    }
2491  }
2492
2493  // Traverse the contexts of inherited C++ classes.
2494  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2495    if (!Record->hasDefinition())
2496      return;
2497
2498    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2499                                         BEnd = Record->bases_end();
2500         B != BEnd; ++B) {
2501      QualType BaseType = B->getType();
2502
2503      // Don't look into dependent bases, because name lookup can't look
2504      // there anyway.
2505      if (BaseType->isDependentType())
2506        continue;
2507
2508      const RecordType *Record = BaseType->getAs<RecordType>();
2509      if (!Record)
2510        continue;
2511
2512      // FIXME: It would be nice to be able to determine whether referencing
2513      // a particular member would be ambiguous. For example, given
2514      //
2515      //   struct A { int member; };
2516      //   struct B { int member; };
2517      //   struct C : A, B { };
2518      //
2519      //   void f(C *c) { c->### }
2520      //
2521      // accessing 'member' would result in an ambiguity. However, we
2522      // could be smart enough to qualify the member with the base
2523      // class, e.g.,
2524      //
2525      //   c->B::member
2526      //
2527      // or
2528      //
2529      //   c->A::member
2530
2531      // Find results in this base class (and its bases).
2532      ShadowContextRAII Shadow(Visited);
2533      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2534                         true, Consumer, Visited);
2535    }
2536  }
2537
2538  // Traverse the contexts of Objective-C classes.
2539  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2540    // Traverse categories.
2541    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2542         Category; Category = Category->getNextClassCategory()) {
2543      ShadowContextRAII Shadow(Visited);
2544      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2545                         Consumer, Visited);
2546    }
2547
2548    // Traverse protocols.
2549    for (ObjCInterfaceDecl::all_protocol_iterator
2550         I = IFace->all_referenced_protocol_begin(),
2551         E = IFace->all_referenced_protocol_end(); I != E; ++I) {
2552      ShadowContextRAII Shadow(Visited);
2553      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2554                         Visited);
2555    }
2556
2557    // Traverse the superclass.
2558    if (IFace->getSuperClass()) {
2559      ShadowContextRAII Shadow(Visited);
2560      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2561                         true, Consumer, Visited);
2562    }
2563
2564    // If there is an implementation, traverse it. We do this to find
2565    // synthesized ivars.
2566    if (IFace->getImplementation()) {
2567      ShadowContextRAII Shadow(Visited);
2568      LookupVisibleDecls(IFace->getImplementation(), Result,
2569                         QualifiedNameLookup, true, Consumer, Visited);
2570    }
2571  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2572    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2573           E = Protocol->protocol_end(); I != E; ++I) {
2574      ShadowContextRAII Shadow(Visited);
2575      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2576                         Visited);
2577    }
2578  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2579    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2580           E = Category->protocol_end(); I != E; ++I) {
2581      ShadowContextRAII Shadow(Visited);
2582      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2583                         Visited);
2584    }
2585
2586    // If there is an implementation, traverse it.
2587    if (Category->getImplementation()) {
2588      ShadowContextRAII Shadow(Visited);
2589      LookupVisibleDecls(Category->getImplementation(), Result,
2590                         QualifiedNameLookup, true, Consumer, Visited);
2591    }
2592  }
2593}
2594
2595static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2596                               UnqualUsingDirectiveSet &UDirs,
2597                               VisibleDeclConsumer &Consumer,
2598                               VisibleDeclsRecord &Visited) {
2599  if (!S)
2600    return;
2601
2602  if (!S->getEntity() ||
2603      (!S->getParent() &&
2604       !Visited.alreadyVisitedContext((DeclContext *)S->getEntity())) ||
2605      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2606    // Walk through the declarations in this Scope.
2607    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2608         D != DEnd; ++D) {
2609      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2610        if (Result.isAcceptableDecl(ND)) {
2611          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2612          Visited.add(ND);
2613        }
2614    }
2615  }
2616
2617  // FIXME: C++ [temp.local]p8
2618  DeclContext *Entity = 0;
2619  if (S->getEntity()) {
2620    // Look into this scope's declaration context, along with any of its
2621    // parent lookup contexts (e.g., enclosing classes), up to the point
2622    // where we hit the context stored in the next outer scope.
2623    Entity = (DeclContext *)S->getEntity();
2624    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2625
2626    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2627         Ctx = Ctx->getLookupParent()) {
2628      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2629        if (Method->isInstanceMethod()) {
2630          // For instance methods, look for ivars in the method's interface.
2631          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2632                                  Result.getNameLoc(), Sema::LookupMemberName);
2633          if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) {
2634            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2635                               /*InBaseClass=*/false, Consumer, Visited);
2636
2637            // Look for properties from which we can synthesize ivars, if
2638            // permitted.
2639            if (Result.getSema().getLangOptions().ObjCNonFragileABI2 &&
2640                IFace->getImplementation() &&
2641                Result.getLookupKind() == Sema::LookupOrdinaryName) {
2642              for (ObjCInterfaceDecl::prop_iterator
2643                        P = IFace->prop_begin(),
2644                     PEnd = IFace->prop_end();
2645                   P != PEnd; ++P) {
2646                if (Result.getSema().canSynthesizeProvisionalIvar(*P) &&
2647                    !IFace->lookupInstanceVariable((*P)->getIdentifier())) {
2648                  Consumer.FoundDecl(*P, Visited.checkHidden(*P), false);
2649                  Visited.add(*P);
2650                }
2651              }
2652            }
2653          }
2654        }
2655
2656        // We've already performed all of the name lookup that we need
2657        // to for Objective-C methods; the next context will be the
2658        // outer scope.
2659        break;
2660      }
2661
2662      if (Ctx->isFunctionOrMethod())
2663        continue;
2664
2665      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2666                         /*InBaseClass=*/false, Consumer, Visited);
2667    }
2668  } else if (!S->getParent()) {
2669    // Look into the translation unit scope. We walk through the translation
2670    // unit's declaration context, because the Scope itself won't have all of
2671    // the declarations if we loaded a precompiled header.
2672    // FIXME: We would like the translation unit's Scope object to point to the
2673    // translation unit, so we don't need this special "if" branch. However,
2674    // doing so would force the normal C++ name-lookup code to look into the
2675    // translation unit decl when the IdentifierInfo chains would suffice.
2676    // Once we fix that problem (which is part of a more general "don't look
2677    // in DeclContexts unless we have to" optimization), we can eliminate this.
2678    Entity = Result.getSema().Context.getTranslationUnitDecl();
2679    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2680                       /*InBaseClass=*/false, Consumer, Visited);
2681  }
2682
2683  if (Entity) {
2684    // Lookup visible declarations in any namespaces found by using
2685    // directives.
2686    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2687    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2688    for (; UI != UEnd; ++UI)
2689      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2690                         Result, /*QualifiedNameLookup=*/false,
2691                         /*InBaseClass=*/false, Consumer, Visited);
2692  }
2693
2694  // Lookup names in the parent scope.
2695  ShadowContextRAII Shadow(Visited);
2696  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2697}
2698
2699void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2700                              VisibleDeclConsumer &Consumer,
2701                              bool IncludeGlobalScope) {
2702  // Determine the set of using directives available during
2703  // unqualified name lookup.
2704  Scope *Initial = S;
2705  UnqualUsingDirectiveSet UDirs;
2706  if (getLangOptions().CPlusPlus) {
2707    // Find the first namespace or translation-unit scope.
2708    while (S && !isNamespaceOrTranslationUnitScope(S))
2709      S = S->getParent();
2710
2711    UDirs.visitScopeChain(Initial, S);
2712  }
2713  UDirs.done();
2714
2715  // Look for visible declarations.
2716  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2717  VisibleDeclsRecord Visited;
2718  if (!IncludeGlobalScope)
2719    Visited.visitedContext(Context.getTranslationUnitDecl());
2720  ShadowContextRAII Shadow(Visited);
2721  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2722}
2723
2724void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2725                              VisibleDeclConsumer &Consumer,
2726                              bool IncludeGlobalScope) {
2727  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2728  VisibleDeclsRecord Visited;
2729  if (!IncludeGlobalScope)
2730    Visited.visitedContext(Context.getTranslationUnitDecl());
2731  ShadowContextRAII Shadow(Visited);
2732  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2733                       /*InBaseClass=*/false, Consumer, Visited);
2734}
2735
2736//----------------------------------------------------------------------------
2737// Typo correction
2738//----------------------------------------------------------------------------
2739
2740namespace {
2741class TypoCorrectionConsumer : public VisibleDeclConsumer {
2742  /// \brief The name written that is a typo in the source.
2743  llvm::StringRef Typo;
2744
2745  /// \brief The results found that have the smallest edit distance
2746  /// found (so far) with the typo name.
2747  ///
2748  /// The boolean value indicates whether there is a keyword with this name.
2749  llvm::StringMap<bool, llvm::BumpPtrAllocator> BestResults;
2750
2751  /// \brief The best edit distance found so far.
2752  unsigned BestEditDistance;
2753
2754public:
2755  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2756    : Typo(Typo->getName()),
2757      BestEditDistance((std::numeric_limits<unsigned>::max)()) { }
2758
2759  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2760  void FoundName(llvm::StringRef Name);
2761  void addKeywordResult(ASTContext &Context, llvm::StringRef Keyword);
2762
2763  typedef llvm::StringMap<bool, llvm::BumpPtrAllocator>::iterator iterator;
2764  iterator begin() { return BestResults.begin(); }
2765  iterator end()  { return BestResults.end(); }
2766  void erase(iterator I) { BestResults.erase(I); }
2767  unsigned size() const { return BestResults.size(); }
2768  bool empty() const { return BestResults.empty(); }
2769
2770  bool &operator[](llvm::StringRef Name) {
2771    return BestResults[Name];
2772  }
2773
2774  unsigned getBestEditDistance() const { return BestEditDistance; }
2775};
2776
2777}
2778
2779void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2780                                       bool InBaseClass) {
2781  // Don't consider hidden names for typo correction.
2782  if (Hiding)
2783    return;
2784
2785  // Only consider entities with identifiers for names, ignoring
2786  // special names (constructors, overloaded operators, selectors,
2787  // etc.).
2788  IdentifierInfo *Name = ND->getIdentifier();
2789  if (!Name)
2790    return;
2791
2792  FoundName(Name->getName());
2793}
2794
2795void TypoCorrectionConsumer::FoundName(llvm::StringRef Name) {
2796  using namespace std;
2797
2798  // Use a simple length-based heuristic to determine the minimum possible
2799  // edit distance. If the minimum isn't good enough, bail out early.
2800  unsigned MinED = abs((int)Name.size() - (int)Typo.size());
2801  if (MinED > BestEditDistance || (MinED && Typo.size() / MinED < 3))
2802    return;
2803
2804  // Compute an upper bound on the allowable edit distance, so that the
2805  // edit-distance algorithm can short-circuit.
2806  unsigned UpperBound = min(unsigned((Typo.size() + 2) / 3), BestEditDistance);
2807
2808  // Compute the edit distance between the typo and the name of this
2809  // entity. If this edit distance is not worse than the best edit
2810  // distance we've seen so far, add it to the list of results.
2811  unsigned ED = Typo.edit_distance(Name, true, UpperBound);
2812  if (ED == 0)
2813    return;
2814
2815  if (ED < BestEditDistance) {
2816    // This result is better than any we've seen before; clear out
2817    // the previous results.
2818    BestResults.clear();
2819    BestEditDistance = ED;
2820  } else if (ED > BestEditDistance) {
2821    // This result is worse than the best results we've seen so far;
2822    // ignore it.
2823    return;
2824  }
2825
2826  // Add this name to the list of results. By not assigning a value, we
2827  // keep the current value if we've seen this name before (either as a
2828  // keyword or as a declaration), or get the default value (not a keyword)
2829  // if we haven't seen it before.
2830  (void)BestResults[Name];
2831}
2832
2833void TypoCorrectionConsumer::addKeywordResult(ASTContext &Context,
2834                                              llvm::StringRef Keyword) {
2835  // Compute the edit distance between the typo and this keyword.
2836  // If this edit distance is not worse than the best edit
2837  // distance we've seen so far, add it to the list of results.
2838  unsigned ED = Typo.edit_distance(Keyword);
2839  if (ED < BestEditDistance) {
2840    BestResults.clear();
2841    BestEditDistance = ED;
2842  } else if (ED > BestEditDistance) {
2843    // This result is worse than the best results we've seen so far;
2844    // ignore it.
2845    return;
2846  }
2847
2848  BestResults[Keyword] = true;
2849}
2850
2851/// \brief Perform name lookup for a possible result for typo correction.
2852static void LookupPotentialTypoResult(Sema &SemaRef,
2853                                      LookupResult &Res,
2854                                      IdentifierInfo *Name,
2855                                      Scope *S, CXXScopeSpec *SS,
2856                                      DeclContext *MemberContext,
2857                                      bool EnteringContext,
2858                                      Sema::CorrectTypoContext CTC) {
2859  Res.suppressDiagnostics();
2860  Res.clear();
2861  Res.setLookupName(Name);
2862  if (MemberContext) {
2863    if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) {
2864      if (CTC == Sema::CTC_ObjCIvarLookup) {
2865        if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) {
2866          Res.addDecl(Ivar);
2867          Res.resolveKind();
2868          return;
2869        }
2870      }
2871
2872      if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration(Name)) {
2873        Res.addDecl(Prop);
2874        Res.resolveKind();
2875        return;
2876      }
2877    }
2878
2879    SemaRef.LookupQualifiedName(Res, MemberContext);
2880    return;
2881  }
2882
2883  SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2884                           EnteringContext);
2885
2886  // Fake ivar lookup; this should really be part of
2887  // LookupParsedName.
2888  if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) {
2889    if (Method->isInstanceMethod() && Method->getClassInterface() &&
2890        (Res.empty() ||
2891         (Res.isSingleResult() &&
2892          Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) {
2893       if (ObjCIvarDecl *IV
2894             = Method->getClassInterface()->lookupInstanceVariable(Name)) {
2895         Res.addDecl(IV);
2896         Res.resolveKind();
2897       }
2898     }
2899  }
2900}
2901
2902/// \brief Try to "correct" a typo in the source code by finding
2903/// visible declarations whose names are similar to the name that was
2904/// present in the source code.
2905///
2906/// \param Res the \c LookupResult structure that contains the name
2907/// that was present in the source code along with the name-lookup
2908/// criteria used to search for the name. On success, this structure
2909/// will contain the results of name lookup.
2910///
2911/// \param S the scope in which name lookup occurs.
2912///
2913/// \param SS the nested-name-specifier that precedes the name we're
2914/// looking for, if present.
2915///
2916/// \param MemberContext if non-NULL, the context in which to look for
2917/// a member access expression.
2918///
2919/// \param EnteringContext whether we're entering the context described by
2920/// the nested-name-specifier SS.
2921///
2922/// \param CTC The context in which typo correction occurs, which impacts the
2923/// set of keywords permitted.
2924///
2925/// \param OPT when non-NULL, the search for visible declarations will
2926/// also walk the protocols in the qualified interfaces of \p OPT.
2927///
2928/// \returns the corrected name if the typo was corrected, otherwise returns an
2929/// empty \c DeclarationName. When a typo was corrected, the result structure
2930/// may contain the results of name lookup for the correct name or it may be
2931/// empty.
2932DeclarationName Sema::CorrectTypo(LookupResult &Res, Scope *S, CXXScopeSpec *SS,
2933                                  DeclContext *MemberContext,
2934                                  bool EnteringContext,
2935                                  CorrectTypoContext CTC,
2936                                  const ObjCObjectPointerType *OPT) {
2937  if (Diags.hasFatalErrorOccurred() || !getLangOptions().SpellChecking)
2938    return DeclarationName();
2939
2940  // We only attempt to correct typos for identifiers.
2941  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2942  if (!Typo)
2943    return DeclarationName();
2944
2945  // If the scope specifier itself was invalid, don't try to correct
2946  // typos.
2947  if (SS && SS->isInvalid())
2948    return DeclarationName();
2949
2950  // Never try to correct typos during template deduction or
2951  // instantiation.
2952  if (!ActiveTemplateInstantiations.empty())
2953    return DeclarationName();
2954
2955  TypoCorrectionConsumer Consumer(Typo);
2956
2957  // Perform name lookup to find visible, similarly-named entities.
2958  bool IsUnqualifiedLookup = false;
2959  if (MemberContext) {
2960    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2961
2962    // Look in qualified interfaces.
2963    if (OPT) {
2964      for (ObjCObjectPointerType::qual_iterator
2965             I = OPT->qual_begin(), E = OPT->qual_end();
2966           I != E; ++I)
2967        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2968    }
2969  } else if (SS && SS->isSet()) {
2970    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2971    if (!DC)
2972      return DeclarationName();
2973
2974    // Provide a stop gap for files that are just seriously broken.  Trying
2975    // to correct all typos can turn into a HUGE performance penalty, causing
2976    // some files to take minutes to get rejected by the parser.
2977    if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
2978      return DeclarationName();
2979    ++TyposCorrected;
2980
2981    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2982  } else {
2983    IsUnqualifiedLookup = true;
2984    UnqualifiedTyposCorrectedMap::iterator Cached
2985      = UnqualifiedTyposCorrected.find(Typo);
2986    if (Cached == UnqualifiedTyposCorrected.end()) {
2987      // Provide a stop gap for files that are just seriously broken.  Trying
2988      // to correct all typos can turn into a HUGE performance penalty, causing
2989      // some files to take minutes to get rejected by the parser.
2990      if (TyposCorrected + UnqualifiedTyposCorrected.size() >= 20)
2991        return DeclarationName();
2992
2993      // For unqualified lookup, look through all of the names that we have
2994      // seen in this translation unit.
2995      for (IdentifierTable::iterator I = Context.Idents.begin(),
2996                                  IEnd = Context.Idents.end();
2997           I != IEnd; ++I)
2998        Consumer.FoundName(I->getKey());
2999
3000      // Walk through identifiers in external identifier sources.
3001      if (IdentifierInfoLookup *External
3002                              = Context.Idents.getExternalIdentifierLookup()) {
3003        IdentifierIterator *Iter = External->getIdentifiers();
3004        do {
3005          llvm::StringRef Name = Iter->Next();
3006          if (Name.empty())
3007            break;
3008
3009          Consumer.FoundName(Name);
3010        } while (true);
3011      }
3012    } else {
3013      // Use the cached value, unless it's a keyword. In the keyword case, we'll
3014      // end up adding the keyword below.
3015      if (Cached->second.first.empty())
3016        return DeclarationName();
3017
3018      if (!Cached->second.second)
3019        Consumer.FoundName(Cached->second.first);
3020    }
3021  }
3022
3023  // Add context-dependent keywords.
3024  bool WantTypeSpecifiers = false;
3025  bool WantExpressionKeywords = false;
3026  bool WantCXXNamedCasts = false;
3027  bool WantRemainingKeywords = false;
3028  switch (CTC) {
3029    case CTC_Unknown:
3030      WantTypeSpecifiers = true;
3031      WantExpressionKeywords = true;
3032      WantCXXNamedCasts = true;
3033      WantRemainingKeywords = true;
3034
3035      if (ObjCMethodDecl *Method = getCurMethodDecl())
3036        if (Method->getClassInterface() &&
3037            Method->getClassInterface()->getSuperClass())
3038          Consumer.addKeywordResult(Context, "super");
3039
3040      break;
3041
3042    case CTC_NoKeywords:
3043      break;
3044
3045    case CTC_Type:
3046      WantTypeSpecifiers = true;
3047      break;
3048
3049    case CTC_ObjCMessageReceiver:
3050      Consumer.addKeywordResult(Context, "super");
3051      // Fall through to handle message receivers like expressions.
3052
3053    case CTC_Expression:
3054      if (getLangOptions().CPlusPlus)
3055        WantTypeSpecifiers = true;
3056      WantExpressionKeywords = true;
3057      // Fall through to get C++ named casts.
3058
3059    case CTC_CXXCasts:
3060      WantCXXNamedCasts = true;
3061      break;
3062
3063    case CTC_ObjCPropertyLookup:
3064      // FIXME: Add "isa"?
3065      break;
3066
3067    case CTC_MemberLookup:
3068      if (getLangOptions().CPlusPlus)
3069        Consumer.addKeywordResult(Context, "template");
3070      break;
3071
3072    case CTC_ObjCIvarLookup:
3073      break;
3074  }
3075
3076  if (WantTypeSpecifiers) {
3077    // Add type-specifier keywords to the set of results.
3078    const char *CTypeSpecs[] = {
3079      "char", "const", "double", "enum", "float", "int", "long", "short",
3080      "signed", "struct", "union", "unsigned", "void", "volatile", "_Bool",
3081      "_Complex", "_Imaginary",
3082      // storage-specifiers as well
3083      "extern", "inline", "static", "typedef"
3084    };
3085
3086    const unsigned NumCTypeSpecs = sizeof(CTypeSpecs) / sizeof(CTypeSpecs[0]);
3087    for (unsigned I = 0; I != NumCTypeSpecs; ++I)
3088      Consumer.addKeywordResult(Context, CTypeSpecs[I]);
3089
3090    if (getLangOptions().C99)
3091      Consumer.addKeywordResult(Context, "restrict");
3092    if (getLangOptions().Bool || getLangOptions().CPlusPlus)
3093      Consumer.addKeywordResult(Context, "bool");
3094
3095    if (getLangOptions().CPlusPlus) {
3096      Consumer.addKeywordResult(Context, "class");
3097      Consumer.addKeywordResult(Context, "typename");
3098      Consumer.addKeywordResult(Context, "wchar_t");
3099
3100      if (getLangOptions().CPlusPlus0x) {
3101        Consumer.addKeywordResult(Context, "char16_t");
3102        Consumer.addKeywordResult(Context, "char32_t");
3103        Consumer.addKeywordResult(Context, "constexpr");
3104        Consumer.addKeywordResult(Context, "decltype");
3105        Consumer.addKeywordResult(Context, "thread_local");
3106      }
3107    }
3108
3109    if (getLangOptions().GNUMode)
3110      Consumer.addKeywordResult(Context, "typeof");
3111  }
3112
3113  if (WantCXXNamedCasts && getLangOptions().CPlusPlus) {
3114    Consumer.addKeywordResult(Context, "const_cast");
3115    Consumer.addKeywordResult(Context, "dynamic_cast");
3116    Consumer.addKeywordResult(Context, "reinterpret_cast");
3117    Consumer.addKeywordResult(Context, "static_cast");
3118  }
3119
3120  if (WantExpressionKeywords) {
3121    Consumer.addKeywordResult(Context, "sizeof");
3122    if (getLangOptions().Bool || getLangOptions().CPlusPlus) {
3123      Consumer.addKeywordResult(Context, "false");
3124      Consumer.addKeywordResult(Context, "true");
3125    }
3126
3127    if (getLangOptions().CPlusPlus) {
3128      const char *CXXExprs[] = {
3129        "delete", "new", "operator", "throw", "typeid"
3130      };
3131      const unsigned NumCXXExprs = sizeof(CXXExprs) / sizeof(CXXExprs[0]);
3132      for (unsigned I = 0; I != NumCXXExprs; ++I)
3133        Consumer.addKeywordResult(Context, CXXExprs[I]);
3134
3135      if (isa<CXXMethodDecl>(CurContext) &&
3136          cast<CXXMethodDecl>(CurContext)->isInstance())
3137        Consumer.addKeywordResult(Context, "this");
3138
3139      if (getLangOptions().CPlusPlus0x) {
3140        Consumer.addKeywordResult(Context, "alignof");
3141        Consumer.addKeywordResult(Context, "nullptr");
3142      }
3143    }
3144  }
3145
3146  if (WantRemainingKeywords) {
3147    if (getCurFunctionOrMethodDecl() || getCurBlock()) {
3148      // Statements.
3149      const char *CStmts[] = {
3150        "do", "else", "for", "goto", "if", "return", "switch", "while" };
3151      const unsigned NumCStmts = sizeof(CStmts) / sizeof(CStmts[0]);
3152      for (unsigned I = 0; I != NumCStmts; ++I)
3153        Consumer.addKeywordResult(Context, CStmts[I]);
3154
3155      if (getLangOptions().CPlusPlus) {
3156        Consumer.addKeywordResult(Context, "catch");
3157        Consumer.addKeywordResult(Context, "try");
3158      }
3159
3160      if (S && S->getBreakParent())
3161        Consumer.addKeywordResult(Context, "break");
3162
3163      if (S && S->getContinueParent())
3164        Consumer.addKeywordResult(Context, "continue");
3165
3166      if (!getCurFunction()->SwitchStack.empty()) {
3167        Consumer.addKeywordResult(Context, "case");
3168        Consumer.addKeywordResult(Context, "default");
3169      }
3170    } else {
3171      if (getLangOptions().CPlusPlus) {
3172        Consumer.addKeywordResult(Context, "namespace");
3173        Consumer.addKeywordResult(Context, "template");
3174      }
3175
3176      if (S && S->isClassScope()) {
3177        Consumer.addKeywordResult(Context, "explicit");
3178        Consumer.addKeywordResult(Context, "friend");
3179        Consumer.addKeywordResult(Context, "mutable");
3180        Consumer.addKeywordResult(Context, "private");
3181        Consumer.addKeywordResult(Context, "protected");
3182        Consumer.addKeywordResult(Context, "public");
3183        Consumer.addKeywordResult(Context, "virtual");
3184      }
3185    }
3186
3187    if (getLangOptions().CPlusPlus) {
3188      Consumer.addKeywordResult(Context, "using");
3189
3190      if (getLangOptions().CPlusPlus0x)
3191        Consumer.addKeywordResult(Context, "static_assert");
3192    }
3193  }
3194
3195  // If we haven't found anything, we're done.
3196  if (Consumer.empty()) {
3197    // If this was an unqualified lookup, note that no correction was found.
3198    if (IsUnqualifiedLookup)
3199      (void)UnqualifiedTyposCorrected[Typo];
3200
3201    return DeclarationName();
3202  }
3203
3204  // Make sure that the user typed at least 3 characters for each correction
3205  // made. Otherwise, we don't even both looking at the results.
3206
3207  // We also suppress exact matches; those should be handled by a
3208  // different mechanism (e.g., one that introduces qualification in
3209  // C++).
3210  unsigned ED = Consumer.getBestEditDistance();
3211  if (ED > 0 && Typo->getName().size() / ED < 3) {
3212    // If this was an unqualified lookup, note that no correction was found.
3213    if (IsUnqualifiedLookup)
3214      (void)UnqualifiedTyposCorrected[Typo];
3215
3216    return DeclarationName();
3217  }
3218
3219  // Weed out any names that could not be found by name lookup.
3220  bool LastLookupWasAccepted = false;
3221  for (TypoCorrectionConsumer::iterator I = Consumer.begin(),
3222                                     IEnd = Consumer.end();
3223       I != IEnd; /* Increment in loop. */) {
3224    // Keywords are always found.
3225    if (I->second) {
3226      ++I;
3227      continue;
3228    }
3229
3230    // Perform name lookup on this name.
3231    IdentifierInfo *Name = &Context.Idents.get(I->getKey());
3232    LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
3233                              EnteringContext, CTC);
3234
3235    switch (Res.getResultKind()) {
3236    case LookupResult::NotFound:
3237    case LookupResult::NotFoundInCurrentInstantiation:
3238    case LookupResult::Ambiguous:
3239      // We didn't find this name in our scope, or didn't like what we found;
3240      // ignore it.
3241      Res.suppressDiagnostics();
3242      {
3243        TypoCorrectionConsumer::iterator Next = I;
3244        ++Next;
3245        Consumer.erase(I);
3246        I = Next;
3247      }
3248      LastLookupWasAccepted = false;
3249      break;
3250
3251    case LookupResult::Found:
3252    case LookupResult::FoundOverloaded:
3253    case LookupResult::FoundUnresolvedValue:
3254      ++I;
3255      LastLookupWasAccepted = true;
3256      break;
3257    }
3258
3259    if (Res.isAmbiguous()) {
3260      // We don't deal with ambiguities.
3261      Res.suppressDiagnostics();
3262      Res.clear();
3263      return DeclarationName();
3264    }
3265  }
3266
3267  // If only a single name remains, return that result.
3268  if (Consumer.size() == 1) {
3269    IdentifierInfo *Name = &Context.Idents.get(Consumer.begin()->getKey());
3270    if (Consumer.begin()->second) {
3271      Res.suppressDiagnostics();
3272      Res.clear();
3273
3274      // Don't correct to a keyword that's the same as the typo; the keyword
3275      // wasn't actually in scope.
3276      if (ED == 0) {
3277        Res.setLookupName(Typo);
3278        return DeclarationName();
3279      }
3280
3281    } else if (!LastLookupWasAccepted) {
3282      // Perform name lookup on this name.
3283      LookupPotentialTypoResult(*this, Res, Name, S, SS, MemberContext,
3284                                EnteringContext, CTC);
3285    }
3286
3287    // Record the correction for unqualified lookup.
3288    if (IsUnqualifiedLookup)
3289      UnqualifiedTyposCorrected[Typo]
3290        = std::make_pair(Name->getName(), Consumer.begin()->second);
3291
3292    return &Context.Idents.get(Consumer.begin()->getKey());
3293  }
3294  else if (Consumer.size() > 1 && CTC == CTC_ObjCMessageReceiver
3295           && Consumer["super"]) {
3296    // Prefix 'super' when we're completing in a message-receiver
3297    // context.
3298    Res.suppressDiagnostics();
3299    Res.clear();
3300
3301    // Don't correct to a keyword that's the same as the typo; the keyword
3302    // wasn't actually in scope.
3303    if (ED == 0) {
3304      Res.setLookupName(Typo);
3305      return DeclarationName();
3306    }
3307
3308    // Record the correction for unqualified lookup.
3309    if (IsUnqualifiedLookup)
3310      UnqualifiedTyposCorrected[Typo]
3311        = std::make_pair("super", Consumer.begin()->second);
3312
3313    return &Context.Idents.get("super");
3314  }
3315
3316  Res.suppressDiagnostics();
3317  Res.setLookupName(Typo);
3318  Res.clear();
3319  // Record the correction for unqualified lookup.
3320  if (IsUnqualifiedLookup)
3321    (void)UnqualifiedTyposCorrected[Typo];
3322
3323  return DeclarationName();
3324}
3325