SemaLookup.cpp revision 433d7d2c70b9be3f9edd40579f512ecab8755049
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/LangOptions.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <list>
31#include <set>
32#include <vector>
33#include <iterator>
34#include <utility>
35#include <algorithm>
36
37using namespace clang;
38
39namespace {
40  class UnqualUsingEntry {
41    const DeclContext *Nominated;
42    const DeclContext *CommonAncestor;
43
44  public:
45    UnqualUsingEntry(const DeclContext *Nominated,
46                     const DeclContext *CommonAncestor)
47      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
48    }
49
50    const DeclContext *getCommonAncestor() const {
51      return CommonAncestor;
52    }
53
54    const DeclContext *getNominatedNamespace() const {
55      return Nominated;
56    }
57
58    // Sort by the pointer value of the common ancestor.
59    struct Comparator {
60      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
61        return L.getCommonAncestor() < R.getCommonAncestor();
62      }
63
64      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
65        return E.getCommonAncestor() < DC;
66      }
67
68      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
69        return DC < E.getCommonAncestor();
70      }
71    };
72  };
73
74  /// A collection of using directives, as used by C++ unqualified
75  /// lookup.
76  class UnqualUsingDirectiveSet {
77    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
78
79    ListTy list;
80    llvm::SmallPtrSet<DeclContext*, 8> visited;
81
82  public:
83    UnqualUsingDirectiveSet() {}
84
85    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
86      // C++ [namespace.udir]p1:
87      //   During unqualified name lookup, the names appear as if they
88      //   were declared in the nearest enclosing namespace which contains
89      //   both the using-directive and the nominated namespace.
90      DeclContext *InnermostFileDC
91        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
92      assert(InnermostFileDC && InnermostFileDC->isFileContext());
93
94      for (; S; S = S->getParent()) {
95        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
96          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
97          visit(Ctx, EffectiveDC);
98        } else {
99          Scope::udir_iterator I = S->using_directives_begin(),
100                             End = S->using_directives_end();
101
102          for (; I != End; ++I)
103            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
104        }
105      }
106    }
107
108    // Visits a context and collect all of its using directives
109    // recursively.  Treats all using directives as if they were
110    // declared in the context.
111    //
112    // A given context is only every visited once, so it is important
113    // that contexts be visited from the inside out in order to get
114    // the effective DCs right.
115    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
116      if (!visited.insert(DC))
117        return;
118
119      addUsingDirectives(DC, EffectiveDC);
120    }
121
122    // Visits a using directive and collects all of its using
123    // directives recursively.  Treats all using directives as if they
124    // were declared in the effective DC.
125    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
126      DeclContext *NS = UD->getNominatedNamespace();
127      if (!visited.insert(NS))
128        return;
129
130      addUsingDirective(UD, EffectiveDC);
131      addUsingDirectives(NS, EffectiveDC);
132    }
133
134    // Adds all the using directives in a context (and those nominated
135    // by its using directives, transitively) as if they appeared in
136    // the given effective context.
137    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
138      llvm::SmallVector<DeclContext*,4> queue;
139      while (true) {
140        DeclContext::udir_iterator I, End;
141        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
142          UsingDirectiveDecl *UD = *I;
143          DeclContext *NS = UD->getNominatedNamespace();
144          if (visited.insert(NS)) {
145            addUsingDirective(UD, EffectiveDC);
146            queue.push_back(NS);
147          }
148        }
149
150        if (queue.empty())
151          return;
152
153        DC = queue.back();
154        queue.pop_back();
155      }
156    }
157
158    // Add a using directive as if it had been declared in the given
159    // context.  This helps implement C++ [namespace.udir]p3:
160    //   The using-directive is transitive: if a scope contains a
161    //   using-directive that nominates a second namespace that itself
162    //   contains using-directives, the effect is as if the
163    //   using-directives from the second namespace also appeared in
164    //   the first.
165    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
166      // Find the common ancestor between the effective context and
167      // the nominated namespace.
168      DeclContext *Common = UD->getNominatedNamespace();
169      while (!Common->Encloses(EffectiveDC))
170        Common = Common->getParent();
171      Common = Common->getPrimaryContext();
172
173      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
174    }
175
176    void done() {
177      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
178    }
179
180    typedef ListTy::iterator iterator;
181    typedef ListTy::const_iterator const_iterator;
182
183    iterator begin() { return list.begin(); }
184    iterator end() { return list.end(); }
185    const_iterator begin() const { return list.begin(); }
186    const_iterator end() const { return list.end(); }
187
188    std::pair<const_iterator,const_iterator>
189    getNamespacesFor(DeclContext *DC) const {
190      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
191                              UnqualUsingEntry::Comparator());
192    }
193  };
194}
195
196static bool IsAcceptableIDNS(NamedDecl *D, unsigned IDNS) {
197  return D->isInIdentifierNamespace(IDNS);
198}
199
200static bool IsAcceptableOperatorName(NamedDecl *D, unsigned IDNS) {
201  return D->isInIdentifierNamespace(IDNS) &&
202    !D->getDeclContext()->isRecord();
203}
204
205static bool IsAcceptableNestedNameSpecifierName(NamedDecl *D, unsigned IDNS) {
206  // This lookup ignores everything that isn't a type.
207
208  // This is a fast check for the far most common case.
209  if (D->isInIdentifierNamespace(Decl::IDNS_Tag))
210    return true;
211
212  if (isa<UsingShadowDecl>(D))
213    D = cast<UsingShadowDecl>(D)->getTargetDecl();
214
215  return isa<TypeDecl>(D);
216}
217
218static bool IsAcceptableNamespaceName(NamedDecl *D, unsigned IDNS) {
219  // We don't need to look through using decls here because
220  // using decls aren't allowed to name namespaces.
221
222  return isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D);
223}
224
225/// Gets the default result filter for the given lookup.
226static inline
227LookupResult::ResultFilter getResultFilter(Sema::LookupNameKind NameKind) {
228  switch (NameKind) {
229  case Sema::LookupOrdinaryName:
230  case Sema::LookupTagName:
231  case Sema::LookupMemberName:
232  case Sema::LookupRedeclarationWithLinkage: // FIXME: check linkage, scoping
233  case Sema::LookupUsingDeclName:
234  case Sema::LookupObjCProtocolName:
235  case Sema::LookupObjCImplementationName:
236    return &IsAcceptableIDNS;
237
238  case Sema::LookupOperatorName:
239    return &IsAcceptableOperatorName;
240
241  case Sema::LookupNestedNameSpecifierName:
242    return &IsAcceptableNestedNameSpecifierName;
243
244  case Sema::LookupNamespaceName:
245    return &IsAcceptableNamespaceName;
246  }
247
248  llvm_unreachable("unkknown lookup kind");
249  return 0;
250}
251
252// Retrieve the set of identifier namespaces that correspond to a
253// specific kind of name lookup.
254static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
255                               bool CPlusPlus,
256                               bool Redeclaration) {
257  unsigned IDNS = 0;
258  switch (NameKind) {
259  case Sema::LookupOrdinaryName:
260  case Sema::LookupOperatorName:
261  case Sema::LookupRedeclarationWithLinkage:
262    IDNS = Decl::IDNS_Ordinary;
263    if (CPlusPlus) {
264      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
265      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
266    }
267    break;
268
269  case Sema::LookupTagName:
270    IDNS = Decl::IDNS_Tag;
271    if (CPlusPlus && Redeclaration)
272      IDNS |= Decl::IDNS_TagFriend;
273    break;
274
275  case Sema::LookupMemberName:
276    IDNS = Decl::IDNS_Member;
277    if (CPlusPlus)
278      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
279    break;
280
281  case Sema::LookupNestedNameSpecifierName:
282  case Sema::LookupNamespaceName:
283    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
284    break;
285
286  case Sema::LookupUsingDeclName:
287    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
288         | Decl::IDNS_Member | Decl::IDNS_Using;
289    break;
290
291  case Sema::LookupObjCProtocolName:
292    IDNS = Decl::IDNS_ObjCProtocol;
293    break;
294
295  case Sema::LookupObjCImplementationName:
296    IDNS = Decl::IDNS_ObjCImplementation;
297    break;
298  }
299  return IDNS;
300}
301
302void LookupResult::configure() {
303  IDNS = getIDNS(LookupKind,
304                 SemaRef.getLangOptions().CPlusPlus,
305                 isForRedeclaration());
306  IsAcceptableFn = getResultFilter(LookupKind);
307
308  // If we're looking for one of the allocation or deallocation
309  // operators, make sure that the implicitly-declared new and delete
310  // operators can be found.
311  if (!isForRedeclaration()) {
312    switch (Name.getCXXOverloadedOperator()) {
313    case OO_New:
314    case OO_Delete:
315    case OO_Array_New:
316    case OO_Array_Delete:
317      SemaRef.DeclareGlobalNewDelete();
318      break;
319
320    default:
321      break;
322    }
323  }
324}
325
326// Necessary because CXXBasePaths is not complete in Sema.h
327void LookupResult::deletePaths(CXXBasePaths *Paths) {
328  delete Paths;
329}
330
331/// Resolves the result kind of this lookup.
332void LookupResult::resolveKind() {
333  unsigned N = Decls.size();
334
335  // Fast case: no possible ambiguity.
336  if (N == 0) {
337    assert(ResultKind == NotFound || ResultKind == NotFoundInCurrentInstantiation);
338    return;
339  }
340
341  // If there's a single decl, we need to examine it to decide what
342  // kind of lookup this is.
343  if (N == 1) {
344    if (isa<FunctionTemplateDecl>(*Decls.begin()))
345      ResultKind = FoundOverloaded;
346    else if (isa<UnresolvedUsingValueDecl>(*Decls.begin()))
347      ResultKind = FoundUnresolvedValue;
348    return;
349  }
350
351  // Don't do any extra resolution if we've already resolved as ambiguous.
352  if (ResultKind == Ambiguous) return;
353
354  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
355
356  bool Ambiguous = false;
357  bool HasTag = false, HasFunction = false, HasNonFunction = false;
358  bool HasFunctionTemplate = false, HasUnresolved = false;
359
360  unsigned UniqueTagIndex = 0;
361
362  unsigned I = 0;
363  while (I < N) {
364    NamedDecl *D = Decls[I]->getUnderlyingDecl();
365    D = cast<NamedDecl>(D->getCanonicalDecl());
366
367    if (!Unique.insert(D)) {
368      // If it's not unique, pull something off the back (and
369      // continue at this index).
370      Decls[I] = Decls[--N];
371    } else {
372      // Otherwise, do some decl type analysis and then continue.
373
374      if (isa<UnresolvedUsingValueDecl>(D)) {
375        HasUnresolved = true;
376      } else if (isa<TagDecl>(D)) {
377        if (HasTag)
378          Ambiguous = true;
379        UniqueTagIndex = I;
380        HasTag = true;
381      } else if (isa<FunctionTemplateDecl>(D)) {
382        HasFunction = true;
383        HasFunctionTemplate = true;
384      } else if (isa<FunctionDecl>(D)) {
385        HasFunction = true;
386      } else {
387        if (HasNonFunction)
388          Ambiguous = true;
389        HasNonFunction = true;
390      }
391      I++;
392    }
393  }
394
395  // C++ [basic.scope.hiding]p2:
396  //   A class name or enumeration name can be hidden by the name of
397  //   an object, function, or enumerator declared in the same
398  //   scope. If a class or enumeration name and an object, function,
399  //   or enumerator are declared in the same scope (in any order)
400  //   with the same name, the class or enumeration name is hidden
401  //   wherever the object, function, or enumerator name is visible.
402  // But it's still an error if there are distinct tag types found,
403  // even if they're not visible. (ref?)
404  if (HideTags && HasTag && !Ambiguous &&
405      (HasFunction || HasNonFunction || HasUnresolved))
406    Decls[UniqueTagIndex] = Decls[--N];
407
408  Decls.set_size(N);
409
410  if (HasNonFunction && (HasFunction || HasUnresolved))
411    Ambiguous = true;
412
413  if (Ambiguous)
414    setAmbiguous(LookupResult::AmbiguousReference);
415  else if (HasUnresolved)
416    ResultKind = LookupResult::FoundUnresolvedValue;
417  else if (N > 1 || HasFunctionTemplate)
418    ResultKind = LookupResult::FoundOverloaded;
419  else
420    ResultKind = LookupResult::Found;
421}
422
423void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
424  CXXBasePaths::const_paths_iterator I, E;
425  DeclContext::lookup_iterator DI, DE;
426  for (I = P.begin(), E = P.end(); I != E; ++I)
427    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
428      addDecl(*DI);
429}
430
431void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
432  Paths = new CXXBasePaths;
433  Paths->swap(P);
434  addDeclsFromBasePaths(*Paths);
435  resolveKind();
436  setAmbiguous(AmbiguousBaseSubobjects);
437}
438
439void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
440  Paths = new CXXBasePaths;
441  Paths->swap(P);
442  addDeclsFromBasePaths(*Paths);
443  resolveKind();
444  setAmbiguous(AmbiguousBaseSubobjectTypes);
445}
446
447void LookupResult::print(llvm::raw_ostream &Out) {
448  Out << Decls.size() << " result(s)";
449  if (isAmbiguous()) Out << ", ambiguous";
450  if (Paths) Out << ", base paths present";
451
452  for (iterator I = begin(), E = end(); I != E; ++I) {
453    Out << "\n";
454    (*I)->print(Out, 2);
455  }
456}
457
458/// \brief Lookup a builtin function, when name lookup would otherwise
459/// fail.
460static bool LookupBuiltin(Sema &S, LookupResult &R) {
461  Sema::LookupNameKind NameKind = R.getLookupKind();
462
463  // If we didn't find a use of this identifier, and if the identifier
464  // corresponds to a compiler builtin, create the decl object for the builtin
465  // now, injecting it into translation unit scope, and return it.
466  if (NameKind == Sema::LookupOrdinaryName ||
467      NameKind == Sema::LookupRedeclarationWithLinkage) {
468    IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo();
469    if (II) {
470      // If this is a builtin on this (or all) targets, create the decl.
471      if (unsigned BuiltinID = II->getBuiltinID()) {
472        // In C++, we don't have any predefined library functions like
473        // 'malloc'. Instead, we'll just error.
474        if (S.getLangOptions().CPlusPlus &&
475            S.Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
476          return false;
477
478        NamedDecl *D = S.LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
479                                             S.TUScope, R.isForRedeclaration(),
480                                             R.getNameLoc());
481        if (D)
482          R.addDecl(D);
483        return (D != NULL);
484      }
485    }
486  }
487
488  return false;
489}
490
491// Adds all qualifying matches for a name within a decl context to the
492// given lookup result.  Returns true if any matches were found.
493static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) {
494  bool Found = false;
495
496  DeclContext::lookup_const_iterator I, E;
497  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
498    NamedDecl *D = *I;
499    if (R.isAcceptableDecl(D)) {
500      R.addDecl(D);
501      Found = true;
502    }
503  }
504
505  if (!Found && DC->isTranslationUnit() && LookupBuiltin(S, R))
506    return true;
507
508  if (R.getLookupName().getNameKind()
509        != DeclarationName::CXXConversionFunctionName ||
510      R.getLookupName().getCXXNameType()->isDependentType() ||
511      !isa<CXXRecordDecl>(DC))
512    return Found;
513
514  // C++ [temp.mem]p6:
515  //   A specialization of a conversion function template is not found by
516  //   name lookup. Instead, any conversion function templates visible in the
517  //   context of the use are considered. [...]
518  const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
519  if (!Record->isDefinition())
520    return Found;
521
522  const UnresolvedSetImpl *Unresolved = Record->getConversionFunctions();
523  for (UnresolvedSetImpl::iterator U = Unresolved->begin(),
524         UEnd = Unresolved->end(); U != UEnd; ++U) {
525    FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
526    if (!ConvTemplate)
527      continue;
528
529    // When we're performing lookup for the purposes of redeclaration, just
530    // add the conversion function template. When we deduce template
531    // arguments for specializations, we'll end up unifying the return
532    // type of the new declaration with the type of the function template.
533    if (R.isForRedeclaration()) {
534      R.addDecl(ConvTemplate);
535      Found = true;
536      continue;
537    }
538
539    // C++ [temp.mem]p6:
540    //   [...] For each such operator, if argument deduction succeeds
541    //   (14.9.2.3), the resulting specialization is used as if found by
542    //   name lookup.
543    //
544    // When referencing a conversion function for any purpose other than
545    // a redeclaration (such that we'll be building an expression with the
546    // result), perform template argument deduction and place the
547    // specialization into the result set. We do this to avoid forcing all
548    // callers to perform special deduction for conversion functions.
549    Sema::TemplateDeductionInfo Info(R.getSema().Context, R.getNameLoc());
550    FunctionDecl *Specialization = 0;
551
552    const FunctionProtoType *ConvProto
553      = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>();
554    assert(ConvProto && "Nonsensical conversion function template type");
555
556    // Compute the type of the function that we would expect the conversion
557    // function to have, if it were to match the name given.
558    // FIXME: Calling convention!
559    FunctionType::ExtInfo ConvProtoInfo = ConvProto->getExtInfo();
560    QualType ExpectedType
561      = R.getSema().Context.getFunctionType(R.getLookupName().getCXXNameType(),
562                                            0, 0, ConvProto->isVariadic(),
563                                            ConvProto->getTypeQuals(),
564                                            false, false, 0, 0,
565                                    ConvProtoInfo.withCallingConv(CC_Default));
566
567    // Perform template argument deduction against the type that we would
568    // expect the function to have.
569    if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
570                                            Specialization, Info)
571          == Sema::TDK_Success) {
572      R.addDecl(Specialization);
573      Found = true;
574    }
575  }
576
577  return Found;
578}
579
580// Performs C++ unqualified lookup into the given file context.
581static bool
582CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context,
583                   DeclContext *NS, UnqualUsingDirectiveSet &UDirs) {
584
585  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
586
587  // Perform direct name lookup into the LookupCtx.
588  bool Found = LookupDirect(S, R, NS);
589
590  // Perform direct name lookup into the namespaces nominated by the
591  // using directives whose common ancestor is this namespace.
592  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
593  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
594
595  for (; UI != UEnd; ++UI)
596    if (LookupDirect(S, R, UI->getNominatedNamespace()))
597      Found = true;
598
599  R.resolveKind();
600
601  return Found;
602}
603
604static bool isNamespaceOrTranslationUnitScope(Scope *S) {
605  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
606    return Ctx->isFileContext();
607  return false;
608}
609
610// Find the next outer declaration context from this scope. This
611// routine actually returns the semantic outer context, which may
612// differ from the lexical context (encoded directly in the Scope
613// stack) when we are parsing a member of a class template. In this
614// case, the second element of the pair will be true, to indicate that
615// name lookup should continue searching in this semantic context when
616// it leaves the current template parameter scope.
617static std::pair<DeclContext *, bool> findOuterContext(Scope *S) {
618  DeclContext *DC = static_cast<DeclContext *>(S->getEntity());
619  DeclContext *Lexical = 0;
620  for (Scope *OuterS = S->getParent(); OuterS;
621       OuterS = OuterS->getParent()) {
622    if (OuterS->getEntity()) {
623      Lexical = static_cast<DeclContext *>(OuterS->getEntity());
624      break;
625    }
626  }
627
628  // C++ [temp.local]p8:
629  //   In the definition of a member of a class template that appears
630  //   outside of the namespace containing the class template
631  //   definition, the name of a template-parameter hides the name of
632  //   a member of this namespace.
633  //
634  // Example:
635  //
636  //   namespace N {
637  //     class C { };
638  //
639  //     template<class T> class B {
640  //       void f(T);
641  //     };
642  //   }
643  //
644  //   template<class C> void N::B<C>::f(C) {
645  //     C b;  // C is the template parameter, not N::C
646  //   }
647  //
648  // In this example, the lexical context we return is the
649  // TranslationUnit, while the semantic context is the namespace N.
650  if (!Lexical || !DC || !S->getParent() ||
651      !S->getParent()->isTemplateParamScope())
652    return std::make_pair(Lexical, false);
653
654  // Find the outermost template parameter scope.
655  // For the example, this is the scope for the template parameters of
656  // template<class C>.
657  Scope *OutermostTemplateScope = S->getParent();
658  while (OutermostTemplateScope->getParent() &&
659         OutermostTemplateScope->getParent()->isTemplateParamScope())
660    OutermostTemplateScope = OutermostTemplateScope->getParent();
661
662  // Find the namespace context in which the original scope occurs. In
663  // the example, this is namespace N.
664  DeclContext *Semantic = DC;
665  while (!Semantic->isFileContext())
666    Semantic = Semantic->getParent();
667
668  // Find the declaration context just outside of the template
669  // parameter scope. This is the context in which the template is
670  // being lexically declaration (a namespace context). In the
671  // example, this is the global scope.
672  if (Lexical->isFileContext() && !Lexical->Equals(Semantic) &&
673      Lexical->Encloses(Semantic))
674    return std::make_pair(Semantic, true);
675
676  return std::make_pair(Lexical, false);
677}
678
679bool Sema::CppLookupName(LookupResult &R, Scope *S) {
680  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
681
682  DeclarationName Name = R.getLookupName();
683
684  Scope *Initial = S;
685  IdentifierResolver::iterator
686    I = IdResolver.begin(Name),
687    IEnd = IdResolver.end();
688
689  // First we lookup local scope.
690  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
691  // ...During unqualified name lookup (3.4.1), the names appear as if
692  // they were declared in the nearest enclosing namespace which contains
693  // both the using-directive and the nominated namespace.
694  // [Note: in this context, "contains" means "contains directly or
695  // indirectly".
696  //
697  // For example:
698  // namespace A { int i; }
699  // void foo() {
700  //   int i;
701  //   {
702  //     using namespace A;
703  //     ++i; // finds local 'i', A::i appears at global scope
704  //   }
705  // }
706  //
707  DeclContext *OutsideOfTemplateParamDC = 0;
708  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
709    // Check whether the IdResolver has anything in this scope.
710    bool Found = false;
711    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
712      if (R.isAcceptableDecl(*I)) {
713        Found = true;
714        R.addDecl(*I);
715      }
716    }
717    if (Found) {
718      R.resolveKind();
719      return true;
720    }
721
722    DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity());
723    if (!Ctx && S->isTemplateParamScope() && OutsideOfTemplateParamDC &&
724        S->getParent() && !S->getParent()->isTemplateParamScope()) {
725      // We've just searched the last template parameter scope and
726      // found nothing, so look into the the contexts between the
727      // lexical and semantic declaration contexts returned by
728      // findOuterContext(). This implements the name lookup behavior
729      // of C++ [temp.local]p8.
730      Ctx = OutsideOfTemplateParamDC;
731      OutsideOfTemplateParamDC = 0;
732    }
733
734    if (Ctx) {
735      DeclContext *OuterCtx;
736      bool SearchAfterTemplateScope;
737      llvm::tie(OuterCtx, SearchAfterTemplateScope) = findOuterContext(S);
738      if (SearchAfterTemplateScope)
739        OutsideOfTemplateParamDC = OuterCtx;
740
741      for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) {
742        // We do not directly look into transparent contexts, since
743        // those entities will be found in the nearest enclosing
744        // non-transparent context.
745        if (Ctx->isTransparentContext())
746          continue;
747
748        // We do not look directly into function or method contexts,
749        // since all of the local variables and parameters of the
750        // function/method are present within the Scope.
751        if (Ctx->isFunctionOrMethod()) {
752          // If we have an Objective-C instance method, look for ivars
753          // in the corresponding interface.
754          if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
755            if (Method->isInstanceMethod() && Name.getAsIdentifierInfo())
756              if (ObjCInterfaceDecl *Class = Method->getClassInterface()) {
757                ObjCInterfaceDecl *ClassDeclared;
758                if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(
759                                                 Name.getAsIdentifierInfo(),
760                                                             ClassDeclared)) {
761                  if (R.isAcceptableDecl(Ivar)) {
762                    R.addDecl(Ivar);
763                    R.resolveKind();
764                    return true;
765                  }
766                }
767              }
768          }
769
770          continue;
771        }
772
773        // Perform qualified name lookup into this context.
774        // FIXME: In some cases, we know that every name that could be found by
775        // this qualified name lookup will also be on the identifier chain. For
776        // example, inside a class without any base classes, we never need to
777        // perform qualified lookup because all of the members are on top of the
778        // identifier chain.
779        if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true))
780          return true;
781      }
782    }
783  }
784
785  // Stop if we ran out of scopes.
786  // FIXME:  This really, really shouldn't be happening.
787  if (!S) return false;
788
789  // Collect UsingDirectiveDecls in all scopes, and recursively all
790  // nominated namespaces by those using-directives.
791  //
792  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
793  // don't build it for each lookup!
794
795  UnqualUsingDirectiveSet UDirs;
796  UDirs.visitScopeChain(Initial, S);
797  UDirs.done();
798
799  // Lookup namespace scope, and global scope.
800  // Unqualified name lookup in C++ requires looking into scopes
801  // that aren't strictly lexical, and therefore we walk through the
802  // context as well as walking through the scopes.
803
804  for (; S; S = S->getParent()) {
805    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
806    if (Ctx && Ctx->isTransparentContext())
807      continue;
808
809    // Check whether the IdResolver has anything in this scope.
810    bool Found = false;
811    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
812      if (R.isAcceptableDecl(*I)) {
813        // We found something.  Look for anything else in our scope
814        // with this same name and in an acceptable identifier
815        // namespace, so that we can construct an overload set if we
816        // need to.
817        Found = true;
818        R.addDecl(*I);
819      }
820    }
821
822    // If we have a context, and it's not a context stashed in the
823    // template parameter scope for an out-of-line definition, also
824    // look into that context.
825    if (Ctx && !(Found && S && S->isTemplateParamScope())) {
826      assert(Ctx->isFileContext() &&
827             "We should have been looking only at file context here already.");
828
829      // Look into context considering using-directives.
830      if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs))
831        Found = true;
832    }
833
834    if (Found) {
835      R.resolveKind();
836      return true;
837    }
838
839    if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext())
840      return false;
841  }
842
843  return !R.empty();
844}
845
846/// @brief Perform unqualified name lookup starting from a given
847/// scope.
848///
849/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
850/// used to find names within the current scope. For example, 'x' in
851/// @code
852/// int x;
853/// int f() {
854///   return x; // unqualified name look finds 'x' in the global scope
855/// }
856/// @endcode
857///
858/// Different lookup criteria can find different names. For example, a
859/// particular scope can have both a struct and a function of the same
860/// name, and each can be found by certain lookup criteria. For more
861/// information about lookup criteria, see the documentation for the
862/// class LookupCriteria.
863///
864/// @param S        The scope from which unqualified name lookup will
865/// begin. If the lookup criteria permits, name lookup may also search
866/// in the parent scopes.
867///
868/// @param Name     The name of the entity that we are searching for.
869///
870/// @param Loc      If provided, the source location where we're performing
871/// name lookup. At present, this is only used to produce diagnostics when
872/// C library functions (like "malloc") are implicitly declared.
873///
874/// @returns The result of name lookup, which includes zero or more
875/// declarations and possibly additional information used to diagnose
876/// ambiguities.
877bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
878  DeclarationName Name = R.getLookupName();
879  if (!Name) return false;
880
881  LookupNameKind NameKind = R.getLookupKind();
882
883  if (!getLangOptions().CPlusPlus) {
884    // Unqualified name lookup in C/Objective-C is purely lexical, so
885    // search in the declarations attached to the name.
886
887    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
888      // Find the nearest non-transparent declaration scope.
889      while (!(S->getFlags() & Scope::DeclScope) ||
890             (S->getEntity() &&
891              static_cast<DeclContext *>(S->getEntity())
892                ->isTransparentContext()))
893        S = S->getParent();
894    }
895
896    unsigned IDNS = R.getIdentifierNamespace();
897
898    // Scan up the scope chain looking for a decl that matches this
899    // identifier that is in the appropriate namespace.  This search
900    // should not take long, as shadowing of names is uncommon, and
901    // deep shadowing is extremely uncommon.
902    bool LeftStartingScope = false;
903
904    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
905                                   IEnd = IdResolver.end();
906         I != IEnd; ++I)
907      if ((*I)->isInIdentifierNamespace(IDNS)) {
908        if (NameKind == LookupRedeclarationWithLinkage) {
909          // Determine whether this (or a previous) declaration is
910          // out-of-scope.
911          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
912            LeftStartingScope = true;
913
914          // If we found something outside of our starting scope that
915          // does not have linkage, skip it.
916          if (LeftStartingScope && !((*I)->hasLinkage()))
917            continue;
918        }
919
920        R.addDecl(*I);
921
922        if ((*I)->getAttr<OverloadableAttr>()) {
923          // If this declaration has the "overloadable" attribute, we
924          // might have a set of overloaded functions.
925
926          // Figure out what scope the identifier is in.
927          while (!(S->getFlags() & Scope::DeclScope) ||
928                 !S->isDeclScope(DeclPtrTy::make(*I)))
929            S = S->getParent();
930
931          // Find the last declaration in this scope (with the same
932          // name, naturally).
933          IdentifierResolver::iterator LastI = I;
934          for (++LastI; LastI != IEnd; ++LastI) {
935            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
936              break;
937            R.addDecl(*LastI);
938          }
939        }
940
941        R.resolveKind();
942
943        return true;
944      }
945  } else {
946    // Perform C++ unqualified name lookup.
947    if (CppLookupName(R, S))
948      return true;
949  }
950
951  // If we didn't find a use of this identifier, and if the identifier
952  // corresponds to a compiler builtin, create the decl object for the builtin
953  // now, injecting it into translation unit scope, and return it.
954  if (AllowBuiltinCreation)
955    return LookupBuiltin(*this, R);
956
957  return false;
958}
959
960/// @brief Perform qualified name lookup in the namespaces nominated by
961/// using directives by the given context.
962///
963/// C++98 [namespace.qual]p2:
964///   Given X::m (where X is a user-declared namespace), or given ::m
965///   (where X is the global namespace), let S be the set of all
966///   declarations of m in X and in the transitive closure of all
967///   namespaces nominated by using-directives in X and its used
968///   namespaces, except that using-directives are ignored in any
969///   namespace, including X, directly containing one or more
970///   declarations of m. No namespace is searched more than once in
971///   the lookup of a name. If S is the empty set, the program is
972///   ill-formed. Otherwise, if S has exactly one member, or if the
973///   context of the reference is a using-declaration
974///   (namespace.udecl), S is the required set of declarations of
975///   m. Otherwise if the use of m is not one that allows a unique
976///   declaration to be chosen from S, the program is ill-formed.
977/// C++98 [namespace.qual]p5:
978///   During the lookup of a qualified namespace member name, if the
979///   lookup finds more than one declaration of the member, and if one
980///   declaration introduces a class name or enumeration name and the
981///   other declarations either introduce the same object, the same
982///   enumerator or a set of functions, the non-type name hides the
983///   class or enumeration name if and only if the declarations are
984///   from the same namespace; otherwise (the declarations are from
985///   different namespaces), the program is ill-formed.
986static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R,
987                                                 DeclContext *StartDC) {
988  assert(StartDC->isFileContext() && "start context is not a file context");
989
990  DeclContext::udir_iterator I = StartDC->using_directives_begin();
991  DeclContext::udir_iterator E = StartDC->using_directives_end();
992
993  if (I == E) return false;
994
995  // We have at least added all these contexts to the queue.
996  llvm::DenseSet<DeclContext*> Visited;
997  Visited.insert(StartDC);
998
999  // We have not yet looked into these namespaces, much less added
1000  // their "using-children" to the queue.
1001  llvm::SmallVector<NamespaceDecl*, 8> Queue;
1002
1003  // We have already looked into the initial namespace; seed the queue
1004  // with its using-children.
1005  for (; I != E; ++I) {
1006    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
1007    if (Visited.insert(ND).second)
1008      Queue.push_back(ND);
1009  }
1010
1011  // The easiest way to implement the restriction in [namespace.qual]p5
1012  // is to check whether any of the individual results found a tag
1013  // and, if so, to declare an ambiguity if the final result is not
1014  // a tag.
1015  bool FoundTag = false;
1016  bool FoundNonTag = false;
1017
1018  LookupResult LocalR(LookupResult::Temporary, R);
1019
1020  bool Found = false;
1021  while (!Queue.empty()) {
1022    NamespaceDecl *ND = Queue.back();
1023    Queue.pop_back();
1024
1025    // We go through some convolutions here to avoid copying results
1026    // between LookupResults.
1027    bool UseLocal = !R.empty();
1028    LookupResult &DirectR = UseLocal ? LocalR : R;
1029    bool FoundDirect = LookupDirect(S, DirectR, ND);
1030
1031    if (FoundDirect) {
1032      // First do any local hiding.
1033      DirectR.resolveKind();
1034
1035      // If the local result is a tag, remember that.
1036      if (DirectR.isSingleTagDecl())
1037        FoundTag = true;
1038      else
1039        FoundNonTag = true;
1040
1041      // Append the local results to the total results if necessary.
1042      if (UseLocal) {
1043        R.addAllDecls(LocalR);
1044        LocalR.clear();
1045      }
1046    }
1047
1048    // If we find names in this namespace, ignore its using directives.
1049    if (FoundDirect) {
1050      Found = true;
1051      continue;
1052    }
1053
1054    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
1055      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
1056      if (Visited.insert(Nom).second)
1057        Queue.push_back(Nom);
1058    }
1059  }
1060
1061  if (Found) {
1062    if (FoundTag && FoundNonTag)
1063      R.setAmbiguousQualifiedTagHiding();
1064    else
1065      R.resolveKind();
1066  }
1067
1068  return Found;
1069}
1070
1071/// \brief Perform qualified name lookup into a given context.
1072///
1073/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
1074/// names when the context of those names is explicit specified, e.g.,
1075/// "std::vector" or "x->member", or as part of unqualified name lookup.
1076///
1077/// Different lookup criteria can find different names. For example, a
1078/// particular scope can have both a struct and a function of the same
1079/// name, and each can be found by certain lookup criteria. For more
1080/// information about lookup criteria, see the documentation for the
1081/// class LookupCriteria.
1082///
1083/// \param R captures both the lookup criteria and any lookup results found.
1084///
1085/// \param LookupCtx The context in which qualified name lookup will
1086/// search. If the lookup criteria permits, name lookup may also search
1087/// in the parent contexts or (for C++ classes) base classes.
1088///
1089/// \param InUnqualifiedLookup true if this is qualified name lookup that
1090/// occurs as part of unqualified name lookup.
1091///
1092/// \returns true if lookup succeeded, false if it failed.
1093bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
1094                               bool InUnqualifiedLookup) {
1095  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
1096
1097  if (!R.getLookupName())
1098    return false;
1099
1100  // Make sure that the declaration context is complete.
1101  assert((!isa<TagDecl>(LookupCtx) ||
1102          LookupCtx->isDependentContext() ||
1103          cast<TagDecl>(LookupCtx)->isDefinition() ||
1104          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
1105            ->isBeingDefined()) &&
1106         "Declaration context must already be complete!");
1107
1108  // Perform qualified name lookup into the LookupCtx.
1109  if (LookupDirect(*this, R, LookupCtx)) {
1110    R.resolveKind();
1111    if (isa<CXXRecordDecl>(LookupCtx))
1112      R.setNamingClass(cast<CXXRecordDecl>(LookupCtx));
1113    return true;
1114  }
1115
1116  // Don't descend into implied contexts for redeclarations.
1117  // C++98 [namespace.qual]p6:
1118  //   In a declaration for a namespace member in which the
1119  //   declarator-id is a qualified-id, given that the qualified-id
1120  //   for the namespace member has the form
1121  //     nested-name-specifier unqualified-id
1122  //   the unqualified-id shall name a member of the namespace
1123  //   designated by the nested-name-specifier.
1124  // See also [class.mfct]p5 and [class.static.data]p2.
1125  if (R.isForRedeclaration())
1126    return false;
1127
1128  // If this is a namespace, look it up in the implied namespaces.
1129  if (LookupCtx->isFileContext())
1130    return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx);
1131
1132  // If this isn't a C++ class, we aren't allowed to look into base
1133  // classes, we're done.
1134  CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx);
1135  if (!LookupRec)
1136    return false;
1137
1138  // If we're performing qualified name lookup into a dependent class,
1139  // then we are actually looking into a current instantiation. If we have any
1140  // dependent base classes, then we either have to delay lookup until
1141  // template instantiation time (at which point all bases will be available)
1142  // or we have to fail.
1143  if (!InUnqualifiedLookup && LookupRec->isDependentContext() &&
1144      LookupRec->hasAnyDependentBases()) {
1145    R.setNotFoundInCurrentInstantiation();
1146    return false;
1147  }
1148
1149  // Perform lookup into our base classes.
1150  CXXBasePaths Paths;
1151  Paths.setOrigin(LookupRec);
1152
1153  // Look for this member in our base classes
1154  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1155  switch (R.getLookupKind()) {
1156    case LookupOrdinaryName:
1157    case LookupMemberName:
1158    case LookupRedeclarationWithLinkage:
1159      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1160      break;
1161
1162    case LookupTagName:
1163      BaseCallback = &CXXRecordDecl::FindTagMember;
1164      break;
1165
1166    case LookupUsingDeclName:
1167      // This lookup is for redeclarations only.
1168
1169    case LookupOperatorName:
1170    case LookupNamespaceName:
1171    case LookupObjCProtocolName:
1172    case LookupObjCImplementationName:
1173      // These lookups will never find a member in a C++ class (or base class).
1174      return false;
1175
1176    case LookupNestedNameSpecifierName:
1177      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1178      break;
1179  }
1180
1181  if (!LookupRec->lookupInBases(BaseCallback,
1182                                R.getLookupName().getAsOpaquePtr(), Paths))
1183    return false;
1184
1185  R.setNamingClass(LookupRec);
1186
1187  // C++ [class.member.lookup]p2:
1188  //   [...] If the resulting set of declarations are not all from
1189  //   sub-objects of the same type, or the set has a nonstatic member
1190  //   and includes members from distinct sub-objects, there is an
1191  //   ambiguity and the program is ill-formed. Otherwise that set is
1192  //   the result of the lookup.
1193  // FIXME: support using declarations!
1194  QualType SubobjectType;
1195  int SubobjectNumber = 0;
1196  AccessSpecifier SubobjectAccess = AS_none;
1197  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1198       Path != PathEnd; ++Path) {
1199    const CXXBasePathElement &PathElement = Path->back();
1200
1201    // Pick the best (i.e. most permissive i.e. numerically lowest) access
1202    // across all paths.
1203    SubobjectAccess = std::min(SubobjectAccess, Path->Access);
1204
1205    // Determine whether we're looking at a distinct sub-object or not.
1206    if (SubobjectType.isNull()) {
1207      // This is the first subobject we've looked at. Record its type.
1208      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1209      SubobjectNumber = PathElement.SubobjectNumber;
1210    } else if (SubobjectType
1211                 != Context.getCanonicalType(PathElement.Base->getType())) {
1212      // We found members of the given name in two subobjects of
1213      // different types. This lookup is ambiguous.
1214      R.setAmbiguousBaseSubobjectTypes(Paths);
1215      return true;
1216    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1217      // We have a different subobject of the same type.
1218
1219      // C++ [class.member.lookup]p5:
1220      //   A static member, a nested type or an enumerator defined in
1221      //   a base class T can unambiguously be found even if an object
1222      //   has more than one base class subobject of type T.
1223      Decl *FirstDecl = *Path->Decls.first;
1224      if (isa<VarDecl>(FirstDecl) ||
1225          isa<TypeDecl>(FirstDecl) ||
1226          isa<EnumConstantDecl>(FirstDecl))
1227        continue;
1228
1229      if (isa<CXXMethodDecl>(FirstDecl)) {
1230        // Determine whether all of the methods are static.
1231        bool AllMethodsAreStatic = true;
1232        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1233             Func != Path->Decls.second; ++Func) {
1234          if (!isa<CXXMethodDecl>(*Func)) {
1235            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1236            break;
1237          }
1238
1239          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1240            AllMethodsAreStatic = false;
1241            break;
1242          }
1243        }
1244
1245        if (AllMethodsAreStatic)
1246          continue;
1247      }
1248
1249      // We have found a nonstatic member name in multiple, distinct
1250      // subobjects. Name lookup is ambiguous.
1251      R.setAmbiguousBaseSubobjects(Paths);
1252      return true;
1253    }
1254  }
1255
1256  // Lookup in a base class succeeded; return these results.
1257
1258  DeclContext::lookup_iterator I, E;
1259  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I) {
1260    NamedDecl *D = *I;
1261    AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess,
1262                                                    D->getAccess());
1263    R.addDecl(D, AS);
1264  }
1265  R.resolveKind();
1266  return true;
1267}
1268
1269/// @brief Performs name lookup for a name that was parsed in the
1270/// source code, and may contain a C++ scope specifier.
1271///
1272/// This routine is a convenience routine meant to be called from
1273/// contexts that receive a name and an optional C++ scope specifier
1274/// (e.g., "N::M::x"). It will then perform either qualified or
1275/// unqualified name lookup (with LookupQualifiedName or LookupName,
1276/// respectively) on the given name and return those results.
1277///
1278/// @param S        The scope from which unqualified name lookup will
1279/// begin.
1280///
1281/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1282///
1283/// @param Name     The name of the entity that name lookup will
1284/// search for.
1285///
1286/// @param Loc      If provided, the source location where we're performing
1287/// name lookup. At present, this is only used to produce diagnostics when
1288/// C library functions (like "malloc") are implicitly declared.
1289///
1290/// @param EnteringContext Indicates whether we are going to enter the
1291/// context of the scope-specifier SS (if present).
1292///
1293/// @returns True if any decls were found (but possibly ambiguous)
1294bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
1295                            bool AllowBuiltinCreation, bool EnteringContext) {
1296  if (SS && SS->isInvalid()) {
1297    // When the scope specifier is invalid, don't even look for
1298    // anything.
1299    return false;
1300  }
1301
1302  if (SS && SS->isSet()) {
1303    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1304      // We have resolved the scope specifier to a particular declaration
1305      // contex, and will perform name lookup in that context.
1306      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
1307        return false;
1308
1309      R.setContextRange(SS->getRange());
1310
1311      return LookupQualifiedName(R, DC);
1312    }
1313
1314    // We could not resolve the scope specified to a specific declaration
1315    // context, which means that SS refers to an unknown specialization.
1316    // Name lookup can't find anything in this case.
1317    return false;
1318  }
1319
1320  // Perform unqualified name lookup starting in the given scope.
1321  return LookupName(R, S, AllowBuiltinCreation);
1322}
1323
1324
1325/// @brief Produce a diagnostic describing the ambiguity that resulted
1326/// from name lookup.
1327///
1328/// @param Result       The ambiguous name lookup result.
1329///
1330/// @param Name         The name of the entity that name lookup was
1331/// searching for.
1332///
1333/// @param NameLoc      The location of the name within the source code.
1334///
1335/// @param LookupRange  A source range that provides more
1336/// source-location information concerning the lookup itself. For
1337/// example, this range might highlight a nested-name-specifier that
1338/// precedes the name.
1339///
1340/// @returns true
1341bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1342  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1343
1344  DeclarationName Name = Result.getLookupName();
1345  SourceLocation NameLoc = Result.getNameLoc();
1346  SourceRange LookupRange = Result.getContextRange();
1347
1348  switch (Result.getAmbiguityKind()) {
1349  case LookupResult::AmbiguousBaseSubobjects: {
1350    CXXBasePaths *Paths = Result.getBasePaths();
1351    QualType SubobjectType = Paths->front().back().Base->getType();
1352    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1353      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1354      << LookupRange;
1355
1356    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1357    while (isa<CXXMethodDecl>(*Found) &&
1358           cast<CXXMethodDecl>(*Found)->isStatic())
1359      ++Found;
1360
1361    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1362
1363    return true;
1364  }
1365
1366  case LookupResult::AmbiguousBaseSubobjectTypes: {
1367    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1368      << Name << LookupRange;
1369
1370    CXXBasePaths *Paths = Result.getBasePaths();
1371    std::set<Decl *> DeclsPrinted;
1372    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1373                                      PathEnd = Paths->end();
1374         Path != PathEnd; ++Path) {
1375      Decl *D = *Path->Decls.first;
1376      if (DeclsPrinted.insert(D).second)
1377        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1378    }
1379
1380    return true;
1381  }
1382
1383  case LookupResult::AmbiguousTagHiding: {
1384    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1385
1386    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1387
1388    LookupResult::iterator DI, DE = Result.end();
1389    for (DI = Result.begin(); DI != DE; ++DI)
1390      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1391        TagDecls.insert(TD);
1392        Diag(TD->getLocation(), diag::note_hidden_tag);
1393      }
1394
1395    for (DI = Result.begin(); DI != DE; ++DI)
1396      if (!isa<TagDecl>(*DI))
1397        Diag((*DI)->getLocation(), diag::note_hiding_object);
1398
1399    // For recovery purposes, go ahead and implement the hiding.
1400    LookupResult::Filter F = Result.makeFilter();
1401    while (F.hasNext()) {
1402      if (TagDecls.count(F.next()))
1403        F.erase();
1404    }
1405    F.done();
1406
1407    return true;
1408  }
1409
1410  case LookupResult::AmbiguousReference: {
1411    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1412
1413    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1414    for (; DI != DE; ++DI)
1415      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1416
1417    return true;
1418  }
1419  }
1420
1421  llvm_unreachable("unknown ambiguity kind");
1422  return true;
1423}
1424
1425static void
1426addAssociatedClassesAndNamespaces(QualType T,
1427                                  ASTContext &Context,
1428                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1429                                  Sema::AssociatedClassSet &AssociatedClasses);
1430
1431static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1432                             DeclContext *Ctx) {
1433  if (Ctx->isFileContext())
1434    Namespaces.insert(Ctx);
1435}
1436
1437// \brief Add the associated classes and namespaces for argument-dependent
1438// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1439static void
1440addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1441                                  ASTContext &Context,
1442                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1443                                  Sema::AssociatedClassSet &AssociatedClasses) {
1444  // C++ [basic.lookup.koenig]p2, last bullet:
1445  //   -- [...] ;
1446  switch (Arg.getKind()) {
1447    case TemplateArgument::Null:
1448      break;
1449
1450    case TemplateArgument::Type:
1451      // [...] the namespaces and classes associated with the types of the
1452      // template arguments provided for template type parameters (excluding
1453      // template template parameters)
1454      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1455                                        AssociatedNamespaces,
1456                                        AssociatedClasses);
1457      break;
1458
1459    case TemplateArgument::Template: {
1460      // [...] the namespaces in which any template template arguments are
1461      // defined; and the classes in which any member templates used as
1462      // template template arguments are defined.
1463      TemplateName Template = Arg.getAsTemplate();
1464      if (ClassTemplateDecl *ClassTemplate
1465                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1466        DeclContext *Ctx = ClassTemplate->getDeclContext();
1467        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1468          AssociatedClasses.insert(EnclosingClass);
1469        // Add the associated namespace for this class.
1470        while (Ctx->isRecord())
1471          Ctx = Ctx->getParent();
1472        CollectNamespace(AssociatedNamespaces, Ctx);
1473      }
1474      break;
1475    }
1476
1477    case TemplateArgument::Declaration:
1478    case TemplateArgument::Integral:
1479    case TemplateArgument::Expression:
1480      // [Note: non-type template arguments do not contribute to the set of
1481      //  associated namespaces. ]
1482      break;
1483
1484    case TemplateArgument::Pack:
1485      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1486                                        PEnd = Arg.pack_end();
1487           P != PEnd; ++P)
1488        addAssociatedClassesAndNamespaces(*P, Context,
1489                                          AssociatedNamespaces,
1490                                          AssociatedClasses);
1491      break;
1492  }
1493}
1494
1495// \brief Add the associated classes and namespaces for
1496// argument-dependent lookup with an argument of class type
1497// (C++ [basic.lookup.koenig]p2).
1498static void
1499addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1500                                  ASTContext &Context,
1501                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1502                            Sema::AssociatedClassSet &AssociatedClasses) {
1503  // C++ [basic.lookup.koenig]p2:
1504  //   [...]
1505  //     -- If T is a class type (including unions), its associated
1506  //        classes are: the class itself; the class of which it is a
1507  //        member, if any; and its direct and indirect base
1508  //        classes. Its associated namespaces are the namespaces in
1509  //        which its associated classes are defined.
1510
1511  // Add the class of which it is a member, if any.
1512  DeclContext *Ctx = Class->getDeclContext();
1513  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1514    AssociatedClasses.insert(EnclosingClass);
1515  // Add the associated namespace for this class.
1516  while (Ctx->isRecord())
1517    Ctx = Ctx->getParent();
1518  CollectNamespace(AssociatedNamespaces, Ctx);
1519
1520  // Add the class itself. If we've already seen this class, we don't
1521  // need to visit base classes.
1522  if (!AssociatedClasses.insert(Class))
1523    return;
1524
1525  // -- If T is a template-id, its associated namespaces and classes are
1526  //    the namespace in which the template is defined; for member
1527  //    templates, the member template’s class; the namespaces and classes
1528  //    associated with the types of the template arguments provided for
1529  //    template type parameters (excluding template template parameters); the
1530  //    namespaces in which any template template arguments are defined; and
1531  //    the classes in which any member templates used as template template
1532  //    arguments are defined. [Note: non-type template arguments do not
1533  //    contribute to the set of associated namespaces. ]
1534  if (ClassTemplateSpecializationDecl *Spec
1535        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1536    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1537    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1538      AssociatedClasses.insert(EnclosingClass);
1539    // Add the associated namespace for this class.
1540    while (Ctx->isRecord())
1541      Ctx = Ctx->getParent();
1542    CollectNamespace(AssociatedNamespaces, Ctx);
1543
1544    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1545    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1546      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1547                                        AssociatedNamespaces,
1548                                        AssociatedClasses);
1549  }
1550
1551  // Only recurse into base classes for complete types.
1552  if (!Class->hasDefinition()) {
1553    // FIXME: we might need to instantiate templates here
1554    return;
1555  }
1556
1557  // Add direct and indirect base classes along with their associated
1558  // namespaces.
1559  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1560  Bases.push_back(Class);
1561  while (!Bases.empty()) {
1562    // Pop this class off the stack.
1563    Class = Bases.back();
1564    Bases.pop_back();
1565
1566    // Visit the base classes.
1567    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1568                                         BaseEnd = Class->bases_end();
1569         Base != BaseEnd; ++Base) {
1570      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1571      // In dependent contexts, we do ADL twice, and the first time around,
1572      // the base type might be a dependent TemplateSpecializationType, or a
1573      // TemplateTypeParmType. If that happens, simply ignore it.
1574      // FIXME: If we want to support export, we probably need to add the
1575      // namespace of the template in a TemplateSpecializationType, or even
1576      // the classes and namespaces of known non-dependent arguments.
1577      if (!BaseType)
1578        continue;
1579      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1580      if (AssociatedClasses.insert(BaseDecl)) {
1581        // Find the associated namespace for this base class.
1582        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1583        while (BaseCtx->isRecord())
1584          BaseCtx = BaseCtx->getParent();
1585        CollectNamespace(AssociatedNamespaces, BaseCtx);
1586
1587        // Make sure we visit the bases of this base class.
1588        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1589          Bases.push_back(BaseDecl);
1590      }
1591    }
1592  }
1593}
1594
1595// \brief Add the associated classes and namespaces for
1596// argument-dependent lookup with an argument of type T
1597// (C++ [basic.lookup.koenig]p2).
1598static void
1599addAssociatedClassesAndNamespaces(QualType T,
1600                                  ASTContext &Context,
1601                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1602                                  Sema::AssociatedClassSet &AssociatedClasses) {
1603  // C++ [basic.lookup.koenig]p2:
1604  //
1605  //   For each argument type T in the function call, there is a set
1606  //   of zero or more associated namespaces and a set of zero or more
1607  //   associated classes to be considered. The sets of namespaces and
1608  //   classes is determined entirely by the types of the function
1609  //   arguments (and the namespace of any template template
1610  //   argument). Typedef names and using-declarations used to specify
1611  //   the types do not contribute to this set. The sets of namespaces
1612  //   and classes are determined in the following way:
1613  T = Context.getCanonicalType(T).getUnqualifiedType();
1614
1615  //    -- If T is a pointer to U or an array of U, its associated
1616  //       namespaces and classes are those associated with U.
1617  //
1618  // We handle this by unwrapping pointer and array types immediately,
1619  // to avoid unnecessary recursion.
1620  while (true) {
1621    if (const PointerType *Ptr = T->getAs<PointerType>())
1622      T = Ptr->getPointeeType();
1623    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1624      T = Ptr->getElementType();
1625    else
1626      break;
1627  }
1628
1629  //     -- If T is a fundamental type, its associated sets of
1630  //        namespaces and classes are both empty.
1631  if (T->getAs<BuiltinType>())
1632    return;
1633
1634  //     -- If T is a class type (including unions), its associated
1635  //        classes are: the class itself; the class of which it is a
1636  //        member, if any; and its direct and indirect base
1637  //        classes. Its associated namespaces are the namespaces in
1638  //        which its associated classes are defined.
1639  if (const RecordType *ClassType = T->getAs<RecordType>())
1640    if (CXXRecordDecl *ClassDecl
1641        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1642      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1643                                        AssociatedNamespaces,
1644                                        AssociatedClasses);
1645      return;
1646    }
1647
1648  //     -- If T is an enumeration type, its associated namespace is
1649  //        the namespace in which it is defined. If it is class
1650  //        member, its associated class is the member’s class; else
1651  //        it has no associated class.
1652  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1653    EnumDecl *Enum = EnumT->getDecl();
1654
1655    DeclContext *Ctx = Enum->getDeclContext();
1656    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1657      AssociatedClasses.insert(EnclosingClass);
1658
1659    // Add the associated namespace for this class.
1660    while (Ctx->isRecord())
1661      Ctx = Ctx->getParent();
1662    CollectNamespace(AssociatedNamespaces, Ctx);
1663
1664    return;
1665  }
1666
1667  //     -- If T is a function type, its associated namespaces and
1668  //        classes are those associated with the function parameter
1669  //        types and those associated with the return type.
1670  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1671    // Return type
1672    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1673                                      Context,
1674                                      AssociatedNamespaces, AssociatedClasses);
1675
1676    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1677    if (!Proto)
1678      return;
1679
1680    // Argument types
1681    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1682                                           ArgEnd = Proto->arg_type_end();
1683         Arg != ArgEnd; ++Arg)
1684      addAssociatedClassesAndNamespaces(*Arg, Context,
1685                                        AssociatedNamespaces, AssociatedClasses);
1686
1687    return;
1688  }
1689
1690  //     -- If T is a pointer to a member function of a class X, its
1691  //        associated namespaces and classes are those associated
1692  //        with the function parameter types and return type,
1693  //        together with those associated with X.
1694  //
1695  //     -- If T is a pointer to a data member of class X, its
1696  //        associated namespaces and classes are those associated
1697  //        with the member type together with those associated with
1698  //        X.
1699  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1700    // Handle the type that the pointer to member points to.
1701    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1702                                      Context,
1703                                      AssociatedNamespaces,
1704                                      AssociatedClasses);
1705
1706    // Handle the class type into which this points.
1707    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1708      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1709                                        Context,
1710                                        AssociatedNamespaces,
1711                                        AssociatedClasses);
1712
1713    return;
1714  }
1715
1716  // FIXME: What about block pointers?
1717  // FIXME: What about Objective-C message sends?
1718}
1719
1720/// \brief Find the associated classes and namespaces for
1721/// argument-dependent lookup for a call with the given set of
1722/// arguments.
1723///
1724/// This routine computes the sets of associated classes and associated
1725/// namespaces searched by argument-dependent lookup
1726/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1727void
1728Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1729                                 AssociatedNamespaceSet &AssociatedNamespaces,
1730                                 AssociatedClassSet &AssociatedClasses) {
1731  AssociatedNamespaces.clear();
1732  AssociatedClasses.clear();
1733
1734  // C++ [basic.lookup.koenig]p2:
1735  //   For each argument type T in the function call, there is a set
1736  //   of zero or more associated namespaces and a set of zero or more
1737  //   associated classes to be considered. The sets of namespaces and
1738  //   classes is determined entirely by the types of the function
1739  //   arguments (and the namespace of any template template
1740  //   argument).
1741  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1742    Expr *Arg = Args[ArgIdx];
1743
1744    if (Arg->getType() != Context.OverloadTy) {
1745      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1746                                        AssociatedNamespaces,
1747                                        AssociatedClasses);
1748      continue;
1749    }
1750
1751    // [...] In addition, if the argument is the name or address of a
1752    // set of overloaded functions and/or function templates, its
1753    // associated classes and namespaces are the union of those
1754    // associated with each of the members of the set: the namespace
1755    // in which the function or function template is defined and the
1756    // classes and namespaces associated with its (non-dependent)
1757    // parameter types and return type.
1758    Arg = Arg->IgnoreParens();
1759    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
1760      if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
1761        Arg = unaryOp->getSubExpr();
1762
1763    // TODO: avoid the copies.  This should be easy when the cases
1764    // share a storage implementation.
1765    llvm::SmallVector<NamedDecl*, 8> Functions;
1766
1767    if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg))
1768      Functions.append(ULE->decls_begin(), ULE->decls_end());
1769    else
1770      continue;
1771
1772    for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(),
1773           E = Functions.end(); I != E; ++I) {
1774      // Look through any using declarations to find the underlying function.
1775      NamedDecl *Fn = (*I)->getUnderlyingDecl();
1776
1777      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
1778      if (!FDecl)
1779        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
1780
1781      // Add the classes and namespaces associated with the parameter
1782      // types and return type of this function.
1783      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1784                                        AssociatedNamespaces,
1785                                        AssociatedClasses);
1786    }
1787  }
1788}
1789
1790/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1791/// an acceptable non-member overloaded operator for a call whose
1792/// arguments have types T1 (and, if non-empty, T2). This routine
1793/// implements the check in C++ [over.match.oper]p3b2 concerning
1794/// enumeration types.
1795static bool
1796IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1797                                       QualType T1, QualType T2,
1798                                       ASTContext &Context) {
1799  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1800    return true;
1801
1802  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1803    return true;
1804
1805  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1806  if (Proto->getNumArgs() < 1)
1807    return false;
1808
1809  if (T1->isEnumeralType()) {
1810    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1811    if (Context.hasSameUnqualifiedType(T1, ArgType))
1812      return true;
1813  }
1814
1815  if (Proto->getNumArgs() < 2)
1816    return false;
1817
1818  if (!T2.isNull() && T2->isEnumeralType()) {
1819    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1820    if (Context.hasSameUnqualifiedType(T2, ArgType))
1821      return true;
1822  }
1823
1824  return false;
1825}
1826
1827NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
1828                                  LookupNameKind NameKind,
1829                                  RedeclarationKind Redecl) {
1830  LookupResult R(*this, Name, SourceLocation(), NameKind, Redecl);
1831  LookupName(R, S);
1832  return R.getAsSingle<NamedDecl>();
1833}
1834
1835/// \brief Find the protocol with the given name, if any.
1836ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1837  Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
1838  return cast_or_null<ObjCProtocolDecl>(D);
1839}
1840
1841void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1842                                        QualType T1, QualType T2,
1843                                        UnresolvedSetImpl &Functions) {
1844  // C++ [over.match.oper]p3:
1845  //     -- The set of non-member candidates is the result of the
1846  //        unqualified lookup of operator@ in the context of the
1847  //        expression according to the usual rules for name lookup in
1848  //        unqualified function calls (3.4.2) except that all member
1849  //        functions are ignored. However, if no operand has a class
1850  //        type, only those non-member functions in the lookup set
1851  //        that have a first parameter of type T1 or "reference to
1852  //        (possibly cv-qualified) T1", when T1 is an enumeration
1853  //        type, or (if there is a right operand) a second parameter
1854  //        of type T2 or "reference to (possibly cv-qualified) T2",
1855  //        when T2 is an enumeration type, are candidate functions.
1856  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1857  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
1858  LookupName(Operators, S);
1859
1860  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1861
1862  if (Operators.empty())
1863    return;
1864
1865  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1866       Op != OpEnd; ++Op) {
1867    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1868      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1869        Functions.addDecl(FD, Op.getAccess()); // FIXME: canonical FD
1870    } else if (FunctionTemplateDecl *FunTmpl
1871                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1872      // FIXME: friend operators?
1873      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1874      // later?
1875      if (!FunTmpl->getDeclContext()->isRecord())
1876        Functions.addDecl(FunTmpl, Op.getAccess());
1877    }
1878  }
1879}
1880
1881void ADLResult::insert(NamedDecl *New) {
1882  NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())];
1883
1884  // If we haven't yet seen a decl for this key, or the last decl
1885  // was exactly this one, we're done.
1886  if (Old == 0 || Old == New) {
1887    Old = New;
1888    return;
1889  }
1890
1891  // Otherwise, decide which is a more recent redeclaration.
1892  FunctionDecl *OldFD, *NewFD;
1893  if (isa<FunctionTemplateDecl>(New)) {
1894    OldFD = cast<FunctionTemplateDecl>(Old)->getTemplatedDecl();
1895    NewFD = cast<FunctionTemplateDecl>(New)->getTemplatedDecl();
1896  } else {
1897    OldFD = cast<FunctionDecl>(Old);
1898    NewFD = cast<FunctionDecl>(New);
1899  }
1900
1901  FunctionDecl *Cursor = NewFD;
1902  while (true) {
1903    Cursor = Cursor->getPreviousDeclaration();
1904
1905    // If we got to the end without finding OldFD, OldFD is the newer
1906    // declaration;  leave things as they are.
1907    if (!Cursor) return;
1908
1909    // If we do find OldFD, then NewFD is newer.
1910    if (Cursor == OldFD) break;
1911
1912    // Otherwise, keep looking.
1913  }
1914
1915  Old = New;
1916}
1917
1918void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1919                                   Expr **Args, unsigned NumArgs,
1920                                   ADLResult &Result) {
1921  // Find all of the associated namespaces and classes based on the
1922  // arguments we have.
1923  AssociatedNamespaceSet AssociatedNamespaces;
1924  AssociatedClassSet AssociatedClasses;
1925  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1926                                     AssociatedNamespaces,
1927                                     AssociatedClasses);
1928
1929  QualType T1, T2;
1930  if (Operator) {
1931    T1 = Args[0]->getType();
1932    if (NumArgs >= 2)
1933      T2 = Args[1]->getType();
1934  }
1935
1936  // C++ [basic.lookup.argdep]p3:
1937  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1938  //   and let Y be the lookup set produced by argument dependent
1939  //   lookup (defined as follows). If X contains [...] then Y is
1940  //   empty. Otherwise Y is the set of declarations found in the
1941  //   namespaces associated with the argument types as described
1942  //   below. The set of declarations found by the lookup of the name
1943  //   is the union of X and Y.
1944  //
1945  // Here, we compute Y and add its members to the overloaded
1946  // candidate set.
1947  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1948                                     NSEnd = AssociatedNamespaces.end();
1949       NS != NSEnd; ++NS) {
1950    //   When considering an associated namespace, the lookup is the
1951    //   same as the lookup performed when the associated namespace is
1952    //   used as a qualifier (3.4.3.2) except that:
1953    //
1954    //     -- Any using-directives in the associated namespace are
1955    //        ignored.
1956    //
1957    //     -- Any namespace-scope friend functions declared in
1958    //        associated classes are visible within their respective
1959    //        namespaces even if they are not visible during an ordinary
1960    //        lookup (11.4).
1961    DeclContext::lookup_iterator I, E;
1962    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1963      NamedDecl *D = *I;
1964      // If the only declaration here is an ordinary friend, consider
1965      // it only if it was declared in an associated classes.
1966      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1967        DeclContext *LexDC = D->getLexicalDeclContext();
1968        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1969          continue;
1970      }
1971
1972      if (isa<UsingShadowDecl>(D))
1973        D = cast<UsingShadowDecl>(D)->getTargetDecl();
1974
1975      if (isa<FunctionDecl>(D)) {
1976        if (Operator &&
1977            !IsAcceptableNonMemberOperatorCandidate(cast<FunctionDecl>(D),
1978                                                    T1, T2, Context))
1979          continue;
1980      } else if (!isa<FunctionTemplateDecl>(D))
1981        continue;
1982
1983      Result.insert(D);
1984    }
1985  }
1986}
1987
1988//----------------------------------------------------------------------------
1989// Search for all visible declarations.
1990//----------------------------------------------------------------------------
1991VisibleDeclConsumer::~VisibleDeclConsumer() { }
1992
1993namespace {
1994
1995class ShadowContextRAII;
1996
1997class VisibleDeclsRecord {
1998public:
1999  /// \brief An entry in the shadow map, which is optimized to store a
2000  /// single declaration (the common case) but can also store a list
2001  /// of declarations.
2002  class ShadowMapEntry {
2003    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
2004
2005    /// \brief Contains either the solitary NamedDecl * or a vector
2006    /// of declarations.
2007    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
2008
2009  public:
2010    ShadowMapEntry() : DeclOrVector() { }
2011
2012    void Add(NamedDecl *ND);
2013    void Destroy();
2014
2015    // Iteration.
2016    typedef NamedDecl **iterator;
2017    iterator begin();
2018    iterator end();
2019  };
2020
2021private:
2022  /// \brief A mapping from declaration names to the declarations that have
2023  /// this name within a particular scope.
2024  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
2025
2026  /// \brief A list of shadow maps, which is used to model name hiding.
2027  std::list<ShadowMap> ShadowMaps;
2028
2029  /// \brief The declaration contexts we have already visited.
2030  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
2031
2032  friend class ShadowContextRAII;
2033
2034public:
2035  /// \brief Determine whether we have already visited this context
2036  /// (and, if not, note that we are going to visit that context now).
2037  bool visitedContext(DeclContext *Ctx) {
2038    return !VisitedContexts.insert(Ctx);
2039  }
2040
2041  /// \brief Determine whether the given declaration is hidden in the
2042  /// current scope.
2043  ///
2044  /// \returns the declaration that hides the given declaration, or
2045  /// NULL if no such declaration exists.
2046  NamedDecl *checkHidden(NamedDecl *ND);
2047
2048  /// \brief Add a declaration to the current shadow map.
2049  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
2050};
2051
2052/// \brief RAII object that records when we've entered a shadow context.
2053class ShadowContextRAII {
2054  VisibleDeclsRecord &Visible;
2055
2056  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
2057
2058public:
2059  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
2060    Visible.ShadowMaps.push_back(ShadowMap());
2061  }
2062
2063  ~ShadowContextRAII() {
2064    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
2065                          EEnd = Visible.ShadowMaps.back().end();
2066         E != EEnd;
2067         ++E)
2068      E->second.Destroy();
2069
2070    Visible.ShadowMaps.pop_back();
2071  }
2072};
2073
2074} // end anonymous namespace
2075
2076void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
2077  if (DeclOrVector.isNull()) {
2078    // 0 - > 1 elements: just set the single element information.
2079    DeclOrVector = ND;
2080    return;
2081  }
2082
2083  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
2084    // 1 -> 2 elements: create the vector of results and push in the
2085    // existing declaration.
2086    DeclVector *Vec = new DeclVector;
2087    Vec->push_back(PrevND);
2088    DeclOrVector = Vec;
2089  }
2090
2091  // Add the new element to the end of the vector.
2092  DeclOrVector.get<DeclVector*>()->push_back(ND);
2093}
2094
2095void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
2096  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
2097    delete Vec;
2098    DeclOrVector = ((NamedDecl *)0);
2099  }
2100}
2101
2102VisibleDeclsRecord::ShadowMapEntry::iterator
2103VisibleDeclsRecord::ShadowMapEntry::begin() {
2104  if (DeclOrVector.isNull())
2105    return 0;
2106
2107  if (DeclOrVector.dyn_cast<NamedDecl *>())
2108    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
2109
2110  return DeclOrVector.get<DeclVector *>()->begin();
2111}
2112
2113VisibleDeclsRecord::ShadowMapEntry::iterator
2114VisibleDeclsRecord::ShadowMapEntry::end() {
2115  if (DeclOrVector.isNull())
2116    return 0;
2117
2118  if (DeclOrVector.dyn_cast<NamedDecl *>())
2119    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
2120
2121  return DeclOrVector.get<DeclVector *>()->end();
2122}
2123
2124NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
2125  // Look through using declarations.
2126  ND = ND->getUnderlyingDecl();
2127
2128  unsigned IDNS = ND->getIdentifierNamespace();
2129  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
2130  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
2131       SM != SMEnd; ++SM) {
2132    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
2133    if (Pos == SM->end())
2134      continue;
2135
2136    for (ShadowMapEntry::iterator I = Pos->second.begin(),
2137                               IEnd = Pos->second.end();
2138         I != IEnd; ++I) {
2139      // A tag declaration does not hide a non-tag declaration.
2140      if ((*I)->getIdentifierNamespace() == Decl::IDNS_Tag &&
2141          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
2142                   Decl::IDNS_ObjCProtocol)))
2143        continue;
2144
2145      // Protocols are in distinct namespaces from everything else.
2146      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
2147           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
2148          (*I)->getIdentifierNamespace() != IDNS)
2149        continue;
2150
2151      // Functions and function templates in the same scope overload
2152      // rather than hide.  FIXME: Look for hiding based on function
2153      // signatures!
2154      if ((*I)->isFunctionOrFunctionTemplate() &&
2155          ND->isFunctionOrFunctionTemplate() &&
2156          SM == ShadowMaps.rbegin())
2157        continue;
2158
2159      // We've found a declaration that hides this one.
2160      return *I;
2161    }
2162  }
2163
2164  return 0;
2165}
2166
2167static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
2168                               bool QualifiedNameLookup,
2169                               bool InBaseClass,
2170                               VisibleDeclConsumer &Consumer,
2171                               VisibleDeclsRecord &Visited) {
2172  if (!Ctx)
2173    return;
2174
2175  // Make sure we don't visit the same context twice.
2176  if (Visited.visitedContext(Ctx->getPrimaryContext()))
2177    return;
2178
2179  // Enumerate all of the results in this context.
2180  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
2181       CurCtx = CurCtx->getNextContext()) {
2182    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
2183                                 DEnd = CurCtx->decls_end();
2184         D != DEnd; ++D) {
2185      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
2186        if (Result.isAcceptableDecl(ND)) {
2187          Consumer.FoundDecl(ND, Visited.checkHidden(ND), InBaseClass);
2188          Visited.add(ND);
2189        }
2190
2191      // Visit transparent contexts inside this context.
2192      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
2193        if (InnerCtx->isTransparentContext())
2194          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup, InBaseClass,
2195                             Consumer, Visited);
2196      }
2197    }
2198  }
2199
2200  // Traverse using directives for qualified name lookup.
2201  if (QualifiedNameLookup) {
2202    ShadowContextRAII Shadow(Visited);
2203    DeclContext::udir_iterator I, E;
2204    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
2205      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
2206                         QualifiedNameLookup, InBaseClass, Consumer, Visited);
2207    }
2208  }
2209
2210  // Traverse the contexts of inherited C++ classes.
2211  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
2212    if (!Record->hasDefinition())
2213      return;
2214
2215    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
2216                                         BEnd = Record->bases_end();
2217         B != BEnd; ++B) {
2218      QualType BaseType = B->getType();
2219
2220      // Don't look into dependent bases, because name lookup can't look
2221      // there anyway.
2222      if (BaseType->isDependentType())
2223        continue;
2224
2225      const RecordType *Record = BaseType->getAs<RecordType>();
2226      if (!Record)
2227        continue;
2228
2229      // FIXME: It would be nice to be able to determine whether referencing
2230      // a particular member would be ambiguous. For example, given
2231      //
2232      //   struct A { int member; };
2233      //   struct B { int member; };
2234      //   struct C : A, B { };
2235      //
2236      //   void f(C *c) { c->### }
2237      //
2238      // accessing 'member' would result in an ambiguity. However, we
2239      // could be smart enough to qualify the member with the base
2240      // class, e.g.,
2241      //
2242      //   c->B::member
2243      //
2244      // or
2245      //
2246      //   c->A::member
2247
2248      // Find results in this base class (and its bases).
2249      ShadowContextRAII Shadow(Visited);
2250      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2251                         true, Consumer, Visited);
2252    }
2253  }
2254
2255  // Traverse the contexts of Objective-C classes.
2256  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2257    // Traverse categories.
2258    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2259         Category; Category = Category->getNextClassCategory()) {
2260      ShadowContextRAII Shadow(Visited);
2261      LookupVisibleDecls(Category, Result, QualifiedNameLookup, false,
2262                         Consumer, Visited);
2263    }
2264
2265    // Traverse protocols.
2266    for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
2267         E = IFace->protocol_end(); I != E; ++I) {
2268      ShadowContextRAII Shadow(Visited);
2269      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2270                         Visited);
2271    }
2272
2273    // Traverse the superclass.
2274    if (IFace->getSuperClass()) {
2275      ShadowContextRAII Shadow(Visited);
2276      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2277                         true, Consumer, Visited);
2278    }
2279  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2280    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2281           E = Protocol->protocol_end(); I != E; ++I) {
2282      ShadowContextRAII Shadow(Visited);
2283      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2284                         Visited);
2285    }
2286  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2287    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2288           E = Category->protocol_end(); I != E; ++I) {
2289      ShadowContextRAII Shadow(Visited);
2290      LookupVisibleDecls(*I, Result, QualifiedNameLookup, false, Consumer,
2291                         Visited);
2292    }
2293  }
2294}
2295
2296static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2297                               UnqualUsingDirectiveSet &UDirs,
2298                               VisibleDeclConsumer &Consumer,
2299                               VisibleDeclsRecord &Visited) {
2300  if (!S)
2301    return;
2302
2303  if (!S->getEntity() || !S->getParent() ||
2304      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2305    // Walk through the declarations in this Scope.
2306    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2307         D != DEnd; ++D) {
2308      if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
2309        if (Result.isAcceptableDecl(ND)) {
2310          Consumer.FoundDecl(ND, Visited.checkHidden(ND), false);
2311          Visited.add(ND);
2312        }
2313    }
2314  }
2315
2316  // FIXME: C++ [temp.local]p8
2317  DeclContext *Entity = 0;
2318  if (S->getEntity()) {
2319    // Look into this scope's declaration context, along with any of its
2320    // parent lookup contexts (e.g., enclosing classes), up to the point
2321    // where we hit the context stored in the next outer scope.
2322    Entity = (DeclContext *)S->getEntity();
2323    DeclContext *OuterCtx = findOuterContext(S).first; // FIXME
2324
2325    for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx);
2326         Ctx = Ctx->getLookupParent()) {
2327      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2328        if (Method->isInstanceMethod()) {
2329          // For instance methods, look for ivars in the method's interface.
2330          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2331                                  Result.getNameLoc(), Sema::LookupMemberName);
2332          if (ObjCInterfaceDecl *IFace = Method->getClassInterface())
2333            LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2334                               /*InBaseClass=*/false, Consumer, Visited);
2335        }
2336
2337        // We've already performed all of the name lookup that we need
2338        // to for Objective-C methods; the next context will be the
2339        // outer scope.
2340        break;
2341      }
2342
2343      if (Ctx->isFunctionOrMethod())
2344        continue;
2345
2346      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2347                         /*InBaseClass=*/false, Consumer, Visited);
2348    }
2349  } else if (!S->getParent()) {
2350    // Look into the translation unit scope. We walk through the translation
2351    // unit's declaration context, because the Scope itself won't have all of
2352    // the declarations if we loaded a precompiled header.
2353    // FIXME: We would like the translation unit's Scope object to point to the
2354    // translation unit, so we don't need this special "if" branch. However,
2355    // doing so would force the normal C++ name-lookup code to look into the
2356    // translation unit decl when the IdentifierInfo chains would suffice.
2357    // Once we fix that problem (which is part of a more general "don't look
2358    // in DeclContexts unless we have to" optimization), we can eliminate this.
2359    Entity = Result.getSema().Context.getTranslationUnitDecl();
2360    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2361                       /*InBaseClass=*/false, Consumer, Visited);
2362  }
2363
2364  if (Entity) {
2365    // Lookup visible declarations in any namespaces found by using
2366    // directives.
2367    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2368    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2369    for (; UI != UEnd; ++UI)
2370      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2371                         Result, /*QualifiedNameLookup=*/false,
2372                         /*InBaseClass=*/false, Consumer, Visited);
2373  }
2374
2375  // Lookup names in the parent scope.
2376  ShadowContextRAII Shadow(Visited);
2377  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2378}
2379
2380void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2381                              VisibleDeclConsumer &Consumer) {
2382  // Determine the set of using directives available during
2383  // unqualified name lookup.
2384  Scope *Initial = S;
2385  UnqualUsingDirectiveSet UDirs;
2386  if (getLangOptions().CPlusPlus) {
2387    // Find the first namespace or translation-unit scope.
2388    while (S && !isNamespaceOrTranslationUnitScope(S))
2389      S = S->getParent();
2390
2391    UDirs.visitScopeChain(Initial, S);
2392  }
2393  UDirs.done();
2394
2395  // Look for visible declarations.
2396  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2397  VisibleDeclsRecord Visited;
2398  ShadowContextRAII Shadow(Visited);
2399  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2400}
2401
2402void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2403                              VisibleDeclConsumer &Consumer) {
2404  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2405  VisibleDeclsRecord Visited;
2406  ShadowContextRAII Shadow(Visited);
2407  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true,
2408                       /*InBaseClass=*/false, Consumer, Visited);
2409}
2410
2411//----------------------------------------------------------------------------
2412// Typo correction
2413//----------------------------------------------------------------------------
2414
2415namespace {
2416class TypoCorrectionConsumer : public VisibleDeclConsumer {
2417  /// \brief The name written that is a typo in the source.
2418  llvm::StringRef Typo;
2419
2420  /// \brief The results found that have the smallest edit distance
2421  /// found (so far) with the typo name.
2422  llvm::SmallVector<NamedDecl *, 4> BestResults;
2423
2424  /// \brief The best edit distance found so far.
2425  unsigned BestEditDistance;
2426
2427public:
2428  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2429    : Typo(Typo->getName()) { }
2430
2431  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding, bool InBaseClass);
2432
2433  typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
2434  iterator begin() const { return BestResults.begin(); }
2435  iterator end() const { return BestResults.end(); }
2436  bool empty() const { return BestResults.empty(); }
2437
2438  unsigned getBestEditDistance() const { return BestEditDistance; }
2439};
2440
2441}
2442
2443void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding,
2444                                       bool InBaseClass) {
2445  // Don't consider hidden names for typo correction.
2446  if (Hiding)
2447    return;
2448
2449  // Only consider entities with identifiers for names, ignoring
2450  // special names (constructors, overloaded operators, selectors,
2451  // etc.).
2452  IdentifierInfo *Name = ND->getIdentifier();
2453  if (!Name)
2454    return;
2455
2456  // Compute the edit distance between the typo and the name of this
2457  // entity. If this edit distance is not worse than the best edit
2458  // distance we've seen so far, add it to the list of results.
2459  unsigned ED = Typo.edit_distance(Name->getName());
2460  if (!BestResults.empty()) {
2461    if (ED < BestEditDistance) {
2462      // This result is better than any we've seen before; clear out
2463      // the previous results.
2464      BestResults.clear();
2465      BestEditDistance = ED;
2466    } else if (ED > BestEditDistance) {
2467      // This result is worse than the best results we've seen so far;
2468      // ignore it.
2469      return;
2470    }
2471  } else
2472    BestEditDistance = ED;
2473
2474  BestResults.push_back(ND);
2475}
2476
2477/// \brief Try to "correct" a typo in the source code by finding
2478/// visible declarations whose names are similar to the name that was
2479/// present in the source code.
2480///
2481/// \param Res the \c LookupResult structure that contains the name
2482/// that was present in the source code along with the name-lookup
2483/// criteria used to search for the name. On success, this structure
2484/// will contain the results of name lookup.
2485///
2486/// \param S the scope in which name lookup occurs.
2487///
2488/// \param SS the nested-name-specifier that precedes the name we're
2489/// looking for, if present.
2490///
2491/// \param MemberContext if non-NULL, the context in which to look for
2492/// a member access expression.
2493///
2494/// \param EnteringContext whether we're entering the context described by
2495/// the nested-name-specifier SS.
2496///
2497/// \param OPT when non-NULL, the search for visible declarations will
2498/// also walk the protocols in the qualified interfaces of \p OPT.
2499///
2500/// \returns true if the typo was corrected, in which case the \p Res
2501/// structure will contain the results of name lookup for the
2502/// corrected name. Otherwise, returns false.
2503bool Sema::CorrectTypo(LookupResult &Res, Scope *S, const CXXScopeSpec *SS,
2504                       DeclContext *MemberContext, bool EnteringContext,
2505                       const ObjCObjectPointerType *OPT) {
2506  if (Diags.hasFatalErrorOccurred())
2507    return false;
2508
2509  // Provide a stop gap for files that are just seriously broken.  Trying
2510  // to correct all typos can turn into a HUGE performance penalty, causing
2511  // some files to take minutes to get rejected by the parser.
2512  // FIXME: Is this the right solution?
2513  if (TyposCorrected == 20)
2514    return false;
2515  ++TyposCorrected;
2516
2517  // We only attempt to correct typos for identifiers.
2518  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2519  if (!Typo)
2520    return false;
2521
2522  // If the scope specifier itself was invalid, don't try to correct
2523  // typos.
2524  if (SS && SS->isInvalid())
2525    return false;
2526
2527  // Never try to correct typos during template deduction or
2528  // instantiation.
2529  if (!ActiveTemplateInstantiations.empty())
2530    return false;
2531
2532  TypoCorrectionConsumer Consumer(Typo);
2533  if (MemberContext) {
2534    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2535
2536    // Look in qualified interfaces.
2537    if (OPT) {
2538      for (ObjCObjectPointerType::qual_iterator
2539             I = OPT->qual_begin(), E = OPT->qual_end();
2540           I != E; ++I)
2541        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2542    }
2543  } else if (SS && SS->isSet()) {
2544    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2545    if (!DC)
2546      return false;
2547
2548    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2549  } else {
2550    LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
2551  }
2552
2553  if (Consumer.empty())
2554    return false;
2555
2556  // Only allow a single, closest name in the result set (it's okay to
2557  // have overloads of that name, though).
2558  TypoCorrectionConsumer::iterator I = Consumer.begin();
2559  DeclarationName BestName = (*I)->getDeclName();
2560
2561  // If we've found an Objective-C ivar or property, don't perform
2562  // name lookup again; we'll just return the result directly.
2563  NamedDecl *FoundBest = 0;
2564  if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I))
2565    FoundBest = *I;
2566  ++I;
2567  for(TypoCorrectionConsumer::iterator IEnd = Consumer.end(); I != IEnd; ++I) {
2568    if (BestName != (*I)->getDeclName())
2569      return false;
2570
2571    // FIXME: If there are both ivars and properties of the same name,
2572    // don't return both because the callee can't handle two
2573    // results. We really need to separate ivar lookup from property
2574    // lookup to avoid this problem.
2575    FoundBest = 0;
2576  }
2577
2578  // BestName is the closest viable name to what the user
2579  // typed. However, to make sure that we don't pick something that's
2580  // way off, make sure that the user typed at least 3 characters for
2581  // each correction.
2582  unsigned ED = Consumer.getBestEditDistance();
2583  if (ED == 0 || (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
2584    return false;
2585
2586  // Perform name lookup again with the name we chose, and declare
2587  // success if we found something that was not ambiguous.
2588  Res.clear();
2589  Res.setLookupName(BestName);
2590
2591  // If we found an ivar or property, add that result; no further
2592  // lookup is required.
2593  if (FoundBest)
2594    Res.addDecl(FoundBest);
2595  // If we're looking into the context of a member, perform qualified
2596  // name lookup on the best name.
2597  else if (MemberContext)
2598    LookupQualifiedName(Res, MemberContext);
2599  // Perform lookup as if we had just parsed the best name.
2600  else
2601    LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2602                     EnteringContext);
2603
2604  if (Res.isAmbiguous()) {
2605    Res.suppressDiagnostics();
2606    return false;
2607  }
2608
2609  return Res.getResultKind() != LookupResult::NotFound;
2610}
2611