SemaLookup.cpp revision a0ac8911efa482aa004c707cf1bb7d5cffc716bb
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/Support/ErrorHandling.h"
29#include <set>
30#include <vector>
31#include <iterator>
32#include <utility>
33#include <algorithm>
34
35using namespace clang;
36
37namespace {
38  class UnqualUsingEntry {
39    const DeclContext *Nominated;
40    const DeclContext *CommonAncestor;
41
42  public:
43    UnqualUsingEntry(const DeclContext *Nominated,
44                     const DeclContext *CommonAncestor)
45      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
46    }
47
48    const DeclContext *getCommonAncestor() const {
49      return CommonAncestor;
50    }
51
52    const DeclContext *getNominatedNamespace() const {
53      return Nominated;
54    }
55
56    // Sort by the pointer value of the common ancestor.
57    struct Comparator {
58      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
59        return L.getCommonAncestor() < R.getCommonAncestor();
60      }
61
62      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
63        return E.getCommonAncestor() < DC;
64      }
65
66      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
67        return DC < E.getCommonAncestor();
68      }
69    };
70  };
71
72  /// A collection of using directives, as used by C++ unqualified
73  /// lookup.
74  class UnqualUsingDirectiveSet {
75    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
76
77    ListTy list;
78    llvm::SmallPtrSet<DeclContext*, 8> visited;
79
80  public:
81    UnqualUsingDirectiveSet() {}
82
83    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
84      // C++ [namespace.udir]p1:
85      //   During unqualified name lookup, the names appear as if they
86      //   were declared in the nearest enclosing namespace which contains
87      //   both the using-directive and the nominated namespace.
88      DeclContext *InnermostFileDC
89        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
90      assert(InnermostFileDC && InnermostFileDC->isFileContext());
91
92      for (; S; S = S->getParent()) {
93        if (!(S->getFlags() & Scope::DeclScope))
94          continue;
95
96        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
97          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
98          visit(Ctx, EffectiveDC);
99        } else {
100          Scope::udir_iterator I = S->using_directives_begin(),
101                             End = S->using_directives_end();
102
103          for (; I != End; ++I)
104            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
105        }
106      }
107    }
108
109    // Visits a context and collect all of its using directives
110    // recursively.  Treats all using directives as if they were
111    // declared in the context.
112    //
113    // A given context is only every visited once, so it is important
114    // that contexts be visited from the inside out in order to get
115    // the effective DCs right.
116    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
117      if (!visited.insert(DC))
118        return;
119
120      addUsingDirectives(DC, EffectiveDC);
121    }
122
123    // Visits a using directive and collects all of its using
124    // directives recursively.  Treats all using directives as if they
125    // were declared in the effective DC.
126    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
127      DeclContext *NS = UD->getNominatedNamespace();
128      if (!visited.insert(NS))
129        return;
130
131      addUsingDirective(UD, EffectiveDC);
132      addUsingDirectives(NS, EffectiveDC);
133    }
134
135    // Adds all the using directives in a context (and those nominated
136    // by its using directives, transitively) as if they appeared in
137    // the given effective context.
138    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
139      llvm::SmallVector<DeclContext*,4> queue;
140      while (true) {
141        DeclContext::udir_iterator I, End;
142        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
143          UsingDirectiveDecl *UD = *I;
144          DeclContext *NS = UD->getNominatedNamespace();
145          if (visited.insert(NS)) {
146            addUsingDirective(UD, EffectiveDC);
147            queue.push_back(NS);
148          }
149        }
150
151        if (queue.empty())
152          return;
153
154        DC = queue.back();
155        queue.pop_back();
156      }
157    }
158
159    // Add a using directive as if it had been declared in the given
160    // context.  This helps implement C++ [namespace.udir]p3:
161    //   The using-directive is transitive: if a scope contains a
162    //   using-directive that nominates a second namespace that itself
163    //   contains using-directives, the effect is as if the
164    //   using-directives from the second namespace also appeared in
165    //   the first.
166    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
167      // Find the common ancestor between the effective context and
168      // the nominated namespace.
169      DeclContext *Common = UD->getNominatedNamespace();
170      while (!Common->Encloses(EffectiveDC))
171        Common = Common->getParent();
172      Common = Common->getPrimaryContext();
173
174      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
175    }
176
177    void done() {
178      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
179    }
180
181    typedef ListTy::iterator iterator;
182    typedef ListTy::const_iterator const_iterator;
183
184    iterator begin() { return list.begin(); }
185    iterator end() { return list.end(); }
186    const_iterator begin() const { return list.begin(); }
187    const_iterator end() const { return list.end(); }
188
189    std::pair<const_iterator,const_iterator>
190    getNamespacesFor(DeclContext *DC) const {
191      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
192                              UnqualUsingEntry::Comparator());
193    }
194  };
195}
196
197// Retrieve the set of identifier namespaces that correspond to a
198// specific kind of name lookup.
199inline unsigned
200getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
201                                          bool CPlusPlus) {
202  unsigned IDNS = 0;
203  switch (NameKind) {
204  case Sema::LookupOrdinaryName:
205  case Sema::LookupOperatorName:
206  case Sema::LookupRedeclarationWithLinkage:
207    IDNS = Decl::IDNS_Ordinary;
208    if (CPlusPlus)
209      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
210    break;
211
212  case Sema::LookupTagName:
213    IDNS = Decl::IDNS_Tag;
214    break;
215
216  case Sema::LookupMemberName:
217    IDNS = Decl::IDNS_Member;
218    if (CPlusPlus)
219      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
220    break;
221
222  case Sema::LookupNestedNameSpecifierName:
223  case Sema::LookupNamespaceName:
224    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
225    break;
226
227  case Sema::LookupObjCProtocolName:
228    IDNS = Decl::IDNS_ObjCProtocol;
229    break;
230
231  case Sema::LookupObjCImplementationName:
232    IDNS = Decl::IDNS_ObjCImplementation;
233    break;
234
235  case Sema::LookupObjCCategoryImplName:
236    IDNS = Decl::IDNS_ObjCCategoryImpl;
237    break;
238  }
239  return IDNS;
240}
241
242// Necessary because CXXBasePaths is not complete in Sema.h
243void Sema::LookupResult::deletePaths(CXXBasePaths *Paths) {
244  delete Paths;
245}
246
247void Sema::LookupResult::resolveKind() {
248  unsigned N = Decls.size();
249
250  // Fast case: no possible ambiguity.
251  if (N <= 1) return;
252
253  // Don't do any extra resolution if we've already resolved as ambiguous.
254  if (Kind == Ambiguous) return;
255
256  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
257
258  bool Ambiguous = false;
259  bool HasTag = false, HasFunction = false, HasNonFunction = false;
260
261  unsigned UniqueTagIndex = 0;
262
263  unsigned I = 0;
264  while (I < N) {
265    NamedDecl *D = Decls[I];
266    assert(D == D->getUnderlyingDecl());
267
268    NamedDecl *CanonD = cast<NamedDecl>(D->getCanonicalDecl());
269    if (!Unique.insert(CanonD)) {
270      // If it's not unique, pull something off the back (and
271      // continue at this index).
272      Decls[I] = Decls[--N];
273    } else if (isa<UnresolvedUsingDecl>(D)) {
274      // FIXME: proper support for UnresolvedUsingDecls.
275      Decls[I] = Decls[--N];
276    } else {
277      // Otherwise, do some decl type analysis and then continue.
278      if (isa<TagDecl>(D)) {
279        if (HasTag)
280          Ambiguous = true;
281        UniqueTagIndex = I;
282        HasTag = true;
283      } else if (D->isFunctionOrFunctionTemplate()) {
284        HasFunction = true;
285      } else {
286        if (HasNonFunction)
287          Ambiguous = true;
288        HasNonFunction = true;
289      }
290      I++;
291    }
292  }
293
294  // C++ [basic.scope.hiding]p2:
295  //   A class name or enumeration name can be hidden by the name of
296  //   an object, function, or enumerator declared in the same
297  //   scope. If a class or enumeration name and an object, function,
298  //   or enumerator are declared in the same scope (in any order)
299  //   with the same name, the class or enumeration name is hidden
300  //   wherever the object, function, or enumerator name is visible.
301  // But it's still an error if there are distinct tag types found,
302  // even if they're not visible. (ref?)
303  if (HasTag && !Ambiguous && (HasFunction || HasNonFunction))
304    Decls[UniqueTagIndex] = Decls[--N];
305
306  Decls.set_size(N);
307
308  if (HasFunction && HasNonFunction)
309    Ambiguous = true;
310
311  if (Ambiguous)
312    setAmbiguous(LookupResult::AmbiguousReference);
313  else if (N > 1)
314    Kind = LookupResult::FoundOverloaded;
315  else
316    Kind = LookupResult::Found;
317}
318
319/// @brief Converts the result of name lookup into a single (possible
320/// NULL) pointer to a declaration.
321///
322/// The resulting declaration will either be the declaration we found
323/// (if only a single declaration was found), an
324/// OverloadedFunctionDecl (if an overloaded function was found), or
325/// NULL (if no declaration was found). This conversion must not be
326/// used anywhere where name lookup could result in an ambiguity.
327///
328/// The OverloadedFunctionDecl conversion is meant as a stop-gap
329/// solution, since it causes the OverloadedFunctionDecl to be
330/// leaked. FIXME: Eventually, there will be a better way to iterate
331/// over the set of overloaded functions returned by name lookup.
332NamedDecl *Sema::LookupResult::getAsSingleDecl(ASTContext &C) const {
333  size_t size = Decls.size();
334  if (size == 0) return 0;
335  if (size == 1) return *begin();
336
337  if (isAmbiguous()) return 0;
338
339  iterator I = begin(), E = end();
340
341  OverloadedFunctionDecl *Ovl
342    = OverloadedFunctionDecl::Create(C, (*I)->getDeclContext(),
343                                        (*I)->getDeclName());
344  for (; I != E; ++I) {
345    NamedDecl *ND = *I;
346    assert(ND->getUnderlyingDecl() == ND
347           && "decls in lookup result should have redirections stripped");
348    assert(ND->isFunctionOrFunctionTemplate());
349    if (isa<FunctionDecl>(ND))
350      Ovl->addOverload(cast<FunctionDecl>(ND));
351    else
352      Ovl->addOverload(cast<FunctionTemplateDecl>(ND));
353    // FIXME: UnresolvedUsingDecls.
354  }
355
356  return Ovl;
357}
358
359void Sema::LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
360  CXXBasePaths::paths_iterator I, E;
361  DeclContext::lookup_iterator DI, DE;
362  for (I = P.begin(), E = P.end(); I != E; ++I)
363    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
364      addDecl(*DI);
365}
366
367void Sema::LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
368  Paths = new CXXBasePaths;
369  Paths->swap(P);
370  addDeclsFromBasePaths(*Paths);
371  resolveKind();
372  setAmbiguous(AmbiguousBaseSubobjects);
373}
374
375void Sema::LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
376  Paths = new CXXBasePaths;
377  Paths->swap(P);
378  addDeclsFromBasePaths(*Paths);
379  resolveKind();
380  setAmbiguous(AmbiguousBaseSubobjectTypes);
381}
382
383void Sema::LookupResult::print(llvm::raw_ostream &Out) {
384  Out << Decls.size() << " result(s)";
385  if (isAmbiguous()) Out << ", ambiguous";
386  if (Paths) Out << ", base paths present";
387
388  for (iterator I = begin(), E = end(); I != E; ++I) {
389    Out << "\n";
390    (*I)->print(Out, 2);
391  }
392}
393
394// Adds all qualifying matches for a name within a decl context to the
395// given lookup result.  Returns true if any matches were found.
396static bool LookupDirect(Sema::LookupResult &R,
397                         const DeclContext *DC,
398                         DeclarationName Name,
399                         Sema::LookupNameKind NameKind,
400                         unsigned IDNS) {
401  bool Found = false;
402
403  DeclContext::lookup_const_iterator I, E;
404  for (llvm::tie(I, E) = DC->lookup(Name); I != E; ++I)
405    if (Sema::isAcceptableLookupResult(*I, NameKind, IDNS))
406      R.addDecl(*I), Found = true;
407
408  return Found;
409}
410
411// Performs C++ unqualified lookup into the given file context.
412static bool
413CppNamespaceLookup(Sema::LookupResult &R, ASTContext &Context, DeclContext *NS,
414                   DeclarationName Name, Sema::LookupNameKind NameKind,
415                   unsigned IDNS, UnqualUsingDirectiveSet &UDirs) {
416
417  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
418
419  // Perform direct name lookup into the LookupCtx.
420  bool Found = LookupDirect(R, NS, Name, NameKind, IDNS);
421
422  // Perform direct name lookup into the namespaces nominated by the
423  // using directives whose common ancestor is this namespace.
424  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
425  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
426
427  for (; UI != UEnd; ++UI)
428    if (LookupDirect(R, UI->getNominatedNamespace(), Name, NameKind, IDNS))
429      Found = true;
430
431  R.resolveKind();
432
433  return Found;
434}
435
436static bool isNamespaceOrTranslationUnitScope(Scope *S) {
437  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
438    return Ctx->isFileContext();
439  return false;
440}
441
442// Find the next outer declaration context corresponding to this scope.
443static DeclContext *findOuterContext(Scope *S) {
444  for (S = S->getParent(); S; S = S->getParent())
445    if (S->getEntity())
446      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
447
448  return 0;
449}
450
451bool
452Sema::CppLookupName(LookupResult &R, Scope *S, DeclarationName Name,
453                    LookupNameKind NameKind, bool RedeclarationOnly) {
454  assert(getLangOptions().CPlusPlus &&
455         "Can perform only C++ lookup");
456  unsigned IDNS
457    = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
458
459  // If we're testing for redeclarations, also look in the friend namespaces.
460  if (RedeclarationOnly) {
461    if (IDNS & Decl::IDNS_Tag) IDNS |= Decl::IDNS_TagFriend;
462    if (IDNS & Decl::IDNS_Ordinary) IDNS |= Decl::IDNS_OrdinaryFriend;
463  }
464
465  Scope *Initial = S;
466  IdentifierResolver::iterator
467    I = IdResolver.begin(Name),
468    IEnd = IdResolver.end();
469
470  // First we lookup local scope.
471  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
472  // ...During unqualified name lookup (3.4.1), the names appear as if
473  // they were declared in the nearest enclosing namespace which contains
474  // both the using-directive and the nominated namespace.
475  // [Note: in this context, "contains" means "contains directly or
476  // indirectly".
477  //
478  // For example:
479  // namespace A { int i; }
480  // void foo() {
481  //   int i;
482  //   {
483  //     using namespace A;
484  //     ++i; // finds local 'i', A::i appears at global scope
485  //   }
486  // }
487  //
488  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
489    // Check whether the IdResolver has anything in this scope.
490    bool Found = false;
491    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
492      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
493        Found = true;
494        R.addDecl(*I);
495      }
496    }
497    if (Found) {
498      R.resolveKind();
499      return true;
500    }
501
502    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
503      DeclContext *OuterCtx = findOuterContext(S);
504      for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
505           Ctx = Ctx->getLookupParent()) {
506        if (Ctx->isFunctionOrMethod())
507          continue;
508
509        // Perform qualified name lookup into this context.
510        // FIXME: In some cases, we know that every name that could be found by
511        // this qualified name lookup will also be on the identifier chain. For
512        // example, inside a class without any base classes, we never need to
513        // perform qualified lookup because all of the members are on top of the
514        // identifier chain.
515        if (LookupQualifiedName(R, Ctx, Name, NameKind, RedeclarationOnly))
516          return true;
517      }
518    }
519  }
520
521  // Stop if we ran out of scopes.
522  // FIXME:  This really, really shouldn't be happening.
523  if (!S) return false;
524
525  // Collect UsingDirectiveDecls in all scopes, and recursively all
526  // nominated namespaces by those using-directives.
527  //
528  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
529  // don't build it for each lookup!
530
531  UnqualUsingDirectiveSet UDirs;
532  UDirs.visitScopeChain(Initial, S);
533  UDirs.done();
534
535  // Lookup namespace scope, and global scope.
536  // Unqualified name lookup in C++ requires looking into scopes
537  // that aren't strictly lexical, and therefore we walk through the
538  // context as well as walking through the scopes.
539
540  for (; S; S = S->getParent()) {
541    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
542    if (Ctx->isTransparentContext())
543      continue;
544
545    assert(Ctx && Ctx->isFileContext() &&
546           "We should have been looking only at file context here already.");
547
548    // Check whether the IdResolver has anything in this scope.
549    bool Found = false;
550    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
551      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
552        // We found something.  Look for anything else in our scope
553        // with this same name and in an acceptable identifier
554        // namespace, so that we can construct an overload set if we
555        // need to.
556        Found = true;
557        R.addDecl(*I);
558      }
559    }
560
561    // Look into context considering using-directives.
562    if (CppNamespaceLookup(R, Context, Ctx, Name, NameKind, IDNS, UDirs))
563      Found = true;
564
565    if (Found) {
566      R.resolveKind();
567      return true;
568    }
569
570    if (RedeclarationOnly && !Ctx->isTransparentContext())
571      return false;
572  }
573
574  return !R.empty();
575}
576
577/// @brief Perform unqualified name lookup starting from a given
578/// scope.
579///
580/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
581/// used to find names within the current scope. For example, 'x' in
582/// @code
583/// int x;
584/// int f() {
585///   return x; // unqualified name look finds 'x' in the global scope
586/// }
587/// @endcode
588///
589/// Different lookup criteria can find different names. For example, a
590/// particular scope can have both a struct and a function of the same
591/// name, and each can be found by certain lookup criteria. For more
592/// information about lookup criteria, see the documentation for the
593/// class LookupCriteria.
594///
595/// @param S        The scope from which unqualified name lookup will
596/// begin. If the lookup criteria permits, name lookup may also search
597/// in the parent scopes.
598///
599/// @param Name     The name of the entity that we are searching for.
600///
601/// @param Loc      If provided, the source location where we're performing
602/// name lookup. At present, this is only used to produce diagnostics when
603/// C library functions (like "malloc") are implicitly declared.
604///
605/// @returns The result of name lookup, which includes zero or more
606/// declarations and possibly additional information used to diagnose
607/// ambiguities.
608bool Sema::LookupName(LookupResult &R, Scope *S, DeclarationName Name,
609                      LookupNameKind NameKind, bool RedeclarationOnly,
610                      bool AllowBuiltinCreation, SourceLocation Loc) {
611  if (!Name) return false;
612
613  if (!getLangOptions().CPlusPlus) {
614    // Unqualified name lookup in C/Objective-C is purely lexical, so
615    // search in the declarations attached to the name.
616    unsigned IDNS = 0;
617    switch (NameKind) {
618    case Sema::LookupOrdinaryName:
619      IDNS = Decl::IDNS_Ordinary;
620      break;
621
622    case Sema::LookupTagName:
623      IDNS = Decl::IDNS_Tag;
624      break;
625
626    case Sema::LookupMemberName:
627      IDNS = Decl::IDNS_Member;
628      break;
629
630    case Sema::LookupOperatorName:
631    case Sema::LookupNestedNameSpecifierName:
632    case Sema::LookupNamespaceName:
633      assert(false && "C does not perform these kinds of name lookup");
634      break;
635
636    case Sema::LookupRedeclarationWithLinkage:
637      // Find the nearest non-transparent declaration scope.
638      while (!(S->getFlags() & Scope::DeclScope) ||
639             (S->getEntity() &&
640              static_cast<DeclContext *>(S->getEntity())
641                ->isTransparentContext()))
642        S = S->getParent();
643      IDNS = Decl::IDNS_Ordinary;
644      break;
645
646    case Sema::LookupObjCProtocolName:
647      IDNS = Decl::IDNS_ObjCProtocol;
648      break;
649
650    case Sema::LookupObjCImplementationName:
651      IDNS = Decl::IDNS_ObjCImplementation;
652      break;
653
654    case Sema::LookupObjCCategoryImplName:
655      IDNS = Decl::IDNS_ObjCCategoryImpl;
656      break;
657    }
658
659    // Scan up the scope chain looking for a decl that matches this
660    // identifier that is in the appropriate namespace.  This search
661    // should not take long, as shadowing of names is uncommon, and
662    // deep shadowing is extremely uncommon.
663    bool LeftStartingScope = false;
664
665    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
666                                   IEnd = IdResolver.end();
667         I != IEnd; ++I)
668      if ((*I)->isInIdentifierNamespace(IDNS)) {
669        if (NameKind == LookupRedeclarationWithLinkage) {
670          // Determine whether this (or a previous) declaration is
671          // out-of-scope.
672          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
673            LeftStartingScope = true;
674
675          // If we found something outside of our starting scope that
676          // does not have linkage, skip it.
677          if (LeftStartingScope && !((*I)->hasLinkage()))
678            continue;
679        }
680
681        R.addDecl(*I);
682
683        if ((*I)->getAttr<OverloadableAttr>()) {
684          // If this declaration has the "overloadable" attribute, we
685          // might have a set of overloaded functions.
686
687          // Figure out what scope the identifier is in.
688          while (!(S->getFlags() & Scope::DeclScope) ||
689                 !S->isDeclScope(DeclPtrTy::make(*I)))
690            S = S->getParent();
691
692          // Find the last declaration in this scope (with the same
693          // name, naturally).
694          IdentifierResolver::iterator LastI = I;
695          for (++LastI; LastI != IEnd; ++LastI) {
696            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
697              break;
698            R.addDecl(*LastI);
699          }
700        }
701
702        R.resolveKind();
703
704        return true;
705      }
706  } else {
707    // Perform C++ unqualified name lookup.
708    if (CppLookupName(R, S, Name, NameKind, RedeclarationOnly))
709      return true;
710  }
711
712  // If we didn't find a use of this identifier, and if the identifier
713  // corresponds to a compiler builtin, create the decl object for the builtin
714  // now, injecting it into translation unit scope, and return it.
715  if (NameKind == LookupOrdinaryName ||
716      NameKind == LookupRedeclarationWithLinkage) {
717    IdentifierInfo *II = Name.getAsIdentifierInfo();
718    if (II && AllowBuiltinCreation) {
719      // If this is a builtin on this (or all) targets, create the decl.
720      if (unsigned BuiltinID = II->getBuiltinID()) {
721        // In C++, we don't have any predefined library functions like
722        // 'malloc'. Instead, we'll just error.
723        if (getLangOptions().CPlusPlus &&
724            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
725          return false;
726
727        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
728                                           S, RedeclarationOnly, Loc);
729        if (D) R.addDecl(D);
730        return (D != NULL);
731      }
732    }
733  }
734  return false;
735}
736
737/// @brief Perform qualified name lookup in the namespaces nominated by
738/// using directives by the given context.
739///
740/// C++98 [namespace.qual]p2:
741///   Given X::m (where X is a user-declared namespace), or given ::m
742///   (where X is the global namespace), let S be the set of all
743///   declarations of m in X and in the transitive closure of all
744///   namespaces nominated by using-directives in X and its used
745///   namespaces, except that using-directives are ignored in any
746///   namespace, including X, directly containing one or more
747///   declarations of m. No namespace is searched more than once in
748///   the lookup of a name. If S is the empty set, the program is
749///   ill-formed. Otherwise, if S has exactly one member, or if the
750///   context of the reference is a using-declaration
751///   (namespace.udecl), S is the required set of declarations of
752///   m. Otherwise if the use of m is not one that allows a unique
753///   declaration to be chosen from S, the program is ill-formed.
754/// C++98 [namespace.qual]p5:
755///   During the lookup of a qualified namespace member name, if the
756///   lookup finds more than one declaration of the member, and if one
757///   declaration introduces a class name or enumeration name and the
758///   other declarations either introduce the same object, the same
759///   enumerator or a set of functions, the non-type name hides the
760///   class or enumeration name if and only if the declarations are
761///   from the same namespace; otherwise (the declarations are from
762///   different namespaces), the program is ill-formed.
763static bool LookupQualifiedNameInUsingDirectives(Sema::LookupResult &R,
764                                                 DeclContext *StartDC,
765                                                 DeclarationName Name,
766                                                 Sema::LookupNameKind NameKind,
767                                                 unsigned IDNS) {
768  assert(StartDC->isFileContext() && "start context is not a file context");
769
770  DeclContext::udir_iterator I = StartDC->using_directives_begin();
771  DeclContext::udir_iterator E = StartDC->using_directives_end();
772
773  if (I == E) return false;
774
775  // We have at least added all these contexts to the queue.
776  llvm::DenseSet<DeclContext*> Visited;
777  Visited.insert(StartDC);
778
779  // We have not yet looked into these namespaces, much less added
780  // their "using-children" to the queue.
781  llvm::SmallVector<NamespaceDecl*, 8> Queue;
782
783  // We have already looked into the initial namespace; seed the queue
784  // with its using-children.
785  for (; I != E; ++I) {
786    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
787    if (Visited.insert(ND).second)
788      Queue.push_back(ND);
789  }
790
791  // The easiest way to implement the restriction in [namespace.qual]p5
792  // is to check whether any of the individual results found a tag
793  // and, if so, to declare an ambiguity if the final result is not
794  // a tag.
795  bool FoundTag = false;
796  bool FoundNonTag = false;
797
798  Sema::LookupResult LocalR;
799
800  bool Found = false;
801  while (!Queue.empty()) {
802    NamespaceDecl *ND = Queue.back();
803    Queue.pop_back();
804
805    // We go through some convolutions here to avoid copying results
806    // between LookupResults.
807    bool UseLocal = !R.empty();
808    Sema::LookupResult &DirectR = UseLocal ? LocalR : R;
809    bool FoundDirect = LookupDirect(DirectR, ND, Name, NameKind, IDNS);
810
811    if (FoundDirect) {
812      // First do any local hiding.
813      DirectR.resolveKind();
814
815      // If the local result is a tag, remember that.
816      if (DirectR.isSingleTagDecl())
817        FoundTag = true;
818      else
819        FoundNonTag = true;
820
821      // Append the local results to the total results if necessary.
822      if (UseLocal) {
823        R.addAllDecls(LocalR);
824        LocalR.clear();
825      }
826    }
827
828    // If we find names in this namespace, ignore its using directives.
829    if (FoundDirect) {
830      Found = true;
831      continue;
832    }
833
834    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
835      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
836      if (Visited.insert(Nom).second)
837        Queue.push_back(Nom);
838    }
839  }
840
841  if (Found) {
842    if (FoundTag && FoundNonTag)
843      R.setAmbiguousQualifiedTagHiding();
844    else
845      R.resolveKind();
846  }
847
848  return Found;
849}
850
851/// @brief Perform qualified name lookup into a given context.
852///
853/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
854/// names when the context of those names is explicit specified, e.g.,
855/// "std::vector" or "x->member".
856///
857/// Different lookup criteria can find different names. For example, a
858/// particular scope can have both a struct and a function of the same
859/// name, and each can be found by certain lookup criteria. For more
860/// information about lookup criteria, see the documentation for the
861/// class LookupCriteria.
862///
863/// @param LookupCtx The context in which qualified name lookup will
864/// search. If the lookup criteria permits, name lookup may also search
865/// in the parent contexts or (for C++ classes) base classes.
866///
867/// @param Name     The name of the entity that we are searching for.
868///
869/// @param Criteria The criteria that this routine will use to
870/// determine which names are visible and which names will be
871/// found. Note that name lookup will find a name that is visible by
872/// the given criteria, but the entity itself may not be semantically
873/// correct or even the kind of entity expected based on the
874/// lookup. For example, searching for a nested-name-specifier name
875/// might result in an EnumDecl, which is visible but is not permitted
876/// as a nested-name-specifier in C++03.
877///
878/// @returns The result of name lookup, which includes zero or more
879/// declarations and possibly additional information used to diagnose
880/// ambiguities.
881bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
882                               DeclarationName Name, LookupNameKind NameKind,
883                               bool RedeclarationOnly) {
884  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
885
886  if (!Name)
887    return false;
888
889  // If we're performing qualified name lookup (e.g., lookup into a
890  // struct), find fields as part of ordinary name lookup.
891  unsigned IDNS
892    = getIdentifierNamespacesFromLookupNameKind(NameKind,
893                                                getLangOptions().CPlusPlus);
894  if (NameKind == LookupOrdinaryName)
895    IDNS |= Decl::IDNS_Member;
896
897  // Make sure that the declaration context is complete.
898  assert((!isa<TagDecl>(LookupCtx) ||
899          LookupCtx->isDependentContext() ||
900          cast<TagDecl>(LookupCtx)->isDefinition() ||
901          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
902            ->isBeingDefined()) &&
903         "Declaration context must already be complete!");
904
905  // Perform qualified name lookup into the LookupCtx.
906  if (LookupDirect(R, LookupCtx, Name, NameKind, IDNS)) {
907    R.resolveKind();
908    return true;
909  }
910
911  // Don't descend into implied contexts for redeclarations.
912  // C++98 [namespace.qual]p6:
913  //   In a declaration for a namespace member in which the
914  //   declarator-id is a qualified-id, given that the qualified-id
915  //   for the namespace member has the form
916  //     nested-name-specifier unqualified-id
917  //   the unqualified-id shall name a member of the namespace
918  //   designated by the nested-name-specifier.
919  // See also [class.mfct]p5 and [class.static.data]p2.
920  if (RedeclarationOnly)
921    return false;
922
923  // If this is a namespace, look it up in
924  if (LookupCtx->isFileContext())
925    return LookupQualifiedNameInUsingDirectives(R, LookupCtx, Name, NameKind,
926                                                IDNS);
927
928  // If this isn't a C++ class, we aren't allowed to look into base
929  // classes, we're done.
930  if (!isa<CXXRecordDecl>(LookupCtx))
931    return false;
932
933  // Perform lookup into our base classes.
934  CXXRecordDecl *LookupRec = cast<CXXRecordDecl>(LookupCtx);
935  CXXBasePaths Paths;
936  Paths.setOrigin(LookupRec);
937
938  // Look for this member in our base classes
939  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
940  switch (NameKind) {
941    case LookupOrdinaryName:
942    case LookupMemberName:
943    case LookupRedeclarationWithLinkage:
944      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
945      break;
946
947    case LookupTagName:
948      BaseCallback = &CXXRecordDecl::FindTagMember;
949      break;
950
951    case LookupOperatorName:
952    case LookupNamespaceName:
953    case LookupObjCProtocolName:
954    case LookupObjCImplementationName:
955    case LookupObjCCategoryImplName:
956      // These lookups will never find a member in a C++ class (or base class).
957      return false;
958
959    case LookupNestedNameSpecifierName:
960      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
961      break;
962  }
963
964  if (!LookupRec->lookupInBases(BaseCallback, Name.getAsOpaquePtr(), Paths))
965    return false;
966
967  // C++ [class.member.lookup]p2:
968  //   [...] If the resulting set of declarations are not all from
969  //   sub-objects of the same type, or the set has a nonstatic member
970  //   and includes members from distinct sub-objects, there is an
971  //   ambiguity and the program is ill-formed. Otherwise that set is
972  //   the result of the lookup.
973  // FIXME: support using declarations!
974  QualType SubobjectType;
975  int SubobjectNumber = 0;
976  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
977       Path != PathEnd; ++Path) {
978    const CXXBasePathElement &PathElement = Path->back();
979
980    // Determine whether we're looking at a distinct sub-object or not.
981    if (SubobjectType.isNull()) {
982      // This is the first subobject we've looked at. Record its type.
983      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
984      SubobjectNumber = PathElement.SubobjectNumber;
985    } else if (SubobjectType
986                 != Context.getCanonicalType(PathElement.Base->getType())) {
987      // We found members of the given name in two subobjects of
988      // different types. This lookup is ambiguous.
989      R.setAmbiguousBaseSubobjectTypes(Paths);
990      return true;
991    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
992      // We have a different subobject of the same type.
993
994      // C++ [class.member.lookup]p5:
995      //   A static member, a nested type or an enumerator defined in
996      //   a base class T can unambiguously be found even if an object
997      //   has more than one base class subobject of type T.
998      Decl *FirstDecl = *Path->Decls.first;
999      if (isa<VarDecl>(FirstDecl) ||
1000          isa<TypeDecl>(FirstDecl) ||
1001          isa<EnumConstantDecl>(FirstDecl))
1002        continue;
1003
1004      if (isa<CXXMethodDecl>(FirstDecl)) {
1005        // Determine whether all of the methods are static.
1006        bool AllMethodsAreStatic = true;
1007        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1008             Func != Path->Decls.second; ++Func) {
1009          if (!isa<CXXMethodDecl>(*Func)) {
1010            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1011            break;
1012          }
1013
1014          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1015            AllMethodsAreStatic = false;
1016            break;
1017          }
1018        }
1019
1020        if (AllMethodsAreStatic)
1021          continue;
1022      }
1023
1024      // We have found a nonstatic member name in multiple, distinct
1025      // subobjects. Name lookup is ambiguous.
1026      R.setAmbiguousBaseSubobjects(Paths);
1027      return true;
1028    }
1029  }
1030
1031  // Lookup in a base class succeeded; return these results.
1032
1033  DeclContext::lookup_iterator I, E;
1034  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I)
1035    R.addDecl(*I);
1036  R.resolveKind();
1037  return true;
1038}
1039
1040/// @brief Performs name lookup for a name that was parsed in the
1041/// source code, and may contain a C++ scope specifier.
1042///
1043/// This routine is a convenience routine meant to be called from
1044/// contexts that receive a name and an optional C++ scope specifier
1045/// (e.g., "N::M::x"). It will then perform either qualified or
1046/// unqualified name lookup (with LookupQualifiedName or LookupName,
1047/// respectively) on the given name and return those results.
1048///
1049/// @param S        The scope from which unqualified name lookup will
1050/// begin.
1051///
1052/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1053///
1054/// @param Name     The name of the entity that name lookup will
1055/// search for.
1056///
1057/// @param Loc      If provided, the source location where we're performing
1058/// name lookup. At present, this is only used to produce diagnostics when
1059/// C library functions (like "malloc") are implicitly declared.
1060///
1061/// @param EnteringContext Indicates whether we are going to enter the
1062/// context of the scope-specifier SS (if present).
1063///
1064/// @returns True if any decls were found (but possibly ambiguous)
1065bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
1066                            DeclarationName Name, LookupNameKind NameKind,
1067                            bool RedeclarationOnly, bool AllowBuiltinCreation,
1068                            SourceLocation Loc,
1069                            bool EnteringContext) {
1070  if (SS && SS->isInvalid()) {
1071    // When the scope specifier is invalid, don't even look for
1072    // anything.
1073    return false;
1074  }
1075
1076  if (SS && SS->isSet()) {
1077    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1078      // We have resolved the scope specifier to a particular declaration
1079      // contex, and will perform name lookup in that context.
1080      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
1081        return false;
1082
1083      return LookupQualifiedName(R, DC, Name, NameKind, RedeclarationOnly);
1084    }
1085
1086    // We could not resolve the scope specified to a specific declaration
1087    // context, which means that SS refers to an unknown specialization.
1088    // Name lookup can't find anything in this case.
1089    return false;
1090  }
1091
1092  // Perform unqualified name lookup starting in the given scope.
1093  return LookupName(R, S, Name, NameKind, RedeclarationOnly,
1094                    AllowBuiltinCreation, Loc);
1095}
1096
1097
1098/// @brief Produce a diagnostic describing the ambiguity that resulted
1099/// from name lookup.
1100///
1101/// @param Result       The ambiguous name lookup result.
1102///
1103/// @param Name         The name of the entity that name lookup was
1104/// searching for.
1105///
1106/// @param NameLoc      The location of the name within the source code.
1107///
1108/// @param LookupRange  A source range that provides more
1109/// source-location information concerning the lookup itself. For
1110/// example, this range might highlight a nested-name-specifier that
1111/// precedes the name.
1112///
1113/// @returns true
1114bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
1115                                   SourceLocation NameLoc,
1116                                   SourceRange LookupRange) {
1117  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1118
1119  switch (Result.getAmbiguityKind()) {
1120  case LookupResult::AmbiguousBaseSubobjects: {
1121    CXXBasePaths *Paths = Result.getBasePaths();
1122    QualType SubobjectType = Paths->front().back().Base->getType();
1123    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1124      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1125      << LookupRange;
1126
1127    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1128    while (isa<CXXMethodDecl>(*Found) &&
1129           cast<CXXMethodDecl>(*Found)->isStatic())
1130      ++Found;
1131
1132    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1133
1134    return true;
1135  }
1136
1137  case LookupResult::AmbiguousBaseSubobjectTypes: {
1138    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1139      << Name << LookupRange;
1140
1141    CXXBasePaths *Paths = Result.getBasePaths();
1142    std::set<Decl *> DeclsPrinted;
1143    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1144                                      PathEnd = Paths->end();
1145         Path != PathEnd; ++Path) {
1146      Decl *D = *Path->Decls.first;
1147      if (DeclsPrinted.insert(D).second)
1148        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1149    }
1150
1151    return true;
1152  }
1153
1154  case LookupResult::AmbiguousTagHiding: {
1155    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1156
1157    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1158
1159    LookupResult::iterator DI, DE = Result.end();
1160    for (DI = Result.begin(); DI != DE; ++DI)
1161      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1162        TagDecls.insert(TD);
1163        Diag(TD->getLocation(), diag::note_hidden_tag);
1164      }
1165
1166    for (DI = Result.begin(); DI != DE; ++DI)
1167      if (!isa<TagDecl>(*DI))
1168        Diag((*DI)->getLocation(), diag::note_hiding_object);
1169
1170    // For recovery purposes, go ahead and implement the hiding.
1171    Result.hideDecls(TagDecls);
1172
1173    return true;
1174  }
1175
1176  case LookupResult::AmbiguousReference: {
1177    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1178
1179    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1180    for (; DI != DE; ++DI)
1181      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1182
1183    return true;
1184  }
1185  }
1186
1187  llvm::llvm_unreachable("unknown ambiguity kind");
1188  return true;
1189}
1190
1191static void
1192addAssociatedClassesAndNamespaces(QualType T,
1193                                  ASTContext &Context,
1194                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1195                                  Sema::AssociatedClassSet &AssociatedClasses);
1196
1197static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1198                             DeclContext *Ctx) {
1199  if (Ctx->isFileContext())
1200    Namespaces.insert(Ctx);
1201}
1202
1203// \brief Add the associated classes and namespaces for argument-dependent
1204// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1205static void
1206addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1207                                  ASTContext &Context,
1208                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1209                                  Sema::AssociatedClassSet &AssociatedClasses) {
1210  // C++ [basic.lookup.koenig]p2, last bullet:
1211  //   -- [...] ;
1212  switch (Arg.getKind()) {
1213    case TemplateArgument::Null:
1214      break;
1215
1216    case TemplateArgument::Type:
1217      // [...] the namespaces and classes associated with the types of the
1218      // template arguments provided for template type parameters (excluding
1219      // template template parameters)
1220      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1221                                        AssociatedNamespaces,
1222                                        AssociatedClasses);
1223      break;
1224
1225    case TemplateArgument::Declaration:
1226      // [...] the namespaces in which any template template arguments are
1227      // defined; and the classes in which any member templates used as
1228      // template template arguments are defined.
1229      if (ClassTemplateDecl *ClassTemplate
1230            = dyn_cast<ClassTemplateDecl>(Arg.getAsDecl())) {
1231        DeclContext *Ctx = ClassTemplate->getDeclContext();
1232        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1233          AssociatedClasses.insert(EnclosingClass);
1234        // Add the associated namespace for this class.
1235        while (Ctx->isRecord())
1236          Ctx = Ctx->getParent();
1237        CollectNamespace(AssociatedNamespaces, Ctx);
1238      }
1239      break;
1240
1241    case TemplateArgument::Integral:
1242    case TemplateArgument::Expression:
1243      // [Note: non-type template arguments do not contribute to the set of
1244      //  associated namespaces. ]
1245      break;
1246
1247    case TemplateArgument::Pack:
1248      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1249                                        PEnd = Arg.pack_end();
1250           P != PEnd; ++P)
1251        addAssociatedClassesAndNamespaces(*P, Context,
1252                                          AssociatedNamespaces,
1253                                          AssociatedClasses);
1254      break;
1255  }
1256}
1257
1258// \brief Add the associated classes and namespaces for
1259// argument-dependent lookup with an argument of class type
1260// (C++ [basic.lookup.koenig]p2).
1261static void
1262addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1263                                  ASTContext &Context,
1264                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1265                            Sema::AssociatedClassSet &AssociatedClasses) {
1266  // C++ [basic.lookup.koenig]p2:
1267  //   [...]
1268  //     -- If T is a class type (including unions), its associated
1269  //        classes are: the class itself; the class of which it is a
1270  //        member, if any; and its direct and indirect base
1271  //        classes. Its associated namespaces are the namespaces in
1272  //        which its associated classes are defined.
1273
1274  // Add the class of which it is a member, if any.
1275  DeclContext *Ctx = Class->getDeclContext();
1276  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1277    AssociatedClasses.insert(EnclosingClass);
1278  // Add the associated namespace for this class.
1279  while (Ctx->isRecord())
1280    Ctx = Ctx->getParent();
1281  CollectNamespace(AssociatedNamespaces, Ctx);
1282
1283  // Add the class itself. If we've already seen this class, we don't
1284  // need to visit base classes.
1285  if (!AssociatedClasses.insert(Class))
1286    return;
1287
1288  // -- If T is a template-id, its associated namespaces and classes are
1289  //    the namespace in which the template is defined; for member
1290  //    templates, the member template’s class; the namespaces and classes
1291  //    associated with the types of the template arguments provided for
1292  //    template type parameters (excluding template template parameters); the
1293  //    namespaces in which any template template arguments are defined; and
1294  //    the classes in which any member templates used as template template
1295  //    arguments are defined. [Note: non-type template arguments do not
1296  //    contribute to the set of associated namespaces. ]
1297  if (ClassTemplateSpecializationDecl *Spec
1298        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1299    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1300    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1301      AssociatedClasses.insert(EnclosingClass);
1302    // Add the associated namespace for this class.
1303    while (Ctx->isRecord())
1304      Ctx = Ctx->getParent();
1305    CollectNamespace(AssociatedNamespaces, Ctx);
1306
1307    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1308    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1309      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1310                                        AssociatedNamespaces,
1311                                        AssociatedClasses);
1312  }
1313
1314  // Add direct and indirect base classes along with their associated
1315  // namespaces.
1316  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1317  Bases.push_back(Class);
1318  while (!Bases.empty()) {
1319    // Pop this class off the stack.
1320    Class = Bases.back();
1321    Bases.pop_back();
1322
1323    // Visit the base classes.
1324    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1325                                         BaseEnd = Class->bases_end();
1326         Base != BaseEnd; ++Base) {
1327      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1328      // In dependent contexts, we do ADL twice, and the first time around,
1329      // the base type might be a dependent TemplateSpecializationType, or a
1330      // TemplateTypeParmType. If that happens, simply ignore it.
1331      // FIXME: If we want to support export, we probably need to add the
1332      // namespace of the template in a TemplateSpecializationType, or even
1333      // the classes and namespaces of known non-dependent arguments.
1334      if (!BaseType)
1335        continue;
1336      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1337      if (AssociatedClasses.insert(BaseDecl)) {
1338        // Find the associated namespace for this base class.
1339        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1340        while (BaseCtx->isRecord())
1341          BaseCtx = BaseCtx->getParent();
1342        CollectNamespace(AssociatedNamespaces, BaseCtx);
1343
1344        // Make sure we visit the bases of this base class.
1345        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1346          Bases.push_back(BaseDecl);
1347      }
1348    }
1349  }
1350}
1351
1352// \brief Add the associated classes and namespaces for
1353// argument-dependent lookup with an argument of type T
1354// (C++ [basic.lookup.koenig]p2).
1355static void
1356addAssociatedClassesAndNamespaces(QualType T,
1357                                  ASTContext &Context,
1358                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1359                                  Sema::AssociatedClassSet &AssociatedClasses) {
1360  // C++ [basic.lookup.koenig]p2:
1361  //
1362  //   For each argument type T in the function call, there is a set
1363  //   of zero or more associated namespaces and a set of zero or more
1364  //   associated classes to be considered. The sets of namespaces and
1365  //   classes is determined entirely by the types of the function
1366  //   arguments (and the namespace of any template template
1367  //   argument). Typedef names and using-declarations used to specify
1368  //   the types do not contribute to this set. The sets of namespaces
1369  //   and classes are determined in the following way:
1370  T = Context.getCanonicalType(T).getUnqualifiedType();
1371
1372  //    -- If T is a pointer to U or an array of U, its associated
1373  //       namespaces and classes are those associated with U.
1374  //
1375  // We handle this by unwrapping pointer and array types immediately,
1376  // to avoid unnecessary recursion.
1377  while (true) {
1378    if (const PointerType *Ptr = T->getAs<PointerType>())
1379      T = Ptr->getPointeeType();
1380    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1381      T = Ptr->getElementType();
1382    else
1383      break;
1384  }
1385
1386  //     -- If T is a fundamental type, its associated sets of
1387  //        namespaces and classes are both empty.
1388  if (T->getAs<BuiltinType>())
1389    return;
1390
1391  //     -- If T is a class type (including unions), its associated
1392  //        classes are: the class itself; the class of which it is a
1393  //        member, if any; and its direct and indirect base
1394  //        classes. Its associated namespaces are the namespaces in
1395  //        which its associated classes are defined.
1396  if (const RecordType *ClassType = T->getAs<RecordType>())
1397    if (CXXRecordDecl *ClassDecl
1398        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1399      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1400                                        AssociatedNamespaces,
1401                                        AssociatedClasses);
1402      return;
1403    }
1404
1405  //     -- If T is an enumeration type, its associated namespace is
1406  //        the namespace in which it is defined. If it is class
1407  //        member, its associated class is the member’s class; else
1408  //        it has no associated class.
1409  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1410    EnumDecl *Enum = EnumT->getDecl();
1411
1412    DeclContext *Ctx = Enum->getDeclContext();
1413    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1414      AssociatedClasses.insert(EnclosingClass);
1415
1416    // Add the associated namespace for this class.
1417    while (Ctx->isRecord())
1418      Ctx = Ctx->getParent();
1419    CollectNamespace(AssociatedNamespaces, Ctx);
1420
1421    return;
1422  }
1423
1424  //     -- If T is a function type, its associated namespaces and
1425  //        classes are those associated with the function parameter
1426  //        types and those associated with the return type.
1427  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1428    // Return type
1429    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1430                                      Context,
1431                                      AssociatedNamespaces, AssociatedClasses);
1432
1433    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1434    if (!Proto)
1435      return;
1436
1437    // Argument types
1438    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1439                                           ArgEnd = Proto->arg_type_end();
1440         Arg != ArgEnd; ++Arg)
1441      addAssociatedClassesAndNamespaces(*Arg, Context,
1442                                        AssociatedNamespaces, AssociatedClasses);
1443
1444    return;
1445  }
1446
1447  //     -- If T is a pointer to a member function of a class X, its
1448  //        associated namespaces and classes are those associated
1449  //        with the function parameter types and return type,
1450  //        together with those associated with X.
1451  //
1452  //     -- If T is a pointer to a data member of class X, its
1453  //        associated namespaces and classes are those associated
1454  //        with the member type together with those associated with
1455  //        X.
1456  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1457    // Handle the type that the pointer to member points to.
1458    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1459                                      Context,
1460                                      AssociatedNamespaces,
1461                                      AssociatedClasses);
1462
1463    // Handle the class type into which this points.
1464    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1465      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1466                                        Context,
1467                                        AssociatedNamespaces,
1468                                        AssociatedClasses);
1469
1470    return;
1471  }
1472
1473  // FIXME: What about block pointers?
1474  // FIXME: What about Objective-C message sends?
1475}
1476
1477/// \brief Find the associated classes and namespaces for
1478/// argument-dependent lookup for a call with the given set of
1479/// arguments.
1480///
1481/// This routine computes the sets of associated classes and associated
1482/// namespaces searched by argument-dependent lookup
1483/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1484void
1485Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1486                                 AssociatedNamespaceSet &AssociatedNamespaces,
1487                                 AssociatedClassSet &AssociatedClasses) {
1488  AssociatedNamespaces.clear();
1489  AssociatedClasses.clear();
1490
1491  // C++ [basic.lookup.koenig]p2:
1492  //   For each argument type T in the function call, there is a set
1493  //   of zero or more associated namespaces and a set of zero or more
1494  //   associated classes to be considered. The sets of namespaces and
1495  //   classes is determined entirely by the types of the function
1496  //   arguments (and the namespace of any template template
1497  //   argument).
1498  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1499    Expr *Arg = Args[ArgIdx];
1500
1501    if (Arg->getType() != Context.OverloadTy) {
1502      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1503                                        AssociatedNamespaces,
1504                                        AssociatedClasses);
1505      continue;
1506    }
1507
1508    // [...] In addition, if the argument is the name or address of a
1509    // set of overloaded functions and/or function templates, its
1510    // associated classes and namespaces are the union of those
1511    // associated with each of the members of the set: the namespace
1512    // in which the function or function template is defined and the
1513    // classes and namespaces associated with its (non-dependent)
1514    // parameter types and return type.
1515    DeclRefExpr *DRE = 0;
1516    TemplateIdRefExpr *TIRE = 0;
1517    Arg = Arg->IgnoreParens();
1518    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) {
1519      if (unaryOp->getOpcode() == UnaryOperator::AddrOf) {
1520        DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr());
1521        TIRE = dyn_cast<TemplateIdRefExpr>(unaryOp->getSubExpr());
1522      }
1523    } else {
1524      DRE = dyn_cast<DeclRefExpr>(Arg);
1525      TIRE = dyn_cast<TemplateIdRefExpr>(Arg);
1526    }
1527
1528    OverloadedFunctionDecl *Ovl = 0;
1529    if (DRE)
1530      Ovl = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl());
1531    else if (TIRE)
1532      Ovl = TIRE->getTemplateName().getAsOverloadedFunctionDecl();
1533    if (!Ovl)
1534      continue;
1535
1536    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
1537                                                FuncEnd = Ovl->function_end();
1538         Func != FuncEnd; ++Func) {
1539      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(*Func);
1540      if (!FDecl)
1541        FDecl = cast<FunctionTemplateDecl>(*Func)->getTemplatedDecl();
1542
1543      // Add the namespace in which this function was defined. Note
1544      // that, if this is a member function, we do *not* consider the
1545      // enclosing namespace of its class.
1546      DeclContext *Ctx = FDecl->getDeclContext();
1547      CollectNamespace(AssociatedNamespaces, Ctx);
1548
1549      // Add the classes and namespaces associated with the parameter
1550      // types and return type of this function.
1551      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1552                                        AssociatedNamespaces,
1553                                        AssociatedClasses);
1554    }
1555  }
1556}
1557
1558/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1559/// an acceptable non-member overloaded operator for a call whose
1560/// arguments have types T1 (and, if non-empty, T2). This routine
1561/// implements the check in C++ [over.match.oper]p3b2 concerning
1562/// enumeration types.
1563static bool
1564IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1565                                       QualType T1, QualType T2,
1566                                       ASTContext &Context) {
1567  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1568    return true;
1569
1570  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1571    return true;
1572
1573  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1574  if (Proto->getNumArgs() < 1)
1575    return false;
1576
1577  if (T1->isEnumeralType()) {
1578    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1579    if (Context.getCanonicalType(T1).getUnqualifiedType()
1580          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1581      return true;
1582  }
1583
1584  if (Proto->getNumArgs() < 2)
1585    return false;
1586
1587  if (!T2.isNull() && T2->isEnumeralType()) {
1588    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1589    if (Context.getCanonicalType(T2).getUnqualifiedType()
1590          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1591      return true;
1592  }
1593
1594  return false;
1595}
1596
1597/// \brief Find the protocol with the given name, if any.
1598ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1599  Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
1600  return cast_or_null<ObjCProtocolDecl>(D);
1601}
1602
1603/// \brief Find the Objective-C category implementation with the given
1604/// name, if any.
1605ObjCCategoryImplDecl *Sema::LookupObjCCategoryImpl(IdentifierInfo *II) {
1606  Decl *D = LookupSingleName(TUScope, II, LookupObjCCategoryImplName);
1607  return cast_or_null<ObjCCategoryImplDecl>(D);
1608}
1609
1610void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1611                                        QualType T1, QualType T2,
1612                                        FunctionSet &Functions) {
1613  // C++ [over.match.oper]p3:
1614  //     -- The set of non-member candidates is the result of the
1615  //        unqualified lookup of operator@ in the context of the
1616  //        expression according to the usual rules for name lookup in
1617  //        unqualified function calls (3.4.2) except that all member
1618  //        functions are ignored. However, if no operand has a class
1619  //        type, only those non-member functions in the lookup set
1620  //        that have a first parameter of type T1 or "reference to
1621  //        (possibly cv-qualified) T1", when T1 is an enumeration
1622  //        type, or (if there is a right operand) a second parameter
1623  //        of type T2 or "reference to (possibly cv-qualified) T2",
1624  //        when T2 is an enumeration type, are candidate functions.
1625  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1626  LookupResult Operators;
1627  LookupName(Operators, S, OpName, LookupOperatorName);
1628
1629  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1630
1631  if (Operators.empty())
1632    return;
1633
1634  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1635       Op != OpEnd; ++Op) {
1636    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1637      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1638        Functions.insert(FD); // FIXME: canonical FD
1639    } else if (FunctionTemplateDecl *FunTmpl
1640                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1641      // FIXME: friend operators?
1642      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1643      // later?
1644      if (!FunTmpl->getDeclContext()->isRecord())
1645        Functions.insert(FunTmpl);
1646    }
1647  }
1648}
1649
1650static void CollectFunctionDecl(Sema::FunctionSet &Functions,
1651                                Decl *D) {
1652  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
1653    Functions.insert(Func);
1654  else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
1655    Functions.insert(FunTmpl);
1656}
1657
1658void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1659                                   Expr **Args, unsigned NumArgs,
1660                                   FunctionSet &Functions) {
1661  // Find all of the associated namespaces and classes based on the
1662  // arguments we have.
1663  AssociatedNamespaceSet AssociatedNamespaces;
1664  AssociatedClassSet AssociatedClasses;
1665  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1666                                     AssociatedNamespaces,
1667                                     AssociatedClasses);
1668
1669  QualType T1, T2;
1670  if (Operator) {
1671    T1 = Args[0]->getType();
1672    if (NumArgs >= 2)
1673      T2 = Args[1]->getType();
1674  }
1675
1676  // C++ [basic.lookup.argdep]p3:
1677  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1678  //   and let Y be the lookup set produced by argument dependent
1679  //   lookup (defined as follows). If X contains [...] then Y is
1680  //   empty. Otherwise Y is the set of declarations found in the
1681  //   namespaces associated with the argument types as described
1682  //   below. The set of declarations found by the lookup of the name
1683  //   is the union of X and Y.
1684  //
1685  // Here, we compute Y and add its members to the overloaded
1686  // candidate set.
1687  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1688                                     NSEnd = AssociatedNamespaces.end();
1689       NS != NSEnd; ++NS) {
1690    //   When considering an associated namespace, the lookup is the
1691    //   same as the lookup performed when the associated namespace is
1692    //   used as a qualifier (3.4.3.2) except that:
1693    //
1694    //     -- Any using-directives in the associated namespace are
1695    //        ignored.
1696    //
1697    //     -- Any namespace-scope friend functions declared in
1698    //        associated classes are visible within their respective
1699    //        namespaces even if they are not visible during an ordinary
1700    //        lookup (11.4).
1701    DeclContext::lookup_iterator I, E;
1702    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1703      Decl *D = *I;
1704      // If the only declaration here is an ordinary friend, consider
1705      // it only if it was declared in an associated classes.
1706      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1707        DeclContext *LexDC = D->getLexicalDeclContext();
1708        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1709          continue;
1710      }
1711
1712      FunctionDecl *Fn;
1713      if (!Operator || !(Fn = dyn_cast<FunctionDecl>(D)) ||
1714          IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context))
1715        CollectFunctionDecl(Functions, D);
1716    }
1717  }
1718}
1719