SemaLookup.cpp revision ba171099c6991c1bdc65631c7b89dc1ea746e786
1//===--------------------- SemaLookup.cpp - Name Lookup  ------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements name lookup for C, C++, Objective-C, and
11//  Objective-C++.
12//
13//===----------------------------------------------------------------------===//
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/Decl.h"
19#include "clang/AST/DeclCXX.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/Expr.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Basic/Builtins.h"
26#include "clang/Basic/LangOptions.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/Support/ErrorHandling.h"
30#include <list>
31#include <set>
32#include <vector>
33#include <iterator>
34#include <utility>
35#include <algorithm>
36
37using namespace clang;
38
39namespace {
40  class UnqualUsingEntry {
41    const DeclContext *Nominated;
42    const DeclContext *CommonAncestor;
43
44  public:
45    UnqualUsingEntry(const DeclContext *Nominated,
46                     const DeclContext *CommonAncestor)
47      : Nominated(Nominated), CommonAncestor(CommonAncestor) {
48    }
49
50    const DeclContext *getCommonAncestor() const {
51      return CommonAncestor;
52    }
53
54    const DeclContext *getNominatedNamespace() const {
55      return Nominated;
56    }
57
58    // Sort by the pointer value of the common ancestor.
59    struct Comparator {
60      bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) {
61        return L.getCommonAncestor() < R.getCommonAncestor();
62      }
63
64      bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) {
65        return E.getCommonAncestor() < DC;
66      }
67
68      bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) {
69        return DC < E.getCommonAncestor();
70      }
71    };
72  };
73
74  /// A collection of using directives, as used by C++ unqualified
75  /// lookup.
76  class UnqualUsingDirectiveSet {
77    typedef llvm::SmallVector<UnqualUsingEntry, 8> ListTy;
78
79    ListTy list;
80    llvm::SmallPtrSet<DeclContext*, 8> visited;
81
82  public:
83    UnqualUsingDirectiveSet() {}
84
85    void visitScopeChain(Scope *S, Scope *InnermostFileScope) {
86      // C++ [namespace.udir]p1:
87      //   During unqualified name lookup, the names appear as if they
88      //   were declared in the nearest enclosing namespace which contains
89      //   both the using-directive and the nominated namespace.
90      DeclContext *InnermostFileDC
91        = static_cast<DeclContext*>(InnermostFileScope->getEntity());
92      assert(InnermostFileDC && InnermostFileDC->isFileContext());
93
94      for (; S; S = S->getParent()) {
95        if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
96          DeclContext *EffectiveDC = (Ctx->isFileContext() ? Ctx : InnermostFileDC);
97          visit(Ctx, EffectiveDC);
98        } else {
99          Scope::udir_iterator I = S->using_directives_begin(),
100                             End = S->using_directives_end();
101
102          for (; I != End; ++I)
103            visit(I->getAs<UsingDirectiveDecl>(), InnermostFileDC);
104        }
105      }
106    }
107
108    // Visits a context and collect all of its using directives
109    // recursively.  Treats all using directives as if they were
110    // declared in the context.
111    //
112    // A given context is only every visited once, so it is important
113    // that contexts be visited from the inside out in order to get
114    // the effective DCs right.
115    void visit(DeclContext *DC, DeclContext *EffectiveDC) {
116      if (!visited.insert(DC))
117        return;
118
119      addUsingDirectives(DC, EffectiveDC);
120    }
121
122    // Visits a using directive and collects all of its using
123    // directives recursively.  Treats all using directives as if they
124    // were declared in the effective DC.
125    void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
126      DeclContext *NS = UD->getNominatedNamespace();
127      if (!visited.insert(NS))
128        return;
129
130      addUsingDirective(UD, EffectiveDC);
131      addUsingDirectives(NS, EffectiveDC);
132    }
133
134    // Adds all the using directives in a context (and those nominated
135    // by its using directives, transitively) as if they appeared in
136    // the given effective context.
137    void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) {
138      llvm::SmallVector<DeclContext*,4> queue;
139      while (true) {
140        DeclContext::udir_iterator I, End;
141        for (llvm::tie(I, End) = DC->getUsingDirectives(); I != End; ++I) {
142          UsingDirectiveDecl *UD = *I;
143          DeclContext *NS = UD->getNominatedNamespace();
144          if (visited.insert(NS)) {
145            addUsingDirective(UD, EffectiveDC);
146            queue.push_back(NS);
147          }
148        }
149
150        if (queue.empty())
151          return;
152
153        DC = queue.back();
154        queue.pop_back();
155      }
156    }
157
158    // Add a using directive as if it had been declared in the given
159    // context.  This helps implement C++ [namespace.udir]p3:
160    //   The using-directive is transitive: if a scope contains a
161    //   using-directive that nominates a second namespace that itself
162    //   contains using-directives, the effect is as if the
163    //   using-directives from the second namespace also appeared in
164    //   the first.
165    void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) {
166      // Find the common ancestor between the effective context and
167      // the nominated namespace.
168      DeclContext *Common = UD->getNominatedNamespace();
169      while (!Common->Encloses(EffectiveDC))
170        Common = Common->getParent();
171      Common = Common->getPrimaryContext();
172
173      list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common));
174    }
175
176    void done() {
177      std::sort(list.begin(), list.end(), UnqualUsingEntry::Comparator());
178    }
179
180    typedef ListTy::iterator iterator;
181    typedef ListTy::const_iterator const_iterator;
182
183    iterator begin() { return list.begin(); }
184    iterator end() { return list.end(); }
185    const_iterator begin() const { return list.begin(); }
186    const_iterator end() const { return list.end(); }
187
188    std::pair<const_iterator,const_iterator>
189    getNamespacesFor(DeclContext *DC) const {
190      return std::equal_range(begin(), end(), DC->getPrimaryContext(),
191                              UnqualUsingEntry::Comparator());
192    }
193  };
194}
195
196static bool IsAcceptableIDNS(NamedDecl *D, unsigned IDNS) {
197  return D->isInIdentifierNamespace(IDNS);
198}
199
200static bool IsAcceptableOperatorName(NamedDecl *D, unsigned IDNS) {
201  return D->isInIdentifierNamespace(IDNS) &&
202    !D->getDeclContext()->isRecord();
203}
204
205static bool IsAcceptableNestedNameSpecifierName(NamedDecl *D, unsigned IDNS) {
206  // This lookup ignores everything that isn't a type.
207
208  // This is a fast check for the far most common case.
209  if (D->isInIdentifierNamespace(Decl::IDNS_Tag))
210    return true;
211
212  if (isa<UsingShadowDecl>(D))
213    D = cast<UsingShadowDecl>(D)->getTargetDecl();
214
215  return isa<TypeDecl>(D);
216}
217
218static bool IsAcceptableNamespaceName(NamedDecl *D, unsigned IDNS) {
219  // We don't need to look through using decls here because
220  // using decls aren't allowed to name namespaces.
221
222  return isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D);
223}
224
225/// Gets the default result filter for the given lookup.
226static inline
227LookupResult::ResultFilter getResultFilter(Sema::LookupNameKind NameKind) {
228  switch (NameKind) {
229  case Sema::LookupOrdinaryName:
230  case Sema::LookupTagName:
231  case Sema::LookupMemberName:
232  case Sema::LookupRedeclarationWithLinkage: // FIXME: check linkage, scoping
233  case Sema::LookupUsingDeclName:
234  case Sema::LookupObjCProtocolName:
235  case Sema::LookupObjCImplementationName:
236    return &IsAcceptableIDNS;
237
238  case Sema::LookupOperatorName:
239    return &IsAcceptableOperatorName;
240
241  case Sema::LookupNestedNameSpecifierName:
242    return &IsAcceptableNestedNameSpecifierName;
243
244  case Sema::LookupNamespaceName:
245    return &IsAcceptableNamespaceName;
246  }
247
248  llvm_unreachable("unkknown lookup kind");
249  return 0;
250}
251
252// Retrieve the set of identifier namespaces that correspond to a
253// specific kind of name lookup.
254static inline unsigned getIDNS(Sema::LookupNameKind NameKind,
255                               bool CPlusPlus,
256                               bool Redeclaration) {
257  unsigned IDNS = 0;
258  switch (NameKind) {
259  case Sema::LookupOrdinaryName:
260  case Sema::LookupOperatorName:
261  case Sema::LookupRedeclarationWithLinkage:
262    IDNS = Decl::IDNS_Ordinary;
263    if (CPlusPlus) {
264      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member;
265      if (Redeclaration) IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend;
266    }
267    break;
268
269  case Sema::LookupTagName:
270    IDNS = Decl::IDNS_Tag;
271    if (CPlusPlus && Redeclaration)
272      IDNS |= Decl::IDNS_TagFriend;
273    break;
274
275  case Sema::LookupMemberName:
276    IDNS = Decl::IDNS_Member;
277    if (CPlusPlus)
278      IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary;
279    break;
280
281  case Sema::LookupNestedNameSpecifierName:
282  case Sema::LookupNamespaceName:
283    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member;
284    break;
285
286  case Sema::LookupUsingDeclName:
287    IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag
288         | Decl::IDNS_Member | Decl::IDNS_Using;
289    break;
290
291  case Sema::LookupObjCProtocolName:
292    IDNS = Decl::IDNS_ObjCProtocol;
293    break;
294
295  case Sema::LookupObjCImplementationName:
296    IDNS = Decl::IDNS_ObjCImplementation;
297    break;
298  }
299  return IDNS;
300}
301
302void LookupResult::configure() {
303  IDNS = getIDNS(LookupKind,
304                 SemaRef.getLangOptions().CPlusPlus,
305                 isForRedeclaration());
306  IsAcceptableFn = getResultFilter(LookupKind);
307}
308
309// Necessary because CXXBasePaths is not complete in Sema.h
310void LookupResult::deletePaths(CXXBasePaths *Paths) {
311  delete Paths;
312}
313
314/// Resolves the result kind of this lookup.
315void LookupResult::resolveKind() {
316  unsigned N = Decls.size();
317
318  // Fast case: no possible ambiguity.
319  if (N == 0) {
320    assert(ResultKind == NotFound);
321    return;
322  }
323
324  // If there's a single decl, we need to examine it to decide what
325  // kind of lookup this is.
326  if (N == 1) {
327    if (isa<FunctionTemplateDecl>(Decls[0]))
328      ResultKind = FoundOverloaded;
329    else if (isa<UnresolvedUsingValueDecl>(Decls[0]))
330      ResultKind = FoundUnresolvedValue;
331    return;
332  }
333
334  // Don't do any extra resolution if we've already resolved as ambiguous.
335  if (ResultKind == Ambiguous) return;
336
337  llvm::SmallPtrSet<NamedDecl*, 16> Unique;
338
339  bool Ambiguous = false;
340  bool HasTag = false, HasFunction = false, HasNonFunction = false;
341  bool HasFunctionTemplate = false, HasUnresolved = false;
342
343  unsigned UniqueTagIndex = 0;
344
345  unsigned I = 0;
346  while (I < N) {
347    NamedDecl *D = Decls[I]->getUnderlyingDecl();
348    D = cast<NamedDecl>(D->getCanonicalDecl());
349
350    if (!Unique.insert(D)) {
351      // If it's not unique, pull something off the back (and
352      // continue at this index).
353      Decls[I] = Decls[--N];
354    } else {
355      // Otherwise, do some decl type analysis and then continue.
356
357      if (isa<UnresolvedUsingValueDecl>(D)) {
358        HasUnresolved = true;
359      } else if (isa<TagDecl>(D)) {
360        if (HasTag)
361          Ambiguous = true;
362        UniqueTagIndex = I;
363        HasTag = true;
364      } else if (isa<FunctionTemplateDecl>(D)) {
365        HasFunction = true;
366        HasFunctionTemplate = true;
367      } else if (isa<FunctionDecl>(D)) {
368        HasFunction = true;
369      } else {
370        if (HasNonFunction)
371          Ambiguous = true;
372        HasNonFunction = true;
373      }
374      I++;
375    }
376  }
377
378  // C++ [basic.scope.hiding]p2:
379  //   A class name or enumeration name can be hidden by the name of
380  //   an object, function, or enumerator declared in the same
381  //   scope. If a class or enumeration name and an object, function,
382  //   or enumerator are declared in the same scope (in any order)
383  //   with the same name, the class or enumeration name is hidden
384  //   wherever the object, function, or enumerator name is visible.
385  // But it's still an error if there are distinct tag types found,
386  // even if they're not visible. (ref?)
387  if (HideTags && HasTag && !Ambiguous &&
388      (HasFunction || HasNonFunction || HasUnresolved))
389    Decls[UniqueTagIndex] = Decls[--N];
390
391  Decls.set_size(N);
392
393  if (HasNonFunction && (HasFunction || HasUnresolved))
394    Ambiguous = true;
395
396  if (Ambiguous)
397    setAmbiguous(LookupResult::AmbiguousReference);
398  else if (HasUnresolved)
399    ResultKind = LookupResult::FoundUnresolvedValue;
400  else if (N > 1 || HasFunctionTemplate)
401    ResultKind = LookupResult::FoundOverloaded;
402  else
403    ResultKind = LookupResult::Found;
404}
405
406void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) {
407  CXXBasePaths::paths_iterator I, E;
408  DeclContext::lookup_iterator DI, DE;
409  for (I = P.begin(), E = P.end(); I != E; ++I)
410    for (llvm::tie(DI,DE) = I->Decls; DI != DE; ++DI)
411      addDecl(*DI);
412}
413
414void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) {
415  Paths = new CXXBasePaths;
416  Paths->swap(P);
417  addDeclsFromBasePaths(*Paths);
418  resolveKind();
419  setAmbiguous(AmbiguousBaseSubobjects);
420}
421
422void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) {
423  Paths = new CXXBasePaths;
424  Paths->swap(P);
425  addDeclsFromBasePaths(*Paths);
426  resolveKind();
427  setAmbiguous(AmbiguousBaseSubobjectTypes);
428}
429
430void LookupResult::print(llvm::raw_ostream &Out) {
431  Out << Decls.size() << " result(s)";
432  if (isAmbiguous()) Out << ", ambiguous";
433  if (Paths) Out << ", base paths present";
434
435  for (iterator I = begin(), E = end(); I != E; ++I) {
436    Out << "\n";
437    (*I)->print(Out, 2);
438  }
439}
440
441// Adds all qualifying matches for a name within a decl context to the
442// given lookup result.  Returns true if any matches were found.
443static bool LookupDirect(LookupResult &R, const DeclContext *DC) {
444  bool Found = false;
445
446  DeclContext::lookup_const_iterator I, E;
447  for (llvm::tie(I, E) = DC->lookup(R.getLookupName()); I != E; ++I) {
448    if (R.isAcceptableDecl(*I)) {
449      R.addDecl(*I);
450      Found = true;
451    }
452  }
453
454  if (R.getLookupName().getNameKind()
455        == DeclarationName::CXXConversionFunctionName &&
456      !R.getLookupName().getCXXNameType()->isDependentType() &&
457      isa<CXXRecordDecl>(DC)) {
458    // C++ [temp.mem]p6:
459    //   A specialization of a conversion function template is not found by
460    //   name lookup. Instead, any conversion function templates visible in the
461    //   context of the use are considered. [...]
462    const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
463
464    const UnresolvedSet *Unresolved = Record->getConversionFunctions();
465    for (UnresolvedSet::iterator U = Unresolved->begin(),
466                              UEnd = Unresolved->end();
467         U != UEnd; ++U) {
468      FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U);
469      if (!ConvTemplate)
470        continue;
471
472      // When we're performing lookup for the purposes of redeclaration, just
473      // add the conversion function template. When we deduce template
474      // arguments for specializations, we'll end up unifying the return
475      // type of the new declaration with the type of the function template.
476      if (R.isForRedeclaration()) {
477        R.addDecl(ConvTemplate);
478        Found = true;
479        continue;
480      }
481
482      // C++ [temp.mem]p6:
483      //   [...] For each such operator, if argument deduction succeeds
484      //   (14.9.2.3), the resulting specialization is used as if found by
485      //   name lookup.
486      //
487      // When referencing a conversion function for any purpose other than
488      // a redeclaration (such that we'll be building an expression with the
489      // result), perform template argument deduction and place the
490      // specialization into the result set. We do this to avoid forcing all
491      // callers to perform special deduction for conversion functions.
492      Sema::TemplateDeductionInfo Info(R.getSema().Context);
493      FunctionDecl *Specialization = 0;
494
495      const FunctionProtoType *ConvProto
496        = ConvTemplate->getTemplatedDecl()->getType()
497                                                  ->getAs<FunctionProtoType>();
498      assert(ConvProto && "Nonsensical conversion function template type");
499
500      // Compute the type of the function that we would expect the conversion
501      // function to have, if it were to match the name given.
502      // FIXME: Calling convention!
503      QualType ExpectedType
504        = R.getSema().Context.getFunctionType(
505                                            R.getLookupName().getCXXNameType(),
506                                              0, 0, ConvProto->isVariadic(),
507                                              ConvProto->getTypeQuals(),
508                                              false, false, 0, 0,
509                                              ConvProto->getNoReturnAttr());
510
511      // Perform template argument deduction against the type that we would
512      // expect the function to have.
513      if (R.getSema().DeduceTemplateArguments(ConvTemplate, 0, ExpectedType,
514                                              Specialization, Info)
515            == Sema::TDK_Success) {
516        R.addDecl(Specialization);
517        Found = true;
518      }
519    }
520  }
521
522  return Found;
523}
524
525// Performs C++ unqualified lookup into the given file context.
526static bool
527CppNamespaceLookup(LookupResult &R, ASTContext &Context, DeclContext *NS,
528                   UnqualUsingDirectiveSet &UDirs) {
529
530  assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!");
531
532  // Perform direct name lookup into the LookupCtx.
533  bool Found = LookupDirect(R, NS);
534
535  // Perform direct name lookup into the namespaces nominated by the
536  // using directives whose common ancestor is this namespace.
537  UnqualUsingDirectiveSet::const_iterator UI, UEnd;
538  llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(NS);
539
540  for (; UI != UEnd; ++UI)
541    if (LookupDirect(R, UI->getNominatedNamespace()))
542      Found = true;
543
544  R.resolveKind();
545
546  return Found;
547}
548
549static bool isNamespaceOrTranslationUnitScope(Scope *S) {
550  if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity()))
551    return Ctx->isFileContext();
552  return false;
553}
554
555// Find the next outer declaration context corresponding to this scope.
556static DeclContext *findOuterContext(Scope *S) {
557  for (S = S->getParent(); S; S = S->getParent())
558    if (S->getEntity())
559      return static_cast<DeclContext *>(S->getEntity())->getPrimaryContext();
560
561  return 0;
562}
563
564bool Sema::CppLookupName(LookupResult &R, Scope *S) {
565  assert(getLangOptions().CPlusPlus && "Can perform only C++ lookup");
566
567  DeclarationName Name = R.getLookupName();
568
569  Scope *Initial = S;
570  IdentifierResolver::iterator
571    I = IdResolver.begin(Name),
572    IEnd = IdResolver.end();
573
574  // First we lookup local scope.
575  // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir]
576  // ...During unqualified name lookup (3.4.1), the names appear as if
577  // they were declared in the nearest enclosing namespace which contains
578  // both the using-directive and the nominated namespace.
579  // [Note: in this context, "contains" means "contains directly or
580  // indirectly".
581  //
582  // For example:
583  // namespace A { int i; }
584  // void foo() {
585  //   int i;
586  //   {
587  //     using namespace A;
588  //     ++i; // finds local 'i', A::i appears at global scope
589  //   }
590  // }
591  //
592  for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) {
593    // Check whether the IdResolver has anything in this scope.
594    bool Found = false;
595    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
596      if (R.isAcceptableDecl(*I)) {
597        Found = true;
598        R.addDecl(*I);
599      }
600    }
601    if (Found) {
602      R.resolveKind();
603      return true;
604    }
605
606    if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) {
607      DeclContext *OuterCtx = findOuterContext(S);
608      for (; Ctx && Ctx->getPrimaryContext() != OuterCtx;
609           Ctx = Ctx->getLookupParent()) {
610        // We do not directly look into function or method contexts
611        // (since all local variables are found via the identifier
612        // changes) or in transparent contexts (since those entities
613        // will be found in the nearest enclosing non-transparent
614        // context).
615        if (Ctx->isFunctionOrMethod() || Ctx->isTransparentContext())
616          continue;
617
618        // Perform qualified name lookup into this context.
619        // FIXME: In some cases, we know that every name that could be found by
620        // this qualified name lookup will also be on the identifier chain. For
621        // example, inside a class without any base classes, we never need to
622        // perform qualified lookup because all of the members are on top of the
623        // identifier chain.
624        if (LookupQualifiedName(R, Ctx))
625          return true;
626      }
627    }
628  }
629
630  // Stop if we ran out of scopes.
631  // FIXME:  This really, really shouldn't be happening.
632  if (!S) return false;
633
634  // Collect UsingDirectiveDecls in all scopes, and recursively all
635  // nominated namespaces by those using-directives.
636  //
637  // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we
638  // don't build it for each lookup!
639
640  UnqualUsingDirectiveSet UDirs;
641  UDirs.visitScopeChain(Initial, S);
642  UDirs.done();
643
644  // Lookup namespace scope, and global scope.
645  // Unqualified name lookup in C++ requires looking into scopes
646  // that aren't strictly lexical, and therefore we walk through the
647  // context as well as walking through the scopes.
648
649  for (; S; S = S->getParent()) {
650    DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
651    if (Ctx->isTransparentContext())
652      continue;
653
654    assert(Ctx && Ctx->isFileContext() &&
655           "We should have been looking only at file context here already.");
656
657    // Check whether the IdResolver has anything in this scope.
658    bool Found = false;
659    for (; I != IEnd && S->isDeclScope(DeclPtrTy::make(*I)); ++I) {
660      if (R.isAcceptableDecl(*I)) {
661        // We found something.  Look for anything else in our scope
662        // with this same name and in an acceptable identifier
663        // namespace, so that we can construct an overload set if we
664        // need to.
665        Found = true;
666        R.addDecl(*I);
667      }
668    }
669
670    // Look into context considering using-directives.
671    if (CppNamespaceLookup(R, Context, Ctx, UDirs))
672      Found = true;
673
674    if (Found) {
675      R.resolveKind();
676      return true;
677    }
678
679    if (R.isForRedeclaration() && !Ctx->isTransparentContext())
680      return false;
681  }
682
683  return !R.empty();
684}
685
686/// @brief Perform unqualified name lookup starting from a given
687/// scope.
688///
689/// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is
690/// used to find names within the current scope. For example, 'x' in
691/// @code
692/// int x;
693/// int f() {
694///   return x; // unqualified name look finds 'x' in the global scope
695/// }
696/// @endcode
697///
698/// Different lookup criteria can find different names. For example, a
699/// particular scope can have both a struct and a function of the same
700/// name, and each can be found by certain lookup criteria. For more
701/// information about lookup criteria, see the documentation for the
702/// class LookupCriteria.
703///
704/// @param S        The scope from which unqualified name lookup will
705/// begin. If the lookup criteria permits, name lookup may also search
706/// in the parent scopes.
707///
708/// @param Name     The name of the entity that we are searching for.
709///
710/// @param Loc      If provided, the source location where we're performing
711/// name lookup. At present, this is only used to produce diagnostics when
712/// C library functions (like "malloc") are implicitly declared.
713///
714/// @returns The result of name lookup, which includes zero or more
715/// declarations and possibly additional information used to diagnose
716/// ambiguities.
717bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation) {
718  DeclarationName Name = R.getLookupName();
719  if (!Name) return false;
720
721  LookupNameKind NameKind = R.getLookupKind();
722
723  if (!getLangOptions().CPlusPlus) {
724    // Unqualified name lookup in C/Objective-C is purely lexical, so
725    // search in the declarations attached to the name.
726
727    if (NameKind == Sema::LookupRedeclarationWithLinkage) {
728      // Find the nearest non-transparent declaration scope.
729      while (!(S->getFlags() & Scope::DeclScope) ||
730             (S->getEntity() &&
731              static_cast<DeclContext *>(S->getEntity())
732                ->isTransparentContext()))
733        S = S->getParent();
734    }
735
736    unsigned IDNS = R.getIdentifierNamespace();
737
738    // Scan up the scope chain looking for a decl that matches this
739    // identifier that is in the appropriate namespace.  This search
740    // should not take long, as shadowing of names is uncommon, and
741    // deep shadowing is extremely uncommon.
742    bool LeftStartingScope = false;
743
744    for (IdentifierResolver::iterator I = IdResolver.begin(Name),
745                                   IEnd = IdResolver.end();
746         I != IEnd; ++I)
747      if ((*I)->isInIdentifierNamespace(IDNS)) {
748        if (NameKind == LookupRedeclarationWithLinkage) {
749          // Determine whether this (or a previous) declaration is
750          // out-of-scope.
751          if (!LeftStartingScope && !S->isDeclScope(DeclPtrTy::make(*I)))
752            LeftStartingScope = true;
753
754          // If we found something outside of our starting scope that
755          // does not have linkage, skip it.
756          if (LeftStartingScope && !((*I)->hasLinkage()))
757            continue;
758        }
759
760        R.addDecl(*I);
761
762        if ((*I)->getAttr<OverloadableAttr>()) {
763          // If this declaration has the "overloadable" attribute, we
764          // might have a set of overloaded functions.
765
766          // Figure out what scope the identifier is in.
767          while (!(S->getFlags() & Scope::DeclScope) ||
768                 !S->isDeclScope(DeclPtrTy::make(*I)))
769            S = S->getParent();
770
771          // Find the last declaration in this scope (with the same
772          // name, naturally).
773          IdentifierResolver::iterator LastI = I;
774          for (++LastI; LastI != IEnd; ++LastI) {
775            if (!S->isDeclScope(DeclPtrTy::make(*LastI)))
776              break;
777            R.addDecl(*LastI);
778          }
779        }
780
781        R.resolveKind();
782
783        return true;
784      }
785  } else {
786    // Perform C++ unqualified name lookup.
787    if (CppLookupName(R, S))
788      return true;
789  }
790
791  // If we didn't find a use of this identifier, and if the identifier
792  // corresponds to a compiler builtin, create the decl object for the builtin
793  // now, injecting it into translation unit scope, and return it.
794  if (NameKind == LookupOrdinaryName ||
795      NameKind == LookupRedeclarationWithLinkage) {
796    IdentifierInfo *II = Name.getAsIdentifierInfo();
797    if (II && AllowBuiltinCreation) {
798      // If this is a builtin on this (or all) targets, create the decl.
799      if (unsigned BuiltinID = II->getBuiltinID()) {
800        // In C++, we don't have any predefined library functions like
801        // 'malloc'. Instead, we'll just error.
802        if (getLangOptions().CPlusPlus &&
803            Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
804          return false;
805
806        NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
807                                           S, R.isForRedeclaration(),
808                                           R.getNameLoc());
809        if (D) R.addDecl(D);
810        return (D != NULL);
811      }
812    }
813  }
814  return false;
815}
816
817/// @brief Perform qualified name lookup in the namespaces nominated by
818/// using directives by the given context.
819///
820/// C++98 [namespace.qual]p2:
821///   Given X::m (where X is a user-declared namespace), or given ::m
822///   (where X is the global namespace), let S be the set of all
823///   declarations of m in X and in the transitive closure of all
824///   namespaces nominated by using-directives in X and its used
825///   namespaces, except that using-directives are ignored in any
826///   namespace, including X, directly containing one or more
827///   declarations of m. No namespace is searched more than once in
828///   the lookup of a name. If S is the empty set, the program is
829///   ill-formed. Otherwise, if S has exactly one member, or if the
830///   context of the reference is a using-declaration
831///   (namespace.udecl), S is the required set of declarations of
832///   m. Otherwise if the use of m is not one that allows a unique
833///   declaration to be chosen from S, the program is ill-formed.
834/// C++98 [namespace.qual]p5:
835///   During the lookup of a qualified namespace member name, if the
836///   lookup finds more than one declaration of the member, and if one
837///   declaration introduces a class name or enumeration name and the
838///   other declarations either introduce the same object, the same
839///   enumerator or a set of functions, the non-type name hides the
840///   class or enumeration name if and only if the declarations are
841///   from the same namespace; otherwise (the declarations are from
842///   different namespaces), the program is ill-formed.
843static bool LookupQualifiedNameInUsingDirectives(LookupResult &R,
844                                                 DeclContext *StartDC) {
845  assert(StartDC->isFileContext() && "start context is not a file context");
846
847  DeclContext::udir_iterator I = StartDC->using_directives_begin();
848  DeclContext::udir_iterator E = StartDC->using_directives_end();
849
850  if (I == E) return false;
851
852  // We have at least added all these contexts to the queue.
853  llvm::DenseSet<DeclContext*> Visited;
854  Visited.insert(StartDC);
855
856  // We have not yet looked into these namespaces, much less added
857  // their "using-children" to the queue.
858  llvm::SmallVector<NamespaceDecl*, 8> Queue;
859
860  // We have already looked into the initial namespace; seed the queue
861  // with its using-children.
862  for (; I != E; ++I) {
863    NamespaceDecl *ND = (*I)->getNominatedNamespace()->getOriginalNamespace();
864    if (Visited.insert(ND).second)
865      Queue.push_back(ND);
866  }
867
868  // The easiest way to implement the restriction in [namespace.qual]p5
869  // is to check whether any of the individual results found a tag
870  // and, if so, to declare an ambiguity if the final result is not
871  // a tag.
872  bool FoundTag = false;
873  bool FoundNonTag = false;
874
875  LookupResult LocalR(LookupResult::Temporary, R);
876
877  bool Found = false;
878  while (!Queue.empty()) {
879    NamespaceDecl *ND = Queue.back();
880    Queue.pop_back();
881
882    // We go through some convolutions here to avoid copying results
883    // between LookupResults.
884    bool UseLocal = !R.empty();
885    LookupResult &DirectR = UseLocal ? LocalR : R;
886    bool FoundDirect = LookupDirect(DirectR, ND);
887
888    if (FoundDirect) {
889      // First do any local hiding.
890      DirectR.resolveKind();
891
892      // If the local result is a tag, remember that.
893      if (DirectR.isSingleTagDecl())
894        FoundTag = true;
895      else
896        FoundNonTag = true;
897
898      // Append the local results to the total results if necessary.
899      if (UseLocal) {
900        R.addAllDecls(LocalR);
901        LocalR.clear();
902      }
903    }
904
905    // If we find names in this namespace, ignore its using directives.
906    if (FoundDirect) {
907      Found = true;
908      continue;
909    }
910
911    for (llvm::tie(I,E) = ND->getUsingDirectives(); I != E; ++I) {
912      NamespaceDecl *Nom = (*I)->getNominatedNamespace();
913      if (Visited.insert(Nom).second)
914        Queue.push_back(Nom);
915    }
916  }
917
918  if (Found) {
919    if (FoundTag && FoundNonTag)
920      R.setAmbiguousQualifiedTagHiding();
921    else
922      R.resolveKind();
923  }
924
925  return Found;
926}
927
928/// @brief Perform qualified name lookup into a given context.
929///
930/// Qualified name lookup (C++ [basic.lookup.qual]) is used to find
931/// names when the context of those names is explicit specified, e.g.,
932/// "std::vector" or "x->member".
933///
934/// Different lookup criteria can find different names. For example, a
935/// particular scope can have both a struct and a function of the same
936/// name, and each can be found by certain lookup criteria. For more
937/// information about lookup criteria, see the documentation for the
938/// class LookupCriteria.
939///
940/// @param LookupCtx The context in which qualified name lookup will
941/// search. If the lookup criteria permits, name lookup may also search
942/// in the parent contexts or (for C++ classes) base classes.
943///
944/// @param Name     The name of the entity that we are searching for.
945///
946/// @param Criteria The criteria that this routine will use to
947/// determine which names are visible and which names will be
948/// found. Note that name lookup will find a name that is visible by
949/// the given criteria, but the entity itself may not be semantically
950/// correct or even the kind of entity expected based on the
951/// lookup. For example, searching for a nested-name-specifier name
952/// might result in an EnumDecl, which is visible but is not permitted
953/// as a nested-name-specifier in C++03.
954///
955/// @returns The result of name lookup, which includes zero or more
956/// declarations and possibly additional information used to diagnose
957/// ambiguities.
958bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx) {
959  assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context");
960
961  if (!R.getLookupName())
962    return false;
963
964  // Make sure that the declaration context is complete.
965  assert((!isa<TagDecl>(LookupCtx) ||
966          LookupCtx->isDependentContext() ||
967          cast<TagDecl>(LookupCtx)->isDefinition() ||
968          Context.getTypeDeclType(cast<TagDecl>(LookupCtx))->getAs<TagType>()
969            ->isBeingDefined()) &&
970         "Declaration context must already be complete!");
971
972  // Perform qualified name lookup into the LookupCtx.
973  if (LookupDirect(R, LookupCtx)) {
974    R.resolveKind();
975    return true;
976  }
977
978  // Don't descend into implied contexts for redeclarations.
979  // C++98 [namespace.qual]p6:
980  //   In a declaration for a namespace member in which the
981  //   declarator-id is a qualified-id, given that the qualified-id
982  //   for the namespace member has the form
983  //     nested-name-specifier unqualified-id
984  //   the unqualified-id shall name a member of the namespace
985  //   designated by the nested-name-specifier.
986  // See also [class.mfct]p5 and [class.static.data]p2.
987  if (R.isForRedeclaration())
988    return false;
989
990  // If this is a namespace, look it up in the implied namespaces.
991  if (LookupCtx->isFileContext())
992    return LookupQualifiedNameInUsingDirectives(R, LookupCtx);
993
994  // If this isn't a C++ class, we aren't allowed to look into base
995  // classes, we're done.
996  if (!isa<CXXRecordDecl>(LookupCtx))
997    return false;
998
999  // Perform lookup into our base classes.
1000  CXXRecordDecl *LookupRec = cast<CXXRecordDecl>(LookupCtx);
1001  CXXBasePaths Paths;
1002  Paths.setOrigin(LookupRec);
1003
1004  // Look for this member in our base classes
1005  CXXRecordDecl::BaseMatchesCallback *BaseCallback = 0;
1006  switch (R.getLookupKind()) {
1007    case LookupOrdinaryName:
1008    case LookupMemberName:
1009    case LookupRedeclarationWithLinkage:
1010      BaseCallback = &CXXRecordDecl::FindOrdinaryMember;
1011      break;
1012
1013    case LookupTagName:
1014      BaseCallback = &CXXRecordDecl::FindTagMember;
1015      break;
1016
1017    case LookupUsingDeclName:
1018      // This lookup is for redeclarations only.
1019
1020    case LookupOperatorName:
1021    case LookupNamespaceName:
1022    case LookupObjCProtocolName:
1023    case LookupObjCImplementationName:
1024      // These lookups will never find a member in a C++ class (or base class).
1025      return false;
1026
1027    case LookupNestedNameSpecifierName:
1028      BaseCallback = &CXXRecordDecl::FindNestedNameSpecifierMember;
1029      break;
1030  }
1031
1032  if (!LookupRec->lookupInBases(BaseCallback,
1033                                R.getLookupName().getAsOpaquePtr(), Paths))
1034    return false;
1035
1036  // C++ [class.member.lookup]p2:
1037  //   [...] If the resulting set of declarations are not all from
1038  //   sub-objects of the same type, or the set has a nonstatic member
1039  //   and includes members from distinct sub-objects, there is an
1040  //   ambiguity and the program is ill-formed. Otherwise that set is
1041  //   the result of the lookup.
1042  // FIXME: support using declarations!
1043  QualType SubobjectType;
1044  int SubobjectNumber = 0;
1045  for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end();
1046       Path != PathEnd; ++Path) {
1047    const CXXBasePathElement &PathElement = Path->back();
1048
1049    // Determine whether we're looking at a distinct sub-object or not.
1050    if (SubobjectType.isNull()) {
1051      // This is the first subobject we've looked at. Record its type.
1052      SubobjectType = Context.getCanonicalType(PathElement.Base->getType());
1053      SubobjectNumber = PathElement.SubobjectNumber;
1054    } else if (SubobjectType
1055                 != Context.getCanonicalType(PathElement.Base->getType())) {
1056      // We found members of the given name in two subobjects of
1057      // different types. This lookup is ambiguous.
1058      R.setAmbiguousBaseSubobjectTypes(Paths);
1059      return true;
1060    } else if (SubobjectNumber != PathElement.SubobjectNumber) {
1061      // We have a different subobject of the same type.
1062
1063      // C++ [class.member.lookup]p5:
1064      //   A static member, a nested type or an enumerator defined in
1065      //   a base class T can unambiguously be found even if an object
1066      //   has more than one base class subobject of type T.
1067      Decl *FirstDecl = *Path->Decls.first;
1068      if (isa<VarDecl>(FirstDecl) ||
1069          isa<TypeDecl>(FirstDecl) ||
1070          isa<EnumConstantDecl>(FirstDecl))
1071        continue;
1072
1073      if (isa<CXXMethodDecl>(FirstDecl)) {
1074        // Determine whether all of the methods are static.
1075        bool AllMethodsAreStatic = true;
1076        for (DeclContext::lookup_iterator Func = Path->Decls.first;
1077             Func != Path->Decls.second; ++Func) {
1078          if (!isa<CXXMethodDecl>(*Func)) {
1079            assert(isa<TagDecl>(*Func) && "Non-function must be a tag decl");
1080            break;
1081          }
1082
1083          if (!cast<CXXMethodDecl>(*Func)->isStatic()) {
1084            AllMethodsAreStatic = false;
1085            break;
1086          }
1087        }
1088
1089        if (AllMethodsAreStatic)
1090          continue;
1091      }
1092
1093      // We have found a nonstatic member name in multiple, distinct
1094      // subobjects. Name lookup is ambiguous.
1095      R.setAmbiguousBaseSubobjects(Paths);
1096      return true;
1097    }
1098  }
1099
1100  // Lookup in a base class succeeded; return these results.
1101
1102  DeclContext::lookup_iterator I, E;
1103  for (llvm::tie(I,E) = Paths.front().Decls; I != E; ++I)
1104    R.addDecl(*I);
1105  R.resolveKind();
1106  return true;
1107}
1108
1109/// @brief Performs name lookup for a name that was parsed in the
1110/// source code, and may contain a C++ scope specifier.
1111///
1112/// This routine is a convenience routine meant to be called from
1113/// contexts that receive a name and an optional C++ scope specifier
1114/// (e.g., "N::M::x"). It will then perform either qualified or
1115/// unqualified name lookup (with LookupQualifiedName or LookupName,
1116/// respectively) on the given name and return those results.
1117///
1118/// @param S        The scope from which unqualified name lookup will
1119/// begin.
1120///
1121/// @param SS       An optional C++ scope-specifier, e.g., "::N::M".
1122///
1123/// @param Name     The name of the entity that name lookup will
1124/// search for.
1125///
1126/// @param Loc      If provided, the source location where we're performing
1127/// name lookup. At present, this is only used to produce diagnostics when
1128/// C library functions (like "malloc") are implicitly declared.
1129///
1130/// @param EnteringContext Indicates whether we are going to enter the
1131/// context of the scope-specifier SS (if present).
1132///
1133/// @returns True if any decls were found (but possibly ambiguous)
1134bool Sema::LookupParsedName(LookupResult &R, Scope *S, const CXXScopeSpec *SS,
1135                            bool AllowBuiltinCreation, bool EnteringContext) {
1136  if (SS && SS->isInvalid()) {
1137    // When the scope specifier is invalid, don't even look for
1138    // anything.
1139    return false;
1140  }
1141
1142  if (SS && SS->isSet()) {
1143    if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) {
1144      // We have resolved the scope specifier to a particular declaration
1145      // contex, and will perform name lookup in that context.
1146      if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS))
1147        return false;
1148
1149      R.setContextRange(SS->getRange());
1150
1151      return LookupQualifiedName(R, DC);
1152    }
1153
1154    // We could not resolve the scope specified to a specific declaration
1155    // context, which means that SS refers to an unknown specialization.
1156    // Name lookup can't find anything in this case.
1157    return false;
1158  }
1159
1160  // Perform unqualified name lookup starting in the given scope.
1161  return LookupName(R, S, AllowBuiltinCreation);
1162}
1163
1164
1165/// @brief Produce a diagnostic describing the ambiguity that resulted
1166/// from name lookup.
1167///
1168/// @param Result       The ambiguous name lookup result.
1169///
1170/// @param Name         The name of the entity that name lookup was
1171/// searching for.
1172///
1173/// @param NameLoc      The location of the name within the source code.
1174///
1175/// @param LookupRange  A source range that provides more
1176/// source-location information concerning the lookup itself. For
1177/// example, this range might highlight a nested-name-specifier that
1178/// precedes the name.
1179///
1180/// @returns true
1181bool Sema::DiagnoseAmbiguousLookup(LookupResult &Result) {
1182  assert(Result.isAmbiguous() && "Lookup result must be ambiguous");
1183
1184  DeclarationName Name = Result.getLookupName();
1185  SourceLocation NameLoc = Result.getNameLoc();
1186  SourceRange LookupRange = Result.getContextRange();
1187
1188  switch (Result.getAmbiguityKind()) {
1189  case LookupResult::AmbiguousBaseSubobjects: {
1190    CXXBasePaths *Paths = Result.getBasePaths();
1191    QualType SubobjectType = Paths->front().back().Base->getType();
1192    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects)
1193      << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths)
1194      << LookupRange;
1195
1196    DeclContext::lookup_iterator Found = Paths->front().Decls.first;
1197    while (isa<CXXMethodDecl>(*Found) &&
1198           cast<CXXMethodDecl>(*Found)->isStatic())
1199      ++Found;
1200
1201    Diag((*Found)->getLocation(), diag::note_ambiguous_member_found);
1202
1203    return true;
1204  }
1205
1206  case LookupResult::AmbiguousBaseSubobjectTypes: {
1207    Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types)
1208      << Name << LookupRange;
1209
1210    CXXBasePaths *Paths = Result.getBasePaths();
1211    std::set<Decl *> DeclsPrinted;
1212    for (CXXBasePaths::paths_iterator Path = Paths->begin(),
1213                                      PathEnd = Paths->end();
1214         Path != PathEnd; ++Path) {
1215      Decl *D = *Path->Decls.first;
1216      if (DeclsPrinted.insert(D).second)
1217        Diag(D->getLocation(), diag::note_ambiguous_member_found);
1218    }
1219
1220    return true;
1221  }
1222
1223  case LookupResult::AmbiguousTagHiding: {
1224    Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange;
1225
1226    llvm::SmallPtrSet<NamedDecl*,8> TagDecls;
1227
1228    LookupResult::iterator DI, DE = Result.end();
1229    for (DI = Result.begin(); DI != DE; ++DI)
1230      if (TagDecl *TD = dyn_cast<TagDecl>(*DI)) {
1231        TagDecls.insert(TD);
1232        Diag(TD->getLocation(), diag::note_hidden_tag);
1233      }
1234
1235    for (DI = Result.begin(); DI != DE; ++DI)
1236      if (!isa<TagDecl>(*DI))
1237        Diag((*DI)->getLocation(), diag::note_hiding_object);
1238
1239    // For recovery purposes, go ahead and implement the hiding.
1240    Result.hideDecls(TagDecls);
1241
1242    return true;
1243  }
1244
1245  case LookupResult::AmbiguousReference: {
1246    Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange;
1247
1248    LookupResult::iterator DI = Result.begin(), DE = Result.end();
1249    for (; DI != DE; ++DI)
1250      Diag((*DI)->getLocation(), diag::note_ambiguous_candidate) << *DI;
1251
1252    return true;
1253  }
1254  }
1255
1256  llvm_unreachable("unknown ambiguity kind");
1257  return true;
1258}
1259
1260static void
1261addAssociatedClassesAndNamespaces(QualType T,
1262                                  ASTContext &Context,
1263                          Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1264                                  Sema::AssociatedClassSet &AssociatedClasses);
1265
1266static void CollectNamespace(Sema::AssociatedNamespaceSet &Namespaces,
1267                             DeclContext *Ctx) {
1268  if (Ctx->isFileContext())
1269    Namespaces.insert(Ctx);
1270}
1271
1272// \brief Add the associated classes and namespaces for argument-dependent
1273// lookup that involves a template argument (C++ [basic.lookup.koenig]p2).
1274static void
1275addAssociatedClassesAndNamespaces(const TemplateArgument &Arg,
1276                                  ASTContext &Context,
1277                           Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1278                                  Sema::AssociatedClassSet &AssociatedClasses) {
1279  // C++ [basic.lookup.koenig]p2, last bullet:
1280  //   -- [...] ;
1281  switch (Arg.getKind()) {
1282    case TemplateArgument::Null:
1283      break;
1284
1285    case TemplateArgument::Type:
1286      // [...] the namespaces and classes associated with the types of the
1287      // template arguments provided for template type parameters (excluding
1288      // template template parameters)
1289      addAssociatedClassesAndNamespaces(Arg.getAsType(), Context,
1290                                        AssociatedNamespaces,
1291                                        AssociatedClasses);
1292      break;
1293
1294    case TemplateArgument::Template: {
1295      // [...] the namespaces in which any template template arguments are
1296      // defined; and the classes in which any member templates used as
1297      // template template arguments are defined.
1298      TemplateName Template = Arg.getAsTemplate();
1299      if (ClassTemplateDecl *ClassTemplate
1300                 = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) {
1301        DeclContext *Ctx = ClassTemplate->getDeclContext();
1302        if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1303          AssociatedClasses.insert(EnclosingClass);
1304        // Add the associated namespace for this class.
1305        while (Ctx->isRecord())
1306          Ctx = Ctx->getParent();
1307        CollectNamespace(AssociatedNamespaces, Ctx);
1308      }
1309      break;
1310    }
1311
1312    case TemplateArgument::Declaration:
1313    case TemplateArgument::Integral:
1314    case TemplateArgument::Expression:
1315      // [Note: non-type template arguments do not contribute to the set of
1316      //  associated namespaces. ]
1317      break;
1318
1319    case TemplateArgument::Pack:
1320      for (TemplateArgument::pack_iterator P = Arg.pack_begin(),
1321                                        PEnd = Arg.pack_end();
1322           P != PEnd; ++P)
1323        addAssociatedClassesAndNamespaces(*P, Context,
1324                                          AssociatedNamespaces,
1325                                          AssociatedClasses);
1326      break;
1327  }
1328}
1329
1330// \brief Add the associated classes and namespaces for
1331// argument-dependent lookup with an argument of class type
1332// (C++ [basic.lookup.koenig]p2).
1333static void
1334addAssociatedClassesAndNamespaces(CXXRecordDecl *Class,
1335                                  ASTContext &Context,
1336                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1337                            Sema::AssociatedClassSet &AssociatedClasses) {
1338  // C++ [basic.lookup.koenig]p2:
1339  //   [...]
1340  //     -- If T is a class type (including unions), its associated
1341  //        classes are: the class itself; the class of which it is a
1342  //        member, if any; and its direct and indirect base
1343  //        classes. Its associated namespaces are the namespaces in
1344  //        which its associated classes are defined.
1345
1346  // Add the class of which it is a member, if any.
1347  DeclContext *Ctx = Class->getDeclContext();
1348  if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1349    AssociatedClasses.insert(EnclosingClass);
1350  // Add the associated namespace for this class.
1351  while (Ctx->isRecord())
1352    Ctx = Ctx->getParent();
1353  CollectNamespace(AssociatedNamespaces, Ctx);
1354
1355  // Add the class itself. If we've already seen this class, we don't
1356  // need to visit base classes.
1357  if (!AssociatedClasses.insert(Class))
1358    return;
1359
1360  // -- If T is a template-id, its associated namespaces and classes are
1361  //    the namespace in which the template is defined; for member
1362  //    templates, the member template’s class; the namespaces and classes
1363  //    associated with the types of the template arguments provided for
1364  //    template type parameters (excluding template template parameters); the
1365  //    namespaces in which any template template arguments are defined; and
1366  //    the classes in which any member templates used as template template
1367  //    arguments are defined. [Note: non-type template arguments do not
1368  //    contribute to the set of associated namespaces. ]
1369  if (ClassTemplateSpecializationDecl *Spec
1370        = dyn_cast<ClassTemplateSpecializationDecl>(Class)) {
1371    DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext();
1372    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1373      AssociatedClasses.insert(EnclosingClass);
1374    // Add the associated namespace for this class.
1375    while (Ctx->isRecord())
1376      Ctx = Ctx->getParent();
1377    CollectNamespace(AssociatedNamespaces, Ctx);
1378
1379    const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1380    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
1381      addAssociatedClassesAndNamespaces(TemplateArgs[I], Context,
1382                                        AssociatedNamespaces,
1383                                        AssociatedClasses);
1384  }
1385
1386  // Add direct and indirect base classes along with their associated
1387  // namespaces.
1388  llvm::SmallVector<CXXRecordDecl *, 32> Bases;
1389  Bases.push_back(Class);
1390  while (!Bases.empty()) {
1391    // Pop this class off the stack.
1392    Class = Bases.back();
1393    Bases.pop_back();
1394
1395    // Visit the base classes.
1396    for (CXXRecordDecl::base_class_iterator Base = Class->bases_begin(),
1397                                         BaseEnd = Class->bases_end();
1398         Base != BaseEnd; ++Base) {
1399      const RecordType *BaseType = Base->getType()->getAs<RecordType>();
1400      // In dependent contexts, we do ADL twice, and the first time around,
1401      // the base type might be a dependent TemplateSpecializationType, or a
1402      // TemplateTypeParmType. If that happens, simply ignore it.
1403      // FIXME: If we want to support export, we probably need to add the
1404      // namespace of the template in a TemplateSpecializationType, or even
1405      // the classes and namespaces of known non-dependent arguments.
1406      if (!BaseType)
1407        continue;
1408      CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl());
1409      if (AssociatedClasses.insert(BaseDecl)) {
1410        // Find the associated namespace for this base class.
1411        DeclContext *BaseCtx = BaseDecl->getDeclContext();
1412        while (BaseCtx->isRecord())
1413          BaseCtx = BaseCtx->getParent();
1414        CollectNamespace(AssociatedNamespaces, BaseCtx);
1415
1416        // Make sure we visit the bases of this base class.
1417        if (BaseDecl->bases_begin() != BaseDecl->bases_end())
1418          Bases.push_back(BaseDecl);
1419      }
1420    }
1421  }
1422}
1423
1424// \brief Add the associated classes and namespaces for
1425// argument-dependent lookup with an argument of type T
1426// (C++ [basic.lookup.koenig]p2).
1427static void
1428addAssociatedClassesAndNamespaces(QualType T,
1429                                  ASTContext &Context,
1430                            Sema::AssociatedNamespaceSet &AssociatedNamespaces,
1431                                  Sema::AssociatedClassSet &AssociatedClasses) {
1432  // C++ [basic.lookup.koenig]p2:
1433  //
1434  //   For each argument type T in the function call, there is a set
1435  //   of zero or more associated namespaces and a set of zero or more
1436  //   associated classes to be considered. The sets of namespaces and
1437  //   classes is determined entirely by the types of the function
1438  //   arguments (and the namespace of any template template
1439  //   argument). Typedef names and using-declarations used to specify
1440  //   the types do not contribute to this set. The sets of namespaces
1441  //   and classes are determined in the following way:
1442  T = Context.getCanonicalType(T).getUnqualifiedType();
1443
1444  //    -- If T is a pointer to U or an array of U, its associated
1445  //       namespaces and classes are those associated with U.
1446  //
1447  // We handle this by unwrapping pointer and array types immediately,
1448  // to avoid unnecessary recursion.
1449  while (true) {
1450    if (const PointerType *Ptr = T->getAs<PointerType>())
1451      T = Ptr->getPointeeType();
1452    else if (const ArrayType *Ptr = Context.getAsArrayType(T))
1453      T = Ptr->getElementType();
1454    else
1455      break;
1456  }
1457
1458  //     -- If T is a fundamental type, its associated sets of
1459  //        namespaces and classes are both empty.
1460  if (T->getAs<BuiltinType>())
1461    return;
1462
1463  //     -- If T is a class type (including unions), its associated
1464  //        classes are: the class itself; the class of which it is a
1465  //        member, if any; and its direct and indirect base
1466  //        classes. Its associated namespaces are the namespaces in
1467  //        which its associated classes are defined.
1468  if (const RecordType *ClassType = T->getAs<RecordType>())
1469    if (CXXRecordDecl *ClassDecl
1470        = dyn_cast<CXXRecordDecl>(ClassType->getDecl())) {
1471      addAssociatedClassesAndNamespaces(ClassDecl, Context,
1472                                        AssociatedNamespaces,
1473                                        AssociatedClasses);
1474      return;
1475    }
1476
1477  //     -- If T is an enumeration type, its associated namespace is
1478  //        the namespace in which it is defined. If it is class
1479  //        member, its associated class is the member’s class; else
1480  //        it has no associated class.
1481  if (const EnumType *EnumT = T->getAs<EnumType>()) {
1482    EnumDecl *Enum = EnumT->getDecl();
1483
1484    DeclContext *Ctx = Enum->getDeclContext();
1485    if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx))
1486      AssociatedClasses.insert(EnclosingClass);
1487
1488    // Add the associated namespace for this class.
1489    while (Ctx->isRecord())
1490      Ctx = Ctx->getParent();
1491    CollectNamespace(AssociatedNamespaces, Ctx);
1492
1493    return;
1494  }
1495
1496  //     -- If T is a function type, its associated namespaces and
1497  //        classes are those associated with the function parameter
1498  //        types and those associated with the return type.
1499  if (const FunctionType *FnType = T->getAs<FunctionType>()) {
1500    // Return type
1501    addAssociatedClassesAndNamespaces(FnType->getResultType(),
1502                                      Context,
1503                                      AssociatedNamespaces, AssociatedClasses);
1504
1505    const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
1506    if (!Proto)
1507      return;
1508
1509    // Argument types
1510    for (FunctionProtoType::arg_type_iterator Arg = Proto->arg_type_begin(),
1511                                           ArgEnd = Proto->arg_type_end();
1512         Arg != ArgEnd; ++Arg)
1513      addAssociatedClassesAndNamespaces(*Arg, Context,
1514                                        AssociatedNamespaces, AssociatedClasses);
1515
1516    return;
1517  }
1518
1519  //     -- If T is a pointer to a member function of a class X, its
1520  //        associated namespaces and classes are those associated
1521  //        with the function parameter types and return type,
1522  //        together with those associated with X.
1523  //
1524  //     -- If T is a pointer to a data member of class X, its
1525  //        associated namespaces and classes are those associated
1526  //        with the member type together with those associated with
1527  //        X.
1528  if (const MemberPointerType *MemberPtr = T->getAs<MemberPointerType>()) {
1529    // Handle the type that the pointer to member points to.
1530    addAssociatedClassesAndNamespaces(MemberPtr->getPointeeType(),
1531                                      Context,
1532                                      AssociatedNamespaces,
1533                                      AssociatedClasses);
1534
1535    // Handle the class type into which this points.
1536    if (const RecordType *Class = MemberPtr->getClass()->getAs<RecordType>())
1537      addAssociatedClassesAndNamespaces(cast<CXXRecordDecl>(Class->getDecl()),
1538                                        Context,
1539                                        AssociatedNamespaces,
1540                                        AssociatedClasses);
1541
1542    return;
1543  }
1544
1545  // FIXME: What about block pointers?
1546  // FIXME: What about Objective-C message sends?
1547}
1548
1549/// \brief Find the associated classes and namespaces for
1550/// argument-dependent lookup for a call with the given set of
1551/// arguments.
1552///
1553/// This routine computes the sets of associated classes and associated
1554/// namespaces searched by argument-dependent lookup
1555/// (C++ [basic.lookup.argdep]) for a given set of arguments.
1556void
1557Sema::FindAssociatedClassesAndNamespaces(Expr **Args, unsigned NumArgs,
1558                                 AssociatedNamespaceSet &AssociatedNamespaces,
1559                                 AssociatedClassSet &AssociatedClasses) {
1560  AssociatedNamespaces.clear();
1561  AssociatedClasses.clear();
1562
1563  // C++ [basic.lookup.koenig]p2:
1564  //   For each argument type T in the function call, there is a set
1565  //   of zero or more associated namespaces and a set of zero or more
1566  //   associated classes to be considered. The sets of namespaces and
1567  //   classes is determined entirely by the types of the function
1568  //   arguments (and the namespace of any template template
1569  //   argument).
1570  for (unsigned ArgIdx = 0; ArgIdx != NumArgs; ++ArgIdx) {
1571    Expr *Arg = Args[ArgIdx];
1572
1573    if (Arg->getType() != Context.OverloadTy) {
1574      addAssociatedClassesAndNamespaces(Arg->getType(), Context,
1575                                        AssociatedNamespaces,
1576                                        AssociatedClasses);
1577      continue;
1578    }
1579
1580    // [...] In addition, if the argument is the name or address of a
1581    // set of overloaded functions and/or function templates, its
1582    // associated classes and namespaces are the union of those
1583    // associated with each of the members of the set: the namespace
1584    // in which the function or function template is defined and the
1585    // classes and namespaces associated with its (non-dependent)
1586    // parameter types and return type.
1587    Arg = Arg->IgnoreParens();
1588    if (UnaryOperator *unaryOp = dyn_cast<UnaryOperator>(Arg))
1589      if (unaryOp->getOpcode() == UnaryOperator::AddrOf)
1590        Arg = unaryOp->getSubExpr();
1591
1592    // TODO: avoid the copies.  This should be easy when the cases
1593    // share a storage implementation.
1594    llvm::SmallVector<NamedDecl*, 8> Functions;
1595
1596    if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(Arg))
1597      Functions.append(ULE->decls_begin(), ULE->decls_end());
1598    else
1599      continue;
1600
1601    for (llvm::SmallVectorImpl<NamedDecl*>::iterator I = Functions.begin(),
1602           E = Functions.end(); I != E; ++I) {
1603      // Look through any using declarations to find the underlying function.
1604      NamedDecl *Fn = (*I)->getUnderlyingDecl();
1605
1606      FunctionDecl *FDecl = dyn_cast<FunctionDecl>(Fn);
1607      if (!FDecl)
1608        FDecl = cast<FunctionTemplateDecl>(Fn)->getTemplatedDecl();
1609
1610      // Add the classes and namespaces associated with the parameter
1611      // types and return type of this function.
1612      addAssociatedClassesAndNamespaces(FDecl->getType(), Context,
1613                                        AssociatedNamespaces,
1614                                        AssociatedClasses);
1615    }
1616  }
1617}
1618
1619/// IsAcceptableNonMemberOperatorCandidate - Determine whether Fn is
1620/// an acceptable non-member overloaded operator for a call whose
1621/// arguments have types T1 (and, if non-empty, T2). This routine
1622/// implements the check in C++ [over.match.oper]p3b2 concerning
1623/// enumeration types.
1624static bool
1625IsAcceptableNonMemberOperatorCandidate(FunctionDecl *Fn,
1626                                       QualType T1, QualType T2,
1627                                       ASTContext &Context) {
1628  if (T1->isDependentType() || (!T2.isNull() && T2->isDependentType()))
1629    return true;
1630
1631  if (T1->isRecordType() || (!T2.isNull() && T2->isRecordType()))
1632    return true;
1633
1634  const FunctionProtoType *Proto = Fn->getType()->getAs<FunctionProtoType>();
1635  if (Proto->getNumArgs() < 1)
1636    return false;
1637
1638  if (T1->isEnumeralType()) {
1639    QualType ArgType = Proto->getArgType(0).getNonReferenceType();
1640    if (Context.hasSameUnqualifiedType(T1, ArgType))
1641      return true;
1642  }
1643
1644  if (Proto->getNumArgs() < 2)
1645    return false;
1646
1647  if (!T2.isNull() && T2->isEnumeralType()) {
1648    QualType ArgType = Proto->getArgType(1).getNonReferenceType();
1649    if (Context.hasSameUnqualifiedType(T2, ArgType))
1650      return true;
1651  }
1652
1653  return false;
1654}
1655
1656NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name,
1657                                  LookupNameKind NameKind,
1658                                  RedeclarationKind Redecl) {
1659  LookupResult R(*this, Name, SourceLocation(), NameKind, Redecl);
1660  LookupName(R, S);
1661  return R.getAsSingle<NamedDecl>();
1662}
1663
1664/// \brief Find the protocol with the given name, if any.
1665ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II) {
1666  Decl *D = LookupSingleName(TUScope, II, LookupObjCProtocolName);
1667  return cast_or_null<ObjCProtocolDecl>(D);
1668}
1669
1670void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S,
1671                                        QualType T1, QualType T2,
1672                                        FunctionSet &Functions) {
1673  // C++ [over.match.oper]p3:
1674  //     -- The set of non-member candidates is the result of the
1675  //        unqualified lookup of operator@ in the context of the
1676  //        expression according to the usual rules for name lookup in
1677  //        unqualified function calls (3.4.2) except that all member
1678  //        functions are ignored. However, if no operand has a class
1679  //        type, only those non-member functions in the lookup set
1680  //        that have a first parameter of type T1 or "reference to
1681  //        (possibly cv-qualified) T1", when T1 is an enumeration
1682  //        type, or (if there is a right operand) a second parameter
1683  //        of type T2 or "reference to (possibly cv-qualified) T2",
1684  //        when T2 is an enumeration type, are candidate functions.
1685  DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op);
1686  LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName);
1687  LookupName(Operators, S);
1688
1689  assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous");
1690
1691  if (Operators.empty())
1692    return;
1693
1694  for (LookupResult::iterator Op = Operators.begin(), OpEnd = Operators.end();
1695       Op != OpEnd; ++Op) {
1696    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Op)) {
1697      if (IsAcceptableNonMemberOperatorCandidate(FD, T1, T2, Context))
1698        Functions.insert(FD); // FIXME: canonical FD
1699    } else if (FunctionTemplateDecl *FunTmpl
1700                 = dyn_cast<FunctionTemplateDecl>(*Op)) {
1701      // FIXME: friend operators?
1702      // FIXME: do we need to check IsAcceptableNonMemberOperatorCandidate,
1703      // later?
1704      if (!FunTmpl->getDeclContext()->isRecord())
1705        Functions.insert(FunTmpl);
1706    }
1707  }
1708}
1709
1710static void CollectFunctionDecl(Sema::FunctionSet &Functions,
1711                                Decl *D) {
1712  if (FunctionDecl *Func = dyn_cast<FunctionDecl>(D))
1713    Functions.insert(Func);
1714  else if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
1715    Functions.insert(FunTmpl);
1716}
1717
1718void Sema::ArgumentDependentLookup(DeclarationName Name, bool Operator,
1719                                   Expr **Args, unsigned NumArgs,
1720                                   FunctionSet &Functions) {
1721  // Find all of the associated namespaces and classes based on the
1722  // arguments we have.
1723  AssociatedNamespaceSet AssociatedNamespaces;
1724  AssociatedClassSet AssociatedClasses;
1725  FindAssociatedClassesAndNamespaces(Args, NumArgs,
1726                                     AssociatedNamespaces,
1727                                     AssociatedClasses);
1728
1729  QualType T1, T2;
1730  if (Operator) {
1731    T1 = Args[0]->getType();
1732    if (NumArgs >= 2)
1733      T2 = Args[1]->getType();
1734  }
1735
1736  // C++ [basic.lookup.argdep]p3:
1737  //   Let X be the lookup set produced by unqualified lookup (3.4.1)
1738  //   and let Y be the lookup set produced by argument dependent
1739  //   lookup (defined as follows). If X contains [...] then Y is
1740  //   empty. Otherwise Y is the set of declarations found in the
1741  //   namespaces associated with the argument types as described
1742  //   below. The set of declarations found by the lookup of the name
1743  //   is the union of X and Y.
1744  //
1745  // Here, we compute Y and add its members to the overloaded
1746  // candidate set.
1747  for (AssociatedNamespaceSet::iterator NS = AssociatedNamespaces.begin(),
1748                                     NSEnd = AssociatedNamespaces.end();
1749       NS != NSEnd; ++NS) {
1750    //   When considering an associated namespace, the lookup is the
1751    //   same as the lookup performed when the associated namespace is
1752    //   used as a qualifier (3.4.3.2) except that:
1753    //
1754    //     -- Any using-directives in the associated namespace are
1755    //        ignored.
1756    //
1757    //     -- Any namespace-scope friend functions declared in
1758    //        associated classes are visible within their respective
1759    //        namespaces even if they are not visible during an ordinary
1760    //        lookup (11.4).
1761    DeclContext::lookup_iterator I, E;
1762    for (llvm::tie(I, E) = (*NS)->lookup(Name); I != E; ++I) {
1763      Decl *D = *I;
1764      // If the only declaration here is an ordinary friend, consider
1765      // it only if it was declared in an associated classes.
1766      if (D->getIdentifierNamespace() == Decl::IDNS_OrdinaryFriend) {
1767        DeclContext *LexDC = D->getLexicalDeclContext();
1768        if (!AssociatedClasses.count(cast<CXXRecordDecl>(LexDC)))
1769          continue;
1770      }
1771
1772      FunctionDecl *Fn;
1773      if (!Operator || !(Fn = dyn_cast<FunctionDecl>(D)) ||
1774          IsAcceptableNonMemberOperatorCandidate(Fn, T1, T2, Context))
1775        CollectFunctionDecl(Functions, D);
1776    }
1777  }
1778}
1779
1780//----------------------------------------------------------------------------
1781// Search for all visible declarations.
1782//----------------------------------------------------------------------------
1783VisibleDeclConsumer::~VisibleDeclConsumer() { }
1784
1785namespace {
1786
1787class ShadowContextRAII;
1788
1789class VisibleDeclsRecord {
1790public:
1791  /// \brief An entry in the shadow map, which is optimized to store a
1792  /// single declaration (the common case) but can also store a list
1793  /// of declarations.
1794  class ShadowMapEntry {
1795    typedef llvm::SmallVector<NamedDecl *, 4> DeclVector;
1796
1797    /// \brief Contains either the solitary NamedDecl * or a vector
1798    /// of declarations.
1799    llvm::PointerUnion<NamedDecl *, DeclVector*> DeclOrVector;
1800
1801  public:
1802    ShadowMapEntry() : DeclOrVector() { }
1803
1804    void Add(NamedDecl *ND);
1805    void Destroy();
1806
1807    // Iteration.
1808    typedef NamedDecl **iterator;
1809    iterator begin();
1810    iterator end();
1811  };
1812
1813private:
1814  /// \brief A mapping from declaration names to the declarations that have
1815  /// this name within a particular scope.
1816  typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap;
1817
1818  /// \brief A list of shadow maps, which is used to model name hiding.
1819  std::list<ShadowMap> ShadowMaps;
1820
1821  /// \brief The declaration contexts we have already visited.
1822  llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts;
1823
1824  friend class ShadowContextRAII;
1825
1826public:
1827  /// \brief Determine whether we have already visited this context
1828  /// (and, if not, note that we are going to visit that context now).
1829  bool visitedContext(DeclContext *Ctx) {
1830    return !VisitedContexts.insert(Ctx);
1831  }
1832
1833  /// \brief Determine whether the given declaration is hidden in the
1834  /// current scope.
1835  ///
1836  /// \returns the declaration that hides the given declaration, or
1837  /// NULL if no such declaration exists.
1838  NamedDecl *checkHidden(NamedDecl *ND);
1839
1840  /// \brief Add a declaration to the current shadow map.
1841  void add(NamedDecl *ND) { ShadowMaps.back()[ND->getDeclName()].Add(ND); }
1842};
1843
1844/// \brief RAII object that records when we've entered a shadow context.
1845class ShadowContextRAII {
1846  VisibleDeclsRecord &Visible;
1847
1848  typedef VisibleDeclsRecord::ShadowMap ShadowMap;
1849
1850public:
1851  ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) {
1852    Visible.ShadowMaps.push_back(ShadowMap());
1853  }
1854
1855  ~ShadowContextRAII() {
1856    for (ShadowMap::iterator E = Visible.ShadowMaps.back().begin(),
1857                          EEnd = Visible.ShadowMaps.back().end();
1858         E != EEnd;
1859         ++E)
1860      E->second.Destroy();
1861
1862    Visible.ShadowMaps.pop_back();
1863  }
1864};
1865
1866} // end anonymous namespace
1867
1868void VisibleDeclsRecord::ShadowMapEntry::Add(NamedDecl *ND) {
1869  if (DeclOrVector.isNull()) {
1870    // 0 - > 1 elements: just set the single element information.
1871    DeclOrVector = ND;
1872    return;
1873  }
1874
1875  if (NamedDecl *PrevND = DeclOrVector.dyn_cast<NamedDecl *>()) {
1876    // 1 -> 2 elements: create the vector of results and push in the
1877    // existing declaration.
1878    DeclVector *Vec = new DeclVector;
1879    Vec->push_back(PrevND);
1880    DeclOrVector = Vec;
1881  }
1882
1883  // Add the new element to the end of the vector.
1884  DeclOrVector.get<DeclVector*>()->push_back(ND);
1885}
1886
1887void VisibleDeclsRecord::ShadowMapEntry::Destroy() {
1888  if (DeclVector *Vec = DeclOrVector.dyn_cast<DeclVector *>()) {
1889    delete Vec;
1890    DeclOrVector = ((NamedDecl *)0);
1891  }
1892}
1893
1894VisibleDeclsRecord::ShadowMapEntry::iterator
1895VisibleDeclsRecord::ShadowMapEntry::begin() {
1896  if (DeclOrVector.isNull())
1897    return 0;
1898
1899  if (DeclOrVector.dyn_cast<NamedDecl *>())
1900    return &reinterpret_cast<NamedDecl*&>(DeclOrVector);
1901
1902  return DeclOrVector.get<DeclVector *>()->begin();
1903}
1904
1905VisibleDeclsRecord::ShadowMapEntry::iterator
1906VisibleDeclsRecord::ShadowMapEntry::end() {
1907  if (DeclOrVector.isNull())
1908    return 0;
1909
1910  if (DeclOrVector.dyn_cast<NamedDecl *>())
1911    return &reinterpret_cast<NamedDecl*&>(DeclOrVector) + 1;
1912
1913  return DeclOrVector.get<DeclVector *>()->end();
1914}
1915
1916NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) {
1917  unsigned IDNS = ND->getIdentifierNamespace();
1918  std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin();
1919  for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend();
1920       SM != SMEnd; ++SM) {
1921    ShadowMap::iterator Pos = SM->find(ND->getDeclName());
1922    if (Pos == SM->end())
1923      continue;
1924
1925    for (ShadowMapEntry::iterator I = Pos->second.begin(),
1926                               IEnd = Pos->second.end();
1927         I != IEnd; ++I) {
1928      // A tag declaration does not hide a non-tag declaration.
1929      if ((*I)->getIdentifierNamespace() == Decl::IDNS_Tag &&
1930          (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary |
1931                   Decl::IDNS_ObjCProtocol)))
1932        continue;
1933
1934      // Protocols are in distinct namespaces from everything else.
1935      if ((((*I)->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol)
1936           || (IDNS & Decl::IDNS_ObjCProtocol)) &&
1937          (*I)->getIdentifierNamespace() != IDNS)
1938        continue;
1939
1940      // We've found a declaration that hides this one.
1941      return *I;
1942    }
1943  }
1944
1945  return 0;
1946}
1947
1948static void LookupVisibleDecls(DeclContext *Ctx, LookupResult &Result,
1949                               bool QualifiedNameLookup,
1950                               VisibleDeclConsumer &Consumer,
1951                               VisibleDeclsRecord &Visited) {
1952  // Make sure we don't visit the same context twice.
1953  if (Visited.visitedContext(Ctx->getPrimaryContext()))
1954    return;
1955
1956  // Enumerate all of the results in this context.
1957  for (DeclContext *CurCtx = Ctx->getPrimaryContext(); CurCtx;
1958       CurCtx = CurCtx->getNextContext()) {
1959    for (DeclContext::decl_iterator D = CurCtx->decls_begin(),
1960                                 DEnd = CurCtx->decls_end();
1961         D != DEnd; ++D) {
1962      if (NamedDecl *ND = dyn_cast<NamedDecl>(*D))
1963        if (Result.isAcceptableDecl(ND)) {
1964          Consumer.FoundDecl(ND, Visited.checkHidden(ND));
1965          Visited.add(ND);
1966        }
1967
1968      // Visit transparent contexts inside this context.
1969      if (DeclContext *InnerCtx = dyn_cast<DeclContext>(*D)) {
1970        if (InnerCtx->isTransparentContext())
1971          LookupVisibleDecls(InnerCtx, Result, QualifiedNameLookup,
1972                             Consumer, Visited);
1973      }
1974    }
1975  }
1976
1977  // Traverse using directives for qualified name lookup.
1978  if (QualifiedNameLookup) {
1979    ShadowContextRAII Shadow(Visited);
1980    DeclContext::udir_iterator I, E;
1981    for (llvm::tie(I, E) = Ctx->getUsingDirectives(); I != E; ++I) {
1982      LookupVisibleDecls((*I)->getNominatedNamespace(), Result,
1983                         QualifiedNameLookup, Consumer, Visited);
1984    }
1985  }
1986
1987  // Traverse the contexts of inherited C++ classes.
1988  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) {
1989    for (CXXRecordDecl::base_class_iterator B = Record->bases_begin(),
1990                                         BEnd = Record->bases_end();
1991         B != BEnd; ++B) {
1992      QualType BaseType = B->getType();
1993
1994      // Don't look into dependent bases, because name lookup can't look
1995      // there anyway.
1996      if (BaseType->isDependentType())
1997        continue;
1998
1999      const RecordType *Record = BaseType->getAs<RecordType>();
2000      if (!Record)
2001        continue;
2002
2003      // FIXME: It would be nice to be able to determine whether referencing
2004      // a particular member would be ambiguous. For example, given
2005      //
2006      //   struct A { int member; };
2007      //   struct B { int member; };
2008      //   struct C : A, B { };
2009      //
2010      //   void f(C *c) { c->### }
2011      //
2012      // accessing 'member' would result in an ambiguity. However, we
2013      // could be smart enough to qualify the member with the base
2014      // class, e.g.,
2015      //
2016      //   c->B::member
2017      //
2018      // or
2019      //
2020      //   c->A::member
2021
2022      // Find results in this base class (and its bases).
2023      ShadowContextRAII Shadow(Visited);
2024      LookupVisibleDecls(Record->getDecl(), Result, QualifiedNameLookup,
2025                         Consumer, Visited);
2026    }
2027  }
2028
2029  // Traverse the contexts of Objective-C classes.
2030  if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) {
2031    // Traverse categories.
2032    for (ObjCCategoryDecl *Category = IFace->getCategoryList();
2033         Category; Category = Category->getNextClassCategory()) {
2034      ShadowContextRAII Shadow(Visited);
2035      LookupVisibleDecls(Category, Result, QualifiedNameLookup, Consumer,
2036                         Visited);
2037    }
2038
2039    // Traverse protocols.
2040    for (ObjCInterfaceDecl::protocol_iterator I = IFace->protocol_begin(),
2041         E = IFace->protocol_end(); I != E; ++I) {
2042      ShadowContextRAII Shadow(Visited);
2043      LookupVisibleDecls(*I, Result, QualifiedNameLookup, Consumer, Visited);
2044    }
2045
2046    // Traverse the superclass.
2047    if (IFace->getSuperClass()) {
2048      ShadowContextRAII Shadow(Visited);
2049      LookupVisibleDecls(IFace->getSuperClass(), Result, QualifiedNameLookup,
2050                         Consumer, Visited);
2051    }
2052  } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) {
2053    for (ObjCProtocolDecl::protocol_iterator I = Protocol->protocol_begin(),
2054           E = Protocol->protocol_end(); I != E; ++I) {
2055      ShadowContextRAII Shadow(Visited);
2056      LookupVisibleDecls(*I, Result, QualifiedNameLookup, Consumer, Visited);
2057    }
2058  } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) {
2059    for (ObjCCategoryDecl::protocol_iterator I = Category->protocol_begin(),
2060           E = Category->protocol_end(); I != E; ++I) {
2061      ShadowContextRAII Shadow(Visited);
2062      LookupVisibleDecls(*I, Result, QualifiedNameLookup, Consumer, Visited);
2063    }
2064  }
2065}
2066
2067static void LookupVisibleDecls(Scope *S, LookupResult &Result,
2068                               UnqualUsingDirectiveSet &UDirs,
2069                               VisibleDeclConsumer &Consumer,
2070                               VisibleDeclsRecord &Visited) {
2071  if (!S)
2072    return;
2073
2074  if (!S->getEntity() || !S->getParent() ||
2075      ((DeclContext *)S->getEntity())->isFunctionOrMethod()) {
2076    // Walk through the declarations in this Scope.
2077    for (Scope::decl_iterator D = S->decl_begin(), DEnd = S->decl_end();
2078         D != DEnd; ++D) {
2079      if (NamedDecl *ND = dyn_cast<NamedDecl>((Decl *)((*D).get())))
2080        if (Result.isAcceptableDecl(ND)) {
2081          Consumer.FoundDecl(ND, Visited.checkHidden(ND));
2082          Visited.add(ND);
2083        }
2084    }
2085  }
2086
2087  DeclContext *Entity = 0;
2088  if (S->getEntity()) {
2089    // Look into this scope's declaration context, along with any of its
2090    // parent lookup contexts (e.g., enclosing classes), up to the point
2091    // where we hit the context stored in the next outer scope.
2092    Entity = (DeclContext *)S->getEntity();
2093    DeclContext *OuterCtx = findOuterContext(S);
2094
2095    for (DeclContext *Ctx = Entity; Ctx && Ctx->getPrimaryContext() != OuterCtx;
2096         Ctx = Ctx->getLookupParent()) {
2097      if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) {
2098        if (Method->isInstanceMethod()) {
2099          // For instance methods, look for ivars in the method's interface.
2100          LookupResult IvarResult(Result.getSema(), Result.getLookupName(),
2101                                  Result.getNameLoc(), Sema::LookupMemberName);
2102          ObjCInterfaceDecl *IFace = Method->getClassInterface();
2103          LookupVisibleDecls(IFace, IvarResult, /*QualifiedNameLookup=*/false,
2104                             Consumer, Visited);
2105        }
2106
2107        // We've already performed all of the name lookup that we need
2108        // to for Objective-C methods; the next context will be the
2109        // outer scope.
2110        break;
2111      }
2112
2113      if (Ctx->isFunctionOrMethod())
2114        continue;
2115
2116      LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/false,
2117                         Consumer, Visited);
2118    }
2119  } else if (!S->getParent()) {
2120    // Look into the translation unit scope. We walk through the translation
2121    // unit's declaration context, because the Scope itself won't have all of
2122    // the declarations if we loaded a precompiled header.
2123    // FIXME: We would like the translation unit's Scope object to point to the
2124    // translation unit, so we don't need this special "if" branch. However,
2125    // doing so would force the normal C++ name-lookup code to look into the
2126    // translation unit decl when the IdentifierInfo chains would suffice.
2127    // Once we fix that problem (which is part of a more general "don't look
2128    // in DeclContexts unless we have to" optimization), we can eliminate this.
2129    Entity = Result.getSema().Context.getTranslationUnitDecl();
2130    LookupVisibleDecls(Entity, Result, /*QualifiedNameLookup=*/false,
2131                       Consumer, Visited);
2132  }
2133
2134  if (Entity) {
2135    // Lookup visible declarations in any namespaces found by using
2136    // directives.
2137    UnqualUsingDirectiveSet::const_iterator UI, UEnd;
2138    llvm::tie(UI, UEnd) = UDirs.getNamespacesFor(Entity);
2139    for (; UI != UEnd; ++UI)
2140      LookupVisibleDecls(const_cast<DeclContext *>(UI->getNominatedNamespace()),
2141                         Result, /*QualifiedNameLookup=*/false, Consumer,
2142                         Visited);
2143  }
2144
2145  // Lookup names in the parent scope.
2146  ShadowContextRAII Shadow(Visited);
2147  LookupVisibleDecls(S->getParent(), Result, UDirs, Consumer, Visited);
2148}
2149
2150void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind,
2151                              VisibleDeclConsumer &Consumer) {
2152  // Determine the set of using directives available during
2153  // unqualified name lookup.
2154  Scope *Initial = S;
2155  UnqualUsingDirectiveSet UDirs;
2156  if (getLangOptions().CPlusPlus) {
2157    // Find the first namespace or translation-unit scope.
2158    while (S && !isNamespaceOrTranslationUnitScope(S))
2159      S = S->getParent();
2160
2161    UDirs.visitScopeChain(Initial, S);
2162  }
2163  UDirs.done();
2164
2165  // Look for visible declarations.
2166  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2167  VisibleDeclsRecord Visited;
2168  ShadowContextRAII Shadow(Visited);
2169  ::LookupVisibleDecls(Initial, Result, UDirs, Consumer, Visited);
2170}
2171
2172void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind,
2173                              VisibleDeclConsumer &Consumer) {
2174  LookupResult Result(*this, DeclarationName(), SourceLocation(), Kind);
2175  VisibleDeclsRecord Visited;
2176  ShadowContextRAII Shadow(Visited);
2177  ::LookupVisibleDecls(Ctx, Result, /*QualifiedNameLookup=*/true, Consumer,
2178                       Visited);
2179}
2180
2181//----------------------------------------------------------------------------
2182// Typo correction
2183//----------------------------------------------------------------------------
2184
2185namespace {
2186class TypoCorrectionConsumer : public VisibleDeclConsumer {
2187  /// \brief The name written that is a typo in the source.
2188  llvm::StringRef Typo;
2189
2190  /// \brief The results found that have the smallest edit distance
2191  /// found (so far) with the typo name.
2192  llvm::SmallVector<NamedDecl *, 4> BestResults;
2193
2194  /// \brief The best edit distance found so far.
2195  unsigned BestEditDistance;
2196
2197public:
2198  explicit TypoCorrectionConsumer(IdentifierInfo *Typo)
2199    : Typo(Typo->getName()) { }
2200
2201  virtual void FoundDecl(NamedDecl *ND, NamedDecl *Hiding);
2202
2203  typedef llvm::SmallVector<NamedDecl *, 4>::const_iterator iterator;
2204  iterator begin() const { return BestResults.begin(); }
2205  iterator end() const { return BestResults.end(); }
2206  bool empty() const { return BestResults.empty(); }
2207
2208  unsigned getBestEditDistance() const { return BestEditDistance; }
2209};
2210
2211}
2212
2213void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding) {
2214  // Don't consider hidden names for typo correction.
2215  if (Hiding)
2216    return;
2217
2218  // Only consider entities with identifiers for names, ignoring
2219  // special names (constructors, overloaded operators, selectors,
2220  // etc.).
2221  IdentifierInfo *Name = ND->getIdentifier();
2222  if (!Name)
2223    return;
2224
2225  // Compute the edit distance between the typo and the name of this
2226  // entity. If this edit distance is not worse than the best edit
2227  // distance we've seen so far, add it to the list of results.
2228  unsigned ED = Typo.edit_distance(Name->getName());
2229  if (!BestResults.empty()) {
2230    if (ED < BestEditDistance) {
2231      // This result is better than any we've seen before; clear out
2232      // the previous results.
2233      BestResults.clear();
2234      BestEditDistance = ED;
2235    } else if (ED > BestEditDistance) {
2236      // This result is worse than the best results we've seen so far;
2237      // ignore it.
2238      return;
2239    }
2240  } else
2241    BestEditDistance = ED;
2242
2243  BestResults.push_back(ND);
2244}
2245
2246/// \brief Try to "correct" a typo in the source code by finding
2247/// visible declarations whose names are similar to the name that was
2248/// present in the source code.
2249///
2250/// \param Res the \c LookupResult structure that contains the name
2251/// that was present in the source code along with the name-lookup
2252/// criteria used to search for the name. On success, this structure
2253/// will contain the results of name lookup.
2254///
2255/// \param S the scope in which name lookup occurs.
2256///
2257/// \param SS the nested-name-specifier that precedes the name we're
2258/// looking for, if present.
2259///
2260/// \param MemberContext if non-NULL, the context in which to look for
2261/// a member access expression.
2262///
2263/// \param EnteringContext whether we're entering the context described by
2264/// the nested-name-specifier SS.
2265///
2266/// \param OPT when non-NULL, the search for visible declarations will
2267/// also walk the protocols in the qualified interfaces of \p OPT.
2268///
2269/// \returns true if the typo was corrected, in which case the \p Res
2270/// structure will contain the results of name lookup for the
2271/// corrected name. Otherwise, returns false.
2272bool Sema::CorrectTypo(LookupResult &Res, Scope *S, const CXXScopeSpec *SS,
2273                       DeclContext *MemberContext, bool EnteringContext,
2274                       const ObjCObjectPointerType *OPT) {
2275
2276  if (Diags.hasFatalErrorOccurred())
2277    return false;
2278
2279  // We only attempt to correct typos for identifiers.
2280  IdentifierInfo *Typo = Res.getLookupName().getAsIdentifierInfo();
2281  if (!Typo)
2282    return false;
2283
2284  // If the scope specifier itself was invalid, don't try to correct
2285  // typos.
2286  if (SS && SS->isInvalid())
2287    return false;
2288
2289  // Never try to correct typos during template deduction or
2290  // instantiation.
2291  if (!ActiveTemplateInstantiations.empty())
2292    return false;
2293
2294  TypoCorrectionConsumer Consumer(Typo);
2295  if (MemberContext) {
2296    LookupVisibleDecls(MemberContext, Res.getLookupKind(), Consumer);
2297
2298    // Look in qualified interfaces.
2299    if (OPT) {
2300      for (ObjCObjectPointerType::qual_iterator
2301             I = OPT->qual_begin(), E = OPT->qual_end();
2302           I != E; ++I)
2303        LookupVisibleDecls(*I, Res.getLookupKind(), Consumer);
2304    }
2305  } else if (SS && SS->isSet()) {
2306    DeclContext *DC = computeDeclContext(*SS, EnteringContext);
2307    if (!DC)
2308      return false;
2309
2310    LookupVisibleDecls(DC, Res.getLookupKind(), Consumer);
2311  } else {
2312    LookupVisibleDecls(S, Res.getLookupKind(), Consumer);
2313  }
2314
2315  if (Consumer.empty())
2316    return false;
2317
2318  // Only allow a single, closest name in the result set (it's okay to
2319  // have overloads of that name, though).
2320  TypoCorrectionConsumer::iterator I = Consumer.begin();
2321  DeclarationName BestName = (*I)->getDeclName();
2322
2323  // If we've found an Objective-C ivar or property, don't perform
2324  // name lookup again; we'll just return the result directly.
2325  NamedDecl *FoundBest = 0;
2326  if (isa<ObjCIvarDecl>(*I) || isa<ObjCPropertyDecl>(*I))
2327    FoundBest = *I;
2328  ++I;
2329  for(TypoCorrectionConsumer::iterator IEnd = Consumer.end(); I != IEnd; ++I) {
2330    if (BestName != (*I)->getDeclName())
2331      return false;
2332
2333    // FIXME: If there are both ivars and properties of the same name,
2334    // don't return both because the callee can't handle two
2335    // results. We really need to separate ivar lookup from property
2336    // lookup to avoid this problem.
2337    FoundBest = 0;
2338  }
2339
2340  // BestName is the closest viable name to what the user
2341  // typed. However, to make sure that we don't pick something that's
2342  // way off, make sure that the user typed at least 3 characters for
2343  // each correction.
2344  unsigned ED = Consumer.getBestEditDistance();
2345  if (ED == 0 || (BestName.getAsIdentifierInfo()->getName().size() / ED) < 3)
2346    return false;
2347
2348  // Perform name lookup again with the name we chose, and declare
2349  // success if we found something that was not ambiguous.
2350  Res.clear();
2351  Res.setLookupName(BestName);
2352
2353  // If we found an ivar or property, add that result; no further
2354  // lookup is required.
2355  if (FoundBest)
2356    Res.addDecl(FoundBest);
2357  // If we're looking into the context of a member, perform qualified
2358  // name lookup on the best name.
2359  else if (MemberContext)
2360    LookupQualifiedName(Res, MemberContext);
2361  // Perform lookup as if we had just parsed the best name.
2362  else
2363    LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false,
2364                     EnteringContext);
2365
2366  if (Res.isAmbiguous()) {
2367    Res.suppressDiagnostics();
2368    return false;
2369  }
2370
2371  return Res.getResultKind() != LookupResult::NotFound;
2372}
2373