SemaLookup.cpp revision b05df31ad4fc4f7b5fcb48fe09a6312f89085519
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/CXXInheritance.h"
17#include "clang/AST/Decl.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/Builtins.h"
25#include "clang/Basic/LangOptions.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/Support/ErrorHandling.h"
29#include <set>
30#include <vector>
31#include <iterator>
32#include <utility>
33#include <algorithm>
34
35using namespace clang;
36
37typedef llvm::SmallVector<UsingDirectiveDecl*, 4> UsingDirectivesTy;
38typedef llvm::DenseSet<NamespaceDecl*> NamespaceSet;
39
40/// UsingDirAncestorCompare - Implements strict weak ordering of
41/// UsingDirectives. It orders them by address of its common ancestor.
42struct UsingDirAncestorCompare {
43
44  /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
45  bool operator () (UsingDirectiveDecl *U, const DeclContext *Ctx) const {
46    return U->getCommonAncestor() < Ctx;
47  }
48
49  /// @brief Compares UsingDirectiveDecl common ancestor with DeclContext.
50  bool operator () (const DeclContext *Ctx, UsingDirectiveDecl *U) const {
51    return Ctx < U->getCommonAncestor();
52  }
53
54  /// @brief Compares UsingDirectiveDecl common ancestors.
55  bool operator () (UsingDirectiveDecl *U1, UsingDirectiveDecl *U2) const {
56    return U1->getCommonAncestor() < U2->getCommonAncestor();
57  }
58};
59
60/// AddNamespaceUsingDirectives - Adds all UsingDirectiveDecl's to heap UDirs
61/// (ordered by common ancestors), found in namespace NS,
62/// including all found (recursively) in their nominated namespaces.
63void AddNamespaceUsingDirectives(ASTContext &Context,
64                                 DeclContext *NS,
65                                 UsingDirectivesTy &UDirs,
66                                 NamespaceSet &Visited) {
67  DeclContext::udir_iterator I, End;
68
69  for (llvm::tie(I, End) = NS->getUsingDirectives(); I !=End; ++I) {
70    UDirs.push_back(*I);
71    std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
72    NamespaceDecl *Nominated = (*I)->getNominatedNamespace();
73    if (Visited.insert(Nominated).second)
74      AddNamespaceUsingDirectives(Context, Nominated, UDirs, /*ref*/ Visited);
75  }
76}
77
78/// AddScopeUsingDirectives - Adds all UsingDirectiveDecl's found in Scope S,
79/// including all found in the namespaces they nominate.
80static void AddScopeUsingDirectives(ASTContext &Context, Scope *S,
81                                    UsingDirectivesTy &UDirs) {
82  NamespaceSet VisitedNS;
83
84  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
85
86    if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(Ctx))
87      VisitedNS.insert(NS);
88
89    AddNamespaceUsingDirectives(Context, Ctx, UDirs, /*ref*/ VisitedNS);
90
91  } else {
92    Scope::udir_iterator I = S->using_directives_begin(),
93                         End = S->using_directives_end();
94
95    for (; I != End; ++I) {
96      UsingDirectiveDecl *UD = I->getAs<UsingDirectiveDecl>();
97      UDirs.push_back(UD);
98      std::push_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
99
100      NamespaceDecl *Nominated = UD->getNominatedNamespace();
101      if (!VisitedNS.count(Nominated)) {
102        VisitedNS.insert(Nominated);
103        AddNamespaceUsingDirectives(Context, Nominated, UDirs,
104                                    /*ref*/ VisitedNS);
105      }
106    }
107  }
108}
109
110// Retrieve the set of identifier namespaces that correspond to a
111// specific kind of name lookup.
112inline unsigned
113getIdentifierNamespacesFromLookupNameKind(Sema::LookupNameKind NameKind,
114                                          bool CPlusPlus) {
115  unsigned IDNS = 0;
116  switch (NameKind) {
117  case Sema::LookupOrdinaryName:
118  case Sema::LookupOperatorName:
119  case Sema::LookupRedeclarationWithLinkage:
120    IDNS = Decl::IDNS_Ordinary;
121    if (CPlusPlus)
122      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
123    break;
124
125  case Sema::LookupTagName:
126    IDNS = Decl::IDNS_Tag;
127    break;
128
129  case Sema::LookupMemberName:
130    IDNS = Decl::IDNS_Member;
131    if (CPlusPlus)
132      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
133    break;
134
135  case Sema::LookupNestedNameSpecifierName:
136  case Sema::LookupNamespaceName:
137    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
138    break;
139
140  case Sema::LookupObjCProtocolName:
141    IDNS = Decl::IDNS_ObjCProtocol;
142    break;
143
144  case Sema::LookupObjCImplementationName:
145    IDNS = Decl::IDNS_ObjCImplementation;
146    break;
147
148  case Sema::LookupObjCCategoryImplName:
149    IDNS = Decl::IDNS_ObjCCategoryImpl;
150    break;
151  }
152  return IDNS;
153}
154
155// Necessary because CXXBasePaths is not complete in Sema.h
156void Sema::LookupResult::deletePaths(CXXBasePaths *Paths) {
157  delete Paths;
158}
159
160void Sema::LookupResult::resolveKind() {
161  unsigned N = Decls.size();
162
163  // Fast case: no possible ambiguity.
164  if (N <= 1) return;
165
166  // Don't do any extra resolution if we've already resolved as ambiguous.
167  if (Kind == Ambiguous) return;
168
169  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
170
171  bool Ambiguous = false;
172  bool HasTag = false, HasFunction = false, HasNonFunction = false;
173
174  unsigned UniqueTagIndex = 0;
175
176  unsigned I = 0;
177  while (I < N) {
178    NamedDecl *D = Decls[I];
179    assert(D == D->getUnderlyingDecl());
180
181    NamedDecl *CanonD = cast<NamedDecl>(D->getCanonicalDecl());
182    if (!Unique.insert(CanonD)) {
183      // If it's not unique, pull something off the back (and
184      // continue at this index).
185      Decls[I] = Decls[--N];
186    } else if (isa<UnresolvedUsingDecl>(D)) {
187      // FIXME: proper support for UnresolvedUsingDecls.
188      Decls[I] = Decls[--N];
189    } else {
190      // Otherwise, do some decl type analysis and then continue.
191      if (isa<TagDecl>(D)) {
192        if (HasTag)
193          Ambiguous = true;
194        UniqueTagIndex = I;
195        HasTag = true;
196      } else if (D->isFunctionOrFunctionTemplate()) {
197        HasFunction = true;
198      } else {
199        if (HasNonFunction)
200          Ambiguous = true;
201        HasNonFunction = true;
202      }
203      I++;
204    }
205  }
206
207  // C++ [basic.scope.hiding]p2:
208  //   A class name or enumeration name can be hidden by the name of
209  //   an object, function, or enumerator declared in the same
210  //   scope. If a class or enumeration name and an object, function,
211  //   or enumerator are declared in the same scope (in any order)
212  //   with the same name, the class or enumeration name is hidden
213  //   wherever the object, function, or enumerator name is visible.
214  // But it's still an error if there are distinct tag types found,
215  // even if they're not visible. (ref?)
216  if (HasTag && !Ambiguous && (HasFunction || HasNonFunction))
217    Decls[UniqueTagIndex] = Decls[--N];
218
219  Decls.set_size(N);
220
221  if (HasFunction && HasNonFunction)
222    Ambiguous = true;
223
224  if (Ambiguous)
225    setAmbiguous(LookupResult::AmbiguousReference);
226  else if (N > 1)
227    Kind = LookupResult::FoundOverloaded;
228  else
229    Kind = LookupResult::Found;
230}
231
232/// @brief Converts the result of name lookup into a single (possible
233/// NULL) pointer to a declaration.
234///
235/// The resulting declaration will either be the declaration we found
236/// (if only a single declaration was found), an
237/// OverloadedFunctionDecl (if an overloaded function was found), or
238/// NULL (if no declaration was found). This conversion must not be
239/// used anywhere where name lookup could result in an ambiguity.
240///
241/// The OverloadedFunctionDecl conversion is meant as a stop-gap
242/// solution, since it causes the OverloadedFunctionDecl to be
243/// leaked. FIXME: Eventually, there will be a better way to iterate
244/// over the set of overloaded functions returned by name lookup.
245NamedDecl *Sema::LookupResult::getAsSingleDecl(ASTContext &C) const {
246  size_t size = Decls.size();
247  if (size == 0) return 0;
248  if (size == 1) return *begin();
249
250  if (isAmbiguous()) return 0;
251
252  iterator I = begin(), E = end();
253
254  OverloadedFunctionDecl *Ovl
255    = OverloadedFunctionDecl::Create(C, (*I)->getDeclContext(),
256                                        (*I)->getDeclName());
257  for (; I != E; ++I) {
258    NamedDecl *ND = *I;
259    assert(ND->getUnderlyingDecl() == ND
260           && "decls in lookup result should have redirections stripped");
261    assert(ND->isFunctionOrFunctionTemplate());
262    if (isa<FunctionDecl>(ND))
263      Ovl->addOverload(cast<FunctionDecl>(ND));
264    else
265      Ovl->addOverload(cast<FunctionTemplateDecl>(ND));
266    // FIXME: UnresolvedUsingDecls.
267  }
268
269  return Ovl;
270}
271
272void Sema::LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
273  CXXBasePaths::paths_iterator I, E;
274  DeclContext::lookup_iterator DI, DE;
275  for (I = P.begin(), E = P.end(); I != E; ++I)
276    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
277      addDecl(*DI);
278}
279
280void Sema::LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
281  Paths = new CXXBasePaths;
282  Paths->swap(P);
283  addDeclsFromBasePaths(*Paths);
284  resolveKind();
285  setAmbiguous(AmbiguousBaseSubobjects);
286}
287
288void Sema::LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
289  Paths = new CXXBasePaths;
290  Paths->swap(P);
291  addDeclsFromBasePaths(*Paths);
292  resolveKind();
293  setAmbiguous(AmbiguousBaseSubobjectTypes);
294}
295
296void Sema::LookupResult::print(llvm::raw_ostream &Out) {
297  Out << Decls.size() << " result(s)";
298  if (isAmbiguous()) Out << ", ambiguous";
299  if (Paths) Out << ", base paths present";
300
301  for (iterator I = begin(), E = end(); I != E; ++I) {
302    Out << "\n";
303    (*I)->print(Out, 2);
304  }
305}
306
307// Adds all qualifying matches for a name within a decl context to the
308// given lookup result.  Returns true if any matches were found.
309static bool LookupDirect(Sema::LookupResult &R, DeclContext *DC,
310                         DeclarationName Name,
311                         Sema::LookupNameKind NameKind,
312                         unsigned IDNS) {
313  bool Found = false;
314
315  DeclContext::lookup_iterator I, E;
316  for (llvm::tie(I, E) = DC->lookup(Name); I != E; ++I)
317    if (Sema::isAcceptableLookupResult(*I, NameKind, IDNS))
318      R.addDecl(*I), Found = true;
319
320  return Found;
321}
322
323static bool
324CppNamespaceLookup(Sema::LookupResult &R, ASTContext &Context, DeclContext *NS,
325                   DeclarationName Name, Sema::LookupNameKind NameKind,
326                   unsigned IDNS, UsingDirectivesTy *UDirs = 0) {
327
328  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
329
330  // Perform qualified name lookup into the LookupCtx.
331  bool Found = LookupDirect(R, NS, Name, NameKind, IDNS);
332
333  if (UDirs) {
334    // For each UsingDirectiveDecl, which common ancestor is equal
335    // to NS, we preform qualified name lookup into namespace nominated by it.
336    UsingDirectivesTy::const_iterator UI, UEnd;
337    llvm::tie(UI, UEnd) =
338      std::equal_range(UDirs->begin(), UDirs->end(), NS,
339                       UsingDirAncestorCompare());
340
341    for (; UI != UEnd; ++UI)
342      if (LookupDirect(R, (*UI)->getNominatedNamespace(), Name, NameKind, IDNS))
343        Found = true;
344  }
345
346  R.resolveKind();
347
348  return Found;
349}
350
351static bool isNamespaceOrTranslationUnitScope(Scope *S) {
352  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
353    return Ctx->isFileContext();
354  return false;
355}
356
357// Find the next outer declaration context corresponding to this scope.
358static DeclContext *findOuterContext(Scope *S) {
359  for (S = S->getParent(); S; S = S->getParent())
360    if (S->getEntity())
361      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
362
363  return 0;
364}
365
366bool
367Sema::CppLookupName(LookupResult &R, Scope *S, DeclarationName Name,
368                    LookupNameKind NameKind, bool RedeclarationOnly) {
369  assert(getLangOptions().CPlusPlus &&
370         "Can perform only C++ lookup");
371  unsigned IDNS
372    = getIdentifierNamespacesFromLookupNameKind(NameKind, /*CPlusPlus*/ true);
373
374  // If we're testing for redeclarations, also look in the friend namespaces.
375  if (RedeclarationOnly) {
376    if (IDNS & Decl::IDNS_Tag) IDNS |= Decl::IDNS_TagFriend;
377    if (IDNS & Decl::IDNS_Ordinary) IDNS |= Decl::IDNS_OrdinaryFriend;
378  }
379
380  Scope *Initial = S;
381  IdentifierResolver::iterator
382    I = IdResolver.begin(Name),
383    IEnd = IdResolver.end();
384
385  // First we lookup local scope.
386  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
387  // ...During unqualified name lookup (3.4.1), the names appear as if
388  // they were declared in the nearest enclosing namespace which contains
389  // both the using-directive and the nominated namespace.
390  // [Note: in this context, "contains" means "contains directly or
391  // indirectly".
392  //
393  // For example:
394  // namespace A { int i; }
395  // void foo() {
396  //   int i;
397  //   {
398  //     using namespace A;
399  //     ++i; // finds local 'i', A::i appears at global scope
400  //   }
401  // }
402  //
403  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
404    // Check whether the IdResolver has anything in this scope.
405    bool Found = false;
406    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
407      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
408        Found = true;
409        R.addDecl(*I);
410      }
411    }
412    if (Found) {
413      R.resolveKind();
414      return true;
415    }
416
417    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
418      DeclContext *OuterCtx = findOuterContext(S);
419      for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
420           Ctx = Ctx->getLookupParent()) {
421        if (Ctx->isFunctionOrMethod())
422          continue;
423
424        // Perform qualified name lookup into this context.
425        // FIXME: In some cases, we know that every name that could be found by
426        // this qualified name lookup will also be on the identifier chain. For
427        // example, inside a class without any base classes, we never need to
428        // perform qualified lookup because all of the members are on top of the
429        // identifier chain.
430        if (LookupQualifiedName(R, Ctx, Name, NameKind, RedeclarationOnly))
431          return true;
432      }
433    }
434  }
435
436  // Collect UsingDirectiveDecls in all scopes, and recursively all
437  // nominated namespaces by those using-directives.
438  // UsingDirectives are pushed to heap, in common ancestor pointer value order.
439  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
440  // don't build it for each lookup!
441  UsingDirectivesTy UDirs;
442  for (Scope *SC = Initial; SC; SC = SC->getParent())
443    if (SC->getFlags() & Scope::DeclScope)
444      AddScopeUsingDirectives(Context, SC, UDirs);
445
446  // Sort heapified UsingDirectiveDecls.
447  std::sort_heap(UDirs.begin(), UDirs.end(), UsingDirAncestorCompare());
448
449  // Lookup namespace scope, and global scope.
450  // Unqualified name lookup in C++ requires looking into scopes
451  // that aren't strictly lexical, and therefore we walk through the
452  // context as well as walking through the scopes.
453
454  for (; S; S = S->getParent()) {
455    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
456    if (Ctx->isTransparentContext())
457      continue;
458
459    assert(Ctx && Ctx->isFileContext() &&
460           "We should have been looking only at file context here already.");
461
462    // Check whether the IdResolver has anything in this scope.
463    bool Found = false;
464    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
465      if (isAcceptableLookupResult(*I, NameKind, IDNS)) {
466        // We found something.  Look for anything else in our scope
467        // with this same name and in an acceptable identifier
468        // namespace, so that we can construct an overload set if we
469        // need to.
470        Found = true;
471        R.addDecl(*I);
472      }
473    }
474
475    // Look into context considering using-directives.
476    if (CppNamespaceLookup(R, Context, Ctx, Name, NameKind, IDNS, &UDirs))
477      Found = true;
478
479    if (Found) {
480      R.resolveKind();
481      return true;
482    }
483
484    if (RedeclarationOnly && !Ctx->isTransparentContext())
485      return false;
486  }
487
488  return !R.empty();
489}
490
491/// @brief Perform unqualified name lookup starting from a given
492/// scope.
493///
494/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
495/// used to find names within the current scope. For example, 'x' in
496/// @code
497/// int x;
498/// int f() {
499///   return x; // unqualified name look finds 'x' in the global scope
500/// }
501/// @endcode
502///
503/// Different lookup criteria can find different names. For example, a
504/// particular scope can have both a struct and a function of the same
505/// name, and each can be found by certain lookup criteria. For more
506/// information about lookup criteria, see the documentation for the
507/// class LookupCriteria.
508///
509/// @param S        The scope from which unqualified name lookup will
510/// begin. If the lookup criteria permits, name lookup may also search
511/// in the parent scopes.
512///
513/// @param Name     The name of the entity that we are searching for.
514///
515/// @param Loc      If provided, the source location where we're performing
516/// name lookup. At present, this is only used to produce diagnostics when
517/// C library functions (like "malloc") are implicitly declared.
518///
519/// @returns The result of name lookup, which includes zero or more
520/// declarations and possibly additional information used to diagnose
521/// ambiguities.
522bool Sema::LookupName(LookupResult &R, Scope *S, DeclarationName Name,
523                      LookupNameKind NameKind, bool RedeclarationOnly,
524                      bool AllowBuiltinCreation, SourceLocation Loc) {
525  if (!Name) return false;
526
527  if (!getLangOptions().CPlusPlus) {
528    // Unqualified name lookup in C/Objective-C is purely lexical, so
529    // search in the declarations attached to the name.
530    unsigned IDNS = 0;
531    switch (NameKind) {
532    case Sema::LookupOrdinaryName:
533      IDNS = Decl::IDNS_Ordinary;
534      break;
535
536    case Sema::LookupTagName:
537      IDNS = Decl::IDNS_Tag;
538      break;
539
540    case Sema::LookupMemberName:
541      IDNS = Decl::IDNS_Member;
542      break;
543
544    case Sema::LookupOperatorName:
545    case Sema::LookupNestedNameSpecifierName:
546    case Sema::LookupNamespaceName:
547      assert(false && "C does not perform these kinds of name lookup");
548      break;
549
550    case Sema::LookupRedeclarationWithLinkage:
551      // Find the nearest non-transparent declaration scope.
552      while (!(S->getFlags() & Scope::DeclScope) ||
553             (S->getEntity() &&
554              static_cast<DeclContext *>(S->getEntity())
555                ->isTransparentContext()))
556        S = S->getParent();
557      IDNS = Decl::IDNS_Ordinary;
558      break;
559
560    case Sema::LookupObjCProtocolName:
561      IDNS = Decl::IDNS_ObjCProtocol;
562      break;
563
564    case Sema::LookupObjCImplementationName:
565      IDNS = Decl::IDNS_ObjCImplementation;
566      break;
567
568    case Sema::LookupObjCCategoryImplName:
569      IDNS = Decl::IDNS_ObjCCategoryImpl;
570      break;
571    }
572
573    // Scan up the scope chain looking for a decl that matches this
574    // identifier that is in the appropriate namespace.  This search
575    // should not take long, as shadowing of names is uncommon, and
576    // deep shadowing is extremely uncommon.
577    bool LeftStartingScope = false;
578
579    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
580                                   IEnd = IdResolver.end();
581         I != IEnd; ++I)
582      if ((*I)->isInIdentifierNamespace(IDNS)) {
583        if (NameKind == LookupRedeclarationWithLinkage) {
584          // Determine whether this (or a previous) declaration is
585          // out-of-scope.
586          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
587            LeftStartingScope = true;
588
589          // If we found something outside of our starting scope that
590          // does not have linkage, skip it.
591          if (LeftStartingScope && !((*I)->hasLinkage()))
592            continue;
593        }
594
595        R.addDecl(*I);
596
597        if ((*I)->getAttr<OverloadableAttr>()) {
598          // If this declaration has the "overloadable" attribute, we
599          // might have a set of overloaded functions.
600
601          // Figure out what scope the identifier is in.
602          while (!(S->getFlags() & Scope::DeclScope) ||
603                 !S->isDeclScope(DeclPtrTy::make(*I)))
604            S = S->getParent();
605
606          // Find the last declaration in this scope (with the same
607          // name, naturally).
608          IdentifierResolver::iterator LastI = I;
609          for (++LastI; LastI != IEnd; ++LastI) {
610            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
611              break;
612            R.addDecl(*LastI);
613          }
614        }
615
616        R.resolveKind();
617
618        return true;
619      }
620  } else {
621    // Perform C++ unqualified name lookup.
622    if (CppLookupName(R, S, Name, NameKind, RedeclarationOnly))
623      return true;
624  }
625
626  // If we didn't find a use of this identifier, and if the identifier
627  // corresponds to a compiler builtin, create the decl object for the builtin
628  // now, injecting it into translation unit scope, and return it.
629  if (NameKind == LookupOrdinaryName ||
630      NameKind == LookupRedeclarationWithLinkage) {
631    IdentifierInfo *II = Name.getAsIdentifierInfo();
632    if (II && AllowBuiltinCreation) {
633      // If this is a builtin on this (or all) targets, create the decl.
634      if (unsigned BuiltinID = II->getBuiltinID()) {
635        // In C++, we don't have any predefined library functions like
636        // 'malloc'. Instead, we'll just error.
637        if (getLangOptions().CPlusPlus &&
638            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
639          return false;
640
641        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
642                                           S, RedeclarationOnly, Loc);
643        if (D) R.addDecl(D);
644        return (D != NULL);
645      }
646    }
647  }
648  return false;
649}
650
651/// @brief Perform qualified name lookup in the namespaces nominated by
652/// using directives by the given context.
653///
654/// C++98 [namespace.qual]p2:
655///   Given X::m (where X is a user-declared namespace), or given ::m
656///   (where X is the global namespace), let S be the set of all
657///   declarations of m in X and in the transitive closure of all
658///   namespaces nominated by using-directives in X and its used
659///   namespaces, except that using-directives are ignored in any
660///   namespace, including X, directly containing one or more
661///   declarations of m. No namespace is searched more than once in
662///   the lookup of a name. If S is the empty set, the program is
663///   ill-formed. Otherwise, if S has exactly one member, or if the
664///   context of the reference is a using-declaration
665///   (namespace.udecl), S is the required set of declarations of
666///   m. Otherwise if the use of m is not one that allows a unique
667///   declaration to be chosen from S, the program is ill-formed.
668/// C++98 [namespace.qual]p5:
669///   During the lookup of a qualified namespace member name, if the
670///   lookup finds more than one declaration of the member, and if one
671///   declaration introduces a class name or enumeration name and the
672///   other declarations either introduce the same object, the same
673///   enumerator or a set of functions, the non-type name hides the
674///   class or enumeration name if and only if the declarations are
675///   from the same namespace; otherwise (the declarations are from
676///   different namespaces), the program is ill-formed.
677static bool LookupQualifiedNameInUsingDirectives(Sema::LookupResult &R,
678                                                 DeclContext *StartDC,
679                                                 DeclarationName Name,
680                                                 Sema::LookupNameKind NameKind,
681                                                 unsigned IDNS) {
682  assert(StartDC->isFileContext() && "start context is not a file context");
683
684  DeclContext::udir_iterator I = StartDC->using_directives_begin();
685  DeclContext::udir_iterator E = StartDC->using_directives_end();
686
687  if (I == E) return false;
688
689  // We have at least added all these contexts to the queue.
690  llvm::DenseSet<DeclContext*> Visited;
691  Visited.insert(StartDC);
692
693  // We have not yet looked into these namespaces, much less added
694  // their "using-children" to the queue.
695  llvm::SmallVector<NamespaceDecl*, 8> Queue;
696
697  // We have already looked into the initial namespace; seed the queue
698  // with its using-children.
699  for (; I != E; ++I) {
700    NamespaceDecl *ND = (*I)->getNominatedNamespace();
701    if (Visited.insert(ND).second)
702      Queue.push_back(ND);
703  }
704
705  // The easiest way to implement the restriction in [namespace.qual]p5
706  // is to check whether any of the individual results found a tag
707  // and, if so, to declare an ambiguity if the final result is not
708  // a tag.
709  bool FoundTag = false;
710  bool FoundNonTag = false;
711
712  Sema::LookupResult LocalR;
713
714  bool Found = false;
715  while (!Queue.empty()) {
716    NamespaceDecl *ND = Queue.back();
717    Queue.pop_back();
718
719    // We go through some convolutions here to avoid copying results
720    // between LookupResults.
721    bool UseLocal = !R.empty();
722    Sema::LookupResult &DirectR = UseLocal ? LocalR : R;
723    bool FoundDirect = LookupDirect(DirectR, ND, Name, NameKind, IDNS);
724
725    if (FoundDirect) {
726      // First do any local hiding.
727      DirectR.resolveKind();
728
729      // If the local result is a tag, remember that.
730      if (DirectR.isSingleTagDecl())
731        FoundTag = true;
732      else
733        FoundNonTag = true;
734
735      // Append the local results to the total results if necessary.
736      if (UseLocal) {
737        R.addAllDecls(LocalR);
738        LocalR.clear();
739      }
740    }
741
742    // If we find names in this namespace, ignore its using directives.
743    if (FoundDirect) {
744      Found = true;
745      continue;
746    }
747
748    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
749      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
750      if (Visited.insert(Nom).second)
751        Queue.push_back(Nom);
752    }
753  }
754
755  if (Found) {
756    if (FoundTag && FoundNonTag)
757      R.setAmbiguousQualifiedTagHiding();
758    else
759      R.resolveKind();
760  }
761
762  return Found;
763}
764
765/// @brief Perform qualified name lookup into a given context.
766///
767/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
768/// names when the context of those names is explicit specified, e.g.,
769/// "std::vector" or "x->member".
770///
771/// Different lookup criteria can find different names. For example, a
772/// particular scope can have both a struct and a function of the same
773/// name, and each can be found by certain lookup criteria. For more
774/// information about lookup criteria, see the documentation for the
775/// class LookupCriteria.
776///
777/// @param LookupCtx The context in which qualified name lookup will
778/// search. If the lookup criteria permits, name lookup may also search
779/// in the parent contexts or (for C++ classes) base classes.
780///
781/// @param Name     The name of the entity that we are searching for.
782///
783/// @param Criteria The criteria that this routine will use to
784/// determine which names are visible and which names will be
785/// found. Note that name lookup will find a name that is visible by
786/// the given criteria, but the entity itself may not be semantically
787/// correct or even the kind of entity expected based on the
788/// lookup. For example, searching for a nested-name-specifier name
789/// might result in an EnumDecl, which is visible but is not permitted
790/// as a nested-name-specifier in C++03.
791///
792/// @returns The result of name lookup, which includes zero or more
793/// declarations and possibly additional information used to diagnose
794/// ambiguities.
795bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx,
796                               DeclarationName Name, LookupNameKind NameKind,
797                               bool RedeclarationOnly) {
798  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
799
800  if (!Name)
801    return false;
802
803  // If we're performing qualified name lookup (e.g., lookup into a
804  // struct), find fields as part of ordinary name lookup.
805  unsigned IDNS
806    = getIdentifierNamespacesFromLookupNameKind(NameKind,
807                                                getLangOptions().CPlusPlus);
808  if (NameKind == LookupOrdinaryName)
809    IDNS |= Decl::IDNS_Member;
810
811  // Make sure that the declaration context is complete.
812  assert((!isa<TagDecl>(LookupCtx) ||
813          LookupCtx->isDependentContext() ||
814          cast<TagDecl>(LookupCtx)->isDefinition() ||
815          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
816            ->isBeingDefined()) &&
817         "Declaration context must already be complete!");
818
819  // Perform qualified name lookup into the LookupCtx.
820  if (LookupDirect(R, LookupCtx, Name, NameKind, IDNS)) {
821    R.resolveKind();
822    return true;
823  }
824
825  // Don't descend into implied contexts for redeclarations.
826  // C++98 [namespace.qual]p6:
827  //   In a declaration for a namespace member in which the
828  //   declarator-id is a qualified-id, given that the qualified-id
829  //   for the namespace member has the form
830  //     nested-name-specifier unqualified-id
831  //   the unqualified-id shall name a member of the namespace
832  //   designated by the nested-name-specifier.
833  // See also [class.mfct]p5 and [class.static.data]p2.
834  if (RedeclarationOnly)
835    return false;
836
837  // If this is a namespace, look it up in
838  if (LookupCtx->isFileContext())
839    return LookupQualifiedNameInUsingDirectives(R, LookupCtx, Name, NameKind,
840                                                IDNS);
841
842  // If this isn't a C++ class, we aren't allowed to look into base
843  // classes, we're done.
844  if (!isa<CXXRecordDecl>(LookupCtx))
845    return false;
846
847  // Perform lookup into our base classes.
848  CXXRecordDecl *LookupRec = cast<CXXRecordDecl>(LookupCtx);
849  CXXBasePaths Paths;
850  Paths.setOrigin(LookupRec);
851
852  // Look for this member in our base classes
853  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
854  switch (NameKind) {
855    case LookupOrdinaryName:
856    case LookupMemberName:
857    case LookupRedeclarationWithLinkage:
858      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
859      break;
860
861    case LookupTagName:
862      BaseCallback = &CXXRecordDecl::FindTagMember;
863      break;
864
865    case LookupOperatorName:
866    case LookupNamespaceName:
867    case LookupObjCProtocolName:
868    case LookupObjCImplementationName:
869    case LookupObjCCategoryImplName:
870      // These lookups will never find a member in a C++ class (or base class).
871      return false;
872
873    case LookupNestedNameSpecifierName:
874      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
875      break;
876  }
877
878  if (!LookupRec->lookupInBases(BaseCallback, Name.getAsOpaquePtr(), Paths))
879    return false;
880
881  // C++ [class.member.lookup]p2:
882  //   [...] If the resulting set of declarations are not all from
883  //   sub-objects of the same type, or the set has a nonstatic member
884  //   and includes members from distinct sub-objects, there is an
885  //   ambiguity and the program is ill-formed. Otherwise that set is
886  //   the result of the lookup.
887  // FIXME: support using declarations!
888  QualType SubobjectType;
889  int SubobjectNumber = 0;
890  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
891       Path != PathEnd; ++Path) {
892    const CXXBasePathElement &PathElement = Path->back();
893
894    // Determine whether we're looking at a distinct sub-object or not.
895    if (SubobjectType.isNull()) {
896      // This is the first subobject we've looked at. Record its type.
897      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
898      SubobjectNumber = PathElement.SubobjectNumber;
899    } else if (SubobjectType
900                 != Context.getCanonicalType(PathElement.Base->getType())) {
901      // We found members of the given name in two subobjects of
902      // different types. This lookup is ambiguous.
903      R.setAmbiguousBaseSubobjectTypes(Paths);
904      return true;
905    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
906      // We have a different subobject of the same type.
907
908      // C++ [class.member.lookup]p5:
909      //   A static member, a nested type or an enumerator defined in
910      //   a base class T can unambiguously be found even if an object
911      //   has more than one base class subobject of type T.
912      Decl *FirstDecl = *Path->Decls.first;
913      if (isa<VarDecl>(FirstDecl) ||
914          isa<TypeDecl>(FirstDecl) ||
915          isa<EnumConstantDecl>(FirstDecl))
916        continue;
917
918      if (isa<CXXMethodDecl>(FirstDecl)) {
919        // Determine whether all of the methods are static.
920        bool AllMethodsAreStatic = true;
921        for (DeclContext::lookup_iterator Func = Path->Decls.first;
922             Func != Path->Decls.second; ++Func) {
923          if (!isa<CXXMethodDecl>(*Func)) {
924            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
925            break;
926          }
927
928          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
929            AllMethodsAreStatic = false;
930            break;
931          }
932        }
933
934        if (AllMethodsAreStatic)
935          continue;
936      }
937
938      // We have found a nonstatic member name in multiple, distinct
939      // subobjects. Name lookup is ambiguous.
940      R.setAmbiguousBaseSubobjects(Paths);
941      return true;
942    }
943  }
944
945  // Lookup in a base class succeeded; return these results.
946
947  DeclContext::lookup_iterator I, E;
948  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I)
949    R.addDecl(*I);
950  R.resolveKind();
951  return true;
952}
953
954/// @brief Performs name lookup for a name that was parsed in the
955/// source code, and may contain a C++ scope specifier.
956///
957/// This routine is a convenience routine meant to be called from
958/// contexts that receive a name and an optional C++ scope specifier
959/// (e.g., "N::M::x"). It will then perform either qualified or
960/// unqualified name lookup (with LookupQualifiedName or LookupName,
961/// respectively) on the given name and return those results.
962///
963/// @param S        The scope from which unqualified name lookup will
964/// begin.
965///
966/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
967///
968/// @param Name     The name of the entity that name lookup will
969/// search for.
970///
971/// @param Loc      If provided, the source location where we're performing
972/// name lookup. At present, this is only used to produce diagnostics when
973/// C library functions (like "malloc") are implicitly declared.
974///
975/// @param EnteringContext Indicates whether we are going to enter the
976/// context of the scope-specifier SS (if present).
977///
978/// @returns True if any decls were found (but possibly ambiguous)
979bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
980                            DeclarationName Name, LookupNameKind NameKind,
981                            bool RedeclarationOnly, bool AllowBuiltinCreation,
982                            SourceLocation Loc,
983                            bool EnteringContext) {
984  if (SS && SS->isInvalid()) {
985    // When the scope specifier is invalid, don't even look for
986    // anything.
987    return false;
988  }
989
990  if (SS && SS->isSet()) {
991    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
992      // We have resolved the scope specifier to a particular declaration
993      // contex, and will perform name lookup in that context.
994      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
995        return false;
996
997      return LookupQualifiedName(R, DC, Name, NameKind, RedeclarationOnly);
998    }
999
1000    // We could not resolve the scope specified to a specific declaration
1001    // context, which means that SS refers to an unknown specialization.
1002    // Name lookup can't find anything in this case.
1003    return false;
1004  }
1005
1006  // Perform unqualified name lookup starting in the given scope.
1007  return LookupName(R, S, Name, NameKind, RedeclarationOnly,
1008                    AllowBuiltinCreation, Loc);
1009}
1010
1011
1012/// @brief Produce a diagnostic describing the ambiguity that resulted
1013/// from name lookup.
1014///
1015/// @param Result       The ambiguous name lookup result.
1016///
1017/// @param Name         The name of the entity that name lookup was
1018/// searching for.
1019///
1020/// @param NameLoc      The location of the name within the source code.
1021///
1022/// @param LookupRange  A source range that provides more
1023/// source-location information concerning the lookup itself. For
1024/// example, this range might highlight a nested-name-specifier that
1025/// precedes the name.
1026///
1027/// @returns true
1028bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result, DeclarationName Name,
1029                                   SourceLocation NameLoc,
1030                                   SourceRange LookupRange) {
1031  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1032
1033  switch (Result.getAmbiguityKind()) {
1034  case LookupResult::AmbiguousBaseSubobjects: {
1035    CXXBasePaths *Paths = Result.getBasePaths();
1036    QualType SubobjectType = Paths->front().back().Base->getType();
1037    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1038      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1039      << LookupRange;
1040
1041    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1042    while (isa<CXXMethodDecl>(*Found) &&
1043           cast<CXXMethodDecl>(*Found)->isStatic())
1044      ++Found;
1045
1046    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1047
1048    return true;
1049  }
1050
1051  case LookupResult::AmbiguousBaseSubobjectTypes: {
1052    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1053      << Name << LookupRange;
1054
1055    CXXBasePaths *Paths = Result.getBasePaths();
1056    std::set<Decl *> DeclsPrinted;
1057    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1058                                      PathEnd = Paths->end();
1059         Path != PathEnd; ++Path) {
1060      Decl *D = *Path->Decls.first;
1061      if (DeclsPrinted.insert(D).second)
1062        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1063    }
1064
1065    return true;
1066  }
1067
1068  case LookupResult::AmbiguousTagHiding: {
1069    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1070
1071    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1072
1073    LookupResult::iterator DI, DE = Result.end();
1074    for (DI = Result.begin(); DI != DE; ++DI)
1075      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1076        TagDecls.insert(TD);
1077        Diag(TD->getLocation(), diag::note_hidden_tag);
1078      }
1079
1080    for (DI = Result.begin(); DI != DE; ++DI)
1081      if (!isa<TagDecl>(*DI))
1082        Diag((*DI)->getLocation(), diag::note_hiding_object);
1083
1084    // For recovery purposes, go ahead and implement the hiding.
1085    Result.hideDecls(TagDecls);
1086
1087    return true;
1088  }
1089
1090  case LookupResult::AmbiguousReference: {
1091    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1092
1093    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1094    for (; DI != DE; ++DI)
1095      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1096
1097    return true;
1098  }
1099  }
1100
1101  llvm::llvm_unreachable("unknown ambiguity kind");
1102  return true;
1103}
1104
1105static void
1106addAssociatedClassesAndNamespaces(QualType T,
1107                                  ASTContext &Context,
1108                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1109                                  Sema::AssociatedClassSet &AssociatedClasses);
1110
1111static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1112                             DeclContext *Ctx) {
1113  if (Ctx->isFileContext())
1114    Namespaces.insert(Ctx);
1115}
1116
1117// \brief Add the associated classes and namespaces for argument-dependent
1118// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1119static void
1120addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1121                                  ASTContext &Context,
1122                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1123                                  Sema::AssociatedClassSet &AssociatedClasses) {
1124  // C++ [basic.lookup.koenig]p2, last bullet:
1125  //   -- [...] ;
1126  switch (Arg.getKind()) {
1127    case TemplateArgument::Null:
1128      break;
1129
1130    case TemplateArgument::Type:
1131      // [...] the namespaces and classes associated with the types of the
1132      // template arguments provided for template type parameters (excluding
1133      // template template parameters)
1134      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1135                                        AssociatedNamespaces,
1136                                        AssociatedClasses);
1137      break;
1138
1139    case TemplateArgument::Declaration:
1140      // [...] the namespaces in which any template template arguments are
1141      // defined; and the classes in which any member templates used as
1142      // template template arguments are defined.
1143      if (ClassTemplateDecl *ClassTemplate
1144            = dyn_cast<ClassTemplateDecl>(Arg.getAsDecl())) {
1145        DeclContext *Ctx = ClassTemplate->getDeclContext();
1146        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1147          AssociatedClasses.insert(EnclosingClass);
1148        // Add the associated namespace for this class.
1149        while (Ctx->isRecord())
1150          Ctx = Ctx->getParent();
1151        CollectNamespace(AssociatedNamespaces, Ctx);
1152      }
1153      break;
1154
1155    case TemplateArgument::Integral:
1156    case TemplateArgument::Expression:
1157      // [Note: non-type template arguments do not contribute to the set of
1158      //  associated namespaces. ]
1159      break;
1160
1161    case TemplateArgument::Pack:
1162      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1163                                        PEnd = Arg.pack_end();
1164           P != PEnd; ++P)
1165        addAssociatedClassesAndNamespaces(*P, Context,
1166                                          AssociatedNamespaces,
1167                                          AssociatedClasses);
1168      break;
1169  }
1170}
1171
1172// \brief Add the associated classes and namespaces for
1173// argument-dependent lookup with an argument of class type
1174// (C++ [basic.lookup.koenig]p2).
1175static void
1176addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1177                                  ASTContext &Context,
1178                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1179                            Sema::AssociatedClassSet &AssociatedClasses) {
1180  // C++ [basic.lookup.koenig]p2:
1181  //   [...]
1182  //     -- If T is a class type (including unions), its associated
1183  //        classes are: the class itself; the class of which it is a
1184  //        member, if any; and its direct and indirect base
1185  //        classes. Its associated namespaces are the namespaces in
1186  //        which its associated classes are defined.
1187
1188  // Add the class of which it is a member, if any.
1189  DeclContext *Ctx = Class->getDeclContext();
1190  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1191    AssociatedClasses.insert(EnclosingClass);
1192  // Add the associated namespace for this class.
1193  while (Ctx->isRecord())
1194    Ctx = Ctx->getParent();
1195  CollectNamespace(AssociatedNamespaces, Ctx);
1196
1197  // Add the class itself. If we've already seen this class, we don't
1198  // need to visit base classes.
1199  if (!AssociatedClasses.insert(Class))
1200    return;
1201
1202  // -- If T is a template-id, its associated namespaces and classes are
1203  //    the namespace in which the template is defined; for member
1204  //    templates, the member template’s class; the namespaces and classes
1205  //    associated with the types of the template arguments provided for
1206  //    template type parameters (excluding template template parameters); the
1207  //    namespaces in which any template template arguments are defined; and
1208  //    the classes in which any member templates used as template template
1209  //    arguments are defined. [Note: non-type template arguments do not
1210  //    contribute to the set of associated namespaces. ]
1211  if (ClassTemplateSpecializationDecl *Spec
1212        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1213    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1214    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1215      AssociatedClasses.insert(EnclosingClass);
1216    // Add the associated namespace for this class.
1217    while (Ctx->isRecord())
1218      Ctx = Ctx->getParent();
1219    CollectNamespace(AssociatedNamespaces, Ctx);
1220
1221    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1222    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1223      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1224                                        AssociatedNamespaces,
1225                                        AssociatedClasses);
1226  }
1227
1228  // Add direct and indirect base classes along with their associated
1229  // namespaces.
1230  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1231  Bases.push_back(Class);
1232  while (!Bases.empty()) {
1233    // Pop this class off the stack.
1234    Class = Bases.back();
1235    Bases.pop_back();
1236
1237    // Visit the base classes.
1238    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1239                                         BaseEnd = Class->bases_end();
1240         Base != BaseEnd; ++Base) {
1241      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1242      // In dependent contexts, we do ADL twice, and the first time around,
1243      // the base type might be a dependent TemplateSpecializationType, or a
1244      // TemplateTypeParmType. If that happens, simply ignore it.
1245      // FIXME: If we want to support export, we probably need to add the
1246      // namespace of the template in a TemplateSpecializationType, or even
1247      // the classes and namespaces of known non-dependent arguments.
1248      if (!BaseType)
1249        continue;
1250      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1251      if (AssociatedClasses.insert(BaseDecl)) {
1252        // Find the associated namespace for this base class.
1253        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1254        while (BaseCtx->isRecord())
1255          BaseCtx = BaseCtx->getParent();
1256        CollectNamespace(AssociatedNamespaces, BaseCtx);
1257
1258        // Make sure we visit the bases of this base class.
1259        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1260          Bases.push_back(BaseDecl);
1261      }
1262    }
1263  }
1264}
1265
1266// \brief Add the associated classes and namespaces for
1267// argument-dependent lookup with an argument of type T
1268// (C++ [basic.lookup.koenig]p2).
1269static void
1270addAssociatedClassesAndNamespaces(QualType T,
1271                                  ASTContext &Context,
1272                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1273                                  Sema::AssociatedClassSet &AssociatedClasses) {
1274  // C++ [basic.lookup.koenig]p2:
1275  //
1276  //   For each argument type T in the function call, there is a set
1277  //   of zero or more associated namespaces and a set of zero or more
1278  //   associated classes to be considered. The sets of namespaces and
1279  //   classes is determined entirely by the types of the function
1280  //   arguments (and the namespace of any template template
1281  //   argument). Typedef names and using-declarations used to specify
1282  //   the types do not contribute to this set. The sets of namespaces
1283  //   and classes are determined in the following way:
1284  T = Context.getCanonicalType(T).getUnqualifiedType();
1285
1286  //    -- If T is a pointer to U or an array of U, its associated
1287  //       namespaces and classes are those associated with U.
1288  //
1289  // We handle this by unwrapping pointer and array types immediately,
1290  // to avoid unnecessary recursion.
1291  while (true) {
1292    if (const PointerType *Ptr = T->getAs<PointerType>())
1293      T = Ptr->getPointeeType();
1294    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1295      T = Ptr->getElementType();
1296    else
1297      break;
1298  }
1299
1300  //     -- If T is a fundamental type, its associated sets of
1301  //        namespaces and classes are both empty.
1302  if (T->getAs<BuiltinType>())
1303    return;
1304
1305  //     -- If T is a class type (including unions), its associated
1306  //        classes are: the class itself; the class of which it is a
1307  //        member, if any; and its direct and indirect base
1308  //        classes. Its associated namespaces are the namespaces in
1309  //        which its associated classes are defined.
1310  if (const RecordType *ClassType = T->getAs<RecordType>())
1311    if (CXXRecordDecl *ClassDecl
1312        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1313      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1314                                        AssociatedNamespaces,
1315                                        AssociatedClasses);
1316      return;
1317    }
1318
1319  //     -- If T is an enumeration type, its associated namespace is
1320  //        the namespace in which it is defined. If it is class
1321  //        member, its associated class is the member’s class; else
1322  //        it has no associated class.
1323  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1324    EnumDecl *Enum = EnumT->getDecl();
1325
1326    DeclContext *Ctx = Enum->getDeclContext();
1327    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1328      AssociatedClasses.insert(EnclosingClass);
1329
1330    // Add the associated namespace for this class.
1331    while (Ctx->isRecord())
1332      Ctx = Ctx->getParent();
1333    CollectNamespace(AssociatedNamespaces, Ctx);
1334
1335    return;
1336  }
1337
1338  //     -- If T is a function type, its associated namespaces and
1339  //        classes are those associated with the function parameter
1340  //        types and those associated with the return type.
1341  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1342    // Return type
1343    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1344                                      Context,
1345                                      AssociatedNamespaces, AssociatedClasses);
1346
1347    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1348    if (!Proto)
1349      return;
1350
1351    // Argument types
1352    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1353                                           ArgEnd = Proto->arg_type_end();
1354         Arg != ArgEnd; ++Arg)
1355      addAssociatedClassesAndNamespaces(*Arg, Context,
1356                                        AssociatedNamespaces, AssociatedClasses);
1357
1358    return;
1359  }
1360
1361  //     -- If T is a pointer to a member function of a class X, its
1362  //        associated namespaces and classes are those associated
1363  //        with the function parameter types and return type,
1364  //        together with those associated with X.
1365  //
1366  //     -- If T is a pointer to a data member of class X, its
1367  //        associated namespaces and classes are those associated
1368  //        with the member type together with those associated with
1369  //        X.
1370  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1371    // Handle the type that the pointer to member points to.
1372    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1373                                      Context,
1374                                      AssociatedNamespaces,
1375                                      AssociatedClasses);
1376
1377    // Handle the class type into which this points.
1378    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1379      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1380                                        Context,
1381                                        AssociatedNamespaces,
1382                                        AssociatedClasses);
1383
1384    return;
1385  }
1386
1387  // FIXME: What about block pointers?
1388  // FIXME: What about Objective-C message sends?
1389}
1390
1391/// \brief Find the associated classes and namespaces for
1392/// argument-dependent lookup for a call with the given set of
1393/// arguments.
1394///
1395/// This routine computes the sets of associated classes and associated
1396/// namespaces searched by argument-dependent lookup
1397/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1398void
1399Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1400                                 AssociatedNamespaceSet &AssociatedNamespaces,
1401                                 AssociatedClassSet &AssociatedClasses) {
1402  AssociatedNamespaces.clear();
1403  AssociatedClasses.clear();
1404
1405  // C++ [basic.lookup.koenig]p2:
1406  //   For each argument type T in the function call, there is a set
1407  //   of zero or more associated namespaces and a set of zero or more
1408  //   associated classes to be considered. The sets of namespaces and
1409  //   classes is determined entirely by the types of the function
1410  //   arguments (and the namespace of any template template
1411  //   argument).
1412  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1413    Expr *Arg = Args[ArgIdx];
1414
1415    if (Arg->getType() != Context.OverloadTy) {
1416      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1417                                        AssociatedNamespaces,
1418                                        AssociatedClasses);
1419      continue;
1420    }
1421
1422    // [...] In addition, if the argument is the name or address of a
1423    // set of overloaded functions and/or function templates, its
1424    // associated classes and namespaces are the union of those
1425    // associated with each of the members of the set: the namespace
1426    // in which the function or function template is defined and the
1427    // classes and namespaces associated with its (non-dependent)
1428    // parameter types and return type.
1429    DeclRefExpr *DRE = 0;
1430    TemplateIdRefExpr *TIRE = 0;
1431    Arg = Arg->IgnoreParens();
1432    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg)) {
1433      if (unaryOp->getOpcode() == UnaryOperator::AddrOf) {
1434        DRE = dyn_cast<DeclRefExpr>(unaryOp->getSubExpr());
1435        TIRE = dyn_cast<TemplateIdRefExpr>(unaryOp->getSubExpr());
1436      }
1437    } else {
1438      DRE = dyn_cast<DeclRefExpr>(Arg);
1439      TIRE = dyn_cast<TemplateIdRefExpr>(Arg);
1440    }
1441
1442    OverloadedFunctionDecl *Ovl = 0;
1443    if (DRE)
1444      Ovl = dyn_cast<OverloadedFunctionDecl>(DRE->getDecl());
1445    else if (TIRE)
1446      Ovl = TIRE->getTemplateName().getAsOverloadedFunctionDecl();
1447    if (!Ovl)
1448      continue;
1449
1450    for (OverloadedFunctionDecl::function_iterator Func = Ovl->function_begin(),
1451                                                FuncEnd = Ovl->function_end();
1452         Func != FuncEnd; ++Func) {
1453      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(*Func);
1454      if (!FDecl)
1455        FDecl = cast<FunctionTemplateDecl>(*Func)->getTemplatedDecl();
1456
1457      // Add the namespace in which this function was defined. Note
1458      // that, if this is a member function, we do *not* consider the
1459      // enclosing namespace of its class.
1460      DeclContext *Ctx = FDecl->getDeclContext();
1461      CollectNamespace(AssociatedNamespaces, Ctx);
1462
1463      // Add the classes and namespaces associated with the parameter
1464      // types and return type of this function.
1465      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1466                                        AssociatedNamespaces,
1467                                        AssociatedClasses);
1468    }
1469  }
1470}
1471
1472/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1473/// an acceptable non-member overloaded operator for a call whose
1474/// arguments have types T1 (and, if non-empty, T2). This routine
1475/// implements the check in C++ [over.match.oper]p3b2 concerning
1476/// enumeration types.
1477static bool
1478IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1479                                       QualType T1, QualType T2,
1480                                       ASTContext &Context) {
1481  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1482    return true;
1483
1484  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1485    return true;
1486
1487  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1488  if (Proto->getNumArgs() < 1)
1489    return false;
1490
1491  if (T1->isEnumeralType()) {
1492    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1493    if (Context.getCanonicalType(T1).getUnqualifiedType()
1494          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1495      return true;
1496  }
1497
1498  if (Proto->getNumArgs() < 2)
1499    return false;
1500
1501  if (!T2.isNull() && T2->isEnumeralType()) {
1502    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1503    if (Context.getCanonicalType(T2).getUnqualifiedType()
1504          == Context.getCanonicalType(ArgType).getUnqualifiedType())
1505      return true;
1506  }
1507
1508  return false;
1509}
1510
1511/// \brief Find the protocol with the given name, if any.
1512ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1513  Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
1514  return cast_or_null<ObjCProtocolDecl>(D);
1515}
1516
1517/// \brief Find the Objective-C category implementation with the given
1518/// name, if any.
1519ObjCCategoryImplDecl *Sema::LookupObjCCategoryImpl(IdentifierInfo *II) {
1520  Decl *D = LookupSingleName(TUScope, II, LookupObjCCategoryImplName);
1521  return cast_or_null<ObjCCategoryImplDecl>(D);
1522}
1523
1524void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1525                                        QualType T1, QualType T2,
1526                                        FunctionSet &Functions) {
1527  // C++ [over.match.oper]p3:
1528  //     -- The set of non-member candidates is the result of the
1529  //        unqualified lookup of operator@ in the context of the
1530  //        expression according to the usual rules for name lookup in
1531  //        unqualified function calls (3.4.2) except that all member
1532  //        functions are ignored. However, if no operand has a class
1533  //        type, only those non-member functions in the lookup set
1534  //        that have a first parameter of type T1 or "reference to
1535  //        (possibly cv-qualified) T1", when T1 is an enumeration
1536  //        type, or (if there is a right operand) a second parameter
1537  //        of type T2 or "reference to (possibly cv-qualified) T2",
1538  //        when T2 is an enumeration type, are candidate functions.
1539  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1540  LookupResult Operators;
1541  LookupName(Operators, S, OpName, LookupOperatorName);
1542
1543  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1544
1545  if (Operators.empty())
1546    return;
1547
1548  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1549       Op != OpEnd; ++Op) {
1550    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1551      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1552        Functions.insert(FD); // FIXME: canonical FD
1553    } else if (FunctionTemplateDecl *FunTmpl
1554                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1555      // FIXME: friend operators?
1556      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1557      // later?
1558      if (!FunTmpl->getDeclContext()->isRecord())
1559        Functions.insert(FunTmpl);
1560    }
1561  }
1562}
1563
1564static void CollectFunctionDecl(Sema::FunctionSet &Functions,
1565                                Decl *D) {
1566  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
1567    Functions.insert(Func);
1568  else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
1569    Functions.insert(FunTmpl);
1570}
1571
1572void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1573                                   Expr **Args, unsigned NumArgs,
1574                                   FunctionSet &Functions) {
1575  // Find all of the associated namespaces and classes based on the
1576  // arguments we have.
1577  AssociatedNamespaceSet AssociatedNamespaces;
1578  AssociatedClassSet AssociatedClasses;
1579  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1580                                     AssociatedNamespaces,
1581                                     AssociatedClasses);
1582
1583  QualType T1, T2;
1584  if (Operator) {
1585    T1 = Args[0]->getType();
1586    if (NumArgs >= 2)
1587      T2 = Args[1]->getType();
1588  }
1589
1590  // C++ [basic.lookup.argdep]p3:
1591  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1592  //   and let Y be the lookup set produced by argument dependent
1593  //   lookup (defined as follows). If X contains [...] then Y is
1594  //   empty. Otherwise Y is the set of declarations found in the
1595  //   namespaces associated with the argument types as described
1596  //   below. The set of declarations found by the lookup of the name
1597  //   is the union of X and Y.
1598  //
1599  // Here, we compute Y and add its members to the overloaded
1600  // candidate set.
1601  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1602                                     NSEnd = AssociatedNamespaces.end();
1603       NS != NSEnd; ++NS) {
1604    //   When considering an associated namespace, the lookup is the
1605    //   same as the lookup performed when the associated namespace is
1606    //   used as a qualifier (3.4.3.2) except that:
1607    //
1608    //     -- Any using-directives in the associated namespace are
1609    //        ignored.
1610    //
1611    //     -- Any namespace-scope friend functions declared in
1612    //        associated classes are visible within their respective
1613    //        namespaces even if they are not visible during an ordinary
1614    //        lookup (11.4).
1615    DeclContext::lookup_iterator I, E;
1616    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1617      Decl *D = *I;
1618      // If the only declaration here is an ordinary friend, consider
1619      // it only if it was declared in an associated classes.
1620      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1621        DeclContext *LexDC = D->getLexicalDeclContext();
1622        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1623          continue;
1624      }
1625
1626      FunctionDecl *Fn;
1627      if (!Operator || !(Fn = dyn_cast<FunctionDecl>(D)) ||
1628          IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context))
1629        CollectFunctionDecl(Functions, D);
1630    }
1631  }
1632}
1633